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 29 

Abstract 30 

Background. Frequent viral lower respiratory infections in early-life are an independent risk factor 31 

for asthma onset. This risk, and the development of persistent asthma, is significantly greater in 32 

children who later become sensitized.  33 

Objective. To elucidate the pathogenic processes that underlie the synergistic interplay between 34 

allergen exposures and viral infections.   35 

Methods. Mice were inoculated with a murine-specific Pneumovirus (Pneumonia virus of mice; 36 

PVM) and exposed to low-dose cockroach extract (CRE) in early- and later-life, and airway 37 

inflammation, remodeling and hyperreactivity assessed. Mice were treated with anti-IL-33 or 38 

apyrase to neutralize or block the release of IL-33.  39 

Results. PVM infection or CRE exposure alone failed to induce disease whereas PVM/CRE co-40 

exposure acted synergistically to induce the hallmark features of asthma. CRE exposure during 41 

virus infection in early-life induced a biphasic IL-33 response and impaired IFN-and IFN 42 

production, which in turn increased epithelial viral burden, airway smooth muscle growth, and type-43 

2 inflammation. These features were ameliorated when CRE-induced IL-33 release was blocked or 44 

neutralized, while substitution of CRE with exogenous IL-33 recapitulated the phenotype observed 45 

in PVM/CRE co-exposed mice. Mechanistically, IL-33 down-regulated viperin and IFN regulatory 46 

factor 7 gene expression, and rapidly degraded IRAK1 expression in pDC both in vivo and in vitro, 47 

leading to TLR7 hypo-responsiveness and impaired IFN- production.  48 

Conclusion. We identify a hitherto unrecognized function of IL-33 as a potent suppressor of innate 49 

antiviral immunity, and demonstrate that IL-33 contributes significantly to the synergistic interplay 50 

between respiratory virus and allergen exposures in the onset and progression of asthma. 51 
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Key messages: 53 

 Aeroallergen-induced IL-33 release suppresses antiviral immunity, increasing the severity of 54 

viral bronchiolitis. 55 

 IL-33 impairs antiviral immunity by degrading IRAK1 and viperin in pDCs leading to a 56 

state of TLR7 hypo-responsiveness.  57 

 Co-exposure to virus and allergen in early-life predisposes towards asthma progression in 58 

later-life.  59 

 60 

Capsule summary: 61 

Aeroallergen exposure perturbs the host response to Pneumovirus infection in early-life and 62 

predisposes toward virus/allergen provoked asthma. Aeroallergen-induced IL-33 dampens virus-63 

induced IFN production by degrading IRAK1 and viperin in pDC to establish a microenvironment 64 

that is conducive for the expansion of type-2 inflammation. 65 

 66 

Key words: 67 

pneumonia virus of mice, IL-33, type-2 innate lymphoid cell, antiviral, respiratory syncytial virus, 68 
interferon, plasmacytoid dendritic cell 69 
 70 
 71 
Abbreviations: 72 

AEC: Airway epithelial cell 73 

ASM: Airway smooth muscle 74 

BALF: Bronchoalveolar lavage fluid 75 

CRE: Cockroach extract  76 

HDM: House dust mite 77 

IFN: Interferon 78 

IL: Interleukin  79 

ILC2: Type-2 innate lymphoid cell 80 

IRAK: Interleukin-1 receptor associated kinase 1 81 

ISG: Interferon stimulated gene 82 

pDC: Plasmacytoid dendritic cell 83 

PVM: Pneumonia virus of mice 84 

RSV: Respiratory syncytial virus 85 

TLR: Toll-like receptor 86 
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vLRI: Viral lower respiratory tract infection 87 

 88 

Introduction 89 

Pathologically, asthma is characterized by airway inflammation and airway remodeling; structural 90 

changes including goblet cell metaplasia, increased deposition of extracellular matrix proteins, and 91 

increased airway smooth muscle (ASM) mass. These features collectively contribute to airway 92 

narrowing, loss in lung function, and airway hyperreactivity (AHR), and are poorly responsive to 93 

conventional therapies
1, 2

. The inflammatory response is typically of a type-2 cytokine profile, 94 

which promotes the recruitment and survival of key effector cells such as eosinophils and mast 95 

cells, and can induce features of airway remodeling through direct activation of airway epithelial 96 

and mesenchymal cells
3, 4

. Both CD4+ T helper 2 (Th2) cells and type-2 innate lymphoid cells 97 

(ILCs) produce the type-2 cytokines IL-5 and IL-13
5
 in response to the tissue alarmin IL-33, and 98 

work collaboratively to affect their teleological role, namely anti-helminthic immunity
6
. However, 99 

why type-2 immunity is elevated during acute exacerbations of asthma, most commonly triggered 100 

by a respiratory virus infection, remains less clear. 101 

 102 

Epidemiological studies have reproducibly demonstrated that severe/frequent viral lower respiratory 103 

tract infections (vLRI) in early-life are a major independent risk factor for asthma inception
7-9

. 104 

Notably, this association is markedly increased in children who later become sensitized to food or 105 

aeroallergens, and significantly, confers the greatest risk for progression to severe and/or persistent 106 

asthma
10-12

. The underlying mechanisms remain poorly defined, although it is likely that the 107 

synergistic interaction between allergen exposures and respiratory virus infection is underpinned by 108 

genetic and/or functional defect(s) in a shared antiviral immune pathway necessary for viral control 109 

in early-life
11

. Phenotypically this may manifest as a deficiency in the production of the antiviral 110 

cytokines, IFN-, IFN- and IFN- by leukocytes and airway epithelial cells (AECs)
13-15

, although 111 

whether such defects are virus-specific, genetic or acquired, for example as a consequence of a 112 

type-2 inflammatory milieu, remains highly contentious
16-18

. 113 
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 114 

Plasmacytoid dendritic cells (pDC) are amongst the first cells to respond to a viral infection; 115 

sensing viral RNA and producing vast amounts of IFN-downstream of toll-like receptor 116 

(TLR)7 activation
19, 20

. Defects in pDC and TLR7 responsiveness are associated with bronchiolitis, 117 

infant wheeze, and childhood asthma
21, 22

. In recent studies, we have used the natural mouse 118 

pathogen pneumonia virus of mice (PVM), which unlike human RSV, replicates more readily in 119 

mice to induce the more severe symptoms of infantile RSV bronchiolitis
20, 23

. TLR7 gene-deletion 120 

delayed the antiviral response, causing a severe viral bronchiolitis and the release of the alarmin IL-121 

