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Abstract  

A re-examination of 46 recently published U/Th reef flat ages from Heron and One Tree 

reefs in the southern Great Barrier Reef (GBR) identified several distinct Holocene reef growth 

phases with a clear 2.3-kyr hiatus in lateral reef accretion from 3.9 ka to 1.5 ka. An analysis of 

all available published radiocarbon reef flat ages (165) from 27 other mid-outer platform reefs 

revealed a similar hiatus between 3.6 ka and 1.6 ka for the northern, south-central and southern 

GBR. However, no hiatus in reef flat growth was observed in reefs from the central GBR with 

ages ranging from 7.6 ka to 0.9 ka. Increased upwelling, turbidity and cyclone activity in 

response to increased sea-surface temperature (SST’s), precipitation and El-Nino Southern 

Oscillation variability have been ruled out as possible mechanisms of reef turn-off for the mid-

outer platform reefs. Rather, a fall (~0.5 m) in relative sea level at 4-3.5 ka is the most likely 

explanation for why reefs in the northern and southern regions turned off during this time. 

Greater hydro-isostatic adjustment of the central GBR and long term subsidence of the Halifax-

Basin may have provided greater vertical accommodation for the mid-outer reefs of the central 

GBR, thus allowing these reefs to continue to accrete vertically despite a fall in sea level ~4-3.5 

ka. Further evidence for greater subsidence in this region includes the lack of senile reefs and 

dominance of incipient and juvenile reefs in the central GBR. This suggests that these reefs 

approached sea level considerably later than the northern and southern reefs, consistent with their 

deeper antecedent substrates. Thus, these results not only provide important information about 

possible reef flat demise in response to natural environmental factors, but also provide insights 

into regional subsidence that affected relative sea level along the east Australian margin during 

the Holocene. 
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1. Introduction 

Over the last few decades, the global decline of modern reefs has been linked to 

environmental and climatic changes in response to anthropogenic activities (Hoegh-Guldberg, 
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1999, Bruno and Selig, 2007). However, recent geological and ecological research on fossil reefs 

in the Great Barrier Reef (GBR) (Smithers et al., 2006, Perry and Smithers, 2011, 2010, Leonard 

et al., 2015, Ryan et al., 2016a, 2016b) and wider Indo-Pacific (Rooney et al., 2004, Engels et al., 

2004, Hamanaka et al., 2012, Toth et al., 2015) identified intervals of significant reef “turn-off” 

in response to natural environmental forces earlier in their development during the mid- to late 

Holocene. It is therefore important to understand the longer term histories of coral reefs as they 

not only provide important information about significant palaeoenvironmental change, but also 

provide greater insight into the persistence (or not) of reef growth through time. Such insights 

allow us to better recognise when changes in reef conditions are in response to natural or 

anthropogenic factors (Pandolfi and Kiessling, 2014). 

Successive reef growth phases of “turn-on” and “turn-off” were identified from numerous in-

shore fringing reefs of the GBR within the past 7-kyr (Smithers et al., 2006, Perry and Smithers, 

2011, 2010, Leonard et al., 2015, Ryan et al., 2016a, 2016b). Specifically, hiatuses in reef 

growth from 4.6 to 2.8 ka and from 5.5 to 2.3 ka were identified from these reefs and are 

attributed to falling sea level and or re-suspension of terrigenous material (Perry and Smithers, 

2011, Leonard et al., 2015). Alternatively, Ryan et al. (2016b) suggested that intense cyclone 

activity during the mid-to late Holocene was capable of stripping the reef flat of an inshore reef, 

causing an age gap in core rather than a demonstrable lateral reef growth hiatus. Similar hiatuses 

in Holocene reef growth were identified in Japan from about 5.9 to 5.8 ka, 4.4 to 4.0 ka and from 

3.3 to 3.2 ka. They were attributed to oscillating sea level and relatively cold sea-surface 

temperatures associated with a weakened Kuroshio Current (Hamanaka et al., 2012). In Hawaii 

(Rooney et al., 2004, Engels et al., 2004) and Panama (Toth et al., 2012, 2015), cessation of reef 
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accretion at 5 ka and 4 ka, respectively, was linked to increased variability in ENSO events 

and/or increased upwelling.  

Reef growth models based on more than 100 reef cores from the mid-outer platform reefs of 

the GBR (Hopley et al., 2007) established two main phases of Holocene reef growth; a rapid 

phase of vertical accretion as reefs were forced to catch-up/keep-up with post glacial sea-level 

rise, and a subsequent lateral accretion phase once sea level stabilised (Davies et al., 1985). 

Regional variations in the evolutionary states (juvenile, mature and senile) of these reefs were 

also established, with younger reef flat ages and lack of senile reefs identified from the central 

GBR, particularly on the outer shelf (Hopley and Harvey, 1981, Hopley, 1982). Variation in 

relative sea level in response to hydro-isostatic adjustment and longer term crustal movement of 

the still active Halifax basin was identified as a possible factor influencing the timing of when 

these reefs first approached sea level (Hopley and Harvey, 1981, Lambeck and Nakada, 1990, 

Kleypas and Hopley, 1992, Hopley et al., 2007). However, controversy remains over the specific 

timing and magnitude of the mid-Holocene highstand and subsequent smooth or oscillating post 

highstand fall on the northeast coast of Australia (Lewis et al., 2013, 2015, Leonard et al., 2015). 

