
UQ Engineering

 Faculty of Engineering, Architecture and Information Technology

THE UNIVERSITY OF QUEENSLAND

Bachelor of Engineering Thesis

Development of a New Bio-Inspired Optimisation
Algorithm

Student Name: Timothy CASSELL

Course Code: MECH4500

Supervisor: Dr. Michael Heitzmann

Submission date: 28 October 2016

A thesis submitted in partial fulfilment of the requirements of the
Bachelor of Engineering degree in Mechanical Engineering

ACKNOWLEDGEMENTS
Firstly, I would like to thank my supervisor Dr Michael Heitzmann for giving me the

opportunity to undertake this project. It has some of the most stimulating work I have done in

my time at university and I am very grateful for his support and guidance.

I would also like to thank my family, and in particular my parents, for their constant love and

support. They have always been understanding if I ever needed to prioritise university over

other things.

Additionally, I would like to thank my friends. They always managed to make the long days

and the late nights much more bearable. In particular, I would like to thank Emma for the idea

of sugar gliders, which she came up with at about 3 o’clock one morning in early June.

Lastly, I am grateful to all those whom I have not mentioned, but have somehow helped me in

the completion of this thesis.

ABSTRACT
Bio-Inspired Algorithms (BIAs) are a class of metaheuristic that have proven to be effective at

optimising a vast range of complex, black box function types. A new BIA is proposed that is

based on a small, nocturnal gliding possum; the native Australian sugar glider (Petaurus

breviceps). Sugar Glider Algorithm (SGA) imitates the leadership hierarchy and foraging

behaviour of a colony of gliders. Two co-dominant males lead a colony of five to seven gliders

that forage for food by gliding between trees in search for insects or tree sap. The algorithm

employs concurrent local exploitation (performed by the codominant males) and global

exploration (performed by the remaining gliders). The performance of SGA has been

quantitatively evaluated using five mathematical test functions, which are a mix of both

unimodal and multimodal domains. The results are compared against Particle Swarm

Optimisation, Differential Evolution and an Evolutionary Algorithm, with SGA performance

amongst the best observed. Furthermore, SGA has been tested on three constrained engineering

problems; coil spring design, welded beam design and pressure vessel design. SGA exhibited

strong performance against seven existing algorithms, and found multiple new minimums than

previously reported in literature. The results show that SGA is competitive against a wide range

of existing algorithms in a variety of search domain topologies. These findings indicate that

SGA is at the forefront of BIA performance and prove it is a superior candidate for the

optimisation of engineering design problems.

i

CONTENTS

CHAPTER 1 – Introduction ... 1

1.1 – Introduction to Bio-Inspired Algorithms ... 1

1.2 – Motivation for Research .. 2

1.3 – Report Objectives and Scope ... 3

1.4 – Thesis Structure ... 4

CHAPTER 2 – Optimisation in Engineering ... 5

2.1 – Algorithm Terminology ... 5

2.2 – Engineering Optimisation Problems .. 7

CHAPTER 3 – Literature Review .. 11

3.1 – Algorithm Classification .. 11

3.2 – Evolutionary Algorithms ... 12

3.3 – Swarm Intelligence Algorithms ... 16

CHAPTER 4 – Algorithm Development Process .. 25

4.1 – Algorithm Goals .. 25

4.2 – Investigated Inspiration Sources .. 25

4.3 – Development Process ... 29

CHAPTER 5 – Sugar Glider Algorithm ... 33

5.1 – Algorithm Description ... 33

5.2 – Parameter Tuning ... 37

5.3 – Comparison to Existing Algorithms .. 43

5.4 – Python Code and User Recommendations ... 44

CHAPTER 6 – Performance Benchmarking .. 47

6.1 – Classical Mathematical Functions ... 47

6.2 – Constrained Engineering Design Problems ... 52

CHAPTER 7 – Case Study: Gearbox Design ... 62

ii

7.1 – Introduction to the Case Study .. 62

7.2 – Methodology ... 63

7.3 – Results ... 68

7.4 – Case Study Outcomes .. 70

CHAPTER 8 – Further Work... 71

8.1 – Implementation of SGA in ANSYS .. 71

8.2 – Algorithmic Improvements ... 71

8.3 – Gearbox Design Solver Improvements ... 73

8.4 – Implementation of SGA in Other Languages .. 74

Conclusion ... 75

References .. 76

Appendices ... 79

LIST OF TABLES
Table 1 – Structural optimisation problem description .. 8

Table 2 – Process optimisation problem description ... 9

Table 3 – Comparison of ABC to GA, PSO and DE (Karaboga & Akay, 2009) 20

Table 4 – Algorithm inspiration selection matrix .. 29

Table 5 – Tuning functions for the sight distance .. 37

Table 6 – Convergence power and colony size tuning functions .. 38

Table 7 – SGA Python input parameters ... 45

Table 8 – Mathematical benchmarking function definitions ... 47

Table 9- Algorithm parameter values .. 49

Table 10 – Performance benchmarking test settings ... 49

Table 11 – Mathematical benchmarking results (Krink et al., 2004) 50

Table 12 – Calculated feasibility percentages .. 52

Table 13 – Total function evaluations used for solving the design problems 56

Table 14 – Design problem test settings .. 57

Table 15 – Best minimum value results for the coil spring design problem 57

Table 16 – Statistical analysis of the results for the coil spring design problem 58

Table 17 – Best minimum value results for the welded beam design problem 58

iii

Table 18 – Statistical analysis of the results for the welded beam design problem 59

Table 19 – Best minimum value results for the pressure vessel design problem 59

Table 20 – Statistical analysis of the results for the pressure vessel design problem 60

Table 21 – Cumulative rank results .. 60

Table 22 – Design parameter definitions .. 64

Table 23 – Overload factor Ko selection matrix ... 65

Table 24 – Mounting factor Km selection matrix ... 65

Table 25 – Gearbox design equations... 66

Table 26 – Gearbox design parameters (MECH3100 Group 9, 2015) 68

Table 27 – SGA parameters for gearbox optimisation ... 68

Table 28 – Gearbox optimisation results .. 69

Table 29 – Optimised gearbox design layout ... 69

LIST OF FIGURES
Figure 1 – Topology optimisation example (GS Engineering, 2014) .. 8

Figure 2 – Tool path optimisation example .. 9

Figure 3 – Typical 2D scramjet combustor (Lewis, 2012) ... 10

Figure 4 – Algorithm classification tree ... 11

Figure 5 – Example of genetic crossover ... 13

Figure 6 - Optimal path finding by ants ... 18

Figure 7 – Firefly Algorithm optimisation process (Yang, 2009) .. 22

Figure 8 – Grey Wolf Optimizer optimisation process (Mirjalili et al., 2014) 23

Figure 9 – Dolphin Echolocation Optimisation process (Kaveh & Farhoudi, 2013) 24

Figure 10 – Erratic search histories .. 31

Figure 11 – Delta functions (left) and Correct convergence behaviour (right) 32

Figure 12 – Sugar Glider Algorithm pseudocode ... 33

Figure 13 – Weightings for a CP value of 5 (the default) .. 35

Figure 14 – Effect of the CP parameter on the weightings .. 36

Figure 15 – Convergence behaviour for CP = 10 (a) and CP = 1 (b) 36

Figure 16 – Outcome f(x) values for differing SD ... 39

Figure 17 – Average fitness gain for differing SD ... 39

Figure 18 – Outcome f(x) for differing CP... 40

Figure 19 – Outcome standard deviation for differing CP ... 41

Figure 20 – Outcome f(x) for differing colony size ... 42

iv

Figure 21 – Outcome standard deviation for differing colony size ... 42

Figure 22 – Example implementation of SGA in Python .. 45

Figure 23 – Visual 2D representation of the benchmarking functions 48

Figure 24 – Optimum convergence behaviour (Krink et al., 2004) ... 51

Figure 25 – Physical coil spring dimensions ... 53

Figure 26 – Physical welded beam dimensions ... 54

Figure 27 – Physical pressure vessel dimensions .. 55

Figure 28 – Convergence behaviour analysis .. 61

Figure 29 – Previously designed heliostat (MECH3100 Group 9, 2015) 62

Figure 30 – Gearbox solver Python function concept.. 67

Figure 31 – Attempted simulated breeding through mixing .. 72

Figure 32 – Attempted breeding through constrained random value selection 73

1

CHAPTER 1

INTRODUCTION

1.1 – INTRODUCTION TO BIO-INSPIRED ALGORITHMS
Optimisation problems are prevalent in all facets of engineering. A general optimisation task

involves minimising/maximising an objective function via alteration of variable values, whilst

accounting for variable constraints. Mathematical optimisation, through use of calculus, is often

not a viable option for engineering problems. This is because the objective function often

doesn’t take a derivable algebraic form. It can be presented in a complex mathematical form,

via computational simulations, or even in terms of measurements obtained from real objects.

For example, the objective of a car exterior design may be to minimise drag, where the drag is

calculated via implementation of the model in a CFD program. In such cases, the only

information known is the variable values and the resulting ‘fitness’ of the solution (how

minimal the drag is). Thus, methods that utilise only this information are required.

Methods for finding optimal solutions to problems where only the input/output information is

known are classed as metaheuristic search methods. Metaheuristics are algorithms that are

problem-independent, employ stochastic (random) methods, and make no assumptions about

the space being searched. Thus, they are widely applicable to a large range of optimisation

problems. Metaheuristics, however, do not guarantee that the global optimum will be found.

Example metaheuristics include Simulated Annealing (Kirkpatrick, Gelatt Jr, & Vecchi, 1983)

and the human-memory inspired Tabu Search (Glover & McMillan, 1986).

Bio-Inspired Algorithms (BIAs) are a class of metaheuristic algorithm that utilise methods

inspired by biological processes to solve optimisation problems. BIAs gained popularity as

research topics due to their combination of fascinating inspiration sources and promising

performance outcomes. There are now algorithms inspired by a vast range of biological sources

such as genetics, pack hunting of wolves, social behaviour of bees, and bird flocking. BIAs

have been shown to be able offer a mix of both good performance and search space adaptability,

meaning they can generally be effective at solving a broader range of problems. The

adaptability is inherent in the design due to the way in which the biological organisms from

which they are derived are able to adapt to their environment. For these reasons, BIAs are a

promising area of research within the field of metaheuristics.

2

1.2 – MOTIVATION FOR RESEARCH
1.2.1 – Reasoning Behind Choosing Bio-Inspired Algorithms

Bio-inspired algorithms are of particular research interest due to their inherent robustness and

efficiency. Over the course of millions of years, biological processes have themselves been able

to ‘evolve’ such that they are continuously becoming more effective (whether the process is the

human immune system or the pack hunting technique of wolves). This implies that nature is an

abundant resource for processes that are operating in optimal ways. Therefore, algorithms based

on these processes are often very effective at the optimisation of arbitrary objective functions.

A particular strength of BIAs is that they are able to escape local optima effectively due to the

‘judgement’ exercised in nature, where a good solution is not always accepted due to the desire

for a better one. An example being the pollination of flowers by bees; a bee may have an

abundance of suitable flowers available, but may discard many options with a preference for

searching of the best one available. This is one of the reasons that BIAs are regarded as powerful

optimisation tools.

1.2.2 – The No Free Lunch Theorem

The No Free Lunch Theorem provides both a motivation and an inherent design guideline for

developing algorithms. The No Free Lunch theorem states that the performance of all search

algorithms is the same when averaged over all possible objective functions (Wolpert &

Macready, 1997). That is, some algorithms perform exceedingly well with certain functions,

but are inefficient with others. An implication of this theorem is that there is no single algorithm

(existing or otherwise) that is the best for optimising all objective functions. Therefore, as the

number of engineering applications that utilise optimisation increases, as does the demand for

the creation of new algorithms. This is one of the main driving forces behind the continual

development of new optimisation algorithms.

The No Free Lunch Theorem also implies the importance of designing the algorithm with a

certain application area in mind. In accordance with the theorem, trying to design an algorithm

that performs well in all areas is futile. Although metaheuristics are applicable to almost all

optimisation tasks, performance is not guaranteed to be acceptable. Therefore, some prior

knowledge about the search spaces of particular interest is beneficial when designing the

algorithm processes. When an engineer is selecting an algorithm for their particular application,

they do not look at algorithms with a broad-range of good performance. Rather, they seek the

algorithm with best performance in their application. Thus, the theorem implies it makes most

sense to take an application-based approach to designing the algorithm.

3

1.3 – REPORT OBJECTIVES AND SCOPE
1.3.1 – Project Aim

“To produce a novel bio-inspired algorithm that is efficient and

effective at solving a vast range of engineering optimisation problems, particularly

those within the field of mechanical design”

1.3.2 – Project Objectives

The project objectives are the metrics that will be used to determine if the project was successful

in achieving its intended purpose. The project objectives are to:

 produce a truly-novel bio-inspired algorithm,

 ensure that the algorithm performs competitively against existing BIAs on problems

related to engineering design,

 ensure that the algorithm is easily implementable by engineers unfamiliar with

metaheuristics, and

 in conjunction with work performed by Bryce (2015) , enhance the experience of FEA

program users, removing the user-dependency of the current inbuilt optimisation

methods.

1.3.3 – Project Scope

The following items were within the scope of the project:

 A comprehensive literature review that identifies existing BIAs and their optimisation

mechanics,

 Development of new bio-inspired algorithm based on either:

o animal/insect hunting, mating or social behaviours,

o genetics, DNA/RNA, Proteins, Immune System, or

o dynamics of cellular-level biological processes.

 A performance comparison of the algorithm through:

o use of mathematical benchmark test functions, or

o use of classical constrained engineering design problems.

 The undertaking of a case study that further highlights the value of the proposed

algorithm.

4

The following items were not within the scope of the project:

 Investigation of algorithms based on other natural phenomena such as physics or

chemistry (beyond verifying that the proposed algorithm is dissimilar in order to avoid

plagiarism), or

 Performance testing in fields unrelated to engineering design where significant

alteration of the algorithm would be required.

1.4 – THESIS STRUCTURE
In order for the proceeding information on optimisation to be well understood, Chapter 2 gives

an introduction to the topic. Algorithm terminology is presented, along with typical applications

of optimisation within engineering. Chapter 3 is a comprehensive literature review that analyses

the existing bio-inspired algorithms. Then, the algorithm development process is outlined in

Chapter 4, including the design goals of the final algorithm, investigated sources of inspiration

and the early design iterations. Next, Chapter 5 provides the intricate details of Sugar Glider

Algorithm including parameter tuning and selection, and a guide to using SGA in Python.

Chapters 6 provides the results of benchmarking the algorithm against existing BIAs, on both

mathematical functions and constrained engineering design problems. Chapter 7 details a case

study that was performed to highlight the strength of SGA when applied to engineering

problems (through design of a spur gearbox). Finally, Chapter 8 provides the intended future

work to be performed with relation to SGA.

5

CHAPTER 2

OPTIMISATION IN ENGINEERING

2.1 – ALGORITHM TERMINOLOGY
There is a range of terms associated with optimisation that characterise both the type of

problems being solved, and the methods used to do so. A working knowledge of these terms is

thus required in order for the proceeding work to be understood.

2.1.1 – Unconstrained and Constrained Optimisation

Unconstrained optimisation occurs when the whole real-numbered domain is available to

search. Furthermore, there are no supplementary constraint equations that must be satisfied

whilst the optimisation process is occurring. It is a simpler case to solve, but the results may

not be feasible if variables have not been appropriately constrained.

Engineering design problems are almost exclusively of the constrained type. This ensures that

the result of the optimisation process is a feasible solution to the problem. Constraints are

introduced in two ways, including:

 applying limits to the range of numbers that variable values are able to be selected from,

and

 introducing inequality constraint equations that must be satisfied in order for a solution

to be considered feasible.

Constraint equations facilitate the assurance that a result output from the optimisation process

is able to be implemented appropriately. For example, in the design of an ultra-light aerofoil, a

constraint may be that the total aerodynamic lift supplied be greater than a set value.

Implementation of constraints in computational optimisation techniques is often not a difficult

task, as the objective function is modified such that penalties are applied if constraints are

violated.

2.1.2 – Discrete, Continuous and Mixed Variable Optimisation

Discrete optimisation occurs when the variables in a problem can only have values belonging

to a particular set. Combinatorial optimisation is a subset belonging to discrete optimisation,

which are common amongst planning problems. Combinatorial problems include the Travelling

6

Salesman Problem, where the objective is to select a combination of routes between cities that

minimises the total travel time. The total number of possible combinations of routes between

cities is a (large) discrete set, and thus optimisation routines applied to the problem must

account for the discrete nature.

On the other hand, parameters of continuous optimisation problems can take any value within

a set range. Many design optimisation problems are setup such that they can be solved using

continuous techniques, particularly in shape, size and topology optimisation.

Mixed variable optimisation is a commonly occurring case in structural design problems. In

mixed variable optimisation, the set of variables is a mix of both continuous and discrete. An

example is a problem involving SHS beams, where the cross-section is to be a standard design.

The cross-sectional dimensions would be a discrete variable, but others such as the length will

be continuous.

2.1.3 – Single and Multiple Objective Problems

Single objective optimisation is the case where the objective function is singular in its

dependant variable. An example would be optimising the shape of a structural component with

the objective of minimising the weight. In this case, the material would be set prior to the

optimisation process being carried out, such that the cost would be a simple function of the

material volume.

On the contrary, multiple objective optimisation scenarios occur when the objective function is

non-singular in its dependant variable (so the problem effectively has multiple objective

functions, all to be optimised simultaneously). Building on the example above, the problem

would become a multiple objective problem if the material was also considered variable. The

objective may then be to minimise both the weight (a function of component volume and

material density) and the cost (a function of component volume, material cost, and shape). Here,

there is no clear relation between the two objectives to be minimised, and so the problem is

classed as multiple objective. Multiple objective problems require special solvers that are able

to handle the concurrent optimisation of more than the one objective function.

2.1.4 – Stochastic and Deterministic Algorithms

A stochastic algorithm is one which utilises randomness in order to search the domain. All bio-

inspired algorithms are stochastic in design, with random operators often at the heart of their

exploration routines. An implication of the random operators in stochastic algorithms is that

they will never perform exactly the same over multiple runs, even when initialised in the same

7

configuration. The challenge is to still produce the same end result (the global optimum) whilst

accounting for the different iteration patterns.

Deterministic algorithms are the logical opposite of stochastic. If initialised in a certain

configuration, the algorithm will always iterate in the same pattern and produce the same end

result. Deterministic algorithms are often ineffective unless the search space topology is well-

defined and the user has a good idea of the location of the optimum (Kress & Keller, 2007).

2.1.5 – Static and Adaptive Algorithms

A static algorithm is one whose parameter definitions do not change as the iterations progress.

Most algorithms are, in their basic form, static in design. Algorithm tuning is often performed

to determine optimal definitions for the parameters (which may be numerical values or

functions) and the definitions then do not change once the algorithm is initialised.