33 in early-life, and consequently, an asthma-like pathology developed upon viral challenge in 122 

later-life
20, 24

. Of note, the transfer of TLR7-sufficient, but not deficient pDC, ameliorated 123 

bronchiolitis, suggesting that perturbations to the pDC compartment in early-life predispose to AEC 124 

damage and IL-33 release, and hence may underlie the association between severe vLRI and the 125 

onset of asthma
21

.  Intriguingly, IL-33 and its receptor, IL-1 receptor-like 1 (IL1RL1, also known as 126 

ST2), are susceptibility loci for wheezing in infancy (and asthma)
25, 26

, although the molecular basis 127 

for this association is not known. This led us to question whether allergen-induced release of IL-33 128 

increases the severity of virus-induced bronchiolitis by dampening pDC-orchestrated innate 129 

antiviral immunity, and to assess whether this early-life interaction causes persistent changes to host 130 

immunity that underlie disease progression in response to viral and/or allergen challenge in later-131 

life.  132 

METHODS 133 

Experimental Procedures 134 

 Detailed description of materials and procedures is provided in the Methods section in this article’s 135 

Online Repository at www.jacionline.org. 136 

 137 

Induction of co-virus and allergen-induced asthma and associated perturbations.  138 
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Specific pathogen-free BALB/c mice or 4C13R mice 
27

 were inoculated with PVM (strain J3666; 1 139 

pfu ‘early life’; 20 pfu ‘later life’) or cockroach allergen extract (CRE, 1 µg) as previously 140 

described 
20, 28

 and as outlined in the study design (Figure 1A). In some experiments, mice were 141 

exposed to HDM extract (5 µg or 100ug), LPS (186 pg), recombinant IL-33 (10 ng), anti-IL-142 

33/isotype control antibody (200 µg), apyrase (4 U/mL) or pyridoxalphosphate-6-azophenyl-2',4'-143 

disulfonic acid (PPADS, 100 µm in 10uL). All studies were approved by The University of 144 

Queensland Animal Ethics Committee.  Sample processing is described in the Methods section in 145 

this article’s Online Repository. 146 

 147 

Flow cytometry  148 

Lungs were digested to single cell suspensions as previously described
24

 then incubated with anti-149 

FcγRIII/II before incubation with fluorochrome-conjugated antibodies at 4°C for 30 minutes, as 150 

described in the Methods section in this article’s Online Repository.  151 

 152 

Histology and Immunohistochemistry  153 

Paraffin-embedded lung sections were prepared as described
20

 then stained with Chromotrope 2R, 154 

Periodic acid-Schiff, Masson's Trichrome, anti-IL-33, anti-PVM G protein, anti--SM actin or anti-155 

periostin as described in the Methods section in this article’s Online Repository.  156 

 157 

Measurement of protein expression 158 

IL-33, IFN-λ2/3, IL-12p40, IFN-γ, IL-13, IL-5 were quantified by ELISA. IFN-α and IL-13 were 159 

quantified by CBA.  IgG1a was detected using an in-house ELISA system
28

.  160 

 161 

Quantitative real time PCR 162 
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Total RNA was isolated with TriReagent solution followed by phenol-chloroform extraction. 163 

Reverse transcription was performed using M-MLV reverse transcriptase and random primers.  164 

qRT-PCR was performed with SYBR Green using the primers described in Table S1.   165 

 166 

Airway function assessment  167 

Airways resistance was determined by forced oscillation technique in response to methacholine, as 168 

previously described
29

. 169 

 170 

Type-2 innate lymphoid cell culture 171 

Type 2 ILCs were FACS-sorted  from PVM/CRE co-exposed mice at 10 dpi.  Cells were cultured 172 

with IL-2 (30 ng/mL) and pre-incubated with IFN-α (5000U/mL) before stimulation with IL-33 (30 173 

ng/mL). 174 

 175 

Plasmacytoid dendritic cell culture 176 

Bone marrow-derived pDC were generated as described previously
20

. pDC were pre-incubated with 177 

IL-33 (3 ng/mL) then stimulated with imiquimod (3 µg/mL). 178 

 179 

Statistical analyses  180 

Data were analyzed using a Student’s t-test, one-way ANOVA with a Tukey post-hoc test or two-181 

way ANOVA with a Sidak post-hoc test, as appropriate, using GraphPad Prism software (version 182 

5.0; GraphPad Software, La Jolla, Calif). A P value <0.05 was considered statistically significant.  183 

  184 
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Results 185 

Pneumovirus and allergen co-exposure synergise to promote asthma onset and progression  186 

To interrogate the synergistic interaction between a respiratory virus infection and allergen 187 

exposures, we first identified a dose of cockroach extract (CRE) that by itself would not induce 188 

allergic inflammation. As we had previously developed a mouse model of virus-induced asthma by 189 

inoculating mice with PVM at 7 and 49 days of age
24

, we elected to expose mice to CRE (i.n. route) 190 

at 10 days of age (i.e. 3 days after the primary virus inoculation; ‘early-life’), followed by a series 191 

of CRE exposures (challenges in ‘later-life’) at 52, 59, 66, and 73 days of age (i.e. starting 3 days 192 

after virus challenge; see study design in Fig 1A). Repeated exposure to 10 or 100 g, but not 0.1 or 193 

1 g of CRE (in the absence of PVM infection), induced peribronchial eosinophilia and mucous 194 

hypersecretion (Fig E1 in online repository). Therefore, we elected to use 1 g of CRE for all 195 

further studies. To assess for a synergistic effect between PVM and CRE, we superimposed a low-196 

dose PVM infection, which by itself did not induce features of type-2 inflammation (Fig 1B-D, Fig 197 

2 in online repository), onto the low-dose CRE exposure model (Fig 1A). Eosinophilic 198 

inflammation, mucous hypersecretion, CRE-specific IgG1a (Fig 1B-D) and mucosal mast cells 199 

(data not shown) were greatest in mice exposed to both PVM and CRE. By contrast, these features 200 

of type-2 inflammation were absent in mice exposed to PVM alone or low dose CRE alone in both 201 

early and later-life, or low dose CRE alone in later-life (Fig 1B-D, Fig E2 in online repository). 202 

Similarly, features of airway remodeling including collagen and periostin deposition, and airway 203 

smooth muscle (ASM) remodeling (Fig 1E-G) were only evident in PVM/CRE co-exposed mice. 204 

To compare our findings to contemporary acute models of allergen-induced disease
30

, we exposed a 205 

group of mice to high dose (100 g) CRE in later-life alone. Strikingly, this regimen elicited type-2 206 

inflammation, but was not sufficient to elicit features of airway remodeling (Fig E2 in online 207 

repository). Thus, low dose virus and low dose allergen co-exposures acted synergistically to induce 208 

all of the cardinal features of asthma. 209 

 210 
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Virus and allergen exposure in early- and later-life are necessary for maximal asthma severity.  211 

