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Abstract 

Circular peptides have attracted much interest in recent drug development efforts, particularly due 

to their increased stability over linear counterparts. The family of plant cyclotides represents one of 

the largest classes of naturally-occurring backbone-cyclized peptides displaying exceptional 

sequence variability and plasticity around three knotted disulfide bonds. Accordingly a multitude of 

pharmaceutically as well as agrochemically relevant bioactivities have been ascribed to them. Their 

abundance across various species within flowering plants is highlighted by estimated numbers of up 

to 150 000 different sequences present in single plant families and over 160 at the species level. 

However this vast diversity impedes thorough sequence characterization by standard analytical 

methods using mass spectrometry and thus limits access to a wealth of potentially bioactive 

compounds that may represent novel lead molecules. Recently the ribosomal origin of cyclotides 

has been exploited as an alternative way to discover novel sequences. The analysis at nucleotide 

level allows not only the identification of peptides but also their parent precursor proteins. This 

combined approach opens access to the discovery of sequences that can provide novel structural 

templates for a variety of pharmaceutical as well as agrochemical applications. Here we review 

recent literature related to the discovery of cyclotides. Challenges and opportunities using classical 

mass spectrometry workflows and novel approaches such as in silico mining will be discussed. 
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Naturally occurring circular peptides – endless discovery 

Natural product discovery has a long and successful history and has led to the development of 

several pharmaceuticals.
1
 Most of these molecules are small molecular weight compounds that 

typically exhibit highly preferred properties such as oral bioactivity and good stability. However 

over the recent decades peptides have attracted much interest in drug discovery approaches. 

Peptides have evolved to become versatile macromolecules with a range of functions and can act as 

hormones, signalling molecules or defence agents.
2,3

 From a pharmacological point-of-view they 

display an evolutionary advantage over solely rationally designed compounds and thus provide 

unique starting points for the development of novel peptide-based drugs. Their potential has been 

widely appreciated and they are thought to be able to fill the niche between small molecules (<500 

Da) and larger biologicals (>5000 Da).
4
 Of particular interest are cyclic peptides as such 

compounds display increased stability as compared to linear counterparts, one of the major 

challenges for turning peptides into therapeutics.
5
 Interestingly there is a plethora of naturally-

occurring circular peptides that have been discovered in all kingdoms of life, ranging from bacteria 

to plants to mammals.
6,7

 Some have already proven to be valuable drugs with the 

immunosuppressant cyclosporine A being one of the best known examples. Cyclosporine A is a 

fungal peptide of non-ribosomal origin whereas many peptides of natural origin are ribosomally-

synthesized and post-translationally modified (RiPP).
8
 This includes for example bacteriocins (e.g. 

enterocin AS-48 or subtilosin A), mammalian θ-defensins (e.g. RTD-1) and the family of plant 

cyclotides, which is by far the largest group of circular RiPPs known to date. In addition to their 

head-to-tail cyclic nature, cyclotides contain six conserved cysteine residues that form three 

interlocked disulfide bonds, and this combination is referred to as the cyclic cystine knot (CCK) 

motif.
9
 Although the CCK motif confers all cyclotides with a similar three-dimensional fold, there 

is unique variability and plasticity in the inter-cysteine loop sequences.
10

 It is hence not surprising 

that there is estimated to be several tens of thousands of different cyclotide sequences in existence 

although only a modest number of around 300 sequences have been published hitherto and 

deposited in CyBase (www.cybase.org.au), the database of cyclic peptides.
11,12

 Several bioactivities 

have been ascribed to the cyclotides including uterotonic,
13

 insecticidal,
14

 anticancer
15

 or 

immunosuppressive
16

. Thus, it is apparent that efficient discovery methodologies are crucial in 

order to harness the mostly untouched potential of this class of naturally-occurring peptides.  

