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How do ICP variants perform when used for scan
matching terrain point clouds?

F. A. Donoso∗, K. J. Austin, P. R. McAree

School of Mechanical and Mining Engineering, The University of Queensland, Australia,
QLD 4072.

Abstract

Many variants of the Iterative Closest Point (ICP) algorithm have been proposed

for registering point clouds. This paper explores the performance of 20,736 ICP

variants applied to the registration of point clouds for the purpose of terrain

mapping, using data obtained from a mobile platform. The methodology of the

study has involved taking sequences of 100 consecutive scans at three distinct

scenes along the route of a mining haul truck operating in a typical surface

mining environment. The scan sequences were obtained at 20 Hz from a Velo-

dyne HDL-64E mounted on the truck. The aim is to understand how well the

ICP variants perform in consolidating these scans into sub-maps. Variants are

compared against three metrics: accuracy, precision, and relative computational

cost. The main finding of the paper is that none of the variants is simultane-

ously accurate, precise, and fast to compute, across all three scenes. The best

performing variants employed strategies that filtered the data sets, used local

surface geometry in the form normals, and used the distance between points

in one point cloud to a corresponding surface from a reference point cloud as

a measure of the fit between two point clouds. The significance of this work

is that it: (i) provides guidance in the construction of ICP variants for terrain

mapping; and (ii) identifies the significant limitations of existing ICP variants

for this application.
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1. Introduction

Scan matching is the name given to the problem of finding the transforma-

tion that aligns two or more point cloud scans recorded at different locations.

Methods to minimize the alignment error belong to a family of “registration”

algorithms that find application in many field robotic systems and beyond. A5

well known mapping application is that used by the Google car [1] that makes

use of scanning LiDAR mounted to the car to build maps that are used for

navigation.

Similarly, in recent years Caterpillar Inc. has developed an autonomous

mining haul truck that also uses scanning LiDAR for navigation [2, 3]. There10

also seems to be significant value in using the LiDAR data collected from mo-

bile equipment to construct terrain maps in real time in order to monitor the

continual changes that are made to the environment as material is mined. This

requires, among other things, the ability to consolidate point cloud data from

the sequence of scans generated by the sensor into a common frame of reference,15

also known as scan matching.

The general problem of matching scans has a history spanning over 25 years,

see for example [4, 5, 6, 7, 8, 9, 10]. Approaches are usually based on geometry

registration algorithms such as the Iterative Closest Point (ICP) method [11, 12].

ICP is used to compute the transformation that brings two point clouds into20

“best” alignment by a two step process: (i) correspondence, the matching

of overlapping data across the point clouds; and (ii) the minimization of a

metric describing misalignment. In most applications these steps are iterated

to improve alignment.

The ICP method is simple to put into practice and efficient, particularly25

when implemented with kd-trees for searching the point clouds. However, the

application of “vanilla” ICP, as described in [11] or [12], produces less-than-
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optimal matching across a range of applications including terrain mapping.

Reasons include points from consecutive scans do not map one-to-one, each new

scan covers a spatial region different to that in the previous scan, and in the30

region of overlap, different terrain points are sampled. To improve performance

many variants of ICP have been proposed that curate the raw point cloud data

in various ways to improve the match. However, it is not clear which variant

should be used in any specific application. It is not unusual for an ICP variant

that performs well on one set of data to perform poorly on other, seemingly35

similar, data.

Several prior studies compare the performance of different ICP variants.

Rusinkiewicz et al. [13] decomposed various adornments and decorations ap-

plied to “vanilla” ICP into a six-stage computational process to examine the

convergence speed and accuracy of different strategies. The study observes that40

different variants perform better on different point clouds and recognises the

need for deeper insight into the scan matching algorithms. The idea of adap-

tively choosing variants, depending on point cloud characteristics, is proposed.

Salvi et al. [14] present a survey of coarse and fine scan matching methods

focussing on the accuracy of the match. Methods investigated include: (i)45

the addition of artificial Gaussian noise; (ii) varying the number of point (sub-

sampling); and (iii) varying the percentage of outliers included. They found that

point-to-plane with rejection of paired points [12] provided the best performance

in terms of both accuracy and computational time.

Pomerleau et al. [15, 16] present a survey of scan matching algorithms for50

mobile robotics. They identified the lack of a comparison framework as an issue

for selecting the particular ICP variant best suited for a given scene. Several

use cases for ICP-based generation of three-dimensional maps were considered

in order to explore the tuning required of a ’standard’ ICP algorithm to meet

the registration challenges of each scenario. These challenges include different55

environments, variable amounts of overlap in the point clouds, dynamic scenes,

and real-time processing. This work provides high level guidance on the imple-

mentation, tuning, and testing of ICP registration algorithms.
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They show that the performance of the baseline variants vary significantly

with different data sets and conclude the need for better ICP variants for natural,60

unstructured and information-deprived environments. Surface mining environ-

ments exhibit these attributes.

There are many other forms of scan registration applied to robotic self local-

ization and mapping, see for example [17, 18, 19, 20]. Probabilistic registration

algorithms map distributions to the point cloud measurements, e.g. a likelihood65

function composed of a Guassian describing the expected range with a variance

set by the sensor properties. An example of a probabilistic registration method

is the Normal-Distribution Transform (NDT) which was first introduced by

Biber et al. [21] for scan matching in two dimensions. The algorithm assumes

that the point cloud is comprised of normally distributed points belonging to70

patches. A complete review of the most important probabilistic registration

methods, focussing on NDT, is presented in [22].

This paper focuses on the application of ICP to terrain mapping and how

we might make sense of the many variants available and understand what gaps

there are in the application of ICP. A comprehensive set of 20,736 ICP variants75

are applied to different terrain data scenes and evaluated for their accuracy,

precision, and relative computational cost.

The accuracy of ICP variants is evaluated by comparing the RMS distance

error between the map generated by scan matching, using an ICP variant, and

a ground-truth obtained by using an accurate GNSS-IMU navigation system80

to register consecutive scans. Precision is evaluated by calculating the devia-

tion of RMS error for each scan from a straight line fit of first and last scan

RMS error. Relative computational cost is expressed in the form of a ranking

through the measure of computation time relative to the fastest variant among

the population of ICP variants.85

The following sections provide a review of the methods that might make up

an ICP variant, details the evaluation framework and data sets, and presents

comparative results that explore the performance of ICP variants in relation to

the different terrain scenes and the different performance metrics.
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2. Variants of the iterative closest point algorithm90

Rusinkiewicz et al. [13] consider ICP-based scan matching to consist of six

distinct computation stages with the possibility for using different methods or

combinations of methods at each stage. The starting point of this paper is

to adopt Rusinkiewicz and Levoy’s decomposition and adapt it to accommo-

date the new algorithms and ideas which have emerged since their study was95

published.

