

i

Acknowledgements
During this thesis there have been numerous people that have put in time and effort or
otherwise contributed to the present work. My thanks are directed towards:

First and foremost, my supervisor Dr Ingo Jahn, for giving me the opportunity to work on
such an interesting project outside my skillset. Your help and suggestions played an
important role I should have taken further advantage of.

Dr. Rowan Gollan, for your expertise and enthusiastic willingness to help me with running
the Tinaroo simulations. Without your help, the full vehicle simulations would not have
been possible.

Mr Sholto Forbes-Spyratos, although not your area of expertise, those few hours of your
time provided motivation and generated interest in me for days. Good luck!

Thanks should also extend to helpful EAIT IT staff who offered guidance on using the
computer clusters.

Finally, to my family and friends, thanks for your subconscious (and deliberate) support,
be it pretending to listen to what I’m saying or distracting me.

ii

Abstract
A large proportion of modern satellites are smaller, cheaper and short-lived relative to their
historical counterparts. Dedicated launch of these is associated with prohibitive financial
burdens and with current rocket technology operating close to theoretical limits, further
improvement is limited. In light of this market potential, a reusable, staged launch vehicle
employing air-breathing scramjet propulsion has been proposed. A configuration of this
type is expected to reduce launch costs and improve the responsiveness of access to space.

Accurate prediction of aerodynamic performance and subsequent geometric optimisation
are critical to the success of such a vehicle. Furthermore, modelling of the trajectory
requires a preferably comprehensive database of aerodynamic coefficients. Current
analysis methods are limited in their ability to predict certain behaviour and model low
speed flow.

This paper details the development of a parametric grid generation tool for the analysis of
hypersonic winged cone vehicles. The vehicle geometry is based on a concept developed
for the National Aerospace Plane and is made up of a spherically blunted, conical forebody,
cylindrical fuselage and truncated conical boat tail. The wings are swept delta wings.

The structured grid is made up of 265 blocks and is generated using e3prep, the pre-
processor and grid generation tool for The University of Queensland’s compressible CFD
code, Eilmer. Significant modification of vehicle geometry is possible while retaining
acceptable grid quality. However, poor quality issues present themselves at swept
geometry.

In addition to a demonstration of the parametric nature of the tool, results of a proof of
concept simulation of the complete vehicle are given. A short forebody study detailing the
analysis of a widened, cambered forebody with a flattened windward side was completed
as further demonstration. The modified geometry was found to improve the inlet onset flow

iii

and increase precompression. These results are presented without formal verification and
validation and hence considered provisional.

Recommendations are made on the continued development of the tool. These primarily
address the quality issues preventing full functionality of the tool and include utilising
sections of unstructured cells to form a patched grid and combining the current work with
GridPro for the generation of a highly smoothed grid. The use of OpenFOAM for subsonic
simulation is also discussed along with increased parallelisation of the simulations to
decrease runtime.

iv

Table of Contents
 Acknowledgements ... ii
Abstract .. iii
Table of Contents .. v
List of Figures .. vii
List of Tables .. xi
Nomenclature ... xii
1 Introduction ... 1

1.1 Research Context ... 1
1.2 Aims of the Thesis .. 2
1.3 Thesis Scope ... 3
1.4 Structure of Thesis ... 4

2 Literature Review ... 5
2.1 Launch Vehicle Concepts ... 5

2.1.1 Reusable, Air-Breathing Launch Vehicles ... 6
2.1.2 Single-stage and Multi-stage to orbit... 7

2.2 Hypersonic Air-breather Design ... 8
2.2.1 Engine-Airframe Integration .. 8
2.2.2 Forebody Design .. 9
2.2.3 Waverider vehicles ... 11
2.2.4 SPARTAN .. 12

2.3 Grid Generation ... 14
2.3.1 Meshless Methods ... 14
2.3.2 Structured and Unstructured Grids ... 16
2.3.3 Grid Quality .. 17
2.3.4 Tools ... 20

2.4 Aerodynamic Codes ... 22
2.4.1 HYPAERO .. 22
2.4.2 VULCAN .. 22
2.4.3 Eilmer3 ... 23

v

2.5 Further Reading .. 24
3 Approach .. 25
4 Geometry and Grid ... 27

4.1 Forebody ... 27
4.2 Engine ... 36
4.3 Wing.. 37
4.4 Boat Tail .. 42
4.5 Wake and Farfield ... 43

5 Results and Discussion.. 45
5.1 The Grid .. 45

5.1.1 Geometric Verification ... 47
5.1.2 Grid Quality... 48
5.1.3 Limitations on Geometry .. 53

5.2 Baseline SPARTAN .. 55
5.3 Forebody Results .. 58

5.3.1 Baseline .. 60
5.3.2 Modified Forebody ... 62

6 Recommendations .. 65
6.1 Utilising a Patched Grid in Eilmer4 ... 65
6.2 Improving the Grid Quality ... 68
6.3 Extending to Subsonic Simulations... 69
6.4 Simulation Runtime .. 70
6.5 Extracting Coefficients .. 71

7 Conclusion .. 73
7.1 Thesis Evaluation .. 73
7.2 Summary of Recommendations ... 74
7.3 Implications .. 75
7.4 Closing Remarks ... 76

References .. 77
A. AMARA on a Cluster ... 83
B. AMARAsurf.py .. 87
C. getResiduals.py ... 91
D. getForce.py ... 93

vi

List of Figures

Figure 1. A winged cone vehicle proposed by Shaughnessy et al., as part of the National Aerospace
Plane project (Shaughnessy et al., 1990). .. 5
Figure 2. Specific impulse of different propulsion systems operating at different Mach numbers.
The width of the bars represents the spread in performance (NASA). .. 6
Figure 3. Payload mass fractions for staged system calculated using the rocket equation (Smart &
Tetlow, 2009). .. 7
Figure 4. Velocity increment (∆) as a function of mass fraction (Ahmad et al., 2011). 8
Figure 5. Schematic of a hypersonic vehicle showing the bow shock formed by the nose as well as
forebody and aftbody nomenclature (Hallion, 1998). .. 9
Figure 6. Examples of conical and flat bottomed, wide forebodies and representative streamlines.
(a) The conical forebody flying at an angle of attack results in a divergent streamline pattern thus
reducing the effective inlet capture area. (b) A flat bottomed forebody returns a more favourable
inlet flow. This is indicative of a good design. Adapted from Hirschel and Weiland (2009). 10
Figure 7. Comparison of an analytically designed and practical waverider shape. (a) shows a generic
viscous optimised waverider designed for Mach 12, (b) is a modified version of the shape to include
a sharp trailing edge (reduce base drag), some internal volume (propulsion and payload) and two
plane surfaces at the rear of the vehicle for the addition of control surfaces (straight hinge lines)
(Eggers et al., 1995). .. 12
Figure 8. An artist's impression of SPARTAN. ... 13
Figure 9. Plan and side views of SPARTAN. The side view illustrates the forebody shock and
nomenclature of the local radius at position . The plan view shows elevon positioning and sizing
(Preller, Smart & Schutte, 2016). ... 13
Figure 10. Three stage rocket-scramjet-rocket mission employing SPARTAN as the second stage
showing the required flyback of the vehicle. ... 14
Figure 11. Top and side views of a HYPAERO surface grid. The strips are defined in a stream-wise
direction from the nose of the vehicle. Properties shown in the top view are constant in each panel.
Note these grids are shown assembled – each component is analysed separately before the
aerodynamic coefficients are resolved to a common fixed coordinate system (Jazra, 2010). 15
Figure 12. An example of a 2D multi-block structure taken from the Eilmer3 userguide. Although
in this example the domain could have been defined with only two blocks, 22 have been used. This
allows the computational load to be easily shared across more CPU cores (Jacobs et al., 2015). . 17

vii

Figure 13. Examples showing (a) a uniform, orthogonal grid; (b) a skewed grid coloured by quality;
(c) poor smoothness; (d) poor orthogonality; (e) high aspect ratio; and (f) the same skewed grid of
(b) however this time using AOPatch. The maximum skewness of 0.772 in (b) was reduced to 0.740
in (f). These images were generated using e3prep and visualised with ParaView. 19
Figure 14. An example of a smoothed grid generated using GridPro of an Ariane rocket and
accompanying boosters (GridPro). ... 20
Figure 15: An example of a 3D e3prep generated grid - a spherically blunted cone. The left image
shows contours of pressure on the surface of the domain. The right shows a surface grid and two
slices through the domain. Post processing was done with e3post.py and visulised in Paraview.
(Jacobs et al., 15). ... 21
Figure 16. Pressure contours on the surface and cross sectional planes around NASA's X-43
scramjet vehicle calculated using VULCAN. This vehicle exhibits flat, 2D forebody and boat tail
or aft body geometry (NASA). ... 23
Figure 17: A big picture description of AMARA. .. 26
Figure 18. Forebody geometry. Note the nose radius shown here is greatly exaggerated. 28
Figure 19. Definition of aspect ratio and transverse camber in the forebody. 28
Figure 20. The construction of the nose blocks. (a) shows a constant radius slice through the mesh
at . This 3D surface is then collapsed to a 2D plane in the - plane. (b) the grid is then generated
and then transformed back to 3D. Note the perspective for (b) is that shown in (a). 32
Figure 21. A 2D projection of the surface nodes defining the tip (7-12) and join (0-6) forebody
blocks. The nodes are numbered and block numbers are central in each block in black. 33
Figure 22. A 2D projection of the bottom face nodes defining the ramp blocks (0-6). The M nodes
of the join blocks are shown here in green as in Figure 4. Note the straight paths defining the wing
blocks.. 33
Figure 23. Ramp construction utilising the interpolation method. Here the top and bottom face
coordinates are evaluated by , . The third dimension is realised by parametrising with 34
Figure 24. A 3D representation of the forebody blocks. This figure shows the change in size of the
ramp blocks as they progress along the forebody ramp to their final angles. Note that only the
surface boundaries are shown for clarity. The M, N and P nodes are shown in green, red and blue
respectively as in Figure 4. The view for the 2D projections given in Figure 4 and Figure 5 is also
shown here. ... 35
Figure 25. A 3D representation of the simplified engine module showing the radii and lengths for
each section. ... 36
Figure 26. A 2D cross-section through the centre symmetry plane of the simplified engine geometry
 .. 36
Figure 27. Planview of the wing geometry. Note that all the angles are exagerated. 38

viii

Figure 28. Plan view of the blocking structure for the top (a) and bottom surface (b) of the wing.
Note block numbers and the names of the block groups. .. 39
Figure 29. Detail of the diamonds blocks. Note the fine blue lines refer to the 120 angle at vertices
of three blocks, the construction line defining the centre node (5-6-7 vertex) and equal subdivision
of the aft boundaries. .. 40
Figure 30. The deflected elevon blocking strategy. ... 41
Figure 31. Schematic showing the boat tail construction and three controlling parameters. 42
Figure 32. The wake blocks behind the boat tail. .. 44
Figure 33. A representation of the three dimensional blocking strategy. Block boundaries (grey) are
shown in three planes - top, coincident with the wings, the symmetry plane and front coincident
with the rear of the vehicle. Note that block boundaries which are defined by the surface of the
vehicle (black) are not shown. ... 44
Figure 34. An example of an AMARA grid modelling the baseline SPARTAN of Preller, Smart
and Schutte, 2016. This shows top (a), side (b) and front (c) views. The areas of worst skewness
and smoothness are also identified. .. 46
Figure 35. The boundary conditions of the grid – ExtrapolateOutBC, FixedTBC and SlipWall. For
visualisations sake, the inflow condition, SupInBC is the last exterior surface and not shown. The
global coordinate system is also shown in the bottom left corner with the origin at the centre of the
blunted nose. .. 47
Figure 36. Top (a) and side (b) views of the baseline AMARA grid overlaid on a HYPAERO
defined geometry. .. 48
Figure 37. A histogram of the cell skewness distribution. There are 85257 cells (33%) in the first
peak at a quality of 0.01. .. 50
Figure 38. Skewness in the grid. Note that an opacity function has been applied - only cells with
skewness greater than 0.5 are shown with increasing opacity. .. 51
Figure 39. A volume rendering of the grid's skewness. An opacity function hiding skewness < 0.5)
was applied to emphasise the location of the worst cells and how this propogates through the
domain. .. 51
Figure 40. The original (a) and AOPatch (b) block construction. The geometry was set to an extreme
case where the wing sweep was 80° and the inlet angle was 40°. Note the views are from the
opposite side and an opacity function as been applied to highlight the individual poor quality cells.
Changes to the background mesh were investigated by varying cell numbers between 2 and 30. The
differences were small but best results were found at approximately 25 × 10 cells. 52
Figure 41. The positive effect of rotating the diamonds blocks. (a) shows the blocks at 0° and in (b)
they have been rotated by 10°. The maximum skewness was improved from 0.758 to 0.657. 52

ix

Figure 42. Four examples of the variation in vehicle geometries. These examples also show how
the initial grid will likely need some adjustment to achieve a high quality grid. 54
Figure 43. Time history of the global maximum energy and mass residual for the full vehicle
simulation. The residuals were extracted from the Eilmer log files using the Python script in
Appendix C... 56
Figure 44. A 3D Paraview rendering of the full vehicle simulation. This surface of the vehicle is
coloured by pressure and shows lines of constant pressure. The contours are uniformly distributed
over the range shown. They are plotted at = 0, -5, -10, -15 and -20 m from the nose. 56
Figure 45. The vehicle surface is coloured by Mach number and the volume is coloured by pressure.
In an attempt to visualise the near body pressure and shocks, an opacity function has been applied
to hide the free stream pressure. ... 57
Figure 46. Contours of constant Mach number. The vehicle surface is also coloured by Mach
number. ... 56
Figure 47. The baseline and modified forebody geometries used in this study. (a) isometric view,
the modified shows the surface grid, (b) front and (c) side views. The baseline is shown in a slightly
darker colour. .. 57
Figure 48. Global mass and energy residuals for the modified and baseline forebody simulations.
Note the discrepancy in start time is due to slightly different initial CFL and time step values. ... 60
Figure 49. Horizontal velocity contours with the forebody surface coloured by pressure. Note blue
corresponds to high velocity. .. 61
Figure 50. Surface streamlines coloured by velocity magnitude for the baseline inlet. Note that the
forebody is inverted in (a), showing the windward side. .. 60
Figure 51. Horizontal velocity plotted at the inlet plane (z = -9.46 m) and the vehicle surface
coloured by pressure.v∞ .. 62
Figure 52. Velocity streamlines on the surface of the modified forebody. Note in (a) the forebody
is upside down to show the windward side and straightness of the flow. This figure was generated
using the SurfaceLIC filter. .. 64
Figure 53. A 2D representation of the patched grid concept. Note in (d) the unstructured cells are
shown in black and red refers to the structured cells. ... 65
Figure 54. Suggested locations for unstructured blocks should a patched grid be used. 67

x

List of Tables
Table 1. Summary of parameters describing the forebody and their respective range if
applicable. .. 35
Table 2. Summary of parameters describing the engine and their respective range if
applicable. .. 37
Table 3. Summary of parameters describing the wings and their respective range if
applicable. .. 42
Table 4. Summary of parameters describing the boat tail and their respective range if
applicable. .. 43
Table 5. Geometric parameters of the baseline and modified forebodies. 59

xi

Nomenclature

Abbreviations and Terms
2D Two dimensional
3D Three dimensional
AMARA pArametric Mesher for AcceleratoR Analysis
AR Aspect Ratio
Block A 3D (or 2D) section of the domain which is subdivided into cells
Cell A discrete volume within which flow properties are constant,

collections of which make up the fluid domain.
CFD Computational Fluid Dynamics
LEO Low Earth Orbit
NACA National Advisory Committee for Aeronautics (now NASA)
NASA National Aeronautics and Space Administration
Parameter An independent variable which may fall within a defined range or in

the case of a parameterisation function, zero to one.
Parameterisation The description of a geometric object in terms of its parameters
RLV Reusable Launch Vehicle
SPARTAN Scramjet Powered Accelerator for Reusable Technology

AdvaNcement
UQ The University of Queensland

Section 1 Introduction

1

1 Introduction
A reusable, staged launch vehicle employing air-breathing scramjet propulsion is a
promising candidate to reduce significantly launch costs of small satellites – the market for
which is expected to increase. However, the development of such a vehicle is not without
significant difficulty – success depends heavily on the accurate prediction of its
aerodynamic performance and subsequent optimisation. The current works develops a
block-structured, parametric CFD grid for a generic winged cone hypersonic vehicle.