Classical chemical analysis approaches for the de novo characterization of peptides face 

serious challenges. Often an extensive characterization of peptides present in biological samples by 

means of standard analytical techniques such as liquid chromatography and mass-spectrometry 
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(MS) experiments is both laborious and inefficient. This is mostly due to the high complexity of 

extracts paired with limited quantities of biological samples and low abundance of active 

compounds. Although single peptides may be present at a scale of g/kg plant weight, cyclotide 

concentrations can span several orders of magnitude and some peptide may only be present in trace 

amounts in the low milli- or even microgram range. Moreover, lack of resolution using 

chromatographic methods further impedes novel peptide identification. However, in the case of 

ribosomally-synthesized peptides their identification can also be performed at the nucleotide level. 

The availability of a continuously growing number of publicly accessible genome and transcriptome 

datasets, as well as refined bioinformatics methodologies, facilitate a new avenue of peptide 

discovery that has recently attracted much interest. In silico mining has thus been successfully used 

not only as an alternative but complementary method for novel and potentially bioactive peptide 

identification within a variety of species.
17-20

  

In this review we discuss achievements for the discovery of bioactive circular plant peptides 

and the current challenges and limitations of MS-based and nucleotide mining workflows. The 

potential of combining data from in silico mining and MS-based discovery approaches to unveil the 

diversity of cyclotides will be discussed. 

 

Along the circle - MS-based discovery of cyclic peptide sequences  

The identification and primary characterization of novel circular peptides even using state-of-the art 

analytical methods is not a trivial task. Not only are the highly complex samples often present in 

limited amounts, the nature of a cyclic backbone further poses challenges for MS experiments. For 

tandem MS sequencing a linear peptide chain is required to retain charges and hence circular 

peptides have to be derivatized prior to analysis and can be easily overlooked in proteomics 

analyses. In particular during the early stages of cyclotide research their unusual properties 

confounded researchers and although the first peptide from the African plant Oldenlandia affinis, 

kalata B1, was discovered and partially characterized in the early 70’s
21,22

 it took until 1995 until its 

primary and tertiary structures were fully elucidated.
23

 At that time challenging sequence 

characterizations were similarly experienced for other cyclotides such as cyclopsychotride A
24

, 

violapeptide 1
25

 and the circulins A and B.
26

 Techniques such as acid hydrolysis prior to Edman 

degradation were needed suggesting a blocked N-terminus of the analysed peptides. Further distinct 

mass shifts upon reduction of the peptide and alkylation of cysteine residues as well as a subsequent 

endoproteinase Glu-C digest that yielded a linear peptide amenable to sequencing provided first 

evidence of the cyclic nature. MS was initially only used for the detection of the peptide mass but 
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tandem MS sequencing has now become the method of choice for de novo characterization. This led 

to the development of protocols such as inter-cysteine loop sequencing following aminoethylation 

of cysteine residues
27

 or partial acid hydrolysis prior to liquid-chromatography (LC)-MS analysis.
28

 

As an alternative to LC-MS,
29-33

 matrix-assisted laser desorption ionization (MALDI) MS has been 

successfully used in bottom-up de novo characterization studies.
18,34-39

 MALDI MS has also been 

shown to be useful for quantification studies
40

 and less frequently used in top-down sequencing 

approaches.
41

 Other methods include the combination of nano-LC with fourier-transform MS 

allowing high mass accuracy analysis without the need for enzymes.
42

 The advances in MS go hand 

in hand with the increasing numbers of cyclotide discovered. Studies performed in the 1990s 

typically reported only a few peptides per study but it was quickly realised that cyclotides occur in a 

library-like manner with many different variants present in a single plant species.
43,44

 This provided 

incentive to develop efficient MS methods for thorough analyses to unveil the full peptide cocktail 

in cyclotide-producing plant samples. Additionally, as cyclotides seem to be widely distributed 

among flowering plants there was also a need for a robust and reliable screening procedure that 

allows the rapid and accurate analysis of large sample numbers with regard to the presence or 

absence of cyclotides.  

