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Abstract 

Heart diseases are prevalent among the general population. These diseases can be diagnosed in their 

early stages through a quantitative evaluation of cardiac functions. In a typical procedure, heart 

segmentation is initially performed. Quantitative information is then obtained from a 3D 

reconstructed image of the heart. However, manual segmentation is time-consuming and prone to 

inter- and intra-observer variations. As such, automatic methods must be developed to assess cardiac 

functions quantitatively. In this study, an automatic algorithm for whole heart segmentation was 

established through window width-level adjustment and Gaussian filter-based multi-resolution 

methods. The proposed algorithm preprocesses the image by adjusting the window width and the 

centre to acquire cardiac images with clear anatomical structures. The cardiac image is then 

decomposed into several resolution layers by using a Gaussian filter to eliminate discontinuity 

associated with traditional pyramid down-sampling and decomposition. A registration-based 

segmentation algorithm is applied to the cardiac image. The proposed segmentation algorithm was 

validated with a clinical dataset of 14 cardiac dual-source computed tomography images. Results 

show that the proposed methods improve the registration accuracy of the epicardium and the 

endocardium. The volume of the manual segmentation standard is not significantly different from 

that of the proposed segmentation and the accuracy of the method reaches almost 1 mm in most areas. 

Thus, the proposed method can be used to perform a high-precision segmentation of the whole heart.  
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I. INTRODUCTION 

The rates of mortality and morbidity associated with cardiovascular diseases have increased 

over the recent years; these diseases are regarded as the primary cause of death in many countries 

including China. Patients with heart diseases do not present evident symptoms in their early stages, 

but suffer from sudden cardiac death after the onset of heart diseases [1]. Therefore, the early 

quantitative diagnosis and risk assessment of heart diseases is crucial for preventing sudden death 

and the improving the quality of life of patients.  

Computed tomography (CT), magnetic resonance imaging and other imaging technologies are 

clinically applied to perform cardiac imaging[2-4]. In this process, the cardiac function is analyzed and 

evaluated based of the heart structure through cardiac image segmentation. Cardiac images are 

segmented with manual methods that yield precise results, but involve poorly reproducible and 

time-consuming steps. Manual segmentation requires a significant amount of time, approximately 30 

min, to completely process a 3D image that consists of 100–200 2D CT images. Moreover, manual 

segmentation cannot process a large amount of imaging data to diagnose a heart disease 

quantitatively. These limitations of manual segmentation have prompted researchers to develop 

semi-automatic or fully-automatic segmentation methods for cardiac image analysis. However, the 

development of segmentation techniques remains challenging, because the heart is surrounded by 

other complex-structured organs. 

II. RELATED WORKS 

Studies on cardiac chamber segmentation have focused on the left ventricle and have used a 

model-based segmentation algorithm. This algorithm is usually based on the snake algorithm 

proposed by Kass [5] and the level set algorithm developed by Sethian [6]; these algorithms are 

collectively known as active contour models (ACM) and have been widely used in left ventricle 

segmentation [7-10]. The snake algorithm requires minimal interaction, but exhibits high sensitivity 

to initial contour, image noise and pseudo boundary. With an appropriate initial contour, it can 

produce good segmentation results. To avoid the limitations of the traditional snake algorithm, 

researchers developed a gradient vector flow (GVF) snake algorithm [11, 12] that displays a narrow 

selective scope of the initial contour. Image deformation relies on the gradient information of images; 

as such, this algorithm cannot resolve image noise sensitivity and pseudo-boundary problems. The 

GVF algorithm is also prone to the effects of local gradient information; as a result, the energy 

function decreases to a local minimum value and yields erroneous segmentation outcomes. The level 

set algorithm exhibits a higher capacity to overcome noise than does the snake algorithm. The level 

set algorithm is also used by many researchers to segment 3D and 4D images of the left ventricle 

[13-15], but this technique presents a narrow selective scope of the initial contour. This algorithm is 

also difficult to use for developing appropriate conditions for iterative termination.  