While it is generally accepted that relative sea level reached a maximum of 1-1.5 m above 

present mean sea level (pmsl) by ~7 ka (Lewis et al., 2013), interpretations of relative sea-level 

fall after the mid-Holocene highstand have varied and include: 1) a smoothly falling sea level to 

present (Chappell, 1983); 2) a highstand that remained until ~2 ka (Sloss et al., 2007) or 1.2 ka 

(Lewis et al., 2015) and then abruptly fell to present levels; and 3) an oscillating sea level, with 

meter scale fluctuations (Baker and Haworth, 2000, Lewis et al., 2008, Leonard et al., 2015). As 

reef growth is highly sensitive to variations in sea level (Woodroffe and Webster, 2014), a fall or 

possible oscillation in sea level should be reflected in the growth response of mid-outer platform 
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reefs across the GBR. However, whether hiatuses in reef flat growth exist regionally from the 

northern to the southern mid-outer platform reefs has yet to be systematically investigated, with 

only a single study from One Tree Reef in the southern GBR suggesting a hiatus in reef growth 

at ~2 ka (Harris et al., 2015). Moreover, most of the previous reef growth models for the mid-

outer platform reefs were based on either one, or a few, isolated cores distributed over a range of 

reef zones commonly biased towards windward margins (Davies and Hopley, 1983). As recently 

demonstrated by Webb et al. (2016) and Dechnik et al. (2016), only closely spaced (< 50 m) core 

transects can capture the full response of platform reefs to the Holocene stillstand, including the 

timing of when these reefs first approached mean sea level and the direction and rate of 

subsequent reef flat progradation. However, whether this progradational growth was continuous 

throughout the mid- to late Holocene or was interrupted by hiatuses in reef growth has yet to be 

explored.  

To address these problems we re-analysed chronostratigraphic data based on 46 U/Th ages 

from 34 closely spaced short cores from two mid-outer platform reefs in the Southern GBR 

(Dechnik et al., 2016), in conjunction with all other available previously published reef core data 

(n = 165 radiocarbon ages) from 27 other mid-outer platform reefs in the GBR. Our specific 

objectives were to: 1) undertake a detailed chronological analysis of closely spaced shallow core 

transects across the reef flats at Heron and One Tree reefs to establish the timing of when these 

reefs first approached sea level; 2) compare these results to those from 27 other mid-outer shelf 

reefs to identify any regional patterns in reef flat growth and development through the Holocene; 

and 3) identify, date and constrain any hiatuses in reef growth using age data and if possible 

attribute these responses to known sea level, climatic or environmental changes. 
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2. Location and Methods 

2.1 Study sites 

In order to compare regional patterns in reef flat development we collated 165 previously 

published radiocarbon ages from 27 mid-outer shelf reefs (Fig. 1 and Supplementary Table 1) in 

combination with 46 recently published (Dechnik et al., 2016) U/Th ages from drilled short cores 

at Heron and One Tree reefs (Fig. 1). Previously published microatoll dates from One Tree Reef 

(Harris et al., 2015) were also included in our analysis to provide a spatial and temporal 

comparison between different data sets (i.e., short cores vs microatolls).  

>>Fig. 1<< 

2.2 Regional setting, climate and oceanography 

Variations in physical characteristics with latitude allow the GBR to be divided into four 

distinct regions (Great Barrier Reef Marine Park and Unesco, 1981, Wolanski, 1994, Hopley et 

al., 2007). 1) The northern GBR extends from 11° to 16° S and is dominated by ribbon reefs, 

characterised by steep elongate algal encrusted windward rims with no distinct leeward margins. 

Water depths are typically less than 36 m with the mid- to outer shelf reefs located 

approximately 40 km offshore. 2) The central GBR (16° S to 20° S) is characterised by scattered 

platform reefs separated by distances as great as 5-10 km. Water depths range from 36-55 m with 

the majority of mid-outer shelf reefs located 50-100 km offshore. 3) The south-central GBR, 

including the Pompey Complex, (20° S to 21° S) occur where the shelf is widest, with most mid-

outer shelf reefs located 100-180 km offshore. The reefs on the mid-shelf are typically platform 

reefs, whereas the outer shelf is characterised by large deltaic reefs. The highest tidal currents of 

the entire GBR are located in this region, exceeding 4 m s
-1

, and water depths reach 80 m. 4). 
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The southern GBR extends from 21° S to 24° S and includes the Swains Reefs and the 

Capricorn-Bunker groups of reefs. Water depths reach 140 m in the Swains complex and 40-70 

m in the Capricorn-Bunker groups with most reefs located 70-250 km offshore. The Swains reefs 

typically consist of a series of tightly packed lagoonal platform reefs, whereas reefs of the 

Capricorn-Bunker groups are characterised by isolated platform reefs, several of which have well 

developed shingle cays (Hopley et al., 2007). 

The GBR has a tropical climate influenced by an equatorial low pressure zone during the 

summer months and subtropical high pressure zone during the winter months (Wolanski, 1994). 

