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Abstract 

It has been known that a preconception paternal alcoholism impacts adversely on the offspring but 

the mechanism of the effect is uncertain. Several findings suggest that there are signalling systems in 

testis that are analogous to those known to be altered by alcoholism in brain. We propose that 

chronic alcohol affects these systems in a manner similar to that in brain. Specifically, we 

hypothesise that excessive alcohol may disturb glutamatergic-like signalling in testis by increasing 

expression of the glutamate transporter GLAST (EAAT1). We discuss ways how to test the hypothesis 

as well as potential significance of some of the tests as tools in the diagnostics of chronic alcoholism. 

Background 

Presence of apparent cognitive deficits in children fathered by heavily drinking men has been known 

since antiquity (as noted in [1]). The mechanism(s) by which paternal alcohol-drinking inflicts 

damage on the offspring remain(s), however, obscure. It has been suggested that the DNA in male 

gametes affected by alcohol is altered epigenetically, e.g. by an interference in the methylation of 

DNA cytosine but the evidence, particularly when obtained in humans, is scarce and may be 

contradictory. Some groups have reported a decrease in the expression and activity of a DNA 

methyltransferases [1,2] resulting in a failure of orderly suppression of specific DNA sites in male-

contributed alleles [1]. In contrast, results of other studies, using male mice exposed to ethanol, 

implied that an increased methylation of specific DNA loci, e.g. cytosine-rich sequences (“CpG 

islands”) in the promoter region of the DAT gene encoding a dopamine transporter, could be at fault 

[3]. Disturbed expression of DAT has, indeed, been causally linked to an attention-

deficit/hyperactivity disorder (ADHD)-like behaviour similar to that observed in the offspring of the 

ethanol-exposed male mice [3]; (cf. review of animal models of ADHD [4] and altered expression of 

DAT1/SLC6A3 in human ADHD [5]). Here we propose an alternative hypothesis which, in our view, 

fits better the broad spectrum of deficits encountered in the offspring of alcoholic males. It is based 

on the probable presence in the testis of signalling mechanisms similar to those known to exist in 

the central nervous system. 

The main synaptic transmitters in brain are L-glutamate (excitatory) and GABA (inhibitory); (for a 

historical review see [6]). Both glutamatergic and GABAergic synapses are thought to be strongly 

involved in mediating the effects of alcohol [7], particularly via the NMDA-type of glutamate 

receptor and the alpha4-subunit containing GABA(A) receptor [8,9,10]. Both GABAergic and 

glutamatergic signalling systems, including the two types of receptors mentioned above, are altered 

in alcoholism [11,12,13,14]. Interestingly, it is not only the synaptic receptors which are affected by 

alcohol but also the neurotransmitter-inactivating mechanisms that are changed in alcoholic brains, 

particularly in the case of glutamatergic neurotransmission. 

In the central nervous system (CNS), synaptically released L-glutamate is inactivated by several 

specific transporters located mainly but not exclusively in the plasma membrane of surrounding 

astrocytes. There are five genes coding for the transporters (reviews: [15,16]) but protein products 

of two of them predominate: GLAST transporter encoded by SLC1A3 and GLT1 transporter encoded 

by SLC1A2. GLT1 and GLAST are also referred to as EAAT1 and EAAT2, respectively, particularly when 

discussing human brains. Both transporters require Na+ and K+ transmembrane gradients as the 

driving force  to transport L-glutamate from the extracellular space (reviews: [15,16]). In addition, 

GLAST acts as a chloride-selective ligand- (L-glutamate-) gated channel and thus has a capability to 
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hyperpolarise GLAST-expressing cells in the presence of L-glutamate [review: 16]. Both GLAST and 

GLT are mostly expressed in the central nervous system [15,16]; the only other tissue which 

expresses them in significant quantities is testis [17,18,19,20,21]. 

In the testes, GLT1 (EAAT2) has been detected in the interstitial cells but it is located mainly in the 

seminiferous tubules, both in the Sertoli cells and in the sperm. GLAST is found, apart from the 

Sertoli and interstitial cells, in the sperm, apparently in its anterior part, possibly concentrated in the 

acrosome [19,21]. The other glutamate transporters that have been detected in the testes are 

EAAT5 which acts mostly as an L-glutamate-gated chloride channel [22,23] and EAAT3 [19,21].  