In 2008 Gruber et al. presented a screening methodology that involves the analysis of plant 

extracts by high-performance (HP)LC and MS.
45

 This widely used and optimised workflow for MS-

based peptide discovery is outlined in Figure 1A and makes use of the typical features of cyclotides, 

i.e. their hydrophobic properties on reversed phase (RP)-HPLC, the typical mass ranging between 

2500-4000 Da and the six conserved cysteine residues. It involves the solvent extraction of fresh or 

dried plant samples followed by HPLC and MS analysis. If late eluting peaks are observed that 

contain compounds in the expected mass range, reduction and alkylation is carried out to confirm 

the presence of the six conserved cysteine residues. Samples are then subject to further purification 

and/or enzymatic digestion and tandem MS experiments. Subsequently, the distinctive 

fragmentation pattern between linear versus cyclic and knotted peptides were reported as a valuable 

tool and additional identification criterion.
37

 It has also been acknowledged that at least a partial 

sequence of two or more adjacent loops should be obtained prior to characterizing a plant as a 

cyclotide-containing species.
18

 This was deemed necessary as other disulfide-rich peptides could 

fulfil all of above mentioned criteria but represent other peptide classes such as for example 

thionins
46

 or knottins.
47

 Often the ‘ring-opening’, i.e. the linearization of the peptide that is required 

for tandem MS analysis of cyclotides is used as a further identification criterion. Almost all 

cyclotides contain a conserved glutamic acid residue that upon treatment with endoproteinase Glu-C 
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results in a single cleavage and the addition of a water molecule resulting in a distinctive mass shift. 

It has to be noted that this is not applicable for peptides containing multiple or no Glu residues and 

linear cyclotides, also referred to as acyclotides
38

 or uncyclotides.
48

 Accordingly a combination of 

several identification criteria and importantly sequence information is required for an unambiguous 

identification of cyclotides.  

Although this optimised screening methodology (Figure 1A) allows the analysis of large 

sample numbers, the last step, i.e. tandem MS sequencing typically is the most challenging and rate 

limiting one. This is mostly due to the high complexity of samples together with the low abundance 

of several compounds and an overall limited sample amount. Due to the high similarity of peptides 

that may only differ in single amino acids separation via RP-HPLC can be very inefficient and 

hence make the use of mixtures inevitable. Within such unfractionated samples peptides of the same 

mass and/or m/z ratio may co-elute and hence confound interpretation of spectra. To overcome such 

limitations a combination of different single and double protease digests can prove useful and may 

allow sequence characterization without the need for laborious separation.
34

 Another approach to 

accelerate the time-consuming manual de novo discovery is to implement automated database 

search workflows of MS data as described by Colgrave et al.
49

 Briefly, a custom-made database 

containing replications of all known cyclic peptide sequences allows the calculation of all possible 

proteolytic fragments by search engines and then tandem MS data are searched against this 

database. Overall MS sequencing approaches typically yield only about 10-20 sequences
34,48,49

 

although recent work using LC-MS estimates around 70 unique cyclotide masses per species.
16

 This 

clearly indicates the need for continuous improvements to optimise discovery workflows. 

There have been advances in MS analysis, including hard- and software as well as workflow 

strategies, but MS-based cyclotide analysis still remains challenging, especially if focused on 

thorough sequence characterization and when unfractionated or limited samples are used. Newer 

strategies, in particular the above mentioned automated database analysis of tandem MS data
49

 are 

helping to overcome these challenges and to avoid laborious and often inefficient separation work. 

Recent work demonstrated the high-resolution performance of today’s mass spectrometer by 

identifying 126 putative cyclotide masses within a crude peptide extract using LC-MS 

deconvolution. After a simple round of preparative RP-HPLC tandem MS evidence was obtained 

for a total of 82 different peptides.
50

 Interestingly numerous linear variants as well as peptides 

carrying post-translational modifications such as aspartate methylation, glutamate ethylation, 

tryptophan oxidation, as well as deamidation of asparagine and glutamine were identified. It has to 

be noted that the optimised database used for the automated search included nucleotide-derived 
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sequences as will be described later. Recently the detection of PTMs using MS technologies 

revealed for the first time the presence of glycosylated forms of cyclotides
51

 within species of the 

violet family and thus further expanding the pool of cyclotides to be discovered. Although MS-

based analysis is indispensable for cyclotide characterization it faces limitations with regard to fully 

unveiling their sequence diversity among flowering plants. This becomes apparent with estimated 

numbers of different sequences ranging between 9000 and 150 000 for individual plant families
45,52

 

and up to a theoretical library of 600 million sequences.
51

 Thus it is evident that discovery solely 

based on MS is not able to fully harness the potential of this vast sequence variability. Fortunately 

cyclotides are RiPP and thus transcribed and translated gene products. This allows their 

identification not only at peptide but also nucleotide level presenting alternate pathways for peptide 

discovery. 