We next addressed the relative contribution of the virus and allergen exposures in early- and later-212 

life. PVM/CRE co-exposure in early-life alone was not sufficient to induce type-2 inflammation or 213 

airway remodeling as compared to the vehicle treated group (Fig E2 in online repository). The 214 

importance of both the virus and allergen challenge for asthma progression was confirmed when the 215 

omission of either exposure significantly diminished airway inflammation, airway remodeling, and 216 

AHR when assessed at 76 days of age (Fig E2 in online repository). These findings led us to 217 

question the importance of the CRE exposure during primary virus infection. Remarkably, when 218 

this exposure was omitted, type-2 inflammation, airway remodeling, and AHR were completely 219 

absent (Fig 1, final row), even though the mice had been infected with PVM in early and later-life, 220 

then challenged repeatedly with CRE. Taken together, these data suggested that the CRE exposure 221 

in early-life fundamentally altered the nature of the host response to secondary virus and/or allergen 222 

exposure in later-life, and that this effect was necessary for disease progression.  223 

 224 

Allergen exposure increases viral load and lung tissue damage, and dampens antiviral cytokine 225 

production  226 

Aeroallergens are known to rapidly induce innate inflammation in the airways
28, 31, 32

. We 227 

hypothesised that allergen-induced inflammation may perturb the host’s antiviral response to PVM, 228 

thus increasing the severity of viral bronchiolitis. Viral load in the airway epithelium was 229 

significantly greater and persisted for longer in PVM/CRE co-exposed mice compared to mice 230 

inoculated with virus alone (Fig 2A and Fig E3A in online repository). In children with severe RSV 231 

bronchiolitis, the virus can spread to the parenchyma
33

, however, few PVM-immunoreactive cells 232 

were observed in the alveoli (data not shown). Strikingly, PVM/CRE co-exposure stunted weight 233 

gain and heightened tissue oedema, indicative of severe disease (Fig 2B-C). The elevated viral 234 

illness in PVM/CRE co-exposed mice was associated with significantly lower IFN, IFN- and 235 

IL-12p40 but not IFN production in the bronchoalveolar fluid (BALF) (Fig 2D), and attenuated 236 
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transcription of interferon stimulated genes (ISGs) involved in TLR7 and type I IFN receptor 237 

signaling, including Irf7, Viperin and Stat1 (Fig 2E). Intriguingly, CRE exposure alone significantly 238 

down-regulated the expression of Viperin, a component of the TLR7 signaling cascade in pDCs
34

. 239 

Although TLR7-mediated activation of pDC is critical for host defense against acute PVM 240 

infection
20

, CRE exposure did not affect pDC numbers in the lung (Fig E3B in online repository).  241 

 242 

Type-2 inflammation and ASM remodeling is elevated in PVM/CRE co-exposed mice in early-life 243 

Allergen exposure is well known to induce the release of IL-33 to promote type-2 inflammation
35

. 244 

Analyzing IL-33 protein expression across the time course of infection revealed a significant 245 

increase in the lung homogenates at 3 dpi (sampling two hours after CRE exposure) and at 7 dpi in 246 

the co-exposed mice, but not those exposed to PVM alone (Fig 3A, upper panel). Although CRE 247 

exposure did not increase lung IL-33 expression at 3 dpi, it did increase airway luminal IL-33 248 

measured in the BALF at this time, both in PVM infected mice and non-infected mice (Fig 3B). 249 

Consistent with other reports
36

, under homeostatic conditions IL-33 was expressed predominantly 250 

in resident myeloid cell populations and alveolar (but not airway) epithelial cells (Fig 3C, top left 251 

panel). However, by 7 dpi IL-33-immunoreactive AECs were evident in PVM alone and PVM/CRE 252 

exposed mice (Fig 3C and Fig E3C), which was notable as a second phase of IL-33 release occurred 253 

at 10 dpi (Fig 3B). In contrast to IL-33, the expression of IL-25 and TSLP was unaffected by PVM 254 

and/or CRE exposure (data not shown). Critically, the IL-33 response was associated with increased 255 

numbers of type-2 ILCs and eosinophils (CD4+ and CD8+ T cell numbers were unaffected; data 256 

not shown) and type-2 cytokine expression (Fig 3D-F and Fig E4A online repository). Using IL-257 

4/IL-13 reporter mice
27

, we revealed that CD8+, but not CD4+, T cells contributed to IL-4 and IL-258 

13 production. However, the majority of type-2 ILCs were IL-13-positive, and the proportion of IL-259 

13-expressing type-2 ILCs, but not CD4+ or CD8+ T cells, increased in PVM/CRE co-exposed 260 

mice (Fig E4B online repository). Similar to our observations of ASM remodeling in later-life (Fig 261 
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1G), PVM infection or CRE exposure alone had no effect on ASM growth, while co-exposure 262 

induced a 3-fold increase in ASM area (Fig 3G).  263 

 264 

Elevated viral load is not sufficient to induce type 2 inflammation and ASM remodeling.  265 

To address whether elevated viral load was causally related to the development of ASM growth, we 266 

first inoculated mice with a 10x higher dose of PVM. While this increased the viral load and 267 

induced severe illness and mortality (Fig 4A-B), it was not sufficient to increase IL-33 release at 3 268 

dpi (even when the dose was increased 100-fold (data not shown)) or induce ASM growth (Fig 4C-269 

D). We then assessed whether house dust mite (HDM), was able to affect viral load and ASM 270 

growth at 7 and 10 dpi respectively (when these pathologies peaked). Substitution of CRE with 271 

HDM significantly increased viral load similar to CRE co-exposure but had no effect on ASM 272 

growth (Fig 4E-F), consistent with a lack of effect on anti-viral cytokine expression, type-2 ILCs in 273 

the lungs or the release of IL-33 (Fig 4G-I). Notably, HDM induced IL-33 release was detectable at 274 

7 dpi, consistent with the findings of others (data  not shown)
28, 31, 37-39

. Since the level of endotoxin 275 

in the CRE was high (395 EU per 100 g protein), we co-exposed mice to PVM and an equivalent 276 

dose of LPS. LPS induced a massive IFN- response and lowered viral load (Fig 4H-I), suggesting 277 

LPS contamination of CRE was not the cause of impaired antiviral immunity. Taken together, our 278 

findings suggested that ASM growth and the onset of type 2 inflammation was associated with an 279 

IFN-
low

IL-33
high

 cytokine micro-environment rather than viral load.    280 

 281 

Anti-IL-33 prevents type-2 inflammation and remodeling in response to virus and allergen co-282 

exposure in early and later-life. 283 

To assess the contribution of IL-33, mice were treated with a neutralizing antibody in both early and 284 

later-life (Fig E5A in online repository). Whereas mice treated with an isotype-matched control 285 

developed all of the hallmark features of asthma, treatment with anti-IL-33 abolished these features 286 