The computational decomposition used in this work is shown in Fig. 1. The

inputs to the computation are two point clouds, Pn denoting the input point

cloud of size n, and Qm denoting the reference point cloud of size m. For the

map building task of this paper the two point clouds are drawn from consecutive100

scans, Si representing the input and Si−1 representing the reference, where the

index i refers to the scan number. Figure 1 has six stages:

1. Point selection: Data reduction involving the preferential selection of a

set of points from the input point cloud for scan matching.

2. Neighbourhood selection: Establishes a region around each point to105

determine features associated with the point, e.g. normals.

3. Point matching: Pair points of the input point cloud to those of the

reference point cloud.

4. Weighting: Assigns weights to matched point pairs.

5. Rejection: Discard point pairs that do not contribute positively to min-110

imization.

6. Minimization: The matching of scans by minimization of a metric to

bring the input point cloud into alignment with the reference point cloud.

The stages fall into two distinct types. The first, comprising point selection

and rejection, correspond to stages that filter the input and can be implemented115

by methods applied alone or in combination with other methods, with each

method applying an additional layer of filtering to the data.

The second type, comprising neighbourhood selection, matching, weighting,

and minimization, are implemented by one strategy taken from a set of alter-
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Figure 1: The ICP pipeline - a decomposition of the computation stages of the ICP algorithm.

native algorithms. The following sections provide a brief review of available120

methods to provide context for their application to the particular map building

scenarios of this paper. The methods selected to be part of the ICP performance

evaluation are listed in Table 1.

2.1. Point selection

The first stage of the ICP computation process seeks to reduce the input125

(and reference) point clouds by application of one or more filters. Point selection

methods are applied to reduce the number of points used at subsequent stages

and to improve the characterization of the underlying data through a meaningful

selection of points that encourage fast and accurate convergence to the correct

solution. Reducing the number of points provides a practical consideration for130

timely delivery of an ICP solution, particularly when handling very dense data

sets.

It is noted that the points selected for processing at future stages must be

chosen judiciously, with there being potential to exclude points useful to the

correspondence and minimization stages by poor point selection.135

In early work, Besl et al. [11] proposed that point selection is not needed

when there is considerable overlap between point clouds and the number of out-

liers is not significant. However, for dense point clouds the pragmatic need to

reduce the number of points arises in order to make computation times accept-
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able. Sub-sampling methods proposed to manage dense point clouds include:140

random [23] and uniform [12, 24] sampling. These basic point selection strate-

gies are sub-optimal, deliver slow convergence, and may lead to divergence of

the scan matching algorithm. For this study we limit consideration to what

might be called discerning algorithms for point selection.

Discerning point selection algorithms typically involve analysis of distinctive145

attributes or aspects (that is, features) of the point cloud to achieve a well-

judged selection of points. It is known that if too many points are chosen from

featureless regions, the scan match may converge slowly, converge to a wrong

solution (corresponding to a local minima), be unconstrained so that it “slides”,

or diverges [25].150

The normal-space sampling method [13] attempts to eliminate solution slid-

ing by selecting a subset of points whose point-normals are as widely and uni-

formly distributed as possible over the unit sphere. The idea of this method is

to reduce translational instability that leads to a better and faster convergence

compared with uniform sampling.155

Gelfand et al. [25] extend these ideas, giving prominence to the notion that

selected points should constrain the alignment so that meshes converge quickly

and accurately during ICP minimization. They termed such point selections

geometrically stable. The method estimates the transformations that can cause

unstable sliding and selects the points that best constrain these potentially un-160

stable transformations. Only points in the estimated region of overlap between

matched scans are selected. Gelfand et al. [25] argue that the approach produces

faster and more accurate scan matching than [13], whilst stabilizing sliding in all

spatial dimensions (not just translation). However, Torsello et al. [26] criticised

the method for its tendency to introduce artificial constraints in the presence of165

noisy point clouds.

Torsello et al. [26] propose relevance-based sampling, to overcome the in-

troduction of artificial constraints introduced by noise. This approach uses the

average local radius of curvature as a distinctiveness measure. A process of

integration is used to obtain the measure, improving the sampling robustness170
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to noise. Torsello et al. [26] present a favourable comparison of the method

to uniform and normal space sampling, showing convergence to a better fit for

different levels of noise. Relevance-based sampling is oriented to computer mod-

elling and is not suitable for large terrain point clouds with non uniform point

densities.175

Gressin et al. [27] propose two different point selection methods based on a

combination of eigenvalues of the covariance matrix. The first method is based

on the dimensionality (linear, planar and scattered) by selecting points with

linear behaviours. The second method aims to select points with higher entropy

feature values.180

Outlier removal via distance threshold has proven to be one of the most

commonly used and effective filtering approaches. The method seeks to remove

points that do not contain a nearest neighbour in a specified distance threshold.

A similar approach is filtering points with density lower than a given thresh-

old [28], such that a constant density is maintained throughout a point cloud.185

Other point selection methods include the use of surface characterization by

kernels such as the kernel density filter [29] which is based on normals and

eigenvalues of the covariance matrix.

2.2. Neighbourhood selection

An accurate representation of point cloud geometry influences both the190

matching and minimization stages of the registration process. Neighbourhood

selection is used to determine the set of points necessary to accurately describe

the underlying surface geometry, through, for example, the calculation of surface

normals. Selected neighbourhoods are used in point selection and for calculation

of features.195

The simplest approach to neighbourhood selection is to use a fixed radius or

number of points to select the neighbourhood for each point in the point cloud.

However, when the density of points varies significantly with the distance to the

sensor origin, the selection of the neighbourhood size requires a trade-off in the

representation of near and far features. A small neighbourhood may not provide200
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a suitable representation of geometry distant from the sensor origin, and a large

neighbourhood may distort the representation of geometry close to the sensor.

To mitigate the effects of point density variation the neighbouring points

can be dynamically selected based on a local metric. Lalonde et al. [30] sug-

gest choosing a neighbourhood size of radius, r, that minimizes the expected205

angular deviation of the computed normal of a point from its true normal. The

approach builds on the work of [31] for estimating normals in a noisy point cloud.

The basic idea is that the optimal normal vector is bounded by an expression

depending on the noise of the point cloud, the curvature of the underlying man-

ifold, the density of points, and the neighbourhood size. A complete derivation210

of the method is found in [31]. The method of [31] and [30] are referred to as

“bounded radius” methods.

Point geometry is important to determining the size of the point neigh-

bourhood. The extent of the neighbourhood has to be chosen to appropriately

preserve one geometrical feature over others. Taking that into consideration,215

Demantke et al. [32] address the problem of dynamic neighbourhood selection

by evaluating the entropy feature over a varying radius and selecting the radius

that minimizes the entropy feature. A low entropy feature is indicative of a

dominant dimensionality, e.g. linear, planar or scattered.

Wiemann et al. [33] propose a simple approach to cope with low density220

regions by taking into account the shape of bounding boxes enclosing a neigh-

bourhood. If the shape is elongated, with insufficient points, the neighbourhood

has to be enlarged until the bounding box is square like.