Research is often undertaken on an algorithm to determine if changing these definitions through

the iterations is effective. The algorithm would then be considered adaptive. A feedback loop

is established between the algorithm outcomes and its parameter set, with a user-defined

alteration routine altering the parameter definitions whilst the algorithm progresses. The hope

is that the performance can be improved through implementation of adaptive techniques.

2.2 – ENGINEERING OPTIMISATION PROBLEMS
There are a wide range of optimisation problems that are encountered by engineers. These range

from structural design optimisation and process optimisation, to other applications such as

control and manufacturing or mathematical modelling. New applications of optimisation within

engineering are also being formulated regularly. Additionally, as the “computerisation” of

engineering processes further increases, the opportunities for computational optimisation of

such processes also further increases.

2.2.1 – Structural Optimisation

Described in Table 1, structural optimisation is one of the most common engineering

optimisation problem types and involves the alteration of a physical component in order to

satisfy a design goal. The most common of these goals is to minimise the volume of material

used in the part. Optimising component mass is an ever increasingly important concept as

manufacturers of both aerial and road-going vehicles look to provide maximum fuel efficiency,

for performance, cost and environmental reasons. Furthermore, a lower mass of given material

often implies a cost decrease also.

8

Table 1 – Structural optimisation problem description

Objective Function Weight, cost, strength,

drag coefficient

Variables Dimensions

Constraints Stress, deflection,

manufacturability

Figure 1 – Topology optimisation example with Allowable space claim (a), Topology optimisation output (b), Validation
CAD model (c), Validation FEA model (d) and Final design (e) (GS Engineering, 2014)

Structural optimisation often involves the integration of a computer aided design (CAD)

program to validate complex component shapes. Figure 1 gives an example of topology

optimisation, a type of structural optimisation process. In this case, a CAD program assists to

minimise the total material mass. Other examples of structural optimisation may not require the

use of a CAD program, with their objective functions being mathematically formulated. This is

applicable to structures with simple shapes, such as pressure vessels and springs.

2.2.2 – Process Optimisation

Described in Table 2, process optimisation within the context of engineering design is often

associated with the manufacturing processes of components. For example, optimising the tool

path of a CNC milling process will reduce the time required to produce the part. The

optimisation task may account for CNC head speeds, tool rotational speeds and the order and

direction of cutting passes. In this case, a computer aided manufacturing (CAM) program would

be used to simulate the tool paths. If a part is to be mass produced, optimising the tool path will

result in a lower manufacturing time that increases process efficiency.

9

Table 2 – Process optimisation problem description

Objective Function Time or cost

Variables Timings, process

parameters or order of

operations

Constraints Feasibility, tolerances,

finish quality

Figure 2 gives an example of tool path optimisation. Figure 2 (a) is the intuitive path, which is

the path that would likely be taken when minimal thought is given to the problem. However,

this path is actually 11% longer than the optimised path on of Figure 2 (b). This application is

actually an example of the well-known Travelling Salesman Problem.

Figure 2 – Tool path optimisation example

2.2.3 – Other Applications

Curve fitting of experimental data is another application of optimisation within engineering.

Experimentally measured points are able to be approximated with mathematical functions, with

the optimisation process minimising the total error of the approximation. Applications of this

method include UV spectroscopy, X-ray analysis, IR spectroscopy and chromatographic

techniques, with bio-inspired algorithms being a popular choice of optimisation method (Polo-

Corpa et al., 2009).

The identification of optimal control parameters is another application of optimisation within

engineering. As a result of the emerging Internet of Things phenomenon, there is an ever

10

increasing amount of data flowing off machines. For example, GE Oil and Gas has predicted

that if all of the data generated by industry turbomachinery, pipelines and artificial lift

equipment was harnessed correctly, production can be improved by up to 8% (GE Oil and Gas,

2016). As the data becomes more accessible through the Internet of Things, identification of

optimal control parameters will be another application of bio-inspired algorithms.

Figure 3 – Typical 2D scramjet combustor (Lewis, 2012)

Furthermore, work performed at The University of Queensland by Lewis (2012) used a bio-

inspired algorithm to optimise the inlet of a scramjet combustor, as shown in Figure 3. The goal

was to minimise the total pressure loss for an inviscid, two-dimensional, three ramp scramjet

inlet and combustor. The process involved linking the optimisation code to a Barrine CPU

cluster that performed computational fluid dynamics (CFD) simulations. The algorithm proved

effective in optimising the geometry such that the design goal was achieved.

11

CHAPTER 3

LITERATURE REVIEW

3.1 – ALGORITHM CLASSIFICATION
Within the space of numerical optimisation lies a class of algorithms inspired by nature. This

class can further be divided into those inspired by chemistry, physics or biology. Bio-inspired

algorithms can then be separated into two sub-classes. The Evolution sub-class contains

algorithms primarily inspired by both genetic operations and processes, and the Darwinian

theory of Survival of the Fittest. The Swarm Intelligence sub-class is based on the hunting,

movement and reproduction processes of living organisms. Figure 4 gives some examples of

existing bio-inspired algorithms. The algorithms vary in many aspects, from their inspiration

source, to the number of control parameters to their method complexity.

Figure 4 – Algorithm classification tree

12

3.2 – EVOLUTIONARY ALGORITHMS
Existing evolutionary algorithms have been presented, along with their domain suitability and

the number of control parameters (excluding population size and the number of iterations, as

all algorithms require these selections).

3.2.1 – Genetic Algorithm (GA)

Domain: Continuous/Discrete Control Parameters: 3

GA is perhaps the most well-known of the Evolutionary Algorithms. Proposed by Holland

(1975), GA takes inspiration from the micro-level biological processes that drive evolution, in

accordance with the Charles Darwin Theory of Survival of the Fittest. Solutions are likened to

chromosomes, with each having a number of genes representing the variables. The

chromosomes have genetic operations performed upon them to produce new generations. The

idea is that each generation will have generally better fitness values than the previous, meaning

that the population will eventually reduce in genetic diversity and converge towards an optimal

value. The process for traditional GA is:

1. Generate initial population of solutions

2. Evaluate initial population fitness values

3. Whilst there is sufficient diversity amongst population (loop):

i. Select parents and perform crossover to produce new generation

ii. Perform mutation to small percentage of population

iii. Evaluate population fitness values

iv. Repeat loop

The genes (solution components) are typically encoded in binary, so as to allow for genetic

operations to be performed. The genetic operations were traditionally limited to selection,

crossover and mutation; however recent variants of GA have also explored the use of

regrouping, colonization-extinction and migration with promising results (Akbari, 2010).

Crossover is the method through which new generations of solutions are generated and is

analogous to the biological process from which it takes its name. An example of crossover can

be seen in Figure 5.

13

Figure 5 – Example of genetic crossover

The crossover point/s are chosen at random and, depending on the parents, may result in

children that are identical (particularly in later generations). Converting from binary to decimal,

the two parents have parameter values of 927 and 1017. The resulting children have values of

991 and 953 respectively. These numbers may represent the variable values in a one-

dimensional function, and their fitness may be the function value. When averaged over the

whole group of solutions, the fitness of the children will generally be higher than that of the

parents due to biased selection. As the solutions converge, genetic diversity between

chromosomes decreases, meaning the generations become more alike. The algorithm typically

terminates when the deviation across the population is smaller than a tolerance.

The solutions (chromosomes) are ranked based on their fitness values (determined by the

objective function). The higher the ranking, the greater the chance of being selected for

reproduction via crossover. Zitzler, Deb, and Thiele (1999) note that it is important to not limit

the parents to only the best-performing solutions or else premature convergence will occur.

Lower fitness parents aid in the explorative characteristics of the algorithm, increasing the

chances of escaping local optima.

As a modification to the traditional procedure, Elitist Genetic Algorithm variants allow for the

best few solutions (or best single solution) to carry over to the next generation without

alteration, guaranteeing best-solution preservation throughout the iterations (Baluja & Caruana,

1995). This modification is sometimes beneficial, but may cause the population to get stuck in

local optima, depending on the search space topology. Zitzler et al. (1999) have claimed that

adding elitism to GA improved the efficiency of the algorithm, which has been reaffirmed by

Rudolph (1999) and Deb (2002).

Binitha and Siva Sathya (2012) state that GA may have a tendency to converge towards local

optima rather than the global optimum if the fitness function is not defined properly. Another

disadvantage of GA is that it is not directly accommodating of constrained optimisation (where

variables must stay within certain ranges). To handle constraints, penalty functions must be

used that assign very unfit values to solutions where a variable is out of the acceptable range.

14

3.2.2 – Differential Evolution (DE)

Domain: Continuous/Discrete Control Parameters: up to 6

Differential Evolution is an evolutionary algorithm proposed by Storn and Price (1997). It is

similar to Genetic Algorithm in that it takes inspiration from the genetic operators of crossover

and mutation. However, the generation of new solutions takes a slightly different method, with

new solutions being a combination of three others, rather than two. Differential Evolution also

differs from GA in that the newly generated solutions are only accepted if they are of a higher

fitness. Although this guarantees best-solution preservation, it may also limit the explorative

characteristics of the algorithm in multimodal domains. The process of DE is:

1. Set parameters of 	 	 0, 1 , 	 	 0, 2

2. Generate initial population of solutions called agents (4)

3. Evaluate initial population fitness values

4. Until a termination criterion is met (loop):

For each agent in the population:

i. Select 3 other (random) agents , ,

ii. Select random index 	 	 1, … , where is the dimension of the agent vector

iii. For each dimension , pick a random number 	 	 0, 1

iv. For each dimension , if 	 	 or 	 	 then set 	 	 ∗ 	–	 ,

else set 	

v. If the fitness of the new solution is better than the fitness of the old solution ,

replace the agent with the improved candidate solution

vi. Repeat loop

As well as three algorithm-defining parameters, DE has another three tuneable parameters that

must be selected by the user. Increasing the population size, , increases the explorative

capability of the algorithm, but with added computational cost. The differential weight, , and

the crossover probability, , also increase the explorative capability by increasing the

mutation magnitude and probability respectively. However, this also increases the time taken

for the algorithm to converge to a final solution. Zielinski and Laur (2006) have proposed an

adaptive DE algorithm that changes the and parameters as the iterations progress. Results

show that adaptive control of the parameters increases the performance of the algorithm as

opposed to tuned, fixed values. The average number of function evaluations is higher for the

adaptive approach; however, the authors note that tuning the parameters also requires

preliminary computational effort.

15

3.2.3 – Evolution Strategy (ES)

Domain: Continuous/Discrete Control Parameters: 3

Evolution Strategy was developed in its basic form at the Technical University of Berlin by

Rechenberg (1973). ES is actually a group of closely-related algorithms, each differing slightly

in recombination technique, but all with the same general process. Similar to DE, ES uses the

micro-level process of random recombination to from new generations of individuals, with the

highest individuals being selected to survive. GA on the other hand takes inspiration from the

macro-level Survival of the Fittest theory. The population fitness is first evaluated and the best

individuals are selected to become the parents that produce the next generation. The process for

general ES is:

1. Generate initial population of solutions

2. While not termination criterion (loop):

i. Perform random crossover using all population to produce new generation (that

is larger than the population beforehand)

ii. Perform mutation through perturbation using random vector with a zero mean

iii. Evaluate new generation fitness values

iv. Select best individuals for survival using multivariate normal distribution

v. Repeat loop

Differences in the number of parents used in each crossover and the number of offspring

produced for the new generation give rise to the different branches of ES. Mutation operators

are also varied to produce other ES variants. Yao and Liu (1997) have used Cauchy mutation

operators to derive a Fast Evolutionary Strategy (FES) that was shown to consistently

outperform ES in multi-modal test functions due to its ability to escape local optima. The

authors state that ES wasn’t able to escape local optima effectively due to a local-search like

Gaussian mutation operator. Another, state-of-the-art, ES variant was proposed by Hansen and

Ostermeier (1996) and adapts the covariance matrix of the normal distribution as iterations are

performed. The result is that the relationships between variables are learned by the algorithm,

with performance increases as a result.

3.2.4 – Genetic Programming (GP)

Domain: Discrete Control Parameters: Depends on algorithm used

Genetic Programming was initially proposed by Koza (1990) for use in the context of artificial

intelligence. GP is used to create computer programs that are able to perform a singular task

optimally. GP is actually an application of genetic algorithms, rather than a standalone

16

algorithm itself. GP utilises any of the previously mentioned evolutionary algorithms (typically

GA, however not exclusively) to find the best computer program to perform the specified

function. GP encodes the tree-like structured programs into solutions and represents them as a

set of genes (so that one solution is like a chromosome in GA). The genes are then mutated

according to the methods of the evolutionary algorithm employed. Evaluating the fitness of a

solution involves running the prospective program and evaluating its performance (often its run

time and outcome accuracy). GP doesn’t seem to have found popularity in solving practical

engineering optimisation problems. This is likely because it is relatively computationally

intensive and limited in engineering applications which are able to be represented in the

required tree-like structure.

3.3 – SWARM INTELLIGENCE ALGORITHMS
Existing swarm intelligence algorithms have been presented, along with their domain suitability

and the number of control parameters (excluding population size and the number of iterations,

as all algorithms require these selections).

3.3.1 – Particle Swarm Optimisation (PSO)

Domain: Continuous/Discrete Control Parameters: 3

Particle Swarm Optimisation was first proposed by Kennedy and Eberhart (1995) and was

initially intended to simulate the social behaviour of animal swarms, particularly fish schooling

and bird flocking. The algorithm was the first to utilise swarm intelligence, in contrast to the

previously proposed Evolutionary Algorithms. Each solution is equated to a particle within a

swarm of other particles. The particles can be likened to any swarming/schooling creature,

including insects, fish and birds. The algorithm process is based on the behaviour of these

swarms when searching for a goal (be that a food source or habitable environment). The

intelligence component of the algorithm refers to the nature in which particles ‘communicate’

their positions to each other, allowing other particles to use this information when making

movement decisions. The process for traditional PSO is:

1. Generate initial population of solutions

2. Evaluate initial population fitness values

3. Whilst there is sufficient spread in swarm location (loop):

i. Generate all particles’ velocity

ii. Generate new positions based on velocities

iii. Evaluate swarm fitness values

iv. Update individual and global best position values

17

v. Repeat loop

The velocity is dependent on two factors:

 The position of the particle relative to its own best known position (allowing sufficient

search space exploration)

 The position of the particle relative to the swarm’s best known position (causing

eventual convergence)

Each of these positions has a weighting applied and the velocity and new position are calculated.

As iterations take place and the global best-known value comes to be constant, the swarm will

eventually converge.

Unlike the non-elitist Genetic Algorithm, PSO guarantees that the best solution is always

carried over throughout iterations (as the particle with the global best solution has zero

velocity). This inherent best-solution preservation is a strength of the PSO algorithm. Unlike

GA, if PSO reaches a local optimum and has decided that it is not good enough to accept as the

final solution, it is able to re-disperse the particles and continue searching (keeping the most-fit

particle in place).

A popular modification to PSO is the implementation of multiple swarms. Information is only

shared amongst each independent swarm for a majority of the iterations, with the outcome of

finishing with multiple optima. Hendtlass (2005) cites this as being particularly useful for

searching amongst multi-modal functions with good results obtained using an altered PSO that

uses multiple waves of swarms. Another modification is that of introducing random

perturbations of particle velocities, increasing the explorative capabilities of the algorithm.

Lovbjerg and Krink (2002), Xie, Zhang, and Yang (2002) and Xinchao (2010) all report

performance increases with different methods of velocity perturbation. The algorithm tends to

explore the domain more exhaustively, leading to better solutions in difficult search spaces.

3.3.2 – Ant Colony Optimisation (ACO)

Domain: Discrete (combinatorial) Control Parameters: 4

Proposed by Dorigo, Maniezzo, and Colorni (1991), Ant Colony Optimisation is based on the

foraging behaviour of ants. ACO is able to solve problems that can be reduced to finding good

paths through nodes in space. ACO is based on the concept of stigmergy, a term accredited to

Grasse (1959). Stigmergy refers to the phenomenon of indirect information sharing amongst a

group via individuals modifying the local environment. Ants release pheromones as they travel

between their nest and food sources, as shown in Figure 6. Therefore, the trails to the richer

18

sources of food have more pheromone laid down upon them. Ants tend to travel along paths

that have a greater amount of pheromone, which results in indirect communication about

locations of better food sources, as shown in Figure 6. Dorigo, Maniezzo and Colorni

successfully applied the concept of stigmergy in ant colonies in order to provide biasing to the

random operators used in the algorithm.

Figure 6 - Optimal path finding by ants

ACO is a solver limited to combinatorial optimisation problems (including path planning, job

scheduling and assignment problems). Algorithms for solving discrete, combinatorial problems

are not generally applicable to the field of mechanical design (especially not in the cases for

which FEA is used). Shape, size and topology optimisation all have continuous variable

domains, meaning that ACO (or a similar algorithm) would not be of use. However, the concept

of stigmergy is stimulating and highlights the various ways in which nature provides inspiration

for computational algorithms.

3.3.3 – Artificial Bee Colony (ABC)

Domain: Continuous/Discrete Control Parameters: 3

Proposed by Karaboga and Basturk (2007), Artificial Bee Colony Algorithm takes inspiration

from the foraging behaviour of a honey bee swarm. The algorithm has four main components:

 Food sources (solutions) with a certain level of nectar (fitness value)

 Employed bees, tasked with finding new food sources in the local neighbourhood of

their current best known food source

19

 Onlooker bees, which receive information provided by employed bees, before

probabilistically selecting a food source and becoming employed themselves

 Scout bees, who were once employed bees whose food source could not be improved

after a certain search time, choose another food source at random, increasing the

algorithm’s explorative characteristics (and preventing local optimum acceptance)

The algorithm is both simple in design and strongly interlinked with the inspiration behind it.

The general process for ABC is:

1. Generate initial population of employed bees and their respective food sources

(solutions)

2. Evaluate initial population nectar levels (fitness values)

3. Until termination criterion met (loop):

i. Set employed bees to search for new food sources in their neighbourhood

ii. Assign onlooker bees to a food source based on probabilistic decision

iii. Send scout bees on random search

iv. Memorise swarm single best position

v. Repeat loop

Algorithms that only accept fitter solutions can have a tendency to become stuck in local optima

of multimodal functions. ABC is clever in that it detects stagnation of a bee and randomises its

position, ensuring that the algorithm is searching the domain for all of the iterations.

The user defined parameters for ABC are:

 The population size, which is equal to the number of food sources

 The limit for search attempts before an employed bee converts into a scout bee

 The termination criterion

ABC has been widely implemented in a number of applications. Research by Omkar et al.

(2011) has applied a modified ABC for multi-modal objective functions through design

optimisation of a composite structure. The performance of ABC was found to be at least on-par

with that of GA and PSO. Another large performance comparison was performed by Karaboga

and Akay (2009) using 50 multi-dimensional benchmark functions. Results showed that ABC

performed markedly higher than GA and PSO, whilst the difference over DE is marginal. Table

3 gives a comparison of the performance of ABC to the other three algorithms.