(Fig E5B-E in online repository). Similarly, anti-IL-33 treatment in early life ablated ASM growth 287 
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and the onset of type-2 inflammation (Fig 5A-D, Fig E5F in online repository). As expected, anti-288 

IL-33 had no effect in mice infected with PVM alone.    289 

 290 

IL-33 is a negative regulator of innate antiviral immunity.   291 

We hypothesized that CRE might dampen innate antiviral immunity via the release of IL-33. 292 

Strikingly, anti-IL-33 reversed the elevated viral burden, dampened IFN- and IFN- production 293 

and attenuated ISG expression caused by CRE exposure, but did not alter pDC or CD8 T cell 294 

numbers in the lung (Fig 6A-C, Fig E5G-H in online repository). In contrast, anti-IL-33 had no 295 

effect on the antiviral response in mice infected with PVM alone. CRE-induced IL-33 release 296 

occurs downstream of ATP-mediated purinergic receptor activation
35

. In our model, treatment with 297 

apyrase (to catalyse the hydrolysis of ATP) significantly decreased IL-33 in BALF (2 hours after 298 

CRE exposure, Fig E6A in online repository), and significantly lowered viral load at 7 dpi in the 299 

airway epithelium of PVM/CRE co-exposed mice (Fig 6D). Treatment with the broad-spectrum 300 

P2R antagonist PPADS had the same effect (Fig E6A-B), further implicating nucleoside/purinergic 301 

receptor signaling in mediating IL-33 release. As with anti-IL-33, blocking IL-33 release 302 

recapitulated IFN- production and ISG expression in the lung (Fig 6E-F), decreased IL-13 303 

expression (data not shown) and ablated ASM growth (Fig 6G), again highlighting the protective 304 

nature of an IFN-
high

IL-33
low

 cytokine environment. This led us to question whether IFN-α 305 

suppresses IL-33-induced cytokine production by type-2 ILCs. Notably, FACS-purified type 2 ILCs 306 

expressed the type I IFN receptor (IFNAR; Fig E4A in online repository) and produced less IL-5 307 

and IL-13 in response to IL-2/IL-33 stimulation when pretreated with IFN-α (Fig 6H).  This 308 

response was unrelated to cell death (Fig E6C-D in online repository), however we observed that 309 

IFN-α attenuated IL-2/IL-33-induced up-regulation of ST-2 (Fig 6I).  310 

 311 

Exogenous IL-33 increases viral load and decreases IRAK1 expression and antiviral cytokine 312 

production by pDC  313 
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We next examined the effect of low-dose exogenous IL-33 during acute PVM infection. Similar to 314 

CRE, exposure to exogenous IL-33 (10 ng at 3, 4 and 5 dpi; i.n. route)  during acute PVM infection 315 

did not affect the infiltration of pDC (Fig E7A-B in online repository), however it significantly 316 

diminished IFN- and IFN- in the BALF, increased epithelial viral load, and ablated ISG 317 

expression in the lung (Fig 7A-D). Moreover, IL-33/PVM co-exposure significantly increased ASM 318 

growth, in contrast to IL-33 or PVM alone (Fig 7E).  Lastly, we questioned whether IL-33 affects 319 

TLR7-mediated activation of pDC by rapidly depleting the intracellular adaptor molecules 320 

interleukin-1 receptor associated kinase 1 (IRAK1) and viperin
40, 41

. Consistent with this possibility, 321 

ST2 was expressed on pDCs in bone marrow, lung and mediastinal lymph nodes (Fig 7F). Notably, 322 

in PVM/CRE co-exposed mice, intracellular IRAK1 and viperin expression in pDC was 323 

significantly diminished within 2 hours of CRE administration (Fig 7G).  To directly assess the role 324 

of IL-33, we stimulated pDCs in vitro with IL-33. As shown in vivo, IRAK1 expression by pDCs 325 

was rapidly decreased (Figure 7H). Additionally, IL-33 treatment significantly diminished the 326 

production of IFN-α (Figure 7I) and IL-12p40 (data not shown) production in response to TLR7 327 

stimulation. Collectively, these data suggest that IL-33 negative regulates the early antiviral 328 

response by inducing a state of TLR7 hypo-responsiveness in pDC.  329 

 330 

Discussion 331 

IL-33 and its receptor, ST2, have been reproducibly identified in genetic studies as asthma 332 

susceptibility loci, and clinical and experimental studies have revealed a preeminent role for IL-33 333 

in the development and expansion of Th2 immunity via the activation of CD4+ Th2 cells, type-2 334 

ILCs and various type-2 effector cells. In the present study we extend this paradigm to show that 335 

IL-33 dampens antiviral cytokine production, thus removing an inhibitory tonic and establishing a 336 

cytokine microenvironment that is conducive for the expansion of type-2 inflammation and ASM 337 

growth. Critically, using a novel preclinical model of asthma, we demonstrate that this dual activity 338 
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of IL-33 underlies the synergistic effect of respiratory virus and allergen exposures on the 339 

development and progression of asthma.  340 

 341 

We repeatedly inoculated mice with low-dose virus and allergen to better simulate the natural 342 

course of events, and demonstrated that each of these environmental exposures, in both early and 343 

later-life, was necessary to maximally induce all of the cardinal features of asthma. Several 344 

investigators have developed experimental mouse models of virus/allergen co-exposure to show 345 

that a respiratory virus infection facilitates sensitization to an otherwise innocuous allergen; 346 

however in these models, as in ours, allergic sensitization was not apparent until after allergen 347 

challenge. We note that analysis from one birth cohort study found that allergic sensitization 348 

precedes rhinovirus induced wheezing
42

. However, it is important to note that while rhinovirus-349 

associated illness occurs in older children, severe RSV bronchiolitis often occurs in the first year of 350 

life, when aeroallergen-specific IgE titers remain low
10

. Since an antibody-mediated response did 351 

not account for the predisposing effect of CRE in early-life, we questioned whether the primary 352 

allergen exposure altered the course of the respiratory virus infection.  Unexpectedly, we found that 353 

the CRE exposure attenuated antiviral cytokine production and doubled the viral load in the airway 354 

epithelium.  Treatment of PVM/CRE co-exposed mice with anti-IL-33 or apyrase, restored IFN-α 355 

production and decreased the viral burden to levels observed with PVM alone, while substitution of 356 

