Derivatives of GB88 as PAR2 Modulators

Mei-Kwan Yau ${ }^{\hbar, \dagger}$, Ligong Liu ${ }^{\dagger, \dagger}$, Jacky Y. Suen ${ }^{\dagger}$, Junxian Lim ${ }^{\dagger}$, Rink-Jan Lohman ${ }^{\dagger}$, Yuhong Jiang †, Adam J. Cotterell ${ }^{\dagger}$, Grant D. Barry ${ }^{\dagger}$, Jeffrey Y. W. Mak ${ }^{\dagger}$, David A. Vesey ${ }^{\S}$, Robert C. Reid ${ }^{\dagger}$ and David P. Fairlie ${ }^{\dagger{ }^{+*}}$
${ }^{\dagger}$ Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
${ }^{\text {8 }}$ Centre for Kidney Research, Department of Medicine, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia.
${ }^{\dagger}$ These authors contributed equally.

Correspondence to: d.fairlie@imb.uq.edu.au

CONTENTS

Figure S1. Biological activities of representative PAR2 ligands in intracellular calcium mobilization assay (HT29 cells) S3
Figure S2. PAR2 selective antagonists S3
Figure S3. Comparison of PAR1 versus PAR2 in HT29 and PC3 cells S3
Figure S4. Mechanism of PAR2 antagonism of iCa^{2+} release S4
Figure S5. Stability of selective PAR2 ligands S4
Table S1. Pharmacokinetic data of new antagonist 65 in comparison with GB88 S5
Experimental Section S5-S7
General procedure for the synthesis of compounds 3, 12-76 S7-S15
Scheme S1. Synthesis of 44 S15
Scheme S2. Synthesis of $\mathbf{5 0}$ S16
Scheme S3. Synthesis of $\mathbf{5 4}$ S16
Figure S5. ${ }^{1} \mathrm{H}$ NMR of representative compound $\mathbf{6 5}$ at elevated temperature in DMSO- d_{6} S17
Analytical data for compounds tested in this study (12-54 and 56-76) S18-S32
Calculation of volume S32
Intracellular calcium release assay S32
Antagonist surmountability. S33
PAR2 transfected CHO cells S33
cAMP accumulation S34
ERK1/2 phosphorylation S34
Stability studies on PAR2 agonists and antagonists in rat plasma and liver homogenate. S34 S34-S35
In vivo efficacy using the PAR2-agonist induced paw oedema S35
Human tubule epithelial cells (HTEC) isolation and culture S35
Treatment of human tubule epithelial cells (HTEC) S36
Enzyme-linked immunosorbent assay S36
References S37

Figure S1. Activation of the calcium efflux in HT29 cells induced by representative compounds at $10 \mu \mathrm{M}$ relative to 100% induced by $100 \mu \mathrm{M}$ of 2 f -LIGRLO- NH_{2} in HT29 cells (data at 100 $\mu \mathrm{M}$ were not shown). Data represent the average of at least two measurements with SEM.

Figure S2. PAR2 selective antagonists. Concentration dependent curves of $\mathbf{1 7}(\star), \mathbf{1 8}(\triangle), 65$ ($\mathbf{\Delta}$), versus $3(\diamond)$ based on the inhibition of iCa^{2+} release in HT29 cells induced by $1 \mu \mathrm{M} 2 \mathrm{f}-$ LIGRLO- NH_{2}. Each data point represents mean $\pm \mathrm{SEM}(\mathrm{n} \geq 3)$.

Figure S3. Comparison of PAR1 and PAR2 in HT29 and PC3 cells. (a) Trypsin- (O) versus thrombin- (■) induced iCa^{2+} release in HT29 cells, indicating PAR2 agonist induced a concentration-dependent response, while PAR1 agonist induced a negligible response even at the maximum concentration of 100 nM . (b) PAR1 mRNA expression in HT29 versus PC3 cells, indicating PAR1 expression in HT29 cells was very low. (c) Similar level of PAR2 mRNA expression in HT29 and PC3 cells. Each data point represents mean \pm SEM ($n \geq 3$).

Figure S4. Mechanism of PAR2 antagonism in iCa^{2+} function. (a) $\mathbf{6 5}$ is a competitive yet insurmountable PAR2 antagonist against 2f-LIGRLO- NH_{2} showing concentration-dependent (zero, $\bullet ; 0.1 \mu \mathrm{M}, ~ ■ ; 0.3 \mu \mathrm{M}, \mathbf{\Delta} ; 1 \mu \mathrm{M}, \mathrm{O} ; 3 \mu \mathrm{M}, \square ; 6 \mu \mathrm{M}, \Delta$) inhibition of iCa^{2+} release in HT29 cells induced by varying concentrations of PAR2 agonist $2 \mathrm{f}-\mathrm{LIGRLO}-\mathrm{NH}_{2}$. (b) Schild analysis of $\mathbf{6 5}$ against 2 f -LIGRLO- NH_{2} showing competitive mode. Calculated pA2 values for $\mathbf{6 5}$ were 5.9 ± 0.3 against 2 f-LIGRLO- $\mathrm{NH}_{2}(6.3 \pm 0.3$ for $\mathbf{3}$, competitive and surmountable). Each data point represents mean $\pm \operatorname{SEM}(\mathrm{n}=3)$.

Figure S5. Stability of selective PAR2 ligands in rat plasma (a) and rat liver homogenate (b) at $37^{\circ} \mathrm{C}$ over 3 h . SLIGRL-NH (∇), GB88 $(\diamond), \mathbf{1 7}(\star)$ and $\mathbf{6 5}(\star)$. Data represent mean \pm SEM (n $=3$).

Table S1. Pharmacokinetic data of new antagonist $\mathbf{6 5}$ in comparison with GB88 after oral dose $\left(10 \mathrm{mg} / \mathrm{kg}\right.$ in olive oil, male Wistar rat) ${ }^{a}$

Compound	$\mathbf{3}$	$\mathbf{6 5}$				
$(\mathrm{n}=7)$			$(\mathrm{n}=4)$			
:---:	:---:	:---:				
$\mathbf{T}_{\max }(\mathbf{m i n})$	167 ± 18	173 ± 31				
$\mathbf{C}_{\text {max }}(\mu \mathbf{M})$	1.97 ± 0.38	1.45 ± 0.39				
$\mathbf{A U C}$ $(\mathbf{n g} \cdot \mathbf{h} / \mathbf{m L})$	3420	1964				

[^0]
Experimental Section

All amino acid derivatives were purchased from Novabiochem and used as received. DMF, TFA, and diisopropylethylamine (DIEA) were "peptide grade" obtained from Auspep Pty Ltd., Australia. Other chemicals were obtained from Sigma-Aldrich and used as received. LCMS was performed using an Agilent 6110 Quadrupole LC/MS (API-ES) equipped with an Agilent 1100 Series ELS and a single wavelength (UV230 nm) detector with a Phenomenex Luna $5 \mu \mathrm{~m}, \mathrm{C} 18$ $250 \times 4.60 \mathrm{~mm}$ column. Five standard conditions were used for all compounds unless otherwise indicated at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. Method I: 20% to 100% B linear gradient over 10 min followed by a further 10 min at 100% B; Method II: 50% to 100% B linear gradient over 10 min followed by a further 10 min at 100% B; Method III: 90% B isocratic for 10 min ; Method IV: 20% to 100% B linear gradient over 15 min followed by a further 10 min at 100% B; Method V: 5% to 100% B linear gradient over 15 min followed by a further 10 min at $100 \% \mathrm{~B}$; where solvent B was $\mathrm{MeCN}+0.1 \%$ formic acid and solvent A was $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ formic acid. HPLC was performed using an Agilent 1200 Series with a diode-array detector on a Phenomenex Luna $5 \mu \mathrm{~m}, \mathrm{C} 18$ or C8 $250 \times 4.60 \mathrm{~mm}$ column. The solvent gradient was the same as LCMS except 0.1% TFA was used instead of 0.1% formic acid. Preparative-scale reverse-phase HPLC
separations were performed on a $15 \mu \mathrm{~m}$ Phenomenex Luna C18 $250 \times 21.2 \mathrm{~mm}$ column, using a Waters 600 series HPLC. Standard conditions were used for all compounds unless otherwise indicated at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$: 50% to 100% B linear gradient over 10 min followed by a further 10 min at 100% B where solvent B was $90 \% \mathrm{MeCN}, 10 \% \mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA and solvent A was $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA. All synthesized compounds were $\geq 95 \%$ pure by HPLC.