To overcome the limitations of ACMs and to improve the robustness of their associated 

algorithms, Shen et al. [16, 17] proposed an active volume model (AVM). The AVM exhibits a 

higher accuracy in segmenting the left ventricle than do the ACMs. In the initial stage, however, the 

AVM should be located in the mostly- or completely-segmented region; otherwise, the model might 

be trapped to the local minimum value and provide inaccurate results. The statistical shape model 

(SSM) is another technique used to segment the left ventricle [18]. The SSM can be classified into 

static models (SMs) and generic dynamic models (GDMs). The active shape model (ASM) is a 



typical representative of SMs [19-21]. The ASM considers the image morphology, but neglects the 

changes in space/time dynamics in different time series. However, these models are inappropriate for 

dynamic image segmentation. For example, GDMs only consider dynamic changes in space and time 

and disregard alterations in the image morphology. As such, Zhu et al. [22] combined the ASM and 

GDM to segment the left ventricle of a 4D image of the heart and achieved satisfactory results. In 

addition to model-based algorithms, the graph cut is a widely-applied technique for segmenting the 

left ventricle [23-26]. Chen et al. [27] used this method to segment the left ventricle in low-dose CT 

images and reported satisfactory results. Although the graph-cut algorithm yields good segmentation 

effects, it is a relatively complex and time-consuming process. 

Studies on cardiac chamber segmentation have mainly focused on the left ventricle, although 

the simultaneous segmentation of the four chambers of the heart is necessary to diagnose lesions in 

each chamber. Few studies have reported the whole heart segmentation by using the graph-cut 

algorithm, model-based segmentation algorithms and registration-based segmentation algorithms. 

Lombaert et al. [28] combined the graph-cut algorithm with motion cubes for a 4D heart 

segmentation. Nevertheless, this method fails to segment the whole heart, because it considers the 

four chambers as a whole unit rather than as individual parts. Ecabert et al. [29-31] performed whole 

heart segmentation through an adaptive geometric model. By contrast, Zheng et al. [32, 33] used a 

model-based method to segment a 4D image of the whole heart. In these methods, one chamber can 

only be segmented at a time; consequently, different chambers may overlap one another. Zhuang et 

al. [34] automatically segmented a 3D image of the whole heart by using a registration-based 

algorithm in accordance with the average atlas. However, in this algorithm, a standard template 

should be selected and templates should be matched [35].  

In Figure 1, the heart chambers of two individuals with highly similar cardiac DSCT images are 

characterized by similar location and shape. If the registration algorithm is accurate, single atlas can 

be used to achieve highly precise cardiac CT image segmentation. This study describes a registration 

algorithm for the precise registration of cardiac DSCT images in the following sections. The 

proposed registration algorithm is applied to segment cardiac DSCT images and to achieve 

high-precise whole heart segmentation. 

 

Figure 1. Cardiac DSCT images of two individuals 

 

III. METHODOLOGY 

In general, the morphological characteristics of the CT images of the heart from different 

individuals may be alike, therefore, registration-based segmentation algorithm can be used for whole 

heart segmentation. This algorithm searches the mapping point of each pixel in the images to be 

segmented on the template; that is, the template image is registered to the image to be segmented. 

The parameters of this relationship are recorded during registration and are used to mark and transmit 

a cardiac atlas with the prior knowledge of medical experts to complete heart segmentation. 



Registration accuracy directly affects the accuracy of the segmentation; as such, only a precise 

registration can accurately complete the whole heart segmentation.  

A. Segmentation Framework 

A multi-resolution-based method is used to register the template and cardiac DSCT images to 

be segmented, with the former being the floating image and the latter being the reference image. 

Figure 2 shows the registration algorithm framework used in this study. For registration-based whole 

heart segmentation, the cardiac template image is first selected and then labeled. The template 

selected as the floating image is assigned to the image to be segmented. The transformation 

parameters of the pixel points from the image to be segmented are mapped to the templates and 

recorded upon completion of the registration. The atlas with prior knowledge and marked points is 

transmitted according to the transformation parameter to complete the whole heart segmentation. An 

appropriate window width level is usually used to preprocess cardiac DSCT images and select those 

with clear anatomical structures for the registration system. The preprocessed image is used to 

determine the anatomical structures and pathological characteristics of tissues and organs. After 

image preprocessing, a Gaussian filter is used to decompose the image into several resolution layers. 