20

Table 3 – Comparison of ABC to GA, PSO and DE (Karaboga & Akay, 2009)

Algorithm GA PSO DE

ABC Performed Better 28 24 8

Equal Performance 20 22 37

ABC Performed Worse 2 4 5

3.3.4 – African Wild Dog Algorithm (AWDA)

Domain: Continuous/Discrete Control Parameters: 0

AWDA is based on the communal hunting behaviour of African Wild Dogs (sometimes called

African Hunting Dogs). The algorithm was proposed by Subramanian et al (2013) and is an SI

based meta-heuristic. The authors say the algorithm is simple to implement with minimal

parameters to be user-specified, however this is perhaps more due to a lack of technical

endeavour rather than innovative algorithm processes. The process for AWDA is:

1. Generate initial population of dogs (solutions)

2. Evaluate initial population fitness values

3. Whilst there is sufficient spread in dog pack location (loop):

i. Update each individual dog position

ii. Evaluate population fitness values

iii. Repeat loop

Each dog is moved toward a random dog that has a higher fitness value. Updating position is a

simple method subject to Euclidian distances between dogs, with the outcome being that the

pack will always converge between iterations. This is in contrast to Grey Wolf Optimizer

(Section 3.3.6) where wolves are able to also diverge, increasing the explorative characteristics

of the algorithm. Due to the simple movement definition of AWDA it would likely not deal

well with largely multimodal functions with many local optima. The authors have only verified

the algorithm on one benchmark function: the Goldstein-Price function. Although the function

converged to the global optimum, it took 1000 function evaluations (Subramanian et al., 2013).

The SHERPA algorithm was able to converge to the optimum in 500 evaluations (Red Cedar

Technology, 2014).

The mechanics of AWDA are simple and their relation to African Wild Dogs appears

rudimentary. The position updating method is a general characteristic of all pack hunting

animals – that the pack will move towards the best-performing members (the leaders, or the

members closest to a prey). Beyond this mechanic, there seems to be no other relation to African

21

Wild Dogs, which are some of the best pack hunting animals on earth. They display hierarchical

social structures and strong inter-pack breeding whereby all females find new packs once they

reach maturity. None of these behavioural characteristics have been explored for use in the

algorithm. Implementing some of these processes would likely lead to better performance. For

example, the breeding technique could be combined with genetic operations to introduce greater

solution variability (helping search space exploration).

3.3.5 – Firefly Algorithm (FA)

Domain: Continuous/Discrete Control Parameters: 2

A relatively recent addition to the swarm intelligence family, Firefly Algorithm is based on the

flashing light behaviour of its namesake. Fireflies use this flashing mechanism for many

reasons, including communication and for attracting both potential mates and prey. Yang (2009)

simplified the behaviour of fireflies into three rules for implementation in the algorithm:

1. All fireflies are unisexual and attracted to all other fireflies.

2. The strength of attraction is both proportional to the brightness of, and inversely

proportional to the distance between, two fireflies.

3. If there are no brighter fireflies than a given firefly, then it will move randomly.

Each firefly is a representation of a potential solution. The brightness value is a result of the

fitness function, such that a higher fitness yields a higher brightness. The rules are simple in

nature but give yield to a relatively intricate process of searching the solution space. Unlike

other algorithms such as AWDA, the fireflies are never in a forced-convergence phase (such

that agents must move towards a fitter agent). Although fireflies with greater intensity may

exist, from the perspective of a given fly there may be no visible fitter solutions (due to distance

decreasing the relative brightness’s). If a firefly can see no better solutions it simply moves

randomly, which increases the explorative characteristics of the algorithm. The general process

for FA is shown in Figure 7.

22

Figure 7 – Firefly Algorithm optimisation process (Yang, 2009)

The three user-defined parameters of FA are:

 γ, determining how quickly the distance between fireflies reduces the relative intensity

 α, a parameter controlling the maximum step size

 n, the population size of the swarm, which is usually set between 15 and 40 (Yang,

2009)

FA has been shown to perform well over a wide variety of objective functions. Gandomi, Yang,

and Alavi (2011) have had success in implementing a mixed variable form of FA, applied to

civil-structural optimisation problems. Performance testing on the continuous-domain welded

beam problem often found in literature showed that MV-FA converged to the global optimum

with less function evaluations than both GA and DE (amongst other non-bio based). When

applied to a mixed variable problem of a reinforced concrete beam, MV-FA again outperformed

other algorithms found in literature (Gandomi et al., 2011).

3.3.6 – Grey Wolf Optimizer (GWO)

Domain: Continuous/Discrete Control Parameters: 2

As the name suggests, GWO is based on the structured hunting techniques of grey wolves.

Proposed by Mirjalili, Mirjalili, and Lewis (2014), GWO is one of the newest bio-inspired

algorithms presented in literature and was partly developed by a team at Griffith University in

Brisbane. The algorithm is based on the observed pack hunting hierarchy that the wolves

employ when searching for prey. Each wolf represents a solution with the positions updated

according to rules adapted from observations of the animals in the wild. The alpha, beta and

23

delta wolves represent the best three current positions. The general process for GWO is shown

in Figure 8.

Figure 8 – Grey Wolf Optimizer optimisation process (Mirjalili et al., 2014)

The position updating accounts for the position of the current wolf in relation to the three pack

leaders. The movement occurs in spherical manner (n-spheres to be precise), mimicking the

encirclement of prey by wolves. The parameter is a multiplier that is decreased over the

iterations, shifting the algorithm from exploration to exploitation by decreasing the relative

distances moved between wolves. is a random perturbation vector that assists to prevent

premature convergence.

The performance of GWO was verified by Mirjalili et al. (2014) through testing on both

benchmark test functions and classical engineering design problems. The algorithm

outperformed PSO, GA and DE in 3 out of 7 unimodal test functions. For multimodal functions,

GWO provided competitive performance on many of the functions, often outperforming PSO

and GA. In the classical welded beam problem, GWO equalled the outcome of Firefly

Algorithm in finding the global optimum.

3.3.7 – Dolphin Echolocation Optimisation (DEO)

Domain: Discrete (combinatorial) Control Parameters: 1

Proposed by Kaveh and Farhoudi (2013), Dolphin Echolocation Optimisation is a

combinatorial problem solver based on the methods used by dolphins to locate prey. The

dolphins generate high-frequency clicks, the sound waves of which strike objects and are

reflected, allowing the dolphin to identify the location of prey when visibility is poor. Dolphins

search large spaces until a suitable prey is found, analogous to the way in which DEO perform

24

a global search in an effort to find the optimum. Kaveh and Farhoudi simulated dolphin

echolocation by limiting an agent’s exploration in proportion to the distance from the target.

The process for DEO is outlined in Figure 9.

The user is required to define a curve that describes the convergence profile of the algorithm,

setting the proportion of computational effort devoted to exploration and exploitation

respectively. Although this makes the algorithm less parameter dependant, it puts responsibility

onto the user to have an idea about the space being searched. Furthermore, the parameter sets

from which variables must take their values are required to be ordered in ascending or

descending order prior to running the algorithm.

The authors have published further papers on DEO, applying it to civil structural problems

involving steel frame structures (Kaveh & Farhoudi, 2015) and cantilever retaining walls

(Kaveh & Farhoudi, 2016). In both instances, DEO was found to be on-par with Differential

Evolution in algorithm outcomes. Performance measurements outside of the original authors

are limited, with only one seemingly independent source found. Gholizadeh and Poorhoseini

(2015) developed a modified DEO by changing the exploration-exploitation curve definitions

and found that it outperformed the standard definition of the algorithm. However, no

comparisons were made to other algorithms.

Figure 9 – Dolphin Echolocation Optimisation process (Kaveh & Farhoudi, 2013)

25

CHAPTER 4

ALGORITHM DEVELOPMENT PROCESS

4.1 – ALGORITHM GOALS
After performing the literature review, there were a set of goals that were identified as desirable

to be achieved by the new algorithm. These goals aimed to maximise the value of the algorithm

to the engineering community.

The first goal was that the algorithm be readily applicable to, and a strong performer on, a broad

range of engineering problems. This implied that the algorithm needed to make no assumptions

about the search domain. Therefore, algorithm methods were to be as general as possible. This

included not directly using the fitness values within the algorithm (such as in Firefly

Algorithm), as this may have caused problems when using a penalty function constraint

handling approach. The fitness values were to be used for ranking of the swarm only.

The second goal was efficiency in performance. This meant producing results comparable with

existing algorithms in a fewer number of total function evaluations. For some particular

engineering problems, a function evaluation may take a relatively long time (such as a CFD

computation). Therefore, the algorithm was to be as efficient as possible and minimise the

required number of iterations to produce fit and trustworthy results.

The third and final goal was simplicity. When performing the literature review, it was found

that some particular algorithms were quite mathematically complex, making them hard to

comprehend. It was hoped that the new algorithm be easily useable by anyone with good,

general scientific or mathematical knowledge, rather than just by experts in the metaheuristic

field. Therefore, the algorithm was to be kept as simple as possible in terms of the mathematical

methods implemented. This also meant minimising the number of user-selected control

parameters.

4.2 – INVESTIGATED INSPIRATION SOURCES
A number of inspiration sources were investigated as being the possible basis for the

formulation of the new algorithm. The majority of these sources were animal-based, that would

lead to swarm intelligence algorithms. Evolutionary inspiration sources were largely avoided

due to Evolutionary Algorithms being markedly more complicated to understand and

26

implement. For an algorithm that was to be easily understood by engineers not familiar with

the BIA space, it was decided that a swarm based inspiration would be more appropriate.

4.2.1 – African Wild Dogs

African Wild Dogs are a canine native to Sub-Saharan Africa. They are characterised by their

dark, mottled coats and large ears. They are regarded as one of the most efficient hunters with

a kill rate of up to 80%, compared to a lion’s 10% (National Geographic, 2014). The African

Wild Dog Algorithm of Subramanian et al. (2013) is based upon the dog. However, as discussed

in Section 3.3.4, the authors of the algorithm haven’t utilised any of the interesting behaviour

that the dogs display. This left an opportunity to develop a new algorithm based on the animal

that utilises a more advanced method.

The possible behavioural characteristics upon which the algorithm processes could have been

based included:

 The dogs are unique amongst social carnivores in that it is the females that scatter from

the natal pack once mature, with all females going on to find new packs.

 The males and females have different social hierarchies.

 The young are the first that are allowed to feed on carcasses.

 The dogs chase their prey to exhaustion before encircling and attacking.

 The leaders of the chase change periodically to share the load.

Dr Michael Somers (2016) has described as the dog’s hunting behaviour as context dependent

and able to be altered to suit the local condition. If this was able to be translated into the code,

it would mean the algorithm would be able to adapt to the topology of the local domain,

increasing search efficiency. The way in which the females scatter to find new groups also

allows for the possible implementation of genetic operators in the algorithm, increasing the

explorative capabilities (but perhaps adding some complexity).

4.2.2 – Bottle Nose Dolphins

The Dolphin Echolocation algorithm of Kaveh and Farhoudi (2013) was exclusively for the

optimisation of combinatorial (discrete) problems. It was demonstrated through the

optimisation of steel truss structures where cross-sections were required to come from a set of

standard types. The combinatorial nature of the solver is hard-coded, meaning the algorithm

can’t be adapted for continuous domains without significant alteration. Therefore, an

opportunity existed to develop a dolphin-based algorithm that is able to handle continuous

27

optimisation for implementation in continuous domain design problems. The possible

behavioural characteristics upon which the algorithm processes could have been based include:

 Dolphins’ use of echolocation to source their prey.

 Dolphins’ tendency to migrate to warmer (more habitable) waters when conditions

deteriorate at their current location.

 The dolphin pod technique of herding their target fish into a tight group before feeding

on them.

 Communication amongst a dolphin pod based on the dolphins whistling.

Kaveh and Farhoudi didn’t utilise any communication between dolphins, beyond the use of

probability distributions based around the position of the best dolphin (imposing an inherent

communication about the dolphin’s current position relative to the best position). Direct

communication between dolphins could have been a possible algorithm process to implement.

In nature, if dolphins find an adequate food source and the water temperature is satisfactory

they will tend not to migrate. In the algorithm, if a dolphin finds an adequate food source (local

optimum) it could be forced to escape and continue searching by “decreasing the water

temperature”. In code form, this could have been implemented as an escape if a dolphin had

been stagnant for a number of iterations.

4.2.3 – Sugar Gliders

Sugar Gliders are a native Australian animal characterised by their compact size and ability to

glide between trees. No current optimisation method exists based on the animal, however they

displayed some promising behavioural and social characteristics that made them a promising

candidate for the algorithm basis. These included:

 The animals can glide for up to 50 metres in a single go, with an average of 20 metres.

 The females produce 1 or 2 offspring per pregnancy.

 Two codominant males lead a colony of 5 to 7 adults and additional young (with the

other males being suppressed).

 One of the codominant males are the most likely father of the young.

 The gliders breed more often when a sufficient diet is available and breeding is not

restricted to a season.

Solutions would be represented as trees with food sources, with glider agents gliding from tree-

to-tree, searching for better solutions. The large glide distance of the glider would allow for

sufficient domain exploration, with the glide distance decreasing as the iterations progress and

28

the colony converges. Also, if the codominant males were taken to be the gliders with the best

solutions, genetic operations could be introduced to produce offspring which would likely

contain the best information from the previous generation, further increasing the explorative

power of the algorithm. The tendency to breed more often when food is abundant can help

escape local optima (diverge through producing many offspring when a good food source is

found).

4.2.4 – Selection of an Inspiration Source

All three sources were thoroughly investigated, and all seemed promising in the potential to

develop a new bio-inspired algorithm. Therefore, a selection matrix was used to distinguish the

animals based on three key criteria:

 Interestingness; a measure of how interesting the animal is in general. This accounts for

intriguing behavioural characteristics and how unique the animals are.

 Depth of available literature; a measure of how much information is available about the

animal, which would serve as sources for inspiration for the algorithm methods.

 Originality; a measure of how novel an algorithm based on this animal would be.

Accounts for how many existing algorithms there are for the animal, and how closely

they relate to it.

Table 4 gives the selection matrix that assisted in choosing the most promising inspiration

source for the algorithm. Each criterion for each animal was given a score from 1-5. Table 4

shows that sugar gliders stood out as the most favourable option. There was no existing BIA

based on the animal, meaning the new algorithm would be easily distinguished from the existing

literature. Sugar gliders were also a very interesting choice, with their gliding behaviour

relatively unique amongst animals. Furthermore, sugar gliders are native to Australia which

would came an added bonus; Australian researchers basing their work on an Australian animal.

29

Table 4 – Algorithm inspiration selection matrix

Criteria African Wild Dogs Dolphins Sugar Gliders

Interestingness 2 3 4

Relatively unknown

creatures, and very

similar to wolves,

hyenas and lemurs.

Known to be very

intelligent creatures,

meaning that there are

many stimulating

behavioural

characteristics.

Their gliding

behaviour is relatively

unique amongst

animals and may be

unknown to many

people.

Depth of Available

Literature

2 5 3

Not much available

literature on the

animals due to low

numbers in the wild.

Well studied animals

mean that there is a

wealth of available

information about

their behaviour.

Relatively lower

amount of information

about them, but still

some qualified

sources.

Originality 3 1 5

One existing AWDA

algorithm, however it

doesn’t capture the

animal’s unique

behavioural traits.

There are already two

dolphin-based

algorithms (DPO and

DEO).

No algorithms based

on sugar gliders, or

similar gliding

creatures, currently

exist.

Total 7 9 12

4.3 – DEVELOPMENT PROCESS
Once the inspiration source of sugar gliders had been selected, work began on constructing the

mathematical formulation of the algorithm. The first task was to identify how to link the

behaviour of the gliders to the processes used in the optimisation routine.

4.3.1 – Linking Glider Behaviour to the Algorithm Methods

One of the interesting behavioural characteristics of sugar gliders was their hierarchical social

structure. Klettenheimer, Temple-Smith, and Sofronidis (1997) observed that there are two

codominant males that lead the colony, with other males being suppressed. These two males

cooperated with each other in activities such as grooming and fighting, but never cooperated

with any subordinate males. From this behaviour, it was decided that the colony of gliders (the

algorithm search agents) should be divided into two groups – the codominant gliders and the

30

subordinate gliders. The codominant gliders would lead the search of the domain, with the

subordinates updating their position based on the codominants’ position.

Sugar gliders feed on insects, as well as supplementary nectars such as acacia gum and

eucalyptus sap when the bugs are scarce. All the food sources for a glider are contained in the

trees that they glide between. Therefore, it was decided that a glider’s fitness would be

represented as the available food as its location. Gliders were then gliding from tree-to-tree in

search of the most-abundant food source. The glide distance would decrease as the iterations

progressed, as gliders would be continuously finding better food sources and thus would not

need to fly as far.

Another interesting characteristic of sugar gliders is that they often occupy more than one den

at once. Lindenmayer (2002) found that some gliders simultaneously inhabit up to 13 dens.

Gliders search for food in the areas surrounding their den. This implies that the location of their

current den impacts and directs their search for food. To simulate this behaviour, it was decided

that glider agents would also use a randomly-generated home position to influence their search,

with a single home position for each colony. The random generation would occur at each

iteration of the loop, introducing greater search space exploration. This was not implemented

until the second design iteration, in Section 4.3.3.

4.3.2 – Design Iteration #1

Initial efforts were not directed towards gaining exceptional performance, but rather toward

ensuring that the simulated colony was behaving in a way that somewhat emulated real glider

behaviour. This primarily entailed observing convergence of the colony, somewhat toward the

optimum, as the iterations progressed. Convergence would imply that the gliders are moving

toward the colony’s best known food source, which is an intuitive behaviour. Convergence of

the colony was identified to be the first step toward strong performance.

The colony was divided into the two codominants and the remaining subordinate gliders.

However, all gliders used the same position updating method described in Equations 1 to 3.

 ∆	 2 ∗ 1 (1)

∆ ∗ ∗ 0, 1

∗ 1
(2)

 (3)

31

The positions were updated based on the relative distances between a random one of the two

codominant gliders, and the colony’s best found position. Because the codominant gliders

updated the same as the subordinates, there was a chance that the best position would not be

carried through the iterations. In hindsight, this was not an ideal outcome.

This iteration of SGA was tested on simple functions throughout the design process. However,

even on simple functions (such as a three-dimensional) the results were poor, let alone

comparable to existing algorithms. The colony often converged to a random point in space,

rather than toward the optimum.

This design iteration also produced some very spurious results. Figure 10 gives examples of

colony search histories that resulted in star-like patterns, with gliders mostly moving along

straight lines. Behaviour like this occurred randomly, and it was unpredictable as to when it

would happen. It was found that this was likely due to the ∆ operator linearly decreasing the

move distance, without any introduced randomness.

