
UQ Engineering 
 

  Faculty of Engineering, Architecture and Information Technology 

 
 
 
 

 
 
 
 

 
 
 
 
 
 

 

THE UNIVERSITY OF QUEENSLAND 
 
 

Bachelor of Engineering Thesis 
 
 
 

Development of a New Bio-Inspired Optimisation 
Algorithm 

 
 
 
Student Name:  Timothy CASSELL 
 
Course Code: MECH4500 
 
Supervisor: Dr. Michael Heitzmann 
 
Submission date: 28 October 2016 
 
 
 

A thesis submitted in partial fulfilment of the requirements of the 
Bachelor of Engineering degree in Mechanical Engineering 

 
 



 



ACKNOWLEDGEMENTS 
Firstly, I would like to thank my supervisor Dr Michael Heitzmann for giving me the 

opportunity to undertake this project. It has some of the most stimulating work I have done in 

my time at university and I am very grateful for his support and guidance.  

I would also like to thank my family, and in particular my parents, for their constant love and 

support. They have always been understanding if I ever needed to prioritise university over 

other things. 

Additionally, I would like to thank my friends. They always managed to make the long days 

and the late nights much more bearable. In particular, I would like to thank Emma for the idea 

of sugar gliders, which she came up with at about 3 o’clock one morning in early June. 

Lastly, I am grateful to all those whom I have not mentioned, but have somehow helped me in 

the completion of this thesis. 



 



ABSTRACT 
Bio-Inspired Algorithms (BIAs) are a class of metaheuristic that have proven to be effective at 

optimising a vast range of complex, black box function types. A new BIA is proposed that is 

based on a small, nocturnal gliding possum; the native Australian sugar glider (Petaurus 

breviceps). Sugar Glider Algorithm (SGA) imitates the leadership hierarchy and foraging 

behaviour of a colony of gliders. Two co-dominant males lead a colony of five to seven gliders 

that forage for food by gliding between trees in search for insects or tree sap. The algorithm 

employs concurrent local exploitation (performed by the codominant males) and global 

exploration (performed by the remaining gliders). The performance of SGA has been 

quantitatively evaluated using five mathematical test functions, which are a mix of both 

unimodal and multimodal domains. The results are compared against Particle Swarm 

Optimisation, Differential Evolution and an Evolutionary Algorithm, with SGA performance 

amongst the best observed. Furthermore, SGA has been tested on three constrained engineering 

problems; coil spring design, welded beam design and pressure vessel design. SGA exhibited 

strong performance against seven existing algorithms, and found multiple new minimums than 

previously reported in literature. The results show that SGA is competitive against a wide range 

of existing algorithms in a variety of search domain topologies. These findings indicate that 

SGA is at the forefront of BIA performance and prove it is a superior candidate for the 

optimisation of engineering design problems. 
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 – INTRODUCTION TO BIO-INSPIRED ALGORITHMS 
Optimisation problems are prevalent in all facets of engineering. A general optimisation task 

involves minimising/maximising an objective function via alteration of variable values, whilst 

accounting for variable constraints. Mathematical optimisation, through use of calculus, is often 

not a viable option for engineering problems. This is because the objective function often 

doesn’t take a derivable algebraic form. It can be presented in a complex mathematical form, 

via computational simulations, or even in terms of measurements obtained from real objects. 

For example, the objective of a car exterior design may be to minimise drag, where the drag is 

calculated via implementation of the model in a CFD program. In such cases, the only 

information known is the variable values and the resulting ‘fitness’ of the solution (how 

minimal the drag is). Thus, methods that utilise only this information are required. 

Methods for finding optimal solutions to problems where only the input/output information is 

known are classed as metaheuristic search methods. Metaheuristics are algorithms that are 

problem-independent, employ stochastic (random) methods, and make no assumptions about 

the space being searched. Thus, they are widely applicable to a large range of optimisation 

problems. Metaheuristics, however, do not guarantee that the global optimum will be found. 

Example metaheuristics include Simulated Annealing (Kirkpatrick, Gelatt Jr, & Vecchi, 1983) 

and the human-memory inspired Tabu Search (Glover & McMillan, 1986).  

Bio-Inspired Algorithms (BIAs) are a class of metaheuristic algorithm that utilise methods 

inspired by biological processes to solve optimisation problems. BIAs gained popularity as 

research topics due to their combination of fascinating inspiration sources and promising 

performance outcomes. There are now algorithms inspired by a vast range of biological sources 

such as genetics, pack hunting of wolves, social behaviour of bees, and bird flocking. BIAs 

have been shown to be able offer a mix of both good performance and search space adaptability, 

meaning they can generally be effective at solving a broader range of problems. The 

adaptability is inherent in the design due to the way in which the biological organisms from 

which they are derived are able to adapt to their environment. For these reasons, BIAs are a 

promising area of research within the field of metaheuristics.  
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1.2 – MOTIVATION FOR RESEARCH 
1.2.1 – Reasoning Behind Choosing Bio-Inspired Algorithms 

Bio-inspired algorithms are of particular research interest due to their inherent robustness and 

efficiency. Over the course of millions of years, biological processes have themselves been able 

to ‘evolve’ such that they are continuously becoming more effective (whether the process is the 

human immune system or the pack hunting technique of wolves). This implies that nature is an 

abundant resource for processes that are operating in optimal ways. Therefore, algorithms based 

on these processes are often very effective at the optimisation of arbitrary objective functions. 

A particular strength of BIAs is that they are able to escape local optima effectively due to the 

‘judgement’ exercised in nature, where a good solution is not always accepted due to the desire 

for a better one. An example being the pollination of flowers by bees; a bee may have an 

abundance of suitable flowers available, but may discard many options with a preference for 

searching of the best one available. This is one of the reasons that BIAs are regarded as powerful 

optimisation tools. 

1.2.2 – The No Free Lunch Theorem 

The No Free Lunch Theorem provides both a motivation and an inherent design guideline for 

developing algorithms. The No Free Lunch theorem states that the performance of all search 

algorithms is the same when averaged over all possible objective functions (Wolpert & 

Macready, 1997).  That is, some algorithms perform exceedingly well with certain functions, 

but are inefficient with others.  An implication of this theorem is that there is no single algorithm 

(existing or otherwise) that is the best for optimising all objective functions. Therefore, as the 

number of engineering applications that utilise optimisation increases, as does the demand for 

the creation of new algorithms. This is one of the main driving forces behind the continual 

development of new optimisation algorithms.  

The No Free Lunch Theorem also implies the importance of designing the algorithm with a 

certain application area in mind. In accordance with the theorem, trying to design an algorithm 

that performs well in all areas is futile. Although metaheuristics are applicable to almost all 

optimisation tasks, performance is not guaranteed to be acceptable. Therefore, some prior 

knowledge about the search spaces of particular interest is beneficial when designing the 

algorithm processes. When an engineer is selecting an algorithm for their particular application, 

they do not look at algorithms with a broad-range of good performance. Rather, they seek the 

algorithm with best performance in their application. Thus, the theorem implies it makes most 

sense to take an application-based approach to designing the algorithm. 
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1.3 – REPORT OBJECTIVES AND SCOPE 
1.3.1 – Project Aim 

“To produce a novel bio-inspired algorithm that is efficient and  

effective at solving a vast range of engineering optimisation problems, particularly  

those within the field of mechanical design” 

1.3.2 – Project Objectives 

The project objectives are the metrics that will be used to determine if the project was successful 

in achieving its intended purpose. The project objectives are to: 

 produce a truly-novel bio-inspired algorithm, 

 ensure that the algorithm performs competitively against existing BIAs on problems 

related to engineering design, 

 ensure that the algorithm is easily implementable by engineers unfamiliar with 

metaheuristics, and 

 in conjunction with work performed by Bryce (2015) , enhance the experience of FEA 

program users, removing the user-dependency of the current inbuilt optimisation 

methods. 

1.3.3 – Project Scope 

The following items were within the scope of the project: 

 A comprehensive literature review that identifies existing BIAs and their optimisation 

mechanics, 

 Development of new bio-inspired algorithm based on either: 

o animal/insect hunting, mating or social behaviours, 

o genetics, DNA/RNA, Proteins, Immune System, or 

o dynamics of cellular-level biological processes. 

 A performance comparison of the algorithm through: 

o use of mathematical benchmark test functions, or 

o use of classical constrained engineering design problems. 

 The undertaking of a case study that further highlights the value of the proposed 

algorithm. 
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The following items were not within the scope of the project: 

 Investigation of algorithms based on other natural phenomena such as physics or 

chemistry (beyond verifying that the proposed algorithm is dissimilar in order to avoid 

plagiarism), or 

 Performance testing in fields unrelated to engineering design where significant 

alteration of the algorithm would be required. 

1.4 – THESIS STRUCTURE 
In order for the proceeding information on optimisation to be well understood, Chapter 2 gives 

an introduction to the topic. Algorithm terminology is presented, along with typical applications 

of optimisation within engineering. Chapter 3 is a comprehensive literature review that analyses 

the existing bio-inspired algorithms. Then, the algorithm development process is outlined in 

Chapter 4, including the design goals of the final algorithm, investigated sources of inspiration 

and the early design iterations. Next, Chapter 5 provides the intricate details of Sugar Glider 

Algorithm including parameter tuning and selection, and a guide to using SGA in Python. 

Chapters 6 provides the results of benchmarking the algorithm against existing BIAs, on both 

mathematical functions and constrained engineering design problems. Chapter 7 details a case 

study that was performed to highlight the strength of SGA when applied to engineering 

problems (through design of a spur gearbox). Finally, Chapter 8 provides the intended future 

work to be performed with relation to SGA.  
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CHAPTER 2 

OPTIMISATION IN ENGINEERING 
 

 

2.1 – ALGORITHM TERMINOLOGY 
There is a range of terms associated with optimisation that characterise both the type of 

problems being solved, and the methods used to do so. A working knowledge of these terms is 

thus required in order for the proceeding work to be understood.  

2.1.1 – Unconstrained and Constrained Optimisation 

Unconstrained optimisation occurs when the whole real-numbered domain is available to 

search. Furthermore, there are no supplementary constraint equations that must be satisfied 

whilst the optimisation process is occurring. It is a simpler case to solve, but the results may 

not be feasible if variables have not been appropriately constrained.  

Engineering design problems are almost exclusively of the constrained type. This ensures that 

the result of the optimisation process is a feasible solution to the problem. Constraints are 

introduced in two ways, including: 

 applying limits to the range of numbers that variable values are able to be selected from, 

and 

 introducing inequality constraint equations that must be satisfied in order for a solution 

to be considered feasible. 

Constraint equations facilitate the assurance that a result output from the optimisation process 

is able to be implemented appropriately. For example, in the design of an ultra-light aerofoil, a 

constraint may be that the total aerodynamic lift supplied be greater than a set value. 

Implementation of constraints in computational optimisation techniques is often not a difficult 

task, as the objective function is modified such that penalties are applied if constraints are 

violated. 

2.1.2 – Discrete, Continuous and Mixed Variable Optimisation 

Discrete optimisation occurs when the variables in a problem can only have values belonging 

to a particular set. Combinatorial optimisation is a subset belonging to discrete optimisation, 

which are common amongst planning problems. Combinatorial problems include the Travelling 
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Salesman Problem, where the objective is to select a combination of routes between cities that 

minimises the total travel time. The total number of possible combinations of routes between 

cities is a (large) discrete set, and thus optimisation routines applied to the problem must 

account for the discrete nature.  

On the other hand, parameters of continuous optimisation problems can take any value within 

a set range. Many design optimisation problems are setup such that they can be solved using 

continuous techniques, particularly in shape, size and topology optimisation.  

Mixed variable optimisation is a commonly occurring case in structural design problems. In 

mixed variable optimisation, the set of variables is a mix of both continuous and discrete. An 

example is a problem involving SHS beams, where the cross-section is to be a standard design. 

The cross-sectional dimensions would be a discrete variable, but others such as the length will 

be continuous. 

2.1.3 – Single and Multiple Objective Problems 

Single objective optimisation is the case where the objective function is singular in its 

dependant variable. An example would be optimising the shape of a structural component with 

the objective of minimising the weight. In this case, the material would be set prior to the 

optimisation process being carried out, such that the cost would be a simple function of the 

material volume. 

On the contrary, multiple objective optimisation scenarios occur when the objective function is 

non-singular in its dependant variable (so the problem effectively has multiple objective 

functions, all to be optimised simultaneously). Building on the example above, the problem 

would become a multiple objective problem if the material was also considered variable. The 

objective may then be to minimise both the weight (a function of component volume and 

material density) and the cost (a function of component volume, material cost, and shape). Here, 

there is no clear relation between the two objectives to be minimised, and so the problem is 

classed as multiple objective. Multiple objective problems require special solvers that are able 

to handle the concurrent optimisation of more than the one objective function. 

2.1.4 – Stochastic and Deterministic Algorithms 

A stochastic algorithm is one which utilises randomness in order to search the domain. All bio-

inspired algorithms are stochastic in design, with random operators often at the heart of their 

exploration routines. An implication of the random operators in stochastic algorithms is that 

they will never perform exactly the same over multiple runs, even when initialised in the same 
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configuration. The challenge is to still produce the same end result (the global optimum) whilst 

accounting for the different iteration patterns. 

Deterministic algorithms are the logical opposite of stochastic. If initialised in a certain 

configuration, the algorithm will always iterate in the same pattern and produce the same end 

result. Deterministic algorithms are often ineffective unless the search space topology is well-

defined and the user has a good idea of the location of the optimum (Kress & Keller, 2007). 

2.1.5 – Static and Adaptive Algorithms 

A static algorithm is one whose parameter definitions do not change as the iterations progress. 

Most algorithms are, in their basic form, static in design. Algorithm tuning is often performed 

to determine optimal definitions for the parameters (which may be numerical values or 

functions) and the definitions then do not change once the algorithm is initialised.  

Research is often undertaken on an algorithm to determine if changing these definitions through 

the iterations is effective. The algorithm would then be considered adaptive. A feedback loop 

is established between the algorithm outcomes and its parameter set, with a user-defined 

alteration routine altering the parameter definitions whilst the algorithm progresses. The hope 

is that the performance can be improved through implementation of adaptive techniques. 

2.2 – ENGINEERING OPTIMISATION PROBLEMS 
There are a wide range of optimisation problems that are encountered by engineers. These range 

from structural design optimisation and process optimisation, to other applications such as 

control and manufacturing or mathematical modelling. New applications of optimisation within 

engineering are also being formulated regularly. Additionally, as the “computerisation” of 

engineering processes further increases, the opportunities for computational optimisation of 

such processes also further increases.  

2.2.1 – Structural Optimisation 

Described in Table 1, structural optimisation is one of the most common engineering 

optimisation problem types and involves the alteration of a physical component in order to 

satisfy a design goal. The most common of these goals is to minimise the volume of material 

used in the part. Optimising component mass is an ever increasingly important concept as 

manufacturers of both aerial and road-going vehicles look to provide maximum fuel efficiency, 

for performance, cost and environmental reasons. Furthermore, a lower mass of given material 

often implies a cost decrease also.  
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Table 1 – Structural optimisation problem description 

Objective Function Weight, cost, strength, 

drag coefficient 

Variables Dimensions 

Constraints Stress, deflection, 

manufacturability 

 

 

Figure 1 – Topology optimisation example with Allowable space claim (a), Topology optimisation output (b), Validation 
CAD model (c), Validation FEA model (d) and Final design (e) (GS Engineering, 2014) 

Structural optimisation often involves the integration of a computer aided design (CAD) 

program to validate complex component shapes. Figure 1 gives an example of topology 

optimisation, a type of structural optimisation process. In this case, a CAD program assists to 

minimise the total material mass. Other examples of structural optimisation may not require the 

use of a CAD program, with their objective functions being mathematically formulated. This is 

applicable to structures with simple shapes, such as pressure vessels and springs.  

2.2.2 – Process Optimisation 

Described in Table 2, process optimisation within the context of engineering design is often 

associated with the manufacturing processes of components. For example, optimising the tool 

path of a CNC milling process will reduce the time required to produce the part. The 

optimisation task may account for CNC head speeds, tool rotational speeds and the order and 

direction of cutting passes. In this case, a computer aided manufacturing (CAM) program would 

be used to simulate the tool paths. If a part is to be mass produced, optimising the tool path will 

result in a lower manufacturing time that increases process efficiency.  
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Table 2 – Process optimisation problem description 

Objective Function Time or cost 

Variables Timings, process 

parameters or order of 

operations  

Constraints Feasibility, tolerances, 

finish quality 

 

Figure 2 gives an example of tool path optimisation. Figure 2 (a) is the intuitive path, which is 

the path that would likely be taken when minimal thought is given to the problem. However, 

this path is actually 11% longer than the optimised path on of Figure 2 (b). This application is 

actually an example of the well-known Travelling Salesman Problem.  

 

Figure 2 – Tool path optimisation example 

2.2.3 – Other Applications 

Curve fitting of experimental data is another application of optimisation within engineering. 

Experimentally measured points are able to be approximated with mathematical functions, with 

the optimisation process minimising the total error of the approximation. Applications of this 

method include UV spectroscopy, X-ray analysis, IR spectroscopy and chromatographic 

techniques, with bio-inspired algorithms being a popular choice of optimisation method (Polo-

Corpa et al., 2009).  

The identification of optimal control parameters is another application of optimisation within 

engineering. As a result of the emerging Internet of Things phenomenon, there is an ever 
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increasing amount of data flowing off machines. For example, GE Oil and Gas has predicted 

that if all of the data generated by industry turbomachinery, pipelines and artificial lift 

equipment was harnessed correctly, production can be improved by up to 8% (GE Oil and Gas, 

2016). As the data becomes more accessible through the Internet of Things, identification of 

optimal control parameters will be another application of bio-inspired algorithms.  