2.3. Point matching

Point matching produces a correspondence between points from the input225

point cloud, Pn, and the reference point cloud, Qm. The output of the process

is a pairing of points that is used as the basis for minimizing the misalignment

between point clouds.

Correspondence is achieved by finding the closest point in the input cloud

to each point in the reference point cloud. There is no explicit requirement for230

9



uniqueness in the correspondence relationships, however, iteration of the ICP

algorithm should increase the number of unique closest points. The definition of

“closest point” is the defining characteristic of the scan matching method. Besl

and McKay prescribe a closest point strategy based on the Euclidean distance

between points, which remains the principal method applied to fine registration.235

To complete an exhaustive search between all point of Pn into Qm attracts

a computational cost of O(nm). Nearest-neighbour-search (NNS) methods are

used to reduce the computational load associated with point matching. A com-

parison of NNS strategies applied to scan matching is provided in [34], identi-

fying that kd-trees are an effective means to find nearest neighbours.240

Heuristics that constrain pair correspondence are sometimes applied to im-

prove the robustness of the NNS by reducing the matching of unrelated points.

Pulli et al. [35] proposes a constraint based on the difference between normal

angles, only allowing the matching if the difference of normal angles from both

points is less than 45 degrees. A similar approach is used by [36] to match points245

only if their intensity compatibility is greater than a given threshold. The ap-

plication of constrained correspondence methods is similar to the pair rejection

methods discussed in Section 2.5.

Further enhancement of the nearest neighbour search is made possible by

using low dimension descriptors of the point cloud geometry as a basis for point250

matching. The implementation is typically realized through the definition of

an enhanced distance measure, d(pj ,qk), that is a weighted function of the

properties attributed to the two points, pj and qk,

d(pj ,qk) = αde(pj ,qk) + βdf1(pj ,qk) + γdf2(pj ,qk), (1)

where d is the enhanced distance, de is the Euclidean distance from a point pj ,

of the input, to a point qk on the reference, df1 and df2 are feature distances255

associated with pj and qk, and α, β and γ are weights applied to de, df1 and

df2 , respectively. The weightings are usually set empirically through trial and

error.
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Feldmar et al. [37] present a similar enhancement to the nearest neighbour

search with the application of normal vectors. With their approach, the search260

space for point matching grows from three to six dimensions. Contributions

from [38], [39], and [40] cover the application of curvature, moment invariants,

spherical harmonic invariants, colour, and intensity as descriptors applied to the

matching process.

An alternative to using the distance across points is to use high dimensional265

features of the point cloud geometry to drive point correspondence [41]. Such

methods are often applied to coarse registration due to their robustness to a large

initial misalignment between point clouds. Their application to fine registration

is not explored in this paper.

2.4. Weighting270

The weighting of matched pairs uses local or global contextual information to

modify the distance function associated with each pair. The intent is to influence

the individual contribution of matched pairs to the minimization process thereby

improving the ICP performance.

Weighting by distance [36] assigns lower weights to pairs with greater sep-275

aration. Another approach is to weight according to the scalar product of the

normal vectors associated with the paired points, reducing the contribution

of those pairs with disparate normals [13]. These strategies are applied in this

study along with the baseline of constant weighting applied to all matched pairs.

Given previous studies [13, 27], the expectation is that pair weighting will not280

be a significant factor in the performance of ICP variants.

Khoshelhama et al. [42] propose a weighting method based on the variance

in the depth axis of an image given by a Kinect sensor. This approach is not

suitable for the LiDAR data of this study as the approach requires the variance

to be equal in all axes.285

2.5. Rejection

Pair rejection extends the pair weighting operation by discarding those pairs

that disrupt the minimization of the distance function. This process seeks to im-
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prove the convergence of the algorithm by eliminating pairs representing “false

positives”, points without overlap, or point pairs that are outliers. As such,290

the rejected pairs do not contribute, in their number or in their error, to the

distance error function used for minimization (see Section 2.6).

Besl et al. [11] did not include the rejection of matched pairs as a formal stage

of the ICP algorithm. They did however identify that outliers and occlusions

negatively impact the performance of ICP and identified the mitigation of their295

affect as an area of future work.

The Euclidean distance of the paired points provides a simple and powerful

way to identify outliers or occluded points [24]. The simplest approach is to

use a fixed threshold distance, across all points and all iterations, as a basis

for rejecting points. This approach has significant limitations due to variations300

in point cloud geometry, poor robustness to different point matching scenarios,

and the global reduction in average distance as the solution converges.

Zhang [24] proposed an adaptive distance threshold based on the mean and

variance of the distances between pairs. In their approach a target optimal

average error is used to dynamically calculate a distance threshold as a function305

of the mean and variance across all point pairs. An alternative formulation

([13, 35]) applies a threshold percentage to identify the worst pairs ordered by

distance. The threshold percentage approach is robust, but the appropriate

setting of the threshold percentage is dependent on the type of registration

problem. For the fine registration example problem used in this study, a 10%310

threshold for pair rejection was applied to all scenes, determined through trial

and error.

Point normal comparison [13] provides a similar rejection method as the

threshold distance. A large difference in the normals of matched points sug-

gest that points do not share the same local geometry, providing a means for315

rejection. In this study, a fixed 5 degree angle threshold is used.
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2.6. Minimization

The last step of the ICP algorithm is to minimize a measure of the fit between

the two point clouds given a set of match point pairs. A distance function is

used to describe the fit, and typically takes the form of point-to-point or point-320

to-plane distances.

The point-to-point distance corresponds to the minimum distance between

a query point p̃j from the input cloud to a point qj in the reference point cloud,

where ‘j’ denotes the pair index. Computing the average point-to-point distance

over all (N) match point pairs provides the following quadratic error function,

E (R, t) =
1

N

N∑

j=1

wj

∥∥∥qj − (Rpj + t)︸ ︷︷ ︸
p̃j

∥∥∥
2

, (2)

where R is the rotation matrix and t the translation vector that together are

used to align the two point clouds, N is the number of matched point pairs

and wj is a weighting factor for pair j. The aim of the ICP algorithm is to

find the R and t applied to pj that minimize the distance to qj . The relative325

contribution of point pairs to the minimization task is set by the weighting wj ,

see Section 2.4.

Nuchter [43] examines different methods to solve Eqn. 2. The singular value

decomposition is used to compute the transformation, based on considerations

of simplicity and performance.330

The point-to-plane distance corresponds to the closest distance from a query

point p̃j in the input cloud to a plane representative of the local geometry around

the point qj in the reference point cloud. The quadratic error function for the

set of (N) match pairs is then expressed as,

E (R, t) =
1

N

N∑

j=1

wj

∥∥∥
(
qj − (Rpj + t)︸ ︷︷ ︸

p̃j

)
· n̂j

∥∥∥
2

, (3)

where the point-to-plane distance is expressed by the dot product of the unitary

normal vector of the plane, n̂j , and the distance between p̃j and qj .
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The rotational matrix, R, is a non-linear function of the rotational angles

α, β and γ of the three coordinate axes x, y and z, respectively. It is assumed

that rotational angles will be small, thus the cos(θ) can be approximated to 1335

and the sin(θ) to θ. This is a reasonable assumption for closely spaced scans

(i.e. consecutive scans from a fast LiDAR). The linear equation obtained with

the above approximation is of the form of Ax = b.