Figure 10 – Erratic search histories

This sort of behaviour was not desired, as the domain was clearly not being searched

comprehensively. Therefore, it was decided that the methods used were to be reworked. In order

to introduce some more variability in results, the home position was introduced in the second

major design iteration.

4.3.3 – Design Iteration #2

The introduction of the home position marked the second major iteration of the algorithm. The

home operator aimed to introduce a greater amount of stochastic operation in the algorithm

(meaning increased randomness). This was aimed at helping explore the domain more

comprehensively.

Updating the codominant gliders in the same way as the subordinate gliders reduced the

differentiation between the two groups. As such, it was decided that the two codominant gliders

32

would not update their positions at all. They would stay stagnant for as long as they were one

of the codominants. This would ensure that the best solution would be carried over throughout

the generations. The subordinate gliders would base their movements off a random one of the

codominant gliders, and the home position (as shown in Equations 4 to 6).

∆	 0.5 ∗ 2

(4)

∆ ∗ ∗ 0, 1

∗ 1
(5)

 (6)

The delta operator was now non-linear, and attempted to emphasise exploration by decreasing

to zero at a slower rate. Figure 11 shows both the linear and non-linear delta functions

(Equations 1 and 4).

Figure 11 – Delta functions (left) and Correct convergence behaviour (right)

Figure 11 also shows the algorithm working toward finding an optimum at the point 0, 0 . As

the figure depicts, the domain was now being explored much more thoroughly compared to the

first design iteration. The swarm eventually converged towards the optimum. However, the

final value produced, whilst generally good, was not comparable with existing algorithms. It

was clear that the exploration power of the algorithm was now much better, but the exploitation

power needed to be improved.

To maximise the algorithm performance, methods needed to be introduced that increased the

ability of the algorithm to find the exact position of the optimum. Section 5.1 shows that the

final algorithm increased the exploitation power through the codominant gliders updating their

positions based on a local search. Furthermore, the introduction of using both codominant

positions for updating the subordinate gliders increased the exploitation power of the algorithm

also.

33

CHAPTER 5

SUGAR GLIDER ALGORITHM

5.1 – ALGORITHM DESCRIPTION
5.1.1 – SGA Pseudocode

The previous chapter has outlined the design process that was undertaken in order to formulate

the eventual final version of Sugar Glider Algorithm. Throughout this process the general

format of the algorithm only changed slightly. The final outline of the algorithm is expressed

in pseudocode in Figure 12.

Figure 12 – Sugar Glider Algorithm pseudocode

5.1.2 – Method Description

The algorithm starts by initialising the glider colony through assigning variable values, which

are randomly selected from the user-defined ranges. The values are stored in a position matrix

, with rows (for gliders) and columns (for dimensions).

, ⋯ ,

⋮ ⋱ ⋮
, ⋯ ,

 (7)

The fitness of the colony is then evaluated through calculation of the objective function value

for each glider. These values are stored in a fitness vector .

34

 ⋮ (8)

The algorithm then enters the main loop that iterates until the maximum number of iterations

has been reached. First, the colony is ranked in order of best fitness, meaning that the first two

rows of the position matrix become the two codominant gliders.

, ⋯ ,

, ⋱ ,

, ⋯ ,

 (9)

The codominant gliders then search for a move by observing a sighted position, , through use

of the sight distance () parameter, which is default at 0.1:

 0, 1 (10)

 1 1 , 1 1 (11)

 ∗ (12)

The variable is the time factor, which linearly increases 0 → 1 , and is given through:

 (13)

The objective function is then evaluated for the sighted position. If the fitness at the new

location is better, a move is performed. Otherwise, the codominant stays in its current position.

Next, the subordinate gliders’ positions are updated. Three random vectors assist to increase

the variability and prolong the convergence:

 1 , 2 (14)

 2 , 2 (15)

 3 2, 2 (16)

The distance to move is then calculated by the addition of distances to the two codominants and

the home den position:

 1, 10 (17)

1 ∗ 2 ∗ ∗ 	

								 	 3 ∗ ∗ 1
(18)

The time factor () and a convergence power parameter () act on both the home and second

codominant distances such that a weighting toward the codominant distance increases

throughout the iterations. The weightings are the and the 1 factors of Equation 18.

Figure 13 gives the time plot for the default value of five over the iterations.

35

Figure 13 – Weightings for a CP value of 5 (the default)

Towards the later stages, will simply direct the gliders towards the codominants. The

codominants will ideally, by this stage, be positioned in the same local area. Therefore, it is

clear that:

 lim
→

2 ∗ (19)

Therefore, the move distance must be halved in order to ensure proper convergence of the

swarm:

 0.5 ∗ (20)

The matrix is then updated with the new glider positions. The fitness values for the new

subordinate glider positions are then evaluated and the matrix is updated. The codominant

and subordinate gliders then continuously update their positons until the maximum number of

iterations has been reached.

The algorithm is easily extended to multiple colonies via adding an extra dimension to each

matrix, representing the colony number. The supplied code has this built in.

5.1.3 – Convergence Power Parameter

The convergence power is a parameter that acts to alter the weightings applied to the distances

moved towards the second codominant and the colony home. Figure 14 gives plots for the

weightings for different values of , with the valid range defined in Equation 17. It can be

seen that as is increased, the gliders move more toward the second codominant and less

toward the random home position.

36

Figure 14 – Effect of the CP parameter on the weightings

The convergence power acts to increase the convergence rate of the swarm. Figure 15 depicts

this effect on a test run of a unimodal test function shown in Equation 21.

 (21)

Figure 15 – Convergence behaviour for CP = 10 (a) and CP = 1 (b)

37

Because the function is highly unimodal, and of a low dimension, the run with a of 10

outperforms the run with a of 1. However, the search space exploration is much lower for

the high convergence power. This is expected, and is exactly the desired effect of the

parameter. The parameter has been tuned in Section 5.2.3.

5.2 – PARAMETER TUNING
The algorithm has three parameters that must be tuned to ensure optimal performance of the

algorithm. These parameters are the sight distance, the convergence power and the colony size.

5.2.1 – Tuning Functions

For tuning the sight distance, a set of 5 unimodal functions were chosen. This is because the

sight distance is an exploitive operator that works to find the local optimum in the current

location. Unimodal functions are best used to test the exploitation characteristics of algorithms

as there is a single optimum to converge towards. The functions used to tune the sight distance

are listed in Table 5.

Table 5 – Tuning functions for the sight distance

Name Formula Type Dim Min

Sphere 	 (22) US 30 0

SumSquares (23) US 30 0

Matyas 0.26 0.48 (24) UN 2 0

Schwefel

2.22
| | | | (25) US 30 0

Dixon-Price 1 2 (26) US 30 0

For tuning the convergence power and population size, a mixed set of functions was chosen

that were a combination of unimodal/multimodal and separable/non-separable. This was done

to ensure that the parameter values chosen provided acceptable performance across a range of

objective function types. This means the algorithm can be applied to many functions without

needing modification. The functions used to tune the convergence power and population size

are listed in Table 6.

38

Table 6 – Convergence power and colony size tuning functions

Name Formula Type Dim Min

Sphere 	 (27) US 30 0

SumSquares (28) US 30 0

Matyas 0.26 0.48 (29) UN 2 0

Schaffer 0.5
sin 0.5
1 0.001

 (30) MN 2 0

Schwefel sin | | (31) MS 30 -12569.5

30 tests were run for testing each parameter value. Each test was for 1000 iterations of a colony

of five gliders. The numerical results obtained have not been reported; the important outcome

is the result relative to the others obtained for different parameter values.

5.2.2 – Sight Distance

The sight distance parameter designates by what percentage a codominant glider can fluctuate

its values by. This is analogous to how far the glider can search, in its local domain, for a tree

with a greater food source. The sight distance can take any value in the range designated in

Equation 32.

 0, 1 (32)

In order for the search be considered local, the chosen value would be towards the lower end of

the range. Furthermore, the codominant glider is already in a quasi-optimal location, and so to

improve its position, only a small change would be required. This would help ensure sufficient

exploration of the local domain. Therefore, the range of sight distance values tested were those

given by Equation 33.

 0.01, 0.05, 0.1, 0.2, 0.3 (33)

In order to observe the effects of altering the sight distance, a count was made of how many

times a particular sight distance resulted in a better solution. Furthermore, the average

percentage change in the fitness was also recorded. Along with the accuracy of the final

solutions obtained, this allowed for a full evaluation for the performance implications of

changing the sight distance.

Figure 16 shows the average final result of implementing SGA with the given sight distance.

The results have been normalised using feature scaling, such that the scores are all then in the

39

range of 0, 1 . A lower score implies greater performance. Figure 16 shows that a sight distance

of 0.1 results in the lowest average function outcomes. It also has the lowest maximum value

and the smallest spread across the data points. This is important as it implies good all-around

performance.

Figure 16 – Outcome f(x) values for differing SD

Figure 17 is a plot of the total fitness increases gained by the codominant gliders. It is the

multiple of the number of times the position was updated with the fitness increase each time.

Here, a larger value is more desirable, as it implies the position updating was more effective.

In general, a smaller sight distance implied a larger number of fitness increases, but for a smaller

gain each time. The opposite was true for a larger sight distance. The data has again been

normalised using feature scaling.

Figure 17 – Average fitness gain for differing SD

40

Figure 17 shows that the sight distances of 0.05 and 0.1 seemed to be equally effective in the

average fitness gain. The average gain for 0.1 was very slightly higher, with 0.05 giving a

smaller spread. The values towards the end of the range experienced a higher spread, meaning

their performance was inconsistent. This is not desirable, and as such, they were not selected.

Based on the results, a distance of 0.1 seems to be the value for an optimal balance between the

two trade-offs. As such, a sight distance of 0.1 has been selected as a default value.

5.2.3 – Convergence Power

The convergence power acts to alter the relative weightings of the distances moved towards

the home and second codominant positions. It is recommended that the user set the convergence

power to an appropriate value for the problem at hand. However, a default value for still

needed to be set; one that gave good all-round performance. The convergence power range

tested was the set 1, 10 , in integer increments.

 values of 1 and 2 did not converge the colony until the very late stages, meaning the

optimum was not exploited fully. This caused exceedingly sub-par performance on the first two

US-type objective functions, meaning that these values have been omitted (such that the feature

scaling normalisation was interpretable).

Figure 18 is a plot of the average final optimisation result against the convergence power used.

A smaller value is more desirable, as the problems are all minimisation type. Figure 18 shows

that values on the extreme ends of the range gave mixed performance across the five test

functions. A value of 5 gave the best performance overall, with the smallest spread and the

lowest maximum value.

Figure 18 – Outcome f(x) for differing CP

41

Figure 19 is a plot of the standard deviations across the data sets for each function (with feature

scaling applied). A low standard deviation is important to ensure that the result of a single

optimisation run can be trusted with confidence. Again, a value of 5 gave the best overall

performance amongst the range with the smallest maximum standard deviation and equal spread

of standard deviations.

Figure 19 – Outcome standard deviation for differing CP

Due to a value of 5 giving the best performance in both aspects, it was selected as the default

value for the convergence power. Section 5.4.2 gives advice on how to select the ideal

convergence power for a given optimisation problem.

5.2.4 – Colony Size

The colony size required tuning in order to find a value that gave good all-around performance

on a range of functions. The colony size parameter was tuned using an equal-NFE basis.

Therefore, a larger colony size meant a lower number of algorithm iterations (for the same

number of total function evaluations). This ensured a fair comparison between the values tested.

The minimum number of gliders is three; two codominants and one subordinate. Gliders in the

wild typically live in colonies of five to seven, however the maximum value tested was ten to

ensure the optimal value was selected. There is no maximum limit to the number of gliders the

user can opt to use.

Figure 20 is a plot of the final function values over 30 repeated runs. The figure depicts that

values from five onwards show minimal difference in the results obtained. Values below five

show significantly worse performance.

42

Figure 20 – Outcome f(x) for differing colony size

Figure 21 is a plot of the standard deviations between the results obtained over the 30 repeated

runs. The figure depicts that a colony size of five gave the minimum values for standard

deviation, however hot much of an increase is observed for values greater than five. Again, a

colony of three or four gliders gave sub-par performance compared to the rest of the values.

Figure 21 – Outcome standard deviation for differing colony size

Based on the results of the two metrics, a colony size of five seemed to give the best balance of

codominant and subordinate gliders, and was selected as the default value. A colony of five

gliders showed good performance across both the minimum values and the standard deviations

across the 30 runs. This also tied in well with the fact that gliders typically form colonies of

five to seven in the wild.

43

5.3 – COMPARISON TO EXISTING ALGORITHMS
5.3.1 – General Method Comparison

Forms of swarm intelligence algorithms use a position updating procedure that often utilises a

combination of the following methods:

 Relative position between the search agent and the swarm’s best known position.

 Relative position between the search agent and its own best known position.

 Relative position between the search agent and an agent with a better current position.

 Random vector operators to vary the distance moved.

SGA utilises methods derived from the first and fourth points. The codominant search method

of fluctuating positional values is understood to be original within the field. SGA is further

differentiated from other swarm intelligence algorithms in the following aspects:

 The codominant gliders update their positions in a separate manner to the rest of the

gliders. This separates the colony into two groups and allows the domain to be

concurrently explored and exploited.

 The introduction of a convergence power that is applied to the time factor to facilitate

convergence behaviour changes, allowing the user to customise the process to suit the

particular domain.

 The introduction of a random home position which increases variability in early

iterations of the optimisation process. This increases the strength of the algorithm in

multimodal domains.

The combination of these points ensures that the proposed algorithm is in fact novel amongst

the existing literature.

5.3.2 – Algorithm Parameter Comparison

It can be argued that the parameters for SGA are significantly more intuitive to select than those

of the other algorithms. The sight distance and population size have been given

recommended values in Section 5.2, therefore it is unlikely that users will decide to alter them.

Beyond the number of iterations, the convergence power is the only parameter that is

recommended to be altered by the user. However, the convergence power has also been studied

in Section 5.2.3, with a simple guide for selection of its value in Section 5.4.2.

In contrast, many other algorithms have parameters whose effect on results is not as instinctual.

These parameters may be well understood by researchers in the field, but to typical engineers

they are likely hard to comprehend without extensive study of the topic. For example, Particle

44

Swarm Optimisation has four control parameters. One of which is the population size, which is

a straightforward selection. But the inertia weight and random φ operator ranges are less

intuitive. Although there has been extensive work on the topic of tuning PSO parameters, it is

still an added step to the optimisation process that SGA doesn’t require.

To an extent, evolutionary inspired algorithms suffer from this problem even more than their

swarm intelligence counterparts. Evolution Strategy, Genetic Algorithm and Differential

Evolution all contain selectable parameters that are hard to conceptually understand. This is

mostly because the parameters are drawn from the sometimes-complex genetic process

occurring at a microscopic level. For example, the EA variant tested by Krink, Filipic, and

Fogel (2004) had five control parameters. Again, one was the population size. However, the

remaining four related to crossover, selection, mutation and tournament selection methods, all

of which are not often understood by those outside the field. The fact that the parameters of

SGA are easy to select further strengthens its presence amongst the available bio-inspired

algorithms.

5.4 – PYTHON CODE AND USER RECOMMENDATIONS
The Sugar Glider Algorithm has so far been actualised in Python code. The code formulations

can be found in Appendices 2 through 9. Some recommendations have also been formulated

that should assist in helping end users to understand how to use the algorithm.

5.4.1 – SGA in Python

Python was chosen as the first implementation platform due to both familiarity and popularity

within the engineering community. This should mean that the developed algorithm is able to be

employed by a large user base, immediately. The provided Python code currently includes:

 SGA for continuous domains (Appendix 2)

 SGA for integer-valued discrete domains (Appendix 3)

 SGA with built in plotting functions showing swarm behaviour (Appendix 4)

 SGA for the mixed-variable pressure vessel problem in Section 6.2.3 (Appendix 5)

 The benchmarking function test scripts (Appendices 6 and 7)

A barebones Python script has also been included in Appendix 9. The script simply requires the

user to fill in the function definition for which they want to test (including any constraints), and

define variable ranges. When the script is run, SGA will optimise the function and return the

resulting values fopt and xopt.

45

When using SGA in Python, it is accessed through a function call. There are three necessary

parameters that must be passed to the SGA function at runtime. The first is the Python function

object to be optimised, which takes a single list of input variables. The second and third

arguments are the lower and upper variable ranges respectively. The lengths of the variable

bounds define the dimension of the problem, and the algorithm uses this information in its

routines. Figure 22 gives a simple example of implementing SGA in code form.

Figure 22 – Example implementation of SGA in Python

When wanting to use SGA to optimise functions that are not represented by mathematical

formulas, the objective function must be modified such that it can connect to the external

“fitness-generating” mechanism (be it another computer program or physical measurements).

There are a number of other options that can be set when running the Python command. Table

7 lists these options and their valid value/s. These options aim to help customise the

optimisation process such that the user gains maximum accuracy and efficiency.

Table 7 – SGA Python input parameters

Parameter Description Valid Value/s

itermax The maximum number of optimisation

iterations, which is default at 1000.
1,∞

colonies The number of colonies of gliders, which is

default at 1.
1,∞

gliders The number of gliders per colony, which is

default at 5.
3,∞

cp The convergence power () value, which is

default at 5.
1, 10

sd The sight distance () value, which is

default at 0.1.
0, 1

46

guess An initial guess of the optimum location.

Only recommended to be used if there is

significant confidence in the guess.

, ⋯ , 	

	

5.4.2 – Parameter Value Recommendations

The number of gliders within a colony is recommended to be set at five. For more accurate

results, instead of adding more search agents, it is recommended that the user simply increase

the number of iterations. Section 5.2.4 shows that no performance increases were observed for

colonies with greater than five gliders. Therefore, the easiest way to guarantee a performance

increase is to simply increase the number of iterations performed by SGA.

It is recommended that the sight distance () parameter not be altered by the user, unless they

are prepared to undertake problem-specific tuning to determine its ideal value. The tuning in

Section 5.2.2 showed that larger sight distances decreased the chance of finding a better

solution. However, when a better solution was found, its magnitude increase in fitness was

larger. The resulting combination of these factors was optimal at a value of 0.1, across a range

of problems. Therefore, the sight distance has already been tuned to what is understood to be a

generally good value. No easy parallel can be drawn between objective function domain

topology and a suitable sight distance value, meaning problem-specific tuning should be

performed if the user wants to alter the value. However, it is recommended that this time should

rather be devoted to extra algorithm iterations, as this would likely increase the performance by

a larger amount than any tuning of the parameter.

Other than the number of iterations, the convergence power () is the only control parameter

that the user needs to set before running the algorithm. As previously outlined, the parameter is

recommended to take a value in the range 1, 10 , where the default value is 5. The ideal

value is dependent on the modality of the function and the size of the search domain. For highly

unimodal functions, the convergence power may be increased towards the higher end of the

range, with 10 being the recommended limit to try and ensure adequate exploration. For highly

multimodal functions, especially those including discontinuities from constraints, it is

recommended that the convergence power be set toward the lower end of the range.