Mass spectra were obtained on a triple quadrupole mass spectrometer (PE SCIEX API III) using electrospray ionization (ESI-MS) from solutions in $75 \% \mathrm{MeCN}+25 \% \mathrm{H}_{2} \mathrm{O}+0.1 \%$ formic acid. Electrospray ionization high-resolution mass spectra (ESI-HRMS) measurements were obtained on a Bruker micrOTOF mass spectrometer equipped with an Agilent 1100 Series $\mathrm{LC} / \mathrm{MSD}$ mass detector in positive ion mode by direct infusion in MeCN at $100 \mu \mathrm{~L} / \mathrm{h}$ using sodium formate clusters as an internal calibrant.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on either a Varian Gemini 400 or Bruker Avance 600 spectrometers at 298 K in the solvents indicated and referenced to residual signals in the deuterated solvents (${ }^{1} \mathrm{H}$ at $\delta 7.26$ for CDCl_{3} and 2.50 for $\mathrm{DMSO}-d_{6} ;{ }^{13} \mathrm{C}$ at $\delta 77.16$ for CDCl_{3} and 39.52 for DMSO- d_{6}). All compounds were di-or tri-peptide like molecules ($\mathbf{3}$ and $\mathbf{6}-76$) and contained generally two rotamers as observed in both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. Further complication of NMR was caused by the presence of tertiary amide derived from piperidine ring, which displayed asymmetry of each ring methylene unit due to its syn- or anti-orientation relative to amide carbonyl. More distinct in ${ }^{13} \mathrm{C}$ than ${ }^{1} \mathrm{H}$ NMR, most of the signals were duplicated with a separation of $\sim 0.5-2 \mathrm{ppm}$. Total assignments of proton and carbon NMR of representative compounds were determined using various one- and two-dimensional NMR experiments (JMOD, gCOSY, gHSQC, gHMBC). Characteristically, the unsymmetrical $H_{\text {equatorial }}$ and $H_{\text {axial }}$ of s-syn piperidine- NCH_{2} were always separated more apart than s-anti piperidine- $\mathrm{NCH}_{2}(\Delta \delta \sim 1.9$ vs $\sim 1.1 \mathrm{ppm}$) due to the deshielding effect of the amide carbonyl on $\mathrm{H}_{\text {equatorial }}$ of s-syn methylene.

Accordingly, the corresponding methylene carbon was shielded, i.e., $\Delta \delta \sim 3.5 \mathrm{ppm}$ between carbons of s-anti and s-syn piperidine- NCH_{2}. To distinguish the possibility of rotational isomers rather than epimers, NMR at elevated temperatures was investigated and some coalescence was observed (Supporting Information Figure S2). The presence of two rotamers rather than epimers was further evidenced by solvent-dependent ratio change of two isomers. For example, compound 75 showed two rotamers in a ratio of $1: 1$ in CDCl_{3} and 3:2 in DMSO- d_{6}.

General procedure for the synthesis of compounds 3, 12-76. Compounds were synthesized in solution phase using Boc-protected amino acids or carboxylic acid, starting from C-terminal amine residue. The product was either purified as a final product using reversed-phase preparative HPLC or directly used for next step. If necessary, the Boc protecting group was removed and subsequent amide coupling was repeated. Each coupling reactions were monitored by ESMS, with most reactions went to completion overnight. Where required, post-coupling modification was carried out. Analytical data of representative compounds were listed below and all the rest summarized in Supporting Information.

General procedure for amide coupling. To a solution of the acid (1.2 mmol) in DMF (2 mL) was added a solution of HBTU (1.2 mmol) in DMF (2 mL) and DIPEA $(1.2 \mathrm{mmol}$, or 2.4 mmol if the amine added as TFA or HCl salts). The medium was checked using pH paper to make sure $\mathrm{pH}>8$, if necessary, another aliquot of DIPEA was added. The mixture was stirred at rt for 15 min and added into a solution of the amine $(1 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$. The mixture was stirred at rt overnight and evaporated to dryness on rotavapor. The residue was re-dissolved in ethyl acetate $(6 \mathrm{~mL})$ and washed with sat. aqueous NaHCO_{3} solution $(3 \times 6 \mathrm{~mL})$. In parallel synthesis, the extraction was facilitated by centrifuging the mixture in a 15 mL Falcon tube at 3000 rpm for 5 min . The aqueous phase was removed using a Pasteur pipette. The organic phase was dried (anhydrous $\mathrm{MgSO}_{4}, 30 \mathrm{~min}$), filtered using a small cotton ball and a pipette, and evaporated on
rotavapor to give the crude product, which was either purified as final product (yield 60-95\%) or used directly for next step.

General procedure for Boc-deprotection. The substrate (1 mmol) was dissolved in a solution of TFA $(0.5 \mathrm{~mL})$ in dichloromethane $(2 \mathrm{~mL})$. The mixture was stirred at rt for 2 h and evaporated on rotavapor to dryness. The residue was either purified as final product (yield 60$99 \%$) or co-evaporated twice with toluene ($3 \times 2 \mathrm{~mL}$), pumped to dryness on high vacuum for 1 h, and used directly for next round of amide coupling.

5-isoxazoyl-Cha-Ile-spiro[1H-indene-1,4'-piperidine] (3). 56% yield in six steps from 6 . ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) (two rotamers in a ratio of $\left.64: 36\right) \delta 0.84-1.00(\mathrm{~m}, 8 \mathrm{H}), 1.05-1.42$ $(\mathrm{m}, 7 \mathrm{H}), 1.50-2.00(\mathrm{~m}, 11 \mathrm{H}), 3.04(\mathrm{td}, J=12.6,1.8 \mathrm{~Hz}, 0.64 \mathrm{H})$ and $3.10(\mathrm{td}, J=12.6,2.4 \mathrm{~Hz}$, $0.36 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 3.48\left(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.18(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 0.36 \mathrm{H})$ and $4.21\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 0.64 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.44(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 0.36 \mathrm{H})$ and $4.52\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 0.64 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s syn amide piperidine NCH_{2}), 4.57-4.65 (m, 1 H , Cha- $\alpha-\mathrm{CH}$), 4.68-4.73 (m, 1 H , Ile- $\alpha-\mathrm{CH}$), 6.82 $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$, indene-CH), $7.07-7.38(\mathrm{~m}, 6 \mathrm{H}), 8.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.36 \mathrm{H})$ and $8.31(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 0.64 \mathrm{H}$, Ile-NH), 8.77 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, isoxazole-3-CH), 8.91 (d, $J=8.4 \mathrm{~Hz}, 0.36 \mathrm{H}$) and $9.00\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.64 \mathrm{H}\right.$, Cha-NH); ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}): 11.1/11.2 $\left(\mathrm{CH}_{3}\right.$, Ile-$\left.\delta-\mathrm{CH}_{3}\right), 15.6 / 15.9\left(\mathrm{CH}_{3}\right.$, Ile- $\left.\gamma-\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{2}\right.$, Ile- $\left.\gamma-\mathrm{CH}_{2}\right), 25.7(0) / 25.7(3)\left(\mathrm{CH}_{2}\right.$, Cha- $\left.\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right.$, Cha- $\left.\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right.$, Cha- $\left.\mathrm{CH}_{2}\right), 31.8(0) / 31.8(1)\left(\mathrm{CH}_{2}, \mathrm{Cha}-\mathrm{CH}_{2}\right), 33.1(6) / 33.1(8)\left(\mathrm{CH}_{2}\right.$, Cha- CH_{2}), 33.2(5)/33.3(1) $\left(\mathrm{CH}_{2}, s\right.$-syn amide piperidine $\left.\mathrm{N} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 33.7(5) / 33.7(9)(\mathrm{CH}$, Cha-$\gamma$-CH), 33.9/34.1 $\left(\mathrm{CH}_{2}, s\right.$-anti amide piperidine $\left.\mathrm{N} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 36.3 / 36.6(\mathrm{CH}$, Ile- $\beta-\mathrm{CH}), 38.9 / 39.1$ $\left(\mathrm{CH}_{2}\right.$, Cha- $\left.\beta-\mathrm{CH}_{2}\right), 40.3 / 40.5\left(\mathrm{CH}_{2}, s\right.$-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 44.0 / 44.3\left(\mathrm{CH}_{2}, s\right.$-anti amide piperidine NCH_{2}), $51.1(\mathrm{CH}$, Cha- $\alpha-\mathrm{CH}$), $52.0 / 52.1(8)(\mathrm{C}$, spiro-C), $52.1(7) / 52.3(\mathrm{CH}$, Ile- $\alpha-$ $\mathrm{CH}), 106.2(7) / 106.3(2)(\mathrm{CH}$, isoxazole-4-CH), 121.4(0)/121.4(3)(CH), 121.4(7)/121.6(4)(CH),
$125.2 / 125.4 \quad(\mathrm{CH}), \quad 127.0(0) / 127.0(4) \quad(\mathrm{CH}), \quad 129.8(9) / 129.9(2) \quad(\mathrm{CH}, \quad$ indene-3-CH$)$, 141.3(7)/141.4(7) (CH, indene-2-CH), 142.5(1)/142.5(7) (C), 151.2/151.3 (C), $151.8(\mathrm{CH}$, isoxazole-3-CH), 155.4(7)/155.4(9) (C), 162.5 (C), 169.5/169.6 (C, Ile-CO), 171.3(0)/171.3(2) (C, Cha-CO). HRMS: calcd for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}[\mathrm{MH}]^{+}: 547.3279$, found: 547.3291. LCMS $\mathrm{t}_{\mathrm{R}}=16.2$ \min. HPLC $_{\mathrm{R}}=15.5 \mathrm{~min}($ Method IV $)$.