This process can overcome the discontinuous boundary in traditional pyramid decompositions. To 

quickly locate the heart in the images, the system adopts a global affine transformation for rough 

registration. B-spline transformation is also used for the non-rigid deformation of the local heart to 

achieve precise registration. The mapping points of the pixels of the reference on the floating images 

do not fall necessarily on the integer pixel positions; thus, an interpolation method is used to 

calculate the gray values of the points. The interpolation method adopted in this paper is the cubic 

B-spline interpolation. To control the step length of parameters in the transformation on an adaptive 

basis, we use the adaptive stochastic gradient descent (ASGD) method proposed by Klein [36] for 

parameter optimization. Mutual information is used for similarity measurements. 

 

Figure 2. Registration system framework 

 



B. Generation of cardiac atlas label image 

The generation of the cardiac atlas label image requires a high-resolution template image to be 

applicable in all cases. The morphological changes to the heart during the diastolic period are slower 

than that during the systolic stage. The CT imaging quality is also better in the diastolic stage; thus, 

the diastolic cardiac DSCT image, with 512 × 512 × 170 pixels, is selected as the template. After 

template selection, manual segmentation is performed to segment the whole heart from the template. 

Based on the atrioventricular structure of the heart, we segment the heart into six parts: the aorta 

(AO), left ventricle (LV), left ventricle myocardium (LVM), left atrium (LA), right ventricle (RV), 

and right atrium (RA). We manually extract every atrioventricular structure from each 2D CT image. 

After manual segmentation, we specifically mark each chamber to label the images. Figure 3 

illustrates the rendering of the graph, in which the labeled image presents a meticulous structure and 

reflects the anatomy of the heart. 

 

Figure 3. Cardiac atlas label image 

 

C. Window width–level adjustment 

Window width and level are two important regulatory factors for acquiring clear medical 

images. Clinicians tend to adjust the values of these parameters to the most beneficial position for 

diagnosis. The values are then recorded to provide the information of the Dicom image. Depending 

on window width/level value, the cardiac DSCT image is adjusted on the gray value. The CT value is 

converted into the gray value of 0–255, which can clearly display the anatomic structure of the heart. 

Figure 4 shows the schematic diagram of the images preprocessed with the window width/level 

method. In the figure, the red curve represents the gray value that corresponds to each CT value after 

the gray-scale adjustment.  

 

Figure 4. Schematic diagram of window width/level adjustment 

 



Assuming the CT value of a pixel in the image as f(i), window width as ww, and window level 

as wl, then the value of the pixel point g(i) after preprocessing with window width–level is:  
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The proposed preprocessing method uses the window width/level value adjusted by clinical 

doctors to modify the pixel values of the cardiac DSCT image. The CT value with an original scope 

of -1000 HU to 1000 HU is also adjusted to gray levels of 0–255 to reduce image information for 

easy registration. This method uses the prior knowledge of clinical doctors to reduce image 

information and enhance contrast in the following: (1) across the contrast agent/myocardium 

interface for the left heart chambers, (2) between the un-contrasted blood and myocardium in the 

right chambers and, (3) across the myocardium and outside the heart. Figure 5 shows the 

preprocessing rendering adjusted with window width/level. The boundary of the pericardium and 

myocardium exhibits a low contrast before the adjustment, whereas the pericardium is basically 

filtered after the adjustment; this technique results in clear visualization of the myocardial contour.  