 

Advantages of nucleotide analysis and in silico discovery 

Cyclotides arise from larger precursor proteins and cDNA sequencing approaches have led to the 

discovery of precursor sequences in Oldenlandia affinis,
53

 and several species of the family of 

Violaceae
54-56

 as well as Fabaceae
35

 and Poaceae.
57

 These studies not only discovered novel 

peptides but also provided a better understanding of the underlying gene architecture and 

biosynthetic processing. Most of the discovered peptides were eventually confirmed using MS 

methods. Besides cDNA library approaches the use of in silico studies provide an alternative for 

peptide discovery. In the past such studies were restricted to a low number of available nucleotide 

datasets, whereas now there is a large amount of accessible data, which has created the new 

challenge of how to best filter this information. The last decade has seen a rapid development of 

next-generation sequencing services, and in particular transcriptome analyses, which has opened 

new avenues for peptide discoveries. RNA sequencing has become reasonably affordable and is on 

the way to becoming part of routine experiments. Sequencing and subsequent assembly of the raw 

data still requires advancement of bioinformatics methods as for many organisms, such as plants or 

invertebrates, reference genomes are not available. This makes de novo assembly a less than trivial 

task.
58,59

 However continuous development of automated workflow programs, user friendly 

software and webportals are being created to meet the emerging needs of data mining and allow 

also non-bioinformaticions to access or self-process these data.
60

 In this regard it is worth noting 

that de novo assembly requires high performance computing facilities and thus may incur additional 

costs. However, if restricted to publicly accessible databases in silico mining is amenable at 
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virtually no cost. The workflow for discoveries based on nucleotide sequencing is shown in Figure 

1B.  

One of the first studies making use of such in silico mining techniques for the discovery of 

cyclotide-like sequences was in crop plants.
61

 Homology searches using the freely available BLAST 

tool
62

 were performed using a custom-made query set of known cyclotide sequences. This approach 

led to the identification of so-called cyclotide-like sequences in a number of monocot plants. 

Although none of the in silico hits were confirmed at the peptide level, the findings were intriguing. 

Several hits from Oryza sativa (rice), Triticum aestivum (wheat) or Zea mays (maize) showed a 

similar precursor structure with regard to the putative peptide domain as those described from 

Oldenlandia affinis, however a significantly shortened or unusual C-terminal tail was observed. 

This led to speculations that the evolution of cyclotides among flowering plants started prior to the 

divergence between monocotyl and dicotyl plants. However, large-scale screening studies 

investigating the distribution of cyclotides suggest multiple independent gain-of-function mutations 

as the evolutionary explanation for cyclotide occurrence.
18,45

  

Beside such evolutionary insights, nucleotide analysis also provides information regarding 

pathways underlying the in planta biosynthesis of analysed peptides. Embedded in larger precursor 

molecules the cyclotide domain must undergo several steps including the excision, cyclization and 

disulfide bond formation to yield the mature peptide. In particular conserved residues within the N- 

and C-terminal flanking regions have been identified and play a major role in the cyclization via an 

asparaginyl-endopeptidase mediated mechanism.
63-65

 

More recently BLAST searches against the EST database at NCBI revealed cyclotides 

within the Solanaceae plant family.
38

 Screening of EST data also has proven useful for describing 

the abundance of cyclotides in Oldenlandia affinis with the identification of 31 precursor sequences 

as well as enzymes involved in their biosynthesis.
66

 An even greater number of novel peptide 

sequences have recently been reported for two violet species. This includes 53 novel cyclotides 

from Viola baoshanensis that were characterized from both sequencing a cDNA library and 

transcriptome analysis.
55,67

 A thorough analysis of the cyclotide containing plant Viola tricolor led 

to the identification of 98 precursor sequences that encode for 108 different peptides underpinning 

the high identification capacity of in silico mining.
50

 This includes both peptides that exhibit low 

similarities but also examples differing in single amino acid residues. Subtle differences, i.e. 

isobaric residues such as leucine/isoleucine and amino acid isoforms of aspartic acid/aspartate or 

glutamic acid/glutamine are readily found using automated searches of nucleotide datasets. Such 

BLAST searches are commonly used for the identification of homologuous peptides and proteins. 