General procedure for N-methylation. A solution of the amine (1 mmol) in anhydrous DCM (2 mL) was added anhydrous triethylamine (2.1 mmol) and 2-nitrobenzenesulfonyl chloride (1.05 mmol). The mixture was stirred at rt for 2 h , diluted with $\mathrm{DCM}(4 \mathrm{~mL})$ and washed with water (4 mL). The DCM phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated on rotovap to dryness. The residue (pale-yellow foam) was dried under $\mathrm{P}_{2} \mathrm{O}_{5}$ under high vacuum for 1 h . The crude was dissolved in anhydrous DMF (2 mL), treated with DBU (2 mmol) and cooled in an ice-water bath while dimethyl sulfate (3 mmol) was added dropwise. After stirred at $0^{\circ} \mathrm{C}$ for 15 min , the mixture was treated with acetic acid $(1.1 \mathrm{mmol})$ and evaporated under high vacuum. The residue was taken up in ethyl acetate (5 mL) and washed with sat. aqueous solution of $\mathrm{NaHCO}_{3}(3 \times 4 \mathrm{~mL})$ and water $(4 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The crude was dissolved in DCM (4 mL) and treated with DBU (1.5 mmol) and 2thioethanol (3 mmol). The mixture was stirred at rt for 30 min and treated with sat. aqueous solution of $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$. The mixture was stirred vigorously at rt for 10 min and centrifuged (250 rpm for 5 min). The organic phase was removed using a Pasteur pipette, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated on rotovap. The crude N -methylated amine was either purified by preparative HPLC, or co-evaporated with toluene $(2 \times 3 \mathrm{~mL})$ and used for next coupling.
(N-Me)Cha-Ile-spiro[1H-indene-1,4'-piperidine] as TFA salt. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.87-1.03(\mathrm{~m}, 8 \mathrm{H}), 1.10-2.11(\mathrm{~m}, 18 \mathrm{H}), 2.72(\mathrm{~s}) / 2.74(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.03-3.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-syn amide piperidine $\left.-\mathrm{NCH}_{2}\right), 3.42-3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti
amide piperidine- NCH_{2}), $3.94-4.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Cha}-\alpha-\mathrm{CH}), 4.15-4.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-anti amide piperidine $\left.-\mathrm{NCH}_{2}\right), 4.61-4.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-syn amide piperidine $\left.-\mathrm{NCH}_{2}\right), 4.91-4.98(\mathrm{~m}, 1 \mathrm{H}$, Ile- $\alpha-\mathrm{CH}$), 6.78-6.85 (m, 2H, $2 \times$ indene-CH), 7.16-7.35 (m, 4H), 7.88-7.94 (m, 1H, NH); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.0 / 11.2\left(\mathrm{Ile}-\delta-\mathrm{CH}_{3}\right)$, 15.6/16.0 $\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{3}\right)$, $24.1 / 24.2\left(\right.$ Ile- $\left.\gamma-\mathrm{CH}_{2}\right)$, 25.7(9)/25.8(5) $\left(\mathrm{CH}_{2}\right), 25.9(4)\left(\mathrm{CH}_{2}\right), 26.0(1)\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{NCH}_{3}\right), 32.6 / 32.7\left(\mathrm{CH}_{2}\right), 33.3(7)$ $\left(\mathrm{CH}_{2}\right), 33.4(3) / 33.4(8), 33.7 / 33.8\left(\mathrm{CH}_{2}, s\right.$-syn amide piperidine $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 34.2 / 34.3\left(\mathrm{CH}_{2}, s\right.$-anti amide piperidine $\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}$), 37.3/37.4 (Ile- β-CH), 37.9 (Cha- $\gamma-\mathrm{CH}$), 41.3/41.4 (s-syn amide piperidine NCH_{2}), 44.9/45.2 (s-anti amide piperidine NCH_{2}), 51.8/51.9 (spiro-C), 53.6 (Ile- α $\mathrm{CH}), 60.6(\mathrm{Cha}-\alpha-\mathrm{CH}), 116.3\left(\mathrm{q},{ }^{l} J_{F-C}=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{COO}^{-}\right)$, 121.4/121.5 (CH), $121.6(5) / 121.7(2)(\mathrm{CH}), 125.5 / 125.6(\mathrm{CH}), 127.3(0) / 127.3(3)(\mathrm{CH}), 130.9(7) / 131.0(1)$ (indeneCH), 139.3/139.5 (indene-CH), 142.6/142.7 (C), 150.7 (C), $162.0\left(\mathrm{q},{ }^{2} J_{F-C}=36.7 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{COO}^{-}\right.$), 167.7(7)/167.8(0) (C), 169.7/169.8 (C). HRMS: calc. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{2}^{+}[\mathrm{MH}]^{+}: 466.3428$, found: 466.3424. $\mathrm{HPLC}_{\mathrm{R}}=9.3 \mathrm{~min}($ Method I$)$.

5-isoxazoyl-Cha-(N-Me)Ile-spiro[1H-indene-1,4'-piperidine]. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) (two rotamers in a ratio of 70:30) $\delta 0.79-1.96(\mathrm{~m}, 25 \mathrm{H}), 2.06-2.14(\mathrm{~m}, 1 \mathrm{H}$, Ile- $\beta-\mathrm{CH}$), 2.97 (s, minor) and 3.06 (s, major, $3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$), $2.99-3.17\left(\mathrm{~m}, 1 \mathrm{H}, s\right.$-syn amide piperidine NCH_{2}), 3.30$3.46\left(\mathrm{~m}, 1 \mathrm{H}, s\right.$-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.11(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, minor) and $4.18(\mathrm{~d}, J=13.6$ Hz , manor, $1 \mathrm{H}, s$-anti amide piperidine $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 4.43(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, minor) and $4.56(\mathrm{~d}, J=$ 13.6 Hz , major, $1 \mathrm{H}, s$-syn amide piperidine NCH_{2}), 4.87-4.97 (m, 1 H , Cha- $\alpha-\mathrm{CH}$), 5.07-5.13 ($\mathrm{m}, 1 \mathrm{H}$, Ile- $\alpha-\mathrm{CH}$), $6.84(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, major) and $7.07(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, minor, 1 H , indene- CH), 7.10-7.40 (m, 6H), $8.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, major) and $8.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, minor, 1 H , isoxazole$\mathrm{CH}), 9.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, minor $)$ and $9.15\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}\right.$, major, 1 H , Cha-NH). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): major isomer, $10.8\left(\mathrm{Ile}-\delta-\mathrm{CH}_{3}\right), 15.7\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{3}\right), 23.5\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{2}\right), 25.5$ (Cha$\left.\mathrm{CH}_{2}\right)$, $25.7\left(\mathrm{Cha-} \mathrm{CH}_{2}\right), 26.0\left(\mathrm{Cha-} \mathrm{CH}_{2}\right), 29.7\left(\mathrm{NCH}_{3}\right), 31.2\left(\mathrm{Cha}^{\left.-\mathrm{CH}_{2}\right),} 32.2\right.$ (Ile- $\left.\beta-\mathrm{CH}\right), 33.2$
$\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 34.8(\mathrm{CH}$, Ile- $\beta-\mathrm{CH}), 37.8\left(\mathrm{CH}_{2}, \mathrm{Cha}-\beta-\mathrm{CH}_{2}\right), 40.4(s$-syn amide piperidine NCH_{2}), 43.6 (s-anti amide piperidine NCH_{2}), 47.4 (Cha- $\alpha-\mathrm{CH}$), 52.1 (spiro-C), 55.8 (Ile- $\alpha-\mathrm{CH}), 106.1$ (isoxazole-4-CH), $121.4(\mathrm{CH}), 121.5(\mathrm{CH}), 125.0(\mathrm{CH}), 127.0(4)(\mathrm{CH}), 129.9$ (indene-3-CH), 141.2 (indene-2-CH), 142.5 (C), 151.1 (C), 151.7 (isoxazole-3-CH), 155.6 (C), 162.1 (C), 167.3 (C), 171.5 (C); minor isomer (only those not overlapped), 10.9 (Ile- $\delta-\mathrm{CH}_{3}$), $15.9\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{3}\right), 25.6\left(\mathrm{Cha}-\mathrm{CH}_{2}\right), 25.8\left(\mathrm{Cha}^{2} \mathrm{CH}_{2}\right), 29.8\left(\mathrm{NCH}_{3}\right), 31.5\left(\mathrm{Cha}-\mathrm{CH}_{2}\right), 32.4$ (Ile- β $\mathrm{CH}), 33.7\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right.$, Cha- $\left.\beta-\mathrm{CH}_{2}\right), 43.4\left(s\right.$-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 47.5$ (Cha- $\alpha-\mathrm{CH}$), 52.0 (spiro-C), 55.9 (Ile- $\alpha-\mathrm{CH}$), 121.3 (CH), $121.8(\mathrm{CH}), 125.3(\mathrm{CH}), 127.0(0)$ (CH), 141.5 (indene-2-CH), 155.5 (C), 167.7 (C), 171.7 (C). HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}$ $[\mathrm{MH}]^{+}: 561.3435$, found: $561.3435 . \mathrm{HPLC}_{\mathrm{R}}=12.5 \mathrm{~min}($ Method I$)$.