 

Figure 5. Rendering of preprocessing with window width–level, (a) before adjustment, (b) local amplification 

without preprocessing, (c) after adjustment and, (d) local amplification with preprocessing 

 

D. Gaussian filter-based multi-resolution decomposition 

The image is decomposed into several resolution layers to improve the convergence speed and 

precision of the registration algorithm. The low-resolution layer contains the global information of 

the image. The initial registration of this layer can provide preliminary registration parameters that 

are used to improve the convergence speed and precision of the high-resolution layers. The 

traditional pyramid decomposition algorithm uses the down-sampling method to reduce image 

information layer by layer. However, this method causes a discontinuous boundary of the anatomical 

structure on the low-resolution layer. To overcome the limitation of the pyramid algorithm, this 

paper uses the Gaussian filter-based multi-resolution decomposition method in which the filtered 

image becomes smooth and fuzzy. This characteristic is used to reduce the information of the 

low-resolution layer. The Gaussian filter works through the image convolution and Gaussian kernel, 

which should be discretized to filter the digital image. As shown in Figure 6, a discrete Gaussian 



kernel function with a width of 20 is used to approach the continuous Gaussian kernel function G(x) 

that should satisfy the following condition: 

                         ( ) 1
x
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                                 (3) 

Figure 6 shows that the weighted value of the discrete Gaussian kernel function is not equal to 1. 

Therefore, the discretization process contains an approximation error.  

 

Figure 6. Discretization of Gaussian kernel 

 

The discrete Gaussian kernel function T(n; σ) is reconstructed using the Lindeberg method [37]:  
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where σ is the variance of the Gaussian kernel function, and In (σ) is the Bessel function [38]: 
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Assuming the allowable approximation error of the Gaussian kernel function as err, then the 

width of the kernel function l should satisfy the following condition:  

                          
1
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Equations (4) to (6) indicate that under- determined errors; the large variance σ results in the 

wide kernel function l. At high 1 values, the discrete Gaussian kernel function becomes continuous. 

Figure 7 shows the 2D Gaussian kernel function with a kernel width of 200 × 200. The function 

graph is smooth and the discrete kernel function approximates the continuous function. 

 
Figure 7. 2D discrete Gaussian kernel function 



 

The experimental results show that the large kernel width l exerts evident effects on the 

Gaussian filter, resulting in the production of a smoother image. Under a certain approximation error 

err, l increases with increasing σ. Thus, in this paper, a high σ is set in the low-resolution layer for 

filtering with a high fuzzy degree to reduce image information, whereas σ is set according to the 

following formula:  

                                 
2





L level

s
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where L is the total number of resolution layers; level is the current resolution layer, whose minimum 

value is in the first layer; and s is the space between two adjacent pixels.  

Figure 8 shows the images decomposed by the multi-resolution method. Furthermore, Figure 8(a) 

illustrates the checkerboard phenomenon in the low-resolution images that are decomposed using the 

pyramid algorithm. This phenomenon decreases the accuracy of the registration. Figure 8(b) also 

shows the multi-resolution images obtained by the Gaussian filter-based multi-resolution 

decomposition. The low-resolution image is fuzzy and the obtained information is reduced; 

nevertheless, the images still show continuous boundaries. 

 
Figure 8. Multi-resolution decomposition. (a) pyramid decomposition and (b) Gaussian filter-based 

multi-resolution decomposition 

 

E. Global affine transformation and free-form deformations 

The central location and long axis direction of the heart differ among the cardiac images of 

different individuals. To quickly locate the heart, we use the affine transformation for global 

transformation of the cardiac image to analyze a rough registration. B-spline transformation is then 

used for the local and non-rigid transformation of the heart to improve the local accuracy of the 

registration.  

Affine transformation is used to achieve the translation, scaling and rotational transformation of 

the images. This technique employs a simple mathematical operation for a matrix and an addition 

product, resulting in fast computation. Thus, this paper uses affine transformation to determine the 

initial position of the heart [39]. 

Assuming the coordinates of a pixel in the reference image as x, then the mapping point on the 

floating image can be represented as: 

                                 ( ) ( ) T x A x t                               (8) 



where t is the translation matrix, and A is the rotation, shear and scaling matrix. The parameters of 

the affine transformation are given by μ = [a, tx]
T
. Initial parameters should be set before the 

transformation. This paper considers the differences in the floating and reference image centres as 

the initial value of the translational matrix by moving the centre of the floating image to overlap to 

the centre of the reference image. If the centre of the floating images is xmc and the centre of the 

reference image is xfc, the initial translation matrix t is: 

                                 
mc fc t x x                               (9) 

The initial value of a is the direction cosine matrix of the coordinate system of the two images. 