 

Figure 3 – Typical 2D scramjet combustor (Lewis, 2012) 

Furthermore, work performed at The University of Queensland by Lewis (2012) used a bio-

inspired algorithm to optimise the inlet of a scramjet combustor, as shown in Figure 3. The goal 

was to minimise the total pressure loss for an inviscid, two-dimensional, three ramp scramjet 

inlet and combustor. The process involved linking the optimisation code to a Barrine CPU 

cluster that performed computational fluid dynamics (CFD) simulations. The algorithm proved 

effective in optimising the geometry such that the design goal was achieved.  
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CHAPTER 3 

LITERATURE REVIEW 
 

 

3.1 – ALGORITHM CLASSIFICATION 
Within the space of numerical optimisation lies a class of algorithms inspired by nature. This 

class can further be divided into those inspired by chemistry, physics or biology. Bio-inspired 

algorithms can then be separated into two sub-classes. The Evolution sub-class contains 

algorithms primarily inspired by both genetic operations and processes, and the Darwinian 

theory of Survival of the Fittest. The Swarm Intelligence sub-class is based on the hunting, 

movement and reproduction processes of living organisms. Figure 4 gives some examples of 

existing bio-inspired algorithms. The algorithms vary in many aspects, from their inspiration 

source, to the number of control parameters to their method complexity.  

 

Figure 4 – Algorithm classification tree 
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3.2 – EVOLUTIONARY ALGORITHMS 
Existing evolutionary algorithms have been presented, along with their domain suitability and 

the number of control parameters (excluding population size and the number of iterations, as 

all algorithms require these selections). 

3.2.1 – Genetic Algorithm (GA) 

Domain: Continuous/Discrete Control Parameters: 3 

GA is perhaps the most well-known of the Evolutionary Algorithms. Proposed by Holland 

(1975), GA takes inspiration from the micro-level biological processes that drive evolution, in 

accordance with the Charles Darwin Theory of Survival of the Fittest. Solutions are likened to 

chromosomes, with each having a number of genes representing the variables. The 

chromosomes have genetic operations performed upon them to produce new generations. The 

idea is that each generation will have generally better fitness values than the previous, meaning 

that the population will eventually reduce in genetic diversity and converge towards an optimal 

value. The process for traditional GA is: 

1. Generate initial population of solutions 

2. Evaluate initial population fitness values 

3. Whilst there is sufficient diversity amongst population (loop): 

i. Select parents and perform crossover to produce new generation 

ii. Perform mutation to small percentage of population 

iii. Evaluate population fitness values 

iv. Repeat loop 

The genes (solution components) are typically encoded in binary, so as to allow for genetic 

operations to be performed. The genetic operations were traditionally limited to selection, 

crossover and mutation; however recent variants of GA have also explored the use of 

regrouping, colonization-extinction and migration with promising results (Akbari, 2010). 

Crossover is the method through which new generations of solutions are generated and is 

analogous to the biological process from which it takes its name. An example of crossover can 

be seen in Figure 5.  
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Figure 5 – Example of genetic crossover 

The crossover point/s are chosen at random and, depending on the parents, may result in 

children that are identical (particularly in later generations). Converting from binary to decimal, 

the two parents have parameter values of 927 and 1017. The resulting children have values of 

991 and 953 respectively. These numbers may represent the variable values in a one-

dimensional function, and their fitness may be the function value. When averaged over the 

whole group of solutions, the fitness of the children will generally be higher than that of the 

parents due to biased selection. As the solutions converge, genetic diversity between 

chromosomes decreases, meaning the generations become more alike. The algorithm typically 

terminates when the deviation across the population is smaller than a tolerance.  

The solutions (chromosomes) are ranked based on their fitness values (determined by the 

objective function). The higher the ranking, the greater the chance of being selected for 

reproduction via crossover. Zitzler, Deb, and Thiele (1999) note that it is important to not limit 

the parents to only the best-performing solutions or else premature convergence will occur. 

Lower fitness parents aid in the explorative characteristics of the algorithm, increasing the 

chances of escaping local optima.  

As a modification to the traditional procedure, Elitist Genetic Algorithm variants allow for the 

best few solutions (or best single solution) to carry over to the next generation without 

alteration, guaranteeing best-solution preservation throughout the iterations (Baluja & Caruana, 

1995). This modification is sometimes beneficial, but may cause the population to get stuck in 

local optima, depending on the search space topology. Zitzler et al. (1999) have claimed that 

adding elitism to GA improved the efficiency of the algorithm, which has been reaffirmed by 

Rudolph (1999) and Deb (2002).  

Binitha and Siva Sathya (2012) state that GA may have a tendency to converge towards local 

optima rather than the global optimum if the fitness function is not defined properly. Another 

disadvantage of GA is that it is not directly accommodating of constrained optimisation (where 

variables must stay within certain ranges). To handle constraints, penalty functions must be 

used that assign very unfit values to solutions where a variable is out of the acceptable range.  
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3.2.2 – Differential Evolution (DE) 

Domain: Continuous/Discrete Control Parameters: up to 6 

Differential Evolution is an evolutionary algorithm proposed by Storn and Price (1997). It is 

similar to Genetic Algorithm in that it takes inspiration from the genetic operators of crossover 

and mutation. However, the generation of new solutions takes a slightly different method, with 

new solutions being a combination of three others, rather than two. Differential Evolution also 

differs from GA in that the newly generated solutions are only accepted if they are of a higher 

fitness. Although this guarantees best-solution preservation, it may also limit the explorative 

characteristics of the algorithm in multimodal domains. The process of DE is: 

1. Set parameters of 	 	 0, 1 , 	 	 0, 2  

2. Generate initial population of solutions called agents ( 	 	4) 

3. Evaluate initial population fitness values 

4. Until a termination criterion is met (loop): 

For each agent  in the population: 

i. Select 3 other (random) agents , ,  

ii. Select random index 	 	 1, … ,  where  is the dimension of the agent vector 

iii. For each dimension , pick a random number 	 	 0, 1  

iv. For each dimension , if 	 	  or 	 	  then set 	 	 ∗ 	–	 , 

else set 	  

v. If the fitness of the new solution  is better than the fitness of the old solution , 

replace the agent with the improved candidate solution 

vi. Repeat loop 

As well as three algorithm-defining parameters, DE has another three tuneable parameters that 

must be selected by the user. Increasing the population size, , increases the explorative 

capability of the algorithm, but with added computational cost. The differential weight, , and 

the crossover probability, , also increase the explorative capability by increasing the 

mutation magnitude and probability respectively. However, this also increases the time taken 

for the algorithm to converge to a final solution. Zielinski and Laur (2006) have proposed an 

adaptive DE algorithm that changes the  and  parameters as the iterations progress. Results 

show that adaptive control of the parameters increases the performance of the algorithm as 

opposed to tuned, fixed values. The average number of function evaluations is higher for the 

adaptive approach; however, the authors note that tuning the parameters also requires 

preliminary computational effort.  
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3.2.3 – Evolution Strategy (ES) 

Domain: Continuous/Discrete Control Parameters: 3 

Evolution Strategy was developed in its basic form at the Technical University of Berlin by 

Rechenberg (1973). ES is actually a group of closely-related algorithms, each differing slightly 

in recombination technique, but all with the same general process. Similar to DE, ES uses the 

micro-level process of random recombination to from new generations of individuals, with the 

highest individuals being selected to survive. GA on the other hand takes inspiration from the 

macro-level Survival of the Fittest theory. The population fitness is first evaluated and the best 

individuals are selected to become the parents that produce the next generation. The process for 

general ES is: 

1. Generate initial population of solutions 

2. While not termination criterion (loop): 

i. Perform random crossover using all population to produce new generation (that 

is larger than the population beforehand) 

ii. Perform mutation through perturbation using random vector with a zero mean 

iii. Evaluate new generation fitness values 

iv. Select best individuals for survival using multivariate normal distribution 

v. Repeat loop 

Differences in the number of parents used in each crossover and the number of offspring 

produced for the new generation give rise to the different branches of ES. Mutation operators 

are also varied to produce other ES variants. Yao and Liu (1997) have used Cauchy mutation 

operators to derive a Fast Evolutionary Strategy (FES) that was shown to consistently 

outperform ES in multi-modal test functions due to its ability to escape local optima. The 

authors state that ES wasn’t able to escape local optima effectively due to a local-search like 

Gaussian mutation operator. Another, state-of-the-art, ES variant was proposed by Hansen and 

Ostermeier (1996) and adapts the covariance matrix of the normal distribution as iterations are 

performed. The result is that the relationships between variables are learned by the algorithm, 

with performance increases as a result.  

3.2.4 – Genetic Programming (GP) 

Domain: Discrete Control Parameters: Depends on algorithm used 

Genetic Programming was initially proposed by Koza (1990) for use in the context of artificial 

intelligence. GP is used to create computer programs that are able to perform a singular task 

optimally. GP is actually an application of genetic algorithms, rather than a standalone 
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algorithm itself. GP utilises any of the previously mentioned evolutionary algorithms (typically 

GA, however not exclusively) to find the best computer program to perform the specified 

function. GP encodes the tree-like structured programs into solutions and represents them as a 

set of genes (so that one solution is like a chromosome in GA). The genes are then mutated 

according to the methods of the evolutionary algorithm employed. Evaluating the fitness of a 

solution involves running the prospective program and evaluating its performance (often its run 

time and outcome accuracy). GP doesn’t seem to have found popularity in solving practical 

engineering optimisation problems. This is likely because it is relatively computationally 

intensive and limited in engineering applications which are able to be represented in the 

required tree-like structure.  

3.3 – SWARM INTELLIGENCE ALGORITHMS 
Existing swarm intelligence algorithms have been presented, along with their domain suitability 

and the number of control parameters (excluding population size and the number of iterations, 

as all algorithms require these selections). 

3.3.1 – Particle Swarm Optimisation (PSO) 

Domain: Continuous/Discrete Control Parameters: 3 

Particle Swarm Optimisation was first proposed by Kennedy and Eberhart (1995) and was 

initially intended to simulate the social behaviour of animal swarms, particularly fish schooling 

and bird flocking. The algorithm was the first to utilise swarm intelligence, in contrast to the 

previously proposed Evolutionary Algorithms. Each solution is equated to a particle within a 

swarm of other particles. The particles can be likened to any swarming/schooling creature, 

including insects, fish and birds. The algorithm process is based on the behaviour of these 

swarms when searching for a goal (be that a food source or habitable environment). The 

intelligence component of the algorithm refers to the nature in which particles ‘communicate’ 

their positions to each other, allowing other particles to use this information when making 

movement decisions. The process for traditional PSO is:  

1. Generate initial population of solutions 

2. Evaluate initial population fitness values 

3. Whilst there is sufficient spread in swarm location (loop): 

i. Generate all particles’ velocity 

ii. Generate new positions based on velocities 

iii. Evaluate swarm fitness values 

iv. Update individual and global best position values 
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v. Repeat loop 

The velocity is dependent on two factors: 

 The position of the particle relative to its own best known position (allowing sufficient 

search space exploration) 

 The position of the particle relative to the swarm’s best known position (causing 

eventual convergence) 

Each of these positions has a weighting applied and the velocity and new position are calculated. 

As iterations take place and the global best-known value comes to be constant, the swarm will 

eventually converge.  

Unlike the non-elitist Genetic Algorithm, PSO guarantees that the best solution is always 

carried over throughout iterations (as the particle with the global best solution has zero 

velocity). This inherent best-solution preservation is a strength of the PSO algorithm. Unlike 

GA, if PSO reaches a local optimum and has decided that it is not good enough to accept as the 

final solution, it is able to re-disperse the particles and continue searching (keeping the most-fit 

particle in place).  

A popular modification to PSO is the implementation of multiple swarms. Information is only 

shared amongst each independent swarm for a majority of the iterations, with the outcome of 

finishing with multiple optima. Hendtlass (2005) cites this as being particularly useful for 

searching amongst multi-modal functions with good results obtained using an altered PSO that 

uses multiple waves of swarms. Another modification is that of introducing random 

perturbations of particle velocities, increasing the explorative capabilities of the algorithm. 

Lovbjerg and Krink (2002), Xie, Zhang, and Yang (2002) and Xinchao (2010) all report 

performance increases with different methods of velocity perturbation. The algorithm tends to 

explore the domain more exhaustively, leading to better solutions in difficult search spaces.  

3.3.2 – Ant Colony Optimisation (ACO) 

Domain: Discrete (combinatorial) Control Parameters: 4 

Proposed by Dorigo, Maniezzo, and Colorni (1991), Ant Colony Optimisation is based on the 

foraging behaviour of ants. ACO is able to solve problems that can be reduced to finding good 

paths through nodes in space. ACO is based on the concept of stigmergy, a term accredited to 

Grasse (1959). Stigmergy refers to the phenomenon of indirect information sharing amongst a 

group via individuals modifying the local environment. Ants release pheromones as they travel 

between their nest and food sources, as shown in Figure 6. Therefore, the trails to the richer 
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sources of food have more pheromone laid down upon them. Ants tend to travel along paths 

that have a greater amount of pheromone, which results in indirect communication about 

locations of better food sources, as shown in  Figure 6. Dorigo, Maniezzo and Colorni 

successfully applied the concept of stigmergy in ant colonies in order to provide biasing to the 

random operators used in the algorithm. 

 

Figure 6 - Optimal path finding by ants 

ACO is a solver limited to combinatorial optimisation problems (including path planning, job 

scheduling and assignment problems). Algorithms for solving discrete, combinatorial problems 

are not generally applicable to the field of mechanical design (especially not in the cases for 

which FEA is used). Shape, size and topology optimisation all have continuous variable 

domains, meaning that ACO (or a similar algorithm) would not be of use. However, the concept 

of stigmergy is stimulating and highlights the various ways in which nature provides inspiration 

for computational algorithms.  

3.3.3 – Artificial Bee Colony (ABC) 

Domain: Continuous/Discrete Control Parameters: 3 

Proposed by Karaboga and Basturk (2007), Artificial Bee Colony Algorithm takes inspiration 

from the foraging behaviour of a honey bee swarm. The algorithm has four main components: 

 Food sources (solutions) with a certain level of nectar (fitness value) 

 Employed bees, tasked with finding new food sources in the local neighbourhood of 

their current best known food source 
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 Onlooker bees, which receive information provided by employed bees, before 

probabilistically selecting a food source and becoming employed themselves 

 Scout bees, who were once employed bees whose food source could not be improved 

after a certain search time, choose another food source at random, increasing the 

algorithm’s explorative characteristics (and preventing local optimum acceptance) 

The algorithm is both simple in design and strongly interlinked with the inspiration behind it. 

The general process for ABC is: 

1. Generate initial population of employed bees and their respective food sources 

(solutions) 

2. Evaluate initial population nectar levels (fitness values) 

3. Until termination criterion met (loop): 

i. Set employed bees to search for new food sources in their neighbourhood 

ii. Assign onlooker bees to a food source based on probabilistic decision 

iii. Send scout bees on random search 

iv. Memorise swarm single best position 

v. Repeat loop 

Algorithms that only accept fitter solutions can have a tendency to become stuck in local optima 

of multimodal functions. ABC is clever in that it detects stagnation of a bee and randomises its 

position, ensuring that the algorithm is searching the domain for all of the iterations.  

The user defined parameters for ABC are: 

 The population size, which is equal to the number of food sources 

 The limit for search attempts before an employed bee converts into a scout bee 

 The termination criterion 

ABC has been widely implemented in a number of applications. Research by Omkar et al. 

(2011) has applied a modified ABC for multi-modal objective functions through design 

optimisation of a composite structure. The performance of ABC was found to be at least on-par 

with that of GA and PSO. Another large performance comparison was performed by Karaboga 

and Akay (2009) using 50 multi-dimensional benchmark functions. Results showed that ABC 

performed markedly higher than GA and PSO, whilst the difference over DE is marginal. Table 

3 gives a comparison of the performance of ABC to the other three algorithms.  
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Table 3 – Comparison of ABC to GA, PSO and DE (Karaboga & Akay, 2009) 

Algorithm GA PSO DE 

ABC Performed Better 28 24 8 

Equal Performance 20 22 37 

ABC Performed Worse 2 4 5 

 

3.3.4 – African Wild Dog Algorithm (AWDA) 

Domain: Continuous/Discrete Control Parameters: 0 

AWDA is based on the communal hunting behaviour of African Wild Dogs (sometimes called 

African Hunting Dogs). The algorithm was proposed by Subramanian et al (2013) and is an SI 

based meta-heuristic. The authors say the algorithm is simple to implement with minimal 

parameters to be user-specified, however this is perhaps more due to a lack of technical 

endeavour rather than innovative algorithm processes. The process for AWDA is: 

1. Generate initial population of dogs (solutions) 

2. Evaluate initial population fitness values 

3. Whilst there is sufficient spread in dog pack location (loop): 

i. Update each individual dog position 

ii. Evaluate population fitness values 

iii. Repeat loop 

Each dog is moved toward a random dog that has a higher fitness value. Updating position is a 

simple method subject to Euclidian distances between dogs, with the outcome being that the 

pack will always converge between iterations. This is in contrast to Grey Wolf Optimizer 

(Section 3.3.6) where wolves are able to also diverge, increasing the explorative characteristics 

of the algorithm. Due to the simple movement definition of AWDA it would likely not deal 

well with largely multimodal functions with many local optima. The authors have only verified 

the algorithm on one benchmark function: the Goldstein-Price function. Although the function 

converged to the global optimum, it took 1000 function evaluations (Subramanian et al., 2013). 

The SHERPA algorithm was able to converge to the optimum in 500 evaluations (Red Cedar 

Technology, 2014). 