5-isoxazoyl-(N-Me)Cha-Ile-spiro[1H-indene-1,4'-piperidine]. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) (two rotamers in a ratio of $58: 42$) $\delta 0.82-2.05(\mathrm{~m}, 26 \mathrm{H}), 2.96$ (s , minor) and 3.07 (s, major, $3 \mathrm{H}, \mathrm{N}$ Me), 3.00-3.10 (m, 1H), 3.43-3.55 (m, 1H), 4.13-4.22 (m, 1H), 4.44-4.52 (m, 1H), 4.63-4.69 (m, 1H, Ile- $\alpha-\mathrm{CH}$), 5.11-5.19 (m, 1H, Cha- $\alpha-\mathrm{CH}$), 6.83-7.36 (m, 7H), 8.22 (d, $J=8.5 \mathrm{~Hz}$, minor) and $8.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, major, 1 H , Ile-NH), $8.76-8.78(\mathrm{~m}, 1 \mathrm{H}$, isoxazole-CH). HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}: 561.3435$, found: 561.3435. $\mathrm{HPLC}_{\mathrm{R}}=12.2 \mathrm{~min}($ Method $)$.
(N,N,N-trimethyl)Cha-Ile-spiro[1H-indene-1,4'-piperidine] (7) as trifluoroacetate salt. In a microwave vial was loaded a solution of the $\mathrm{H}_{2} \mathrm{~N}$-Cha-Ile-spiro[1H-indene-1,4'-piperidine] (33 $\mathrm{mg}, 0.0731 \mathrm{mmol})$ in acetone $(0.4 \mathrm{~mL})$, methyl iodide ($27 \mu \mathrm{~L}, 0.439 \mathrm{mmol}, 6 \mathrm{eq}$) and powdered $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($23 \mathrm{mg}, 0.219 \mathrm{mmol}, 3 \mathrm{eq}$). The vial was sealed and loaded into Biotage Initiator microwave reaction system with settings at temperature $=120^{\circ} \mathrm{C}$ and reaction time $=20 \mathrm{~min}$. After cooling to room temperature, the mixture was filtered and the filtrate evaporated on rotavap. The residue was dissolved in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(1: 1,4 \mathrm{~mL})$ and purified by preparative rpHPLC. The product fractions were identified by ESMS (m/z 494, ammonium cation) and pure
fractions (confirmed by analytical rpHPLC) were pooled and lyophilized to give a white amorphous powder ($21.3 \mathrm{mg}, 48 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in a ratio of $1: 1) \delta 0.84-1.02(\mathrm{~m}, 8 \mathrm{H}), 1.05-1.76(\mathrm{~m}, 13 \mathrm{H}), 1.87-2.17(\mathrm{~m}, 5 \mathrm{H}), 3.01-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.29$ (s) and $3.30(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{Me}), 3.44-3.55(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.79-$ $4.87(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.36(\mathrm{~m}, 4 \mathrm{H}), 9.20-9.24(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.8 / 11.0\left({\left.\mathrm{Ile}-\delta-\mathrm{CH}_{3}\right),}\right.$ 15.6/16.1 $\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{3}\right), 24.8 / 24.9\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{2}\right), 25.6(7) / 25.7(3)$, $26.2,26.4 / 26.5,32.1 / 32.2,33.5 / 33.6,34.2 / 34.3,34.5,34.6 / 34.7,36.4 / 36.6,41.3 / 41.4$ (s-syn amide piperidine NCH_{2}), 45.1/45.5 (s-anti amide piperidine NCH_{2}), 52.1/52.2 (spiro-C), 52.5 $\left({ }^{+} \mathrm{NMe}_{3}\right), 53.8$ (Ile- $\left.\alpha-\mathrm{CH}\right), \quad 72.3 / 72.4(\mathrm{Cha}-\alpha-\mathrm{CH}), 116.2\left(\mathrm{q},{ }^{1} J_{F-C}=286 \mathrm{~Hz}, \mathrm{CE}_{3} \mathrm{COO}^{-}\right)$, 121.6/121.7 (CH), $121.9(\mathrm{CH}), 125.6 / 125.7(\mathrm{CH}), 127.4 / 127.5(\mathrm{CH}), 131.1$ (indene-CH), 139.8/139.9 (indene-CH), 142.9 (C), $150.9(8) / 151.0(7)(\mathrm{C}), 161.1\left(\mathrm{q}^{2}{ }^{2} J_{F-C}=37.1 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{COO}^{-}\right)$, 166.4/166.5 (C), 169.5/169.7 (C). HRMS: calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{2}^{+}[\mathrm{MH}]^{+}: 494.3741$, found: 494.3741. $\mathrm{HPLC}_{\mathrm{R}}=10.2 \mathrm{~min}($ Method V$)$.

Carbamimidoyl-Cha-Ile-spiro[1H-indene-1,4'-piperidine] (8). In a 2 mL HPLC glass vial was loaded the $\mathrm{H}_{2} \mathrm{~N}$-Cha-Ile-spiro[1H-indene-1,4'-piperidine] ($46 \mathrm{mg}, 0.102 \mathrm{mmol}$), 1 H -pyrazole-1carboxamidine HCl salt ($15 \mathrm{mg}, 0.102 \mathrm{mmol}, 1 \mathrm{eq}$), DMF ($204 \mu \mathrm{~L}$) and DIPEA ($18 \mu \mathrm{~L}, 0.102$ mmol, 1 eq$)$. The suspension was stirred at room temperature for $1 \mathrm{~h} . \mathrm{DCM}(102 \mu \mathrm{~L})$ was added to make thick precipitate turn to homogenous solution. After stirred at room temperature overnight, the mixture was transferred into a RBF and evaporated on rotavap to dryness. The crude was purified by preparative rpHPLC and the product fractions were pooled (ESMS: m/z 494, MH^{+}) and lyophilized to give the product as TFA salt (white amorphous solid, 19% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in a ratio of 1:1) $\delta 0.87-1.02(\mathrm{~m}, 8 \mathrm{H}), 1.11-1.28(\mathrm{~m}$, $4 \mathrm{H}), 1.37-1.75(\mathrm{~m}, 11 \mathrm{H}), 1.89-2.18(\mathrm{~m}, 3 \mathrm{H}), 3.04-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.54(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.21$ $(\mathrm{m}, 2 \mathrm{H}), 4.53-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.73(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.36(\mathrm{~m}, 7 \mathrm{H}), 8.08-$
$8.14(\mathrm{~m}, 2 \mathrm{H})$. HRMS: calc. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{2}{ }^{+}[\mathrm{MH}]^{+}: 494.3490$, found: 494.3489. $\mathrm{HPLC}_{\mathrm{R}}=10.1$ min (Method V).

Carbamoyl-Cha-Ile-spiro[1H-indene-1,4'-piperidine] (9). In a 2 mL HPLC glass vial was loaded the $\mathrm{H}_{2} \mathrm{~N}$-Cha-Ile-spiro[1H-indene-1,4'-piperidine] ($20 \mathrm{mg}, 0.0443 \mathrm{mmol}$), acetic acid ($7.6 \mu \mathrm{~L}, 0.133 \mathrm{mmol}, 3 \mathrm{eq}$), water (0.48 mL) and $\mathrm{MeCN}(0.48 \mathrm{~mL})$. The mixture was sonicated to give a homogenous solution. A solution of sodium cyanate ($8.6 \mathrm{mg}, 0.133 \mathrm{mmol}, 3 \mathrm{eq}$) in water $(0.4 \mathrm{~mL})$ was added to the above reaction mixture dropwise over a period of 4 h . Note: at $2 h$ after addition of 0.2 mL of the sodium cyanate solution, rapid precipitation was observed and thus extra MeCN (0.4 mL) was added to make the reaction mixture homogenous. After stirred at room temperature overnight. ESMS indicated the complete conversion (m/z $495 \mathrm{MH}^{+}$ and $517 \mathrm{MNa}^{+}$exclusively). The reaction mixture was purified by preparative rpHPLC and the desired product fractions were pooled and lyophilized to give a white amorphous powder (9.11 $\mathrm{mg}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $1: 1$) $\delta 0.88-1.03(\mathrm{~m}$, 8H), 1.10-1.30 (m, 4H), 1.32-2.14 (m, 14H), 3.06-3.12 (m, 1 H), 3.44-3.54 (m, 1H), 4.16 (m, $1 \mathrm{H}), 4.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.61-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.91(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.82-6.87(\mathrm{~m}, 2 \mathrm{H})$, 7.14-7.38 (m, 6H). HRMS: calc. for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+} 495.3330$, found 495.3340; HPLC $\mathrm{t}_{\mathrm{R}}=$ $9.4 \min$ (Method II).
(2-Hydroxyethylcarbamoyl)-Cha-Ile-spiro[1H-indene-1,4'-piperidine] (10). In a 2 mL HPLC glass vial was loaded triphosgene ($5.3 \mathrm{mg}, 0.0177 \mathrm{mmol}, 0.4 \mathrm{eq})$ and anhydrous DCM $(100 \mu \mathrm{~L})$. A solution of the $\mathrm{H}_{2} \mathrm{~N}$-Cha-Ile-spiro[1H-indene-1,4'-piperidine] (20 mg, $0.0443 \mathrm{mmol}, 1 \mathrm{eq}$) in DIPEA ($17 \mu \mathrm{~L}, 0.0975 \mathrm{mmol}, 2.2 \mathrm{eq})$ and anhydrous $\mathrm{DCM}(100 \mu \mathrm{~L})$ was added dropwise. After 5 min , a solution of ethanolamine ($2.9 \mu \mathrm{~L}, 0.0487 \mathrm{mmol}, 1.1 \mathrm{eq}$) in anhydrous $\mathrm{DCM}(100 \mu \mathrm{~L})$ was added in one portion. The mixture was stirred at room temperature overnight and transferred into a RBF. The mixture was evaporated on rotavap and the residue was treated with MeCN (5
mL). The mixture was heated to reflux, cooled and filtered. The filtrate was purified by preparative rpHPLC and the desired product fractions were pooled and lyophilized to give a white amorphous powder ($7.05 \mathrm{mg}, 30 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.89-1.06(\mathrm{~m}, 8 \mathrm{H}), 1.10-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.88(\mathrm{~m}, 7 \mathrm{H})$, $1.90-2.40(\mathrm{~m}, 4 \mathrm{H}), 3.04-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.12-4.30(\mathrm{~m}, 2 \mathrm{H})$, 4.58-4.70 (m, 1H), 4.84-4.94 (m, 1H), 5.66 (br s, 1 H), 6.82-6.87 (m, 2H), 7.14-7.38 (m, 5H). HRMS: calc. for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+} 539.3592$, found 539.3600; $\mathrm{HPLC}_{\mathrm{R}}=9.1 \mathrm{~min}$ (Method II).