1.1 Research Context
Owing to the development of small size, low-power electronics, a large portion of modern
satellites are smaller, cheaper and offer comparable performance at relatively low altitude.
Many satellites, which once weighed of the order of 1000 kg, may now be as little as
100 kg (Baker & Worden, 2008). Almost all small payloads are launched on a ‘ridesharing’
basis, piggybacking with large satellites, rendering the small satellite operator with no
control over orbit altitude, inclination and launch date. This suggests significant market
potential for a low cost launch architecture exists which:

 is designed specifically for the launch of small payloads at low cost;
 offers quick turnaround between missions - desired for the relatively short life cycle

of small modern satellites, and finally;
 gives flexibility to the customer in terms of orbit altitude and inclination through

the dedicated launch of small satellites.

After decades of development, current rocket technology is operated close to theoretical
limits. Further cost reduction is therefore expected from novel technologies such as
reusability and air-breathing propulsion combined with aircraft-like performance (Bowcutt
& Smith, 2012; Preller, Smart & Schutte, 2016).

2

This is no trivial task however, with the task of designing and testing a functional vehicle
of this type described as one of the most significant challenges of current times in the field
(Hirschel & Weiland, 2011). One needs only to consider the Space Shuttle Orbiter,
arguably the only reusable launch architecture ever operated and its accompanying issues,
for confirmation.

With extensive expertise in the ground testing and simulation of hypersonic flows in the
context of general bodies and scramjet engines, The University of Queensland has
cemented itself as an academic leader in the field. In 2009, Smart and Tetlow investigated
a rocket-scramjet-rocket system for the launch of small payloads. In 2010, Jazra proposed
a refined and optimised second stage - Scramjet Powered Accelerator for Reusable
Technology AdvaNcement or SPARTAN. His multidisciplinary analysis environment
included the panel code aerodynamics module, HYPAERO. The code has been
subsequently updated to include control surface deflections and extend potential geometry
through the efforts of Preller and Smart (2014; 2015). Although an excellent conceptual
design and evaluation tool, this code is nonetheless limited especially once design
progresses from conceptualisation.

This thesis is concerned with the development of a computational fluid dynamics (CFD)
grid generation tool for the evaluation of hypersonic vehicles. In particular, the need to
model SPARTAN’s flyback from payload delivery is identified as recommended by
Preller, Smart and Schutte (2016). The tool should be inherently parametric in nature,
allowing the investigation and optimisation of geometry.

1.2 Aims of the Thesis
The main deliverable is the code itself. This task may be further broken down into four
main sequential aims.
Develop an appropriate three dimensional blocking strategy
The first step to the tool is the development of a blocking strategy for a generic hypersonic
winged cone vehicle geometry.

Section 1 Introduction

3

This should include the features and parameters of the existing SPARTAN geometry at a
minimum, allow the entire flow field to be captured and lead to acceptable quality cells.
Construct a parametric grid for the analysis of generic hypersonic vehicles
Using the developed blocking strategy a parametric grid will be constructed. This grid will
be capable of forming a range of vehicles. It should be of acceptable quality against the
essential quality metrics.
Exercise the framework on SPARTAN
As the tool will be used extensively on the SPARTAN geometry, it is desired to generate a
grid which matches the baseline SPARTAN. This grid will also be the subject of a proof-
of-concept simulation.
Exercise the framework on a baseline and modified forebody
The forebody is a critical component to a hypersonic vehicle of any configuration. Much
research exists in the literature however the SPARTAN forebody currently remains fully
conical. A modified geometry is presented and analysed as a demonstration of the tool.

1.3 Thesis Scope
The blocking strategy was developed for the inclusion of the SPARTAN vertical
empennage and control surface deflection. The grid however does not include these due to
quality issues present in the use of an entirely structured grid. Furthermore, modelling the
complex engine inlet geometry was deemed unfeasible and out of scope.

Given the prior investment into winged cone type vehicles and requirement of modelling
SPARTAN, the grid geometry was limited to this configuration. Further parameterisation
of the geometry was out of scope.

The developed framework will ultimately be applied across a range of flight conditions and
geometries. Owing to the runtime required for a full scale vehicle simulation however, only
a proof-of-concept at a single flight condition is presented. Although a major computational
task, running similar simulations at different conditions does not add to the breadth of the
thesis. Validation of the results is also left to future work.

4

1.4 Structure of Thesis
The thesis will begin with a review of the relevant literature in section 2. Information on
launch vehicles and their design, grid generation and solver codes is presented. Following
this, a ‘big picture’ view of the approach is given (section 3) before the geometry,
construction and parameterisation of the grid is introduced in section 4. Here each group of
blocks, from nose to tail, is described including geometric and grid control parameters, as
well as the functions behind the block construction.

Next, a discussion of the quality of the developed grid and geometric limitations;
simulations of the full vehicle and a demonstration of its parametric ability as a design tool
in the context of the forebody are given in section 5. These simulations are without formal
grid independence or validation studies and are therefore considered provisional or proof-
of-concept.

Section 6 addresses the identified issues of the developed tool through recommendations
on future work. Finally, conclusions on the grid and work completed are given in section 7
before the thesis closes with a summary of recommendations for future improvement and
applications of the tool.

Section 2 Literature Review

5

2 Literature Review
This section aims to provide background information: 1) on some historical and modern
hypersonic vehicles and some specific design issues; 2) on CFD meshing and simulation
codes and finally 3) for the justification of decisions made during the thesis. On
terminology, in most cases ‘grid’ and ‘mesh’ may be used interchangeably. However,
‘mesh’ is the more general term whereas ‘grid’ implies a structured placement of nodes.

2.1 Launch Vehicle Concepts
A launch vehicle is some sort of system to deliver payloads into space. Historically, this
has always been achieved with rockets however growing economic pressure. Single or
multi stage configurations employing a range of propulsion systems have been proposed
over the past decades. This continues today, with growing interest in the next generation of
launchers (Pezzella, 2011). Of primary interest to the present study is a concept from the
National Aerospace Plane program – the single stage winged cone vehicle or WCV (Figure
1) (Shaughnessy et al., 1990).

Figure 1. A winged cone vehicle proposed by Shaughnessy et al., as part of the National Aerospace
Plane project (Shaughnessy et al., 1990).

6

2.1.1 Reusable, Air-Breathing Launch Vehicles

A promising avenue of development for the cost reduction of access to space, is that of
reusable launch vehicles (RLVs) (Ahmad et al, 2011). The ability to retain and reuse large
portions of a launch vehicle promises to reduce costs. Furthermore, by exploiting air-
breathing engines the payload mass fraction may be increased due to not accelerating an
oxidiser (Dujjaric et al., 1997). Additionally, the improved specific impulse make them a
highly attractive option (Figure 2)

Drawbacks associated with air-breathing propulsion systems should also be noted. These
include high aerodynamic heating due to the relatively high required dynamic pressure and
added complexity of engine-airframe integration, as raised by Bertin and Cummings
(2003). Accurate prediction of the aerothermodynamics of hypersonic vehicles, including
aerodynamic coefficients is critical to the design (Gnoffo et al., 1999).

For a reusable vehicle to be economically viable, rapid turnaround is required (illustrated
in Figure 10). That is, time between missions should be on the order of weeks or even days.

Figure 2. Specific impulse of different propulsion systems operating at different Mach
numbers. The width of the bars represents the spread in performance (NASA).

Section 2 Literature Review

7

This requires the vehicle to return to its starting point requiring good aerodynamic
performance. This places further importance on the need for extensive aerodynamic
evaluation.
2.1.2 Single-stage and Multi-stage to orbit
Single stage to orbit RLVs offer simplicity and convenience in their rapid turnaround and
high productivity capability, however there are performance shortcomings. Their
justification is generally made on the basis of an “airline-like economic model” – distribute
very high vehicle cost over multiple missions (Ahmad et al., 2011). However, single-stage
systems are flawed fundamentally when compared to staged systems.

Firstly, for a given ∆ , (the impulse
required to propel a mass to orbit;
LEO for example), by staging the
vehicle the payload mass fraction
may be increased. This may be
shown by plotting the ideal
Tsiolkovsky rocket equation,
neglecting gravity and drag, as shown
in Figure 4. This is explained by the
fact the vehicle does not need to
accelerate as much structural mass
for as long (Smart & Tetlow, 2009).

Secondly, multi-stage systems lend themselves well to hybrid propulsion, such as air-
breathing - rocket systems. Air-breathing propulsion may only operate over a portion of the
trajectory (within the atmosphere) (see section 2.1.1). A staged vehicle allows the
separation of the inert air-breathing system that would otherwise be accelerated to orbital
speeds (Bertin & Cummings, 2003) Figure 5 illustrates the advantages of hybrid propulsive
systems in terms of increased payload mass fraction.

Figure 3. Payload mass fractions for staged system calculated
using the rocket equation (Smart & Tetlow, 2009).

∆

8

2.2 Hypersonic Air-breather Design
The advantages of a multi-stage, air-breathing RLV are clear. However, the design of
vehicles to operate at such high speeds represents one of the biggest challenges of modern
aerospace engineering. Several of the key issues will be presented here for background on
the geometry choices of the developed CFD grid. Notable types of vehicles will also be
discussed with a final emphasis on SPARTAN, the vehicle under development at The
University of Queensland.

2.2.1 Engine-Airframe Integration
In contrast to the vast majority of modern subsonic airlines and small aircraft, super- and
hypersonic vehicles tend to have extremely tightly integrated propulsion systems. There
are a few notable exceptions such as Reaction Engines’ Skylon1 and the SR-712. The
advantages of a propulsion system tucked in to the fuselage of note are: 1) the possible
forebody precompression and potential for flow alignment,

1 http://www.reactionengines.co.uk/space_skylon.html
2 http://www.lockheedmartin.com.au/us/100years/stories/blackbird.html

Figure 5. Velocity increment (∆) as a function of mass
fraction (Ahmad et al., 2011).

Section 2 Literature Review

9

and 2) the reduction in drag due to the likely increase in slenderness and decrease in frontal
area (Hirschel & Weiland, 2009). This design choice simplifies the aerodynamic modelling
of these vehicles as the geometry essentially becomes a wing-body or wing-body-tail
model. A schematic of a generic airframe integrated engine and vehicle is shown Figure 6.
.

2.2.2 Forebody Design
The forebody design is a key issue of a vehicle’s design. It is dictated by not only
aerodynamic performance requirements but also structural, internal volume and centre of
gravity demands (Duveau et al., 1999). The inflow to the engine inlet must be as uniform
as possible for optimum engine performance. Fully conical forebodies return a well-defined
inlet flow and fixed precompression. However, at an angle of attack, these benefits are lost
due to the resultant 3D flow field around the body (Hirschel & Weiland, 2009). This is
illustrated in Figure 6.

Owing to the criticality of drag, the nose bluntness is also an important parameter. The
resulting bow shock must a) not interact with the engine cowl (shock-on-lip condition)
avoiding detrimental effect on the inlet performance and vehicle wave drag and b) at the
largest Mach number, just envelop the propulsion system to avoid unnecessary wave drag
(Bing, Chun-lin & Liang-xian, 2015). Finally, another important characteristic is the role
the under- or windside of the forebody ramp plays in the inlet precompression (Hirschel &
Weiland, 2009).

Figure 6. Schematic of a hypersonic vehicle showing the bow shock formed by the
nose as well as forebody and aftbody nomenclature (Hallion, 1998).

10

Using the forebody in this manner however is not without disadvantages. Firstly, the
forebody boundary layer will be ingested, potentially upsetting the inlet flow stability.
Secondly, as the windside becomes a flatter surface, internal packaging becomes less
efficient as this geometry is less suited to pressurised tankage. Furthermore, this cross-
section has a poorer surface area-to-volume ratio which leads to detrimental effects on drag,
structural mass and aeroshell construction. Finally, as significant compression and
expansion surfaces, the forebody and boat tail contribute to the lift and pitching moment
with subsequent strong effects on vehicle longitudinal trim (Varvill & Bond, 2003).

(b)

(a)

Figure 6. Examples of conical and flat bottomed, wide forebodies and representative streamlines. (a)
The conical forebody flying at an angle of attack results in a divergent streamline pattern thus reducing
the effective inlet capture area. (b) A flat bottomed forebody returns a more favourable inlet flow. This
is indicative of a good design. Adapted from Hirschel and Weiland (2009).

Section 2 Literature Review

11

The ability to introduce bluntness, aspect ratio, both longitudinal and transverse camber
and combinations of the above to a standard conical forebody would allow the vast majority
of forebody geometries to be formed. Leading on from this, a wide conical forebody with
a flattened bottom and blunt nose will result in a desirable flow topology at both a large
Mach number and angle of attack range (Hirschel & Weiland, 2009). It follows that the
ability to model this sort of geometry is a key goal of the thesis.