Page 8 of 19

John Wiley & Sons, Inc.

Biopolymers: Peptide Science

This article is protected by copyright. All rights reserved.



9 

 

In order to specifically harness the sequence information of cyclotides hidden in publicly available 

datasets customized scripts such as CyPerl or CyExcel
68

 have been developed and tailored 

approaches using regular expression searches have been applied.
69

 

Lastly another advantage of in silico discovery is the low amount of sample that is needed to 

perform such analyses. As discussed, the presence of several tens of peptides with highly similar 

sequences is a major bottleneck in MS-based approaches especially when sample amounts are 

limited.  The amounts of RNA required for next generation sequencing can be obtained from as 

little as single leaf samples enabling thorough analyses of complex peptide cocktails without the 

need for large amounts of plant material. 

 

Combined -omics approaches allow seamless discovery 

As described above, nucleotide analysis is a powerful tool for the discovery of novel peptides. 

However there are fundamental limitations if one solely relies on genome or transcriptome derived 

data as is the case for studies restricted to peptidome analysis. Thus it is evident that a combined 

analysis that makes use of the advantages of either approach (Table 1) is likely to accelerate the 

discovery of novel peptides. The complementarity of in silico and MS-based approaches is 

illustrated in Figure 2. 

Firstly, one cannot be sure if an in silico discovered peptide is present within a plant until 

there is MS evidence and secondly the cyclic nature and presence of other posttranslational 

modification needs to be confirmed using above described methods such as by analysis of tandem 

MS fragmentation pattern and distinct mass shifts upon enzymatic digestion. The identification of 

precursor sequences that lack a C-terminal tail within the monocot plant Panicum laxum
57

 is a good 

example highlighting these complementary advantages of in silico and MS discovery. Whereas the 

lack of or an unusual C-terminal tail sequence may suggest the linear nature or an alternative 

cyclization mechanism only MS data can provide evidence. Similarly a peptide from Viola tricolor 

that has been found to be linear could be matched to a precursor sequence lacking a C-terminal tail 

sequence.
50

 It is worth mentioning here that recently bioinformatics tools have been reported that 

can predict cyclic peptides with high confidence.
70

 The characterization of peptide sequences that 

can be retrospectively matched to precursor sequences not only provides the peptide’s correct 

length, but also reveals processing sites and thus insights into biosynthetic mechanisms. In turn the 

correct assignment of amino acids, in particular isobaric residues leucine/isoleucine or isoforms of 

amino acids such as asparagine/aspartic acid or glutamine/glutamic acid obtained from in silico data 

can help to dissect ambiguities from MS analysis and therefore confirmatory experiments such as 
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amino acid analysis would not be required. This can prove difficult, since as pointed out earlier the 

separation and purification can be challenging if not unfeasible. To unveil the diversity and increase 

the number of peptides identified per plant a recent study by Hellinger et al.
50

 highlighted the 

usefulness of automated database searches from transcriptome derived sequences for an efficient 

analysis of tandem MS data. The use of a carefully and continuously updated customised cyclotide 

database has led to the identification of more than 80 cyclotide sequences within HPLC fractions of 

a single violet plant. This was achieved by initially mining the transcriptome of Viola tricolor that 

allowed the identification of 55 novel full-length cyclotide sequences that were added to an existing 

database to yield a total of 367 sequences against which tandem MS data were searched. More than 

30 peptides initially identified at transcript level could be confirmed at the peptide level. Overall 

this study combined LC-MS deconvolution, tandem MS sequencing and transcriptome analysis and 

identified a total of more than 160 cyclotides in a single plant species. Other automated approaches 

include for example an algorithm termed ‘Cycloquest’ that has been developed by Mohimani et 

al.
71

 It aims to link genomic information to MS data and works similarly to Sequest or Mascot but is 

specifically tailored for the identification of cyclic peptides. More recently such algorithms have 

been optimized for the analysis of peptides that produce poor MS fragmentation patterns and have a 

high number of post-translational modifications such as lanthipeptides.
72

  

It is evident that combining nucleotide analysis and proteomic data provide a ‘seamless’ 

discovery of novel peptides due to their complementary nature of advantages and drawbacks. 