CRE with exogenous IL-33 attenuated IFN-α production and increased viral load, implicating IL-33 357 

as a potent suppressor of antiviral immunity.  Mechanistically, we found that IRAK1 and viperin 358 

expression by pDC was lower in vivo in PVM/CRE co-exposed mice and IRAK1 lower in vitro 359 

following IL-33 treatment. Significantly, IL-33 impaired the production of IFN-α by pDC, 360 

consistent with our earlier report that TLR7 hypo-responsiveness is a feature of asthma
22

. 361 

Additionally, CRE or IL-33 exposure decreased Viperin and Irf7 gene expression in vivo, while 362 

anti-IL-33 or apyrase treatment attenuated this down-regulation. Because viperin interacts with 363 

IRAK1 to induce the nuclear translocation of IRF7 and downstream IFN production by pDCs
34

, our 364 
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findings illustrate that IL-33 negatively regulates TLR7 signaling by at least three key points: 365 

viperin, IRAK1 and IRF7. 366 

 367 

Presently, the role of type I and III IFNs in asthma pathogenesis is highly contentious. The first 368 

reports of impaired IFN and IFN- production by ex vivo virus-stimulated AECs from 369 

asthmatics
13, 14

 have not been universally replicated by other investigators
16-18

, leading to 370 

suggestions that the phenotype is only present in a subpopulation of patients or may stem from the 371 

cytokine milieu
43

. In light of our findings, these concepts may not be mutually exclusive since the 372 

IL-33 receptor IL-1 receptor-like 1, a common susceptibility loci for asthma
25

, is expressed on 373 

AECs
44

, and RV infected AECs secrete IL-33
45

. Accordingly, it will be important to test whether 374 

the increased viral load in the nasal lavage, reported by Jackson et al
45

 is related to the suppressive 375 

effects of IL-33 on antiviral immunity.  376 

 377 

The phenotype of our early-life model shows a number of striking similarities to pediatric patients 378 

with severe therapy-resistant asthma, including impaired type I and III IFN production, increased 379 

collagen deposition, and eosinophilic inflammation
46-48

. It remains to be established whether the 380 

aetiology of disease in this patient group relates to severe/frequent vLRIs; however, it is noteworthy 381 

that they present with elevated IL-33 expression
47

, and therefore have an IFN-
low

IL-33
high

 382 

cytokine microenvironment, as observed in our model. We and others have shown that type I and 383 

III IFNs suppress CD4+ Th2 cytokine production
49

, and here we show that IFN-α suppressed IL-33 384 

induced type-2 cytokine production by type 2 ILCs, in part by preventing the up-regulation of ST2.  385 

Our findings highlight an important counter-regulatory process whereby IL-33 suppresses antiviral 386 

cytokine production. Such systems are critically dependent on the timing of expression, 387 

emphasizing the need to tightly regulate the release of pre-stored IL-33. Evidently, if the release of 388 

IL-33 is triggered inadvertently, as we show here in response to CRE exposure, this can have 389 

profound short- and long-term effects which may be exacerbated in individuals with a gain of 390 
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function single nucleotide polymorphism in the IL-33 or IL1RL1 gene
50

. The importance of timing 391 

was further emphasized when we switched CRE with HDM; although HDM did induce IL-33 as 392 

others have shown, the response was too slow to affect the antiviral response. Thus, we predict that 393 

exposure to HDM at the time of inoculation would predispose to viral bronchiolitis and subsequent 394 

asthma. 395 

 396 

In the naïve mouse lung, IL-33 is primarily expressed by alveolar epithelial cells, however in 397 

response to ovalbumin challenge several different types of hematopoietic cells also produce IL-33
36

. 398 

In our model, PVM/CRE co-exposure of neonatal mice induced IL-33 release in a biphasic manner, 399 

peaking at 3 dpi (i.e. 2 hr after CRE exposure) and then at 10 dpi. Notably, CRE alone induced IL-400 

33 release at 3 dpi but not 10 dpi, PVM infection alone induced IL-33 release at 10 dpi only, while 401 

expression at both time points was significantly elevated in co-exposed mice. PVM infection 402 

increased IL-33 expression in AECs, though not until 7 dpi, implicating infiltrating inflammatory 403 

cells or alveolar epithelial cells as the source of IL-33 at 3 dpi. This release of IL-33 was ATP-404 

dependent
35

; however, the late release, which was associated with PVM infection, may have 405 

involved a separate mechanism. Indeed, recent reports have shown that the release of active IL-33 406 

can also occur downstream of necroptosis, a programmed form of necrotic cell death, that can be 407 

initiated by viral activation of TLR3
51

, consistent with the apparent association between late IL-33 408 

release and viral load in our model at 10 dpi.  409 

 410 

A striking feature of our model was the development of ASM growth, which to our knowledge has 411 

not been observed previously in an experimental model of virus-induced asthma. Furthermore, we 412 

demonstrated that this hallmark pathology of asthma began to develop in early life, consistent with 413 

a recent clinical report where ASM changes were evident in preschool age children with wheeze 414 

who are later diagnosed with asthma
52

. In fact, evidence of ASM proliferation is infrequent in 415 

subjects with established asthma
53

, emphasizing the need for new therapies to target prevention in 416 
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early-life, rather than resolution of ASM mass in later-life. Neutralization or blockade of IL-33 417 

release significantly decreased the development of ASM remodeling, together with other features of 418 

asthma, in both early- and later-life. IL-33 has been shown to directly induce collagen synthesis 419 

from fibroblasts
47

, however ASM cells do not express ST2
44

, and hence it is likely that the effects of 420 

IL-33 on ASM growth in our model were indirect, perhaps being mediated via the activation of 421 

type-2 ILCs and/or eosinophils.  422 

 423 

In summary, we have developed a novel model to study the molecular processes that underlie the 424 

synergistic relationship between vLRI and allergen exposure, and the onset of asthma. CRE 425 

exposure rapidly induces the release of IL-33, which down-regulates components of the TLR7 426 

signaling pathway causing TLR7 hypo-responsiveness in pDC. The ensuing IFN-
low

IL-33
high

 427 

cytokine microenvironment allows for the expansion of type-2 inflammation and increased ASM 428 

growth in early-life. This in turn leads to persistent alterations to resident airway cells and/or 429 

immune cells necessary for disease progression following viral and allergen challenge in later-life. 430 

Thus, emerging therapies aimed at targeting IL-33 will not only decrease Th2 inflammation, but 431 

will likely boost innate antiviral immunity.   432 

 433 

  434 
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Figure legends 583 
 584 
Figure. 1. Pneumovirus and allergen co-exposure synergise in both early- and later-life to 585 
promote type-2 inflammation and airway remodeling. (A) Study design. (B) Peribronchial 586 
eosinophils expressed per 100 µm of the epithelial basement membrane (BM). (C) Mucous-587 
secreting cells as a % of airway epithelial cells (AECs). (D) Serum levels of cockroach-specific 588 
immunoglobulin (Ig) G1a measured by ELISA. (E) Top panel: peribronchial collagen area; bottom 589 
panel: representative micrograph (x400 magnification), scale bar = 50 μm, white arrow indicates 590 
collagen (blue). (F) Top panel: peribronchial periostin; bottom panel: representative micrograph 591 
(x1000 magnification), scale bar = 10μm, white arrow indicates periostin (pink). (G) Top panel: 592 
peribronchial airway smooth muscle (ASM) area; bottom panel: representative micrographs of 593 
ASM (x400 magnification), scale bar = 50 μm, white arrow indicates ASM (pink). Data are mean ± 594 
SEM, representative of three independent experiments, n=6-9 mice per group. * p<0.05, ** p<0.01, 595 
*** p<0.001 compared with vehicle mice. 