2.2.3 Waverider vehicles
A wide, flat-bottomed (or even transversely concave) forebody geometry begins to be
reminiscent of a waverider type geometry. These are a special sort of vehicle, designed to
‘ride’ the leading edge shock wave which differ substantially from those seen previously
Figure 1. The excellent lift-to-drag ratio means the pure waverider geometry is one of the
most promising aerodynamic configurations (Huang et al., 2009). The lower side of a
waverider is determined from the stream surface attached to the prescribed leading edge.
As the pressure downstream of a shock is increased, this surface generates lift and
accompanying wave drag. The upper surface tends to be a free-stream surface. Coupled
with a sharp leading edge and no deflection angle, this surface has therefore no contribution
to the aerodynamic coefficients. Ideal / ratios are expected to be around 7 – 8, however,
the inclusion of viscous effects and blunt edges reduce these by between 40 and 20%
(Hirschel & Weiland, 2009).

The modifications required for a practical shape are not without detrimental performance
effects, namely in terms of / (Ferguson, Dasque & Dhanasar, 2015). In particular, the
difficulty of incorporating significant internal volume, means the winged cone type of
hypersonic airbreathing launch vehicles is considered to be the more practical option
(Hirschel & Weiland 2009). Nonetheless, their theoretical high aerodynamic performance
continues to foster modern development (Ferguson, Dasque and Dhanasar, 2015).

12

2.2.4 SPARTAN
Closer to home, the use of a staged, rocket-scramjet-rocket system was proposed and
examined by Smart and Tetlow in 2009. The second stage, known as SPARTAN (Figure
8) is a scramjet powered, reusable, winged cone vehicle based on the design by
Shaughnessy et al. (Figure 1). Owing to internal volume concerns, this architecture over a
waverider type vehicle was chosen (Smart & Tetlow, 2009). The most recent work by
Preller, Smart and Schutte (2016) show promising results with the three stage system
boosting a payload of 257.4 kg payload into low earth orbit at a favourable payload mass
fraction of 1.26%.

The vehicle has a conical fuselage with four tightly integrated scramjet engines. The swept
delta wings have a diamond cross section for lift generation (Preller, Smart & Schutte,
2016). Side and top views are given in Figure 9. An illustrative schematic of a SPARTAN
mission and trajectory is shown in Figure 10. In particular, the return to base or flyback
section of the mission is key to the system’s practicality and requires good aerodynamic
performance.

(a) (b)
Figure 7. Comparison of an analytically designed and practical waverider shape. (a) shows a generic
viscous optimised waverider designed for Mach 12, (b) is a modified version of the shape to include
a sharp trailing edge (reduce base drag), some internal volume (propulsion and payload) and two
plane surfaces at the rear of the vehicle for the addition of control surfaces (straight hinge lines)
(Eggers et al., 1995).

Section 2 Literature Review

13

Figure 8. An artist's impression of SPARTAN.

Figure 9. Plan and side views of SPARTAN. The side view illustrates the forebody shock and
nomenclature of the local radius at position . The plan view shows elevon positioning and sizing (Preller,
Smart & Schutte, 2016).

(a) Side view

(e) Plan view

14

2.3 Grid Generation
The construction of a grid around even a simple wing-body configuration is described as
no trivial matter (Eriksson, 1982). Furthermore, the numerical solution to the governing
equations presents a formidable task which in turn places requirements on the mesh quality
(Eriksson, 1982). Although the techniques and tools available for grid generation have
improved markedly over the past decades, the geometry definition and grid generation
stages in a conceptual CFD study remain the biggest bottleneck in the process (Bertin &
Cummings, 2006). The review presented here generally refers to 3D situations however
may be roughly extended to 2D.

2.3.1 Meshless Methods
Meshless methods are a wide class of techniques which use either surface panels or clouds
of points over which governing equations may be discretised. Meshless methods are
commonly used when the 3D geometry is very complex as the discretisation is generally
simpler and easier (Katz, 2009).

Figure 10. Three stage rocket-scramjet-rocket mission employing SPARTAN as the second stage
showing the required flyback of the vehicle.

Section 2 Literature Review

15

One such panel method of evaluating the aerodynamic performance of hypersonic
configurations is based on strip theory. This method, has been applied to super- and
hypersonic flows extensively, divides a 3D surface into 2D longitudinal panels which from
strips marking the flow-path over a vehicle’s surface. The surface pressure and Mach
number distribution may be calculated using inclination methods from the idea that the
properties on a panel depend only on the panels before it. An example of a surface panel
grid is shown in Figure 11. This will be discussed further when HYPAERO, UQ’s panel
code is introduced (Jazra, Smart, 2009).

The most prevalent, modern meshless codes applied to hypersonic vehicles are the
Aerodynamic Preliminary Analysis System, APAS (Anderson, 2006), and more recently
NASA’s CBAERO (Kinney, 2004). CBAERO demonstrates good agreement for lift, drag,
and surface heat transfer with wind tunnel data on full-vehicle test cases of the X-33, lifting
body.

Figure 11. Top and side views of a HYPAERO surface grid. The strips are defined in a stream-wise
direction from the nose of the vehicle. Properties shown in the top view are constant in each panel.
Note these grids are shown assembled – each component is analysed separately before the
aerodynamic coefficients are resolved to a common fixed coordinate system (Jazra, 2010).

16

Time for computation for the X-33 on a single CPU range from a few seconds to around
160 seconds (Kinney, 2004). APAS has been used for evaluations of many hypersonic
launch and re-entry designs (Cruz & Wilhite, 1998)

These meshless methods are well suited to the preliminary design phase, where a large
number of results are desired at low computational expense with acceptable error. For
higher fidelity analyses however, 3D Navier-Stokes CFD simulations are required
(Robinson & Martin, 2008). Furthermore, with modern increases in computer technology
however, Navier-Stokes numerical techniques are becoming increasingly common
(Hirschel, 2005).

2.3.2 Structured and Unstructured Grids
A structured grid is fundamentally defined as one in which node connectivities have a fixed
pattern and is generally made up of hexahedral (quadrilateral in 2D) cells (Mavriplis, 2008).
Therefore, each node has six associated edge connectivities. The cell data are stored in a
computationally efficient 3D (× ×) array, where the indices correspond to a cell’s
spacial position meaning neighbouring cells are known implicitly (× ×). This
format requires six-sided cell domains, or blocks, be defined, with matching cell counts on
opposite sides (Chawner, 2013). Conversely, an unstructured mesh is without these
constraints. Varying cell numbers and cell types (triangular, pentagonal for example) may
be employed.

With regards to comparison, there are advantages and disadvantages to both. Unstructured
meshes have a clear ability to conform to complex geometry and allow cell counts to vary
between opposite block boundaries. Furthermore, the construction process is generally
highly automated. However, this relinquishes some control over cell size, distribution and
orientation (Mavriplis, 2008).

A structured grid will, in general, offer increased control over the cells. From the boundary
definitions and discretisation, the exact grid specified by the user is returned. Coupled with
clustering, a highly controlled grid may be formed. This control extends to the orientation
of cells to the predominant flow direction and resolution of areas of strong gradients.

Section 2 Literature Review

17

 CFD codes typically converge more reliably and achieve more accurate results on aligned
grids (Tannehill, Anderson & Pletcher, 1997).

Improved grid quality is also frequently achieved for simple geometry (Chawner, 2013).
The domain may be made more manageable by dividing it into six-sided blocks, as
demonstrated by the example multi-block structure of Figure 12. This has the secondary
effect of allowing the computational load to be spread easily between cores. Finally, due to
their efficient computational structure, a structured code will in general run faster (Hirschel,
2005).

2.3.3 Grid Quality
It is well known know the quality, resolution and orientation of the grid at a particular
location can have large effects on the flow predictions (Bertin & Cummings, 2006). High-
quality grids are needed to capture adequately discontinuities and separation (Pirzadeh,
2010). The following refers to structured grids, although to an extent most ideas may be
extended to unstructured. Hexahedral cell quality is frequently measured through geometric
criterion such as skewness, smoothness, orthogonality and aspect ratio (Knupp, 2008).
Evaluating these measures individually is not sufficient to characterise the overall grid
quality, rather they should be considered simultaneously (Alter, 2004).

Skewness is a measure of the squareness of an individual cell and is defined below.
Depending on the specific problem, a maximum of 0.85 is generally deemed acceptable
(Knupp, 2008).

Figure 12. An example of a 2D multi-block structure taken from the Eilmer3 userguide. Although
in this example the domain could have been defined with only two blocks, 22 have been used. This
allows the computational load to be easily shared across more CPU cores (Jacobs et al., 2015).

18

Skewness = max − 90

90 , − 90
90

Smoothness, or stretching, refers to the size a cell relative to its neighbours where poor
smoothness is characterised by abrupt changes. The orthogonality of adjacent cells
becomes important due to the error associated with the reconstruction of property fluxes
when linearly interpolating between cell centres rather than correctly resolving to the face
centre.
Finally, aspect ratio refers to the ratio of the shortest to longest cell side length. Typically
cells should be as close to uniform as possible (< 1.2) with the exception of regions of
anisotropic flow, such as within a boundary layer where gradients close to the wall are
small (Alter, 2004).

As a further explanation, examples of all these quality metrics are presented Figure 13.
Although these are good indicators, the true measure of grid quality is in the validation of
the solution and depends on the specific physical problem (Papadopoulos et al., 1999).
Figure 13(f) is the same boundaries as (b) however it demonstrates the ability of an area-
orthogonal generation method. The method tries to keep cells orthogonal to edges and keep
cell areas constant across the surface. It does this by interpolating over a defined
background mesh, in this case 8 × 8 (versus actual cell counts of 5 × 5).

Section 2 Literature Review

19

Figure 13. Examples showing (a) a uniform, orthogonal grid; (b) a skewed grid coloured by quality;
(c) poor smoothness; (d) poor orthogonality; (e) high aspect ratio; and (f) the same skewed grid of (b)
however this time using AOPatch. The maximum skewness of 0.772 in (b) was reduced to 0.740 in
(f). These images were generated using e3prep and visualised with ParaView.

20

2.3.4 Tools
GridPro3
GridPro is a commercial multi-block structured grid generation package which provides a
high level of automation. The attractiveness of GridPro lies in its advanced smoothing
scheme which returns very high grid quality. The generation methodology is as follows;
firstly, surfaces which define the geometry and computational are imported or generated.
The general topology of the domain is then constructed and written to file in GridPro’s
Topology Input language, TIL. The TIL file is a logical record specifying the desired
geometry. It is from this file that GridPro then generates its smoothed volume grids. An
example of a complex grid is given in Figure 14.

3 http://www.gridpro.com/

Figure 14. An example of a smoothed grid generated using GridPro of an Ariane
rocket and accompanying boosters (GridPro).

Section 2 Literature Review

21

e3prep.py4
e3prep.py is the preparatory Python program associated with Eilmer (introduced in section
2.4.3). It sets up the simulation parameters and generates a block-structured grid with
accompanying initial, boundary, and inflow conditions. It is a rudimentary but powerful
program due in part to the functionality added with python scripting. The grid is generated
with fundamental geometric objects such as vectors (nodes), paths (lines, arcs, splines) and
surfaces (planes, bounded surfaces). Volumes are then generally formed through sets of
either six parametric surfaces or 12 paths (Jacobs et al., 2015).

Unlike GridPro, e3prep offers significant parametric ability, primarily through the python
functionality. This advantage however is a trade-off with GridPro’s superior cell quality
and automation. An example of an e3prep grid and Eilmer simulation is shown in Figure
15. This spherically blunted cone is constructed by revolving an arc blended into a straight
line about the x axis.

e3post is Eilmer’s rudimentary but versatile post processing program. It now contains a
multitude of options including extracting specific data such as pitot pressure or Mach
number from the solution to plot over specific surfaces, lines or points. e3post will write
solution files to the VTK file format for viewing and any further processing in Paraview5.

4 http://cfcfd.mechmining.uq.edu.au/eilmer3/e3prep.html
5 http://www.paraview.org/

Figure 15: An example of a 3D e3prep generated grid - a spherically blunted cone. The left image
shows contours of pressure on the surface of the domain. The right shows a surface grid and two
slices through the domain. Post processing was done with e3post.py and visulised in Paraview.
(Jacobs et al., 15).

22

2.4 Aerodynamic Codes
A review of relevant aerodynamic CFD codes is given below. Given the short timeframe,
the author’s familiarity with a program was a critical factor in favour of the final program
selected, Eilmer3.

2.4.1 HYPAERO
As introduced in section 2.3.1, HYPAERO is a surface panel code operating on the
principles of strip theory. Although a comprehensive design tool, it has several
shortcomings. These include an inability to model separation and thus high angles (8°) of
attack, interaction effects between bodies or low speed flows (Jazra & Smart, 2009). This
means a full aerodynamic database of the SPARTAN flyback (Figure 10) is not possible.

Furthermore, large errors are observed when compared with CFD methods. For example,
in the case of an ogive-cylinder combination, errors of approximately 2% for horizontal
pressure forces, 10 – 30% for vertical pressure forces and less than 10% for viscous forces
are apparent (Jazra, 2010).

2.4.2 VULCAN
VULCAN6 is a structured, full and parabolised Navier-Stokes code which will solve
turbulent, non-equilibrium and chemically reacting flows. It has been used to compute
accurate solutions for the full X-43 vehicle (Figure 16) as well as scramjet and other
geometry shock tunnel tests (Robinson & Martin, 2008). There is some recent experience
at The University of Queensland for the simulation of hypersonic flows (Jazra, 2010;
Doherty, Smart & Mee, 2015). Although an attractive option which is appropriate for the
task, the author’s lack of familiarity and short thesis duration reduced appeal.

6 https://vulcan-cfd.larc.nasa.gov/

Section 2 Literature Review

23

2.4.3 Eilmer3
The Eilmer codes are a series of C++ and python programs developed by the Compressible
Flow CFD Group7 at The University of Queensland for over 25 years (Jacobs et al., 2012).
The formulation and implementation is extremely complex, requiring a deep understanding
of fluid mechanics and computational techniques. In brief, the code solves the integral form
of the compressible Navier-Stokes equations, integrating through time to give a transient
solution. It includes general thermochemistry and high temperature effects such as
chemically reacting air (Jacobs et al., 2015). The general Navier-Stokes conservation
equation is:

= − (−) ∙ +

7 See http://cfcfd.mechmining.uq.edu.au/

Figure 16. Pressure contours on the surface and cross sectional planes around NASA's X-43
scramjet vehicle calculated using VULCAN. This vehicle exhibits flat, 2D forebody and boat tail
or aft body geometry (NASA).

24

Where the terms are the change in time, flux and source terms from left to right. The code
is specifically designed with hypersonic flows in mind and has been thoroughly verified
and validated against a multitude of cases (Gollan & Jacobs, 2013). As a time-marching,
Navier-Stokes code, it is one of the most commonly used type in hypersonic vehicle
simulation (Hirschel, 2005). Furthermore, with the author’s existing experience and
relatively short time period available, Eilmer is an excellent CFD code for the project.
Comprehensive information on Eilmer may be found in the user guide by Jacobs et al.,
(2015) or the source code.