Continuous development of computational methods to predict peptides from transcriptomes 

provides the essential basis for the identification of peptides in biological samples using MS. This 

streamlined workflow allows a rapid and accurate analysis of complex samples for not only 

cyclotides but also other classes of naturally-occurring and ribosomally-synthesised peptides.   

 

Endless peptides and never-ending questions 

There is an increase in the speed and number of peptides discovered using the above described 

combined -omics approaches. The challenge remains on how best to harness this sequence diversity 

for practical applications. The wealth of compounds awaiting characterization not only provides a 

broad range of starting points for bioactivity testing, but also poses a number of questions and 

difficulties. 

Notably there is often a certain level of mismatch observed between sequences obtained 

from transcriptome and proteome data.
50,73

 Firstly, putative mature cyclotide domains within 

nucleotide datasets are always assigned based on homology with already known sequences. In the 
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case of novel or unusual N- and C-terminal flanking residues this can lead to the incorrect 

assignment of shortened or elongated sequences for which no MS evidence can be obtained. Highly 

post-translationally modified peptides may also prove difficult to match to parent precursor 

sequences. Importantly it has to be mentioned that the presence of peptides may differ within 

different samples of the same species. This can be due to tissue-specific expression, seasonal 

changes in peptide expression or exposure to different environmental conditions that might affect 

expression patterns both at transcript and peptide levels.
44,73-75

 Hence samples used for combined 

proteome/nucleotide approaches should ideally originate from the same plant and the same tissue to 

reduce mismatching, although even this cannot rule out discrepancies between precursor and mature 

peptide sequences.
73

 Other possibilities that can cause a mismatch are sequencing or assembling 

errors for nucleotide derived data or the creation of peptide artefacts due to harsh experimental 

handling of samples. Further the choice of solvent used for the extraction may also bias the obtained 

amount as well as the peptide profile. Although a mixture of methanol and DCM is commonly used 

for the extraction of cyclotides this solvent did not give comparable yields for CCK peptides from 

Momordica cochinchinensis seeds as were obtained with an acetonitrile/water mixture.
76

 Therefore 

a careful selection of plant samples and extraction methods is vital to guarantee that samples subject 

to MS analysis are representative of the plant’s peptide content.  

Another important question is how the identification of such a wealth of novel peptides can 

efficiently be used for drug development. For screening approaches that are not based on any 

specific bioactivity the question remains as to what extent large-scale discovery approaches are 

useful in speeding up the development of novel peptide drugs. Extensive analyses of an ever-

growing number of sequences may help to identify residues that play important roles in maintaining 

structure as well as having possible implications for biological activity or amenability to chemical 

modifications. For example it is evident that loop 6 within cyclotides shows a particularly high 

sequence variation and incorporates the native cyclization site (Figure 1). It is therefore not 

surprising that most studies that exploit the amenability of cyclotides to peptide grafting are in this 

region.
77

 Moreover, together with data from resolved NMR structures QSAR models for example 

can provide useful information as has been recently shown for linking physicochemical properties 

of cyclotides to their cytotoxic and anthelmintic activities.
78

 Such computational methods may 

prove particularly useful in assessing a novel peptide’s probability to exhibit an interesting 

bioactivity profile prior to testing it in in vitro assays.  

Despite the increased number of peptides discovered several questions remain unanswered. 