The precise role of glutamate transporters in the testes is not known. However, L-glutamate is the 

most abundant free amino acid in testis [24] and is present inside the seminiferous tubules. 

Moreover, the compartment is separated from the blood stream by a very tight blood-testis barrier 

formed by tight junctions in the Sertoli epithelium. The presence of L-glutamate (together with 

several “synaptic” proteins; cf. [19] and receptors [20,21]) sequestered behind such barrier would 

seem to imply that a signalling apparatus, possibly involving germ cells and sperm, both in their 

mature and immature forms either dormant or active and mediated by L-glutamate, exists and 

functions in testes. Glutamate transporters would then provide a regulating (“inactivating”) 

mechanism analogous to that functioning at brain synapses (reviews: [12,13). Alternatively, L-

glutamate transport, mainly by GLAST (EAAT1) and EAAT5 could trigger chloride influx thus 

hyperpolarizing and activating the sperm [21].  

The Hypothesis 

It has been reported that chronic exposure to large doses of alcohol is associated with significant 

(several-fold) increases in the expression of GLAST (EAAT1), both in mice and men [25,26]. Should a 

similar overexpression of GLAST (EAAT1) occur in testes under similar circumstances (chronic severe 

alcoholism), sperm would become much more susceptible to the activation than the sperm of non-

alcoholic males possibly leading to a formation of active immature sperm. Subsequent fertilization 

by such immature sperm would significantly increase the risk of developmental defects in the 

offspring [27].  

Evaluation 

It should be understood that the developmental defects caused by the paternal alcoholism are 

distinct from the better known Foetal Alcohol Spectrum Disorder (FASD) and would be entirely 

independent of the alcoholic status of the pregnant female. The hypothesis does not negate the role 

of epigenetics as a mediator of the effect of paternal alcohol consumption on the offspring; there is 

ample evidence for such mechanisms from rodent studies (for a review see [28]). The present 

hypothesis adds, however, an extra element to the picture and could help to explain the complexity 

of the phenomenon [28]. 

Testing the hypothesis would present several significant challenges. Firstly, glutamate transporters 

are expressed in a number of splice variants and the splicing pattern in the testes appears very 

different from that in the CNS [23]. Use of single antibodies against GLAST (EAAT1) or GLT1 (EAAT2) 

in the testicular tissue could, therefore, easily miss or underestimate the full extent of the changes in 

GLAST (EAAT1) expression putatively caused by chronic alcoholism. Suitable antibodies against a 

range of splice variants are available [29,30] though not yet on commercial basis. The glutamate 
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transporter immunohistochemistry would have to be complemented by in situ hybridization using 

judiciously selected antisense oligonucleotides to reveal the full extent of the changes and their loci. 

Secondly, not just the presence but also the function of GLAST (EAAT1), GLT1 (EAAT2) and EAAT5 

both in the seminiferous tubules and in the sperm would have to be investigated. Initial approach 

encountered significant methodological hurdles [21] but these can be overcome. Given the 

proposed hypothetical importance of the transporter molecules in the sperm activation, samples of 

sperm should perhaps be used directly in this type of studies. Thirdly, a link between the proposed 

overexpression of GLAST in the testes and/or in the sperm following chronic exposure to alcohol and 

observed deficits in the offspring would have to be established. This experimental component seems 

crucial in testing the validity of the hypothesis but may also be the most difficult, probably requiring 

a large (inter-disciplinary) animal-based approach. In the meantime, GLAST (EAAT1) expression in 

the sperm of alcoholic men could be looked at and perhaps evaluated as a possible diagnostic test 

for the severity of chronic alcoholism. 

Conclusion and Significance of the Hypothesis 

We propose that the mechanism of the effect of paternal alcoholism on inborn deficits in the 

offspring can be at least in part explained by a changed pattern of the expression of glutamate 

transporters in the testes of alcoholic fathers. This would involve, in particular, overexpression of 

GLAST (EAAT1) glutamate transporter. Testing the hypothesis presents significant methodological 

challenges but none of them seem in principle unsurmountable. Additionally, the tests could yield an 

important diagnostic tool potentially useful in assessment of chronic alcoholism in men. Should the 

hyperactivity of glutamate transporter GLAST be an important part of the mechanism, there is 

extensive pharmacological information on structural requirements of glutamate transporters that 

could greatly facilitate design and synthesis of specific inhibitors [31,32]. 
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