Segal [44] presents the Generalized-ICP as a generalization of the total least

squares algorithm formulated by [45]. ICP point-to-point and point-to-plane as-340

sume that points of both input and reference clouds have isotropic and identical

probability distributions. Generalized-ICP minimization assumes that points

of both point clouds are locally Gaussian distributions. Maximum-likelihood

estimation is used to iteratively compute the transformation T (formed through

the combination of R and t, minimizing the distance function, d.345

The minimization function for Generalized-ICP could be based on either

point-to-point or point-to-plane representations. However, no examples of using

a point-to-point distance function for Generalized-ICP were identified in the

literature. Therefore, the Generalized-ICP formulation in this work is based

only on the point-to-plane distance function.350

3. Evaluation framework

The methodology we adopt in this study is to take a selection of strategies

for each stage in the ICP computation, and perform an evaluation of the ICP

variants formed through various combinations of the composite algorithms. The

large number of potential alternatives at each stage mandates judicious selection355

of those algorithms to be compared. For reasons of practicality the study is

limited to those methods either in common use or, where many alternatives are

available, those thought to be in some sense superior.

3.1. Selected methods and their implementation

Table 1 summarizes the methods used to compose the ICP variants. In360

total there were 20,736 variants examined. ICP variants are identified by an
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alphanumeric code where each letter or number represents a different method.

The code de4z1α1, for example, employs: (i) geometrically stable sampling

(code d) and entropy feature filtering (code e) for point selection; (ii) bounded

radius (code 4) for neighbourhood selection; (iii) nearest neighbour enhanced365

by normals (code z) for point matching; (iv) distance (code 1) weighting; (v) no

rejection (code α); and (ii) point-to-plane ICP (code 1) for minimization.

Table 1: Selected strategies for performance comparison.

Stage Code Strategy

Points selection

a All points [11]

b Outliers removal filter [46]

c Density filter [28]

d Geometrically stable sampling [25]

e Entropy feature filter [27]

f Dimensionality based selection [27]

Neighbourhood

selection

1 Constant

2 Entropy feature minimization [32]

3 Density adaptation [33]

4 Bounded radius [47]

Point matching

x Nearest neighbours (NN) [11]

y NN enhanced by moment invariants [38]

z NN enhanced by normals [37]

Weighting

0 Constant [11]

1 Distance [36]

2 Normals compatibility [13]

Rejection

α No rejection [11]

β Distance by worst percentage [13]

γ Angular deviation [13]

δ Adaptive distance by variance [24]

Minimization

0 Point-to-point [11]

1 Point-to-plane [12]

Continued on next page
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Table 1 – Continued from previous page

Stage Code Strategy

2 Generalized [44]

The methods selected for evaluation have been implemented in a bespoke

software framework written in the C++ language for the purpose of comparative370

evaluation. The implementation provided a single source for selected methods,

allowing the combination of methods to be easily controlled - no such source for

all methods exists in the public domain. Standard strategy and decorator design

patterns [48] were employed to facilitate efficient use of code and allow dynamic

control over the combinations of methods that compose an ICP variant. Imple-375

mented methods were verified against various public domain codes, including:

Point Cloud Library (PCL) [49], an open-source library of algorithms for point

cloud processing; the 3D Toolkit (3DTK) [43], an open-source library special-

izing in 6D-SLAM; and the Robot Operation System (ROS) [50], open-source

libraries for creating robot applications.380

The parameterization of each method was determined using a training data

set and incorporating the method in a “plain” ICP point-to-point variant. The

parameters chosen were those that provided the best scan registration for each

scene. This process, and the ICP analysis that followed identified that the

optimal set of parameters for a method depends on the geometry of the scene,385

and a configuration that works well on one scene may not work well with another

scene. The dynamic modification of parameters based on the geometry of the

point cloud should be a consideration for further studies.

The point selection methods examined are implemented through a decoration

pattern [48] that allows different combinations of methods to be explored. The390

order in which methods are applied is as follows: outlier removal method is

applied first to reduce the outliers in the point cloud, followed by a density filter

that evaluates the density distribution throughout the point cloud, then the
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point cloud is sampled by the geometrical stable sampling method, and finally

the entropy feature filter or dimensionality selector methods are applied to what395

remains. Variations of point selection are obtained by including different stages

to give a total of 24 considered combinations.

Likewise rejection methods follow a decorator pattern allowing individual

methods to be used in combination. If rejection by distance and normal are

used in combination, rejection by distance is applied first to provide an “initial400

cut”.

Various methods require normal vectors to be computed. Normal vectors

are a geometric property of surfaces discretized by point clouds and each point

in a cloud can be considered to have an associated normal that is recovered from

neighbouring points. Numerous approaches have been proposed for determining405

normal vectors. For example, the use of k nearest neighbours to fit a tangent

plane a point [51, 52] or a local quadric surface of similar [53]. Klassing et al. [54]

evaluated several methods to estimate normal vectors on a point neighbourhood,

finding that principal component analysis (PCA) is the superior alternative in

performance and speed. The PCA approach is used for the work in this paper.410

3.2. Constructing a map using ICP

Each ICP variant is tested for its ability to construct a map given a sequence

of consecutive scans from a moving sensor. The map is the consolidation of

all points into a common frame of reference. For this work 100 consecutive

scans were used to construct a map. Scan matching errors accumulate with415

consecutive scans and the rate of growth is considered an important measure of

ICP variant performance.

Algorithm 1 describes the procedure that constructs the map. For each new

scan the ICP variant was run until convergence was achieved or a maximum

number of iterations of the minimization loop was reached. Convergence was420

established on a basis of a threshold on the improvement in the accuracy of

the registered scans across an iteration. The value of the threshold was deter-

mined using a training data set and observing the characteristics of the three
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minimization methods.

Algorithm 1: Mapping procedure

Data: A set of successive scans {Si} (point clouds). TG
0 is the initial

transformation to the global (ground-truth) frame. T0 is the
initial transformation. Ti is the transformation of the i-th scan
relative to the i− 1 scan. Mi is the i-th scan transformed into the
global (map) frame.