The mechanics of AWDA are simple and their relation to African Wild Dogs appears 

rudimentary. The position updating method is a general characteristic of all pack hunting 

animals – that the pack will move towards the best-performing members (the leaders, or the 

members closest to a prey). Beyond this mechanic, there seems to be no other relation to African 
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Wild Dogs, which are some of the best pack hunting animals on earth. They display hierarchical 

social structures and strong inter-pack breeding whereby all females find new packs once they 

reach maturity. None of these behavioural characteristics have been explored for use in the 

algorithm. Implementing some of these processes would likely lead to better performance. For 

example, the breeding technique could be combined with genetic operations to introduce greater 

solution variability (helping search space exploration).  

3.3.5 – Firefly Algorithm (FA) 

Domain: Continuous/Discrete Control Parameters: 2 

A relatively recent addition to the swarm intelligence family, Firefly Algorithm is based on the 

flashing light behaviour of its namesake. Fireflies use this flashing mechanism for many 

reasons, including communication and for attracting both potential mates and prey. Yang (2009) 

simplified the behaviour of fireflies into three rules for implementation in the algorithm: 

1. All fireflies are unisexual and attracted to all other fireflies. 

2. The strength of attraction is both proportional to the brightness of, and inversely 

proportional to the distance between, two fireflies. 

3. If there are no brighter fireflies than a given firefly, then it will move randomly. 

Each firefly is a representation of a potential solution. The brightness value is a result of the 

fitness function, such that a higher fitness yields a higher brightness. The rules are simple in 

nature but give yield to a relatively intricate process of searching the solution space. Unlike 

other algorithms such as AWDA, the fireflies are never in a forced-convergence phase (such 

that agents must move towards a fitter agent). Although fireflies with greater intensity may 

exist, from the perspective of a given fly there may be no visible fitter solutions (due to distance 

decreasing the relative brightness’s). If a firefly can see no better solutions it simply moves 

randomly, which increases the explorative characteristics of the algorithm. The general process 

for FA is shown in Figure 7.  
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Figure 7 – Firefly Algorithm optimisation process (Yang, 2009) 

The three user-defined parameters of FA are: 

 γ, determining how quickly the distance between fireflies reduces the relative intensity 

 α, a parameter controlling the maximum step size 

 n, the population size of the swarm, which is usually set between 15 and 40 (Yang, 

2009) 

FA has been shown to perform well over a wide variety of objective functions. Gandomi, Yang, 

and Alavi (2011) have had success in implementing a mixed variable form of FA, applied to 

civil-structural optimisation problems. Performance testing on the continuous-domain welded 

beam problem often found in literature showed that MV-FA converged to the global optimum 

with less function evaluations than both GA and DE (amongst other non-bio based). When 

applied to a mixed variable problem of a reinforced concrete beam, MV-FA again outperformed 

other algorithms found in literature (Gandomi et al., 2011).  

3.3.6 – Grey Wolf Optimizer (GWO) 

Domain: Continuous/Discrete Control Parameters: 2 

As the name suggests, GWO is based on the structured hunting techniques of grey wolves. 

Proposed by Mirjalili, Mirjalili, and Lewis (2014), GWO is one of the newest bio-inspired 

algorithms presented in literature and was partly developed by a team at Griffith University in 

Brisbane. The algorithm is based on the observed pack hunting hierarchy that the wolves 

employ when searching for prey. Each wolf represents a solution with the positions updated 

according to rules adapted from observations of the animals in the wild. The alpha, beta and 
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delta wolves represent the best three current positions. The general process for GWO is shown 

in Figure 8.  

 

Figure 8 – Grey Wolf Optimizer optimisation process (Mirjalili et al., 2014) 

The position updating accounts for the position of the current wolf in relation to the three pack 

leaders. The movement occurs in spherical manner (n-spheres to be precise), mimicking the 

encirclement of prey by wolves. The  parameter is a multiplier that is decreased over the 

iterations, shifting the algorithm from exploration to exploitation by decreasing the relative 

distances moved between wolves.  is a random perturbation vector that assists to prevent 

premature convergence.  

The performance of GWO was verified by Mirjalili et al. (2014) through testing on both 

benchmark test functions and classical engineering design problems. The algorithm 

outperformed PSO, GA and DE in 3 out of 7 unimodal test functions. For multimodal functions, 

GWO provided competitive performance on many of the functions, often outperforming PSO 

and GA. In the classical welded beam problem, GWO equalled the outcome of Firefly 

Algorithm in finding the global optimum. 

3.3.7 – Dolphin Echolocation Optimisation (DEO) 

Domain: Discrete (combinatorial) Control Parameters: 1 

Proposed by Kaveh and Farhoudi (2013), Dolphin Echolocation Optimisation is a 

combinatorial problem solver based on the methods used by dolphins to locate prey. The 

dolphins generate high-frequency clicks, the sound waves of which strike objects and are 

reflected, allowing the dolphin to identify the location of prey when visibility is poor. Dolphins 

search large spaces until a suitable prey is found, analogous to the way in which DEO perform 
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a global search in an effort to find the optimum. Kaveh and Farhoudi simulated dolphin 

echolocation by limiting an agent’s exploration in proportion to the distance from the target. 

The process for DEO is outlined in Figure 9.  

The user is required to define a curve that describes the convergence profile of the algorithm, 

setting the proportion of computational effort devoted to exploration and exploitation 

respectively. Although this makes the algorithm less parameter dependant, it puts responsibility 

onto the user to have an idea about the space being searched. Furthermore, the parameter sets 

from which variables must take their values are required to be ordered in ascending or 

descending order prior to running the algorithm.  

The authors have published further papers on DEO, applying it to civil structural problems 

involving steel frame structures (Kaveh & Farhoudi, 2015) and cantilever retaining walls 

(Kaveh & Farhoudi, 2016). In both instances, DEO was found to be on-par with Differential 

Evolution in algorithm outcomes. Performance measurements outside of the original authors 

are limited, with only one seemingly independent source found. Gholizadeh and Poorhoseini 

(2015) developed a modified DEO by changing the exploration-exploitation curve definitions 

and found that it outperformed the standard definition of the algorithm. However, no 

comparisons were made to other algorithms. 

Figure 9 – Dolphin Echolocation Optimisation process (Kaveh & Farhoudi, 2013) 
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CHAPTER 4 

ALGORITHM DEVELOPMENT PROCESS 
 

 

4.1 – ALGORITHM GOALS 
After performing the literature review, there were a set of goals that were identified as desirable 

to be achieved by the new algorithm. These goals aimed to maximise the value of the algorithm 

to the engineering community.  

The first goal was that the algorithm be readily applicable to, and a strong performer on, a broad 

range of engineering problems. This implied that the algorithm needed to make no assumptions 

about the search domain. Therefore, algorithm methods were to be as general as possible. This 

included not directly using the fitness values within the algorithm (such as in Firefly 

Algorithm), as this may have caused problems when using a penalty function constraint 

handling approach. The fitness values were to be used for ranking of the swarm only. 

The second goal was efficiency in performance. This meant producing results comparable with 

existing algorithms in a fewer number of total function evaluations. For some particular 

engineering problems, a function evaluation may take a relatively long time (such as a CFD 

computation). Therefore, the algorithm was to be as efficient as possible and minimise the 

required number of iterations to produce fit and trustworthy results.  

The third and final goal was simplicity. When performing the literature review, it was found 

that some particular algorithms were quite mathematically complex, making them hard to 

comprehend. It was hoped that the new algorithm be easily useable by anyone with good, 

general scientific or mathematical knowledge, rather than just by experts in the metaheuristic 

field. Therefore, the algorithm was to be kept as simple as possible in terms of the mathematical 

methods implemented. This also meant minimising the number of user-selected control 

parameters. 

4.2 – INVESTIGATED INSPIRATION SOURCES 
A number of inspiration sources were investigated as being the possible basis for the 

formulation of the new algorithm. The majority of these sources were animal-based, that would 

lead to swarm intelligence algorithms. Evolutionary inspiration sources were largely avoided 

due to Evolutionary Algorithms being markedly more complicated to understand and 
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implement. For an algorithm that was to be easily understood by engineers not familiar with 

the BIA space, it was decided that a swarm based inspiration would be more appropriate.  

4.2.1 – African Wild Dogs 

African Wild Dogs are a canine native to Sub-Saharan Africa. They are characterised by their 

dark, mottled coats and large ears. They are regarded as one of the most efficient hunters with 

a kill rate of up to 80%, compared to a lion’s 10% (National Geographic, 2014). The African 

Wild Dog Algorithm of Subramanian et al. (2013) is based upon the dog. However, as discussed 

in Section 3.3.4, the authors of the algorithm haven’t utilised any of the interesting behaviour 

that the dogs display. This left an opportunity to develop a new algorithm based on the animal 

that utilises a more advanced method. 

The possible behavioural characteristics upon which the algorithm processes could have been 

based included: 

 The dogs are unique amongst social carnivores in that it is the females that scatter from 

the natal pack once mature, with all females going on to find new packs. 

 The males and females have different social hierarchies. 

 The young are the first that are allowed to feed on carcasses. 

 The dogs chase their prey to exhaustion before encircling and attacking. 

 The leaders of the chase change periodically to share the load. 

Dr Michael Somers (2016) has described as the dog’s hunting behaviour as context dependent 

and able to be altered to suit the local condition. If this was able to be translated into the code, 

it would mean the algorithm would be able to adapt to the topology of the local domain, 

increasing search efficiency. The way in which the females scatter to find new groups also 

allows for the possible implementation of genetic operators in the algorithm, increasing the 

explorative capabilities (but perhaps adding some complexity).  

4.2.2 – Bottle Nose Dolphins 

The Dolphin Echolocation algorithm of Kaveh and Farhoudi (2013) was exclusively for the 

optimisation of combinatorial (discrete) problems. It was demonstrated through the 

optimisation of steel truss structures where cross-sections were required to come from a set of 

standard types. The combinatorial nature of the solver is hard-coded, meaning the algorithm 

can’t be adapted for continuous domains without significant alteration. Therefore, an 

opportunity existed to develop a dolphin-based algorithm that is able to handle continuous 
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optimisation for implementation in continuous domain design problems. The possible 

behavioural characteristics upon which the algorithm processes could have been based include: 

 Dolphins’ use of echolocation to source their prey. 

 Dolphins’ tendency to migrate to warmer (more habitable) waters when conditions 

deteriorate at their current location. 

 The dolphin pod technique of herding their target fish into a tight group before feeding 

on them.  

 Communication amongst a dolphin pod based on the dolphins whistling. 

Kaveh and Farhoudi didn’t utilise any communication between dolphins, beyond the use of 

probability distributions based around the position of the best dolphin (imposing an inherent 

communication about the dolphin’s current position relative to the best position). Direct 

communication between dolphins could have been a possible algorithm process to implement.  

In nature, if dolphins find an adequate food source and the water temperature is satisfactory 

they will tend not to migrate. In the algorithm, if a dolphin finds an adequate food source (local 

optimum) it could be forced to escape and continue searching by “decreasing the water 

temperature”. In code form, this could have been implemented as an escape if a dolphin had 

been stagnant for a number of iterations.  

4.2.3 – Sugar Gliders 

Sugar Gliders are a native Australian animal characterised by their compact size and ability to 

glide between trees. No current optimisation method exists based on the animal, however they 

displayed some promising behavioural and social characteristics that made them a promising 

candidate for the algorithm basis. These included: 

 The animals can glide for up to 50 metres in a single go, with an average of 20 metres. 

 The females produce 1 or 2 offspring per pregnancy. 

 Two codominant males lead a colony of 5 to 7 adults and additional young (with the 

other males being suppressed). 

 One of the codominant males are the most likely father of the young. 

 The gliders breed more often when a sufficient diet is available and breeding is not 

restricted to a season. 

Solutions would be represented as trees with food sources, with glider agents gliding from tree-

to-tree, searching for better solutions. The large glide distance of the glider would allow for 

sufficient domain exploration, with the glide distance decreasing as the iterations progress and 
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the colony converges. Also, if the codominant males were taken to be the gliders with the best 

solutions, genetic operations could be introduced to produce offspring which would likely 

contain the best information from the previous generation, further increasing the explorative 

power of the algorithm. The tendency to breed more often when food is abundant can help 

escape local optima (diverge through producing many offspring when a good food source is 

found).  

4.2.4 – Selection of an Inspiration Source 

All three sources were thoroughly investigated, and all seemed promising in the potential to 

develop a new bio-inspired algorithm. Therefore, a selection matrix was used to distinguish the 

animals based on three key criteria: 

 Interestingness; a measure of how interesting the animal is in general. This accounts for 

intriguing behavioural characteristics and how unique the animals are.  

 Depth of available literature; a measure of how much information is available about the 

animal, which would serve as sources for inspiration for the algorithm methods. 

 Originality; a measure of how novel an algorithm based on this animal would be. 

Accounts for how many existing algorithms there are for the animal, and how closely 

they relate to it.  

Table 4 gives the selection matrix that assisted in choosing the most promising inspiration 

source for the algorithm. Each criterion for each animal was given a score from 1-5. Table 4 

shows that sugar gliders stood out as the most favourable option. There was no existing BIA 

based on the animal, meaning the new algorithm would be easily distinguished from the existing 

literature. Sugar gliders were also a very interesting choice, with their gliding behaviour 

relatively unique amongst animals. Furthermore, sugar gliders are native to Australia which 

would came an added bonus; Australian researchers basing their work on an Australian animal.  
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Table 4 – Algorithm inspiration selection matrix 

Criteria African Wild Dogs Dolphins Sugar Gliders 

Interestingness  2 3 4 

Relatively unknown 

creatures, and very 

similar to wolves, 

hyenas and lemurs. 

Known to be very 

intelligent creatures, 

meaning that there are 

many stimulating 

behavioural 

characteristics. 

Their gliding 

behaviour is relatively 

unique amongst 

animals and may be 

unknown to many 

people. 

Depth of Available 

Literature 

2 5 3 

Not much available 

literature on the 

animals due to low 

numbers in the wild. 

Well studied animals 

mean that there is a 

wealth of available 

information about 

their behaviour. 

Relatively lower 

amount of information 

about them, but still 

some qualified 

sources. 

Originality 3 1 5 

One existing AWDA 

algorithm, however it 

doesn’t capture the 

animal’s unique 

behavioural traits. 

There are already two 

dolphin-based 

algorithms (DPO and 

DEO). 

No algorithms based 

on sugar gliders, or 

similar gliding 

creatures, currently 

exist. 

Total 7 9 12 

 

4.3 – DEVELOPMENT PROCESS  
Once the inspiration source of sugar gliders had been selected, work began on constructing the 

mathematical formulation of the algorithm. The first task was to identify how to link the 

behaviour of the gliders to the processes used in the optimisation routine.  

4.3.1 – Linking Glider Behaviour to the Algorithm Methods 

One of the interesting behavioural characteristics of sugar gliders was their hierarchical social 

structure. Klettenheimer, Temple-Smith, and Sofronidis (1997) observed that there are two 

codominant males that lead the colony, with other males being suppressed. These two males 

cooperated with each other in activities such as grooming and fighting, but never cooperated 

with any subordinate males. From this behaviour, it was decided that the colony of gliders (the 

algorithm search agents) should be divided into two groups – the codominant gliders and the 
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subordinate gliders. The codominant gliders would lead the search of the domain, with the 

subordinates updating their position based on the codominants’ position.  

Sugar gliders feed on insects, as well as supplementary nectars such as acacia gum and 

eucalyptus sap when the bugs are scarce. All the food sources for a glider are contained in the 

trees that they glide between. Therefore, it was decided that a glider’s fitness would be 

represented as the available food as its location. Gliders were then gliding from tree-to-tree in 

search of the most-abundant food source. The glide distance would decrease as the iterations 

progressed, as gliders would be continuously finding better food sources and thus would not 

need to fly as far.  

Another interesting characteristic of sugar gliders is that they often occupy more than one den 

at once. Lindenmayer (2002) found that some gliders simultaneously inhabit up to 13 dens. 

Gliders search for food in the areas surrounding their den. This implies that the location of their 

current den impacts and directs their search for food. To simulate this behaviour, it was decided 

that glider agents would also use a randomly-generated home position to influence their search, 

with a single home position for each colony. The random generation would occur at each 

iteration of the loop, introducing greater search space exploration. This was not implemented 

until the second design iteration, in Section 4.3.3.  

4.3.2 – Design Iteration #1 

Initial efforts were not directed towards gaining exceptional performance, but rather toward 

ensuring that the simulated colony was behaving in a way that somewhat emulated real glider 

behaviour. This primarily entailed observing convergence of the colony, somewhat toward the 

optimum, as the iterations progressed. Convergence would imply that the gliders are moving 

toward the colony’s best known food source, which is an intuitive behaviour. Convergence of 

the colony was identified to be the first step toward strong performance.  

The colony was divided into the two codominants and the remaining subordinate gliders. 

However, all gliders used the same position updating method described in Equations 1 to 3.  

 ∆	 2 ∗ 1  (1) 

 
∆ ∗ ∗ 0, 1

∗ 1  
(2) 

  (3) 
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The positions were updated based on the relative distances between a random one of the two 

codominant gliders, and the colony’s best found position. Because the codominant gliders 

updated the same as the subordinates, there was a chance that the best position would not be 

carried through the iterations. In hindsight, this was not an ideal outcome. 

This iteration of SGA was tested on simple functions throughout the design process. However, 

even on simple functions (such as a three-dimensional ) the results were poor, let alone 

comparable to existing algorithms. The colony often converged to a random point in space, 

rather than toward the optimum. 

This design iteration also produced some very spurious results. Figure 10 gives examples of 

colony search histories that resulted in star-like patterns, with gliders mostly moving along 

straight lines. Behaviour like this occurred randomly, and it was unpredictable as to when it 

would happen. It was found that this was likely due to the ∆ operator linearly decreasing the 

move distance, without any introduced randomness. 

  

Figure 10 – Erratic search histories 

This sort of behaviour was not desired, as the domain was clearly not being searched 

comprehensively. Therefore, it was decided that the methods used were to be reworked. In order 

to introduce some more variability in results, the home position was introduced in the second 

major design iteration.  