The southeasterly trade winds dominate most of the year, with north-westerlies occurring from 

January to March (Kench and Brander, 2006). Rainfall patterns vary regionally, the highest 

rainfall occurring in the central GBR between 16° S and 18° S with a mean annual rainfall of 

2,049 mm (Australian Bureau of Meteorology, 2013).  Rainfall averages generally decrease to 

the south but there are pockets of higher rainfall, such as around the Mackay region (Australian 

Bureau of Meteorology, 2013). Tropical cyclones are common throughout the region, with an 

average 2.8 cyclones per year coming most frequently from the northern to south-central GBR 

(12-20°S), with the most intense (category 4 and 5) cyclones occurring in the central and south-

central regions (19-22°S) (Puotinen et al., 1997). Monthly mean Sea Surface Temperatures 

(SST) range from a summer maximum of 29°C north of 14° S, to less than 22°C during winter in 

the south (24° S) (Lough, 2007). Tides are typically semi-diurnal, becoming more diurnal 

towards the north near Torres Strait. The tidal range is typically 2.5-3 m along most of the coast 

except the northern section of the Swains reefs, between 21-23° S, where the maximum tidal 

ranges increase to 6-9 m (Wolanski, 1994).  

2.3 Short Core collection and logging 
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A total of 34 short cores, approximately 1 m in length, were collected with a hand held 

petrol driven motor attached to a 5 cm diameter diamond core bit (Dechnik et al., 2016). Cores 

were logged based on a combination of sample material, petrographic thin sections and digital 

images. Lithologic characteristics, coral identification and the presence of coralline algae and 

associated biota were identified and logged, the details of which can be found in Dechnik et al. 

(2016).  

2.4 Core chronology and dating 

Of the previously published dates, only ages within the top 3 m of cores were considered 

as this depth would have occurred when reefs were within the wave base depth range, 

representing the time at which reefs first approached modern sea level (Davies and Marshall, 

1979, Davies and Hopley, 1983, Hopley et al., 2007). To provide a consistent comparison of reef 

flat surface elevation to sea level, core depths from all sites were re-plotted relative to Mean Sea 

Level (MSL). To the best of our knowledge we included only ages we consider to be in-situ 

based on available published literature (Supplemental Table 1). U-series dates from the 

shallowest 1.5 m of cores may be affected by a minor age anomaly (towards older), but age 

offsets most likely would have been less than 200 years (Webb et al., 2016).  

All 46 coral dates from One Tree and Heron reefs, as well as details of the U/Th dating, were 

reported in Dechnik et al. (2016). Previously published radiocarbon ages were re-calibrated using 

calibration software (Calib7.0) (http://calib.qub.ac.uk/calib/; Accessed June 2014). Marine 

reservoir correction value ΔR 12 ± 5 was used in all calculations as this represents the best 

estimate of variance in marine reservoir effect for the mid-outer shelf reefs along the East 

Australian coast (Druffel and Griffin, 1999), at least for the last ~4.5 ka.  However, for ages 
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older than ~5.4 ka (49 ages in this study), there may be significantly larger ΔR (~410 yrs), 

potentially resulting in larger calibrated age errors (Hua et al., 2015).  

 

3. Results 

For the purposes of this study we define reef “turn-off” as the point where the reef flat, 

defined as including the reef crest, coralgal flat, rubble band and coral windrows, (Dechnik et al., 

2016), ceases to accrete vertically and laterally, although significant amounts of coral and 

coralline algae may continue to grow on the outer reef slope and in deeper water in the back reef 

lagoon (Buddemeier and Hopley, 1988, Perry et al., 2011).  

More than 80% of the recently dated in-situ reef flat corals at Heron and One Tree reefs 

approached MSL between 6.8 ± 0.02 ka and 3.9 ± 0.01 ka (Fig. 2) as the reefs exhibited catch-up 

behavior (Dechnik et al., 2015, Webb et al., 2016) corresponding to the approximate timing of 

the mid-Holocene warm interval (Gagan et al., 1998, Hopley, 1982). A 2.3-kyr hiatus followed, 

with no apparent significant reef flat growth occurring between 3.9-1.5 ka, indicating that the 

reefs “turned-off” during this interval (Fig. 2). Five recently published microatoll dates that 

range from 3.86 ± 0.18 ka to 2.23 ± 0.2 ka (Harris et al., 2015) were recovered from One Tree 

Reef at slightly higher elevations (~0.2 m) than the surrounding reef flat (Fig. 2). The upper 

growth limits of these microatolls are interpreted to represent palaeo-mean low water neap and 

their elevations to represent palaeo-mean low water spring. Hence, when combined with the 

short core reef flat data at One Tree Reef, no hiatus in reef flat growth is observed.  

Fossil microatolls from the other mid-outer shelf reefs in the northern, south-central and 

southern GBR are yet to be discovered. Available reef flat core data (N = 79) across 27 reefs 
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show a similar pattern to the Heron and One Tree reef core data, with a majority of reefs 

approaching MSL between 7.1 ± 0.2 ka and 3.6 ± 0.3 ka, with a distinct hiatus in reef growth 

between 3.6 ± 0.3 ka and 1.6 ka ± 0.2 (Fig. 3a).  However, no such hiatus in reef growth is 

evident for reefs from the central GBR, with ages ranging continuously between 7.6 ± 0.3 ka and 

0.9 ± 0.3 ka, suggesting uninterrupted growth through the Holocene. Furthermore, a clear pattern 

between age and distance from the coastline occurs across the mid- to outer shelf on the central 

GBR, with the oldest ages (~7.5-5 ka) clustering on the mid-shelf and the youngest ages (< 4 ka) 

clustering on the outer shelf within the bounds of the Halifax Basin (Fig. 4). It should also be 

noted that the previously established depths of the Pleistocene foundations (Hopley et al., 2007)  

for the fore-mentioned reefs of the outer central GBR are on average 5-10 m deeper than for 

reefs of the northern, south-central and southern GBR (Fig. 5).   