The unit vectors of the three axes of the reference image are x1, x2 , and x3. The unit vectors of the 

three axes of the floating image are e1, e2, and e3, respectively, where x1 = xf , x2 = yf , x3 = zf , e1 = xm, 

e2 = ym , and e3 = zm . The direction cosine bij between ei and x j is:  

                           cos( )ij ij i jb   e x                               (10) 

The direction cosine matrix B is: 
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Both reference and floating images are obtained through DSCT sampling. Thus, the coordinate 

systems of the two images are similar, and the direction cosine matrix is:  
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Therefore, the initial parameter of the affine transformation μ0 is (1, 0, 0, 0, 1, 0, 0, 0, 1, xmc-xfc , 

ymc -yfc , zmc -zfc)
T
.  

To improve the accuracy of the registration, we use a B-spline transformation after the affine 

transformation [39]. The B-spline transformation uses a set of grid points to control image 

deformation. Assuming the nx × ny × nz mesh of the control points covering the reference images as 

Φx, then the spacing of these points in three directions are presented as δ. The mapping point of point 

x can be represented as: 

                    
3( ) ( )
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where xk is the control point, ϕk is the B-spline coefficient vectors, and β
3
(x) is the cubic 

multidimensional B-spline polynomial. 

All the coordinates of the grid points in Φx are regarded as the parameter μ of the B-spline 

transformation. This paper adopts the following strategies for parameter initialization to set the space 

of grid points in each direction:  

                   0 2L level newlength

oldlength
                                   (14) 



where L is the total number of the resolution layer, level is the current resolution layer, oldlength is 

the original width of the reference images in this direction, newlength is the mapping width of the 

reference image after the affine transformation, and δ0 (5 mm) is the initial grid space set through 

clinical experience. This strategy generates few grid points in the low-resolution layer and dense 

grids in the high-resolution layer, thereby increasing the registration speed in the low-resolution layer 

and the registration accuracy in the high-resolution layer.  

After the grid spacing is determined, the initial parameters of the B-spline transformation in the 

first layer are set as the coordinate values of the grid points. The subsequent solution layers use the 

transform parameter result μl-1 of the previous layer as the initial parameter μ l. The number of points 

of μl is higher than that of μl-1; thus, we interpolate between the points of the previous layer grid to 

obtain the missing points of the high-resolution grid. 

In digital imaging, only integer points have the corresponding gray values. Points on the 

reference images can be mapped to the non-integer points to search for the mapping relationship. To 

assign mapping points, we use the surrounding pixels for interpolation. Cubic B-spline interpolation 

is also used to calculate the gray value of the mapping point. Interpolation is then performed based 

on the pixels of the small 4 × 4 × 4 (Ωx) area surrounding the mapping point. The pixel coordinates 

of the mapping point are set as x, where xk is the pixel coordinates of the integer points in the small 

area. The gray values of the mapping point after the cubic B-spline interpolation are given by:  
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where ck is the coefficient of the B-spline interpolation and can be calculated by recursive filtering.  

 

F. Mutual information-based registration cost function 

This paper uses the Parzen window-based mutual information to measure the registration degree 

[40]. Mutual information is a physical quantity representing the overlapping degree of two images. A 

high coincidence results in a large mutual information. Registration is used to achieve the maximum 

mutual information and the minimum cost function through parameter optimization. The adaptive 

gradient descent [36] proposed by Klein is used for parameter optimization and negative information 

is used as the cost function:  
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The joint histograms of the reference and floating images are divided into several segments, 

where LM and LF are the number of segments, ι and κ are the histogram indices, and p(ι,κ; μ) is the 

joint probability distribution of the reference and floating images estimated using the Parzen Window 

[41]: 
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where ΩF is the sample point set used to estimate the joint probability; |ΩF| is the number of sample 

points; fF and fM are the values of the reference and floating images, respectively; fF
o
 and fM

o
 are the 

minimum values of the images; ΔbF and ΔbM are the widths of each segment in the joint histogram; 



β
0
 and β

3
 are the zero order and the cubic B-spline function, respectively; and pF (κ) and pM (ι; μ) are 

the marginal probabilities of the reference and floating images, respectively. 
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IV. RESULTS AND VALIDATION 