Benzylcarbamoyl-Cha-Ile-spiro[1H-indene-1,4'-piperidine] (11). In a 2 mL HPLC glass vial was loaded the $\mathrm{H}_{2} \mathrm{~N}$-Cha-Ile-spiro[1H-indene-1,4'-piperidine] ($20 \mathrm{mg}, 0.0443 \mathrm{mmol}, 1 \mathrm{eq}$), DCM ($150 \mu \mathrm{~L}$) , and benzyl isocyanate ($5.4 \mu \mathrm{~L}, 0.0443 \mathrm{mmol}, 1 \mathrm{eq}$). The mixture was stirred at rt overnight and transferred into a RBF. The mixture was evaporated on rotavap and the residue was dissolved in $\mathrm{MeCN}(5 \mathrm{~mL})$ and purified by preparative rpHPLC and the desired product fractions were pooled and lyophilized to give a white amorphous powder ($8.50 \mathrm{mg}, 33 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in a ratio of 1:1) $\delta 0.86-1.02(\mathrm{~m}, 8 \mathrm{H}), 1.06-2.20(\mathrm{~m}$, $18 \mathrm{H}), 2.98-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.48(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.46(\mathrm{~m}, 3 \mathrm{H}), 4.56-4.67$ $(\mathrm{m}, 1 \mathrm{H}), 4.84-4.91(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.80-7.37(\mathrm{~m}, 12 \mathrm{H})$. HRMS: calc. for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}$ $[\mathrm{MH}]^{+} 585.3799$, found $585.3807 ; \mathrm{HPLC}_{\mathrm{R}}=12.3 \mathrm{~min}($ Method II$)$.

5-Isoxazoyl-Cha-Ile-(4-phenylpiperidine) (65). 46% yield in five steps. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two rotamers in a ratio of $\left.60: 40\right) \delta 0.78-0.95(\mathrm{~m}, 8 \mathrm{H}), 0.99-1.21(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.44$ $(\mathrm{m}, 2 \mathrm{H}), 1.44-1.90(\mathrm{~m}, 12 \mathrm{H}), 2.59-2.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 2.75-2.83$ (m, 1H, piperidine-CHPh), 3.09 (app $\mathrm{t}, J=12.0 \mathrm{~Hz}$, minor) and 3.14 (app t, $J=12.0 \mathrm{~Hz}$, major, $1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.19\left(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}, \mathrm{H}_{\text {eq }}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.53-4.59\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Cha- $\alpha-\mathrm{CH}$ and H_{eq} of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.60-$ $4.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ile}-\alpha-\mathrm{CH}), 7.14-7.41(\mathrm{~m}, 6 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, minor $)$ and $8.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}$,
major, 1 H , Ile-NH), 8.74 (d, $J=1.8 \mathrm{~Hz}$, major) and 8.75 (d, $J=1.8 \mathrm{~Hz}$, minor, 1 H , isoxazole$\mathrm{CH}), 8.94\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}\right.$, minor) and $8.95\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}\right.$, major, 1 H , Cha-NH); ${ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.5 / 11.7\left(\mathrm{CH}_{3}\right.$, Ile- $\left.\delta-\mathrm{CH}_{3}\right), 16.0 / 16.3\left(\mathrm{CH}_{3}\right.$, Ile- $\left.\gamma-\mathrm{CH}_{3}\right)$, $24.3 / 24.4\left(\mathrm{CH}_{2}\right.$, Ile- $\gamma-$ $\left.\mathrm{CH}_{2}\right), 26.0(8) / 26.1(7)\left(\mathrm{CH}_{2}\right), 26.2(5) / 26.3(0)\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 32.1(8) / 32.2(0)\left(\mathrm{CH}_{2}\right)$, $33.3(8) / 33.4(4)\left(\mathrm{CH}_{2}\right), 33.6(7) / 33.7(0)\left(\mathrm{CH}_{2}\right), 34.1(\mathrm{CH}, \mathrm{Cha}-\gamma-\mathrm{CH}), 34.2\left(\mathrm{CH}_{2}\right), 36.6 / 36.9(\mathrm{CH}$, Ile- $\beta-\mathrm{CH}$), 39.3/39.5 $\left(\mathrm{CH}_{2}\right.$, Cha- $\left.\beta-\mathrm{CH}_{2}\right)$, 42.0/42.2 $(\mathrm{CH}$, piperidine CHPh$)$, $42.6 / 42.7\left(\mathrm{CH}_{2}, s\right.$-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 46.1 / 46.3\left(\mathrm{CH}_{2}, s\right.$-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 51.3 / 51.4(\mathrm{CH}$, Cha- α $\mathrm{CH}), \quad 52.5 / 52.6(\mathrm{CH}, \quad$ Ile- $\alpha-\mathrm{CH}), \quad 106.6 / 106.7 \quad(\mathrm{CH}, \quad$ isoxazole-4-CH), 126.7 (CH), 127.0(9)/127.1(3)(CH), 128.9/129.0(CH), 145.9/146.0(C), 152.2 (CH, isoxazole-3-CH), 155.8 (C), 162.8 (C), 169.6/169.7 (C, Ile-CO), 171.6/171.7 (C, Cha-CO). HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}$ $[\mathrm{MH}]^{+} 523.3279$, found 523.3280. HPLC $\mathrm{t}_{\mathrm{R}}=10.0 \mathrm{~min}($ Method II).

44

Scheme S1. Synthesis of 44. (a) $\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ (1 eq), 2 M NaOH (3 eq), 1,4-dioxane, microwave (Biotage Initiator), $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) HBTU (1.1 eq), DIPEA (1.1 eq), DMF, rt, 18 h ; (c) 20% TFA in DCM, rt, 2 h ; (d) isoxazole-5-carboxylic acid (1.2 eq), HBTU (1.2 eq), DIPEA (1.2 eq), DMF, rt, 18 h .

50
Scheme S2. Synthesis of 50. (a) carboxylic acid (i.e., Boc-Thr-OH, Boc-Cha-OH or isoxazole-5carboxylic acid, 1.2 eq), HBTU (1.2 eq), DIPEA (1.2 eq), DMF, rt, 18 h ; (b) i) LiO'Bu (1.05 eq), DMF, rt, 1 h ; ii) MeI (1.1 eq), rt, 18 h ; (c) 20% TFA in DCM, rt, 2 h .

Scheme S3. Synthesis of 54. mCPBA (2 eq), DCM-sat. $\mathrm{NaHCO}_{3}(1: 1, \mathrm{v} / \mathrm{v})$. rt, 3 days.

Figure S5. ${ }^{1} \mathrm{H}$ NMR of representative compound $\mathbf{6 5}$ at elevated temperature in DMSO- d_{6}. At 298 K , isoxazole proton Ha split into 2 sets of doublets (8.75 ppm), amide NH_{b} into 2 sets of doublets (8.94 ppm , appeared as triplet due to overlapping signals) and le- $\alpha-\mathrm{CH}(\mathrm{He})$ was multiplet at 4.64 ppm . They all simplified at 318 K with Ha appeared as one broad singlet, Hb as a sharp doublet (coupling with Cha- $\alpha-\mathrm{CH}, \mathrm{Hc}$) and He as a triplet (coupling with Ile-NH, Hd and le- $\beta-\mathrm{CH}$). However, at this temperature, the asymmetry caused by amide group derived from piperidine ring was still present with two distinguished methylene pairs ($\mathrm{H}_{\text {axial }}$ and $\mathrm{H}_{\text {equatorial }}$) of s syn and s-anti NCH_{2} of piperidine ring clearly observable.