Result: M is the map (point could) generated by the union of the
transformed scans.

begin
S0 ← getScan();

T0 ← TG
0 ;

M0 ← T0S0;
S1 ← getScan();
while Si+1 6= ∅ do

Ti ← ICPvariant(Si−1,Si)
TG
i = T0 · · ·Ti−1Ti;

Mi ← Si(TG
i ) ;

M←
i⋃
0
Mi;

Si+1 ← getScan();

3.3. Performance metrics425

The performance of an ICP variant is assessed using the consolidation of

100 scans (5 seconds of truck motion) to produce a map that can be compared

to a ground truth consolidation of the same set of points. ICP performance

is quantified by three metrics: accuracy, precision, and relative computational

cost.430

Accuracy

The accuracy, νi, describes the total RMS error between the consolidated

map, after the i-th scan, and the ground-truth. For each individual scan the

RMS error is,

Ei =

√√√√ 1

ni

ni∑

j=1

∥∥∥St
i,j − S̃i,j

∥∥∥
2

, (4)
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where St
i,j is the the truth location for the j-th point of scan i and S̃i,j defines

the measured point cloud of scan i transformed using ICP registration. ni is the

number of points of the i-th scan. Note that the RMS error for scan i includes

the accumulated error associated with the ICP registrations of all previous scans.435

Using 4, the total RMS error associated with the consolidated map con-

structed from i consecutive scans is defined as,

νi =

√√√√ 1
∑i

k=1 nk

i∑

k=1

E2
k nk. (5)

The expectation is that each scan registration introduces an error, and the total

RMS error grows with each consecutive scan. It is the rate of growth of this

error that is important as a measure of the effectiveness of the ICP variant for

a given scene.

For this study, ICP variants are considered accurate if νi=100 ≤ 0.2 m.440

Though the mapping quality requirement will vary with the specific applica-

tion scenario, this value is indicative of the level of uncertainty that might be

tolerated for a range of autonomous activities in mining.

Precision

The precision measure looks at the variation in the growth of the total RMS

error relative to a monotonically increasing error from E1 to Ei. Across a range

of scans, from 0→ i, the precision ρi is given by,

ρi =
1

i

i∑

k=1

∥∥∥Ek −
(
m.(k − 1) + E1

)∥∥∥, (6)

where m is the gradient of the straight line that joins E1 and Ei.445

Figure 2 shows the evolution of the RMS error, Ei with each scan i for

two ICP variants. A relative comparison of the variants reveals Variant 2 to be

accurate but not precise, while Variant 1 is precise but not accurate. A potential

conclusion is that the less precise Variant 2 is more sensitivity to the change

in geometric information as the sensor moves and perceives the scene from a450
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different perspective. If the performance across different scenes were compared,

then an alternative conclusion could be that the more precise solution is related

to a consistent quality of geometric information among the series of scans.

For this work, ICP variants are considered precise if ρ ≤ 0.1 m.
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Figure 2: RMS error, Ei, for two ICP variants over 100 consecutive scans. i is the scan
number.

Relative computational cost455

The computational cost of each variant was quantified using a relative mea-

sure that compares the computation time relative to the fastest ICP variant.

The relative computation time (rct) is describe as a ratio of computation times,

such that rct ≥ 1 for all variants.

While it is noted that the computational tractability of an ICP variant will460

depend, for a given scene, on the hardware used, the level of code optimziation,

and the time available for map updates, the relative measure provides a conve-

nient ranking of variants that would be expected to be consistent among these

variables.

An ICP variant is considered computationally efficient if rct ≤ 3. This465

somewhat arbitrary value is intended to filter the large number of ICP variants

with a preference to those that are fastest to converge.
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4. Evaluation data set

The dataset used for this study is based on measurements from a Velodyne

HDL-64E [55] sensor mounted to a Caterpillar 777B haul truck, see Figure 3.470

The LiDAR has a 360 ◦ horizontal field of view and a 26.8 ◦ vertical field of view.

The sensor was configured to scan at 20 Hz with an azimuth resolution of 0.09 ◦.

Range measurements provided by the LiDAR unit have a standard deviation of

0.02 m and a maximum range of 120 m.

Figure 3: Mounting of Velodyne, and pose solution hardware on a Caterpillar 777B haul truck.

The LiDAR, GNSS/IMU navigation system and associated components were475

mounted to the front of a Caterpillar 777B haul truck, as shown in Fig. 3. The

mounting configuration provided the Velodyne with a 180 ◦ field of view in front

of the truck.

A ground-truth scan was established using the pose of the truck as measured

by an Applanix POS LV 420 positioning system [56] that fuses an RTK GNSS480

solution with high accuracy inertial measurements. The Applanix navigation
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system has an RMS accuracy of 0.02 m in ground plane coordinates, 0.05 m in

vertical coordinates, 0.015 ◦ in roll and pitch, and 0.02 ◦ in yaw.

The Velodyne LiDAR is registered to the navigation solution using the

method described in [57] and has been assessed as being precise to 0.01 m and485

0.05 ◦ for translation and rotation parameters respectively.

The Velodyne scans registered by Applanix were verified through compar-

ison with a FARO Focus3D Terrestrial Laser Scanner [58]. The FARO sensor

provides a one sigma range error of 0.3 mm at ranges of 10 m for 90% reflec-

tions with a beam divergence of 0.009 ◦. A dual axis inclinometer levels each490

scan with an accuracy of 0.015 ◦. A high density point cloud is generated with

a possible vertical and horizontal step size of 0.009 ◦ and 0.036 ◦ respectively.

The map generated by fusing scans registered with the navigation solution were

found to be within 0.2 m RMS of the corresponding FARO scan, giving confi-

dence in the ground truth. The RMS was calculated by finding the minimum495

distance of a point from a triangulated version of the FARO point cloud. The

quality of the terrain map generated by combining the Velodyne data with the

navigation solution reflects the range accuracy available with the sensor and the

registration errors associated with the LiDAR and the navigation sensors.

The data for this study was logged as the truck drove along a 350 m section of500

haul road, see Figure 4. From this route, three sections of travel were segmented

to provide the scene data used in this paper: Scene A represents a loading area;

Scene B represents a haul-road entering/leaving the loading area; and Scene

C represents an area where material is stockpiled. Each scene comprises five

seconds of data which equates to 100 individual scans from the Velodyne sensor.505

Each scan contains approximately 84,500 points.

The scenes are considered representative of a haul-truck route, from the

working face to a stockpile area, and terrain perception in these areas is impor-

tant for the introduction of automation technologies and for enhancing opera-

tional safety. Details of the scenes are given below by a representative photo-510

graph of the work area and the consolidation of 100 scans segmented for each

scene and registered against the truck navigation solution.
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Figure 4: The haul road sites (scenes) chosen for this study (Image from Google Inc., 2014).

4.1. Scene A: loading area

Scene A is a loading area and includes an excavator digging a working face,

see in the right of Fig. 5a. The terrain has a low slope with some vegetation and515

rocks. The scene contains an electric mining shovel, the trailing power cable of

the shovel, a pool of water and a berm. The haul truck is visible in the left of

Fig. 5a. The average speed of the truck through the scene is 1.65 m/s, giving

an average sensor movement between consecutive scans of 0.0825 m.
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(a) Scene A: the load area with truck (left) and excavator (right).

(b) Scene A: Consolidated ground truth point cloud viewed from
above-right.

Figure 5: Scene A: The loading area.