Courant-Friedrichs-Lewy criterion
The CFL criterion allows an appropriate time-step to be selected which limits propagation
of information to a distance of one cell width or less. The stability limit of the time-step is
a function of the flow field. In the case of poor grid quality, the CFL number should be
reduced. Depending on the specific flow-field and location, this generally means skewness
of 0.85 or more. It is difficult to comment generally, but an initial CFL value of 0.5 is a
reasonable starting point to ensure time accuracy (Gollan & Jacobs, 2013). Eilmer can also
be set to check the CFL condition more regularly however this check is expensive (Jacobs
et al., 2015).

2.5 Further Reading
The reader is referred to the following; an explanation of hypersonic flow in Anderson
(2006) and Anderson (2003); comprehensive details on SPARTAN are given in Thomas
Jazra’s (2010) and Dawid Preller’s (2016) PhD theses respectively; information on
parametric forebody design and optimisation may be found in Berens & Bissinger (1996)
and Berens & Bissinger (1998) and finally Duveau et al. (1999).

For details on analyses of similar launch vehicles the reader is referred to the papers by
Mehta et al. (2015); Eggers and Dittrich (2011) and Wuilbercq et al. (2014) for information
on SKYLON. Additionally, Savino et al., present findings on the performance of a
suborbital hypersonic vehicle, HyPlane (2015). Details on these studies are not discussed
here owing to differences in methodology.

Section 3 Approach

25

3 Approach
The big picture of the grid generation tool developed is now briefly discussed. The tool is
coined AMARA, pArametric Meshing for AcceleratoR Analysis, (a catchy acronym
although not the most accurate of adjectives).

Three files AMARAgeom.py, AMARAblock.py and AMARAlibrary.py have been
developed (Figure 17). AMARAgeom.py is the master file. Here the geometry, initial and
inflow conditions are defined and cell numbers and simulation parameters may be tuned.
AMARAlibrary.py contains all the function definitions in a streamwise order. The
functions define the blocks in one of three ways:

1. Construct a parametric volume using the parameters , , to return Cartesian
coordinates , , .

2. Build the 12 paths which define a hexahedral volume using the e3prep function
WireFrameVolume().

3. Linearly interpolate between surfaces to create a volume.

These methods will be explained further as the blocks are introduced. With the exception
of the forebody blocks, each group defined in Figure 17, are defined programmatically in
a python class. The subsequent functions define the subtly different blocks above or below
the wing as well as functions to rotate the blocks around the fuselage.

26

Finally AMARAblock.py contains all the block and boundary condition definitions. In both
AMARAlibrary and AMARAblock, there are a small number of variables defined. In
extreme cases it may be advantageous to change these otherwise all that need be changed
lies in AMARAgeom.

Figure 17: A big picture description of AMARA.

Section 4 Geometry and Grid

27

4 Geometry and Grid
This section will give a further in depth discussion of the AMARA geometry with reference
to SPARTAN. Each section of the grid will be discussed with an explanation of the
parametric variables of note and how the blocks are constructed. Where appropriate
snippets of code will also be given. Anyone who has read lengthy portions of code will
appreciate the difficulty in understanding other’s work. This will be presented in a stream-
wise order, from nose to boat tail. Finally, examples of the grids generated, grid quality,
limitations and verification of geometry will be given.

4.1 Forebody
The forebody is constructed as a spherically blunted cone and is shown in Figure 18. The
spherical nose is truncated such that it leaves a smooth transition into the ramp at the
forebody half angle . The length of the forebody is a dependent variable and given by

= −
tan

Where refers to the radius at the junction between nose and ramp as shown in Figure 18.

= cos ()

Aspect ratio in the forebody is included as shown in Figure 19. This is simply a
redefinition of the coordinate, stretching the fuselage to an ellipse.

28

Finally, camber in the forebody is also included in two directions. Longitudinal camber
has been included to study the effect on the vehicles longitudinal trim. The blocks are first
defined forming a straight cone and then manipulated using the NACA 4-digit cambered
airfoil equation.

Figure 18. Forebody geometry. Note the nose radius shown here is greatly exaggerated.

Figure 19. Definition of aspect ratio and transverse camber in the forebody.

Section 4 Geometry and Grid

29

=
, , 2 , − 0 ≤ ≤ ,

,
−

1 − , 1 + − 2 , , ≤ ≤

As an extension on previous work, transverse camber has been added to the forebody. This
is implemented as a simple correction as a fraction of the forebody base radius.

= 0 ≤ ≤

The forebody blocks are formed out of three sets of blocks, nose tip, nose join and ramp. A
two dimensional projection of the tip and join blocks is shown below in Figure 21.
following the perspective shown in Figure 18. The first 12 blocks, on the nose tip, are
necessary to avoid the grid singularity present at the tip of the conical forebody. These are
numbered 7 - 12 in Figure 21. The remainder of the nose is formed by the ‘Join’ blocks,
numbered 0 – 6.

These blocks are constructed in a different manner to the remainder of the grid. As the
actual construction functions are quite long, comprehensive pseudo code for the nose tip is
given below. The process is illustrated in Figure 20.

275 def nose(r, s, t, rInner, dr, phis, AR, thetas, face='TOP',

 block=''):
276 “”” Construct a parametric volume starting at rInner of

 thickness dr. phis and thetas are lists of 4 angles
 defining the polar and azimuthal angles of the corners
 nodes respectively in clockwise order [NE, SE, SW, NW]. ”””

277 # Vary radius at which mesh is generated using t.
278 R = rInner + t*dr

279 # Find 2D radii for the four corners

30

280 r_NE = R * np.sin(phis[0]); r_SE = R * np.sin(phis[1]);

281 # Define azimuthal angle of each node on 2D plane.
282 angle_NE = thetas[0]; angle_SE = thetas[1]

283 # Define nodes for each corner, face is a Boolean value, -1

 # for ‘BOTTOM’, 1 for ‘TOP’
284 NE = node(r_NE * np.cos(angle_NE),

 face*r_NE * np.sin(angle_NE)
 0.,
 label=’NE’)

285 # Create paths
286 SWSE = Line(NW, NE) # N; SENE = Line(NE, SE) # E

287 # Create 2D patch
288 Face = make_patch(NWNE, SENE, SWSE, SWNW)

289 # Extract polar coordinates defining 2D patch
290 r_2D, theta_2D = cart_to_2D_polar(Face.eval(r, s).x,

 Face.eval(r, s).y)
291 # Calculate polar angles
292 phi = np.arcsin(r_2D/R)

293 # Return Cartesian coordinates to be modified with AR and

camber
294 x,y,z = sphericalpolar2car(R, theta_2D, phi)

The ramp blocks form the remainder of the forebody. It is along this length that the
boundaries are adjusted from the equiangular distribution of Figure 21, to that shown in
Figure 22. Construction of the ramp blocks introduces the second of the three block
construction methods; interpolation between surfaces.

Section 4 Geometry and Grid

31

The ramp function takes the corresponding mating face from the join block (bottom face)
and then creates the top face following the same method of defining corner nodes from
their angle and radius as in the code above. The volume is created by interpolating
between the two surfaces using the following function.

44 def surf2surf(r, s, t, surfTop, surfBottom):
45 # Use r and s to evaluated the coordinates of the two

surfaces.
46 topCoords = surfTop.eval(r, s)
47 bottomCoords = surfBottom.eval(r, s)
48
49 # Interpolate between surfaces using t to get x, y, z
50 x = (1 - t)*topCoords.x + t*bottomCoords.x
51 y = (1 - t)*topCoords.y + t*bottomCoords.y
52 z = (1 - t)*topCoords.z + t*bottomCoords.z
53
54 return x, y, z

As these blocks grow along the forebody, smoothness issues present themselves when
compared to the neighbouring narrow wing top and tail blocks. This is highlighted in
Figure 24. The blocks leading into above the wing (wing top), the wing itself (wing) and
beneath (wing bottom) also have their far edge defined as a straight path. The requirement
for this is discussed in section 4.3.

32

Figure 20. The construction of the nose blocks. (a) shows a constant radius slice through
the mesh at . This 3D surface is then collapsed to a 2D plane in the - plane. (b) the
grid is then generated and then transformed back to 3D. Note the perspective for (b) is
that shown in (a).

(a)

(b)

Section 4 Geometry and Grid

33

Figure 21. A 2D projection of the surface nodes defining the tip (7-12) and join (0-6)
forebody blocks. The nodes are numbered and block numbers are central in each block in
black.

Figure 22. A 2D projection of the bottom face nodes defining the ramp blocks (0-
6). The M nodes of the join blocks are shown here in green as in Figure 21. Note
the straight paths defining the wing blocks.

34

Summary of Parameters

 The geometry is controlled through the nose radius , the forebody halfangle
 and the aspect ratio . The fuselage diameter may be changed but is left

constant.
 Forebody camber may be controlled through the longitudinal and transverse

functions. The NACA equation is implemented for each taking the maximum
camber amount and location of maximum camber specified as fraction of the
chord length (forebody length and local - plane radius respectively).

 The mesh thickness is controlled through the radial thickness at the nose and
the mesh half angle (measured from the - plane). For fine tuning at
different nose radii, the azimuthal angle of the M nodes defining the tip blocks is

 may also be useful.
 For vastly different geometries, the polar angles of the M and/or N nodes may also

be changed to encourage grid quality.

Figure 23. Ramp construction utilising the interpolation method. Here the top and bottom face
coordinates are evaluated by , . The third dimension is realised by parametrising with ..

Section 4 Geometry and Grid

35

Table 1. Summary of parameters describing the forebody and their respective range if applicable.
Geometry Mesh

Parameter Range Parameter Range
 ~ ~
 (1°, 20°) ~ 7 ×
 (1.0, 2.3) * ~ 0.5 ×
 ~ , (0, 0.5)

, (0, 0.3)
* Setting this as a function of gives reasonable results. This should be a target parameter
should mesh quality in the nose blocks become an issue at a given geometry.

Figure 24. A 3D representation of the forebody blocks. This figure shows the change in size of the ramp blocks
as they progress along the forebody ramp to their final angles. Note that only the surface boundaries are shown
for clarity. The M, N and P nodes are shown in green, red and blue respectively as in Figure 21.

36

4.2 Engine
The original engines employ a shape-transitioning inlet configuration, called C-REST, to
allow the smooth capture of air without spillage between engines (Preller, Smart and
Schutte, 2016). For the purposes of the current work however, the geometry was simplified
to a series of axisymmetric sections defined by the length fractions (of the entire engine)
and wall angles with respect to horizontal. These approximated the engine modelled the
inlet, inlet ramp, combustor and outlet and are illustrated in Figure 25. The engines are
installed on the vehicle such that the inherent kink in the flowpath coincided with the
forebody-centrebody junction. The length of the centre body , is therefore defined by
the length of the combustor and outlet , as the outlet is constrained to be
coincident with the boat tail. The wall length of the outlet was a dependent parameter:

= tan −

Figure 25. A 2D cross-section through the centre symmetry plane of the simplified engine geometry

Figure 26. A 3D representation of the simplified engine module showing the radii and lengths for each section.

Section 4 Geometry and Grid

37

Summary of Parameters
 The engine was split into four sections, the lengths of which are specified as length

fraction of the total engine length, .
 These parameters define the inlet, inlet ramp, combustor and outlet.
 The wall angles for each from horizontal are also specified. The outlet wall angle is

dependent on the length specified such that it meets the boat tail.
Table 2. Summary of parameters describing the engine and their respective range if applicable.

Parameter Range Parameter Range
 ~ > 0 s.t. < 85

 ! > ±~0.5 (0°, 50°)
 ~ (0°, 5°)

 ~ (0°, 5°)
= + + + = 1∗

* Note this refers to the length fractions.

4.3 Wing
The wings are described by two independent parameters, the halfspan , and thickness, .
The leading edge is constrained to the inlet of the engine and the trailing edge is coincident
with the boat tail. Thus, like the centrebody, the chord length is defined by the engine
length. Owing to time constraints, the wings are currently modelled as blunt, constant
thickness plates rather than the desired diamond profile. However, this dimension is defined
by a separate function facilitating the future inclusion of a wing profile.

The halfspan, dictating wing sweep , is an important parameter with strong favourable
effects on the vehicles lift-to-drag ratio / as well as trim upon the addition of control
surfaces. The mesh may be controlled over the wings farfield halfangle to capture
behaviour caused by the wings.

Figure 28 shows the blocking structure over the wings. This is the primary structure for the
entire grid has it is required to revolve around the entirety of the vehicle.

38

The block numbers and naming here are also referred to throughout the thesis. These blocks
also introduce the final block construction method – WireFrameVolume. In this method,
the 12 paths defining a hexahedral volume are defined. These paths are then passed to the
e3prep function WireFrameVolume. This results in a highly efficient method of generating
a block for a number of reasons. Firstly, the generation itself is computationally efficient
when compared to the interpolation method. This is because it avoids having to evaluate
cells on the two surfaces. Secondly, it lends itself well to setting up the blocks as Python
classes. Each block class may have path attributes allowing one to extract paths or groups
of paths to construct the neighbouring block. This is the primary method used throughout.

Figure 27. Planview of the wing geometry. Note that all the angles are exagerated.

Section 4 Geometry and Grid

39

A brief discussion of each block will now be given in a streamwise fashion. Firstly, the
inlet or root fairing block. This is constrained between the inlet and fuselage and hence has
the potential for highly skewed cells. It is also the first point where two downstream blocks
collapse. In order to preserve quality at this function of three blocks, the interior angle was
forced to 120°.

Figure 28. Plan view of the blocking structure for the top (a) and bottom surface (b) of the wing.
Note block numbers and the names of the block groups.

(a) (b)

40

On the bottom surface, the inlet ramp block (1-2) is constructed in the same way – the aft
interior angle is forced to 120°. This block runs for the length of the inlet ramp and allows
its variation in the wall angle.

The fore combustor blocks (3,4) are simply constructed by interpolating between the
diamonds and inlet ramp. The diamonds (5, 6, 7) were devised to collapse the number of
blocks. A detailed image of them showing construction is given in Figure 29. This shows
the rear boundaries at split at the midpoint and the central vertex is central to the whole
diamond. Again, at the junctions of 7-9-10, the interior angles were forced to 120°. In
favour of symmetry, this was continued to the junction of 3-4-5-6, accepting the reduction
in quality. The diamond blocks are arbitrarily constrained to be halfway along the
combustor length. This was selected without investigation to allow the fore and aft blocks
(3,4 and 8-10) as much length as possible to transition.

Figure 29. Detail of the diamonds blocks. Note the fine blue lines refer to the 120 angle at vertices of three
blocks, the construction line defining the centre node (5-6-7 vertex) and equal subdivision of the aft
boundaries.