>>Fig. 2<< 

>>Fig. 3<< 

>>Fig. 4<< 

>>Fig. 5<< 

 

4. Discussion: 

4.1. Reef flats first approach mean sea level 

With the exception of the microatoll data at One Tree Reef, the timing of reefs reaching 

mean sea level and accreting laterally (i.e., progradation) in the mid-outer platform reefs in the 

northern, south-central and southern GBR is broadly consistent at ~7.1-3.6 ka across the three 
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regions (Fig. 3), confirming and better constraining the previously established reef growth 

models for mid-outer shelf reefs (Davies and Hopley, 1983, Hopley et al., 2007). Conditions 

from 8 ka to 6 ka were thought to be ideal for vertical reef accretion, as sea level was on average 

5-15 m above the antecedent reef platforms, creating optimal accommodation for reef growth 

(Davies and Hopley, 1983, Hopley et al., 2007, Dechnik et al., 2015). Reduced mass 

accumulation rates of fine siliciclastic sediments in the northern (Dunbar and Dickens, 2003) and 

southern (Bostock et al., 2009, Dechnik et al., 2015) GBR during this interval also may have 

helped facilitate optimal conditions for reef flat accretion, with evidence of less intense rainfall 

regimes and decreased flushing of terrigenous sediment from approximately 8 ka to 5.5 ka 

(Hopley, 1984, Smithers et al., 2006, Perry and Smithers, 2011, Roche et al., 2014). This is 

consistent with marine palaeoclimate records from tropical Australasia, suggesting that increased 

monsoon conditions did not occur until after 4 ka, providing optimal conditions for reef “take-

off” ~8-6 ka (Reeves et al., 2013).  Specifically, in the Capricorn Bunker groups, reef growth 

initiated ~ 8 ka following an initial 0.7-2-kyr time lag between substrate flooding and first reef 

colonization, a result of previously documented reduction in fine siliciclastic sediments in the 

region (Dechnik et al., 2015). Lateral progradation followed (~6 ka to 3.6 ka) (Fig. 6A) in 

response to the stabilisation of relative sea level and reduced vertical accommodation (Davies 

and Hopley, 1983, Hopley et al., 2007). Progradation occurred as either seaward or lagoonward 

expansion of the reef flat, the direction of which was controlled by hydrodynamic exposure 

and/or sediment residence time (Dechnik et al., 2016).   

>>Fig. 6<< 

These results are broadly consistent with both wider Indo-Pacific (Cabioch et al., 1995, 

Camoin et al., 1997, Montaggioni, 2005) and Caribbean reefs (Neumann and Macintyre, 1985, 
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Gischler and Hudson, 1998, Gischler and Hudson, 2004), showing both initial vertical accretion 

and then lateral progradation of the reef flat in response to sea-level stabilisation and reduced 

accommodation. Differences in the precise timing of when these reefs first approached sea level 

and the transition to progradational growth at these locations (ranging from 6 ka to 2 ka) are 

related, in part, to differences in the timing of relative sea-level changes that result from glacial 

isostatic adjustment or tectonic movement (Lambeck et al., 2010). This is best demonstrated in 

the Caribbean, where relative sea level has been continuously rising until the present (Toscano 

and Macintyre, 2003, Dullo, 2005).  Consequently these reefs were only able to “catch-up” to sea 

level ~2 ka, resulting in a more recent transition to progradational growth as compared to many 

Indo-Pacific reefs (Montaggioni, 2005). 

For inshore fringing reefs of the GBR, >90% of reef flat vertical and lateral accretion 

occurred prior to 5.5 ka (Smithers et al., 2006). However, the majority of inshore fringing reefs 

developed on much shallower initial substrates (5-10 m below MSL) compared to the mid-outer 

platform reefs (12-25 m below MSL) (Fig. 5). Hence, these inshore fringing reefs would have 

rapidly filled available vertical and lateral accommodation, outgrowing their foundation more 

rapidly than the mid-outer platform reefs. Only minor amounts of progradational growth were 

documented on these reefs from 5.5 to 4.8 ka. However, similar to the results of the mid-outer 

platform reefs in this study, active fringing reef flat progradation ceased or slowed considerably 

by ~4.6- 3 ka (Smithers et al., 2006, Leonard et al., 2015, Ryan et al., 2016a).           

4.2. Hiatus in reef flat growth  

Distinct periods of reef “turn-off” during the mid- to late Holocene have been identified 

in reefs from the inner GBR, Pacific Panama, Japan and Hawaii. Along the inner central GBR, 
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Smithers et al. (2006) and Perry and Smithers (2010, 2011) found distinct hiatuses between 3.0 

and 2.3 ka, 4.5 and 1.3 ka and 5.5 and 2.3 ka, respectively. A more recent study of fossil 

microatolls in the Keppel Islands identified a 2-kyr hiatus in reef flat growth between 4.6 and 2.8 

ka, with a possible earlier fall in relative sea level at  ~5.5-5.3 ka (Leonard et al., 2015) (Fig. 7). 