4.3.3 – Design Iteration #2 

The introduction of the home position marked the second major iteration of the algorithm. The 

home operator aimed to introduce a greater amount of stochastic operation in the algorithm 

(meaning increased randomness). This was aimed at helping explore the domain more 

comprehensively.  

Updating the codominant gliders in the same way as the subordinate gliders reduced the 

differentiation between the two groups. As such, it was decided that the two codominant gliders 
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would not update their positions at all. They would stay stagnant for as long as they were one 

of the codominants. This would ensure that the best solution would be carried over throughout 

the generations. The subordinate gliders would base their movements off a random one of the 

codominant gliders, and the home position (as shown in Equations 4 to 6).  

 
∆	 0.5 ∗ 2  

(4) 

 
∆ ∗ ∗ 0, 1

∗ 1  
(5) 

  (6) 

The delta operator was now non-linear, and attempted to emphasise exploration by decreasing 

to zero at a slower rate. Figure 11 shows both the linear and non-linear delta functions 

(Equations 1 and 4).  

 

Figure 11 – Delta functions (left) and Correct convergence behaviour (right) 

Figure 11 also shows the algorithm working toward finding an optimum at the point 0, 0 . As 

the figure depicts, the domain was now being explored much more thoroughly compared to the 

first design iteration. The swarm eventually converged towards the optimum. However, the 

final value produced, whilst generally good, was not comparable with existing algorithms. It 

was clear that the exploration power of the algorithm was now much better, but the exploitation 

power needed to be improved. 

To maximise the algorithm performance, methods needed to be introduced that increased the 

ability of the algorithm to find the exact position of the optimum. Section 5.1 shows that the 

final algorithm increased the exploitation power through the codominant gliders updating their 

positions based on a local search. Furthermore, the introduction of using both codominant 

positions for updating the subordinate gliders increased the exploitation power of the algorithm 

also. 
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CHAPTER 5 

SUGAR GLIDER ALGORITHM 
 

 

5.1 – ALGORITHM DESCRIPTION 
5.1.1 – SGA Pseudocode 

The previous chapter has outlined the design process that was undertaken in order to formulate 

the eventual final version of Sugar Glider Algorithm. Throughout this process the general 

format of the algorithm only changed slightly. The final outline of the algorithm is expressed 

in pseudocode in Figure 12.  

 

Figure 12 – Sugar Glider Algorithm pseudocode 

5.1.2 – Method Description 

The algorithm starts by initialising the glider colony through assigning variable values, which 

are randomly selected from the user-defined ranges. The values are stored in a position matrix 

, with  rows (for  gliders) and  columns (for  dimensions). 

 
, ⋯ ,

⋮ ⋱ ⋮
, ⋯ ,

 (7) 

The fitness of the colony is then evaluated through calculation of the objective function value 

for each glider. These values are stored in a fitness vector .  
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 ⋮  (8) 

The algorithm then enters the main loop that iterates until the maximum number of iterations 

has been reached. First, the colony is ranked in order of best fitness, meaning that the first two 

rows of the position matrix become the two codominant gliders. 

 
, ⋯ ,

, ⋱ ,

, ⋯ ,

 (9) 

The codominant gliders then search for a move by observing a sighted position, , through use 

of the sight distance ( ) parameter, which is default at 0.1: 

 0, 1  (10) 

 1 1 , 1 1  (11) 

 ∗  (12) 

The variable  is the time factor, which linearly increases 0 → 1 , and is given through: 

  (13) 

The objective function is then evaluated for the sighted position. If the fitness at the new 

location is better, a move is performed. Otherwise, the codominant stays in its current position.  

Next, the subordinate gliders’ positions are updated. Three random vectors assist to increase 

the variability and prolong the convergence: 

 1 , 2  (14) 

 2 , 2  (15) 

 3 2, 2  (16) 

The distance to move is then calculated by the addition of distances to the two codominants and 

the home den position: 

 1, 10  (17) 

 
1 ∗ 2 ∗ ∗ 	

								 	 3 ∗ ∗ 1  
(18) 

The time factor ( ) and a convergence power parameter ( ) act on both the home and second 

codominant distances such that a weighting toward the codominant distance increases 

throughout the iterations. The weightings are the  and the 1  factors of Equation 18. 

Figure 13 gives the time plot for the default  value of five over the iterations. 
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Figure 13 – Weightings for a CP value of 5 (the default) 

Towards the later stages,  will simply direct the gliders towards the codominants. The 

codominants will ideally, by this stage, be positioned in the same local area. Therefore, it is 

clear that: 

 lim
→

2 ∗  (19) 

Therefore, the move distance must be halved in order to ensure proper convergence of the 

swarm: 

 0.5 ∗  (20) 

The  matrix is then updated with the new glider positions. The fitness values for the new 

subordinate glider positions are then evaluated and the  matrix is updated. The codominant 

and subordinate gliders then continuously update their positons until the maximum number of 

iterations has been reached. 

The algorithm is easily extended to multiple colonies via adding an extra dimension to each 

matrix, representing the colony number. The supplied code has this built in. 

5.1.3 – Convergence Power Parameter 

The convergence power is a parameter that acts to alter the weightings applied to the distances 

moved towards the second codominant and the colony home. Figure 14 gives plots for the 

weightings for different values of , with the valid range defined in Equation 17. It can be 

seen that as  is increased, the gliders move more toward the second codominant and less 

toward the random home position.  
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Figure 14 – Effect of the CP parameter on the weightings 

The convergence power acts to increase the convergence rate of the swarm. Figure 15 depicts 

this effect on a test run of a unimodal test function shown in Equation 21.  

  (21) 

 

Figure 15 – Convergence behaviour for CP = 10 (a) and CP = 1 (b) 
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Because the function is highly unimodal, and of a low dimension, the run with a  of 10 

outperforms the run with a  of 1. However, the search space exploration is much lower for 

the high convergence power. This is expected, and is exactly the desired effect of the  

parameter. The parameter has been tuned in Section 5.2.3. 

5.2 – PARAMETER TUNING 
The algorithm has three parameters that must be tuned to ensure optimal performance of the 

algorithm. These parameters are the sight distance, the convergence power and the colony size.  

5.2.1 – Tuning Functions 

For tuning the sight distance, a set of 5 unimodal functions were chosen. This is because the 

sight distance is an exploitive operator that works to find the local optimum in the current 

location. Unimodal functions are best used to test the exploitation characteristics of algorithms 

as there is a single optimum to converge towards. The functions used to tune the sight distance 

are listed in Table 5. 

Table 5 – Tuning functions for the sight distance 

Name Formula  Type Dim Min 

Sphere 	  (22) US 30 0 

SumSquares  (23) US 30 0 

Matyas 0.26 0.48  (24) UN 2 0 

Schwefel 

2.22 
| | | | (25) US 30 0 

Dixon-Price 1 2  (26) US 30 0 

 

For tuning the convergence power and population size, a mixed set of functions was chosen 

that were a combination of unimodal/multimodal and separable/non-separable. This was done 

to ensure that the parameter values chosen provided acceptable performance across a range of 

objective function types. This means the algorithm can be applied to many functions without 

needing modification. The functions used to tune the convergence power and population size 

are listed in Table 6. 
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Table 6 – Convergence power and colony size tuning functions 

Name Formula  Type Dim Min 

Sphere 	  (27) US 30 0 

SumSquares  (28) US 30 0 

Matyas 0.26 0.48  (29) UN 2 0 

Schaffer 0.5
sin 0.5
1 0.001

 (30) MN 2 0 

Schwefel sin | |  (31) MS 30 -12569.5 

  

30 tests were run for testing each parameter value. Each test was for 1000 iterations of a colony 

of five gliders. The numerical results obtained have not been reported; the important outcome 

is the result relative to the others obtained for different parameter values. 

5.2.2 – Sight Distance 

The sight distance parameter designates by what percentage a codominant glider can fluctuate 

its values by. This is analogous to how far the glider can search, in its local domain, for a tree 

with a greater food source. The sight distance  can take any value in the range designated in 

Equation 32. 

 0, 1  (32) 

In order for the search be considered local, the chosen value would be towards the lower end of 

the range. Furthermore, the codominant glider is already in a quasi-optimal location, and so to 

improve its position, only a small change would be required. This would help ensure sufficient 

exploration of the local domain. Therefore, the range of sight distance values tested were those 

given by Equation 33. 

 0.01, 0.05, 0.1, 0.2, 0.3  (33) 

In order to observe the effects of altering the sight distance, a count was made of how many 

times a particular sight distance resulted in a better solution. Furthermore, the average 

percentage change in the fitness was also recorded. Along with the accuracy of the final 

solutions obtained, this allowed for a full evaluation for the performance implications of 

changing the sight distance.  

Figure 16 shows the average final result of implementing SGA with the given sight distance. 

The results have been normalised using feature scaling, such that the scores are all then in the 
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range of 0, 1 . A lower score implies greater performance. Figure 16 shows that a sight distance 

of 0.1 results in the lowest average function outcomes. It also has the lowest maximum value 

and the smallest spread across the data points. This is important as it implies good all-around 

performance.  

 

Figure 16 – Outcome f(x) values for differing SD 

Figure 17 is a plot of the total fitness increases gained by the codominant gliders. It is the 

multiple of the number of times the position was updated with the fitness increase each time. 

Here, a larger value is more desirable, as it implies the position updating was more effective. 

In general, a smaller sight distance implied a larger number of fitness increases, but for a smaller 

gain each time. The opposite was true for a larger sight distance. The data has again been 

normalised using feature scaling. 

 

Figure 17 – Average fitness gain for differing SD 
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Figure 17 shows that the sight distances of 0.05 and 0.1 seemed to be equally effective in the 

average fitness gain. The average gain for 0.1 was very slightly higher, with 0.05 giving a 

smaller spread. The values towards the end of the range experienced a higher spread, meaning 

their performance was inconsistent. This is not desirable, and as such, they were not selected.  

Based on the results, a distance of 0.1 seems to be the value for an optimal balance between the 

two trade-offs. As such, a sight distance  of 0.1 has been selected as a default value. 

5.2.3 – Convergence Power 

The convergence power  acts to alter the relative weightings of the distances moved towards 

the home and second codominant positions. It is recommended that the user set the convergence 

power to an appropriate value for the problem at hand. However, a default value for  still 

needed to be set; one that gave good all-round performance. The convergence power range 

tested was the set 1, 10 , in integer increments.  

 values of 1 and 2 did not converge the colony until the very late stages, meaning the 

optimum was not exploited fully. This caused exceedingly sub-par performance on the first two 

US-type objective functions, meaning that these values have been omitted (such that the feature 

scaling normalisation was interpretable).  

Figure 18 is a plot of the average final optimisation result against the convergence power used. 

A smaller value is more desirable, as the problems are all minimisation type. Figure 18 shows 

that values on the extreme ends of the  range gave mixed performance across the five test 

functions. A  value of 5 gave the best performance overall, with the smallest spread and the 

lowest maximum value.  

 

Figure 18 – Outcome f(x) for differing CP 
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Figure 19 is a plot of the standard deviations across the data sets for each function (with feature 

scaling applied). A low standard deviation is important to ensure that the result of a single 

optimisation run can be trusted with confidence. Again, a  value of 5 gave the best overall 

performance amongst the range with the smallest maximum standard deviation and equal spread 

of standard deviations.  

 

Figure 19 – Outcome standard deviation for differing CP 

Due to a  value of 5 giving the best performance in both aspects, it was selected as the default 

value for the convergence power. Section 5.4.2 gives advice on how to select the ideal 

convergence power for a given optimisation problem.  

5.2.4 – Colony Size 

The colony size required tuning in order to find a value that gave good all-around performance 

on a range of functions. The colony size parameter was tuned using an equal-NFE basis. 

Therefore, a larger colony size meant a lower number of algorithm iterations (for the same 

number of total function evaluations). This ensured a fair comparison between the values tested. 

The minimum number of gliders is three; two codominants and one subordinate. Gliders in the 

wild typically live in colonies of five to seven, however the maximum value tested was ten to 

ensure the optimal value was selected. There is no maximum limit to the number of gliders the 

user can opt to use.  

Figure 20 is a plot of the final function values over 30 repeated runs. The figure depicts that 

values from five onwards show minimal difference in the results obtained. Values below five 

show significantly worse performance.  
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Figure 20 – Outcome f(x) for differing colony size 

Figure 21 is a plot of the standard deviations between the results obtained over the 30 repeated 

runs. The figure depicts that a colony size of five gave the minimum values for standard 

deviation, however hot much of an increase is observed for values greater than five. Again, a 

colony of three or four gliders gave sub-par performance compared to the rest of the values. 

 

Figure 21 – Outcome standard deviation for differing colony size 

Based on the results of the two metrics, a colony size of five seemed to give the best balance of 

codominant and subordinate gliders, and was selected as the default value. A colony of five 

gliders showed good performance across both the minimum values and the standard deviations 

across the 30 runs. This also tied in well with the fact that gliders typically form colonies of 

five to seven in the wild.  
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5.3 – COMPARISON TO EXISTING ALGORITHMS 
5.3.1 – General Method Comparison 

Forms of swarm intelligence algorithms use a position updating procedure that often utilises a 

combination of the following methods: 

 Relative position between the search agent and the swarm’s best known position. 

 Relative position between the search agent and its own best known position. 

 Relative position between the search agent and an agent with a better current position. 

 Random vector operators to vary the distance moved. 

SGA utilises methods derived from the first and fourth points. The codominant search method 

of fluctuating positional values is understood to be original within the field. SGA is further 

differentiated from other swarm intelligence algorithms in the following aspects: 

 The codominant gliders update their positions in a separate manner to the rest of the 

gliders. This separates the colony into two groups and allows the domain to be 

concurrently explored and exploited.  

 The introduction of a convergence power that is applied to the time factor to facilitate 

convergence behaviour changes, allowing the user to customise the process to suit the 

particular domain.  

 The introduction of a random home position which increases variability in early 

iterations of the optimisation process. This increases the strength of the algorithm in 

multimodal domains.  

The combination of these points ensures that the proposed algorithm is in fact novel amongst 

the existing literature.  

5.3.2 – Algorithm Parameter Comparison 

It can be argued that the parameters for SGA are significantly more intuitive to select than those 

of the other algorithms. The sight distance  and population size have been given 

recommended values in Section 5.2, therefore it is unlikely that users will decide to alter them. 

Beyond the number of iterations, the convergence power is the only parameter that is 

recommended to be altered by the user. However, the convergence power has also been studied 

in Section 5.2.3, with a simple guide for selection of its value in Section 5.4.2.  

In contrast, many other algorithms have parameters whose effect on results is not as instinctual. 

These parameters may be well understood by researchers in the field, but to typical engineers 

they are likely hard to comprehend without extensive study of the topic. For example, Particle 
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Swarm Optimisation has four control parameters. One of which is the population size, which is 

a straightforward selection. But the inertia weight and random φ operator ranges are less 

intuitive. Although there has been extensive work on the topic of tuning PSO parameters, it is 

still an added step to the optimisation process that SGA doesn’t require.  

To an extent, evolutionary inspired algorithms suffer from this problem even more than their 

swarm intelligence counterparts. Evolution Strategy, Genetic Algorithm and Differential 

Evolution all contain selectable parameters that are hard to conceptually understand. This is 

mostly because the parameters are drawn from the sometimes-complex genetic process 

occurring at a microscopic level. For example, the EA variant tested by Krink, Filipic, and 

Fogel (2004) had five control parameters. Again, one was the population size. However, the 

remaining four related to crossover, selection, mutation and tournament selection methods, all 

of which are not often understood by those outside the field. The fact that the parameters of 

SGA are easy to select further strengthens its presence amongst the available bio-inspired 

algorithms.  

5.4 – PYTHON CODE AND USER RECOMMENDATIONS 
The Sugar Glider Algorithm has so far been actualised in Python code. The code formulations 

can be found in Appendices 2 through 9. Some recommendations have also been formulated 

that should assist in helping end users to understand how to use the algorithm.  

5.4.1 – SGA in Python 

Python was chosen as the first implementation platform due to both familiarity and popularity 

within the engineering community. This should mean that the developed algorithm is able to be 

employed by a large user base, immediately. The provided Python code currently includes: 

 SGA for continuous domains (Appendix 2) 

 SGA for integer-valued discrete domains (Appendix 3) 

 SGA with built in plotting functions showing swarm behaviour (Appendix 4) 

 SGA for the mixed-variable pressure vessel problem in Section 6.2.3 (Appendix 5) 

 The benchmarking function test scripts (Appendices 6 and 7) 

A barebones Python script has also been included in Appendix 9. The script simply requires the 

user to fill in the function definition for which they want to test (including any constraints), and 

define variable ranges. When the script is run, SGA will optimise the function and return the 

resulting values fopt and xopt.  
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When using SGA in Python, it is accessed through a function call. There are three necessary 

parameters that must be passed to the SGA function at runtime. The first is the Python function 

object to be optimised, which takes a single list of input variables. The second and third 

arguments are the lower and upper variable ranges respectively. The lengths of the variable 

bounds define the dimension of the problem, and the algorithm uses this information in its 

routines. Figure 22 gives a simple example of implementing SGA in code form.  

 

Figure 22 – Example implementation of SGA in Python 

When wanting to use SGA to optimise functions that are not represented by mathematical 

formulas, the objective function must be modified such that it can connect to the external 

“fitness-generating” mechanism (be it another computer program or physical measurements). 

There are a number of other options that can be set when running the Python command. Table 

7 lists these options and their valid value/s. These options aim to help customise the 

optimisation process such that the user gains maximum accuracy and efficiency.  