ID	R ${ }_{1}$	Analytical data
12	Non	$\mathrm{t}_{\mathrm{R}}=13.0 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 547.3279, found 547.3279; ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two rotamers in a ratio of 62:38) $\delta 0.82-0.97(\mathrm{~m}, 8 \mathrm{H}), 1.06-1.36(\mathrm{~m}, 7 \mathrm{H})$, $1.47-1.97(\mathrm{~m}, 11 \mathrm{H}), 3.00-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.48(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.19$ $(\mathrm{m}, 1 \mathrm{H}), 4.41(\mathrm{br} \mathrm{d}, J=13.5 \mathrm{~Hz}, 0.38 \mathrm{H})$ and $4.50(\mathrm{br} \mathrm{d}, J=13.4 \mathrm{~Hz}$, $0.62 \mathrm{H}), 4.56-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.72(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.35(\mathrm{~m}, 5 \mathrm{H}), 8.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $0.38 \mathrm{H})$ and $8.24(\mathrm{~d}, J=9.04 \mathrm{~Hz}, 0.62 \mathrm{H}), 8.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.38 \mathrm{H})$ and $8.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.62 \mathrm{H}), 9.10-9.11(\mathrm{~m}, 1 \mathrm{H})$.
13	$\mathbb{B r}_{0}^{\omega^{N}}$	$\mathrm{t}_{\mathrm{R}}=10.9 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 546.3326, found $546.3330 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.85-0.94(\mathrm{~m}, 4 \mathrm{H}), 0.97-1.0(\mathrm{~m}, 2 \mathrm{H}), 1.05-1.28(\mathrm{~m}$, $4 \mathrm{H}), 1.37-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.91-$ $2.14(\mathrm{~m}, 2 \mathrm{H}), 3.00-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.52(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.18(\mathrm{~m}$, $1 \mathrm{H}), 4.61-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.88-4.95(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{dd}, 1 \mathrm{H}, J=2.0,3.4$ $\mathrm{Hz}), 6.77-6.87(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 7.19-7.36(\mathrm{~m}, 4 \mathrm{H})$, 7.46 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.6/11.8 $\left(\mathrm{CH}_{3}\right.$, Ile- δ $\left.\mathrm{CH}_{3}\right), \quad 16.1 / 16.4 \quad\left(\mathrm{CH}_{3}, \quad\right.$ Ile $\left.-\gamma-\mathrm{CH}_{3}\right), \quad 24.3, \quad 26.2(7) / 26.3(0)$, $26.4(0) / 26.4(5), 26.6,32.8(6) / 32.9(1), 33.5 / 33.6,34.0,34.2(8) / 34.3(5)$, $34.3(9) / 34.5,38.4,40.4 / 40.5,41.3$ (br, s-syn amide piperidine NCH_{2}), 45.0/45.4, 51.1 (br, s-anti amide piperidine NCH_{2}), $52.1 / 52.3$ (spiro-C), $53.1(6) / 53.2(2) / 53.2(9) \quad(2 \times \alpha-\mathrm{CH}), \quad 112.3(8) / 112.4(4), \quad 115.0$, 121.7/121.8, 121.9/122.0, 125.7/125.8, 127.4/127.5, 131.0(7)/131.1(1), 139.8/140.0, 142.8/143.0, 144.3(8)/144.4(2), 147.7, 151.1/151.2, 158.3, 170.3, 172.1.
14		$\mathrm{t}_{\mathrm{R}}=6.6 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{3}^{+}[\mathrm{MH}]^{+}$ 546.3439, found 546.3437; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.78-0.99(\mathrm{~m}, 8 \mathrm{H}), 1.10-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.50$ $(\mathrm{m}, 4 \mathrm{H}), 1.60-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.89(\mathrm{~m}, 6 \mathrm{H}), 1.93-2.11(\mathrm{~m}, 2 \mathrm{H})$, $3.00-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 4.25(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz})$, $4.57-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.90(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{q}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.77-$ $6.82(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.90-8.00$ (br s, 1 H), 8.40-8.48 (br s, 1H), 8.49-8.62 (br s, 1H).
15	\underbrace{N}_{-1}	$\mathrm{t}_{\mathrm{R}}=9.7 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 547.3279 , found $547.3278 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in a ratio of 1:1) $\delta 0.86-0.97(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.1-$ $1.28(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.6(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.78(\mathrm{~m}, 5 \mathrm{H}), 1.78-1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.91-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.16(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.56$ $(\mathrm{m}, 2 \mathrm{H}), 4.14-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{q}, 1 \mathrm{H}, J=7.2$

		$\begin{aligned} & \mathrm{Hz}), 6.83-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, 1 \mathrm{H}, J=8.8,18 \mathrm{~Hz}), 7.18-7.36(\mathrm{~m}, \\ & 5 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) . \end{aligned}$	
16	$\begin{gathered} <_{N}^{N} \pi N^{N} \\ H N-N \end{gathered}$	$\mathrm{t}_{\mathrm{R}}=8.9$ min (Method II); HRMS: calc. for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+}$ 547.3391 , found $547.3391 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in a ratio of $1: 1) \delta 0.80-1.01(\mathrm{~m}, 9 \mathrm{H}), 1.10-1.26(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.58$ $(\mathrm{~m}, 5 \mathrm{H}), 1.66-1.88(\mathrm{~m}, 5 \mathrm{H}), 1.98-2.18(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{t}, 1 \mathrm{H}, J=12.4$ $\mathrm{Hz}), 3.56(\mathrm{q}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 4.78-4.85(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.20(\mathrm{~m}, 1 \mathrm{H})$, $5.21-5.40(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.37(\mathrm{~m}, 4 \mathrm{H}), 8.02-8.21$ $(\mathrm{~m}, 2 \mathrm{H}), 8.80-8.85(\mathrm{~m}, 1 \mathrm{H})$.	
17	${ }^{-1}$	$\mathrm{t}_{\mathrm{R}}=15.0 \mathrm{~min}$ (Method IV); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 562.3388 , found $562.3388 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.84-1.04(\mathrm{~m}, 8 \mathrm{H}), 1.08-2.24(\mathrm{~m}, 18 \mathrm{H}), 3.05-3.16$ $(\mathrm{m}, 1 \mathrm{H}), 3.44-3.59(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.77(\mathrm{~m}, 2 \mathrm{H})$, 4.93-5.01 (m, 1H), 6.47 (s, 1H), 6.82-6.87 (m, 2H), 7.18-7.49 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 11.2/11.4 (Ile- $\delta-\mathrm{CH}_{3}$), 15.6/16.0 (Ile- $\gamma-\mathrm{CH}_{3}$), $24.2\left(\right.$ Ile- $\left.\gamma-\mathrm{CH}_{2}\right), 26.0,26.1(0) / 26.1(3), 26.2$, $32.4(0) / 32.4(2), \quad 33.2 / 33.4, \quad 33.5(9) / 33.6(2), \quad 34.1,37.8(8) / 37.9(4)$, 40.1/40.2, 41.4/41.5, 45.1/45.6, 51.4/51.5, 51.8/51.9, 53.1, 99.9 (isoxazole-4-CH), $121.4 / 121.6, \quad 121.8, \quad 125.5 / 125.7, \quad 127.3 / 127.4$, 131.0/131.1 (indene-3-CH), 139.3/139.7 (indene-2-CH), 142.5/142.8, 150.7/150.8, 155.8, 162.0/163.6, 170.6(5)/170.6(8), 171.8/171.9.	
18	($\mathrm{t}_{\mathrm{R}}=6.2 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 576.3544, found 576.3544; ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two rotamers in a ratio of $2: 1) \delta 0.80-0.97(\mathrm{~m}, 8 \mathrm{H}), 1.04-1.21(\mathrm{~m}, 5 \mathrm{H})$, $1.22-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.77(\mathrm{~m}, 5 \mathrm{H}), 1.77-1.99$ (m, 3H), 2.99-3.10 (m, 1H), $3.46(\mathrm{t}, 1 \mathrm{H}, J=13 \mathrm{~Hz}), 4.17(\mathrm{t}, 1 \mathrm{H}, J=14$ $\mathrm{Hz}), 4.24-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=13 \mathrm{~Hz}$, minor) and $4.50(\mathrm{~d}, J=13$ Hz , major, 1 H), 4.54-4.62 (m, 1H), 4.64-4.70 (m, 1H), $6.84(\mathrm{~d}, J=5.6$ Hz , major) and $7.06(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, minor, 1 H$), 7.13-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.21-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, minor) and 8.31 (d, $J=8.8 \mathrm{~Hz}$, major, 1H), 8.50 (br s, 2H), 9.12 (d, $J=8.0 \mathrm{~Hz}$, minor) and 9.14 (d, $J=8.0 \mathrm{~Hz}$, major, 1 H)	
19		$\mathrm{t}_{\mathrm{R}}=9.6 \mathrm{~min}$ (Method I) or 13.7 (Method IV); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+} 561.3548$, found 561.3548 ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) (two rotamers in a ratio of 1:1) $\delta 0.80-1.04(\mathrm{~m}, 8 \mathrm{H}), 1.06-2.20$ $(\mathrm{m}, 18 \mathrm{H}), 3.04-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.56(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.24(\mathrm{~m}, 1 \mathrm{H})$, $4.76-4.81(\mathrm{~m}, 2 \mathrm{H}), 5.01-5.08(\mathrm{~m}, 1 \mathrm{H}), 6.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.80-6.85(\mathrm{~m}$, $2 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.78$ (br s, 1H), 8.40 (br s, 1 H$)$.	
20		$\mathrm{t}_{\mathrm{R}}=12.8 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{MH}]^{+}$ 563.3051 found 563.3049 ; ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two rotamers in a ratio of $2: 1$) $\delta 0.78-0.97(\mathrm{~m}, 8 \mathrm{H}), 1.04-1.36(\mathrm{~m}, 7 \mathrm{H})$, $1.44-1.73(\mathrm{~m}, 7 \mathrm{H}), 1.73-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.97-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=13 \mathrm{~Hz}$, minor) and 4.49 (d, $J=13 \mathrm{~Hz}$, major, 1 H), $4.60-4.74(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, major) and $7.04(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, minor, 1 H$), 7.08-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.31-$ $7.38(\mathrm{~m}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.33-8.45(\mathrm{~m}, 2.6 \mathrm{H}), 9.22(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}$, minor) and $9.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, major, 1 H).	
21	$\mathbb{K}_{N}^{S} \\|^{s}$	$\mathrm{t}_{\mathrm{R}}=13.2 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{MH}]^{+}$ 563.3051, found 563.3049; ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two	