Cessation of reef growth in Hawaii and Panama occurred at approximately 5 ka and 4 ka, 

respectively (Grigg, 1998, Grossman and Fletcher, 2004, Engels et al., 2008, Toth et al., 2012), 

whereas in Japan, three distinct hiatuses were identified at approximately 5.9 to 5.8 ka, 4.4 to 4 

ka and 3.3 to 3.2 ka (Hamanaka et al., 2012). Although the timing of these hiatuses differs, these 

authors suggested that the reefs turned off when sea level fell from its maximum during the mid-

Holocene highstand and/or were impacted by changing sediment flux and increased ENSO 

variability, both of which are associated with subtle changes in sea level and SST over the last 7-

kyr.  

>>Fig. 7<< 

Increased turbidity in the inner GBR was linked to increased terrigenous sediment accumulation 

and the seaward extent of the Terrigenous Sediment Wedge (TSW), a product of post-highstand 

shoreline progradation in response to falling sea level (Larcombe and Woolfe, 1999, Perry and 

Smithers, 2010). This significant volume of easily re-suspended sediment would have increased 

turbidity, creating inhospitable conditions for reef growth on the inner GBR (Smithers et al., 

2006, Perry and Smithers, 2011). Furthermore, spectral luminescence ratios from inshore Porites 

microatolls on the central GBR suggest that these reefs experienced strong flood events and 

greater annual range of salinity at ~4.7 ka than at present (Roche et al., 2014). The difference 

was attributed to a more active Australian-Indonesian Summer Monsoon system, which may 

have further exacerbated conditions that limited significant reef growth on the inner GBR 
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(Griffiths et al., 2010, Roche et al., 2014). However, for the mid-outer shelf reefs in this study, 

the greater distance from terrigenous sources would greatly reduce their exposure to sediment 

flux and discharge (Orpin et al., 1999, Neil et al., 2002). Whilst evidence of siliciclastic sediment 

has been identified in cores along the outer northeast Australia margin (Dunbar et al., 2000, 

Dunbar and Dickens, 2003), peak siliciclastic discharge occurred between 11 ka and 7 ka, 

significantly earlier than the hiatus reported in this study.  

In the northwest Pacific increased swell and hurricane events associated with increased 

ENSO variability were interpreted to be responsible for significantly reduced reef accretion 

around several Hawaiian Islands (E.g. Kaua’I, O’ahu and Moloka’i) ~5 ka (Rooney et al., 2004). 

Increased ENSO variability, coupled with seasonal upwelling in Pacific Panama, is thought to 

have caused a 2.5-kyr hiatus in reef growth in the tropical eastern Pacific beginning at 4 ka (Toth 

et al., 2012, 2015). Whilst increased ENSO variability (~4-5 ka) in the Indo-Pacific remains 

controversial (Clement et al., 2000, Corrège et al., 2000, Cobb et al., 2013, McGregor et al., 

2013, McGregor and Gagan, 2004), warmer and wetter conditions during the mid-Holocene have 

been identified both from fossil corals in the GBR (Gagan et al., 1998, Gagan et al., 2004, Roche 

et al., 2014) and from terrestrial records from northeast Australia (Kershaw, 1976, Kershaw, 

1983, Nott and Price, 1994, Shulmeister and Lees, 1995, Reeves et al., 2013). Wetter climatic 

conditions during the mid-Holocene would have resulted in stronger flood events and a greater 

annual range of salinities, particularly for the central GBR (Roche et al., 2014) located adjacent 

to the Burdekin River (the largest river in northeast Queensland). However, continuous reef 

growth in this region throughout the mid-Holocene suggests that these factors did not 

significantly affect reef growth on the mid-outer shelf.  Additionally, storm deposits at Curacoa 

Island on the central GBR showed no increase in the frequency of cyclones over the past 5-kyr, 
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suggesting that these warmer and wetter conditions were not accompanied by more frequent 

cyclones (Hayne and Chappell, 2001). However, a more recent investigation by Ryan el al. 

(2016b) at Middle Island on the inner central GBR, identified a distinct age hiatus from 6.4 to 1.6 

ka during the mid-Holocene which they attributed to stripping of the reef flat by intense cyclone 

activity. They suggested that reef growth was continuous throughout this period but was 

continually removed by destructive cyclones. However, Nott and Hayne (2001) demonstrated 

that there has been no regional increase in cyclone frequency and intensity across the GBR over 

the last 5-kyr. Therefore, as no regional differences were observed between northern, central and 

southern reefs (Fig. 3), climatic variations and associated cyclone frequency and intensity during 

the mid-Holocene is not a plausible mechanism for the observed reef “turn-off” on the mid-outer 

shelf. 