Furthermore, the domain size must be considered when setting the parameter value. A smaller

domain size means the convergence power can be increased due to a lower exploration

requirement. 	values in the range 0, 1 are valid, however they severely reduce the

convergence rate meaning that effective exploitation of the optimum will likely not occur.

47

CHAPTER 6

PERFORMANCE BENCHMARKING

6.1 – CLASSICAL MATHEMATICAL FUNCTIONS
Testing on unconstrained mathematical functions has been performed as it allowed for a generic

performance comparison to be made against existing algorithms.

6.1.1 – Test Functions

The test functions that have been used are commonplace amongst researchers in the field. They

can be classified in two ways:

 Unimodal (U) and multimodal (M), which refers to the number of optima in the domain

(with multimodal functions regarded as harder to solve), and

 Separable (S) and non-separable (N), with separable functions generally easier to solve

as the variables are independent from each other (meaning the problem can be likened

to simultaneously optimising a larger number of simpler functions).

Table 8 outlines the definitions and characteristics of the test functions used. The functions are

a good mix of type, ensuring acceptable broad-ranging performance.

Table 8 – Mathematical benchmarking function definitions

Name Definition Type Range Dim

Sphere

(F1, 34)
 US [-100, 100] 5

Schaffer

(F2, 35)
0.5

sin 0.5

1 0.001
 MN [-100, 100] 2

Griewank

(F3, 36)
1

1
4000

100 cos
100

√
 MN [-600, 600] 50

Rastrigin

(F4, 37)
10 cos 2 10 MS [-5.12, 5.12] 50

Rosenbrock

(F5, 38)
100 1 UN [-50, 50] 50

48

Figure 23 visually depicts the 2D versions of the test functions, as well as their contour maps.

Figure 23 – Visual 2D representation of the benchmarking functions

49

As can be seen, some of the functions are highly multimodal in nature. Griewank is classed as

multimodal, however its 2D representation doesn’t depict its multimodal nature very well

(which is more prevalent in higher dimensions). The multimodal functions test the explorative

characteristics of the algorithm, ensuring it can avoid local minima and find the area of the

global optimum effectively. On the other hand, unimodal functions test the exploitation power,

ensuring it can find the exact value of the function minimum.

6.1.2 – Benchmark Settings

The algorithm’s performance has been compared to that of three existing bio-inspired

algorithms. The results, and therefore the algorithmic settings, for DE, PSO and an EA have

been taken from Krink et al. (2004). As explained in Section 5.4.2, there is only one control

parameter for SGA that is recommended to be altered by the user; the convergence power .

As the set of test functions is a mix of both unimodal and multimodal, it was decided that the

convergence power be left to its default value of 5. This allowed for a demonstration of the

general performance of the default algorithm. Table 9 lists the control parameter values for all

the algorithms.

Table 9- Algorithm parameter values

DE PSO EA SGA

 50 20 100 1

 0.8 1 → 0.7 1.0 5

 0.5 0.0 0.3 5

 2.0 0.01 0.1

 10

To ensure a fair comparison, the same runtime setting as Krink et al. (2004) have been used.

These parameters are listed in Table 10 below.

Table 10 – Performance benchmarking test settings

Parameter Value

NFE (F1, F2) 100,000

NFE (F3, F4, F5) 500,000

No. of Runs 30

50

6.1.3 – Results

Table 11 shows the results for the test functions used. The average function value and the

standard deviation across 30 runs are presented. All functions are minimisation problems with

a global optimum value of zero. Values below E-12 have been presented as zero.

Table 11 – Mathematical benchmarking results (Krink et al., 2004)

Function DE PSO EA SGA

Sphere Mean 0 2.51E-08 0 0

 Std Dev 0 0 0 0

Schaffer Mean 0 0.00453 0 0

 Std Dev 0 0.00090 0 0

Griewank Mean 0 1.549 0.00624 0

 Std Dev 0 0.06695 0.00138 0

Rastrigin Mean 0 13.1162 32.6679 261.842

 Std Dev 0 1.44815 1.94017 32.114

Rosenbrock Mean 35.3176 5142.45 79.818 39.1265

 Std Dev 0.2744 2929.47 10.4477 0.19824

The results show that SGA is competitive with the existing BIAs. It achieved the global

minimum in 3 of 5 functions, whereas EA achieved 2 of 5 and PSO didn’t find the global

optimum for any function. DE outperforms SGA on the last two functions, however the

difference in the Rosenbrock function is only small. SGA outperformed PSO and EA on all

functions apart from Rastrigin. The result for the Rastrigin function is the worst compared to

the other three algorithms. This is likely due to the highly multimodal nature of the function.

As such, performance would be expected to improve if a lower convergence power was used.

Figure 24 (over the page) shows the averaged best fitness history curves for the 30 runs of each

function. Figure 24 (a) shows that SGA and DE give almost identical performance for the

Sphere function. EA converges to zero slightly slower, whilst PSO only reaches 2.5E-08 as an

average minimum. Figure 24 (b) shows that SGA initially converges slower than the other

algorithms for the Schaffer function, but then converges to the optimum faster than EA. PSO

again only reaches 0.00453 as the average minimum. Figure 24 (c) shows that SGA outperforms

the other three algorithms in terms of finding the Griewank function optimum earlier in the

optimisation process. PSO again fails to converge to the optimum.

51

Figure 24 – Optimum convergence behaviour for the Sphere (a), Schaffer (b) and Griewank (c) functions (Krink et al., 2004)

52

6.2 – CONSTRAINED ENGINEERING DESIGN PROBLEMS
Three engineering problems have been selected to demonstrate the applicability of the

algorithm to mechanical design, taken from Kannan and Kramer (1994). These constrained

optimisation problems have been well studied in the literature, and solved by various different

numerical optimisation methods. This has allowed for a performance comparison to be made

against several existing bio-inspired algorithms.

The constraints in the problems mean that many of the solutions in the search space are

infeasible. A measure of the feasible search space, suggested by Michalewicz (1996), was to

take a large sample of random points and find the ratio of feasible solutions to the total number

of solutions, as shown in Equation 39.

 (39)

Mezura-Montes and Coello (2008) used 1,000,000 random samples to calculate the percentage

of feasible search space for the three constrained design problems, with the results in Table 12.

Table 12 – Calculated feasibility percentages

Design Problem ρ (% Feasible)

Coil Spring 0.7537

Welded Beam 39.6762

Pressure Vessel 2.6859

A lower ρ measure indicates that it is much harder to generate feasible solutions. This tests the

ability of the algorithms to navigate toward the feasible region, so as to not waste function

evaluations in the infeasible region.

6.2.1 – Coil Spring Design

The objective of the coil spring design problem is to minimise the total mass via alteration of

the spring dimensions. The design is subject to constraints on deflection, shear stress and surge

frequency that limit the feasible space. The variables also have limits on their range of valid

values. Figure 25 presents the physical design of the spring.

53

Figure 25 – Physical coil spring dimensions

The coil spring design problem has the smallest feasible solution area, with a ρ measure of just

0.7537%. Solutions in the other 99.2463% of the search space fail at least one of the constraints.

This is an extremely small region, and truly tests the ability of the algorithm to navigate towards

the feasible space.

The problem is mathematically formulated in Equations 40 to 48:

With , , , , (40)

Minimise 2 (41)

Subject to 1 	 	 0 (42)

 	

	
	 1 0 (43)

 1 . 0 (44)

.

1 0 (45)

With variable ranges 0.05 2 (46)

 0.25 1.3 (47)

 2 15 (48)

6.2.2 – Welded Beam Design

The welded beam design problem attempts to minimize the total material and fabrication cost

of a beam that is loaded in bending. Beam dimensions are varied to reduce the total mass (thus

reducing material cost). However, the cost of welding is also considered, introducing more

complexity to the problem. The objective function is the total cost, and is minimised subject to

constraints on shear and bending stresses, buckling loads and end deflection. The variables also

have limits on their range of valid values. Figure 26 depicts the problem.

54

Figure 26 – Physical welded beam dimensions

The problem is mathematically formulated in Equations 49 to 67:

With , , , , , , (49)

Minimise 1.10471 0.04811 14 (50)

Subject to 	 0 (51)

 0 (52)

 0 (53)

 0.10471 0.04811 14 5 0 (54)

 0.125 0 (55)

 0 (56)

 0 (57)

Where
	 ′ 2 ′ ′′ (58)

 	
√

, 	 , (59)

 (60)

 2 √2 (61)

 	 , 	 (62)

	
.

1 (63)

For 6000	 , 14	 , 30 10 	 ,	

 12 10 	 , 13600	 ,	

 30000	 , 0.25	

55

With variable ranges 0.1 2 (64)

 0.1 10 (65)

 0.1 10 (66)

 0.1 2 (67)

6.2.3 – Pressure Vessel Design

The pressure vessel design problem again aims to minimise the total manufacturing cost,

including material, welding and forming costs. The problem is based on a pressure vessel with

internal pressure capacity and volume requirements. Dimensions are again the variables, and

the objective function is the total cost, which is subject to various constraints. The variables

also have limits on their range of valid values. Figure 27 depicts the problem.

Figure 27 – Physical pressure vessel dimensions

The problem is mathematically formulated in Equations 68 to 77:

With , , , , , , (68)

Minimise 0.6224 1.7781 3.1661

19.84
(69)

Subject to 0.0193 	 0 (70)

 0.00954 0 (71)

 1296000 0 (72)

 240 0 (73)

With variable ranges 1 99 (74)

 1 99 (75)

 10 200 (76)

 10 200 (77)

56

6.2.4 – Constraint Handling Approach

Handling of the design problem constraints was necessary to ensure that the final solutions were

valid. A penalty function approach was taken in order to effectively handle the constraint

equations. This involved assigning a large multiplier to the amount of which a constraint was

violated, and adding this to the objective function value. Equation 78 shows the approach used

to handle a constraint function , where ∆ is the numerical violation amount.

 10 ∗ ∆ (78)

Therefore, any constraint violation, however minor, will make the solution worse than any other

valid solution. This allows the swarm to move away from the invalid area and towards the valid

domain space.

6.2.5 – Engineering Design Problem Settings

The engineering design problems have previously been solved by a number of researchers

through different methods, including:

 Particle Swarm Optimization (He & Wang, 2007)

 Genetic Algorithm (Coello, 2000)

 Evolution Strategy (Mezura-Montes & Coello, 2008)

 Differential Evolution (Huang, Wang, & He, 2007)

 Harmony Search (Mahdavi, Fesanghary, & Damangir, 2007)

 African Wild Dog Algorithm (Subramanian et al., 2013)

 Grey Wolf Optimizer (Mirjalili et al., 2014)

As well as the accuracy of the final results, the efficiency of the algorithms was also important.

Therefore, it was imperative to note the number of function evaluations (NFEs) used to obtain

the reported minimums. Table 13 lists the total number of function evaluations used by

researchers for the various algorithms and problems.

Table 13 – Total function evaluations used for solving the design problems

Algorithm Spring Design Beam Design Pressure Vessel

PSO 200,000 200,000 200,000

GA 900,000 900,000 900,000

ES 25,000 25,000 25,000

DE 240,000 240,000 240,000

HS 50,000 300,000 200,000

AWDA 30,000 150,000 25,000

GWO - - -

57

As Table 13 shows, there is a large variance amongst the total number of function evaluations

used. In order to truly test the efficiency of SGA, it has been tested using the minimum number

of function evaluations reported in the literature. This value is 25,000, as used by Mezura-

Montes and Coello for testing Evolution Strategy. The authors of GWO negated to define the

number of function evaluations used in their testing, making it hard to draw a comparison in

efficiency.

The remaining parameter values are given in Table 14. The standard amongst researchers is for

30 runs to be undertaken to obtain the statistical results.

Table 14 – Design problem test settings

Parameter Value

NFEs 25,000

 1

 5

 0.1

 5

6.2.6 – Engineering Design Problem Results

After running the algorithm, the results were analysed and compared to the existing literature.

The raw data for the proof of results can be found in Appendix 10.

Table 15 and Table 16 outline the results obtained for the coil spring design problem.

Table 15 – Best minimum value results for the coil spring design problem

Rank Algorithm
Optimum Variables Optimum

Weight d D N

1 SGA 0.051659 0.356002 11.33104 0.0126652

2 AWDA 0.051655 0.355918 11.33603 0.0126653

3 GWO 0.051690 0.356737 11.28885 0.0126662

4 DE 0.051609 0.354714 11.41083 0.0126702

5 HS 0.051154 0.349871 12.07643 0.0126706

6 PSO 0.051728 0.357644 11.24454 0.0126747

7 ES 0.051643 0.355360 11.39792 0.0126980

8 GA 0.051480 0.351661 11.63220 0.0127047

58

Table 15 shows that SGA produced a better result than previously reported in the literature. The

decrease in cost is small compared to the previously reported best value, however it does

highlight the strength of SGA compared to the existing literature.

Table 16 – Statistical analysis of the results obtained for the coil spring design problem

Algorithm Best Mean Worst Std Dev

SGA 0.0126652 0.012898 0.015269 4.7E-05

AWDA 0.0126653 - - -

GWO 0.0126660 - - -

DE 0.0126702 0.012703 0.012790 2.7E-05

HS 0.0126706 - - -

PSO 0.0126747 0.012730 0.012924 5.2E-05

ES 0.0126980 0.013461 0.016485 9.7E-04

GA 0.0127047 0.012769 0.012822 3.9E-05

Table 16 shows the statistical analysis of the results for the first problem. It is important to note

that all algorithms except ES used a greater number of function evaluations, meaning they

should have a smaller spread across the best-to-worst range, and a smaller standard deviation.

SGA bettered ES in every criterion, meaning that at an equal number of function evaluations,

SGA outperforms it on this function. In particular, the standard deviation of SGA is a factor of

20 less than that of ES for the same number of function evaluations. DE used almost 10 times

as many function evaluations and has a standard deviation less than a factor of 2 better than

SGA.

Table 17 and Table 18 outline the results obtained for the welded beam design problem.

Table 17 – Best minimum value results for the welded beam design problem

Rank Algorithm
Optimum Variables

Optimum Cost
h l t b

1 HS 0.205730 3.47049 9.03662 0.205730 1.72480

2 AWDA 0.205729 3.47048 9.03662 0.205729 1.72485

3 SGA 0.205727 3.47054 9.03662 0.205729 1.72486

4 GWO 0.205676 3.47837 9.03681 0.205778 1.72624

5 PSO 0.202369 3.54421 9.04821 0.205723 1.72802

6 DE 0.203137 3.54299 9.03349 0.206179 1.73346

7 ES 0.199742 3.61206 9.03750 0.206082 1.73730

8 GA 0.208800 3.42050 8.99750 0.210000 1.74830

59

Table 17 shows that SGA ranks third amongst the existing literature for the minimum reported

values. However, SGA used 92% fewer function evaluations than HS and produced a value that

was only 0.0035% more costly. This highlights the efficiency of the algorithm at producing

accurate results in a much lower number of function evaluations.

Table 18 – Statistical analysis of the results obtained for the welded beam design problem

Algorithm Best Mean Worst Std Dev

HS 1.72480 - - -

AWDA 1.72485 - - -

SGA 1.72486 1.729997 1.77763 0.01227

GWO 1.72624 - - -

PSO 1.72802 1.748831 1.782143 0.01292

DE 1.73346 1.768158 1.824105 0.02219

ES 1.73730 1.813290 1.994651 0.07050

GA 1.74830 1.771973 1.785835 0.01122

Table 18 shows the statistical analysis of the results for the second problem. Of the four other

algorithms that have reported their statistical values (rather than just the minimum), SGA

outperforms all algorithms at all criterion. The one exception is that GA has a slightly better

standard deviation. However, this is expected as GA used 900,000 NFEs compared to just

25,000 of SGA. Again, an equal-NFE comparison to ES shows that SGA outperforms it by a

fair margin.

Table 19 and Table 20 outline the results obtained for the pressure vessel design problem. The

result obtained by GWO did not satisfy the requirement of Ts and Th being integer multiples of

0.0625 inches, and as such, it has been omitted. Furthermore, HS breached the valid range of

values for the length, and AWDA used different variable ranges.

Table 19 – Best minimum value results for the pressure vessel design problem

Rank Algorithm
Optimum Variables

Optimum Cost
Ts Th R L

1 SGA 0.8125 0.4375 42.09844 176.6365 6059.7143

2 DE 0.8125 0.4375 42.09841 176.6376 6059.7340

3 ES 0.8125 0.4375 42.09808 176.6405 6059.7456

4 PSO 0.8125 0.4375 42.09126 176.7465 6061.0777

5 GA 0.8125 0.4375 40.32390 200.0000 6288.7445

60

Table 19 shows that, again, SGA has found a better value than previously reported in the

literature.

Table 20 – Statistical analysis of the results obtained for the pressure vessel design problem

Algorithm Best Mean Worst Std Dev

SGA 6059.7143 6231.6808 7381.7174 282.37

DE 6059.7340 6085.2303 6371.0455 43.01

ES 6059.7456 6850.0049 7332.8799 426.00

PSO 6061.0777 6147.1332 6363.8041 86.45

GA 6288.7445 6293.8432 6308.1497 7.41

Table 20 shows the statistical analysis of the results for the third problem. An equal NFE

comparison between SGA and ES shows that SGA has a much better mean value and a smaller

standard deviation. It is observed that SGA has a higher standard deviation than most of the

other algorithms. However, this is due to the much larger NFEs used by the algorithms that

reduce the variability in the final result.

Along with the demonstrated efficiency that SGA has already displayed, it was also important

that it provided good performance across a range of functions. Table 21 compares the

cumulative ranks of the five algorithms that solved all three design tasks (in terms of the best

reported values). Thus, the cumulative rank ignores the results of AWDA, HS and GWO (such

that each algorithm was assigned a value between one and five).

Table 21 – Cumulative rank results

Algorithm Cumulative Rank

SGA 3

DE 7

PSO 9

ES 11

GA 15

The cumulative rank gives an indication of each algorithms performance across the three

functions. Table 21 shows that SGA gave the best overall performance amongst the five

algorithms, in terms of the best reported values. This indicates the SGA displays strong

performance across a range of objective functions; a key design goal.

61

6.2.7 – Convergence Analysis

Figure 28 gives the search history of the swarm for the welded beam design problem. Figure

28 (b) shows the move distance decreasing as the swarm moves from exploration to

exploitation. This decreases the mean colony value as the gliders converge towards the

codominants. Because of the penalty function constraint handling approach, even a small

constraint violation results in a severe increase in the objective function value. Each of the

downward spikes in Figure 28 (c) is where no search agent is violating a constraint. It is

observed that this becomes more prevalent in the later stages of the iteration history, meaning

the swarm is converging toward an optimum in a valid domain space. This behaviour is ideal

and indicates that the algorithm is performing to a high standard.