Section 4 Geometry and Grid

41

The aft diamonds blocks are interpolated in the same manner as the fore diamonds. This
was down because of the simplicity. It had the added effect of allowing the diamonds to be
rotated horizontally. This is discussed in section 6 as a method used to improve the grid
quality.

Finally, there are two rows of blocks inline with the outlet. This was split to allow block
boundaries at the elevens. Control surface deflection is required as it is a critical parameter
allowing the trajectory analysis to include longitudinal trim. However, this was not
investigated until the rest of the grid was constructed. Unfortunately, owing to quality
issues, modelling the deflection of the elevon surfaces was found to be unrealistic with a
structured grid. Nonetheless. A recommended blocking structure is given here. A method
to grid this is discussed later.

The strategy suggested is shown in Figure 30. In order for this to operate, the grid must
have effectively two modes. One where the deflection blocks exist and another where it
reverts to the base strategy. This strategy will result in some fairly poor cells because a) the
very sharp angle at the root of the elevon and b) the collinear block boundaries. However,
it is difficult geometry and this strategy requires only one change to the remainder of the
strategy. The wake blocks must be split behind the wing trailing edge as shown.

Figure 30. The deflected elevon blocking strategy..

42

Summary of Parameters
 The wing geometry is controlled through two parameters; the halfspan and

thickness, . The wing length is defined by the engine length.
 The wing sweep is thus dependent on the halfspan and length.
 The mesh is primarily controlled through the far field mesh a number of parameters.
 The diamond blocks may be rotated. This is introduced in section 5.
 The angle to which the blocks immediately above and below the wing are rotated

may also be changed.

Table 3. Summary of parameters describing the wings and their respective range if applicable.

Geometry Mesh
Parameter Range Parameter Range

 ◊ ~1.05 ∗
 0.04 ∗ (0°, ~10°)

 10°
◊ Note this range is governed by the engine length and vice versa. The critical parameter
is wing sweep and discussed in section 5.
4.4 Boat Tail
The boat tail (Figure 31) is modelled as a semi cylindrical top half and flat panels behind
the four engines on the underside. It is then truncated at length . The boat tail half angle
φ dictates the boat tail end radius .

Figure 31. Schematic showing the boat tail construction and three controlling parameters.

Section 4 Geometry and Grid

43

The boat tail end radius is given by:

= − tan (φ)

The boat tail blocks are simply a continuation of the wing blocks. That is four from the
wings and one outer block defining the far field.
Summary of Parameters

 The boat tail half angle φ and length control the geometry.
 The aft radius of the boat tail is dependent on the length and half angle. This is used

in the construction of the central wake blocks.

Table 4. Summary of parameters describing the boat tail and their respective range if applicable.

Parameter Range Parameter Range
φ (10°, 45°) (, 3)

4.5 Wake and Farfield
The central blocks forming the wake immediately behind the boat tail are formed following
a similar structure to that found on the nose the forebody. These are formed by defining the
nodes and then extruding them the distance to the outlet boundary . This structure is
illustrated in Figure 32. The remainder of the wake blocks are formed simply as a
continuation of the boat tail blocks and thus not discussed.

The grid is controlled through two parameters. One, the half angle of the farfield boundary

 downstream of the forebody as introduced previously and two, the distance to the outlet
boundary.

A schematic of the complete blocking structure of the vehicle is given in Figure 33. This
shows the block boundaries on two planes. Firstly the wing plane and secondly the vertical
symmetry plane. The boundaries showing the rotation of the blocks around the fuselage of
the vehicle are also shown.

44

Figure 33. A representation of the three dimensional blocking strategy. Block boundaries (grey) are shown
in three planes - top, coincident with the wings, the symmetry plane and front coincident with the rear of
the vehicle. Note that block boundaries which are defined by the surface of the vehicle (black) are not
shown.

Figure 32. The wake blocks behind the boat tail.

Section 5 Results and Discussion

45

5 Results and Discussion
In this section, the complete grid and some examples of its parametric ability will be given.
The baseline SPARTAN geometry will be demonstrated before quality issues and
geometric limitations are discussed. A simulation of the full vehicle as a proof of concept
will then be presented before the results of a short study on the forebody.

The AMARA collection of codes and scripts may be cloned from the GitHub repository:

$ git clone https://github.com/AlexWard6/AMARA

5.1 The Grid
The final developed grid is shown below in Figure 34. This shows the surface grid of the
SPARTAN geometry as defined by Preller, Smart and Schutte (2016). This grid is 383,300
cells in total and takes approximately 4 minutes and 30 seconds to generate on the Goliath
computer cluster (Appendix A) or slightly longer on an average home machine (4 cores, 8
GB RAM).

Four boundary conditions were utilised in the grid for the outflow, inflow, symmetry and
vehicle surfaces. The inflow condition, SupInBC, simply copies the supplied conditions
into the ghost cells on the outside of the blocks at each time-step. ExtrapolateOutBC
linearly extrapolates the flow data to the ghost cells each time step giving a general
supersonic outflow condition. The vehicle surface is modelled as a fixed temperature wall
at 300K with the temperature arbitrarily chosen. This is without consequence as viscous
effects were not included in the simulations. Finally, the symmetry plane was modelled as
an inviscid wall. Between blocks, Eilmer’s identify_block_connections() function
automatically pairs neighbouring blocks with the AdjacentBC boundary condition.

46

The task of setting the correct location of the boundary conditions presented one of the
greatest challenges in finalising the grid. To help with this, a rough script, AMARAsurf.py,
(see Appendix B) was written. This script extracts the block number, boundary condition
and face with which the condition is associated. This output was then used with e3post to
extract and display the surfaces of the specified boundary condition. The results of this are
shown in Figure 35.

Figure 34. An example of an AMARA grid modelling the baseline SPARTAN of Preller, Smart and Schutte, 2016.
This shows top (a), side (b) and front (c) views. The areas of worst skewness and smoothness are also identified.

Smoothness

Skewness

Skewness

Section 5 Results and Discussion

47

5.1.1 Geometric Verification
As a rudimentary check of the grid’s geometrical accuracy, all parameters were set to model
the baseline SPARTAN as defined by Preller, Smart and Schutte (2016). Using Paraview’s
probe location tool, the key dimensions for each component were checked. Good agreement
was found for the majority of dimensions with the known simplifications and changes
discussed in section 4. The results of this are shown below in Figure 36. Here a transparent
image of the grid is overlaid on the SPARTAN geometry defined by HYPAERO.

One of the images is rotated slightly hence the slight discrepancy noticeable in the forebody
and right-hand wing (lower wing in Figure 36). The largest difference is found in the engine
geometry. However, this is to be expected. Firstly the engines are simplified substantially
and an outlet section added similar to the shape presented by Doherty, Smart and Mee
(2014) as discussed in section 5. Secondly, the dimensions of the REST and C-REST
engines were unable to be found in the literature. Consequently, these were estimated
graphically from the work completed by Doherty (2014) and Jazra, Preller and Smart
(2013).

Figure 35. The boundary conditions of the grid – ExtrapolateOutBC, FixedTBC and SlipWall. For visualisations
sake, the inflow condition, SupInBC is the last exterior surface and not shown. The global coordinate system is
also shown in the bottom left corner with the origin at the centre of the blunted nose.

ExtrapolateOutBC
 SlipWallBC

FixedTBC

48

It is for these reasons that a discrepancy in the boat tail is seen as well. Nonetheless, this
result shows the successful completion of the second major objective – exercise the tool on
the baseline geometry.

5.1.2 Grid Quality
In general, the skewness of the grid was deemed acceptable, following a criterion of 0.85.
This criterion was used as smoothness was generally quite good across the grid and may be
somewhat adjusted by varying cell counts. Orthogonality was also quite good with the
exception of the inlet ramp blocks – limitations caused by this area are discussed. The
aspect ratio was generally good (< 4) but a small number of cells near the nose and wing
far field are larger (< 9). There are several areas of concern which should be targeted in
future work. These areas and the efforts made to improve quality will be addressed later.

(b)

(a)

Figure 36. Top (a) and side (b) views of the baseline AMARA grid overlaid on a HYPAERO defined
geometry.

Section 5 Results and Discussion

49

Smoothness in the grid was controlled fairly well (80% > minimum of 0.25) by keeping the
number of independent parameters controlling cell numbers to a minimum. Wherever
possible the cell numbers were defined from neighbouring blocks such that the cells/m
along the block boundary was constant. As labelled in Figure 34 however, the inlet ramp
block exhibits poor smoothness. This is due to the downstream requirement of its
longitudinal cell count matching that of the inlet blocks. The effect of this was minimised
by averaging what the inlet and inlet ramp blocks should be and using then this for both.

Skewness is shown graphically in Figure 38 and 39. Figure 37 shows a histogram of cell
skewness and shows a number of things. Firstly, the majority of the grid is of good quality
(81.2% < 0.5) with 39% of cells at a skewness of 0.1 or less. A small percentage, 0.4%, of
cells are highly skewed (> 0.75). The two peaks at 0.54 and 0.57 correspond predominantly
to the blocks on the underside of the wing leading edge and fore of the wing diamonds as
shown in the cloud of red in Figure 39. This identifies the first area of concern, the
underside root fairing blocks (1-2).

Figure shows the locations of cells with a quality of 0.5 or greater. This corresponds to the
worst 18.8% of cells. The poor quality areas are clearly shown in solid red. With reference
to the block naming and numbering of Figure these are block 1-2 on the underside and
block 4 on both sides. This identifies the second area of concern, the fore diamonds blocks
3 and 4.
Root Fairing (1-2)
The root fairing block on the underside is the worst block for the majority of geometric
cases, consistently returning the worst cells. This is because of the highly skewed geometry
caused by the combination of the high wing sweep and inlet ramp. In an attempt to improve
this, the block construction method was changed to that of AOPatch. This used the twelve
paths to define the six faces which in turn builds the volume. The results of an extreme case
are shown in Figure 40. Although an improvement was noticed, this was only very slight
at about 3% depending on geometry. This did however allow an increase in wing sweep at
acceptable skew of around 2°.

50

Fore diamonds (3, 4)
The fore diamonds return very poor cells, only slightly better than the root fairing. This
was because of the original blocking strategy and again the swept wings. An adjustment to
the strategy was proposed. Add the ability to ‘rotate’ the diamond blocks in plane. The
effects of this are shown in Figure 41. It is clear this relatively simple change greatly
improves the quality of the grid.

Figure 37. A histogram of the cell skewness distribution. There are 85257 cells (33%) in the first
peak at a quality of 0.01.

Section 5 Results and Discussion

51

Figure 38. Skewness in the grid. Note that an opacity function has been applied - only cells with
skewness greater than 0.5 are shown with increasing opacity.

Figure 39. A volume rendering of the grid's skewness. An opacity function hiding skewness <
0.5) was applied to emphasise the location of the worst cells and how this propogates through the
domain.

52

Figure 40. The original (a) and AOPatch (b) block construction. The geometry was set to an extreme
case where the wing sweep was 80° and the inlet angle was 40°. Note the views are from the opposite
side and an opacity function as been applied to highlight the individual poor quality cells. Changes to
the background mesh were investigated by varying cell numbers between 2 and 30. The differences
were small but best results were found at approximately 25 × 10 cells.

(a) (b)

Figure 41. The positive effect of rotating the diamonds blocks. (a) shows the blocks at 0° and
in (b) they have been rotated by 10°. The maximum skewness was improved from 0.758 to
0.657.

(a) (b)

Section 5 Results and Discussion

53

5.1.3 Limitations on Geometry
The areas of concern in terms of quality discussed in section 5.1.2 give rise to some
important limitations on geometry. The most critical of which are the wing sweep and inlet
ramp wall angle. The criterion used to define allowable geometry was a maximum
skewness of 0.85.

The wing sweep angle may be varied between 60° and 70°. This is a problem given the
desired optimisation domain considers sweep angles from 60° to 85°, according to the work
completed by Jazra (2010). It does allow the baseline of Jazra (2010) but not the optimised
geometry of Preller and Smart (2012).

The wall angle of the engine inlet ramp should be at most 5° at low sweeps and then 0° at
high sweep. Although not written in the code, it is recommended that this angle be chosen
by linearly interpolating between 0° and 5° for sweeps from 70° to 60° as follows:

= 5 ∙ − 60
70 − 60

The boat tail radius was limited to be greater than 0.45 m. This is dependent on the wing
geometry so is a loose constraint depending on context.

During the forebody study (section 5.2), several forebody parameters were varied and
limitations were found. In particular, the aspect ratio is limited to 2.5. This is because of
high skew in the nose tip blocks. There is no reason however why these blocks may not be
redefined for special cases. The longitudinal camber was approximately limited as in Preller
(2016), that is to a maximum of 1 4 at up to half chord from the nose. The transverse
camber was also limited to less than about 0.15 . These are quite generous and again,
only limited in the extreme cases due to high skew in the nose tip blocks.

These limitations demonstrate a number of things. Firstly, the reasonable parametric ability
of the tool. With the exception of the halfspan (wing sweep), the remainder of the
parameters may be changed substantially (Figure 42Figure 42. Four examples of the
variation in vehicle geometries. These examples also show how the initial grid will likely

54

need some adjustment to achieve a high quality grid.). Furthermore, the robustness of the
code (and lack thereof) is also highlighted.
In changing to extreme geometry the grid will generate successfully. However, in the first
instance the grid will likely not be acceptable and modifications may have to be made.
Several conditional statements designed to catch problematic geometry are included in the
code. These print warnings when the above limitations are caught but do not interrupt grid
generation.

(c)

(a) (b)

(d)
Figure 42. Four examples of the variation in vehicle geometries. These examples also show how the initial grid
will likely need some adjustment to achieve a high quality grid.

Section 5 Results and Discussion

55

5.2 Baseline SPARTAN
Flow Conditions and Simulation Parameters
All simulations were run at an angle of attack of 4.86° (corresponding to a negative rotation
about x), a freestream Mach number of 6.0 and a static pressure of 1.94 kPa. This condition
was chosen from an optimised trajectory to LEO and corresponds to the scramjet takeover
point (Preller, Smart & Schutte, 2016). The grid used is that shown in Figure 34 with
associated quality shown in Figure 37.

In order to reduce the computational time, viscous effects were neglected. This is a poor
assumption, with the flow field around slender hypersonic vehicles dominated by viscous
effects (Hirschel & Weiland, 2011). Although the viscous effects on lift at low angle of
attack are small, on the order of 1% (Shaughnessy et al., 1990), they have a much stronger
impact in the direction of travel. Skin friction drag makes up approximately 25%, or more,
of the total drag (Jazra & Smart, 2010). However, considering the extra computational
effort, in part caused by the extra finer cells to resolve viscous effects, this was an
unfortunate but necessary approximation. Furthermore, without some form of grid
independence study or comparison to existing data (HYPAERO for example), results
should be considered provisional and simply a proof-of-concept.