Intense seasonal upwelling was identified as a secondary contributor to reef turn-off on 

many eastern Pacific Panama reefs, resulting in increased turbidity and decreased oceanic pH 

(Toth et al., 2012, 2015). Increased upwelling of cool, nutrient-rich water via shelf break 

upwelling or tidal jetting in the northern and central regions of the GBR at ~11 ka has been 

considered responsible for supporting the construction of large Halimeda bioherms behind reef 

platforms on the mid-outer shelf (Searle and Flood, 1988, Wolanski et al., 1988, Hopley et al., 

2007, McNeil et al., 2016). However, only small accumulations of Halimeda have been 

identified within the Holocene platform reefs themselves with no regional variations in Halimeda 

abundance in the northern, central or southern reefs (Davies and Hopley, 1983, Hopley et al., 

2007). This suggests little or no enhanced upwelling has occurred in these regions over the last 

8-kyr.  
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The three distinct reef hiatuses (5.9-5.8 ka, 4.4-4.0 ka and 3.3-3.2 ka) at Kodakara Island 

in Japan were attributed to both variations in sea level and millennial-scale climate instability 

(Hamanaka et al., 2012). Specifically, the first reef flat hiatus was attributed to cold events in the 

North Atlantic and low SSTs in the Western Tropical Pacific (Hamanaka et al., 2012), while the 

subsequent two hiatuses were associated with sea-level oscillations of < 2 m, over centennial 

time scales. Similarly, a fall or subtle oscillation in sea level from 4.8 to 4.6 ka was considered 

the most likely cause of reef-turn off on the inner GBR (Smithers et al., 2006, Perry and 

Smithers, 2011, Leonard et al., 2015) (Fig. 7).  Smithers et al. (2006) suggested that a 0.1-0.15 m 

fall in sea level during this interval was adequate to turn off reef flat production on the inner 

shelf and restrict growth to reef edge environments (Smithers et al., 2006). However, a more 

recent investigation of microatoll data from an inner shelf fringing reef suggests a more 

complicated story with possible centennial scale sea-level oscillations (Leonard et al., 2015). 

Those authors suggested that relative sea level fell by at least 0.4 m from a +0.75 m highstand 

between 5.5 to 5.3 ka, which was maintained for ~ 200 yr before returning back to higher levels. 

A second fall in sea level (~0.5 m) at 4.6 ka was identified, followed by a 2-kyr hiatus in reef flat 

growth (Leonard et al., 2015). In a comprehensive re-analysis of all sea level proxies collected 

from the northeast Queensland region, Lewis et al. (2013) concluded that a ~0.5 m fall in sea 

level at ~4-3.5 ka reflected the most reliable data for a mid-Holocene sea level fall for the GBR 

region, with a further ~1 m fall at 1.2 ka (Lewis et al., 2015). Despite the ambiguity in our own 

data set (reef flat elevations represent the minimum height of relative mean sea level), cessation 

of reef growth between 3.6-1.7 ka is consistent with this fall in relative sea level (Fig. 3). 

However, the larger palaeo-depth errors associated with reef flat data may have masked an 
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earlier sea-level fall at approximately 5.5-5.3 ka, which was suggested by inner shelf microatolls 

(Leonard et al., 2015).  

Nevertheless, a fall in sea level and subsequent reef turn off at ~3.6 ka is not supported 

from microatoll data at One Tree Reef (Fig. 2). These microatoll dates suggest that that sea level 

remained at a +1-1.3 m highstand until approximately 2 ka and then abruptly fell, resulting in the 

turn-off of reef flat carbonate production and the consequent cessation of lagoonal filling (Harris 

et al., 2015). However, it remains unclear whether these microatolls located on the inner reef rim 

were ponded at higher elevation than the surrounding relative sea level, possibly masking an 

earlier fall in sea level at 4-3.5 ka. Thus, whilst the reef flat ages obtained from reef cores in both 

the northern and southern regions of the GBR show a distinct hiatus in reef flat growth 

correlating with an apparent 0.5 m regional fall in sea level (Fig. 3), additional microatoll data 

obtained from open reef flat habitats from these reefs are needed to confirm (or not) this hiatus in 

reef flat growth.  

Data from the central GBR do not record a relative fall in sea level at ~3.9 ka (Fig. 3). 

Hopley and Harvey (1981) recovered a series of short cores representing the inner to outer reefs 

in the central GBR and noted a decline in reef flat elevation seawards, with progressively 

younger reef flat ages on the outer reef margin (Fig. 4). Similar patterns were observed in the 

south-central GBR where the inshore fringing reefs first approached MSL 2-3-kyr earlier than 

the mid-outer shelf reefs (Kleypas and Hopley, 1992). This pattern was interpreted as a result of 

continental shelf margin down-warping owing to glacio-hydro-isostatic adjustment and 

subsidence along tectonic lineaments and/or within the still active Halifax Basin (Hopley and 

Harvey, 1981, Hopley, 1982, Kleypas and Hopley, 1992). A subsiding outer shelf would allow 

continued vertical accretion on the mid-outer shelf (Hopley and Harvey, 1981) even through a 
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minor regression or fluctuation in sea level at ~4-3.5 ka (Fig. 6B). Subsequent geophysical 

models of the northeast coast of Australia showed sea-level highstands varying from 0.5-2.4 m 

above present MSL ~6 ka, with the largest predicted highstands occurring on the coast adjacent 

to the central GBR (Nakada and Lambeck, 1989, Lambeck and Nakada, 1990). Those authors 

suggested that the greater width of the shelf on the central GBR in comparison to the northern 

and southern regions would allow greater water loading, producing a hinge response of 

continental shelf margin down-warping on the outer shelf and uplift along the coast. Using these 

predicted amplitudes of Holocene highstands, based on upper and lower mantle viscosities (1-2 

X 10
20

 Pa s
-1 

and 10
22

 Pa s
-1 

respectively), Nakada and Lambeck (1989) suggested a maximum 6 

m cross shelf tilting of the continental edge from the inner to outer shelf (145° to 150° E) along 

the central GBR (18°S). Specifically for the mid-outer platform reefs, this corresponds to 

approximately 2 m of shelf tilting over the last 8-kyr (Nakada and Lambeck, 1989).  