A. Dataset acquisition and elaboration 

In this section, we employed 15 volunteer data sets acquired on the DSCT scanning system 

(Definition Somatom 2008G) equipped with Syngo 8.0 Multi Modality and Aquarius iNtuition 

Architecture at the General Hospital of Guangzhou Military Command in PLA. Prior to scanning, the 

contrast agent iopromide (370 mgI/ml) was injected. The injection rate for the adults was 3.5–6 ml/s, 

and the total dose was 60–90 ml; whereas, the injection rate for the teenagers was 1.2–3.0 ml/s, and 

the total dose was 20–85 ml. After injecting iopromide, all the people scanned were injected with 44 

ml of NS at a rate of 5 ml/s. During scanning, the patient must maintain a resting state and those who 

could not cooperate were given chloral hydrate to pacify them. The parameters of the scanner were 

set as follows: tube voltage, 120 KV; tube current, 380–400 mA; machine tool rotation time, 0.33 s; 

collimation width, 64 mm × 0.6 mm (cardiac mode); and screw pitch, 0.2–0.43 mm under automatic 

modulated according to the heart rate. After scanning with retrospective ECG gating, the original 

material was reconstructed to obtain 21 time phases between 0–100% at 5% R-R interphase, with a 

reconstruction spacing of 1 mm. In the acquired images, a 3D diastolic cardiac image with 512 × 512 

× 170 pixel size was selected as the floating image and registered to two random cases acquired at 

the cardiac diastolic and systolic periods. In the experiments, the images should be initially 

preprocessed through window width/level adjustment. The floating and reference images were then 

decomposed into six resolution layers. In the Gaussian filtering multi-resolution decomposition, the 

approximation error of the discrete Gaussian kernel function err was set as 0.01, and the initial grid 

space of the B-spline transformation was 5 mm. For parameter iteration optimization, the gradient 

descent optimization of the registration by the affine transformation and B-spline deformation on 

each layer took 500 and 1000 iterations, respectively.  



 

Figure 9. Cardiac DSCT image registration, (a) floating image, (b) registration results, (c) reference image in 

the diastolic stage, (d) floating image, (e) registration results and, (f) reference image in the systolic stage 

Figure 9 shows two registration cases, where (a)–(c) are the registration results of the reference 

image in the diastolic stage, and (d)–(f) are the registration results of the reference image in the 

systolic stage. For convenience, the selected CT images were compared at the same positions of the 

heart. The registration results of the two experiments are accurate and the floating and reference 

images exhibit minimal differences after the registration.  

The proposed method was experimentally evaluated to compare and analyze the registration 

accuracy of the Gaussian filter-based multi-resolution decomposition and the window 

width/level-based preprocessing method (SW). The following techniques were used for the 

experiment: Gaussian filter-based multi-resolution decomposition without a window 

width/level-based preprocessing method (SNW), pyramid down-sampling multi-resolution 

decomposition with a window width/level-based preprocessing method (RW), and a pyramid 

down-sampling multi-resolution decomposition without a window width/level-based preprocessing 

method (RNW). During the multi-resolution decomposition, the images were decomposed into six 

resolution layers by using the two decomposition methods. Table 1 records the mutual information 

before and after the registration. Mutual information between the reference and floating images was 

minimal before the registration, regardless of whether the reference image was in the systolic or 

diastolic stage. By contrast, the mutual information increased to different degrees after the 

registration. The Gaussian filter-based multi-resolution decomposition method evidently increased 

the mutual information compared with the pyramid down-sampling multi-resolution decomposition 

method, thereby significantly improving the optimization process leading to a more efficient 

registration.  