4.2. Scene B: haul road520

Scene B is a typical haul road segment, taken from the route between the

excavator work area to the stockpile scene, Fig. 6. The truck drives up-hill

towards a sheet rock wall approximately 5 m high covered with abundant vege-

tation. The road is relatively flat with rock and vegetation to the sides of the

road. The average speed of the truck through the scene was 2.39 m/s, with525

0.12 m average sensor position movement between consecutive scans.
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(a) Scene B: haul road segment.

(b) Scene B: Consolidated ground truth point cloud viewed from
above.

Figure 6: Scene B: haul road.

4.3. Scene C: stockpile area

Scene C is a stockpile area, see Fig. 7. The terrain is flat and without

vegetation. The principal features are two stockpiles of the road-base product

produced at the site. The average speed of the truck through the scene was530

2.88 m/s, giving 0.14 m movement in sensor position between consecutive scans.
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(a) Scene C: the stockpile area.

(b) Consolidated ground truth point cloud viewed from above.

Figure 7: Scence C: Stockpile area. The terrestrial survey station used to evaluate the ground
truth is visible in Figure 7a, but not present in the scan image (Figure 7b).

5. Results and observations

The observations that follow are based on 62,208 ICP-variant/scene combi-

nations, comprising 20,736 distinct variants applied to the three different scenes

(data sets) described in Section 4. Observations are grouped into those general535

to the application of ICP for terrain mapping tasks in a typical mining envi-

ronment, and those that focus on the composition of the ICP algorithm. The

performance metrics of accuracy, precision, and relative computational cost are

used to form these observations.
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5.1. General observations on the application of ICP540

Figure 8 presents a summary of ICP performance in the form of a set di-

agram that separates ICP variants by the performance metrics and the three

terrain scenes. Overlapping regions identify the number of variants that meet

more than one of the performance requirements. For Scene A, 130 distinct ICP

variants simultaneously meet the accuracy, precision, and efficiency thresholds,545

and were considered successful variants. For all scenes, all accurate variants

also satisfied the precision requirement. One perspective on this is that the

precision metric provides a measure of the consistency of geometric information

between consecutive scans. Since the data sets of this work were collected over

less than 15 m of movement of the sensor, the captured features in the scene will550

be consistent across the series of scans. Applying a similar perspective to the

accuracy metric, scenes that contain features such as planes and well defined

regular structures, e.g. Scene A, are more suited to the application of ICP.

Scene A
20,736

PrecisionAccuracy

E ciency

2,156 13,063

2,933

2,156

130 1,509

Scene B
20,736

259 14,729

1,692

259

4 1,048

Scene C
20,736

597 8,185

3,302

597

65 1,233

PrecisionAccuracy

E ciency

PrecisionAccuracy

E ciency

Figure 8: Interception of variants in the performance tolerances for the whole data set.

Observation 1: No single variant satisfies all performance criteria.
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The intersection of all performance metrics across all scenes is an empty555

set, see Figure 8, indicating no single variant is able to satisfy all performance

metrics when applied to all scenes. The result is largely due to the small number

of variants (18 of 20736) that were able to meet the accuracy requirement for

each of the three data sets. If the allowed threshold were increased to 0.3 m

then 975 variants would be considered accurate and the likelihood of a variant560

also meeting the precision and computation cost requirement would increase

significantly.

There are several conclusions that could be drawn from this observation:

1. The practical application of ICP to terrain mapping is difficult when ap-

plied to “natural” terrains and requires the careful cultivation of data sets565

and the fine tuning of variants to the individual scene.

2. There are gaps in the available strategies that make up an ICP algorithm

that means existing variants are not well suited to the terrain mapping

task posed in this paper. Here the mapping task combines the types of

scenes and the approach to forming a consolidate map from a series of570

scans.

3. The proliferation of strategies for ICP algorithms is, in part, attributable

to the search for methods that can be more generally applied to scan

matching.

Observation 2: The quality and computational cost of the ICP based terrain575

mapping solution varies significantly across the ICP variants, making judicious

selection of the ICP variant an imperative if minimum levels of performance

must be met.

The scatter plot of Figure 9 highlights the large spread in the quality of the

scan matching provided by the ICP variants. A significant factor here is the580

presence of a large number of outliers due to what can be considered poorly

constructed algorithms for the task. Specifically, all variants using point-to-

point minimization perform poorly and enhance the appearance of spread in

the data. If the variants using point-to-point minimization were removed, the
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accuracy range is reduced to 5 m and the precision range to 1 m. Also, the585

remaining set of variants provide a more compact set for Scene A, followed by

Scene B then Scene C. As noted previously, this trend is indicative of the quality

of information available in the point clouds.

The challenge then for applying ICP is to identify the composition of suc-

cessful ICP variants such that strong candidates for general application can be590

formed. The compositional elements of successful ICP variants is covered in

Section 5.2.
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Figure 9: Precision (ρ) vs accuracy (ν). Vertical and horizontal line delimited the tolerance
region for accuracy and precision respectively.

Observation 3: The performance of ICP variants depend on the scene.

Both the summary set diagram of Figure 8 and the scatter plot of Figure 9

show the impact of the difference scenes on the performance of ICP variants.595

The scene differences are twofold: (i) the data collection meant that the sensor

movement between consecutive scenes was smallest for Scene A and largest

for Scene C, and the registration task is more difficult the larger the initial

separation of the point clouds; and (ii) the geometry differences in the scenes

mean that variants do not work equally well for each scene.600

This observation is consistent with [15] who showed the performance of ICP
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variants differ significantly across different data sets. It represents a key issue in

the use of ICP, namely that each data set seemingly has its own best variant for

scan matching, and is a potential reason for the proliferation of ICP variants to

address the challenges of different scenes. It is also suggestive of the potential605

for improved methods being applied to ICP. These two points focusses the chal-

lenge for ICP towards identifying those combinations of methods that generally

perform well across different scenes.

It is insightful to understand why, across all ICP variants, Scenes A and B

have tighter accuracy and precision than Scene C, see Figs. 5, 6 and 7 to refer610

to the scenes. Observe that Scene C has a planar ground plane, consequently,

scan matching for this scene are prone to sliding. This is believed to be the

cause of the significant variation observed, and in particular, accounts for the

large number of outliers. Scene A exhibits the best overall performance. The

excavator present in this scene provides two large flat and orthogonal regions615

in the point cloud that become effective features for accurate scan matching.

Scene B performs well generally but has fewer accurate and precise variants

when compared with Scene A. Scene B is characterized by significant vegetation

(scattered distribution of points) to the sides of the road and a significant rock

wall that is irregular in form and on which the calculation of point normal is620

sensitive resulting in local minima.

Figure 10 uses an accuracy heat map to visualize the correlation in perfor-

mance of ICP across the three scenes. Scenes A and B present similar geometric

features, with vertical and horizontal planes needed to constrain the solution.

There is moderate correlation between the performance of ICP variants applied625

to Scenes A and B. The performance of variants on Scenes B and C are uncor-

related.
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Figure 10: Comparison of ICP variant performance across the three scenes in terms of the
accuracy performance metric. Variants that returned an accuracy of better than 1 m on at
least one scene are shown.