Figure 28 – Convergence behaviour analysis

62

CHAPTER 7

CASE STUDY: GEARBOX DESIGN

7.1 – INTRODUCTION TO THE CASE STUDY
In order to test the feasibility of using Sugar Glider Algorithm in real-world engineering design

problems, a case study has been performed that was focused on designing a gearbox for a

heliostat. Heliostats are large solar mirrors that reflect the sun’s radiation towards a large central

tower that is filled with molten salt. This molten salt is used to power a turbine that generates

energy for homes and businesses. Concentrating Solar Thermal (CST) farms are a popular

choice for renewable energy due to the fact that they are still able to generate electricity at night

with the stored molten salt.

A design project has previously been completed that focused on designing a heliostat for

prospective CST farms in Australia (MECH3100 Project Description, 2015). The project had

two primary goals:

 To design the elevation and azimuthal gearboxes that controlled the movement of the

heliostat, and

 To design the overall structure including tower, torque-tubes and the mirror-supporting

frame.

The resulting heliostat design is shown in Figure 29.

Figure 29 – Previously designed heliostat (MECH3100 Group 9, 2015)

63

As Figure 29 shows, heliostats are large structures that require equally-large torques to operate,

especially in high winds. The design team calculated that the 60W motor needed to supply up

to 45kNm of torque when performing the stowing operation in high wind. As such, a gearbox

with a reduction factor of 9,570 was required.

The gearbox was a spur design that included 6 reductions, with a supplementary external worm

gear reduction. The spur gearbox had a total reduction factor of 531, with the worm gear

reducing by a further factor of 18. When designing the gearbox, close attention was paid to

ensuring that the mirror pointing accuracy was not compromised by gear backlash or shaft

deflections. However, there was no significant effort exerted in the optimisation of the gear

train design.

In an effort to keep manufacturing cost and effort to a minimum, the same spur gears of 13 and

37 teeth were used throughout. All gears also featured the same module and face width (except

the last reduction, which had a wider face). This resulted in most gears being well below their

endurance limits with regards to the bending and contact stresses experienced. In summary, the

design was safe and functional, yet heavy and wasted material. As such, it was decided that the

gear train should be optimised using Sugar Glider Algorithm. This will further prove the

applicability of SGA to practical engineering problems.

7.2 – METHODOLOGY
7.2.1 – Design Concept

In a typical gear train design, the known variables include:

 the input motor torque and speed,

 the output torque and speed (and thus, the total reduction),

 the desired type and number of reductions, and

 the gear material and its properties.

However, this still leaves a wealth of unknown information to contend with when beginning

the design process. The main variables to select are the number of teeth per gear, module of

each gear, and the face with of each gear (with the module and face width being the same

through a reduction). As such, the number of variables to select is:

 4 (79)

Even for smaller gear trains of few reductions, this number can become large and make the

design task complex. Typical design methodology involves the use of a spreadsheet, where a

single number is changed and its effect is observed. This is repeated until the total reduction

64

converges to the desired number, with all other constraints satisfied. This process is tedious and

it is often hard to decide how to alter the input variables to achieve the desired outcome.

The concept behind using a bio-inspired algorithm to design the gearbox is that it will search

the multitude of possible combinations and select the best one for the application. The objective

in this case study was to minimise the total mass of the gear set, whilst still providing identical

performance to the previously designed gearbox.

The optimisation process was applied only to the gear set itself, and not to the supplementary

shafts or bearings. The shafts and bearings can be selected independently of the gears, and as

such, they haven’t been included in the optimisation task. They could, however, be added to the

optimisation routine in future applications.

7.2.2 – Design Equations

There are a large number of equations that are used in order to design a functional gearbox. The

equations listed in this section are applicable to spur gearboxes, with modifications required for

gearboxes with helical, bevel, worm or planetary reductions. To facilitate the use of the

algorithm, the design equations were converted into Python code form. All equations henceforth

mentioned have been taken from Machine Component Design (Juvinall and Marshek, 2005).

Table 22 lists the gearbox design parameters used and their definitions.

Table 22 – Design parameter definitions

Symbol Definition Units

 Module of the gear

 Face width of the gear

 Number of teeth of the gear -

 Rotating speed of the gear

 Pressure angle of the gear, set to 20o
 for this case

study

 Geometry factor dependent on the number of teeth in

contact at any time

-

 Velocity factor, obtained from Equation 86 -

 Overload factor, set to 1.5 in accordance with Table

23

-

 Mounting factor, obtained from Table 24 -

65

The design equations are used to take information about the geometry and running conditions

of the gear set, and produce the associated working stresses in the gears. Table 25 (located over

the page) lists the equations utilised, as well as their use within the design process.

Table 23 provides the overload factor values. These factors reflect the degree of non-uniformity

of the driving forces of the gearbox. The previous design team assumed that the source of power

may experience light shock, and the driven machinery would likely experience moderate shock

from winds.

Table 23 – Overload factor Ko selection matrix

Source of Power
Driven Machinery

Uniform Moderate Shock Heavy Shock

Uniform 1.00 1.25 1.75

Light Shock 1.25 1.50 2.00

Heavy Shock 1.50 1.75 2.25

The mounting factor in the stress equations reflects the accuracy of the gear alignment and

varies with the face width of the mating gears. For the purpose of the case study, the support

characteristics were assumed to be of the highest mounting accuracy category, as defined in

Table 24. This table was linearly interpolated in the Python script to calculate the mounting

factor value as the face widths changed.

Table 24 – Mounting factor Km selection matrix

 Face Width (in.)

Support Characteristics 0 to 2 6 9 16 +

Accurate mountings, small bearing clearances,

minimum deflection, precision gears.
1.3 1.4 1.5 1.8

Less rigid mountings, less accurate gears,

contact across the full face.
1.6 1.7 1.8 2.2

Accuracy and mounting such that less than

full-face contact exists.
Over 2.2

66

Table 25 – Gearbox design equations

Property Equation Units Use

Gear Ratio (80) -
Gives the reduction factor of

a single gear mesh.

Pitch Circle Diameter (81)

Computes the pitch circle

diameter of the gear, used in

other equations.

Pitch Line Velocity
12

 (82) /

Finds the velocity at the

pitch line (note that dp must

be in inches for this

equation).

Face Width 9 14 (83)
Guideline for the face width

as a function of module.

Diametral Pitch (84)
/

Used to find the tangential

force (note that dp must be in

inches for this equation).

Tangential Force
0.00508

 (85)

Computes the tangential

force on a gear tooth. Used

in the bending and contact

stress equations.

Velocity Factor 50 √
50

 (86) -

Indicates the severity of

impacts between successive

pairs of mating teeth.

Lewis Bending Stress

Equation
 (87)

Finds the maximum bending

stress in the gear, to be

compared with the fatigue

limit.

Fatigue Geometry

Factor

sinϕcosϕ
2 1

 (88) -
Geometry factor based on the

tooth shape.

Hertzian Contact

Stress Equation
 (89)

Find the maximum contact

stress on the gear surface, to

be compared with the fatigue

limit.

Contact Stress

Fatigue Limit
28 69 (90)

Gives the limit for the

contact stress, as a function

of the Brinell hardness.

67

7.2.3 – Optimisation Process

The gearbox design equations listed in the previous section were coded into Python and were

used to create a function called gearbox_eval. This function takes the inputs of numbers of

gear teeth, gear modules and face widths. The function then returns the weight of the gearbox

plus any constraint violations as an added penalty. Figure 30 demonstrates the concept of the

function.

Figure 30 – Gearbox solver Python function concept

Since the objective of the optimisation exercise was to minimise total weight, the objective

function of gearbox_eval was based on the total gear volume and the material density.

Equation 91 details the objective function for the problem.

4 , 	 (91)

The constraint functions for gearbox_eval were based on the bending stress, contact stress

and overall reduction ratio. The bending stresses in all gears was required to be less than the

corrected bending fatigue limit, as detailed in Equation 92. Similarly, the contact stresses also

needed to be less than the contact stress fatigue limit, which is a function of the material

hardness as detailed in Equation 93. The final constraint was that the overall reduction ratio

was required to be within 1% of the value reported by the initial design team. The motor input

could then be adjusted very slightly to give identical gearbox outputs. The constraints are shown

in Equations 92 to 94 below.

 , , (92)

 , , (93)

68

531

531
0.01 (94)

To produce a gearbox that functioned in an identical way to that which was previously designed,

the same input conditions and total reduction were used. Furthermore, in order to give a fair

comparison, the same number of reductions was also used. Table 26 outlines these values, as

well as the material properties of Ferrium C61; the gear material previously selected by the

design team (MECH3100 Group 9, 2015). Ferrium C61 has an extremely high hardness,

meaning the contact stress fatigue limit was large by Equation 90 in Table 25.

Table 26 – Gearbox design parameters (MECH3100 Group 9, 2015)

Parameter Value Used

Input Speed 60 RPM

Input Torque 9.41 Nm

Total Reduction 531

Number of Reductions 6

Bending Fatigue Limit 1156 MPa

Material Hardness 680 BHN

In order to increase simplicity in the calculation, gear losses have not been considered in the

problem formulation, and have been removed from the calculations produced by the initial

design team to ensure a fair comparison. Furthermore, in typical gearbox designs, the module

and face width must be integer multiples. This standard was followed in the initial design, and

as such was also implemented in the optimisation process. The Python script, named

gearbox_casestudy, with the code formulation of the problem can be found in Appendix

8. The accuracy of this Python script was verified by inputting the values from the previous

design and observing identical outcomes.

7.3 – RESULTS
In accordance with the previous constrained engineering design problems, the algorithm

parameters of Table 27 were used when running the optimisation tests.

Table 27 – SGA parameters for gearbox optimisation

Parameter Value Used

 5

 0.1

Colony Size 5

Iterations Per Run 5000

No. of Runs 30

69

As stated previously, the design team who undertook the project produced a gear set that

weighed 688kg. Performing the optimisation using Sugar Glider Algorithm yielded a minimum

gear set weight of 189kg. Table 28 shows the full results of the optimisation problem.

Table 28 – Gearbox optimisation results

Performance

Metric

Result

(kg)

Old Design 688

SGA Minimum 189

SGA Average 221

SGA Maximum 277

SGA Std Dev 22

Table 28 indicates that the worst result output from SGA is still 60% lighter than the previously

designed gear set, whilst the best result is 72% lighter. The standard deviation is also of a

reasonable value, and this deviation would reduce for a greater number of iterations.

Table 29 – Optimised gearbox design layout

Gear Number Number of Teeth Module

(mm)

Face Width

Multiplier

Pinion #1 13
1 10

Gear #1 37

Pinion #2 25
1 9

Gear #2 50

Pinion #3 12
2 9

Gear #3 43

Pinion #4 12
3 10

Gear #4 26

Pinion #5 12
4 9

Gear #5 46

Pinion #6 17
5 9

Gear #6 53

The previous design team kept a constant module throughout their gearbox, resulting in

unnecessarily large gears. Table 29 shows that the gearbox produced by the optimisation

process followed a much more logical layout in that it increased the module as the reductions

70

progress. The stress in a gear is much more dependent on the torque rather than the speed,

meaning that the initial reductions do not require large modules. Furthermore, it can be observed

that the largest reductions in the gearbox are in the latter two stages. Leaving the larger

reductions to the end reduces the stress in the preceding stages, reducing the volume of material

required.

It can be observed that the new design is much more logical in its layout. However, it would

have been a considerably harder task for the previous project team to be able to produce a design

that is as efficient in its material usage. This displays the power of bio-inspired algorithms, and

is a primary reason for their use. The results further prove the both the applicability and

performance strength of Sugar Glider Algorithm with regard to engineering design problems.

7.4 – CASE STUDY OUTCOMES
This case study has investigated the processes involved with applying bio-inspired algorithms

to real-world engineering design problems. The case study was based on the design of a spur

reduction gearbox; a project previously undertaken by a team of engineering students. The

project was identified as a prime candidate for the application of bio-inspired algorithms to

assist in the design process.

This case study has proven the application of Sugar Glider Algorithm to practical problems

encountered by engineering designers. The gearbox that has been designed is of a more intuitive

configuration with gear size that increased as the experienced stresses increased. The results

obtained by the optimisation process saved a significant amount of weight compared to the

previous design.

Had the previous design team had access to the code formulated in this case study, they would

have benefitted greatly. Their design would be much more material efficient and the design

time would have reduced significantly. Further checks would still need to be performed to

ensure the proposed gearbox is feasible, however the optimisation does highlight the strength

which BIAs have in solving engineering design tasks.

71

CHAPTER 8

FURTHER WORK

8.1 – IMPLEMENTATION OF SGA IN ANSYS
An opportunity exists for mechanical design to benefit greatly from the implementation of

optimisation routines in computational Finite Element Analysis (FEA) programs. The potential

benefits of utilising optimisation in FEA include:

 Reduced time for engineers to find the optimal design

 Designs that are safer without compromising in weight or cost

 Designs that are more efficient in their use of material (which is both weight and cost

effective, and environmentally friendly)

ANSYS is an FEA program that enables users to solve complex structural engineering problems

and make better, faster design decisions (ANSYS, 2016). ANSYS has inbuilt optimisation

methods that aim to assist in designing mechanical components, however they are controlled

largely by the user in their parameterisation of the design, and choice of optimisation methods

(Bryce, 2015). This can often lead to inefficient optimisation processes or outcomes that are not

actually optimal. As such, a method was developed by Bryce (2015) that allows interfacing

between ANSYS and Python. This facilitates the implementation of automated, user-defined

optimisation routines.

Implementation of SGA in ANSYS, through the use of the interface developed by Bryce (2015),

will further increase the algorithm’s value to the engineering community. It was initially

planned that the interface would be used to further test the algorithm in the current work,

however there were software compatibility issues encountered due to NumPy for IronPython

no longer being supported. Time constraints meant that the interface issues were unable to be

resolved, and as such, it is recommended that future work be undertaken to fix the issues and

implement SGA in the interface.

8.2 – ALGORITHMIC IMPROVEMENTS
8.2.1 – Self-Adapting Improvements

An opportunity exists for a dynamic sight distance to be implemented in future versions of the

algorithm. This would likely involve the distance decreasing as the iterations progressed, such

72

that as the gliders continuously found better positions, the distance they would attempt to move

would decrease. This should further improve the results obtained from the codominant position

updating method.

Furthermore, a dynamic convergence power should also improve the performance of the

algorithm. Increasing the convergence power throughout the iterations would enhance the

exploitation characteristics of the algorithm, at the cost of extensive exploration. However, if

the algorithm was able to detect that it has already found the likely location of the global

optimum, forcing convergence will increase the exploitation, leading to more accurate

outcomes.

Implementing both of these improvements would mean that the algorithm would be self-

adapting. Self-adapting algorithms change their parameters based on the results they observe

throughout the iterations. For example, if the algorithm detects that it has become trapped in a

local optimum the parameters can be altered in order to attempt to find a better solution

somewhere else in the domain. Altering the algorithm to be self-adapting is not a trivial task,

and would take significant work. However, it would almost guarantee a performance increase

across all objective functions.

8.2.2 – Breeding Between Gliders

During the algorithm design process, some experimentation was undertaken in an attempt to

introduce breeding between gliders. The idea was that breeding between two strong gliders

(those with good fitness values) would result in a strong child. This is the basis behind all

evolutionary algorithms.

The first experimentation involved taking two gliders and producing a third through mixing.

This meant that some variable values were selected from one parent and the rest from the other

(as shown in Figure 31). However, this was found to be very ineffective in low-dimension

problems as there were a minimal number of different children that could be produced.

Figure 31 – Attempted simulated breeding through mixing

The second type of simulated breeding that was trialled involved taking two parents using their

variable values to define ranges for selection. The child was then formed by choosing random

73

values from within the ranges (as shown in Figure 32). This method sometimes resulted in more

fit children early in the iteration count, but rarely did so in the later stages. Therefore, it was not

seen as a viable option for implementation.

Figure 32 – Attempted breeding through constrained random value selection

It was found that to make breeding a truly beneficial position updating method, some significant

thought would need to be put into the idea. It would likely result in something similar to an

evolutionary algorithm within the overall SGA algorithm. This would also likely mean the

introduction of more control parameters, which could complicate the process of implementing

the algorithm. One of the algorithm goals was simplicity, and for this reason, breeding between

gliders didn’t extend beyond some out-of-interest experimentation. However, this leaves the

potential for future work to be undertaken in an attempt to implement breeding between gliders.

8.3 – GEARBOX DESIGN SOLVER IMPROVEMENTS
The gearbox design tool developed for the case study in Chapter 7 has been identified to be of

a great potential value to the wider engineering community. As such, a more general version is

planned to be developed in the future. This will allow engineers to input the operating

conditions and gear material and set the BIA to design the gearbox on their behalf. The features

of the general solver would include:

 A generalised format of the input variable to account for a different number of

reductions,

 Addition of other supplementary gearbox design equations such as contact ratio and

pressure angle,

 Inputs for general material properties, with calculations then performed to find the

corrected endurance limits,

 An option for the BIA to also vary the number of reductions rather than have it constant,

 Potentially, support for the solving of gearboxes including planetary or helical, bevel

and worm gear reductions.

74

8.4 – IMPLEMENTATION OF SGA IN OTHER LANGUAGES
Another improvement intended to be made for SGA is the translation of the Python code into

other languages. Researchers implement metaheuristic algorithms in a variety of programming

languages in order to suit the specific application at hand. Python is one of the most common

choices, and as such it was selected for the current work. However, in order to ensure that SGA

is available for a broad range of applications, it would be beneficial to have the source code

available in a greater number of programming languages. The identified candidate languages

include:

 Matlab

 Java

 Ruby

 Visual Basic

75

CONCLUSION

There are an ever-expanding range of applications for optimisation within engineering.

Metaheuristics are a useful tool for solving optimisation tasks as they make no assumptions

about the search space and can be used with ‘black box’ function types. Bio-inspired algorithms

often offer a mix of both good performance and search space adaptability, meaning they can

generally be effective at solving a broader range of problems. The adaptability is inherent in

the design due to the way in which the biological organisms from which they are derived are

able to adapt to their environment.

A novel bio-inspired algorithm has been presented that was based on the native Australian sugar

glider, named Sugar Glider Algorithm (SGA). The algorithm has taken inspiration from the

gliding and foraging behaviours, and the social hierarchy adopted by the animals. The algorithm

has displayed strong performance in its preliminary testing stage. It set two new benchmark

minimums for common engineering design problems, as well as being comparable in the

statistical analyses performed. It has proven to be effective at finding optimal solutions at

relatively low total function evaluation numbers. This enables shorter runtimes, compared to its

competitors, in order to achieve equivalent outcomes. The combination of the algorithm

simplicity, robustness, and strong performance ensures that it is to be a valued addition to the

existing literature.