#
 p<0.05, 

##
 p<0.01, 

###
 p<0.001 compared with 596 

PVM/CRE/PVM/CRE mice.   597 
 598 
 599 
Figure. 2. Early-life CRE exposure increases viral load and dampens antiviral cytokine 600 
production. (A) Viral load in airway epithelial cells (AEC) detected by immunohistochemistry and 601 
enumerated as % of total AECs. (B) Oedema in the lung parenchyma. (C) Weight gain. (D) 602 
Interferon (IFN)-α, IFN-λ and IFN-γ in bronchoalveolar lavage fluid (BALF) and IL-12p40 in lung 603 
homogenate. (E) mRNA expression of IRF7, Viperin and STAT1 in lung, relative to vehicle treated 604 
mice.  Data are mean ± SEM, representative of 2-3 experiments, n=4-6 mice per group. *compared 605 
with vehicle mice.  

#
compared with PVM/CRE mice. 606 

 607 
Figure. 3. Type-2 inflammation in early-life is elevated in PVM/CRE co-exposed mice. (A) IL-608 
33 in lung homogenate and (B) bronchoalveolar lavage fluid (BALF). (C) Representative 609 
micrographs of IL-33 immunostaining plus DAPI (4',6-diamidino-2-phenylindole) counterstain, 610 
scale bar = 50 μm. (D) Type-2 innate lymphoid cells (ILCs) in lung (Lineage-, CD45+, CD90.2+, 611 
CD25+, ST2+). (E) Peribronchial eosinophils. (F) IL-5 and IL-13 in BALF. (G) ASM area. Data are 612 
mean ± SEM, representative of two independent experiments, n=6-8 mice per group. *compared 613 
with vehicle mice.  

#
compared with PVM/CRE mice. 614 

 615 
Figure 4. High viral load alone does not promote type 2 inflammation and airway remodeling. 616 
(A, E) Viral load in airway epithelial cells (AEC). (B) Survival curve of after i.n. infection with 1 617 
plaque forming unit (pfu) or 10pfu of PVM. (C,G) IL-33 in bronchoalveolar lavage fluid (BALF). 618 
(D) ASM area. (H) Interferon (IFN)-α, IFN-λ, IFN-γ in BALF and IL-12p40 in lung homogenate. 619 
(I) Type-2 innate lymphoid cells (ILCs) in the lung. Data are mean ± SEM, representative of two 620 
independent experiments, n=6-8 mice per group. *compared with PVM mice.  # compared with 621 
PVM/CRE mice.   622 
 623 
Figure 5. Anti-IL-33 prevents type-2 inflammation and remodeling in response to PVM and 624 
CRE co-exposure in early--life. (A) Type-2 innate lymphoid cells in lung (ILCs). (B) IL-13 in 625 
bronchoalveolar lavage fluid (BALF). (C) Peribronchial eosinophils (D) ASM area.  Data are mean 626 
± SEM, representative of 2 experiments, n=6-7 mice per group. *compared with isotype-treated 627 
PVM/CRE co-exposed mice. 628 
 629 
Figure. 6. IL-33 blockade in PVM/CRE co-exposed mice prevents excessive viral load and 630 
reverses dampened antiviral immunity induced by CRE. (A, D) Airway epithelial cell (AEC) 631 
viral load. (B, E) IFN-α and IFN-λ in bronchoalveolar lavage fluid (BALF); IL-12p40 in lung 632 
homogenate. (C, F) mRNA expression of interferon stimulated genes, relative to vehicle treated 633 
mice. (G) ASM area. (H) Type 2 ILCs were treated with IL-2 ± IFN-α for 30 min followed by 634 
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culture with IL-33 and IL-2 for 72 hours, before the supernatant was probed for IL-5 and IL-13; (I) 635 
ST-2 expression on cultured ILC2s; MFI, mean fluorescence intensity. Data are mean ± SEM, 636 
representative of two to three independent experiments, n=6-10 mice per group. *compared with 637 
PVM/CRE/isotype mice. * compared with PVM/CRE isotype mice or as indicated 638 
 639 
Figure. 7. Exogenous IL-33 dampens IFN-α production and increases viral load by decreasing 640 
IRAK1 expression and antiviral cytokine production by pDC (A) IFN-α and (B) IFN-λ in 641 
bronchoalveolar lavage fluid (BALF). (C) Viral load in airway epithelial cells (AECs). (D) mRNA 642 
expression, relative to vehicle treated mice. (E) ASM area. (F) ST2 staining of bone marrow (BM), 643 
lung and mediastinal lymph node (LN) pDC (solid line). Fluorescence minus one for ST2 staining 644 
(grey). (G) IRAK1 and viperin intracellular expression in pDC in vivo at 2 hours post CRE 645 
administration. Mean fluorescence intensity (MFI). (H) Intracellular IRAK1 staining of bone 646 
marrow (BM)-pDC pre-incubated with vehicle (solid line) or IL-33 (3ng/ml, dotted line) for 0.5 h. 647 
Fluorescence minus one for IRAK staining (grey). (I) IFN-α production in BM-pDC cell culture 648 
supernatant Data are mean ± SEM, representative of two independent experiments, n=7 mice per 649 
group. N.D., not detected. * compared with PVM-alone mice or vehicle treated BM-pDC. 650 
 651 
 652 
 653 
 654 
 655 
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Online Methods 

Induction of co-virus and allergen-induced asthma and associated perturbations.  