		rotamers in a ratio of 2:1) $\delta 0.79-1.00(\mathrm{~m}, 8 \mathrm{H}), 1.03-1.45(\mathrm{~m}, 7 \mathrm{H})$, $1.46-1.77(\mathrm{~m}, 8 \mathrm{H}), 1.77-2.03(\mathrm{~m}, 3 \mathrm{H}), 2.97-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, minor) and 4.51 $(\mathrm{d}, J=13.3 \mathrm{~Hz}$, major, 1 H$), 4.53-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.70(\mathrm{~m}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, major) and $7.05(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, minor, 1 H$), 7.12-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, minor) and 8.22 $(\mathrm{d}, J=9.0 \mathrm{~Hz}$, major, 1 H$), 8.56-8.62(\mathrm{~m}, 1 \mathrm{H}), 8.68-8.76(\mathrm{~m}, 1 \mathrm{H}), 9.23$ (br s, 1H).
22		$\mathrm{t}_{\mathrm{R}}=15.0 \mathrm{~min}$ (Method IV); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{MH}]^{+}$ 578.3159 , found $578.3161 ;{ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two rotamers in a ratio of 2:1) $\delta 0.79-0.97(\mathrm{~m}, 8 \mathrm{H}), 1.03-1.35(\mathrm{~m}, 7 \mathrm{H})$, $1.44-1.72(\mathrm{~m}, 7 \mathrm{H}), 1.73-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.97-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.52$ $(\mathrm{m}, 1 \mathrm{H}), 4.13-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=13 \mathrm{~Hz}$, minor) and $4.51(\mathrm{~d}, J$ $=13 \mathrm{~Hz}$, major, 1 H$), 4.55-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.71(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J$ $=5.6 \mathrm{~Hz}$, major) and $7.06(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, minor, 1 H$), 7.12-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.86-8.00(\mathrm{~m}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, minor) and $8.43(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, major, 1 H).
23	$\mathbb{B r}_{s}^{\sim^{N}}$	$\mathrm{t}_{\mathrm{R}}=13.1 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{MH}]^{+}$ 562.3098 , found 562.3096 ; ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two rotamers in a ratio of $2: 1$) $\delta 0.77-1.01(\mathrm{~m}, 8 \mathrm{H}), 1.02-1.42(\mathrm{~m}, 7 \mathrm{H})$, $1.45-1.76(\mathrm{~m}, 8 \mathrm{H}), 1.77-2.02(\mathrm{~m}, 3 \mathrm{H}), 2.97-3.11(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.24$ $(\mathrm{m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, minor) and $4.50(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, major, $1 \mathrm{H}), 4.52-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.65-4.72(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, major) and $7.05(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, minor, 1 H$), 7.11-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.36(\mathrm{~m}$, 2H), 7.77 (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, minor) and $8.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, major, 1 H$), 8.45-8.53(\mathrm{~m}, 1 \mathrm{H})$.
24		$\mathrm{t}_{\mathrm{R}}=9.9 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{3}^{+}[\mathrm{MH}]^{+}$ 546.3439 , found $546.3438 ;{ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two rotamers in a ratio of 2:1) δ
25		$\mathrm{t}_{\mathrm{R}}=7.3 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+}$ 557.3486, found $557.3494 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.85-0.95(\mathrm{~m}, 4 \mathrm{H}), 0.98-1.04(\mathrm{~m}, 2 \mathrm{H}), 1.05-1.08$ $(\mathrm{m}, 4 \mathrm{H}), 1.38-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.85(\mathrm{~m}, 10 \mathrm{H}), 1.91-2.14(\mathrm{~m}, 2 \mathrm{H})$, 3.03-3.12 (m, 1H), 3.41-3.51 (m, 1H), 4.12-4.18 (m, 1H), 4.63-4.71 $(\mathrm{m}, 1 \mathrm{H}), 4.75-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.97(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.93(\mathrm{~m}, 4 \mathrm{H})$, 7.19-7.29 (m, 3H), 7.33-7.40 (m, 2H), 8.11-8.15 (m, 1H), 8.73 (dt, $1 \mathrm{H}, J=1.6,4.8 \mathrm{~Hz}), 9.03(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) δ 11.6/11.9 (Ile- $\delta-\mathrm{CH}_{3}$), 16.1/16.4 $\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{3}\right.$), 24.2 (Ile- γ CH_{2}), 26.3(1)/26.3(5), 26.4(2)/26.4(7), 26.5(4), 33.0/33.1, 33.5/33.6, 33.9 , $34.4(2) / 34.4(5)$, $34.5(3)$, $38.4(7) / 38.5(1), 40.5(7) / 40.6(3)$, 41.3 (br), 44.9/45.3, 51.9 (br), 52.1/52.3, 53.2/53.3/53.4 ($2 \times \alpha-\mathrm{CH}$), $121.7(0) / 121.8(7) / 121.9(4), 123.7,125.8,127.4(8) / 127.5(5), 130.0$, $131.1,135.3,139.8 / 139.9,142.8 / 143.0,148.4,151.0(9) / 151.1(3)$, 152.6, 165.5, 170.1(6)/170.2(0), 172.0/172.1.
26		$\mathrm{t}_{\mathrm{R}}=12.9 \mathrm{~min}$ (Method IV); HRMS: calc. for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+}$ 572.3595 , found $572.3599 ;{ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two rotamers in a ratio of $1: 1.3) \delta 0.77-1.00(\mathrm{~m}, 8 \mathrm{H}), 1.01-1.42(\mathrm{~m}, 8 \mathrm{H})$, $1.45-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.77(\mathrm{~m}, 7 \mathrm{H}), 1.77-2.00(\mathrm{~m}, 3 \mathrm{H}), 2.98-3.12$ $(\mathrm{m}, 1 \mathrm{H}), 3.41-3.49(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=13 \mathrm{~Hz}$,