Because of the regions of poor quality, several steps were taken to ensure the stability of
the solver. The changes made were on the extreme side to ensure stability while accepting
the increase in computational time. Firstly, the initial time step (dt) and CFL number (cfl)
were reduced to 1.0 × 10 and 0.2 respectively. Secondly, the steps between the CFL
check (cfl_count) was reduced to eight and the check was performed over the smallest
cross-cell distance (stringent_cfl=1). Time history convergence of the energy and
mass residuals is shown in Figure 43. The maximum residual in mass and energy were both
less than 1.6e-4.

The simulation was run for 2.703e-3 seconds or 199,320 steps. This is equivalent to a
characteristic flowtime based on vehicle length of only 0.28.

56

In an attempt to reduce the runtime required for a reasonable approximation to the solution,
the simulation was initialised with conditions the same as the free stream. This required a
runtime of 24 hours on two nodes of the Goliath cluster giving 32 CPU cores.

Figure 44. A 3D Paraview rendering of the full vehicle simulation. This surface of the vehicle is
coloured by pressure and shows lines of constant pressure. The contours are uniformly distributed over
the range shown. They are plotted at = 0, -5, -10, -15 and -20 m from the nose.

Figure 43. Time history of the global maximum energy and mass residual for the full
vehicle simulation. The residuals were extracted from the Eilmer log files using the
Python script in Appendix C.

Section 5 Results and Discussion

57

Figure 45. The vehicle surface is coloured by Mach number and the volume is coloured by pressure. In
an attempt to visualise the near body pressure and shocks, an opacity function has been applied to hide
the free stream pressure.

Fig

Figure 46. Contours of constant Mach number. The vehicle surface is also coloured by Mach
number.

SOL violated

Bow shock

58

Figures 44, 45, and 46 display the results for the full vehicle simulation. Figure 44 shows
the vehicle surface coloured by pressure and contours of constant pressure at cross
sections down the vehicle. Pressure distributions over the surface of the vehicle are useful
for the assessment of structural loads and venting regions (Gnoffo et al., 1999).

Figure 45Figure 45. The vehicle surface is coloured by Mach number and the volume is
coloured by pressure. In an attempt to visualise the near body pressure and shocks, an
opacity function has been applied to hide the free stream pressure. shows Mach number
and a volume visualisation of the pressure distribution around the vehicle. An opacity
function was applied here to hide the free stream pressure. This shows the approximate
shock structure near to the vehicle. A small area of stagnant air is also visible behind the
boattail as expected due to the blunt trailing edge. This will contribute substantially to the
drag of the vehicle (Eggers et al., 1995).

The plot of constant Mach contours in Figure 46 further implies the vehicle has violated
the shock-on-lip condition. This is shown in the tight collection of contours hitting the inlet
and the second shock at a higher angle. This is in direct contradiction to the previous
findings from HYPAERO results. However, as stated, these results must be considered
provisional.

5.3 Forebody Results
Owing to the exceedingly long runtimes required for the full vehicle simulations, several
simulations were run of just the forebody. The baseline and a proposed modified geometry
were evaluated at the flow condition specified in section 5.2. A modified forebody was
devised which drew inspiration from the recommendations in Bing, Chun-lin & Liang-xian
(2015), Hirschel & Weiland (2009) and Varvill & Bond (2003). The result is a flattened
body with a blunted nose and slight positive longitudinal camber. A summary of the
baseline and modified forebody geometries is given in Table 5. These are illustrated in
Figure 47.

Section 5 Results and Discussion

59

Table 5. Geometric parameters of the baseline and modified forebodies.
Parameter Baseline Modified

AR 1.0 2.0
rnose [m] 0.05 0.1

Ca,Long [m] 0.0 0.03
Ca,Trans [m] 0.0 0.15

Both simulations were run on the same grid of 177,045 cells. Run time was approximately
17 hours using 8 CPU cores for a simulation time of 2.581e-2 seconds (3 flow-times). As
the grid quality was much improved, the stability control measures described in section 5.2
were relaxed. Global mass and energy residuals for the two simulations are shown in Figure
48.

(b) ©

(a)

Figure 47. The baseline and modified forebody geometries used in this study. (a) isometric view, the modified shows
the surface grid, (b) front and (c) side views. The baseline is shown in a slightly darker colour.

modified

baseline

60

5.3.1 Baseline
Figure 49 shows the inlet coloured by horizontal velocity and vehicle surface coloured by
pressure. The windward side (bottom) shows progressively higher pressure as the forebody
increases in size, compressing the flow. The maximum pressure at the inlet plane was
around 6.5 kPa. It should be noted that in this plot blue refers to the velocity of greatest
magnitude (blue because of the forebody side defined) and the large areas just outside the
symmetry plane imply strong divergence in the inlet onset flow. This is confirmed in Figure
50 where the velocity streamlines over the surface of the forebody are shown.

Figure 48. Global mass and energy residuals for the modified and baseline forebody simulations.
Note the discrepancy in start time is due to slightly different initial CFL and time step values.

Section 5 Results and Discussion

61

(a) (b)

divergent inlet flow
attachment line at
symmetry plane

Figure 50. Surface streamlines coloured by velocity magnitude for the baseline inlet. Note
that the forebody is inverted in (a), showing the windward side.

v

Figure 49. Horizontal velocity contours with the forebody surface coloured by
pressure. Note blue corresponds to high velocity.

62

5.3.2 Modified Forebody
Figure 51 shows horizontal velocity plotted at the inlet capture plane. An investigation of
the results showed the approximate horizontal velocity at the centre of the two middle
engines (x = ±0.263) was reduced from over 120 m/s to around 55 m/s thus implying the
engine capture rate is improved. Additionally, an increase in pressure from approximately
6.5 kPa to 9.5 kPa was observed for the modified forebody, likely from the stronger bow
shock.

The total internal volume of the modified forebody has increased potentially allowing for
an increase in fuel given the packaging described by Preller (2016). This increase is on the
order of 100%, to 16.25 m (estimated from the aspect ratio of = 2). However without
some rearrangement the useful volume has likely only increased by a small amount given
the complexity of non-cylindrical fuel tanks.

Figure 52 may be used to further visualise the flow around the forebody. In particular, when
compared to 50(a), the modified geometry clearly shows the improved straightness of the
flow at the inlet. The streamlines are now reminiscent of Hirschel & Weiland’s forebody
design recommendations (2009) in Figure 6.

Figure 51. Horizontal velocity plotted at the inlet plane (z = -9.46 m) and the vehicle surface coloured by
pressure. In this plot, the blue corresponds to high negative velocities.

Section 5 Results and Discussion

63

Figure 52. Velocity streamlines on the surface of the modified forebody. Note in (a) the forebody is upside down
to show the windward side and straightness of the flow. This figure was generated using the SurfaceLIC filter.

(a) (b)

(approximately) 2D inlet flow

attachment line

divergent
streamlines

Section 6 Recommendations

65

6 Recommendations
Following the discussion in section 5, several shortcomings and limitations have been
identified which will prevent the complete success of the tool. Recommendations for future
work addressing each of these are given here.

6.1 Utilising a Patched Grid in Eilmer48
As discussed, the root fairing block at the wing leading edge is the critical block in terms
of quality and thus limits the geometry. This could be improved by using a section of
unstructured mesh and patching it in with the remainder of the structured grid. A recent
thesis at The University of Queensland has successfully developed an unstructured mesh
generation tool of more than acceptable quality (Muir, 2016). This tool is currently
restricted to 2D and there are significant obstacles before 3D generation is realised. On one
hand, axisymmetric and extrusion methods for 3D blocks aren’t expected to be overly
complicated but a general 3D shape is considered exceptionally difficult.

This would however be an elegant ‘best of both worlds’ solution to the leading edge quality
issue. A proof-of-concept is presented in Figure 53. This geometry is a 2D representation
of the likely worst case scenario – a wing sweep of 85° and inlet ramp angle of 5°. The
neighbouring blocks are included to show how unstructured cells would fit alongside the
current structured grid.

The quality plots clearly show a vast improvement in the quality of the grid in the majority
of the skewed block. The worst cell however is virtually the same, with a quality of 0.935.
This is because the unstructured algorithm also uses quadrilateral cells and must still place
at least one cell in the highly skewed point of the block.

8 Gollan & Jacobs, (2015) Implementation of a compressible-flow simulation code in the D programming
language. The University of Queensland.

66

However, it very quickly adds cells, in what’s called the seaming process, improving the
quality. Histograms of cell quality are also given for the two cases. The spikes for each case
are predominantly due to the neighbouring blocks. What is clear is the improvement in
average cell quality as shown in the reduction in cells above a skewness of 0.85 – 25 and
87 for the unstructured and structured cases respectively. Furthermore, it should be noted
that the cell count for the unstructured block was increased, meaning the overall quality is
better than the histogram implies.

Figure 53. A 2D representation of the patched grid concept. Note in (d) the unstructured cells
are shown in black and red refers to the structured cells.

Section 6 Recommendations

67

In addition to improving the quality, a patched grid offers the distinct benefit of relaxing
the requirement for cell counts to agree across blocks. If implemented into the grid this
could also solve the inlet-inlet ramp smoothness issue. An example of the wing blocking
structure showing the sections of unstructured grid is shown in Figure 54Figure 54.
Suggested locations for unstructured blocks should a patched grid be used.. In addition to
the root fairing blocks, those forming the elevons are selected.

The generation time however should be noted. While the structured grid was generated in
a matter of seconds, the unstructured grid took over four minutes. Furthermore, the best
results will be found for fine discretisation. A higher number of cells means the paving
algorithm can construct better quality cells sooner improving overall quality. However this
increases runtime even more. It is for these reasons (and the arguments in section 2.3.2 in
favour of structured grids) that a patched, rather than entirely unstructured, grid is
recommended. It should be noted that unexpected complications may arise as Eilmer has
not yet been tested with unstructured grids.

Figure 54. Suggested locations for unstructured blocks should a patched grid be used.

68

6.2 Improving the Grid Quality
There is always a balance between the time and effort spent on grid generation or generating
a solution. With that in mind, Alter (2004) recommends generating a high quality grid as
this is more time economical and allows a more efficient use of resources. With that in
mind, further effort directed towards improving the grid quality are recommended in
addition to the patched grid idea above. One such avenue lies in combining the parametric
functionality of e3prep topology definition with a commercial grid generation program for
grid generation. Advantages of this are as follows.

Firstly, e3prep was initially selected because of its programmatic nature. This allows the
relatively easy parameterisation and subsequent alteration of the geometry and grid.
Furthermore, it will facilitate running potentially hundreds of simulations at different flow
conditions and configurations. In this scenario a master script could automatically define
conditions setting up the simulations. GUI packages, in general, do not allow this level of
control and functionality, favouring automation. Defining the block topology with e3prep
will retain this ability.

Secondly, a grid generation program, such as GridPro, will generate a much higher quality
grid. Grid generation is the focus of these programs and has been much further developed.
Furthermore, smoothing, clustering and other local refinement tools may be used to control
the grid. Other possible options which have not been researched include ICEM9 or
Pointwise10 (previously GridGen).

So how would this actually work? This is a matter of getting e3prep to talk to GridPro and
then GridPro to talk to e3prep. The second of these tasks has already been completed;
e3prep has the ability to read and import external grids (see Eilmer user guide page 377,
Jacobs et al., 2015) including GridPro (see import_gridpro_grid). Using e3prep to
export topology is however a larger task. GridPro’s surfaces and blocks are stored in TIL
(section 2.3.4), similar to the C language. Before GridPro developed its GUI, its superior
grids were generated by defining the topology in TIL.

9 http://resource.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD
10 http://www.pointwise.com/pw/

Section 6 Recommendations

69

Although a nontrivial task, a python program could be written to take the objects defined
by e3prep and translate it to TIL before letting GridPro generate the grid. GridPro may also
be completely run from terminal hence the automation of the process is not inhibited. After
some experimentation with GridPro to generate simple 3D grids, runtime is expected to
increase but this is more than acceptable given the expected improvement in simulation
time. Further information on GridPro and TIL may be found in the reference manual by
GridPro (2012).

6.3 Extending to Subsonic Simulations
It is likely not feasible to solve the flowfield around SPARTAN at subsonic velocities. This
is because the simulation runtime will become prohibitive as the flow rebounds through the
domain. ExtrapolateOutBC in particular will not handle subsonic flow leading to issues at
transonic or high subsonic velocities. A better solution may be to transfer the solver duty
to OpenFOAM11. OpenFOAM is a free, open source collection of CFD codes applied to a
multitude of scenarios. The reason this is attractive is it will require very little modification.
e3prepToFoam is python utility which converts e3prep generated meshes to the
openFOAM foam format, including the generation of boundary patches. Details on the tool
may be found in the technical report by Jahn and Qin (2015).

A small number of changes must be made in order to convert AMARA for use with
OpenFOAM. Firstly, the correct OpenFOAM directory structure must exist. Secondly,
setting the gas model and initial conditions is not necessary as these now reside in separate
files (case/0/). Finally, the boundary conditions must be defined differently. This is done
through setting all boundaries to ExtrapolateOutBC with keyword labels.

blk.bc_list[FACE] = ExtrapolateOutBC(label=”NAME”)

Where NAME refers to one of the following OF_inlet_xx, OF_outlet_xx,
OF_wall_xx, OF_symmetry_xx. For example, all faces on the surface of the vehicle
may be defined by the one boundary condition:

11 http://openfoam.com/

70

blk.bc_list[FACE] = ExtrapolateOutBC(label=”OF_wall_00”)

Following this, the selection of a relevant solver (eg. simpleFoam, incompressible turbulent
Navier-Stokes) and simulation control parameters, the simulation may be run.

6.4 Simulation Runtime
A severe impediment to this thesis was the runtime required for 3D simulations. To the
author’s knowledge, AMARA represents one of the biggest grids developed using e3prep
and solved with Eilmer. The full vehicle simulation, at a minimum, employs 265 blocks
with the coarsest grid having over 350 000 cells. When viscous effects are included
(imperative for drag and subsonic simulations), the cell count and runtime will increase
substantially. In order to realistically compile an aerodynamic look up table, increased
parallelisation is required such that the simulation may efficiently make use of 100+ or
even more processes on Tinaroo.

Currently, the ramp blocks are many times larger thus representing a larger computational
task. Therefore when distributing the load amongst more processes, simulation will reach
a point where it is simply waiting on the large blocks’ calculation to finish before
exchanging boundary data at the end of each time step. This will require blocks to be
subdivided such that they may be distributed efficiently across more processes. Thankfully,
e3prep supports the automatic subdivision through SuperBlock3D.