Specific pathogen-free BALB/c mice or 4C13R mice 
1
 were inoculated with PVM (strain J3666; 

1 pfu ‘early life’; 20 pfu ‘later life’) or cockroach allergen extract (CRE, 1 µg, Greer 

Laboratories) as previously described 
2, 3

 and as outlined in the study design (Figure 1A). In 

some experiments, mice were exposed to HDM extract (5 µg or 100ug, Greer Laboratories) or 

LPS (186 pg, Sigma-Aldrich), recombinant IL-33 (10 ng, eBioscience), anti-IL-33/isotype 

control antibody (200 µg, Pfizer, Inc), apyrase (4 U/mL, Sigma-Aldrich) or pyridoxalphosphate-

6-azophenyl-2',4'-disulfonic acid (PPADS, 100 µm, Sigma-Aldrich). All studies were approved 

by The University of Queensland Animal Ethics Committee. 

 

Sample extraction and processing  

Following euthanasia by pentobarbitone overdose, blood was obtained by cardiac puncture, 

centrifuged twice (13,000 rpm, 4°C) and the serum stored at -80
o
C. A bronchoalveolar lavage 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

(BAL) was performed with 400 µL (neonate/‘early life’) or 600 µL (adult/‘later life’) of PBS. 

The BAL fluid was centrifuged at 5,000 rpm, 4°C for 5 min and the supernatant stored at -80
o
C 

until analysis by cytokine bead array (CBA) or ELISA. Lung lobes were excised and processed 

as previously described 
4
.  Briefly, the left lung lobe was processed immediately for flow 

cytometry and the superior right lobe fixed in 10% formalin neutral buffer overnight before 

storage in 70% ethanol. The post-caval and inferior lobes were pooled and snap frozen before 

mechanical digestion and clarification, followed by analysis by ELISA.  The inferior right lobe 

was snap frozen before RNA extraction. All snap frozen lungs were stored at -80 ⁰C. 

 

Flow cytometry  

Flow cytometry was performed on lung tissue digest cells as previously described 
4
. Briefly, 

single cell suspensions were incubated with anti-FcγRIII/II (Fc block) for 15 min at 4°C then 

incubated with the following fluorochrome-conjugated antibodies at 4°C for 30 minutes: anti-

mouse CD2-FITC (RM2-5), CD4–AF488 (RM4-5), Gr-1–AF488 (RB6-8C5), CD11c–AF488 

(HL3), CD11b–AF488 (M1/70), B220-AF488 (RA36B2), CD3–AF488 (145-2C11) CD45RA-

PE (14.8), B220-V500 (RA36B2), CD8a-PerCP (53-6.7), Sca1-PE (E13-161.7) (all BD 

Bioscience), CD19-AF488 (6D5), CD45-BV421 (30-F11), CD11b-BV421 (M1/70), ST-2-APC 

(DIH9), IFNAR (MAR1-5A3), ICOS-PE (7E.17G9), IL-7Ra-PE (SB/199) (all Biolegend), IL-

17RB-PE-Cy7 (eBio17B7) (eBioscience) and Siglec-H-APC (511.3D3) (Miltenyi Biotec). 7-

AAD (eBioscience) was used to exclude dead cells. For intracellular staining, cells were fixed 

and permeabilised using the BD Cytofix/Cytoperm kit as per the manufacturer’s instructions, 

followed by staining with rabbit anti-mouse IRAK1 (D51G7, Cell Signalling) or anti-mouse 

Viperin (HM1016, Hycult) for 30 minutes. Cells were then washed followed by incubation with 
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goat anti-rabbit AF647 (Invitrogen) for 30 minutes.  Samples were collected with an LSR 

Fortessa X-20 (BD Biosciences) and the data analysed with FACSDiva v8 (BD Biosciences) and 

FlowJo v8.8 (Treestar).  Type 2 ILCs were identified as Lineage
- 

(CD2, Gr-1, CD3, CD11b, 

B220, CD4, CD19), CD45
+
, CD25

+
, CD90.2

+
, ST-2

+
,
 
ICOS

+
, IL-7Ra

+
, IL-17RB

+
 (Fig E4A). 

pDCs were identified as CD11b
-
, CD11c

+
, CD45RA

+
, B220

+
, Siglec-H

+
. 

 

Histology and Immunohistochemistry  

Paraffin-embedded lung sections were prepared as previously described 
3
. Lung tissue sections 

were stained with Chromotrope 2R, Periodic acid-Schiff or Masson's Trichrome, to enumerate 

eosinophils, mucus-secreting cells and collagen deposition respectively. For 

immunohistochemistry, lung sections were pretreated with 10% normal goat serum for 30 min.  

Sections were probed with anti-IL-33 (AF3626, R&D), anti-PVM G protein (kindly provided by 

Dr Ulla Buchholz), anti--SM actin and anti-periostin (both Sigma-Aldrich) overnight at 4°C.  

Following incubation with appropriate secondary antibodies, immunoreactivity was developed 

with Fast Red (Sigma-Aldrich) and counterstained with Mayer’s hematoxylin (bright field) or 

with 4',6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) (fluorescence).  The percentage of 

PVM positive or mucous AECs was quantified in 5 airways per mouse (Scanscope XT, Aperio). 

Oedema was assessed by point counting of fluid-filled airspaces. Eosinophils were enumerated 

around the airways and expressed as cells per 100 mm of epithelial basement membrane. Airway 

smooth muscle mass and collagen deposition around the small airways (defined as a 

circumference <500 µm for neonates and <800 µm for mice aged >7 week) was measured using 

Scanscope XT software and expressed as area per µm of basement membrane. Periostin 

expression was quantified as a % of the airway circumference.  Photomicrographs were taken at 
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400x and 1000x magnification using an Olympus BX-51 microscope with an Olympus DP-72 

camera at room temperature and acquired using Olympus Image Analysis Software.  IL-33 

images were false colored using Adobe Photoshop CS6 software.  Immunofluorescent images 

were taken using Diskovery Spinning disk confocal using Nikon Viewer software.  Images were 

processed using Image J and Imaris software. 

 

Measurement of protein expression 

IL-33 and IFN-λ2/3 (R&D Systems), IL-12p40 and IFN-γ (Biolegend) and IL-5 (BD 

Biosciences) expression was quantified by ELISA. IFN-α (eBioscience) and IL-13 (Quantikine 

kit, R&D or Enhanced Sensitivity Flex Set, BD Biosciences) expression was quantified by CBA. 

IgG1a was detected in the serum using an in-house ELISA system 
2
. 

 

Quantitative real time PCR 

Total RNA was isolated from the inferior right lung lobe with TriReagent solution (Ambion) 

followed by phenol-chloroform extraction. DNAse digestion was performed with Turbo DNAse 

(Ambion), according to the manufacturer’s instructions. Reverse transcription was performed 

using M-MLV reverse transcriptase and random primers (Invitrogen). qRT-PCR was performed 

with SYBR Green (Life Technologies) with the primers described in Table S1. Expression 

values were normalized to Hprt and expressed as fold change over vehicle mice, as described 
3, 4

. 