 

Table 1. Mutual information of each method before and after the registration 

Cardiac status of 

reference images 
Before registration SW SNW RW RNW 

Diastolic period 0.241362 1.695359 1.614266 1.018358 1.106956 

Systolic stage 0.237128 1.618931 1.622510 1.000664 1.184208 



Figures 10 and 11 show the changes in the mutual information value after each iteration. The 

first 3000 iterations represent the affine iterative transformation of the six resolution layers, whereas 

the final 6000 iterations denote the B-spline iterative transformation process. The mutual information 

of each method in the affine transformation decreased with the increasing resolution layer; this 

finding could be caused by two factors: image information increases as the resolution layer increases 

and affine transformation captures only the global motion of the heart. Using the pyramid 

down-sampling method to decompose images in the B-spline transformation, we found that the 

mutual information decreased with the increasing resolution layer, as shown in Row 2 of Figures 10 

and 11. The Gaussian filter method can improve the mutual information value layer by layer, as 

shown in Row 1 of Figures 10 and 11. Therefore, Gaussian filter-based multi-resolution 

decomposition may exert better effects than the pyramid down-sampling decomposition. 

 

Figure 10. Distribution of mutual information value with the number of iterations in the diastolic stage 

 

Figure 11. Distribution of mutual information value with the number of iterations in the systolic stage 

 

Table 1 and Figures 10 and 11 show that preprocessing with window width/level adjustments 

did not significantly improve the mutual information under the same multi-resolution decomposition 

conditions. However, this method can improve the registration accuracy of the epicardium. Columns 

1 and 2 in Figures 12 and 13 represent the fusion images of the floating and reference images after 

the registration, respectively, whereas Columns 3 and 4 denote the local magnification corresponding 

to the boundary colour. The fusion method is the alternate superposition of the two images masked 

by a checkered pattern. As indicated by the red arrow, an evident dislocation appears beyond the 



epicardium of the registration without window width/level adjustment. The floating and reference 

images are consistent in the registration after the preprocessing.  

 

Figure 12. Fusion of floating and diastolic reference images after the registration 

 

 
Figure 13. Fusion of floating and systolic reference images after the registration 

 

The yellow arrow indicates the myocardial dislocation in the down-sampling decomposition 

method. The Gaussian filter-based multi-resolution decomposition method proposed in this paper 

obtained satisfactory results with good fitness. Thus, the proposed method can improve the 

registration accuracy of the myocardium.  

B. Registration and segmentation analyses 

The whole heart DSCT 3D segmentation algorithm was implemented based on the registration 

with SW. The algorithm was applied to a dataset of 14 cardiac DSCT images that were acquired in 

the cardiac diastolic stage. The size of the CT image was 512 × 512 pixels and the image layer was 

between 117 and 265. Figure 14 shows the comparison of the results from the proposed and manual 

segmentation methods in different layers. The segmentation contour line obtained from the 

fully-automatic segmentation algorithm is similar to that from the manual segmentation method. In 

addition, the proposed algorithm exhibited good segmentation effects with a clear heart structure and 

a complete atrioventricular structure. Tissues beyond the heart, such as the rib and the diaphragm, 



were precisely segmented. Thus, this method can accurately segment a 3D image of the whole heart 

from cardiac DSCT images. 

 

 
Figure 14. Comparison between (a) manual segmentation and (b) proposed method 

 

This paper compared the proposed automatic segmentation method with manual segmentation 

as the gold standard and analyzed the precision of both techniques. Manual segmentation was 

performed by a clinician with knowledge of the heart anatomy and double-checked by cardiologists. 

Two methods were used for the statistical analysis of segmentation accuracy from the 14 datasets; 

these methods included volume measurement-based similarity analysis and surface distance 

measurement-based error analysis. The similarity degree between automatic segmentation and 

manual segmentation results can be calculated through volume overlap and dice coefficients. As the 

two values become closer to 1, the automatic segmentation results approximate the manual 

segmentation results. The calculation methods of these two parameters are shown in the following 

formulae:  
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where Vgd  and Vseg
 represent the volume of the gold standard and the automatic segmentation 

methods, respectively.  

Table 2 shows the calculation results of the mean volume overlap and dice coefficients in the 

test dataset of the 14 cases. A high similarity was observed between the automatic segmentation and 

manual segmentation results. 