Further evidence of hydro-isostatic adjustment and/or subsidence on the central mid-outer 

shelf comes from the notable absence of mature lagoonal and senile reefs from Cairns to south of 

Townsville (Hopley et al., 2007). This absence was first noted by Hopley and Harvey (1981), 

who suggested that the degree of development of reefs on the central GBR appeared more 

juvenile and less developed than for the northern and southern GBR. Lewis and Hutchinson 

(2001) mapped the distribution of reef maturity across the GBR using a GIS-based depth 

elevation model. Results showed planar reefs dominated only in the northern and southern GBR, 

north of 16°E and south of  20°E , respectively (Lewis and Hutchinson, 2001). These data 

suggest that reefs of the intervening latitudes reached sea level much later and had less time to 

develop from juvenile to senile growth phases, consistent with the models of reef maturity for the 

mid and outer platform reefs of the GBR (Hopley et al., 2007, Hopley, 1982). Long term 
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subsidence of the central GBR is also reflected in the maximum depth to the Pleistocene of mid-

outer platform reefs over the entire GBR region. Fig. 5 shows that the Holocene-Pleistocene 

unconformities of the outer central platform reefs are on average 5-10 m deeper than for the 

northern or southern platform reefs. This suggests that the outer central GBR has been subsiding 

at a greater rate than the northern and southern GBR, most likely in response to development of 

the still active Halifax basin (Hopley, 1982). The lack of a reef flat hiatus in the present data 

suggests that this increased subsidence was active through the Holocene.  

4.3. Reef flat accretion since 1.5 ka  

Reef flat growth on the inner GBR was suggested to have re-initiated at approximately 2 

ka following a 3.2-kyr hiatus in reef growth (Perry and Smithers, 2011). Those authors suggested 

that new reefal habitat would have become available for colonisation following sea-level 

stabilisation and the consequent stalling of the terrigenous sediment wedge (Perry and Smithers, 

2011, Smithers et al., 2006). Re-initiation of microatoll growth in the Keppel Islands also was 

identified at ~2.8-2.5 ka at slightly higher elevations (Leonard et al., 2015). Thus, it was 

postulated that a final rise in sea level occurred during this interval, before finally falling to 

present levels. However, this remains an issue of contention with multi-proxy data (e.g., 

microatolls, tubeworm-barnacles, reef flat cores) showing divergent sea-level trends within this 

region (Harris et al., 2015, Baker and Haworth, 2000, Perry and Smithers, 2011). 

What caused the renewed phase of reef flat turn-on remains unclear for the mid outer 

platform reefs. Nevertheless in this study, a majority of the ages showing evidence for reef 

accretion after 1.6 ka are located at either Heron or One Tree reefs (Fig. 3). For Heron Reef these 

ages come from the most seaward core -from the edge of the reef slope, whereas at One Tree 
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Reef they are located on the lagoonal sloping windrows (Dechnik et al., 2016).  Similarly the 

ages from the northern (Ribbon Reef 5) and south-central (Redbill and Gable reefs) cores are 

located close to the seaward or lagoonal margins (Supplemental Table 1), suggesting that this 

pattern is not likely biased by the greater number of ages obtained from Heron and One Tree 

reefs. This suggests that these reefs were able to accrete following the suggested fall in sea level 

~4-3.5 ka as the framework growing communities were located on the outer-most reef margins, 

representing the top-most living reefs growing on the seaward reef slopes or lagoonal walls (Fig. 

6). This is consistent with recent models of Holocene reef accretion in relation to stillstand sea-

level history, which show the youngest reef flat ages consistently occurring on the outermost 

seaward or lagoonal margins (Dechnik et al., 2016). Furthermore, Harris et al. (2015) suggested 

that the termination of live microatoll growth at One Tree Reef ~2 ka was a result of a 1-1.3 m 

fall in sea level, resulting in an ecological phase shift from a live coral dominated reef flat to a 

less productive algal rubble dominated reef flat. Alternatively, ponding may have been breached 

at this time and the internal sea level dropped, changing the sediment dynamics and exposing the 

previously ponded microatolls. Nevertheless, despite the difference in the timing of the relative 

sea-level fall suggested by the different data sets, the microatoll and short core data suggest 

active reef flat progradation would have been restricted after ~2 ka, across the majority of the 

reef flat, with continuous progradation limited to outer reef margin environments. It is therefore 

unlikely that the mid-outer reef flats turned back on, as was suggested for the inner GBR fringing 

reefs, but rather continued to prograde laterally on the outer reef margins, following a regression 

in sea level.  