Table 7 – SGA Python input parameters 

Parameter Description Valid Value/s 

itermax The maximum number of optimisation 

iterations, which is default at 1000. 
1,∞  

colonies The number of colonies of gliders, which is 

default at 1. 
1,∞  

gliders The number of gliders per colony, which is 

default at 5. 
3,∞  

cp The convergence power ( ) value, which is 

default at 5. 
1, 10  

sd The sight distance ( ) value, which is 

default at 0.1. 
0, 1  
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guess An initial guess of the optimum location. 

Only recommended to be used if there is 

significant confidence in the guess. 

, ⋯ , 	

	  

 

5.4.2 – Parameter Value Recommendations 

The number of gliders within a colony is recommended to be set at five. For more accurate 

results, instead of adding more search agents, it is recommended that the user simply increase 

the number of iterations. Section 5.2.4 shows that no performance increases were observed for 

colonies with greater than five gliders. Therefore, the easiest way to guarantee a performance 

increase is to simply increase the number of iterations performed by SGA.  

It is recommended that the sight distance ( ) parameter not be altered by the user, unless they 

are prepared to undertake problem-specific tuning to determine its ideal value. The tuning in 

Section 5.2.2 showed that larger sight distances decreased the chance of finding a better 

solution. However, when a better solution was found, its magnitude increase in fitness was 

larger. The resulting combination of these factors was optimal at a value of 0.1, across a range 

of problems. Therefore, the sight distance has already been tuned to what is understood to be a 

generally good value. No easy parallel can be drawn between objective function domain 

topology and a suitable sight distance value, meaning problem-specific tuning should be 

performed if the user wants to alter the value. However, it is recommended that this time should 

rather be devoted to extra algorithm iterations, as this would likely increase the performance by 

a larger amount than any tuning of the  parameter. 

Other than the number of iterations, the convergence power ( ) is the only control parameter 

that the user needs to set before running the algorithm. As previously outlined, the parameter is 

recommended to take a value in the range 1, 10 , where the default value is 5. The ideal  

value is dependent on the modality of the function and the size of the search domain. For highly 

unimodal functions, the convergence power may be increased towards the higher end of the 

range, with 10 being the recommended limit to try and ensure adequate exploration. For highly 

multimodal functions, especially those including discontinuities from constraints, it is 

recommended that the convergence power be set toward the lower end of the range. 

Furthermore, the domain size must be considered when setting the parameter value. A smaller 

domain size means the convergence power can be increased due to a lower exploration 

requirement. 	values in the range 0, 1  are valid, however they severely reduce the 

convergence rate meaning that effective exploitation of the optimum will likely not occur.  
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CHAPTER 6 

PERFORMANCE BENCHMARKING 
 

 

6.1 – CLASSICAL MATHEMATICAL FUNCTIONS 
Testing on unconstrained mathematical functions has been performed as it allowed for a generic 

performance comparison to be made against existing algorithms.  

6.1.1 – Test Functions 

The test functions that have been used are commonplace amongst researchers in the field. They 

can be classified in two ways: 

 Unimodal (U) and multimodal (M), which refers to the number of optima in the domain 

(with multimodal functions regarded as harder to solve), and 

 Separable (S) and non-separable (N), with separable functions generally easier to solve 

as the variables are independent from each other (meaning the problem can be likened 

to simultaneously optimising a larger number of simpler functions). 

Table 8 outlines the definitions and characteristics of the test functions used. The functions are 

a good mix of type, ensuring acceptable broad-ranging performance.  

Table 8 – Mathematical benchmarking function definitions 

Name Definition Type Range Dim 

Sphere 

(F1, 34) 
 US [-100, 100] 5 

Schaffer 

(F2, 35) 
0.5

sin 0.5

1 0.001
 MN [-100, 100] 2 

Griewank 

(F3, 36) 
1

1
4000

100 cos
100

√
 MN [-600, 600] 50 

Rastrigin 

(F4, 37) 
10 cos 2 10 MS [-5.12, 5.12] 50 

Rosenbrock 

(F5, 38) 
100 1  UN [-50, 50] 50 
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Figure 23 visually depicts the 2D versions of the test functions, as well as their contour maps.  

 

Figure 23 – Visual 2D representation of the benchmarking functions 
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As can be seen, some of the functions are highly multimodal in nature. Griewank is classed as 

multimodal, however its 2D representation doesn’t depict its multimodal nature very well 

(which is more prevalent in higher dimensions). The multimodal functions test the explorative 

characteristics of the algorithm, ensuring it can avoid local minima and find the area of the 

global optimum effectively. On the other hand, unimodal functions test the exploitation power, 

ensuring it can find the exact value of the function minimum.  

6.1.2 – Benchmark Settings 

The algorithm’s performance has been compared to that of three existing bio-inspired 

algorithms. The results, and therefore the algorithmic settings, for DE, PSO and an EA have 

been taken from Krink et al. (2004). As explained in Section 5.4.2, there is only one control 

parameter for SGA that is recommended to be altered by the user; the convergence power . 

As the set of test functions is a mix of both unimodal and multimodal, it was decided that the 

convergence power be left to its default value of 5. This allowed for a demonstration of the 

general performance of the default algorithm. Table 9 lists the control parameter values for all 

the algorithms.  

Table 9- Algorithm parameter values 

DE PSO EA SGA 

 50  20  100   1 

  0.8   1 → 0.7   1.0   5 

  0.5   0.0   0.3   5 

    2.0   0.01   0.1 

      10   

 

To ensure a fair comparison, the same runtime setting as Krink et al. (2004) have been used. 

These parameters are listed in Table 10 below.  

Table 10 – Performance benchmarking test settings 

Parameter Value 

NFE (F1, F2) 100,000 

NFE (F3, F4, F5) 500,000 

No. of Runs 30 
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6.1.3 – Results 

Table 11 shows the results for the test functions used. The average function value and the 

standard deviation across 30 runs are presented. All functions are minimisation problems with 

a global optimum value of zero. Values below E-12 have been presented as zero.  

Table 11 – Mathematical benchmarking results (Krink et al., 2004) 

Function DE PSO EA SGA 

Sphere Mean 0 2.51E-08 0 0 

 Std Dev 0 0 0 0 

Schaffer  Mean 0 0.00453 0 0 

 Std Dev 0 0.00090 0 0 

Griewank Mean 0 1.549 0.00624 0 

 Std Dev 0 0.06695 0.00138 0 

Rastrigin Mean 0 13.1162 32.6679 261.842 

 Std Dev 0 1.44815 1.94017 32.114 

Rosenbrock Mean 35.3176 5142.45 79.818 39.1265 

 Std Dev 0.2744 2929.47 10.4477 0.19824 

 

The results show that SGA is competitive with the existing BIAs. It achieved the global 

minimum in 3 of 5 functions, whereas EA achieved 2 of 5 and PSO didn’t find the global 

optimum for any function. DE outperforms SGA on the last two functions, however the 

difference in the Rosenbrock function is only small. SGA outperformed PSO and EA on all 

functions apart from Rastrigin. The result for the Rastrigin function is the worst compared to 

the other three algorithms. This is likely due to the highly multimodal nature of the function. 

As such, performance would be expected to improve if a lower convergence power was used.  

Figure 24 (over the page) shows the averaged best fitness history curves for the 30 runs of each 

function. Figure 24 (a) shows that SGA and DE give almost identical performance for the 

Sphere function. EA converges to zero slightly slower, whilst PSO only reaches 2.5E-08 as an 

average minimum. Figure 24 (b) shows that SGA initially converges slower than the other 

algorithms for the Schaffer function, but then converges to the optimum faster than EA. PSO 

again only reaches 0.00453 as the average minimum. Figure 24 (c) shows that SGA outperforms 

the other three algorithms in terms of finding the Griewank function optimum earlier in the 

optimisation process. PSO again fails to converge to the optimum. 
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Figure 24 – Optimum convergence behaviour for the Sphere (a), Schaffer (b) and Griewank (c) functions (Krink et al., 2004) 
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6.2 – CONSTRAINED ENGINEERING DESIGN PROBLEMS 
Three engineering problems have been selected to demonstrate the applicability of the 

algorithm to mechanical design, taken from Kannan and Kramer (1994). These constrained 

optimisation problems have been well studied in the literature, and solved by various different 

numerical optimisation methods. This has allowed for a performance comparison to be made 

against several existing bio-inspired algorithms.  

The constraints in the problems mean that many of the solutions in the search space are 

infeasible. A measure of the feasible search space, suggested by Michalewicz (1996), was to 

take a large sample of random points and find the ratio of feasible solutions to the total number 

of solutions, as shown in Equation 39. 

  (39) 

Mezura-Montes and Coello (2008) used 1,000,000 random samples to calculate the percentage 

of feasible search space for the three constrained design problems, with the results in Table 12. 

Table 12 – Calculated feasibility percentages 

Design Problem ρ (% Feasible) 

Coil Spring 0.7537 

Welded Beam 39.6762 

Pressure Vessel 2.6859 

 

A lower ρ measure indicates that it is much harder to generate feasible solutions. This tests the 

ability of the algorithms to navigate toward the feasible region, so as to not waste function 

evaluations in the infeasible region.  

6.2.1 – Coil Spring Design 

The objective of the coil spring design problem is to minimise the total mass via alteration of 

the spring dimensions. The design is subject to constraints on deflection, shear stress and surge 

frequency that limit the feasible space. The variables also have limits on their range of valid 

values. Figure 25 presents the physical design of the spring.  
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Figure 25 – Physical coil spring dimensions 

The coil spring design problem has the smallest feasible solution area, with a ρ measure of just 

0.7537%. Solutions in the other 99.2463% of the search space fail at least one of the constraints. 

This is an extremely small region, and truly tests the ability of the algorithm to navigate towards 

the feasible space. 

The problem is mathematically formulated in Equations 40 to 48: 

With , , , ,   (40) 

Minimise 2   (41) 

Subject to 1 	 	 0  (42) 

 	

	
	 1 0  (43) 

 1 . 0  (44) 

 
.

1 0  (45) 

With variable ranges 0.05 2  (46) 

 0.25 1.3  (47) 

 2 15  (48) 

6.2.2 – Welded Beam Design 

The welded beam design problem attempts to minimize the total material and fabrication cost 

of a beam that is loaded in bending. Beam dimensions are varied to reduce the total mass (thus 

reducing material cost). However, the cost of welding is also considered, introducing more 

complexity to the problem. The objective function is the total cost, and is minimised subject to 

constraints on shear and bending stresses, buckling loads and end deflection. The variables also 

have limits on their range of valid values. Figure 26 depicts the problem.  
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Figure 26 – Physical welded beam dimensions 

The problem is mathematically formulated in Equations 49 to 67:  

With , , , , , ,   (49) 

Minimise 1.10471 0.04811 14   (50) 

Subject to 	 0  (51) 

 0  (52) 

 0  (53) 

 0.10471 0.04811 14 5 0  (54) 

 0.125 0  (55) 

 0  (56) 

 0  (57) 

Where 
	 ′ 2 ′ ′′   (58) 

 	
√

, 	 ,   (59) 

 
  (60) 

 2 √2   (61) 

 	 , 	   (62) 

 
	
.

1   (63) 

For  6000	 , 14	 , 30 10 	 ,	   

 12 10 	 , 13600	 ,	   

 30000	 , 0.25	    
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With variable ranges 0.1 2  (64) 

 0.1 10  (65) 

 0.1 10  (66) 

 0.1 2  (67) 

6.2.3 – Pressure Vessel Design 

The pressure vessel design problem again aims to minimise the total manufacturing cost, 

including material, welding and forming costs. The problem is based on a pressure vessel with 

internal pressure capacity and volume requirements. Dimensions are again the variables, and 

the objective function is the total cost, which is subject to various constraints. The variables 

also have limits on their range of valid values. Figure 27 depicts the problem. 

 

Figure 27 – Physical pressure vessel dimensions 

The problem is mathematically formulated in Equations 68 to 77: 

With , , , , , ,   (68) 

Minimise 0.6224 1.7781 3.1661

19.84   
(69) 

Subject to 0.0193 	 0  (70) 

 0.00954 0  (71) 

 1296000 0  (72) 

 240 0  (73) 

With variable ranges 1 99  (74) 

 1 99  (75) 

 10 200  (76) 

 10 200  (77) 
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6.2.4 – Constraint Handling Approach 

Handling of the design problem constraints was necessary to ensure that the final solutions were 

valid. A penalty function approach was taken in order to effectively handle the constraint 

equations. This involved assigning a large multiplier to the amount of which a constraint was 

violated, and adding this to the objective function value. Equation 78 shows the approach used 

to handle a constraint function , where ∆  is the numerical violation amount.  

 10 ∗ ∆  (78) 

Therefore, any constraint violation, however minor, will make the solution worse than any other 

valid solution. This allows the swarm to move away from the invalid area and towards the valid 

domain space.  

6.2.5 – Engineering Design Problem Settings 

The engineering design problems have previously been solved by a number of researchers 

through different methods, including: 

 Particle Swarm Optimization (He & Wang, 2007) 

 Genetic Algorithm (Coello, 2000) 

 Evolution Strategy (Mezura-Montes & Coello, 2008) 

 Differential Evolution (Huang, Wang, & He, 2007) 

 Harmony Search (Mahdavi, Fesanghary, & Damangir, 2007) 

 African Wild Dog Algorithm (Subramanian et al., 2013) 

 Grey Wolf Optimizer (Mirjalili et al., 2014) 

As well as the accuracy of the final results, the efficiency of the algorithms was also important. 

Therefore, it was imperative to note the number of function evaluations (NFEs) used to obtain 

the reported minimums. Table 13 lists the total number of function evaluations used by 

researchers for the various algorithms and problems.   

Table 13 – Total function evaluations used for solving the design problems 

Algorithm Spring Design Beam Design Pressure Vessel 

PSO  200,000 200,000 200,000 

GA 900,000 900,000 900,000 

ES 25,000 25,000 25,000 

DE 240,000 240,000 240,000 

HS 50,000 300,000 200,000 

AWDA 30,000 150,000 25,000 

GWO - - - 
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As Table 13 shows, there is a large variance amongst the total number of function evaluations 

used. In order to truly test the efficiency of SGA, it has been tested using the minimum number 

of function evaluations reported in the literature. This value is 25,000, as used by Mezura-

Montes and Coello for testing Evolution Strategy. The authors of GWO negated to define the 

number of function evaluations used in their testing, making it hard to draw a comparison in 

efficiency.  

The remaining parameter values are given in Table 14. The standard amongst researchers is for 

30 runs to be undertaken to obtain the statistical results.  

Table 14 – Design problem test settings 

Parameter Value 

NFEs 25,000 

  1 

  5 

  0.1 

  5 

 

6.2.6 – Engineering Design Problem Results 

After running the algorithm, the results were analysed and compared to the existing literature. 

The raw data for the proof of results can be found in Appendix 10. 

Table 15 and Table 16 outline the results obtained for the coil spring design problem.  

Table 15 – Best minimum value results for the coil spring design problem 

Rank Algorithm 
Optimum Variables Optimum 

Weight d D N 

1 SGA 0.051659 0.356002 11.33104 0.0126652 

2 AWDA 0.051655 0.355918 11.33603 0.0126653 

3 GWO 0.051690 0.356737 11.28885 0.0126662 

4 DE 0.051609 0.354714 11.41083 0.0126702 

5 HS 0.051154 0.349871 12.07643 0.0126706 

6 PSO 0.051728 0.357644 11.24454 0.0126747 

7 ES 0.051643 0.355360 11.39792 0.0126980 

8 GA 0.051480 0.351661 11.63220 0.0127047 
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Table 15 shows that SGA produced a better result than previously reported in the literature. The 

decrease in cost is small compared to the previously reported best value, however it does 

highlight the strength of SGA compared to the existing literature.  

Table 16 – Statistical analysis of the results obtained for the coil spring design problem 

Algorithm Best Mean Worst Std Dev 

SGA 0.0126652 0.012898 0.015269 4.7E-05 

AWDA 0.0126653 - - - 

GWO 0.0126660 - - - 

DE 0.0126702 0.012703 0.012790 2.7E-05 

HS 0.0126706 - - - 

PSO 0.0126747 0.012730 0.012924 5.2E-05 

ES 0.0126980 0.013461 0.016485 9.7E-04 

GA 0.0127047 0.012769 0.012822 3.9E-05 

 

Table 16 shows the statistical analysis of the results for the first problem. It is important to note 

that all algorithms except ES used a greater number of function evaluations, meaning they 

should have a smaller spread across the best-to-worst range, and a smaller standard deviation. 

SGA bettered ES in every criterion, meaning that at an equal number of function evaluations, 

SGA outperforms it on this function. In particular, the standard deviation of SGA is a factor of 

20 less than that of ES for the same number of function evaluations. DE used almost 10 times 

as many function evaluations and has a standard deviation less than a factor of 2 better than 

SGA. 

Table 17 and Table 18 outline the results obtained for the welded beam design problem.  

Table 17 – Best minimum value results for the welded beam design problem 

Rank Algorithm 
Optimum Variables 

Optimum Cost 
h l t b 

1 HS 0.205730 3.47049 9.03662 0.205730 1.72480 

2 AWDA 0.205729 3.47048 9.03662 0.205729 1.72485 

3 SGA 0.205727 3.47054 9.03662 0.205729 1.72486 

4 GWO 0.205676 3.47837 9.03681 0.205778 1.72624 

5 PSO 0.202369 3.54421 9.04821 0.205723 1.72802 

6 DE 0.203137 3.54299 9.03349 0.206179 1.73346 

7 ES 0.199742 3.61206 9.03750 0.206082 1.73730 

8 GA 0.208800 3.42050 8.99750 0.210000 1.74830 
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Table 17 shows that SGA ranks third amongst the existing literature for the minimum reported 

values. However, SGA used 92% fewer function evaluations than HS and produced a value that 

was only 0.0035% more costly. This highlights the efficiency of the algorithm at producing 

accurate results in a much lower number of function evaluations.  