Why do so many, but not all plants produce cyclotides, and why so many? Their occurrence in a 
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variety of species across different plant families and both in monocotyl and dicotyl plants suggest 

they evolved as multiple independent gain-of-function events. However as to now this benefit for 

cyclotide-producing plants is still not fully understood. Their reported insecticidal properties 

suggest a role within the plant defence machinery
53,79,80

 but knowledge regarding underlaying 

mechanisms-of-action and specific targets remain limitied. They have been found to be able to 

interact with membranes
81,82

 and only recently it has been shown that native cyclotides are able to 

modulate G-protein coupled receptor activity allowing speculations regarding a possible role as 

signalling molecules.
83

 

 

Conclusion 

The discovery and application of circular peptides are currently widely appreciated in biomedical 

research. Cyclotides have proven to be a uniquely versatile scaffold for the development of peptide 

drug leads. The comprehensive identification and characterization of cyclotides as well as their 

precursor proteins from a variety of plant species has revealed many potent drug leads and provides 

valuable information about their biosynthesis, distribution and evolution. Continuous development 

in MS technologies together with refined molecular biology methods and next generation 

sequencing allows the identification of novel peptides both in high numbers and with unique 

accuracy. The analysis of peptidomes at genome or transcriptome level reveals a novel wealth of 

peptides of previously unexpected dimensions. This provides researchers with countless 

possibilities and hence unveiling the diversity of cyclotides remains of great interest to fully exploit 

the endless potential of these peptides for a variety of pharmaceutical as well as agrochemical 

applications. 
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Table 1. Characteristics and obtained information of in silico and MS-based discovery 

approaches. 

 In silico mining  

(genome/transcriptome data) 

Mass-spectrometry analysis 

(MS and MS
n
) 

Peptide expression No Yes 

Correct amino acids Yes No 

Mature peptide length/mass No Yes 

Cyclic or linear peptide No
a 

Yes 

Posttranslational modifications
 

No Yes 

Biosynthetic origin Yes No 

Sample input n.a.
b
 - Low Low-High

c
 

Identification capacity (peptides/study) High Low-Medium 

Costs n.a. - Highd Medium-Highe 

Special equipment needed No Yes 

Footnotes: arecent bioinformatics analysis suggests the prediction of cyclic peptides from nucleotide data,70 bn.a. not applicable if performed using 

publicly available datasets only, cidentification is possible from single leaf samples however thorough analysis and full sequence characterization 

often requires substantial amounts of plant material, dsequencing of large sample numbers result in reasonably high project costa, also access to high 

performing computing facilities may cause additional costs,  ecosts can vary and depend on sample number and access to MS facilities 
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Figure 1. Cyclotide discovery. The key steps of the two different discovery pipelines as discussed in the 
manuscript. (A) Classical peptidomics analysis makes use of the typical physico-chemical properties of 

cyclotides such as hydrophobicity (1), mass (2) and cysteine content (3). Conserved cysteine residues (CYS) 
are shown in black and the glutamic acid is highlighted in red. The difference in MS/MS fragmentation 

pattern (4) as well as the sequence of the prototypic cyclotide kalata B1 including disulfide connectivities 
and cyclic backbone is shown (5). The conserved glutamic acid (red) is highlighted. Cysteine residues (CYS) 
are numbered with roman numerals, and intercysteine loop numbers are indicated below the sequence. (B) 
Nucleotide discovery from gene/transcript to precursor sequence. (1) cDNA based approaches include PCR 

and cloning and sequencing of the cDNA clones. (2) Transcriptome analysis requires sequencing and 
assembly prior to in silico mining. The prototypic precursor sequence of Oak1 (encoding for kalata B1) is 

shown with its typical elements that include an ER signal sequence (white), a N-pro region (light grey) a N-
terminal repeat domain (dark grey), the mature cyclotide (green) and a C-terminal tail sequence (black). 

ORF open reading frame, CDS coding DNA sequence.  
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Figure 2. Combined -omics workflow.  Streamlined discovery of novel cyclotides makes use of the in silico 
identification of predicted peptide sequences (left) that are used for the generation of a database (DB) 

against which tandem MS sequence data (right) can be searched. Identified peptides can be retrospectively 
matched to their precursor sequences allowing insights into their biosynthetic origin.  
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