Observation 4: Computational efficiency is not traded for computational

accuracy or precision.

This observation runs contrary to the general expectation that an investment630

in computation time will yield a return on solution accuracy and precision. The

relative computation cost and accuracy for the 20,736 variants show the two

metrics to be uncorrelated, although it is to be expected that some combinations

of methods will in general perform more accurately, more precisely, and have

lower computation efficiency than others.635

The computational cost of applying ICP is influenced by several factors:

(i) optimization of software implementation; (ii) processing limit imposed by

hardware; (iii) the amount of processing of point cloud data, in particular the

calculation of features; and (iv) the number of iterations required for the solution

to converge. The use of relative computation cost is intended to negate the640

impact of (i) and (ii), leaving (iii) and (iv) as key factors for computational

performance.

The coupling of computational cost to the particular composition of strate-

gies in an ICP variant makes it difficult to isolate the significance of the different
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computational strategies. As a general rule however, variants requiring the cal-645

culation of features from the point cloud data attract a computational cost.

Figure 8 shows Scene B having almost half the number of computationally effi-

cient variants as Scenes A and C. The dominant features of Scene B are large

amounts of vegetation and a rough vertical wall along the road. This makes

point correspondence more difficult and more iterations of the algorithm are650

required to converge. In contrast, the vertical faces of the excavator in Scene

A support convergence to accurate solutions, and the large flat ground plane in

Scene C leads to fast convergence to local minima.

5.2. Observations on ICP variant composition

The discussion so far has highlighted the sensitivity of the ICP performance655

to the composition of the algorithm and the point cloud geometry information

available in the different scenes. The challenge is to identify those combinations

of methods that are best performed across the three scenes in anticipation of

these being well performed for scenes generally. The selection of the variants

judged to be best is made by thresholding against the metrics of performance660

in the three scenes together by taking the average. Three sets of variants are

identified: (i) the set of accurate variants; (ii) the set of precise variants; and

(iii) the set of fast variants, see Figures 11, 12, and 13.

The set of accurate variants comprise those with accuracy of less that 0.2 m;

0.0868 % of the 20,736 ICP variants are considered accurate. Precise variants are665

those whose precision measure across the three scenes is less than 0.1 m; 35.9 %

fall below the precision threshold. Computationally efficient variants comprise

those whose relative computation time is less than 3; 6.08 % of variants fall

below the relative computation time threshold.

Figures 11, 12, and 13 are visual depictions of the composition of the sets of670

algorithms that are considered accurate, precise, or computationally efficient,

and are used to support the observations. The alpha numeric codes of Table 1

are used to identify the most effective methods based on the performance met-

rics. An example reading of these relationship diagrams is as follows. Figure 11
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shows that all of the most accurate variants use point-to-plane (Method 1) min-675

imization and 33.3 % apply pair-rejection in the form of Method γδ (where γ

refers to angular deviation and δ to adaptive distance methods). The most ac-

curate, precise and computational efficient solution uses Method γδ, and this

is indicated by the solid green circle, the solid blue square and the solid red

triangle, respectively. Similarly, 66.7 % of the variants use Method z (nearest680

neighbour enhanced by normals) for point matching, with the most accurate

variants in this set. And so the diagram continues with 16.7 % of ICP variants

using the combination of Methods b (outlier removal) and f (dimensionality

selection) for point selection. All three weighting methods are appear equally

across the variants. The most accurate variant, on average, has the alpha nu-685

meric code: bf4z0γδ1.

The 0.0868% of 20,736 ICP variants are within the accuracy tolerance for the three scenes ( ν ≤ 0.2m). 
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Figure 11: Method relationship diagram within the accuracy tolerance.

Observation 5: Minimization is best performed by point-to-plane and is

preferred over generalized and point-to-point distance minimization.

Figures 11, 12, and 13 show all the accurate variants, 65.7 % of precise vari-

ants, and 44.7 % of computationally efficient variants use point-to-plane mini-690

mization. Figure 14 shows the performance of the ICP variants using a larger

sampling of the variants. Point-to-point minimization performs poorly on all

33



The 35.9% of 20,736 ICP variants are within the precision tolerance for the three scenes (ρ ≤ 0.1m). 
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Figure 12: Method relationship diagram within the precision tolerance.

The 6.08% of 20,736 ICP variants are within the computational efficiency tolerance for the three scenes (rct ≤ 3). 
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Figure 13: Method relationship diagram within the relative time tolerance.
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scenes, and point-to-plane minimization performs best. For all methods, Scene

C proved the most difficult to achieve an accurate result. This is likely to be

attributed to the greater sensor movement between consecutive scans and the695

dominant geometry features that allow convergence to local minima.

This observation is consistent with [35] and [13], both papers finding that

point-to-plane minimization was more accurate than other methods. The overall

failing of point-to-point based variants is due to the inherent error in trying to

find correspondence between sets of points that come from a moving sensor700

that sees different parts of the scene in consecutive scans. In this scenario the

performance of point-to-point minimization is constrained by the point density

of the scan, with higher point densities more likely to provide suitable point

correspondences.

The point-to-plane approach, where points are paired with surfaces, makes705

the ICP algorithm robust to sensor movement and to variation in the geometric

content of a scene. The generalized ICP variants also use a point-to-plane

distance function and have similar performance to point-to-plane when applied

to Scenes A and B, although attracting a higher computational cost.
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Figure 14: Performance of minimization methods in terms of the accuracy for the different
scenes. The box plots show spread of variant accuracy among the best 1000 variants that use
the particular minimization method.
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Observation 6: Pair rejection is important for improving the quality of710

the scan matching. Rejection by angular deviation can be used effectively in

combination with rejection by adaptive distance and rejection by worst distance

percentage.

Pair rejection removes outlying point-pairs as a means to improve the appli-

cation of the distance function as a measure of the misalignment between the715

two point clouds. The additional calculation may attract a computational cost

but should improve convergence.

Figure 11 shows all of the most accurate variants employed some form of

rejection, with the dominant method being to reject point pairs based on the

difference in their local normals (Method γ) which is applied in combination720

with other methods. This suggests that rejection is an important step in the

registration process. Figure 15 reinforces this idea showing that variants that

make use of some form of rejection out-perform variants that do not use pair

rejection.
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Figure 15: Performance of rejection methods in terms of accuracy. The box plots show the
spread of variant accuracy among the best 1000 variants that contain the particular rejection
method (either in isolation of in combination with others).

Among the set of most accurate methods, 100 % employ the rejection by725

angular deviation algorithm (Method γ) [13], in combination with rejection by
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adaptive distance (Method δ) (33.3 %) [24] or rejection by worst distance per-

centage (Method β) (11.1 %) [13]. The three methods (Methods βγδ) applied

together account for 55.6 % of the most accurate variants. Method γ also ap-

pears in 53.8 % of the most precise variants in combinations with Methods β730

and δ.

Figure 13 shows that no rejection is the fastest rejection method on average,

however angular deviation rejection has slightly more variants in that zone than

no rejection at all.