Table 18 – Statistical analysis of the results obtained for the welded beam design problem 

Algorithm Best Mean Worst Std Dev 

HS 1.72480 - - - 

AWDA 1.72485 - - - 

SGA 1.72486 1.729997 1.77763 0.01227 

GWO 1.72624 - - - 

PSO 1.72802 1.748831 1.782143 0.01292 

DE 1.73346 1.768158 1.824105 0.02219 

ES 1.73730 1.813290 1.994651 0.07050 

GA 1.74830 1.771973 1.785835 0.01122 

 

Table 18 shows the statistical analysis of the results for the second problem. Of the four other 

algorithms that have reported their statistical values (rather than just the minimum), SGA 

outperforms all algorithms at all criterion. The one exception is that GA has a slightly better 

standard deviation. However, this is expected as GA used 900,000 NFEs compared to just 

25,000 of SGA. Again, an equal-NFE comparison to ES shows that SGA outperforms it by a 

fair margin. 

Table 19 and Table 20 outline the results obtained for the pressure vessel design problem. The 

result obtained by GWO did not satisfy the requirement of Ts and Th being integer multiples of 

0.0625 inches, and as such, it has been omitted. Furthermore, HS breached the valid range of 

values for the length, and AWDA used different variable ranges.  

Table 19 – Best minimum value results for the pressure vessel design problem 

Rank Algorithm 
Optimum Variables 

Optimum Cost 
Ts Th R L 

1 SGA 0.8125 0.4375 42.09844 176.6365 6059.7143 

2 DE 0.8125 0.4375 42.09841 176.6376 6059.7340 

3 ES 0.8125 0.4375 42.09808 176.6405 6059.7456 

4 PSO 0.8125 0.4375 42.09126 176.7465 6061.0777 

5 GA 0.8125 0.4375 40.32390 200.0000 6288.7445 
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Table 19 shows that, again, SGA has found a better value than previously reported in the 

literature.  

Table 20 – Statistical analysis of the results obtained for the pressure vessel design problem 

Algorithm Best Mean Worst Std Dev 

SGA 6059.7143 6231.6808 7381.7174 282.37 

DE 6059.7340 6085.2303 6371.0455 43.01 

ES 6059.7456 6850.0049 7332.8799 426.00 

PSO 6061.0777 6147.1332 6363.8041 86.45 

GA 6288.7445 6293.8432 6308.1497 7.41 

 

Table 20 shows the statistical analysis of the results for the third problem. An equal NFE 

comparison between SGA and ES shows that SGA has a much better mean value and a smaller 

standard deviation. It is observed that SGA has a higher standard deviation than most of the 

other algorithms. However, this is due to the much larger NFEs used by the algorithms that 

reduce the variability in the final result.  

Along with the demonstrated efficiency that SGA has already displayed, it was also important 

that it provided good performance across a range of functions. Table 21 compares the 

cumulative ranks of the five algorithms that solved all three design tasks (in terms of the best 

reported values). Thus, the cumulative rank ignores the results of AWDA, HS and GWO (such 

that each algorithm was assigned a value between one and five). 

Table 21 – Cumulative rank results 

Algorithm Cumulative Rank 

SGA 3 

DE 7 

PSO 9 

ES 11 

GA 15 

 

The cumulative rank gives an indication of each algorithms performance across the three 

functions. Table 21 shows that SGA gave the best overall performance amongst the five 

algorithms, in terms of the best reported values. This indicates the SGA displays strong 

performance across a range of objective functions; a key design goal.  
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6.2.7 – Convergence Analysis 

Figure 28 gives the search history of the swarm for the welded beam design problem. Figure 

28 (b) shows the move distance decreasing as the swarm moves from exploration to 

exploitation. This decreases the mean colony  value as the gliders converge towards the 

codominants. Because of the penalty function constraint handling approach, even a small 

constraint violation results in a severe increase in the objective function value. Each of the 

downward spikes in Figure 28 (c) is where no search agent is violating a constraint. It is 

observed that this becomes more prevalent in the later stages of the iteration history, meaning 

the swarm is converging toward an optimum in a valid domain space. This behaviour is ideal 

and indicates that the algorithm is performing to a high standard.   

 

Figure 28 – Convergence behaviour analysis 
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CHAPTER 7 

CASE STUDY: GEARBOX DESIGN 
 

 

7.1 – INTRODUCTION TO THE CASE STUDY 
In order to test the feasibility of using Sugar Glider Algorithm in real-world engineering design 

problems, a case study has been performed that was focused on designing a gearbox for a 

heliostat. Heliostats are large solar mirrors that reflect the sun’s radiation towards a large central 

tower that is filled with molten salt. This molten salt is used to power a turbine that generates 

energy for homes and businesses. Concentrating Solar Thermal (CST) farms are a popular 

choice for renewable energy due to the fact that they are still able to generate electricity at night 

with the stored molten salt.  

A design project has previously been completed that focused on designing a heliostat for 

prospective CST farms in Australia (MECH3100 Project Description, 2015). The project had 

two primary goals:  

 To design the elevation and azimuthal gearboxes that controlled the movement of the 

heliostat, and 

 To design the overall structure including tower, torque-tubes and the mirror-supporting 

frame. 

The resulting heliostat design is shown in Figure 29.  

 

Figure 29 – Previously designed heliostat (MECH3100 Group 9, 2015) 



63 
 

As Figure 29 shows, heliostats are large structures that require equally-large torques to operate, 

especially in high winds. The design team calculated that the 60W motor needed to supply up 

to 45kNm of torque when performing the stowing operation in high wind. As such, a gearbox 

with a reduction factor of 9,570 was required.  

The gearbox was a spur design that included 6 reductions, with a supplementary external worm 

gear reduction. The spur gearbox had a total reduction factor of 531, with the worm gear 

reducing by a further factor of 18. When designing the gearbox, close attention was paid to 

ensuring that the mirror pointing accuracy was not compromised by gear backlash or shaft 

deflections. However, there was no significant effort exerted in the optimisation of the gear 

train design.  

In an effort to keep manufacturing cost and effort to a minimum, the same spur gears of 13 and 

37 teeth were used throughout. All gears also featured the same module and face width (except 

the last reduction, which had a wider face). This resulted in most gears being well below their 

endurance limits with regards to the bending and contact stresses experienced. In summary, the 

design was safe and functional, yet heavy and wasted material. As such, it was decided that the 

gear train should be optimised using Sugar Glider Algorithm. This will further prove the 

applicability of SGA to practical engineering problems.  

7.2 – METHODOLOGY 
7.2.1 – Design Concept 

In a typical gear train design, the known variables include: 

 the input motor torque and speed, 

 the output torque and speed (and thus, the total reduction), 

 the desired type and number of reductions, and 

 the gear material and its properties. 

However, this still leaves a wealth of unknown information to contend with when beginning 

the design process. The main variables to select are the number of teeth per gear, module of 

each gear, and the face with of each gear (with the module and face width being the same 

through a reduction). As such, the number of variables to select is: 

 4  (79) 

Even for smaller gear trains of few reductions, this number can become large and make the 

design task complex. Typical design methodology involves the use of a spreadsheet, where a 

single number is changed and its effect is observed. This is repeated until the total reduction 
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converges to the desired number, with all other constraints satisfied. This process is tedious and 

it is often hard to decide how to alter the input variables to achieve the desired outcome.  

The concept behind using a bio-inspired algorithm to design the gearbox is that it will search 

the multitude of possible combinations and select the best one for the application. The objective 

in this case study was to minimise the total mass of the gear set, whilst still providing identical 

performance to the previously designed gearbox. 

The optimisation process was applied only to the gear set itself, and not to the supplementary 

shafts or bearings. The shafts and bearings can be selected independently of the gears, and as 

such, they haven’t been included in the optimisation task. They could, however, be added to the 

optimisation routine in future applications.  

7.2.2 – Design Equations 

There are a large number of equations that are used in order to design a functional gearbox. The 

equations listed in this section are applicable to spur gearboxes, with modifications required for 

gearboxes with helical, bevel, worm or planetary reductions. To facilitate the use of the 

algorithm, the design equations were converted into Python code form. All equations henceforth 

mentioned have been taken from Machine Component Design (Juvinall and Marshek, 2005). 

Table 22 lists the gearbox design parameters used and their definitions.  

Table 22 – Design parameter definitions 

Symbol Definition Units 

 Module of the gear  

 Face width of the gear  

 Number of teeth of the gear - 

 Rotating speed of the gear  

 Pressure angle of the gear, set to 20o
 for this case 

study 

 

 Geometry factor dependent on the number of teeth in 

contact at any time 

- 

 Velocity factor, obtained from Equation 86 - 

 Overload factor, set to 1.5 in accordance with Table 

23 

- 

 Mounting factor, obtained from Table 24 - 
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The design equations are used to take information about the geometry and running conditions 

of the gear set, and produce the associated working stresses in the gears. Table 25 (located over 

the page) lists the equations utilised, as well as their use within the design process.  

Table 23 provides the overload factor values. These factors reflect the degree of non-uniformity 

of the driving forces of the gearbox. The previous design team assumed that the source of power 

may experience light shock, and the driven machinery would likely experience moderate shock 

from winds.  

Table 23 – Overload factor Ko selection matrix 

Source of Power 
Driven Machinery 

Uniform Moderate Shock Heavy Shock 

Uniform 1.00 1.25 1.75 

Light Shock 1.25 1.50 2.00 

Heavy Shock 1.50 1.75 2.25 

 

The mounting factor in the stress equations reflects the accuracy of the gear alignment and 

varies with the face width of the mating gears. For the purpose of the case study, the support 

characteristics were assumed to be of the highest mounting accuracy category, as defined in 

Table 24. This table was linearly interpolated in the Python script to calculate the mounting 

factor value as the face widths changed.  

Table 24 – Mounting factor Km selection matrix 

 Face Width (in.) 

Support Characteristics 0 to 2 6 9 16 + 

Accurate mountings, small bearing clearances, 

minimum deflection, precision gears. 
1.3 1.4 1.5 1.8 

Less rigid mountings, less accurate gears, 

contact across the full face. 
1.6 1.7 1.8 2.2 

Accuracy and mounting such that less than 

full-face contact exists. 
Over 2.2 
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Table 25 – Gearbox design equations 

Property Equation  Units Use 

Gear Ratio  (80) - 
Gives the reduction factor of 

a single gear mesh. 

Pitch Circle Diameter  (81)   

Computes the pitch circle 

diameter of the gear, used in 

other equations. 

Pitch Line Velocity 
12

 (82)  /  

Finds the velocity at the 

pitch line (note that dp must 

be in inches for this 

equation). 

Face Width 9 14  (83)   
Guideline for the face width 

as a function of module. 

Diametral Pitch  (84) 
/  

Used to find the tangential 

force (note that dp must be in 

inches for this equation). 

Tangential Force 
0.00508

 (85)   

Computes the tangential 

force on a gear tooth. Used 

in the bending and contact 

stress equations. 

Velocity Factor 50 √
50

 (86) - 

Indicates the severity of 

impacts between successive 

pairs of mating teeth. 

Lewis Bending Stress 

Equation 
 (87)   

Finds the maximum bending 

stress in the gear, to be 

compared with the fatigue 

limit. 

Fatigue Geometry 

Factor 

sinϕcosϕ
2 1

 (88) - 
Geometry factor based on the 

tooth shape.  

Hertzian Contact 

Stress Equation 
 (89)   

Find the maximum contact 

stress on the gear surface, to 

be compared with the fatigue 

limit. 

Contact Stress 

Fatigue Limit 
28 69 (90)   

Gives the limit for the 

contact stress, as a function 

of the Brinell hardness. 
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7.2.3 – Optimisation Process 

The gearbox design equations listed in the previous section were coded into Python and were 

used to create a function called gearbox_eval. This function takes the inputs of numbers of 

gear teeth, gear modules and face widths. The function then returns the weight of the gearbox 

plus any constraint violations as an added penalty. Figure 30 demonstrates the concept of the 

function.  

 

Figure 30 – Gearbox solver Python function concept 

Since the objective of the optimisation exercise was to minimise total weight, the objective 

function of gearbox_eval was based on the total gear volume and the material density. 

Equation 91 details the objective function for the problem. 

 
4 , 	  (91) 

The constraint functions for gearbox_eval were based on the bending stress, contact stress 

and overall reduction ratio. The bending stresses in all gears was required to be less than the 

corrected bending fatigue limit, as detailed in Equation 92. Similarly, the contact stresses also 

needed to be less than the contact stress fatigue limit, which is a function of the material 

hardness as detailed in Equation 93. The final constraint was that the overall reduction ratio 

was required to be within 1% of the value reported by the initial design team. The motor input 

could then be adjusted very slightly to give identical gearbox outputs. The constraints are shown 

in Equations 92 to 94 below. 

 , ,  (92) 

 , ,  (93) 
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531

531
0.01 (94) 

To produce a gearbox that functioned in an identical way to that which was previously designed, 

the same input conditions and total reduction were used. Furthermore, in order to give a fair 

comparison, the same number of reductions was also used. Table 26 outlines these values, as 

well as the material properties of Ferrium C61; the gear material previously selected by the 

design team (MECH3100 Group 9, 2015). Ferrium C61 has an extremely high hardness, 

meaning the contact stress fatigue limit was large by Equation 90 in Table 25. 

Table 26 – Gearbox design parameters (MECH3100 Group 9, 2015) 

Parameter Value Used 

Input Speed 60 RPM 

Input Torque 9.41 Nm 

Total Reduction 531 

Number of Reductions 6 

Bending Fatigue Limit 1156 MPa 

Material Hardness 680 BHN 

 

In order to increase simplicity in the calculation, gear losses have not been considered in the 

problem formulation, and have been removed from the calculations produced by the initial 

design team to ensure a fair comparison. Furthermore, in typical gearbox designs, the module 

and face width must be integer multiples. This standard was followed in the initial design, and 

as such was also implemented in the optimisation process. The Python script, named 

gearbox_casestudy, with the code formulation of the problem can be found in Appendix 

8. The accuracy of this Python script was verified by inputting the values from the previous 

design and observing identical outcomes. 

7.3 – RESULTS 
In accordance with the previous constrained engineering design problems, the algorithm 

parameters of Table 27 were used when running the optimisation tests.  

Table 27 – SGA parameters for gearbox optimisation 

Parameter Value Used 

  5 

  0.1 

Colony Size 5 

Iterations Per Run 5000 

No. of Runs 30 
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As stated previously, the design team who undertook the project produced a gear set that 

weighed 688kg. Performing the optimisation using Sugar Glider Algorithm yielded a minimum 

gear set weight of 189kg. Table 28 shows the full results of the optimisation problem. 

Table 28 – Gearbox optimisation results 

Performance 

Metric 

Result 

(kg) 

Old Design 688 

SGA Minimum 189 

SGA Average 221 

SGA Maximum 277 

SGA Std Dev 22 

 

Table 28 indicates that the worst result output from SGA is still 60% lighter than the previously 

designed gear set, whilst the best result is 72% lighter. The standard deviation is also of a 

reasonable value, and this deviation would reduce for a greater number of iterations.  

Table 29 – Optimised gearbox design layout 

Gear Number Number of Teeth Module 

(mm) 

Face Width 

Multiplier 

Pinion #1 13 
1 10 

Gear #1 37 

Pinion #2 25 
1 9 

Gear #2 50 

Pinion #3 12 
2 9 

Gear #3 43 

Pinion #4 12 
3 10 

Gear #4 26 

Pinion #5 12 
4 9 

Gear #5 46 

Pinion #6 17 
5 9 

Gear #6 53 

 

The previous design team kept a constant module throughout their gearbox, resulting in 

unnecessarily large gears. Table 29 shows that the gearbox produced by the optimisation 

process followed a much more logical layout in that it increased the module as the reductions 
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progress. The stress in a gear is much more dependent on the torque rather than the speed, 

meaning that the initial reductions do not require large modules. Furthermore, it can be observed 

that the largest reductions in the gearbox are in the latter two stages. Leaving the larger 

reductions to the end reduces the stress in the preceding stages, reducing the volume of material 

required. 

It can be observed that the new design is much more logical in its layout. However, it would 

have been a considerably harder task for the previous project team to be able to produce a design 

that is as efficient in its material usage. This displays the power of bio-inspired algorithms, and 

is a primary reason for their use. The results further prove the both the applicability and 

performance strength of Sugar Glider Algorithm with regard to engineering design problems. 

7.4 – CASE STUDY OUTCOMES 
This case study has investigated the processes involved with applying bio-inspired algorithms 

to real-world engineering design problems. The case study was based on the design of a spur 

reduction gearbox; a project previously undertaken by a team of engineering students. The 

project was identified as a prime candidate for the application of bio-inspired algorithms to 

assist in the design process.  

This case study has proven the application of Sugar Glider Algorithm to practical problems 

encountered by engineering designers. The gearbox that has been designed is of a more intuitive 

configuration with gear size that increased as the experienced stresses increased. The results 

obtained by the optimisation process saved a significant amount of weight compared to the 

previous design.  

Had the previous design team had access to the code formulated in this case study, they would 

have benefitted greatly. Their design would be much more material efficient and the design 

time would have reduced significantly. Further checks would still need to be performed to 

ensure the proposed gearbox is feasible, however the optimisation does highlight the strength 

which BIAs have in solving engineering design tasks.  
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CHAPTER 8 

FURTHER WORK 
 

 

8.1 – IMPLEMENTATION OF SGA IN ANSYS 
An opportunity exists for mechanical design to benefit greatly from the implementation of 

optimisation routines in computational Finite Element Analysis (FEA) programs. The potential 

benefits of utilising optimisation in FEA include: 

 Reduced time for engineers to find the optimal design 

 Designs that are safer without compromising in weight or cost 

 Designs that are more efficient in their use of material (which is both weight and cost 

effective, and environmentally friendly) 

ANSYS is an FEA program that enables users to solve complex structural engineering problems 

and make better, faster design decisions (ANSYS, 2016). ANSYS has inbuilt optimisation 

methods that aim to assist in designing mechanical components, however they are controlled 

largely by the user in their parameterisation of the design, and choice of optimisation methods 

(Bryce, 2015). This can often lead to inefficient optimisation processes or outcomes that are not 

actually optimal. As such, a method was developed by Bryce (2015) that allows interfacing 

between ANSYS and Python. This facilitates the implementation of automated, user-defined 

optimisation routines.  