Once software compatibility issues are solved, it is expected that the algorithm will be

implemented in the ANSYS interface developed by Bryce (2015). This will further increase its

value to the engineering community and validate its performance. It is also intended that the

work conducted will be published in the form of an article submitted to a respected journal

within the field of metaheuristics. Suitable journals have been identified to include:

 Swarm Intelligence (Springer)

 Advances in Engineering Software (Elsevier)

 International Journal of Soft Computing (Medwell)

76

REFERENCES

Akbari, R. (2010). A multilevel evolutionary algorithm for optimizing numerical functions.
International Journal of Industrial Engineering Computations, 2, 419-430.

ANSYS. (2016). Structural Analysis with ANSYS. Retrieved from
http://www.ansys.com/Products/Structures

Baluja, S., & Caruana, R. (1995). Removing Genetics from the Standard Genetic Algorithm.
Pittsburgh, PA.

Binitha, S., & Siva Sathya, S. (2012). A Survey of Bio-Inspired Optimisation Algorithms.
International Journal of Soft Computing and Engineering, 2(2), 137-151.

Bryce, H. (2015). Finite Element Based Structural Optimization Techniques. (Bachelor of
Engineering), The University of Queensland.

Deb, K., Amrit, P., Agarwal, S., & Meyarivan, T. (2002). A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Transactions On Evolutionary Computation, 6(2),
182-197.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Distributed Optimization by Ant Colonies.
Paper presented at the European Conference on Artificial Life, Paris, France.

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Mixed variable structural optimization
using Firefly Algorithm. Computers & Structures, 89(23–24), 2325-2336.

Gholizadeh, S., & Poorhoseini, H. (2015). Optimum design of steel frame structures by a
modified Dolphin echolocation algorithm. Structural Engineering and Mechanics,
55(3), 535-554.

Glover, F., & McMillan, C. (1986). Applications of Integer ProgrammingThe general employee
scheduling problem. An integration of MS and AI. Computers & Operations Research,
13(5), 563-573.

Hansen, N., & Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation. Paper presented at the
Proceedings of the IEEE Conference on Evolutionary Computation.

Hendtlass, T. (2005). WoSP: A Multi-Optima Particle Swarm Algorithm. Paper presented at
the IEEE Congress on Evolutionary Computation, Edinburgh, Scotland.

Holland, J. (1975). Genetic Algorithms and the Optimal Allocation of Trials. Ann Arbor.
Kannan, B. K., & Kramer, S. N. (1994). An Augmented Lagrange Multiplier Based Method for

Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical
Design. Journal of Mechanical Design, 116(2), 405-411.

Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm.
Applied Mathematics and Computation, 214(1), 108-132.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function
optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization,
39(3), 459-471.

Kaveh, A., & Farhoudi, N. (2013). A new optimization method: Dolphin echolocation.
Advances in Engineering Software, 59, 53-70.

Kaveh, A., & Farhoudi, N. (2015). Layout optimization of braced frames using differential
evolution algorithm and dolphin echolocation optimization. Periodica Polytechnica:
Civil Engineering, 59(3), 441-449.

Kaveh, A., & Farhoudi, N. (2016). Dolphin Echolocation Optimization for design of cantilever
retaining walls. Asian Journal of Civil Engineering, 17(2), 193-211.

77

Kennedy, J., & Eberhart, R. (1995, Nov/Dec 1995). Particle swarm optimization. Paper
presented at the Neural Networks, 1995. Proceedings., IEEE International Conference
on.

Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598), 671-680.

Klettenheimer, B. S., Temple-Smith, P. D., & Sofronidis, G. (1997). Father and son sugar
gliders: more than a genetic coalition? Journal of Zoology, 242(4), 741-750.

Koza, J. R. (1990). Genetically breeding populations of computer programs to solve problems
in artificial intelligence.

Kress, G., & Keller, D. (2007). Structural Optimization (pp. 165). Swiss Federal Institute of
Technology, Zurich.

Krink, T., Filipic, B., & Fogel, G. B. (2004, 19-23 June 2004). Noisy optimization problems -
a particular challenge for differential evolution? Paper presented at the Evolutionary
Computation, 2004. CEC2004.

Lewis, S. (2012). Optimisation of a Scramjet Inlet using an Evolutionary Algorithm and the
Barrine Cluster. (Bachelor of Engineering), The University of Queensland.

Lovbjerg, M., & Krink, T. (2002). Extending Particle Swarm Optimisers with Self-Organized
Criticality. Aarhus, Denmark.

Mezura-Montes, E., & Coello, C. A. C. (2008). An empirical study about the usefulness of
evolution strategies to solve constrained optimization problems. International Journal
of General Systems, 37(4), 443-473.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in
Engineering Software, 69, 46-61.

National Geographic. (2014). Deadly 60: 15 Deadly Animal Facts. Retrieved from
http://animals.nationalgeographic.com/animals/wild/shows-deadly-60/fun-facts/

Omkar, S. N., Senthilnath, J., Khandelwal, R., Narayana Naik, G., & Gopalakrishnan, S. (2011).
Artificial Bee Colony (ABC) for multi-objective design optimization of composite
structures. Applied Soft Computing, 11(1), 489-499.

Polo-Corpa, M. J., Salcedo-Sanz, S., Pérez-Bellido, A. M., López-Espí, P., Benavente, R., &
Pérez, E. (2009). Curve fitting using heuristics and bio-inspired optimization algorithms
for experimental data processing in chemistry. Chemometrics and Intelligent
Laboratory Systems, 96(1), 34-42.

Rudolph, G. (1999). Evolutionary Search under Partially Ordered Fitness Sets. Dortmund,
Germany.

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4),
341-359.

Subramanian, C., Sekar, A., & Subramanian, K. (2013). A New Engineering Optimization
Method: African Wild Dog Algorithm. International Journal of Soft Computing, 8(3),
163-170.

Technology, R. C. (2014). SHERPA – An Efficient and Robust Optimization/Search
Algorithm. Michigan, USA.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions On Evolutionary Computation, 1(1), 67-82.

Xie, X., Zhang, W., & Yang, Z. (2002). A Dissipative Particle Swarm Optimization. Paper
presented at the Congress on Evolutionary Computation, Honolulu, USA.

Xinchao, Z. (2010). A perturbed particle swarm algorithm for numerical optimization. Applied
Soft Computing, 10, 119-124.

Yang, X. S. (2009) Firefly algorithms for multimodal optimization. Vol. 5792 LNCS. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) (pp. 169-178).

78

Yao, X., & Liu, Y. (1997). Fast evolution strategies. In P. J. Angeline, R. G. Reynolds, J. R.
McDonnell, & R. Eberhart (Eds.), Evolutionary Programming VI: 6th International
Conference, EP97 Indianapolis, Indiana, USA, April 13–16, 1997 Proceedings (pp. 149-
161). Berlin, Heidelberg: Springer Berlin Heidelberg.

Young, E. (2016). What Wildlife Shows Don’t Tell You About African Wild Dogs. Retrieved
from http://phenomena.nationalgeographic.com/2016/03/29/what-wildlife-shows-dont-
tell-you-about-african-wild-dogs/

Zielinski, K., & Laur, R. (2006). Parameter Adaptation for Differential Evolution with Design
of Experiments. Paper presented at the 2nd IASTED International Conference on
Computational Intelligence, San Francisco.

Zitzler, E., Deb, K., & Thiele, L. (1999). Comparison of Multiob jective Evolutionary
Algorithms: Empirical Results. Zurich, Germany.

79

APPENDICES

CONTENTS
Appendix 1 – SGA Journal Article Draft……………………………………………………80

Appendix 2 – SGA Python Code…………………………………………………………….101

Appendix 3 – SGA (Integer) Python Code………………………………………………….100

Appendix 4 – SGA (Plotting) Python Code…………………………………………………102

Appendix 5 – SGA (Pressure Vessel) Python Code…………………………………………105

Appendix 6 – Mathematical Function Tester Python Code…………………………………107

Appendix 7 – Engineering Problem Tester Python Code……………………………………109

Appendix 8 – Gearbox Evaluation Python Code……………………………………………112

Appendix 9 – Barebones Testing Script……………………………………………………115

Appendix 10 – Proof of Results……………………………………………………………...116

APPENDIX 1 – SGA JOURNAL ARTICLE DRAFT
The first appendix is a draft of the article that is intended to be submitted to a journal within the

field of research. The article is contained in the pages that follow.

 1

Sugar Glider Algorithm

Timothy Cassell, Dr Michael Heitzmann

The University of Queensland

Abstract

Bio-Inspired Algorithms (BIAs) are a class of metaheuristic that have proven

to be effective at optimising a vast range of complex, black box function types.

A new BIA is proposed that is based on a small, nocturnal gliding possum; the

native Australian sugar glider (Petaurus breviceps). Sugar Glider Algorithm

(SGA) imitates the leadership hierarchy and foraging behavior of a colony of

gliders. Two co-dominant males lead a colony of five to seven gliders that forage

for food by gliding between trees in search for insects or tree sap. The algorithm

employs concurrent local exploitation (performed by the codominant males) and

global exploration (performed by the remaining gliders). The performance of

SGA has been quantitatively evaluated using five mathematical test functions,

which are a mix of both unimodal and multimodal domains. The results are

compared against Particle Swarm Optimisation, Differential Evolution and an

Evolutionary Algorithm, with SGA performance amongst the best observed.

Furthermore, SGA has been tested on three constrained engineering problems;

coil spring design, welded beam design and pressure vessel design. SGA exhibited

strong performance against seven existing algorithms, and found multiple new

minimums than previously reported in literature. The results show that SGA is

competitive against a wide range of existing algorithms in a variety of search

domain topologies. These findings indicate that SGA is at the forefront of BIA

performance and prove it is a superior candidate for the optimisation of

engineering design problems.

 2

1 Introduction

Optimization problems are prevalent in all facets of engineering. A general

optimization task involves minimizing/maximizing an objective function via

modification of variable values, whilst accounting for constraints. Mathematical

optimization, through use of calculus, is often not a viable option for engineers

as the objective function rarely takes a derivable algebraic form. The objective

function can be presented in a complex mathematical form, via computational

simulations, or even in terms of measurements obtained from real objects. For

example, the objective of a car exterior design may be to minimize drag, where

the drag is calculated via implementation of the model in a CFD program. In

such cases, the only information known is the variable values and the resulting

‘fitness’ of the solution (how minimal the drag is). Thus, optimization methods

that utilize only this information are required. Problems such as these are

classified as black box functions.

Methods for finding optimal solutions to black box functions include

metaheuristic search methods. Metaheuristics are algorithms that are problem-

independent and make very few (often no) assumptions about the space being

searched. Thus, they are widely applicable to a large range of optimization

problems. Metaheuristics, however, do not guarantee that the global optimum

will be found, as not every point in the search space is evaluated. Example

metaheuristics include Simulated Annealing (Kirkpatrick, Gelatt Jr et al. 1983)

and the human-memory inspired Tabu Search (Glover and McMillan 1986). In

general, all metaheuristics share some common characteristics from which their

robust performance is derived. Namely, these characteristics are simplicity, broad

applicability and the ability to avoid local minima.

Simplicity is an important factor in a metaheuristic. It allows the algorithm

to be implemented by people unfamiliar with the field of metaheuristics,

increasing the possible user base. Simplicity often arises as a function of the

simple processes upon which metaheuristics are frequently based. Inspiration is

typically taken from areas such as animal behavior, evolutionary processes, or

phenomena in nature, physics or chemistry.

Furthermore, metaheuristics are broadly applicable to a range of optimization

tasks. They are problem-independent and don’t usually require alteration

between applications (apart from alterations necessary to facilitate different

variable domain types; continuous and discreet). This arises as the metaheuristics

make no assumptions about the space which they are searching. Due to this,

gradient-based methods are avoided in favor of stochastic approaches (which

utilize random operators).

Finally, metaheuristic algorithms are often able to avoid becoming trapped

in the local optimums of a function. This is in part due to the random operators

employed, but is also often a key design consideration for the algorithm creators.

Methods are formulated specifically such that local minima convergence is

unlikely (however, it is impossible to guarantee this). This feature further

increases the strength of metaheuristics in the field of optimization routines.

 3

Bio-Inspired Algorithms (BIAs) are a class of metaheuristic algorithm that

utilize methods inspired by biological processes to solve optimization problems.

BIAs have gained popularity as research topics due to their combination of

fascinating inspiration sources and favorable performance outcomes. There are

now algorithms inspired by a vast range of biological sources such as genetics,

pack hunting of wolves, social behavior of bees and bird flocking. BIAs have been

shown to be able offer a mix of both good performance and search space

adaptability, meaning they can generally be effective at solving a broader range

of problems. The adaptability is inherent in the design due to the way in which

the biological organisms from which they are derived are able to adapt to their

environment. For these reasons, algorithms that have taken inspiration from

biology are a promising area of research within the field of metaheuristics.

The No Free Lunch Theorem provides both a motivation and an inherent

design guideline for developing algorithms. The No Free Lunch theorem states

that the performance of all search algorithms is the same when averaged over all

possible objective functions (Wolpert and Macready 1997). That is, some

algorithms perform exceedingly well with certain functions, but are inefficient

with others. An implication of this theorem is that there is no single algorithm

that offers the best performance across every objective function. Therefore, as

the number of engineering applications that utilize optimization increases, as

does the demand for the creation of new algorithms. This is one of the main

driving forces behind the continual development of new optimization algorithms.

2 Literature Review

Bio-inspired algorithms can be split into two general classifications of Swarm

Intelligence (SI) algorithms and Evolutionary Algorithms (EAs). Swarm

Intelligence algorithms are based on the behavior of collectives of animals. More

specifically, they take inspiration from the hunting, mating and movement

behaviors, as well as social hierarchies. On the other hand, Evolutionary

Algorithms are algorithms primarily inspired by both genetic operations and

processes, and the Darwinian theory of Survival of the Fittest.

The most popular, and most widely known, SI algorithm is Particle Swarm

Optimization (PSO). Proposed by Kennedy and Eberhart (1995), the algorithm

simulates the generalized flocking behavior of birds and schooling behavior of

fish. Search agents, referred to as particles, update their velocities based on both

the swarm best known position, and their own best known position. The original

version of the algorithm is very simple in its method, allowing people from all

scientific fields to easily understand both the inspiration and the algorithm itself;

a likely factor in its continued success.

Another popular SI algorithm is Ant Colony Optimization (ACO), proposed

by Dorigo, Di Caro et al. (1999). ACO takes inspiration from the behavior of

ants travelling between their colony and a food source. Ants lay down pheromone

as they travel, increasing the tendency of other ants to travel along the same

path. Thus, a self-reinforcing process ensues as ants travel along more optimal

 4

paths. ACO, in its general form, is restricted to discrete optimization problems,

limiting its possible applications. However, ACO has amassed popularity

amongst the scientific community and is the most popular of the discrete-domain

optimization routines.

Grey Wolf Optimizer (GWO) is a relatively new addition to SI algorithms,

but has gained significant popularity since its inception. Mirjalili, Mirjalili et al.

(2014) based the algorithm on the social hierarchy of grey wolves. The search

agents are classified as either the alpha, beta, delta or omega wolves depending

on their fitness values. Agents then update their position based on the relative

positions of the pack leaders.

All Evolutionary Algorithms use some subset of the genetic operations of

mutation, crossover, selection and recombination. The point of differentiation

between algorithms is the way in which they implement these operations.

Proposed by Holland (1975), Genetic Algorithm (GA) is the most well-known of

the EAs. The algorithm aims to continuously improve the fitness of a population

of solutions through the implementation of the aforementioned genetic operators.

Other EAs include Evolution Strategy (ES), which are a collection of closely-

related algorithms that differ slightly in their selection and recombination

technique, but all with the same general process (Rechenberg 1973). Differential

Evolution (DE) is another population-based EA that was proposed by Storn and

Price (1997). DE again has multiple algorithm variants that differ on mutation

vector, the number of difference vectors, and the crossover scheme.

The apparent drawback of EAs is the often-large number of control

parameters that must be selected. For example, DE first requires the selection of

three parameters to define the algorithm methods, with a further three required

to define the runtime parameter values. When information about the search

domain topology is unknown, it can then be hard to select proper parameter

values.

There are a range of other metaheuristic algorithms available, all of which

vary in both their inspiration sources and demonstrated performance. However,

there is currently no published algorithm based on the stimulating behavior of

the sugar glider. Sugar gliders were identified as a promising inspiration source

for a new bio-inspired SI algorithm. As such, attempts have been made to

produce an SI optimization routine that both mimics the behavior of the sugar

glider, and provides exceptional performance in engineering optimization tasks.

3 Sugar Glider Algorithm

3.1 Inspiration Source

Sugar gliders (Petaurus breviceps) are a small native Australian flying

possum that are members of the marsupial infraclass. As their name suggests,

sugar gliders are able to glide large distances between trees due to the existence

of a gliding membrane (called a patagium) that extends from their forelegs to

 5

their hindlegs. This allows them to glide for up to 50m in a single flight; a

fascinating behavior that it is relatively unique amongst animals.

One of the interesting characteristics of sugar gliders is their hierarchical

social structure. Klettenheimer, Temple-Smith et al. (1997) observed that there

are two codominant males that lead the colony, with other males being

suppressed. These two males cooperated with each other in activities such as

grooming and fighting, but never cooperated with any subordinate males. These

males are referred to as the codominant gliders and they are the decision makers

within the group, leading the continual search for food.

Sugar gliders feed on insects, as well as supplementary nectars such as acacia

gum and eucalyptus sap when the bugs are scarce. All the food sources for a

glider are contained in the trees that they glide between. Thus, the motivation

behind gliding is largely related to sustenance, indicating that the behavior is

purposeful and directed, rather than a random practice.

Another fascinating trait of the gliders is their den-swapping behavior that

has been observed in the wild. Sugar gliders have been found to simultaneously

inhabit up to 13 dens, moving between the different locations as they desire

(Lindenmayer, 2002). Gliders search for food in the areas surrounding their den,

implying that the location of their current den impacts and directs their search

for food.

3.2 Introduction to Sugar Glider Algorithm

The basis of SGA is the simulated search for food by a colony of gliders.

Analogous to a real colony, the gliders are split into two groups; the codominant

gliders and the subordinate gliders. The codominant gliders lead the search of

the domain, with the subordinates updating their position based on the

codominants’ positions.

A glider’s fitness is represented as the available food as its location. Gliders

then move from tree-to-tree in search of the most-abundant food source. The

glide distance decreases as the iterations progress, as gliders continuously find

better food sources and thus do not need to fly as far.

To simulate the den position influencing the gliders’ search for food, the

subordinate gliders also update their position based on a randomly-generated

home position (randomized at each iteration and shared between all gliders).

This introduces a level of variability to the movement of the search agents, which

increases the explorative characteristics of the algorithm.

The codominants are in charge of the colony, and thus it is critical that they

are the strongest gliders of the group. Therefore, the codominant gliders are taken

to be the search agents with the two best current positions. They update their

position by performing a local search through a small fluctuation of variable

values (introducing concurrent exploitation throughout all iterations). The

codominants lead the search, implying they must make informed choices about

their movement. Thus, the codominants only move if the new position is of a

 6

better fitness. An advantage of this method is that the best known position is

always carried forward throughout the generations.