 

Table 2 Measurement error of the whole heart volume  

Measuring area Volume Overlap Coefficient Dice Coefficient 

AO 0.89±0.05 0.94±0.03 



LV 0.85±0.04 0.92±0.03 

LVM 0.65±0.08 0.78±0.06 

LA 0.82±0.06 0.90±0.04 

RV 0.65±0.11 0.78±0.09 

RA 0.71±0.11 0.82±0.08 

 

Surface distance is the minimum distance between each point on the surface of a manually and 

automatically-segmented heart. The measurement of this parameter can intuitively evaluate the 

precision of the automatic segmentation results. At a small distance, the results of the automatic 

segmentation method become similar to the gold standard. Distance can be calculated as: 

                               
gd segmin( )i id  x x                         (22) 

Figure 15 shows the distribution of the surface-to-surface error of one case. Most segmentation 

errors are below 1 mm, suggesting the high precision of the automatic segmentation. The 

segmentation accuracy reaches 5 mm in the minute region, such as junction between RV and LVM 

and between RV and pulmonary artery. This finding could be caused by the inability of manually 

distinction between blood and myocardial tissues in the absence of the contrast agent perfusion.  

 

Figure 15. Distribution of surface-to-surface error 

 

Figure 16 shows the Box-and-Whisker chart of the average error from each surface distance in 

the segmentation of the 14 datasets using the proposed method. The figure reflects the average error 

distribution of each image. The mean segmentation errors of AO, LV, LVM and LA are highly 

concentrated, most of which being below 2 mm. This finding proves that the method exhibits 

satisfactory robustness in the segmentation of these parts. However, some samples present higher 

average errors in RV and RA, although the segmentation accuracy in most of the samples is about 2 

mm. The dispersion of the RA precision in the automatic segmentation algorithm is mainly affected 

by two factors. First, the right heart segment was not injected with a contrast agent at image 

acquisition; thus, no obvious boundary between RA and RV was established. The two segments are 

also difficult to separate even with manual segmentation. Second, the boundary between the right 

ventricle and pulmonary artery is unclear. 



 

Figure 16. Box-and-Whisker chart of mean surface distance error at each part from 14 cases using the 

proposed segmentation 

 

To verify the role of the SW registration on improving the accuracy of segmenting the 3D 

whole heart image, we applied the SW, SNW, RW, and RNW to the test dataset of 14 cases at the 

same time and analyzed surface distance errors. Figure 17 shows the Box-and- Whisker chart of the 

surface distance error of the whole heart segmentation when using the four methods. Compared with 

the other methods, the SW has a relatively concentrated mean error of the whole heart segmentation 

in each sample image, which is distributed between 1–2.5 mm. The general segmentation error is 

also lower in the SW than that in the other methods. Thus, the proposed method exhibits higher 

accuracy and robustness in the 3D whole heart segmentation.  

 

Figure 17. Box-and-Whisker chart of mean surface distance error of the 14 cases using different methods 

 

V. DISCUSSION AND CONCLUSION 

The tissue structure in medical images can be clearly displayed through the window width/level 

adjustment and decomposition of a discontinuous boundary of images via pyramid down-sampling. 

As such, this study used the window width/level-based method to preprocess the reference and 

floating images. The Gaussian filter method was then applied to decompose the images into multiple 

resolution layers for the precise registration with affine transformation and precise registration with 



B-spline non-rigid transformation. Our experimental results revealed that the proposed Gaussian 

filter-based multi-resolution decomposition can overcome the discontinuity problems in the 

down-sampling decomposition method. Mutual information can be significantly improved during the 

registration. This method can also improve the accuracy of the registration results in the endocardium. 

Preprocessing with window width-level adjustments can enhance the registration results in the 

epicardium. A detailed cardiac atlas is used for the 3D cardiac DSCT image segmentation, and the 

SW segmentation results were similar to manual segmentation results. These results also exhibited a 

smooth contour. Considering the precision of the 3D segmentation results, we concluded that the 

proposed SW registration method provided clear advantages in whole heart segmentation over 

traditional methods. In particular, the proposed registration-based segmentation method exhibits a 

higher precision in those major areas than do traditional methods. However, more research is 

required to develop improved segmentation approaches, that can be used to enhance the accuracy of 

the segmentation of RA and RV that are not injected with a contrast agent. 
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