Implementation of SGA in ANSYS, through the use of the interface developed by Bryce (2015), 

will further increase the algorithm’s value to the engineering community. It was initially 

planned that the interface would be used to further test the algorithm in the current work, 

however there were software compatibility issues encountered due to NumPy for IronPython 

no longer being supported. Time constraints meant that the interface issues were unable to be 

resolved, and as such, it is recommended that future work be undertaken to fix the issues and 

implement SGA in the interface. 

8.2 – ALGORITHMIC IMPROVEMENTS 
8.2.1 – Self-Adapting Improvements 

An opportunity exists for a dynamic sight distance to be implemented in future versions of the 

algorithm. This would likely involve the distance decreasing as the iterations progressed, such 
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that as the gliders continuously found better positions, the distance they would attempt to move 

would decrease. This should further improve the results obtained from the codominant position 

updating method.  

Furthermore, a dynamic convergence power should also improve the performance of the 

algorithm. Increasing the convergence power throughout the iterations would enhance the 

exploitation characteristics of the algorithm, at the cost of extensive exploration. However, if 

the algorithm was able to detect that it has already found the likely location of the global 

optimum, forcing convergence will increase the exploitation, leading to more accurate 

outcomes.  

Implementing both of these improvements would mean that the algorithm would be self-

adapting. Self-adapting algorithms change their parameters based on the results they observe 

throughout the iterations. For example, if the algorithm detects that it has become trapped in a 

local optimum the parameters can be altered in order to attempt to find a better solution 

somewhere else in the domain. Altering the algorithm to be self-adapting is not a trivial task, 

and would take significant work. However, it would almost guarantee a performance increase 

across all objective functions.  

8.2.2 – Breeding Between Gliders 

During the algorithm design process, some experimentation was undertaken in an attempt to 

introduce breeding between gliders. The idea was that breeding between two strong gliders 

(those with good fitness values) would result in a strong child. This is the basis behind all 

evolutionary algorithms.  

The first experimentation involved taking two gliders and producing a third through mixing. 

This meant that some variable values were selected from one parent and the rest from the other 

(as shown in Figure 31). However, this was found to be very ineffective in low-dimension 

problems as there were a minimal number of different children that could be produced.  

 

Figure 31 – Attempted simulated breeding through mixing 

The second type of simulated breeding that was trialled involved taking two parents using their 

variable values to define ranges for selection. The child was then formed by choosing random 
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values from within the ranges (as shown in Figure 32). This method sometimes resulted in more 

fit children early in the iteration count, but rarely did so in the later stages. Therefore, it was not 

seen as a viable option for implementation. 

 

Figure 32 – Attempted breeding through constrained random value selection 

It was found that to make breeding a truly beneficial position updating method, some significant 

thought would need to be put into the idea. It would likely result in something similar to an 

evolutionary algorithm within the overall SGA algorithm. This would also likely mean the 

introduction of more control parameters, which could complicate the process of implementing 

the algorithm. One of the algorithm goals was simplicity, and for this reason, breeding between 

gliders didn’t extend beyond some out-of-interest experimentation. However, this leaves the 

potential for future work to be undertaken in an attempt to implement breeding between gliders. 

8.3 – GEARBOX DESIGN SOLVER IMPROVEMENTS 
The gearbox design tool developed for the case study in Chapter 7 has been identified to be of 

a great potential value to the wider engineering community. As such, a more general version is 

planned to be developed in the future. This will allow engineers to input the operating 

conditions and gear material and set the BIA to design the gearbox on their behalf. The features 

of the general solver would include: 

 A generalised format of the input variable to account for a different number of 

reductions, 

 Addition of other supplementary gearbox design equations such as contact ratio and 

pressure angle, 

 Inputs for general material properties, with calculations then performed to find the 

corrected endurance limits, 

 An option for the BIA to also vary the number of reductions rather than have it constant,  

 Potentially, support for the solving of gearboxes including planetary or helical, bevel 

and worm gear reductions. 
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8.4 – IMPLEMENTATION OF SGA IN OTHER LANGUAGES 
Another improvement intended to be made for SGA is the translation of the Python code into 

other languages. Researchers implement metaheuristic algorithms in a variety of programming 

languages in order to suit the specific application at hand. Python is one of the most common 

choices, and as such it was selected for the current work. However, in order to ensure that SGA 

is available for a broad range of applications, it would be beneficial to have the source code 

available in a greater number of programming languages. The identified candidate languages 

include: 

 Matlab 

 Java 

 Ruby 

 Visual Basic 
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CONCLUSION 
 

 

There are an ever-expanding range of applications for optimisation within engineering. 

Metaheuristics are a useful tool for solving optimisation tasks as they make no assumptions 

about the search space and can be used with ‘black box’ function types. Bio-inspired algorithms 

often offer a mix of both good performance and search space adaptability, meaning they can 

generally be effective at solving a broader range of problems. The adaptability is inherent in 

the design due to the way in which the biological organisms from which they are derived are 

able to adapt to their environment. 

A novel bio-inspired algorithm has been presented that was based on the native Australian sugar 

glider, named Sugar Glider Algorithm (SGA). The algorithm has taken inspiration from the 

gliding and foraging behaviours, and the social hierarchy adopted by the animals. The algorithm 

has displayed strong performance in its preliminary testing stage. It set two new benchmark 

minimums for common engineering design problems, as well as being comparable in the 

statistical analyses performed. It has proven to be effective at finding optimal solutions at 

relatively low total function evaluation numbers. This enables shorter runtimes, compared to its 

competitors, in order to achieve equivalent outcomes. The combination of the algorithm 

simplicity, robustness, and strong performance ensures that it is to be a valued addition to the 

existing literature.  

Once software compatibility issues are solved, it is expected that the algorithm will be 

implemented in the ANSYS interface developed by Bryce (2015). This will further increase its 

value to the engineering community and validate its performance.  It is also intended that the 

work conducted will be published in the form of an article submitted to a respected journal 

within the field of metaheuristics. Suitable journals have been identified to include: 

 Swarm Intelligence (Springer) 

 Advances in Engineering Software (Elsevier) 

 International Journal of Soft Computing (Medwell) 
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Abstract 

Bio-Inspired Algorithms (BIAs) are a class of metaheuristic that have proven 

to be effective at optimising a vast range of complex, black box function types. 

A new BIA is proposed that is based on a small, nocturnal gliding possum; the 

native Australian sugar glider (Petaurus breviceps). Sugar Glider Algorithm 

(SGA) imitates the leadership hierarchy and foraging behavior of a colony of 

gliders. Two co-dominant males lead a colony of five to seven gliders that forage 

for food by gliding between trees in search for insects or tree sap. The algorithm 

employs concurrent local exploitation (performed by the codominant males) and 

global exploration (performed by the remaining gliders). The performance of 

SGA has been quantitatively evaluated using five mathematical test functions, 

which are a mix of both unimodal and multimodal domains. The results are 

compared against Particle Swarm Optimisation, Differential Evolution and an 

Evolutionary Algorithm, with SGA performance amongst the best observed. 

Furthermore, SGA has been tested on three constrained engineering problems; 

coil spring design, welded beam design and pressure vessel design. SGA exhibited 

strong performance against seven existing algorithms, and found multiple new 

minimums than previously reported in literature. The results show that SGA is 

competitive against a wide range of existing algorithms in a variety of search 

domain topologies. These findings indicate that SGA is at the forefront of BIA 

performance and prove it is a superior candidate for the optimisation of 

engineering design problems. 
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1 Introduction 

Optimization problems are prevalent in all facets of engineering. A general 

optimization task involves minimizing/maximizing an objective function via 

modification of variable values, whilst accounting for constraints. Mathematical 

optimization, through use of calculus, is often not a viable option for engineers 

as the objective function rarely takes a derivable algebraic form. The objective 

function can be presented in a complex mathematical form, via computational 

simulations, or even in terms of measurements obtained from real objects. For 

example, the objective of a car exterior design may be to minimize drag, where 

the drag is calculated via implementation of the model in a CFD program. In 

such cases, the only information known is the variable values and the resulting 

‘fitness’ of the solution (how minimal the drag is). Thus, optimization methods 

that utilize only this information are required. Problems such as these are 

classified as black box functions.  

Methods for finding optimal solutions to black box functions include 

metaheuristic search methods. Metaheuristics are algorithms that are problem-

independent and make very few (often no) assumptions about the space being 

searched. Thus, they are widely applicable to a large range of optimization 

problems. Metaheuristics, however, do not guarantee that the global optimum 

will be found, as not every point in the search space is evaluated. Example 

metaheuristics include Simulated Annealing (Kirkpatrick, Gelatt Jr et al. 1983) 

and the human-memory inspired Tabu Search (Glover and McMillan 1986). In 

general, all metaheuristics share some common characteristics from which their 

robust performance is derived. Namely, these characteristics are simplicity, broad 

applicability and the ability to avoid local minima.  

Simplicity is an important factor in a metaheuristic. It allows the algorithm 

to be implemented by people unfamiliar with the field of metaheuristics, 

increasing the possible user base. Simplicity often arises as a function of the 

simple processes upon which metaheuristics are frequently based. Inspiration is 

typically taken from areas such as animal behavior, evolutionary processes, or 

phenomena in nature, physics or chemistry.  

Furthermore, metaheuristics are broadly applicable to a range of optimization 

tasks. They are problem-independent and don’t usually require alteration 

between applications (apart from alterations necessary to facilitate different 

variable domain types; continuous and discreet). This arises as the metaheuristics 

make no assumptions about the space which they are searching. Due to this, 

gradient-based methods are avoided in favor of stochastic approaches (which 

utilize random operators).  

Finally, metaheuristic algorithms are often able to avoid becoming trapped 

in the local optimums of a function. This is in part due to the random operators 

employed, but is also often a key design consideration for the algorithm creators. 

Methods are formulated specifically such that local minima convergence is 

unlikely (however, it is impossible to guarantee this). This feature further 

increases the strength of metaheuristics in the field of optimization routines.  
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Bio-Inspired Algorithms (BIAs) are a class of metaheuristic algorithm that 

utilize methods inspired by biological processes to solve optimization problems. 

BIAs have gained popularity as research topics due to their combination of 

fascinating inspiration sources and favorable performance outcomes. There are 

now algorithms inspired by a vast range of biological sources such as genetics, 

pack hunting of wolves, social behavior of bees and bird flocking. BIAs have been 

shown to be able offer a mix of both good performance and search space 

adaptability, meaning they can generally be effective at solving a broader range 

of problems. The adaptability is inherent in the design due to the way in which 

the biological organisms from which they are derived are able to adapt to their 

environment. For these reasons, algorithms that have taken inspiration from 

biology are a promising area of research within the field of metaheuristics. 

The No Free Lunch Theorem provides both a motivation and an inherent 

design guideline for developing algorithms. The No Free Lunch theorem states 

that the performance of all search algorithms is the same when averaged over all 

possible objective functions (Wolpert and Macready 1997).  That is, some 

algorithms perform exceedingly well with certain functions, but are inefficient 

with others.  An implication of this theorem is that there is no single algorithm 

that offers the best performance across every objective function. Therefore, as 

the number of engineering applications that utilize optimization increases, as 

does the demand for the creation of new algorithms. This is one of the main 

driving forces behind the continual development of new optimization algorithms.  

2 Literature Review 

Bio-inspired algorithms can be split into two general classifications of Swarm 

Intelligence (SI) algorithms and Evolutionary Algorithms (EAs). Swarm 

Intelligence algorithms are based on the behavior of collectives of animals. More 

specifically, they take inspiration from the hunting, mating and movement 

behaviors, as well as social hierarchies. On the other hand, Evolutionary 

Algorithms are algorithms primarily inspired by both genetic operations and 

processes, and the Darwinian theory of Survival of the Fittest.    

The most popular, and most widely known, SI algorithm is Particle Swarm 

Optimization (PSO). Proposed by Kennedy and Eberhart (1995), the algorithm 

simulates the generalized flocking behavior of birds and schooling behavior of 

fish. Search agents, referred to as particles, update their velocities based on both 

the swarm best known position, and their own best known position. The original 

version of the algorithm is very simple in its method, allowing people from all 

scientific fields to easily understand both the inspiration and the algorithm itself; 

a likely factor in its continued success.  

Another popular SI algorithm is Ant Colony Optimization (ACO), proposed 

by Dorigo, Di Caro et al. (1999). ACO takes inspiration from the behavior of 

ants travelling between their colony and a food source. Ants lay down pheromone 

as they travel, increasing the tendency of other ants to travel along the same 

path. Thus, a self-reinforcing process ensues as ants travel along more optimal 
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paths. ACO, in its general form, is restricted to discrete optimization problems, 

limiting its possible applications. However, ACO has amassed popularity 

amongst the scientific community and is the most popular of the discrete-domain 

optimization routines.  

Grey Wolf Optimizer (GWO) is a relatively new addition to SI algorithms, 

but has gained significant popularity since its inception. Mirjalili, Mirjalili et al. 

(2014) based the algorithm on the social hierarchy of grey wolves. The search 

agents are classified as either the alpha, beta, delta or omega wolves depending 

on their fitness values. Agents then update their position based on the relative 

positions of the pack leaders.  

All Evolutionary Algorithms use some subset of the genetic operations of 

mutation, crossover, selection and recombination. The point of differentiation 

between algorithms is the way in which they implement these operations. 

Proposed by Holland (1975), Genetic Algorithm (GA) is the most well-known of 

the EAs. The algorithm aims to continuously improve the fitness of a population 

of solutions through the implementation of the aforementioned genetic operators.  

Other EAs include Evolution Strategy (ES), which are a collection of closely-

related algorithms that differ slightly in their selection and recombination 

technique, but all with the same general process (Rechenberg 1973). Differential 

Evolution (DE) is another population-based EA that was proposed by Storn and 

Price (1997). DE again has multiple algorithm variants that differ on mutation 

vector, the number of difference vectors, and the crossover scheme.  

The apparent drawback of EAs is the often-large number of control 

parameters that must be selected. For example, DE first requires the selection of 

three parameters to define the algorithm methods, with a further three required 

to define the runtime parameter values. When information about the search 

domain topology is unknown, it can then be hard to select proper parameter 

values.  

There are a range of other metaheuristic algorithms available, all of which 

vary in both their inspiration sources and demonstrated performance. However, 

there is currently no published algorithm based on the stimulating behavior of 

the sugar glider. Sugar gliders were identified as a promising inspiration source 

for a new bio-inspired SI algorithm. As such, attempts have been made to 

produce an SI optimization routine that both mimics the behavior of the sugar 

glider, and provides exceptional performance in engineering optimization tasks.  

3 Sugar Glider Algorithm 

3.1 Inspiration Source 

Sugar gliders (Petaurus breviceps) are a small native Australian flying 

possum that are members of the marsupial infraclass. As their name suggests, 

sugar gliders are able to glide large distances between trees due to the existence 

of a gliding membrane (called a patagium) that extends from their forelegs to 
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their hindlegs. This allows them to glide for up to 50m in a single flight; a 

fascinating behavior that it is relatively unique amongst animals.  

One of the interesting characteristics of sugar gliders is their hierarchical 

social structure. Klettenheimer, Temple-Smith et al. (1997) observed that there 

are two codominant males that lead the colony, with other males being 

suppressed. These two males cooperated with each other in activities such as 

grooming and fighting, but never cooperated with any subordinate males. These 

males are referred to as the codominant gliders and they are the decision makers 

within the group, leading the continual search for food.  

Sugar gliders feed on insects, as well as supplementary nectars such as acacia 

gum and eucalyptus sap when the bugs are scarce. All the food sources for a 

glider are contained in the trees that they glide between. Thus, the motivation 

behind gliding is largely related to sustenance, indicating that the behavior is 

purposeful and directed, rather than a random practice.  

Another fascinating trait of the gliders is their den-swapping behavior that 

has been observed in the wild. Sugar gliders have been found to simultaneously 

inhabit up to 13 dens, moving between the different locations as they desire 

(Lindenmayer, 2002).  Gliders search for food in the areas surrounding their den, 

implying that the location of their current den impacts and directs their search 

for food.  

3.2 Introduction to Sugar Glider Algorithm 

The basis of SGA is the simulated search for food by a colony of gliders. 

Analogous to a real colony, the gliders are split into two groups; the codominant 

gliders and the subordinate gliders. The codominant gliders lead the search of 

the domain, with the subordinates updating their position based on the 

codominants’ positions. 

A glider’s fitness is represented as the available food as its location. Gliders 

then move from tree-to-tree in search of the most-abundant food source. The 

glide distance decreases as the iterations progress, as gliders continuously find 

better food sources and thus do not need to fly as far.  

To simulate the den position influencing the gliders’ search for food, the 

subordinate gliders also update their position based on a randomly-generated 

home position (randomized at each iteration and shared between all gliders). 

This introduces a level of variability to the movement of the search agents, which 

increases the explorative characteristics of the algorithm.  

The codominants are in charge of the colony, and thus it is critical that they 

are the strongest gliders of the group. Therefore, the codominant gliders are taken 

to be the search agents with the two best current positions. They update their 

position by performing a local search through a small fluctuation of variable 

values (introducing concurrent exploitation throughout all iterations). The 

codominants lead the search, implying they must make informed choices about 

their movement. Thus, the codominants only move if the new position is of a 
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better fitness. An advantage of this method is that the best known position is 

always carried forward throughout the generations.  

The pseudocode for SGA is given in Figure 1 below. 