This was investigated however problems arose in defining the boundary conditions. The
conditions do not carry over from the original block object and must be redefined
individually as follows:

Section 6 Recommendations

71

BLOCK_0 = SuperBlock3D(…)
Iterate through the individual blocks within BLOCK_0 along k.
for blk in BLOCK_0.blks[0][0]:
 # For each block, ‘blk’ set the BCs. In this case a wall and inlet.

blk.bc_list[SOUTH] = FixedTBC(Twall=wall_temp)
blk.bc_list[NORTH] = SupInBC(inflow)

Further work is required to determine an efficient distribution of blocks. This may be
investigated using the included load-balancing program. Here we may search for the most
computationally efficient number of processes, in this case between 16 and 256.

e3loadbalance.py --job=AMARAgeom –n 16 –sweep-range=16:256

Generally after a point performance will plateau. By finding this point, say n = m, re-
running e3loadbalance.py with -n m and then checking how the blocks are distributed, one
may determine where to concentrate their efforts with SuperBlock3D. By splitting the ramp
blocks into 16, e3loadbalance.py reported an improvement of over 50x for 30+ processes.
Further information on load balancing may be found in Appendix K of the Eilmer user
guide (Jacobs et al., 2015).

6.5 Extracting Coefficients
Although not an objective of this work, the later aerodynamic evaluation of SPARTAN and
compilation of the aerodynamic look up table requires aerodynamic coefficients such as

 and as well as stability derivatives. e3post includes a function to extract forces on
specific block sides but this does not extend to 3D. The general methodology is as follows

1. Extract the area, pressure and vertices (points) of each cell on the surface of the
vehicle.

2. Find the centre coordinates of the cell from the four points. This is where the
pressure is acting, normal to the surface.

72

3. Form two vectors between three points and calculate the unit normal from their
cross product. This assumes the cell is approximately planar. An alternative and
more accurate version of this step is as follows:

a. Form four vectors from the corners to the centre.
b. Calculate four normals from the cross product of each neighbouring pair of

points.
c. Find the average of these, thus approximating the normal to the cell.

4. Find the force vector acting on this cell by multiplying its area by the local pressure.
The direction is given by the normal.

5. Transform the cell force to a global coordinate system (wind axes).
6. Calculate the cell area in the direction required for the reference area.
7. Integrate these forces and cell areas across the entire surface of the vehicle.
8. Calculate the final coefficient.

For completeness sake, an unverified script to extract the pressure force is given in
Appendix D as a starting point for a future script. This is a reasonable approximation for
lift but will need to be updated to include viscous forces.

Section 7 Conclusion

73

7 Conclusion
The main results and conclusions of the thesis will be reviewed against the original aims
before a concise summary of the outcomes. The relevance of the outcomes to hypersonic
vehicle design at UQ will also be discussed. Finally, a summary of the recommendations
for future work is given.

7.1 Thesis Evaluation
Firstly the aims of the thesis will be addressed before final comments on the success of the
project.
Develop an appropriate three dimensional blocking strategy
This aim was successfully met. The blocking strategy proposed was successfully
implemented to allow the modelling of a generic hypersonic vehicle. Furthermore, with the
work identified in section 5, the grid may be extended following the strategy suggested to
include the vehicle tail, control surface deflection and further develop the wings. This
strategy does however make
Construct a parametric grid for the analysis of generic hypersonic vehicles
A parametric grid was successfully developed which models a winged cone vehicle. The
parametric ability was demonstrated in a range of vehicles with acceptable grid quality.
However, this grid does have significant limitations and does not meet all objectives.
Because of quality issues caused by the highly skewed geometry, the complete modelling
of high wing sweep, control surface deflection and wing bluntness is deemed not possible
with a structured grid. The use of unstructured blocks in a patched grid is suggested to
overcome this problem.

74

Exercise the framework on SPARTAN
The grid was used to successfully model the SPARTAN baseline geometry. This was
confirmed by checking dimensions against the published geometry. Simplifications and
changed were made in terms of the engine and boat tail however. Further research is
required to investigate the effect this has. The integration of the complicated engine inlet
geometry is expected to be a significant if not impractical task, even for unstructured
blocks.

Exercise the framework on a baseline and modified forebody
Two forebody geometries were successfully simulated and evaluated. The modified
forebody, which was designed following recommendations from the literature, was
qualitatively found to perform better than the baseline in terms of inlet flow and
precompression.

The objective of this project was the development of a parametric grid generator for
hypersonic vehicle analysis. The project is arguably successful given each aim has been
met although with limitations and restrictions. Exhaustive recommendations on suggested
future work to solve some of the issues present are given such that the knowledge and
experience from this thesis is passed on.

7.2 Summary of Recommendations
Utilising a patched grid in Eilmer412
A patched grid where highly skewed blocks make use of an unstructured grid generation
method is recommended for the wing root and control surface blocks. This will allow the
geometry to be formed.

12 Gollan & Jacobs, (2015) Implementation of a compressible-flow simulation code in the D programming
language. The University of Queensland.

Section 7 Conclusion

75

Improving the grid quality
In order to preserve the parametric ability of python but greatly improve the grid quality,
e3prep could simply be used to generate the block topology. A commercial grid generation
package, such as GridPro, would then be used to generate and smooth the grid. This would
give great improvements however a purely structured grid is not expected to be feasible.
Subsonic simulations
Research into a different solver code is recommended for simulation at subsonic or possibly
transonic speeds. One such program which would require minimum effort and is known to
be feasible is OpenFOAM. This would allow the current grid to be used with very little
changes required.
Simulation runtime
In order to compile a comprehensive aerodynamic look up table for a full trajectory
analysis, the simulation runtime must be improved. Increased parallelisation and taking full
advantage of a cluster such as Tinaroo is recommended. This may be achieved through
splitting the large blocks (ramp and outer wake blocks) and distributing with
e3loadbalance.py.
Extracting coefficients
Finally, development of a new script to extract forces on a block boundary in 3D is required.
A method has been proposed and a rough script presented without verification.

7.3 Implications
This thesis has delivered an adequate tool for the hypersonic vehicles. This may be applied
to the SPARTAN geometry however the full range of geometric parameters is not possible
with a structured grid. Aerodynamic evaluation of the baseline SPARTAN is feasible but
will require work in the areas identified. Finally, compilation of a complete aerodynamic
database across a full geometric and flight condition range is not feasible given the current
methodology.

76

7.4 Closing Remarks
This project has required an immense amount of development and learning. It has lead to
the development of new skills and a familiarity within grid generation and CFD analyses.
Although not all objectives were met satisfactorily, it is satisfying to know a contribution
has been made to the development of SPARTAN at UQ. It is hoped this work along with
associated recommendations will foster the next generation of AMARA. Finally, a few
realisations made along the way include:

The computer always does what you tell it and not what you want it to do.

It doesn’t have to be perfect, simplifications and drawing the line somewhere are

justifiable.

 References

77

References

Ahmad, A. Maddock, C. Scanlon, T. Brown, R. (2011) Prediction of the Aerodynamic
Performance of Re-usable Single Stage to Orbit Vehicles. Proceedings of Space
Access 2011.

Alter, S. (2004) A Structured Grid-Quality Measure for Simulated Hypersonic Flows. 42nd
AIAA Aerospace Sciences Meeting and Exhibit. January 5th-8th Reno, USA.

Anderson, J. (2003) Modern Compressible Flow with Historical Perspective. 3rd Edition.
McGraw Hill Higher Education. New York, USA.

Anderson, J. (2006) Hypersonic and High Temperature Gas Dynamics. American Institute
of Aeronautics and Astronautics. Vancouver, Canada.

Baker, D. Worden, S. (2008) The Large benefits of Small-Satellite Missions. Eos Trans.
AGU. 89(33) p 301-302.

Berens, T. Bissinger, N. (1996) Study on Forebody Precompression Effects and Inlet Entry
Conditions for Hypersonic Vehicles. Space Plane and Hypersonic Systems and
Technology Conference, Norfolk, USA. AIAA Paper 96-4531.

Bertin, J. & Cummings, R. (2006) Critical Hypersonic Aerothermodynamic Phenomena.
Annual Review of Fluid Mechanics. 38, 29-157.

Bing, C. Chun-lin, G. Liang-xian, G. (2015) Design and Verification of
Airframe/Propulsion Integration for Air-breathing Launch Vehicle. 20th AIAA
International Space Planes and Hypersonic Systems and Technologies Conference.
6-9 July, Glasgow, Scotland.

78

Bowcutt, K. Smith, T. (2012) Responsiveness and affordable launch of small satellites: A
reusable air-breathing concept. Reinventing Space Conference. 7-10 May, AIAA,
Los Angeles, USA.

Chawner, J. (2013) Quality and Control – Two Reasons Why Structured Grids Aren't Going
Away. Pointwise, The Connector. Viewed 23/09/16 at:
<http://www.pointwise.com/theconnector/March-2013/Structured-Grids-in-

intwise.shtml>
Doherty, L. Smart, M. Mee, D. (2014) Experimental Testing of an Airframe Integrated 3-

D Scramjet at True Mach 10 Flight Conditions. 20th AIAA International Space
Planes and Hypersonic Systems and Technologies Conference, 6-9 July, Glasgow,
Scotland.

Doherty, L. Smart, M. Mee, D. (2015) Measurement of Three-Components of Force on an
Airframe Integrated Scramjet at Mach 10. 20th AIAA International Space Planes and
Hypersonic Systems and Technologies Conference. July 6-9 Glasgow, Scotland.

Dujjaric, C. Caporicci, M. Kuczera, H. Sacher, P. (1997) Conceptual Studies and
Technology Requirements for a New Generation of European Launchers. Acta
Astronautica. 41(4) p 219-228.

Duveau, P. Hallard, R. Novelli, R. Eggers, T. (1999) Aerodynamic Performance Analysis
of the Hypersonic Airbreathing Vehicle JAPHAR. Office National D'etudes et de
Recherches Aerospatiales Chatillon-Sous-Bagneux, France.

Eggers, T. Dittrich, R. Varvill, R. (2011) Numerical Analysis of the SKYLON Spaceplane
in Hypersonic Flow. 17th AIAA International Space Planes and Hypersonic Systems
and Technologies Conference. San Francisco, USA, April 2011.

Eggers, T. Strohlmeyer, D. Nickel, H. Radespiel, R. (1995) Aerodynamic off-design
behaviour of integrated waveriders from take-off up to hypersonic flight.
Proceedings of the 2nd European Symposium held in ESTEC, Noordwijk, The
Netherlands. 21-25 November.

 References

79

Ferguson, F. Dasque, N. Dhanasar, M. (2015) Waverider Design and Analysis. 20th AIAA
International Space Planes and Hypersonic Systems and Technologies Conference.
6-9 July, Glasgow, Scotland.

Gnoffo, P. Weilmuenster, K. Hamilton, H. Olynick, D. Venkatapathy, E. (1999)
Computational Aerothermodynamic Design Issues for Hypersonic Vehicles. Journal
of Spacecraft and Rockets, 26(1) p 21-43.

Gollan, R. Jacobs, P. (2013) About the formulation, verification and validation of the
hypersonic flow solver Eilmer. Numerical Methods in Fluids. Vol 73(1), 19-57.

GridPro (2012) Reference manual for TIL v5.5. Program Development Corporation, NY,

USA.
Hallion, R. (1998) The Hypersonic Revolution: Case Studies in the History of Hypersonic

Technology. Vol. 2. U.S. Government Printing Office.
Hirschel, E. (2005) Basics of Aerothermodynamics. Springer Science & Business Media,

Berlin, Germany.
Hirschel, E. H. Weiland, C. (2011) Design of Hypersonic Flight Vehicles: Some Lessons

from the Past and Future Challenges. 16th AIAA/DLR/DGLR International Space
Planes and Hypersonic Systems and Technologies Conference. 19–22 October.
Springer, Bremen, Germany.

Hirschel, E. Weiland, C. (2009) Selected Aerothermodynamic Design Problems of
Hypersonic Flight Vehicles. Springer Science & Business Media, Berlin, Germany.

Huang, W. Wang, Z. Luo, S. Liu, J. An overview of research on engine/airframe integration
for hypersonic waverider vehicles. Journal of Solid Rocket Technology. 32(3) p 242-
248.

Jacobs, P. Gollan, R. Denman, A. O’Flaherty, B. Potter, D. Petrie-Repar, P. & Johnston, I.
(2012) Eilmer’s Theory Book: Basic Models for Gas Dynamics and
Thermochemistry. Mechanical Engineering Report 2010/09. The University of
Queensland.

80

Jacobs, P. Gollan, R. Jahn, I. Potter, D. and others, (2015) The Eilmer3 Code: User Guide
and Example Book 2015 Edition. Mechanical Engineering Report 2015/07. The
University of Queensland.

Jazra, T. (2010) Optimisation of Hypersonic Vehicles for Airbreathing Propulsion. PhD
Thesis. School of Mechanical and Mining Engineering. The University of
Queensland.

Jazra, T. Preller, D. Smart, M. (2013) Design of an Airbreathing Second Stage for a Rocket-
Scramjet-Rocket Launch Vehicle. Journal of Spacecraft and Rockets, 50(2) p 411-
422.

Jazra, T. Smart, M. (2009) Development of an Aerodynamics Code for the Optimisation of
Hypersonic Vehicles. 47th AIAA Aerospace Sciences Meeting. January 5-8 Orlando,
USA.

Katz, (2009) Meshless Methods for Computational Fluid Dynamics. PhD Thesis, Stanford
University, Stanford, USA.

Kinney, D. (2004) Aero-Thermodynamics for Conceptual Design. 42nd AIAA Aerospace
Sciences Meeting and Exhibit. January 5-8, Reno, Nevada.

Knupp, P. (2008) Measurement and Impact of Mesh Quality. 46th AIAA Aerospace
Sciences Meeting and Exhibit. January 7th-10th Reno, USA.

Mavriplis, D. (2008) Unstructured-Mesh Discretizations and Solvers for Computational
Aerodynamics. AIAA Journal. 46(6) p 1281-1298.

Mehta, U. Aftosmis, M. Bowles, J. Pandya, S. (2015) Skylon Aerodynamics and SABRE
Plumes. 20th AIAA International Space Planes and Hypersonic Systems and
Technologies Conference. Glasgow, Scotland, July 2015.

Muir, H. (2016) An Unstructured Mesh Generation Code for Eilmer4. BE Thesis. The
University of Queensland.

Papadopoulos, P. Venkatapathy, E. Prabhu, D. Loomis, M. Olynick, D. (1999) Current
grid-generation strategies and future requirements in hypersonic vehicle design,
analysis and testing. Applied Mathematical Modelling. 23, p 705-735.

 References

81

Pezzela, G. (2012) Aerodynamic and aerothermodynamic design of Future Launchers
Preparatory Program concepts. Aerospace Science and Technology 23, p 233-249.