5. Conclusions  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Based on analysis of 46 shallow coral U/Th ages from Heron and One Tree reefs and 165 

recalibrated previously published radiocarbon ages from 27 other mid-outer platform reefs, we 

draw the following conclusions about Holocene reef flat growth over the last 7-kyr; Heron and 

One Tree reefs first approached modern sea level and began prograding between 6.8 and 3.9 ka, 

when climatic conditions were optimal for reef accretion. This was followed by a distinct hiatus 

in reef growth between 3.9 ka and 1.5 ka. An analysis of all other available previously published 

radiocarbon ages from 27 mid-outer shelf reef flats revealed a similar hiatus between 3.5-1.6 ka 

for the northern, south-central and southern GBR. Reefs of the central GBR, on the other hand, 

do not show this apparent hiatus in reef flat growth. Microatolls that date to the time of the hiatus 

at One Tree Reef could reflect ponding at this time, but additional dates are required from 

microatalls on reefs across the different regions. A relative fall in sea level of ~0.5 m represents 

the most likely explanation for this reef flat turn-off in the northern and southern regions; 

supporting the hypothesis that sea level fell from its maximum highstand at approximately 4-3.5 

ka. Increased turbidity and cyclone activity, in response to close proximity to terrestrial sources 

and increased SSTs, precipitation, upwelling and ENSO variability have been ruled out as 

mechanisms of reef turn off at this time. 

The absence of hiatus in reef flat growth in reefs from the central GBR, with reef flat ages 

ranging continuously from 7.6-0.8 ka, may reflect greater subsidence of the mid-outer central 

GBR in response to hydro-isostatic adjustment and long term subsidence from the still active 

Halifax Basin, which provided adequate accommodation throughout the Holocene to maintain a 

healthy carbonate factory capable of progradation. This interpretation is supported by younger 

reef flat ages on the central outer shelf and lack of senile reefs between Cairns and Townsville. 

Whilst the cause of the renewed reef flat turn-on remains unclear, of the few ages that show 
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evidence of recent reef flat accretion after 1.6 ka, all occur on the most seaward or lagoonward 

reef flat, representing progradational growth on the outermost reef margins, consistent with 

previously documented accretional growth directions for the mid-outer platform reefs.   
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Figure 1: Locality map of the GBR on the North-East Queensland coast, showing the location of 

the Halifax Basin Boundary (red dotted line) and all 29 reefs studied in this paper from the; 1) 

Northern, 2) Central, 3) South-Central and 4) Southern GBR including Heron and One Tree 

reefs. 

Figure 2: Age elevation plots of reef flat corals collected from 34 short cores at Heron and One 

Tree reefs (Dechnik et al., 2015) and micro-atoll data collected from One Tree Reef (Harris et 

al., 2015). Only the reef flat core data shows a distinct hiatus in reef growth (grey rectangle), 

from 3.9 ka to 1.5 ka. Error bars are smaller than reef core symbols. All ages are plotted relative 

to MSL. Dates not considered to be reliably in-situ (IS) are shown as crosses (NIS) or open 

squares (NEI)-see methods for details.  

Figure 3: A) Age elevation plots of all previously published reef flat ages from the Northern, 

Central, South-Central and Southern GBR. Error bars may be smaller than symbols. All ages 

plotted relative to MSL. B) Relative sea-level curve from the North-East Queensland coast, 

composed of the most reliable sea-level indicators for the Queensland region (Lewis et al., 

2012). C) ENSO events (Blue line) (McGregor and Gagan, 2004) and Sea-Surface temperature 

anomalies for the Tropical Western Pacific (red line) (Linsley et al., 2010) and the GBR (Green 

symbols) (Gagan et al., 2004, Roche et al., 2014) over the past 9 ka. 

Figure 4: Oldest in-situ age for each of the mid-outer platform reef flats analyzed in this study in; 

A) Northern, B) Central, C) South-Central and D) Southern GBR. Note the younger reef flat ages 

on the outer shelf of the Central GBR (B) in relation to the boundary of the Halifax Basin 

(Hopley & Harvey, 1981). 

Figure 5: Depth of Holocene/Pleistocene boundary based on all available published reef core 

data from the mid-outer platform reefs and inshore fringing reefs of the GBR, relative to distance 

from the East Australian Coast. Note that reef substrates are mostly deeper in central GBR reefs 

than in northern, southern or south-central GBR reefs.  

Figure 6: A) Conceptual figure showing reef flat development in relation to relative sea-level 

changes throughout the Holocene in the Northern, South-Central and Southern GBR and B) outer 

Central GBR. 

Figure 7: Summary of spatial and temporal patterns of reef flat growth on the inner and outer 

GBR based on reef flat core data and fossil micro-atolls. A) Location of each of the reefs studied 

(note each individual colored circle may represent more than one reef), with the colored circles 

corresponding to the studies listed in panel B. Periods of distinct reef flat growth are shown as 

blue and black stripped bars, whilst hiatus events are shown in orange (B). 
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Fig. 2 
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Highlights 

 2 ka hiatus in reef flat growth identified from the northern and southern GBR 

 Hiatus supports a relative fall in sea-level regionally across the GBR 3.5-4 ka 

 No hiatus across the central GBR as a result of local subsidence 

 Turbidity, upwelling and cyclones ruled out as other possible mechanisms for 

reef-flat hiatus  