 

 

3.3 Algorithm Description 

The algorithm starts by initialising the glider colony through assigning 

variable values, which are randomly selected from the user-defined ranges. The 

values are stored in a position matrix , with  rows (for  gliders) and  columns 

(for  dimensions).  

 
, ⋯ ,

⋮ ⋱ ⋮
, ⋯ ,

 (1) 

The fitness of the colony is then evaluated through calculation of the 

objective function value for each glider. These values are stored in a fitness vector 

.  

 ⋮  (2) 

The algorithm then enters the main loop that iterates until the maximum 

number of iterations has been reached. First, the colony is ranked in order of 

best fitness, meaning that the first two rows of the position matrix become the 

two codominant gliders. 

Figure 1 – SGA pseudocode 
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, ⋯ ,

, ⋱ ,

, ⋯ ,

 (3) 

The codominant gliders then search for a move by observing a sighted 

position ( ) through use of a sight distance ( ) parameter (default at 0.1), 

according to Equations 4 through 6: 

 0, 1  (4) 

 1 1 , 1 1  (5) 

 ∗  (6) 

The variable  is the time factor, with linear range 0 → 1 , and is given 

through: 

  (7) 

The objective function is then evaluated for the sighted position. If the fitness 

at the new location is better, a move is performed. Otherwise, the codominant 

stays in its current position.  

Next, the subordinate gliders’ positions are updated. Three random vectors 

assist to increase the variability and prolong the convergence: 

 1 , 2  (8) 

 2 , 2  (9) 

 3 2, 2  (10) 

The distance to move is then calculated by the addition of distances to the 

two codominants and the home den position: 

 1, 10  (11) 

 

1 ∗ 	

	 2 ∗ ∗ 	

3 ∗ ∗ 1  

(12) 

The time factor ( ) and a convergence power parameter ( ) act on both the 

home and second codominant distances such that a weighting toward the 

codominant distance increases throughout the iterations. The convergence power 

is default at 5, but is suggested to be altered depending on the domain topology 

(see Section 3.4). 
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Towards the later stages,  will simply direct the gliders towards the 

codominants. The codominants will ideally, by this stage, be positioned in the 

same local area. Therefore, it is clear that: 

 lim
→

2 ∗  (13) 

Therefore, the move distance must be halved in order to ensure proper 

convergence of the swarm in the later stages: 

 0.5 ∗  (14) 

The  matrix is then updated with the new glider positions. The fitness 

values for the new subordinate glider positions are then evaluated and the  

matrix is updated. The codominant and subordinate gliders then continuously 

update their positon until the maximum number of iterations has been reached.  

3.4 Parameter Selection 

There are three parameters that must be defined for SGA, outlined in Table 

1. 

Table 1 – Valid parameter ranges 

Parameter Description Valid Values 

  The number of colony gliders. 3,∞  

  
The sight distance for the codominant 

gliders. 
0, 1  

  The convergence power of the swarm. 1, 10  

 

The first two parameters are the colony size and the sight distance . These 

values are default at 5 and 0.1 respectively. The value for  is not able to be 

chosen intuitively and requires . Therefore, it is recommended the default value 

be used unless problem specific tuning is undertaken. The value of 0.1 has shown 

good performance on across a range of function types. Additionally, a colony of 

five gliders has given the best performance across a range of function types (for 

equal numbers of function evaluations). It is recommended that, for increased 

accuracy, the number of iterations is increased rather than the colony size.  

The convergence power  is the only parameter which is recommended to 

be altered by the user. The convergence power directly influences how quickly 

the swarm converges. This allows the user to customize the convergence rate 

depending on the domain type of the function being optimized. Figure 2 gives 

the weighting plots for various values of .  
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Figure 2 – Effect of CP value on distance weightings 

For unimodal functions across lower numbers of dimensions, a high 

convergence power can be used in order to increase the optimum exploitation. 

For multimodal functions across higher numbers of dimensions, a low 

convergence power should be used in an attempt to guarantee to find the global 

optimum location. Figure 3 gives an example of the effect of the  parameter, 

tested on a unimodal function.  

 
Figure 3 – Convergence for CP = 10 (a) and CP = 1 (b) 
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4 Mathematical Function Benchmarking 

4.1 Test Functions 

The performance of the algorithm has been benchmarked using five 

mathematical benchmark functions. The test functions that have been used are 

a mix of unimodal and multimodal, and separable and non-separable. Table 2 

outlines the definitions and characteristics of the test functions used. 

Table 2 – Mathematical test functions 

Name Definition Type Range Dim 

Sphere 

(F1) 
 US [-100, 100] 5 

Schaffer 

(F2) 
0.5

sin 0.5

1 0.001
 MN [-100, 100] 2 

Griewank 

(F3) 

1
1

4000
100

cos
100

√
 

MN [-600, 600] 50 

Rastrigin 

(F4) 
10 cos 2 10 MS [-5.12, 5.12] 50 

Rosenbrock 

(F5) 
100 1  UN [-50, 50] 50 

4.2 Algorithmic Settings 

The algorithm’s performance has been compared to that of three existing bio-

inspired algorithms. The results, and therefore the algorithmic settings, for DE, 

PSO and EA have been taken from Krink, Filipic et al. (2004). To ensure a fair 

comparison, the same number of function evaluations as the previous study have 

been used. The parameter settings are listed in Table 3.  

Table 3 – Algorithmic settings 

Parameter Value 

NFE (F1, F2) 100,000 

NFE (F3, F4, F5) 500,000 

No. of Runs 30 

  5 

  5 

  0.1 
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4.3 Benchmarking Results 

Table 4 shows the results for the test functions used. The average function 

value and the standard deviation across 30 runs are presented. All functions are 

minimisation problems with a global optimum value of zero. Values below E-12 

have been presented as zero.  

Table 4 – Mathematical benchmarking results 

Function DE PSO EA SGA 

Sphere Mean 0 2.51E-08 0 0 

 Std Dev 0 0 0 0 

Schaffer  Mean 0 0.00453 0 0 

 Std Dev 0 0.00090 0 0 

Griewank Mean 0 1.549 0.00624 0 

 Std Dev 0 0.06695 0.00138 0 

Rastrigin Mean 0 13.1162 32.6679 261.842 

 Std Dev 0 1.44815 1.94017 32.114 

Rosenbrock Mean 35.3176 5142.45 79.818 39.1265 

 Std Dev 0.2744 2929.47 10.4477 0.19824 

 

The results show that SGA is competitive with the existing BIAs. It achieved 

the global minimum in 3 of 5 functions, whereas EA achieved 2 of 5 and PSO 

didn’t find the global optimum for any function. DE outperforms SGA on the 

last two functions, however the difference in the Rosenbrock function is minor. 

SGA outperformed PSO and EA on all functions apart from Rastrigin. The SGA 

result for the Rastrigin function is the worst compared to the other three 

algorithms. This is likely due to the highly multimodal nature of the function. 

As such, performance would likely improve if a lower convergence power was 

used.  

5 Engineering Design Problems 

5.1 Problem Definitions 

The performance of the algorithm has been evaluated on three semi-real 

constrained engineering design problems. These problems are common in the 

literature and have previously been solved by various methods.  

5.1.1 Coil Spring Design 

The objective of the coil spring design problem is to minimise the total mass 

via alteration of the spring dimensions. The design is subject to constraints on 

deflection, shear stress and surge frequency that limit the feasible space. The 

variables also have limits on their range of valid values.  

The problem is mathematically formulated as follows: 

With , , , ,    
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Minimise 2   (15) 

Subject 

to 
1 	 	 0   

	

	
	 1 0   

1
.

0   

.
1 0   

With 

variable 

ranges 

0.05 2   

0.25 1.3   

2 15   

5.1.2 Welded Beam Design 

The welded beam design problem attempts to minimize the total material 

and fabrication cost of a beam that is loaded in bending. Beam dimensions are 

varied to reduce the total mass (thus reducing material cost). However, the cost 

of welding is also considered, introducing more complexity to the problem. The 

objective function is the total cost, and is minimized subject to constraints on 

shear and bending stresses, buckling loads and end deflection. The variables also 

have limits on their range of valid values.  

The problem is mathematically formulated as follows:  

With , , , , , ,    

Minimise 1.10471 0.04811 14   (16) 

Subject 

to 
	 0   

0   

0   

0.10471 0.04811 14 5 0   

0.125 0   

0   

0   

Where 
	 ′ 2 ′ ′′    

	
√

, 	 ,    

   

2 √2    

	 , 	    

	
.

1    
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For  6000	 , 14	 , 30 10 	 ,	   

12 10 	 , 13600	 ,	   

30000	 , 0.25	    

With 

variable 

ranges 

0.1 2   

0.1 10   

0.1 10   

0.1 2   

5.1.3 Pressure Vessel Design 

The pressure vessel design problem again aims to minimise the total 

manufacturing cost, including material, welding and forming costs. The problem 

is based on a pressure vessel with internal pressure capacity and volume 

requirements. Dimensions are again the variables, and the objective function is 

the total cost, which is subject to various constraints. The variables also have 

limits on their range of valid values.  

The problem is mathematically formulated as follows: 

With , , , , , ,    

Minimise 0.6224 1.7781 3.1661

																						19.84   
(17) 

Subject 

to 
0.0193 	 0   

0.00954 0   

1296000 0   

240 0   

With 

variable 

ranges 

 

1 99   

1 99   

10 200   

10 200   

5.2 Algorithmic Settings 

The engineering design problems have previously been solved through a 

number of different methods, including: 

 Genetic Algorithm (Coello, 2000) 

 Differential Evolution (Huang, Wang, & He, 2007) 

 Harmony Search (Mahdavi, Fesanghary, & Damangir, 2007) 

 Particle Swarm Optimization (He & Wang, 2007) 

 Evolution Strategy (Mezura-Montes & Coello, 2008) 

 African Wild Dog Algorithm (Subramanian et al., 2013) 

 Grey Wolf Optimizer (Mirjalili et al., 2014) 
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As well as the accuracy of the final results, the efficiency of the algorithms 

was also important. Therefore, it was imperative to note the number of function 

evaluations (NFEs) used to obtain the reported minimums. Table 5 lists the total 

number of function evaluations used to solve the problems.   

Table 5 – Number of function evaluations for the engineering design problems 

Algorithm Spring Design Beam Design Pressure Vessel 

PSO 200,000 200,000 200,000 

GA 900,000 900,000 900,000 

ES 25,000 25,000 25,000 

DE 240,000 240,000 240,000 

HS 50,000 300,000 200,000 

AWDA 30,000 150,000 25,000 

 

As Table 5 shows, there is a large variance amongst the total number of 

function evaluations used. In order to truly examine the efficiency of SGA, it has 

been tested using the minimum number of function evaluations reported in the 

literature of 25,000. The authors of GWO negated to report the number of 

function evaluations used in their testing, making it hard to draw a comparison 

in efficiency.  

The remaining algorithmic parameter values are given in Table 6.  

Table 6 – Algorithmic settings 

Parameter Value 

No. of Runs 30 

Iterations 5,000 

  5 

  0.1 

  5 

5.3 Design Problem Results 

Table 7 and Table 8 outline the results obtained for the coil spring design 

problem.  

Table 7 – Best minimum results for the coil spring problem 

Rank Algorithm 
Optimum Variables Optimum 

Weight d D N 

1 SGA 0.051659 0.356002 11.33104 0.0126652 

2 AWDA 0.051655 0.355918 11.33603 0.0126653 

3 GWO 0.051690 0.356737 11.28885 0.0126662 

4 DE 0.051609 0.354714 11.41083 0.0126702 

5 HS 0.051154 0.349871 12.07643 0.0126706 

6 PSO 0.051728 0.357644 11.24454 0.0126747 

7 ES 0.051643 0.355360 11.39792 0.0126980 

8 GA 0.051480 0.351661 11.63220 0.0127047 
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Table 7 shows that SGA produced a better result than previously reported 

in the literature. This is in spite of SGA only using 25,000 function evaluations; 

much less than most other algorithms.  

Table 8 – Statistical results for the coil spring problem 

Algorithm Best Mean Worst Std Dev 

SGA 0.0126652 0.012898 0.015269 4.7E-05 

AWDA 0.0126653 - - - 

GWO 0.0126660 - - - 

DE 0.0126702 0.012703 0.012790 2.7E-05 

HS 0.0126706 - - - 

PSO 0.0126747 0.012730 0.012924 5.2E-05 

ES 0.0126980 0.013461 0.016485 9.7E-04 

GA 0.0127047 0.012769 0.012822 3.9E-05 

 

Table 8 shows the statistical analysis of the results for the first problem. It 

is important to note that all algorithms except ES used a greater number of 

function evaluations, meaning they should have a smaller spread across the best-

to-worst range, and a smaller standard deviation. At an equal number of function 

evaluations, SGA outperformed ES in every criterion.  

Table 9 and Table 10 outline the results obtained for the welded beam design 

problem.  

Table 9 – Best minimum results for the welded beam problem 

Rank Algorithm 
Optimum Variables Optimum 

Cost h l t b 

1 HS 0.205730 3.47049 9.03662 0.205730 1.72480 

2 AWDA 0.205729 3.47048 9.03662 0.205729 1.72485 

3 SGA 0.205727 3.47054 9.03662 0.205729 1.72486 

4 GWO 0.205676 3.47837 9.03681 0.205778 1.72624 

5 PSO 0.202369 3.54421 9.04821 0.205723 1.72802 

6 DE 0.203137 3.54299 9.03349 0.206179 1.73346 

7 ES 0.199742 3.61206 9.03750 0.206082 1.73730 

8 GA 0.208800 3.42050 8.99750 0.210000 1.74830 

 

Table 9 shows that SGA ranks third amongst the existing literature for the 

minimum reported values. However, SGA used 92% fewer function evaluations 

than HS for a comparable result. This highlights the efficiency of the algorithm 

at producing accurate results in a much lower number of function evaluations.  
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Table 10 – Statistical results for the welded beam problem 

Algorithm Best Mean Worst Std Dev 

HS 1.72480 - - - 

AWDA 1.72485 - - - 

SGA 1.72486 1.729997 1.77763 0.01227 

GWO 1.72624 - - - 

PSO 1.72802 1.748831 1.782143 0.01292 

DE 1.73346 1.768158 1.824105 0.02219 

ES 1.73730 1.813290 1.994651 0.07050 

GA 1.74830 1.771973 1.785835 0.01122 

 

Table 10 shows the statistical analysis of the results for the second problem. 

Of the four other algorithms that reported statistical values, SGA outperforms 

all algorithms at all criterion. The one exception is that GA has a slightly better 

standard deviation. However, this is expected as GA used 36 times as many 

function evaluations as SGA. Again, for the same number of function evaluations, 

SGA outperformed ES in every criterion. 

Table 11 and Table 12 outline the results obtained for the pressure vessel 

design problem. The result obtained by GWO did not satisfy the requirement of 

Ts and Th being integer multiples of 0.0625 inches, and as such, it has been 

omitted. Furthermore, HS breached the valid range of values for the length, and 

AWDA used different variable ranges.  

Table 11 – Best minimum results for the pressure vessel problem 

Rank Algorithm 
Optimum Variables Optimum 

Cost Ts Th R L 

1 SGA 0.8125 0.4375 42.09844 176.6365 6059.7143 

2 DE 0.8125 0.4375 42.09841 176.6376 6059.7340 

3 ES 0.8125 0.4375 42.09808 176.6405 6059.7456 

4 PSO 0.8125 0.4375 42.09126 176.7465 6061.0777 

5 GA 0.8125 0.4375 40.32390 200.0000 6288.7445 

 

Table 11 shows that, again, SGA has found a better value than previously 

reported in the literature, whilst satisfying all constraints. 

Table 12 – Statistical results for the pressure vessel problem 

Algorithm Best Mean Worst Std Dev 

SGA 6059.7143 6231.6808 7381.7174 282.37 

DE 6059.7340 6085.2303 6371.0455 43.01 

ES 6059.7456 6850.0049 7332.8799 426.00 

PSO 6061.0777 6147.1332 6363.8041 86.45 

GA 6288.7445 6293.8432 6308.1497 7.41 

 

Table 12 shows the statistical analysis of the results for the third problem. It 

is observed that SGA has a higher standard deviation than most of the other 
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algorithms. However, this is due to the much larger number of function 

evaluations used, which reduce the variability in the final result. An equal 

comparison between SGA and ES shows that SGA has a much better mean value 

and a smaller standard deviation.  

6 Conclusion 

A novel bio-inspired algorithm has been presented that was based on the 

native Australian sugar glider, named Sugar Glider Algorithm (SGA). The 

algorithm has taken inspiration from the gliding and foraging behaviors, and the 

social hierarchy adopted by the animals. The algorithm has displayed strong 

performance in its preliminary testing stage. It set two new benchmark 

minimums for common engineering design problems, as well as being comparable 

in the statistical analyses performed. It has proven to be effective at finding 

optimal solutions at relatively low total function evaluation numbers. This 

enables shorter runtimes for achieving equivalent outcomes. The combination of 

the algorithm simplicity, robustness, and strong performance ensure that it is a 

valuable addition to the existing literature.  
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APPENDIX 2 – SGA PYTHON CODE 
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APPENDIX 3 – SGA (INTEGER) PYTHON CODE 
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APPENDIX 4 – SGA (PLOTTING) PYTHON CODE 
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APPENDIX 5 – SGA (PRESSURE VESSEL) PYTHON CODE 
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APPENDIX 6 – MATHEMATICAL FUNCTION TESTER PYTHON CODE 
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APPENDIX 7 – ENGINEERING PROBLEM TESTER PYTHON CODE 
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APPENDIX 8 – GEARBOX EVALUATION PYTHON CODE 
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APPENDIX 9 – BAREBONES TESTING SCRIPT 
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APPENDIX 10 – PROOF OF RESULTS 
Mathematical Function Results 

 

Engineering Design Problem Results 
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