 

Airway function assessment  
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AHR was measured as described previously 
5
. Briefly, airways resistance was determined by 

forced oscillation technique (Flexivent, Scireq) in response to nebulized methacholine (0.3 to 10 

mg/mL; Sigma-Aldrich). 

 

Type-2 innate lymphoid cell culture and activation 

Lungs were excised from PVM/CRE co-exposed mice at 10 dpi and digested by gentleMACS 

dissociation (Miltenyi Biotech). Type 2 ILCs (7-AAD
- 
Lineage

-
 CD45

+
, CD25

+
, CD90.2

+
) were 

FACS-sorted to 96% purity (Fig E6C) using a BD FACS-Aria, and cultured in the presence of 

IL-2 (30 ng/mL, eBioscience).  Cells (10,000/well) were pre-incubated with IFN-α (5000U/mL, 

Hycult Biotech) for 30 minutes, before stimulation with IL-33 (30 ng/mL, eBioscience) for 72 

hours.  Supernatant was collected and probed for cytokine production. 

 

Plasmacytoid dendritic cell culture 

Bone marrow-derived pDC were generated as described previously 
3
. On day 8 of culture, pDC 

were pre-incubated with IL-33 (3 ng/mL, eBioscience) then stimulated with imiquimod (3 

μg/mL, Sigma-Aldrich). 

 

Statistical analyses  

GraphPad Prism version 5.0 software (La Jolla, California) was used for all statistical analyses. 

A Student’s t-test, one-way ANOVA with a Tukey post-hoc test or two-way ANOVA with a 

Sidak post-hoc test were applied as appropriate. A P value <0.05 was considered statistically 

significant. 
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Supplemental Figure Legends 

Figure E1. Determination of CRE allergen dose (A) Study design. (B) Peribronchial 

eosinophils. BM, basement membrane. (C) Mucous-secreting cells. AEC, airway epithelial cells. 

Data are mean±SEM, representative of 2 experiments, n=5-9 mice per group. 

 

Figure E2. Both virus and allergen challenge in later life are necessary for asthma 

progression. (A) Peribronchial eosinophils. Basement membrane (BM). (B) Mucous-secreting 

airway epithelial cells (AECs). (C) Cockroach-specific IgG1a in serum. (D) Collagen area. (E) 

ASM area. (F) Airway resistance (Rn) in response to increasing doses of methacholine (MCh), 

response at 10mg/mL shown. (G) Representative micrograph (x400 magnification) of 

peribronchial eosinophils (chromotrope 2R), scale bar = 50 μm, white arrows indicate 

eosinophils. Data are mean ± SEM, representative of three independent experiments, n=6-9 mice 

per group. * compared with vehicle mice.  
# 

compared with PVM/CRE/PVM/CRE mice.  Dashed 

line denotes vehicle treated mice. Related to Figure 1. 

 

Figure E3. Expression of virus and IL-33 in airway epithelial cells.  (A) Representative 

micrographs of PVM immunostaining, scale bar = 50 μm, arrows indicate PVM+ airway 

epithelial cells. (B) pDC 7 days post infection, enumerated as CD11b- CD11c+ Siglec-H+ 

B220+ CD45RA+. (C) Quantification of airway epithelial cells (AECs) expressing IL-33 as % of 

AECs. (D) Bronchoalveolar lavage total and differential counts. 

 

Figure E4. Type 2 innate lymphoid cell and T cell responses. (A) Representative scatter plots 

showing gating strategy for enumeration of type 2 ILCs and their immunophenotype in the lung.  

Grey filled histogram = fluorescence of minus one control for staining; solid line = expression of 

ILC2 markers in lung. Values are % of total lung cells. (B) ILC2, CD4- and CD8-T cell 

expression of IL-13 and IL-4 at 10 DPI in 4C13R mice.  Values are % parent population. 

 

Figure E5. Anti-IL-33 prevents type 2 inflammation and remodeling in response to virus 

and allergen co-exposure in later-life. (A) Study plan. (B) Airway resistance (Rn) in response 

to increasing doses of methacholine (MCh).  (C) Mucous-secreting airway epithelial cells 

(AECs). (D) Peribronchial eosinophils. Basement membrane (BM). (E) ASM area. Data are 

mean ± SEM, representative of 2 experiments, n=6-7 mice per group. Dashed line denotes 

vehicle treated mice, solid line denotes PVM treated mice. (F) Bronchoalveolar lavage total and 

differential counts. (G) pDC number and (H) Sca-1+ CD8 T cells in the lung. 

  

Figure E6. Blockade of IL-33 release and type-2 ILC sort purity and viability in culture 

following stimulation.  (A) IL-33 in bronchoalveolar lavage (BALF), following treatment with 

apyrase or pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS).  (B) Viral load in 

airway epithelial cells and IL-12p40 in lung. (C) Representative scatter plots showing gating 

strategy for FACS sorting of lung type-2 ILCs. Values are % of parent population. (D) Viable (7-

AAD-) type-2 ILCs following 3 day culture. 

 

Figure E7. Exogenous IL-33 dampens IFN-α production and increases viral load (A) Study 

design.  Mice were inoculated with PVM at 7 dpi, then exposed (i.n.) to 10 ng IL-33 3, 4 and 5 

days later. (B) Plasmacytoid dendritic cell (pDC), (C) Type-2 ILC and (D) Eosinophil number in 
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the lung.  (E-I) Bronchoalveolar lavage total and differential counts. (E) Representative scatter 

plots showing gating strategy for cultured pDCs. 

 

Supplemental Table Legends 

Table E1. Oligonucleotide sequences used in this study are shown. 
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Table S1 

Name Oligonucleotide Primer 

Irf7 Forward: 5’-CTTAGCCGGGAGCTTGGATCTACT-3’ 
Reverse: 5’-CCCTTGTACATGATGGTCACATCC-3’ 

Stat1 Forward: 5’-ACAGTGGTTCGAGCTTCAG-3’ 
Reverse: 5’-GGCCAGGTACTGTCTGATTT-3’ 

Viperin Forward: 5’- CGAAGACATGAATGAACACATCAA-3’ 
Reverse: 5’-AATTAGGAGGCACTGGAAAACCT-3’ 

Hprt Forward: 5’- AGGCCAGACTTTGTTGGATTTGAA-3’ 
Reverse: 5’-CAACTTGCGCTCATCTTAGGCTTT-3’ 

 

http://ees.elsevier.com/jaci/download.aspx?id=1135050&guid=3f99254d-34af-465c-ac2e-dd1d558cb0cd&scheme=1
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