Observation 7: Bounded radius is the preferred method for neighbourhood735

selection.

Neighbourhood selection is used to determine the set of points to be used to

characterize the local geometry around a point. From Fig. 11, all of the most

accurate variants employ the density bounded radius [30] for neighbourhood

selection making it a compelling choice among the variants considered. This740

approach allows the local neighbourhood to be scaled according to the level

of noise in the point cloud data. Being relatively computationally expensive,

the method does not feature among the fastest ICP variants, see Fig. 13. As

expected, applying a constant neighbourhood for all points (Method 1) is the

fastest approach.745

Figure 16 shows the performance of constant, entropy feature, and density

based neighbourhood selection to be similar. The bounded radius approach is

superior on all scenes, however the overlap with other methods might suggest

that tuning of the methods is required or that other phases of the ICP algorithm

are more critical to the overall performance.750

Observation 8: Use nearest neighbour enhanced by normals for point match-

ing.

From Fig. 11, 66.7 % of the most accurate variants use nearest neighbour

enhanced by normals [37] for point matching. This appears to be the most

accurate variant on average. However, while precision is generally correlated755

with accuracy, the most prevalent point matching method (36.2 %) in the group

of precise ICP variants is nearest neighbour enhanced by normals, although
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Figure 16: Performance of neighbour selection methods in terms accuracy for the three scenes.
The box plots show the spread in variant accuracy among the best 1000 variants that use the
particular neighbourhood selection method.

a significant proportion (30.5 %) are nearest neighbour enhanced by moment

invariants [38]. The most common point matching method (44.3 %) among the

fastest variant is, not surprisingly, nearest neighbour matching [11], this being760

the simplest algorithm.

Whilst point matching is an important step in ICP, none of the three algo-

rithms considered is remarkably better than the others. However, the accuracy

results shown in Fig. 11 suggest that methods that constrain the point cor-

respondence based on the consistency of low dimension descriptors within the765

neighbourhood of points work well for the fine registration task of this work.

Observation 9: There is no clear preference among point selection methods.

The selection process serves two purposes: (i) to remove points that impede

finding correspondence between the geometry present in two point clouds; and

(ii) to reduce the total number of points used during the ICP iteration phase.770

Figure 11 shows that while some form of filtering of data points is required to

deliver accurate ICP registration, there are many combinations of filters that

can be effectively applied. Of the 18 variants that are classified as accurate,

there are six different point selection approaches that are used.
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The performance of a larger sampling of the variants is shown in Figure 17.775

Intuitively point selection is an important aspect of ICP and the appropriate

level and type of selection is related to the scene and its representation as a

point cloud. However, there are no strong preferences that emerge among the

alternatives.
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Figure 17: Performance of point selection methods in terms of variant accuracy. The box
plots show the spread in variant accuracy among the best 400 variants that use the particular
strategy. See Table 1 to identify the selection methods.

Observation 10: There is no preference among weighting methods and this780

stage can reasonably be removed from the ICP algorithm.

Across the sets of accurate, precise, and computational efficient variants,

see Figures 11, 12, and 13, there was no preference for a particular weighting

strategy. Figure 18 shows that ICP performance is insensitive to the derating

of matched pairs through the application of a weighting. This is consistent with785

previous studies [13] [27], and suggests that the ICP algorithm does not benefit

from the application of a weighting for the contribution of matched pairs to the

distance function.

This result constrasts with that for rejection which showed that ICP perfor-

mance benefits from the complete removal of matched pairs.790
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Figure 18: Performance of weighting methods in terms of accuracy among the best 1000
variants. The box plots show the spread in variant accuracy among the best 1000 variants
that use the particular strategy.

6. Conclusions

This paper provides an evaluation of 20,736 variations of the ICP algorithm

for scan matching, using a terrain mapping task and example scenes from a sur-

face mining environment. The ICP variants were constructed from combinations

of published methods for the computational elements that comprise an ICP al-795

gorithm: point selection; neighbourhood selection; point matching; weighting;

rejection; and minimization. Using the performance metrics of accuracy, preci-

sion, and computation efficiency, there was no single preferred variant, however

some general patterns/guidance for the construction of an ICP algorithm do

emerge.800

Specifically:

• Minimization by point-to-plane distance of [12] outperforms other distance

minimization methods. It was common to all ICP variants that were able

to meet the accuracy criteria. The point-to-point distance function should

not be used for terrain scan matching due to errors with finding point805
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associations between point clouds that contain measurements to different

points in the scene.

• Point matching is best achieved using the nearest neighbour with normals

algorithm of [37]. All point matching methods employ a variation of near-

est neighbour to establish the correspondence relationships between two810

scans being matched. The variations apply constraints to the closest point

strategy used to find point correspondence. For the scenes of this paper,

local normals provide an effective discriminator for matching points.

• Rejection is an important stage of the ICP computation due to the removal

of point pairs that disrupt the minimization of the distance function. Re-815

jection was most effectively achieved by the angular deviation method

of [13] alone or in combination with the adaptive distance method of [24]

or the worst percentage distance rejection method of [13].

• Neighbourhood selection should be completed using the bounded radius

method of [30]. This method uses the local curvature and point density820

to determine the radius of points that best describe the local geometry.

• There is no clear preference for point selection methods. Interestingly,

though point selection based on the retention of planar characteristics

appeared, alone or in combination with other methods, in 87 % of accurate

variants, it was not part of any of the precise variants.825

• The weighting of paired points provide no clear benefit to the ICP process,

with an equal presence of the three weighting methods in ICP variants that

were either accurate, precise, or computationally efficient.

These findings overlap the observations of [13] and focus attention on the

need to find means for enabling robust scan matching across different point cloud830

distributions. Given no single method is best across all point clouds this argues

for the need to find adaptive methods that can assemble a good performing

variant given a point cloud or new methods that can tune themselves to the
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circumstances of a point cloud. To this latter point, the entropy based ideas

presented in [27] have a strong appeal in so far as they look to measure the way835

in which the point cloud is distributed. This looks to be an avenue worthy of

further exploration.

The overall objective in this paper has been to provide guidance to the

implementers of ICP algorithms for scan matching. The main conclusions are

that ICP-based mapping of natural terrain requires careful cultivation of the840

point cloud data, the appropriate selection of computational strategies that

exploit the available geometric information, and requires tuning of strategies

specific to the terrain characteristics.

This investigation has focussed on a specific environment (the terrain of

open-pit mining) for map building applications. However, much of this is com-845

mon in other settings that have irregular structure, such as natural terrain, and

these findings extend mutatis mutandis beyond the confines of this investiga-

tion.
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Research highlights 
 

 No single variant satisfies all performance criteria. 

 

 The quality and computational cost of the ICP based terrain mapping solution varies significantly 

across the ICP variants, making judicious selection of the ICP variant an imperative if minimum 

levels of performance must be met. 

 

 The performance of ICP variants depend on the scene. 

 

 Computational efficiency is not traded for computational accuracy or precision. 

 