The pseudocode for SGA is given in Figure 1 below.

3.3 Algorithm Description

The algorithm starts by initialising the glider colony through assigning

variable values, which are randomly selected from the user-defined ranges. The

values are stored in a position matrix , with rows (for gliders) and columns

(for dimensions).

, ⋯ ,

⋮ ⋱ ⋮
, ⋯ ,

 (1)

The fitness of the colony is then evaluated through calculation of the

objective function value for each glider. These values are stored in a fitness vector

.

 ⋮ (2)

The algorithm then enters the main loop that iterates until the maximum

number of iterations has been reached. First, the colony is ranked in order of

best fitness, meaning that the first two rows of the position matrix become the

two codominant gliders.

Figure 1 – SGA pseudocode

 7

, ⋯ ,

, ⋱ ,

, ⋯ ,

 (3)

The codominant gliders then search for a move by observing a sighted

position () through use of a sight distance () parameter (default at 0.1),

according to Equations 4 through 6:

 0, 1 (4)

 1 1 , 1 1 (5)

 ∗ (6)

The variable is the time factor, with linear range 0 → 1 , and is given

through:

 (7)

The objective function is then evaluated for the sighted position. If the fitness

at the new location is better, a move is performed. Otherwise, the codominant

stays in its current position.

Next, the subordinate gliders’ positions are updated. Three random vectors

assist to increase the variability and prolong the convergence:

 1 , 2 (8)

 2 , 2 (9)

 3 2, 2 (10)

The distance to move is then calculated by the addition of distances to the

two codominants and the home den position:

 1, 10 (11)

1 ∗ 	

	 2 ∗ ∗ 	

3 ∗ ∗ 1

(12)

The time factor () and a convergence power parameter () act on both the

home and second codominant distances such that a weighting toward the

codominant distance increases throughout the iterations. The convergence power

is default at 5, but is suggested to be altered depending on the domain topology

(see Section 3.4).

 8

Towards the later stages, will simply direct the gliders towards the

codominants. The codominants will ideally, by this stage, be positioned in the

same local area. Therefore, it is clear that:

 lim
→

2 ∗ (13)

Therefore, the move distance must be halved in order to ensure proper

convergence of the swarm in the later stages:

 0.5 ∗ (14)

The matrix is then updated with the new glider positions. The fitness

values for the new subordinate glider positions are then evaluated and the

matrix is updated. The codominant and subordinate gliders then continuously

update their positon until the maximum number of iterations has been reached.

3.4 Parameter Selection

There are three parameters that must be defined for SGA, outlined in Table

1.

Table 1 – Valid parameter ranges

Parameter Description Valid Values

 The number of colony gliders. 3,∞

The sight distance for the codominant

gliders.
0, 1

 The convergence power of the swarm. 1, 10

The first two parameters are the colony size and the sight distance . These

values are default at 5 and 0.1 respectively. The value for is not able to be

chosen intuitively and requires . Therefore, it is recommended the default value

be used unless problem specific tuning is undertaken. The value of 0.1 has shown

good performance on across a range of function types. Additionally, a colony of

five gliders has given the best performance across a range of function types (for

equal numbers of function evaluations). It is recommended that, for increased

accuracy, the number of iterations is increased rather than the colony size.

The convergence power is the only parameter which is recommended to

be altered by the user. The convergence power directly influences how quickly

the swarm converges. This allows the user to customize the convergence rate

depending on the domain type of the function being optimized. Figure 2 gives

the weighting plots for various values of .

 9

Figure 2 – Effect of CP value on distance weightings

For unimodal functions across lower numbers of dimensions, a high

convergence power can be used in order to increase the optimum exploitation.

For multimodal functions across higher numbers of dimensions, a low

convergence power should be used in an attempt to guarantee to find the global

optimum location. Figure 3 gives an example of the effect of the parameter,

tested on a unimodal function.

Figure 3 – Convergence for CP = 10 (a) and CP = 1 (b)

 10

4 Mathematical Function Benchmarking

4.1 Test Functions

The performance of the algorithm has been benchmarked using five

mathematical benchmark functions. The test functions that have been used are

a mix of unimodal and multimodal, and separable and non-separable. Table 2

outlines the definitions and characteristics of the test functions used.

Table 2 – Mathematical test functions

Name Definition Type Range Dim

Sphere

(F1)
 US [-100, 100] 5

Schaffer

(F2)
0.5

sin 0.5

1 0.001
 MN [-100, 100] 2

Griewank

(F3)

1
1

4000
100

cos
100

√

MN [-600, 600] 50

Rastrigin

(F4)
10 cos 2 10 MS [-5.12, 5.12] 50

Rosenbrock

(F5)
100 1 UN [-50, 50] 50

4.2 Algorithmic Settings

The algorithm’s performance has been compared to that of three existing bio-

inspired algorithms. The results, and therefore the algorithmic settings, for DE,

PSO and EA have been taken from Krink, Filipic et al. (2004). To ensure a fair

comparison, the same number of function evaluations as the previous study have

been used. The parameter settings are listed in Table 3.

Table 3 – Algorithmic settings

Parameter Value

NFE (F1, F2) 100,000

NFE (F3, F4, F5) 500,000

No. of Runs 30

 5

 5

 0.1

 11

4.3 Benchmarking Results

Table 4 shows the results for the test functions used. The average function

value and the standard deviation across 30 runs are presented. All functions are

minimisation problems with a global optimum value of zero. Values below E-12

have been presented as zero.

Table 4 – Mathematical benchmarking results

Function DE PSO EA SGA

Sphere Mean 0 2.51E-08 0 0

 Std Dev 0 0 0 0

Schaffer Mean 0 0.00453 0 0

 Std Dev 0 0.00090 0 0

Griewank Mean 0 1.549 0.00624 0

 Std Dev 0 0.06695 0.00138 0

Rastrigin Mean 0 13.1162 32.6679 261.842

 Std Dev 0 1.44815 1.94017 32.114

Rosenbrock Mean 35.3176 5142.45 79.818 39.1265

 Std Dev 0.2744 2929.47 10.4477 0.19824

The results show that SGA is competitive with the existing BIAs. It achieved

the global minimum in 3 of 5 functions, whereas EA achieved 2 of 5 and PSO

didn’t find the global optimum for any function. DE outperforms SGA on the

last two functions, however the difference in the Rosenbrock function is minor.

SGA outperformed PSO and EA on all functions apart from Rastrigin. The SGA

result for the Rastrigin function is the worst compared to the other three

algorithms. This is likely due to the highly multimodal nature of the function.

As such, performance would likely improve if a lower convergence power was

used.

5 Engineering Design Problems

5.1 Problem Definitions

The performance of the algorithm has been evaluated on three semi-real

constrained engineering design problems. These problems are common in the

literature and have previously been solved by various methods.

5.1.1 Coil Spring Design

The objective of the coil spring design problem is to minimise the total mass

via alteration of the spring dimensions. The design is subject to constraints on

deflection, shear stress and surge frequency that limit the feasible space. The

variables also have limits on their range of valid values.

The problem is mathematically formulated as follows:

With , , , ,

 12

Minimise 2 (15)

Subject

to
1 	 	 0

	

	
	 1 0

1
.

0

.
1 0

With

variable

ranges

0.05 2

0.25 1.3

2 15

5.1.2 Welded Beam Design

The welded beam design problem attempts to minimize the total material

and fabrication cost of a beam that is loaded in bending. Beam dimensions are

varied to reduce the total mass (thus reducing material cost). However, the cost

of welding is also considered, introducing more complexity to the problem. The

objective function is the total cost, and is minimized subject to constraints on

shear and bending stresses, buckling loads and end deflection. The variables also

have limits on their range of valid values.

The problem is mathematically formulated as follows:

With , , , , , ,

Minimise 1.10471 0.04811 14 (16)

Subject

to
	 0

0

0

0.10471 0.04811 14 5 0

0.125 0

0

0

Where
	 ′ 2 ′ ′′

	
√

, 	 ,

2 √2

	 , 	

	
.

1

 13

For 6000	 , 14	 , 30 10 	 ,	

12 10 	 , 13600	 ,	

30000	 , 0.25	

With

variable

ranges

0.1 2

0.1 10

0.1 10

0.1 2

5.1.3 Pressure Vessel Design

The pressure vessel design problem again aims to minimise the total

manufacturing cost, including material, welding and forming costs. The problem

is based on a pressure vessel with internal pressure capacity and volume

requirements. Dimensions are again the variables, and the objective function is

the total cost, which is subject to various constraints. The variables also have

limits on their range of valid values.

The problem is mathematically formulated as follows:

With , , , , , ,

Minimise 0.6224 1.7781 3.1661

																						19.84
(17)

Subject

to
0.0193 	 0

0.00954 0

1296000 0

240 0

With

variable

ranges

1 99

1 99

10 200

10 200

5.2 Algorithmic Settings

The engineering design problems have previously been solved through a

number of different methods, including:

 Genetic Algorithm (Coello, 2000)

 Differential Evolution (Huang, Wang, & He, 2007)

 Harmony Search (Mahdavi, Fesanghary, & Damangir, 2007)

 Particle Swarm Optimization (He & Wang, 2007)

 Evolution Strategy (Mezura-Montes & Coello, 2008)

 African Wild Dog Algorithm (Subramanian et al., 2013)

 Grey Wolf Optimizer (Mirjalili et al., 2014)

 14

As well as the accuracy of the final results, the efficiency of the algorithms

was also important. Therefore, it was imperative to note the number of function

evaluations (NFEs) used to obtain the reported minimums. Table 5 lists the total

number of function evaluations used to solve the problems.

Table 5 – Number of function evaluations for the engineering design problems

Algorithm Spring Design Beam Design Pressure Vessel

PSO 200,000 200,000 200,000

GA 900,000 900,000 900,000

ES 25,000 25,000 25,000

DE 240,000 240,000 240,000

HS 50,000 300,000 200,000

AWDA 30,000 150,000 25,000

As Table 5 shows, there is a large variance amongst the total number of

function evaluations used. In order to truly examine the efficiency of SGA, it has

been tested using the minimum number of function evaluations reported in the

literature of 25,000. The authors of GWO negated to report the number of

function evaluations used in their testing, making it hard to draw a comparison

in efficiency.

The remaining algorithmic parameter values are given in Table 6.

Table 6 – Algorithmic settings

Parameter Value

No. of Runs 30

Iterations 5,000

 5

 0.1

 5

5.3 Design Problem Results

Table 7 and Table 8 outline the results obtained for the coil spring design

problem.

Table 7 – Best minimum results for the coil spring problem

Rank Algorithm
Optimum Variables Optimum

Weight d D N

1 SGA 0.051659 0.356002 11.33104 0.0126652

2 AWDA 0.051655 0.355918 11.33603 0.0126653

3 GWO 0.051690 0.356737 11.28885 0.0126662

4 DE 0.051609 0.354714 11.41083 0.0126702

5 HS 0.051154 0.349871 12.07643 0.0126706

6 PSO 0.051728 0.357644 11.24454 0.0126747

7 ES 0.051643 0.355360 11.39792 0.0126980

8 GA 0.051480 0.351661 11.63220 0.0127047

 15

Table 7 shows that SGA produced a better result than previously reported

in the literature. This is in spite of SGA only using 25,000 function evaluations;

much less than most other algorithms.

Table 8 – Statistical results for the coil spring problem

Algorithm Best Mean Worst Std Dev

SGA 0.0126652 0.012898 0.015269 4.7E-05

AWDA 0.0126653 - - -

GWO 0.0126660 - - -

DE 0.0126702 0.012703 0.012790 2.7E-05

HS 0.0126706 - - -

PSO 0.0126747 0.012730 0.012924 5.2E-05

ES 0.0126980 0.013461 0.016485 9.7E-04

GA 0.0127047 0.012769 0.012822 3.9E-05

Table 8 shows the statistical analysis of the results for the first problem. It

is important to note that all algorithms except ES used a greater number of

function evaluations, meaning they should have a smaller spread across the best-

to-worst range, and a smaller standard deviation. At an equal number of function

evaluations, SGA outperformed ES in every criterion.

Table 9 and Table 10 outline the results obtained for the welded beam design

problem.

Table 9 – Best minimum results for the welded beam problem

Rank Algorithm
Optimum Variables Optimum

Cost h l t b

1 HS 0.205730 3.47049 9.03662 0.205730 1.72480

2 AWDA 0.205729 3.47048 9.03662 0.205729 1.72485

3 SGA 0.205727 3.47054 9.03662 0.205729 1.72486

4 GWO 0.205676 3.47837 9.03681 0.205778 1.72624

5 PSO 0.202369 3.54421 9.04821 0.205723 1.72802

6 DE 0.203137 3.54299 9.03349 0.206179 1.73346

7 ES 0.199742 3.61206 9.03750 0.206082 1.73730

8 GA 0.208800 3.42050 8.99750 0.210000 1.74830

Table 9 shows that SGA ranks third amongst the existing literature for the

minimum reported values. However, SGA used 92% fewer function evaluations

than HS for a comparable result. This highlights the efficiency of the algorithm

at producing accurate results in a much lower number of function evaluations.

 16

Table 10 – Statistical results for the welded beam problem

Algorithm Best Mean Worst Std Dev

HS 1.72480 - - -

AWDA 1.72485 - - -

SGA 1.72486 1.729997 1.77763 0.01227

GWO 1.72624 - - -

PSO 1.72802 1.748831 1.782143 0.01292

DE 1.73346 1.768158 1.824105 0.02219

ES 1.73730 1.813290 1.994651 0.07050

GA 1.74830 1.771973 1.785835 0.01122

Table 10 shows the statistical analysis of the results for the second problem.

Of the four other algorithms that reported statistical values, SGA outperforms

all algorithms at all criterion. The one exception is that GA has a slightly better

standard deviation. However, this is expected as GA used 36 times as many

function evaluations as SGA. Again, for the same number of function evaluations,

SGA outperformed ES in every criterion.

Table 11 and Table 12 outline the results obtained for the pressure vessel

design problem. The result obtained by GWO did not satisfy the requirement of

Ts and Th being integer multiples of 0.0625 inches, and as such, it has been

omitted. Furthermore, HS breached the valid range of values for the length, and

AWDA used different variable ranges.

Table 11 – Best minimum results for the pressure vessel problem

Rank Algorithm
Optimum Variables Optimum

Cost Ts Th R L

1 SGA 0.8125 0.4375 42.09844 176.6365 6059.7143

2 DE 0.8125 0.4375 42.09841 176.6376 6059.7340

3 ES 0.8125 0.4375 42.09808 176.6405 6059.7456

4 PSO 0.8125 0.4375 42.09126 176.7465 6061.0777

5 GA 0.8125 0.4375 40.32390 200.0000 6288.7445

Table 11 shows that, again, SGA has found a better value than previously

reported in the literature, whilst satisfying all constraints.

Table 12 – Statistical results for the pressure vessel problem

Algorithm Best Mean Worst Std Dev

SGA 6059.7143 6231.6808 7381.7174 282.37

DE 6059.7340 6085.2303 6371.0455 43.01

ES 6059.7456 6850.0049 7332.8799 426.00

PSO 6061.0777 6147.1332 6363.8041 86.45

GA 6288.7445 6293.8432 6308.1497 7.41

Table 12 shows the statistical analysis of the results for the third problem. It

is observed that SGA has a higher standard deviation than most of the other

 17

algorithms. However, this is due to the much larger number of function

evaluations used, which reduce the variability in the final result. An equal

comparison between SGA and ES shows that SGA has a much better mean value

and a smaller standard deviation.

6 Conclusion

A novel bio-inspired algorithm has been presented that was based on the

native Australian sugar glider, named Sugar Glider Algorithm (SGA). The

algorithm has taken inspiration from the gliding and foraging behaviors, and the

social hierarchy adopted by the animals. The algorithm has displayed strong

performance in its preliminary testing stage. It set two new benchmark

minimums for common engineering design problems, as well as being comparable

in the statistical analyses performed. It has proven to be effective at finding

optimal solutions at relatively low total function evaluation numbers. This

enables shorter runtimes for achieving equivalent outcomes. The combination of

the algorithm simplicity, robustness, and strong performance ensure that it is a

valuable addition to the existing literature.

 18

7 References

Dorigo, M., et al. (1999). ”Ant algorithms for discrete optimization.” Artificial Life
5(2): 137-172.

Glover, F. and C. McMillan (1986). ”Applications of Integer ProgrammingThe
general employee scheduling problem. An integration of MS and AI.” Computers &
Operations Research 13(5): 563-573.

Holland, J. (1975). Genetic Algorithms and the Optimal Allocation of Trials. U. o.
Michigan. Ann Arbor: 88-104.

Kennedy, J. and R. Eberhart (1995). Particle swarm optimization. Neural Networks,
1995. Proceedings., IEEE International Conference on.

Kirkpatrick, S., et al. (1983). ”Optimization by simulated annealing.” Science
220(4598): 671-680.

Klettenheimer, B. S., et al. (1997). ”Father and son sugar gliders: more than a genetic
coalition?” Journal of Zoology 242(4): 741-750.

Krink, T., et al. (2004). Noisy optimization problems - a particular challenge for
differential evolution? Evolutionary Computation, 2004. CEC2004. Congress on.

Mirjalili, S., et al. (2014). ”Grey Wolf Optimizer.” Advances in Engineering Software
69: 46-61.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution, Frommann-Holzboog.

Storn, R. and K. Price (1997). ”Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces.” Journal of Global
Optimization 11(4): 341-359.

Wolpert, D. H. and W. G. Macready (1997). ”No free lunch theorems for
optimization.” IEEE Transactions On Evolutionary Computation 1(1): 67-82.

98

APPENDIX 2 – SGA PYTHON CODE

Continued over page.

99

100

APPENDIX 3 – SGA (INTEGER) PYTHON CODE

Continued over page.

101

102

APPENDIX 4 – SGA (PLOTTING) PYTHON CODE

Continued over page.

103

Continued over page.

104

105

APPENDIX 5 – SGA (PRESSURE VESSEL) PYTHON CODE

Continued over page.

106

107

APPENDIX 6 – MATHEMATICAL FUNCTION TESTER PYTHON CODE

Continued over page.

108

109

APPENDIX 7 – ENGINEERING PROBLEM TESTER PYTHON CODE

Continued over page.

110

Continued over page.

111

112

APPENDIX 8 – GEARBOX EVALUATION PYTHON CODE

113

114

115

APPENDIX 9 – BAREBONES TESTING SCRIPT

116

APPENDIX 10 – PROOF OF RESULTS
Mathematical Function Results

Engineering Design Problem Results

	Firstbit
	ThesisTitlePage
	Blank
	Submission Letter
	Blank
	Acknowledgements
	Blank

	Final Thesis Report NoAppend
	SGA Journal Formatted
	Appendices Section