Pirzadeh, S. (2010) Advanced Unstructured Grid Generation for Complex Aerodynamic
Applications. AIAA Journal. 48(5), 904-915.

Preller, D. Smart, M. Schutte, A. (2016) Dedicated Launch of Small Satellite. SPACE
Conferences and Exposition. September 13-16, California, USA.

Robinson, J. Martin, J. (2008) An Overview of NASA’s Integrated Design and Engineering
Analysis (IDEA) Environment. 6th Modeling and Simulation / 4th Liquid Propulsion
/ 3rd Spacecraft Propulsion Joint Subcommittee Meeting. December 8-12 Orlando,
Florida.

Savino, R. Russo, V. Carandente, V. D’Oriano, V. (2014) HyPlane for space tourism and
business transportation. 65th International Astronautical Congress. Toronto, Canada,
September 2014.

Shaughnessy, J. Pinckney, Z. McMinn, J. Cruz, C. Kelly, M. (1990) Hypersonic Vehicle
Simulation Model: Winged-Cone Configuration. NASA TM102610.

Smart, M. Tetlow, M. (2009) Orbital Delivery of Small Payloads Using Hypersonic
Airbreathing Propulsion. Journal of Spacecraft and Rockets. Vol 46, No. 1, pp 117-
125.

Tannehill, J. Anderson, D. Pletcher, R. (1997) Computational Fluid Mechanics and Heat
Transfer. 2nd Edition. Taylor & Francis. Vermont, USA.

Varvill, R. Bond, A. (2003) A comparison of propulsion concepts for SSTO reusable
launchers. Journal of the British Interplanetary Society, vol 56, pp 108-117.

Appendix A AMARA on a Cluster

83

A. AMARA on a Cluster
The following is some brief instructions to build and run the code on the Goliath or Tinaroo
computing clusters. Aside from available resources, Goliath and Tinaroo differ in their
respective queuing systems, slurm and qsub. Further information on these machines may
be found at https://help.eait.uq.edu.au/compute/ and
http://www2.rcc.uq.edu.au/hpc/guides/ respectively.

Firstly, the Eilmer3 codes must be retrieved and installed to your directory on the machine.
Instructions on how to do this may be found in the Eilmer userguide or at
http://cfcfd.mechmining.uq.edu.au/eilmer3.html. Information on terminal commands may
also be found in the userguide, Appendix B. Be careful in setting the environment variables
in the bashrc script correctly. Finally be aware of storage restrictions – a coarse vehicle
simulation writing a solution 20 times amounts to around 550 MB.

Files may be easily transferred back to your local machine using WinSCP on Windows or
FileZilla on Unix. Alternatively, the command scb may be used in a terminal. Be aware
that if you’re off campus, you must first log into the UQ VPN or ssh into an on campus
server (such as moss.labs.eait.uq.edu.au or remote.labs.eait.uq.edu.).

Both clusters require you to submit jobs to a scheduler which executes the job depending
on resources available and requested. This is most easily done through a bash script. Two
examples of bash scripts for Goliath and Tinaroo are presented below.

In this example, one compute node and its 16 available processes are requested. The grid
is generated with e3prep before running e3loadbalance.py to generate the mpimap file. The
MPI version of Eilmer is called and then AMARAsurf.py to extract the vehicle surface
mesh.

84

e3post is used to convert to a Paraview friendly file, add the surface meshes and local Mach
number. In each case the eilmer process is written to LOGFILE and may be viewed using
the command tail LOGFILE to check on the process of a simulation.

amara_run.sh

1 #!/bin/bash
2 # set the number of nodes and processes per node
3 #SBATCH --nodes=1
4
5 # set the number of tasks (processes) per node.
6 #SBATCH --ntasks-per-node=16
7
8 # set max wallclock time
9 #SBATCH --time=24:00:00
10
11 # set name of job
12 #SBATCH --job-name=amara_Test
13
14 # mail alert at start, end and abortion of execution
15 #SBATCH --mail-type=ALL
16
17 # send mail to this address
18 #SBATCH --mail-user=<email@uq.edu.au>
19
20 module load mpi/openmpi-x86_64
21 e3prep.py --job=AMARAgeom
22 e3loadbalance.py –job=AMARAgeom –n 16
23 mpirun -np 16 e3mpi.exe --job=AMARAgeom --mpimap=AMARAgeom.mpimap –

run > LOGFILE
24 python AMARAsurf.py AMARAblock.py
25 e3post.py --job=AMARAgeom.py --vtk-xml --add-mach --tindx=last –

surface-list=”< AMARAblock_surfaceList.txt”

Appendix A AMARA on a Cluster

85

The above bash script, amara_run.sh, may then be queued using:

$ sbatch amara_run.sh

Before running on Tinaroo, several modules should be added to your .bashrc file. This may
be edited using the vi or Nano programs.

module purge
module load intel_mpi
module load python
module load GCC

amara_run.qsub
1 #PBS -N amara
2 #PBS -m n
3 #PBS -A UQ-EAIT-MechMining
4 #PBS -l nodes=2:ppn=24,mem=120gb
5 #PBS -l walltime=24:00:00
6
7 cd $PBS_O_WORKDIR
8
9 echo "Start time:"
10 date
11
12 e3prep.py --job=AMARAgeom.py
13
14 e3loadbalance.py –job=AMARAgeom.py –n 48
15

86

16 mpirun -np 48 e3mpi.exe --job=AMARAgeom --mpimap=AMARAgeom.mpimap
--run > LOGFILE

17
18 echo "Finish time:"
19 date

The above qsub script may then be placed in the queue using:

$ sbatch amara_run.qsub

Appendix B AMARAsurf.py

87

B. AMARAsurf.py
This script is used to extract all the surfaces of a specified boundary condition. The
boundary condition is defined on line 45 and currently erroneously set to ‘BC’. The output
format is “blk,surface-name;…” in the correct format for the –surface-list command of
e3post.py. The SOUTH face of block 45 for example is written as “45,SOUTH”.

1 """ AMARAsurf.py
2
3 Alex Ward & Daniel Ward, 2016
4
5 This file iterates through the block looking for the boundary
6 condition keyword specified on line 45. It then returns a file,
7 AMARAblock_surfaceList.dat giving a list of block numbers and
8 face name (NORTH, EAST etc) for all surfaces using that
9 boundary condition.
10 Note it currently DOES NOT work correctly for SuperBlock3D

objects.
11
12 Usage
13 # Run AMARAsurf.py, giving it your file specifying the blocks.
14 $ python AMARAsurf.py AMARAblock.py
15
16 # Paste content of AMARAblock_surfaceList.dat into the e3post

command:
17 $ e3post.py --job=AMARAgeom --vtk-xml --surface-list="<output>"
18 """
19
20 import sys
21 import os
22

88

23 def parse(parseFilePath):
24 #Lines to search after occurence of Block3D or SuperBlock3D
25 searchDist = 15
26 outputFilePath = parseFilePath.split('.')[0] +

"_surfaceList.dat"
27 if os.path.isfile(outputFilePath):
28 os.remove(outputFilePath)
29 with open(outputFilePath, 'a') as out:
30 with open(parseFilePath, 'r') as f:
31 lines = f.readlines()
32 b3dCount = 0
33 counts = []
34 words = []
35 linenums = []
36 for i, line in enumerate(lines):
37 if 'Block3D' in line:
38 if '#' in line: continue
39 startTBCSearch = i+1
40 foundTBC = False
41 for j in range(startTBCSearch, startTBCSearch

+ searchDist):
42 if j > len(lines) - 1 or 'Block3D' in

lines[j]:
43 break
44 if '#' in lines[j]: continue
45 if 'BC' in lines[j]:
46 foundTBC = True
47 try:
48 w =

lines[j].split('[')[1].split(']')[0]
49 except:
50 w = ''
51 print "Bad Bracket Split /

KeyWord"
52 if w in ['BOTTOM', 'WEST', 'SOUTH',

'TOP', 'NORTH', 'EAST']:

Appendix B AMARAsurf.py

89

53 counts.append(b3dCount)
54 linenums.append(j)
55 words.append(w)
56 else:
57 print "bad line:", j
58 b3dCount += 1
59 if not foundTBC:
60 continue
61 print "No 'FixedTBC' in", str(searchDist),

"lines following 'Block3D' found at: line:", i
62 print "Lines searched / Processed: ", len(lines)
63 writeStr = ''
64 for i,count in enumerate(counts):
65 #Output file
66 writeStr = writeStr + str(count) + ',' + str(words[i])

+ ';'
67 #Linenum debug
68 #writeStr = writeStr + str(count) + ',' +

str(words[i]) + ',' + str(linenums[i] + 1) + ';\n'
69 writeStr = writeStr[:-1]
70 out.write(writeStr)
71
72 if __name__ == '__main__':
73 argv = sys.argv
74 parse(argv[1])

Appendix C getResiduals.py

91

C. getResiduals.py
1 """
2 getResiduals.py
3 Retrieve and save the time history of the residuals in a

friendly format for later printing.
4 Usage
5 python getResiduals.py e3mpi.xxxx.log
6
7 A. Ward (original AWK script by M. Coombes)
8 """
9
10 import sys
11 import os
12
13 def parse(parseFilePath):
14 outputFilePath = parseFilePath.split('.')[0] +

"_residuals.dat"
15 if os.path.isfile(outputFilePath):
16 os.remove(outputFilePath)
17 with open(outputFilePath, 'a') as out:
18 with open(parseFilePath, 'r') as f:
19 lines = f.readlines()
20 massResiduals = []
21 massTimes = []
22 energyResiduals = []
23 energyTimes = []
24 for line in lines:
25 if 'mass global' in line:
26 words = line.split()
27 massResiduals.append(float(words[4]))

28 massTimes.append(float(words[8]))
29 if 'energy global' in line:
30 words = line.split()
31 energyResiduals.append(float(words[4]))
32 energyTimes.append(float(words[8]))
33 out.write(str(massResiduals))
34 out.write('\n')
35 out.write(str(massTimes))
36 out.write('\n')
37 out.write(str(energyResiduals))
38 out.write('\n')
39 out.write(str(energyTimes))
40 f.close()
41
42 if __name__ == '__main__':
43 argv = sys.argv
44 parse(argv[1])

Appendix D getForce.py

93

D. getForce.py
This script is used to extract the force data from a 3D Eilmer grid. PLEASE NOTE: This
script is WITHOUT validation and problems are expected in its selection of the order to
cross the vectors defining the cells. It is included here to provide the starting point for a
future script should the opportunity arise.

1 getDrag.py
2 # A.WARD, D.KING, D.WARD 2016
3
4 """
5 This is the start of a script to pull out lift and drag forces
6 for a three dimensional VTK grid. Harder than it seems at first!
7 """
8
9 import os
10 import numpy as np
11
12 # SET DIRECTORY WHERE YOUR VTK GRID FILES ARE
13 directory = ''
14
15 os.chdir(directory)
16
17 'list of unknown length currently, summate at end to get total

force'
18 xforce_block_list = []
19 x = np.array([1.0, 0.0, 0.0], dtype=float)
20
21 for filename in os.listdir(directory):
22

23 if filename.endswith('.vtu'):
24
25 with open(filename, 'r') as f:
26 lines = f.readlines()
27
28 '''points on line 2 = line 1 in python'''
29 points_position_start =

lines[1].index('NumberOfPoints="') + len('NumberOfPoints="')
30 points_position_end = lines[1].index('"

NumberOfCells')
31 blocks_positon_start =

lines[1].index('NumberOfCells="') + len('NumberOfCells="')
32 blocks_positon_end = lines[1].index('">')
33 points = int(lines[1][points_position_start :

points_position_end])
34 blocks = int(lines[1][blocks_positon_start :

blocks_positon_end])
35 '''
36 create empty matricies
37 3d array block length with 4 points stacked vertically
38 '''
39 blockData = np.zeros((blocks, 4, 3), dtype=float)
40 pointData = np.zeros((points, 3), dtype=float)
41 connectionData = np.zeros((blocks, 4), dtype=int)
42 directionVectors = np.zeros((blocks, 3), dtype=float

)
43 rhos = np.zeros((blocks), dtype=float)
44 pressures = np.zeros((blocks), dtype=float)
45 velos = np.zeros((blocks, 3), dtype=float)
46 xforces = np.zeros((blocks), dtype=float)
47
48 '''get the data on the point xyz position for corners

of blocjs'''
49 i = 4
50 while i < (4 + points):
51 data = lines[i].split()

Appendix D getForce.py

95

52 pointData[(i - 4):] = [float(data[0]),
float(data[1]), float(data[2])]

53 i += 1
54
55 '''add 4 to get to connectivity'''
56 i += 4
57 nLocal = i
58 while i < (nLocal + blocks):
59 data = lines[i].split()
60 connectionData[(i - nLocal):] = [int(data[0]),

int(data[1]), int(data[2]), int(data[3])]
61 i += 1
62
63 '''This is not the best sol'''
64 while i < 20000:
65 if 'Name="rho"' in lines[i]:
66 nLocal = i
67 i += 1
68 break
69 i += 1
70
71 while i < (nLocal + blocks):
72 rhos[(i - nLocal)] = float(lines[i])
73 i += 1
74
75
76 while i < 20000:
77 if 'Name="p"' in lines[i]:
78 nLocal = i
79 i += 1
80 break
81 i += 1
82
83 while i < (nLocal + blocks):
84 pressures[(i - nLocal)] = float(lines[i])
85 i += 1

86
87
88 while i < 20000:
89 if 'Name="vel.vector' in lines[i]:
90 nLocal = i
91 i += 1
92 break
93 i += 1
94
95 while i < (nLocal + blocks):
96 data = lines[i].split()
97 velos[(i - nLocal):] = [float(data[0]),

float(data[1]), float(data[2])]
98 i += 1
99
100
101 '''create these blocks'''
102 for j in xrange(0, len(connectionData)):
103 data = connectionData[j]
104 blockData[j][0] = pointData[data[0]]
105 blockData[j][1] = pointData[data[1]]
106 blockData[j][2] = pointData[data[2]]
107 blockData[j][3] = pointData[data[3]]
108
109
110 '''Going to assume ADxAB would be the outwards

direction for the moment'''
111 AB = pointData[data[1]] - pointData[data[0]]
112 AD = pointData[data[3]] - pointData[data[0]]
113
114 vector = np.cross(AD, AB)
115
116 Area = np.linalg.norm(vector)
117
118 directionVectors[j] =

vector/np.linalg.norm(vector)

Appendix D getForce.py

97

119
120 xforces[j] = Area*pressures[j]*-1*np.dot(

directionVectors[j], x) + rhos[j]*Area*((
np.linalg.norm(velos[j]))**2)*-1*np.dot(directionVectors[j], x
)

121
122 j += 1
123
124 xforce_block_list.append(np.sum(xforces))
125
126 XFORCE = sum(xforce_block_list)
127 print XFORCE