		minor) and $4.51(\mathrm{~d}, J=13 \mathrm{~Hz}$, minor, 1 H$), 4.53-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.62-$ $4.70(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, major) and $7.05(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, minor, 1 H), $6.95(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.19-8.29(\mathrm{~m}, 2 \mathrm{H}), 8.48-8.57$ ($\mathrm{m}, 2 \mathrm{H}$).
27		$\mathrm{t}_{\mathrm{R}}=11.6 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{3}^{+}[\mathrm{MH}]^{+}$ 558.3439 , found $558.3440 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.86-1.05(\mathrm{~m}, 7 \mathrm{H}), 1.12-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.57$ $(\mathrm{m}, 4 \mathrm{H}), 1.66-1.89(\mathrm{~m}, 9 \mathrm{H}), 1.91-2.21(\mathrm{~m}, 2 \mathrm{H}), 3.04-3.17(\mathrm{~m}, 1 \mathrm{H})$, $3.44-3.58(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.78(\mathrm{~m}, 2 \mathrm{H}), 4.91-4.97$ $(\mathrm{m}, 1 \mathrm{H}), 6.83-6.87(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 1 \mathrm{H})$, $8.17-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.4 / 11.6\left(\mathrm{Ile}-\delta-\mathrm{CH}_{3}\right.$), 15.9/16.3 (Ile- γ CH_{3}), 24.4 ($\mathrm{Ile}-\gamma-\mathrm{CH}_{2}$), $\quad 26.2(2) / 26.2(5), \quad 26.3(6) / 26.3(9), \quad 26.5$, $32.6(9) / 32.7(4), 33.5 / 33.6,33.9,34.4 / 34.5,38.0 / 38.1,40.1(5) / 40.2(0)$, $41.7 / 41.8, \quad 45.3 / 45.7, \quad 51.7(1) / 51.7(5), \quad 51.8(2) / 51.8(7), \quad 52.0 / 52.2$, $53.2 / 53.3 / 53.4 \quad(2 \times \alpha-\mathrm{CH}), \quad 121.7 / 121.8, \quad 121.9(7) / 122.0(0)$, 125.8/125.9, 127.5/127.6, 131.1(9)/131.2(5), 139.6/139.9, 142.8/143.0, 143.1, 144.4, 147.4,, 150.9/151.0, 163.2, 170.7, 172.4.
28		$\mathrm{t}_{\mathrm{R}}=15.0 \mathrm{~min}$ (Method I); HRMS: calc. for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 637.3748, found 637.3752; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.86-1.06(\mathrm{~m}, 7 \mathrm{H}), 1.09-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.55$ $(\mathrm{m}, 4 \mathrm{H}), 1.61-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.80-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.94-2.20(\mathrm{~m}, 3 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 3.02-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.55(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.23(\mathrm{~m}$, $1 \mathrm{H}), 4.60-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.90-4.98(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.92-$ $7.04(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.70(\mathrm{~m}, 1 \mathrm{H})$.
29		$\mathrm{t}_{\mathrm{R}}=12.1 \mathrm{~min}$ (Method I); HRMS: calc. for $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+}$ 595.3643 , found $595.3644 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.86(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.89-0.95(\mathrm{~m}, 4 \mathrm{H}), 0.96-$ $1.08(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.68-2.07(\mathrm{~m}$, $9 \mathrm{H}), 3.04-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.54(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.61-$ $4.74(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.98(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.74(\mathrm{~m}$, $1 \mathrm{H}), 6.81-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.30-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{t}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 7.98-8.03$ $(\mathrm{m}, 1 \mathrm{H}), 8.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
30		$\mathrm{t}_{\mathrm{R}}=12.8 \mathrm{~min}$ (Method I); HRMS: calc. for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{NaN}_{3} \mathrm{O}_{5}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 638.3564, found 38.3573 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.85-1.03(\mathrm{~m}, 9 \mathrm{H}), 1.08-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.52$ $(\mathrm{m}, 4 \mathrm{H}), 1.61-1.89(\mathrm{~m}, 5 \mathrm{H}), 1.92-2.13(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.13(\mathrm{~m}, 1 \mathrm{H})$, $3.41-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 4.10-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.78(\mathrm{~m}$, $2 \mathrm{H}), 4.89-4.96(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.92(\mathrm{~m}, 3 \mathrm{H}), 7.19-$ $7.36(\mathrm{~m}, 6 \mathrm{H})$.
31		$\mathrm{t}_{\mathrm{R}}=10.3 \mathrm{~min}$ (Method I); HRMS: calc. for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{3}^{+}[\mathrm{MH}]^{+}$ 583.3643, found 583.3645; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$) (two rotamers in a ratio of 1:1) $\delta 0.80-0.96(\mathrm{~m}, 8 \mathrm{H}), 1.03-1.32(\mathrm{~m}, 7 \mathrm{H})$, $1.47-1.70(\mathrm{~m}, 7 \mathrm{H}), 1.74-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.97-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{t}, 1 \mathrm{H}$, $J=12.8 \mathrm{~Hz}), 4.13-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=14 \mathrm{~Hz}), 4.48-4.60$ $(\mathrm{m}, 1 \mathrm{H}), 4.63-4.67(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=$ $16 \mathrm{~Hz}), 7.11-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 7.59(\mathrm{dd}, 1 \mathrm{H}, J=$

		$\begin{aligned} & \text { 5.2, 7.6 Hz), } 8.15(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.22(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 8.29-8.36 \\ & (\mathrm{~m}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}) . \\ & \hline \end{aligned}$
32	人m	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}(\text { Method } \mathrm{I}) ; \text { HRMS: calc. for } \mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+} \\ & 522.3690 \text {, found } 522.3698 ;{ }^{+} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \text { (two rotamers } \\ & \text { in a ratio of } 1.1) \delta 0.87-1.01(\mathrm{~m}, 8 \mathrm{H}), 1.07-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.58 \\ & (\mathrm{~m}, 3 \mathrm{H}), 1.64-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.78-2.11(\mathrm{~m}, 11 \mathrm{H}), 2.18-2.23(\mathrm{~m}, 2 \mathrm{H}) \text {, } \\ & 3.02-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.51(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.71 \\ & (\mathrm{~m}, 2 \mathrm{H}), 4.86-4.92(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 6.78-6.87(\mathrm{~m}, \\ & 2 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 6 \mathrm{H}) . \end{aligned}$
33	$\mathrm{H}_{2} \mathrm{~N} \underbrace{}_{\sim}$	$\mathrm{t}_{\mathrm{R}}=5.4 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{3}^{+}[\mathrm{MH}]^{+}$ 509.3486 , found $509.3492 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.81-0.95(\mathrm{~m}, 7 \mathrm{H}), 1.06-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.46$ $(\mathrm{m}, 4 \mathrm{H}), 1.56-1.71(\mathrm{~m}, 7 \mathrm{H}), 1.75-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.97-3.04(\mathrm{~m}, 1 \mathrm{H})$, $3.37-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.97-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.20$ $(\mathrm{m}, 1 \mathrm{H}), 4.51-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.83-4.92(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, 2 \mathrm{H}, J=2 \mathrm{~Hz})$, 7.13-7.34 (m, 6H), 7.55 (br s, 1 H), 8.28-8.46 (br d, 1H).
34	$\mathrm{H}_{2} \mathrm{~N} \sim_{\sim}^{\sim}$	$\mathrm{t}_{\mathrm{R}}=8.1 \mathrm{~min}$ (Method IV). HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{3}^{+}[\mathrm{MH}]^{+}$ 537.3799 , found $537.3790 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $1: 1), \delta 0.83-0.98(\mathrm{~m}, 8 \mathrm{H}), 1.06-2.15(\mathrm{~m}, 20 \mathrm{H}), 2.41-2.57$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.99-3.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right.$and $1 \times \mathrm{H}$ of piperidine$\left.\mathrm{CH}_{2}\right), 3.41-3.51\left(\mathrm{~m}, 1 \mathrm{H}\right.$, piperidine- $\left.\mathrm{CH}_{2}\right), 4.16-4.23(\mathrm{~m}, 1 \mathrm{H}$, piperidine- CH_{2}), 4.47-4.61 ($\mathrm{m}, 2 \mathrm{H}, \alpha-\mathrm{CH}$ and piperidine- CH_{2}), 4.84$4.91(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 6.82(\mathrm{~s}, 2 \mathrm{H}$, indene $2 \times \mathrm{CH}), 7.18-7.34(\mathrm{~m}, 4 \mathrm{H})$, 7.41-7.53 (m, 2H, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 8.06 (br s, 3H, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}_{3}{ }^{+}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 10.9/11.1 (Ile- $\delta-\mathrm{CH}_{3}$), 15.5/15.8 (Ile- $\gamma-\mathrm{CH}_{3}$), 22.8, 24.1, 25.9, 26.1, $26.3, \quad 32.2(8) / 32.3(2), \quad 33.2 / 33.4, \quad 33.4(8) / 33.5(3)$, $34.0(5) / 34.1(1) / 34.1(6), 37.5 / 37.6,39.3,39.6(6) / 39.7(4)$, 41.3 (s-syn amide piperidine NCH_{2}), 45.0/45.4 (s-anti amide piperidine NCH_{2}), 51.7/51.9 (spiro-C), 52.3/52.5 ($\alpha-\mathrm{CH}$), 52.8(6)/52.9(0) ($\alpha-\mathrm{CH}$), 121.4/121.6 (CH), 121.7/121.8 (CH), 125.5/125.7 (CH), 127.3/127.4 (CH), 130.9(8)/131.0(2) (indene-CH), 139.3/139.5 (indene-CH), 142.5/142.7 (C), 150.6(6)/150.7(3) (C), 170.7 (C), 172.7/172.9 (C), 173.2/173.3 (C).
35		$\mathrm{t}_{\mathrm{R}}=5.2 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 553.3748 , found $553.3748 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.83-0.99(\mathrm{~m}, 7 \mathrm{H}), 1.05-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.47$ $(\mathrm{m}, 3 \mathrm{H}), 1.48-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.77-1.91(\mathrm{~m}, 3 \mathrm{H})$, $1.93-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.98-3.11$ $(\mathrm{m}, 1 \mathrm{H}), 3.20-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.58(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.41(\mathrm{~m}, 1 \mathrm{H})$, $4.44-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.77-4.88(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.18-7.43(\mathrm{~m}$, 6 H), 7.89-7.94 (m, 1H), 8.07 (br s, 2H).
36	$\begin{aligned} & \mathrm{H}_{2} \mathrm{~N}^{\mathrm{N}} \\ & \mathrm{HO}^{-} \end{aligned}$	$\mathrm{t}_{\mathrm{R}}=9.7 \mathrm{~min}\left(\right.$ Method I); HRMS: calc. for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$539.3592, found 539.3589 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.81-0.96(\mathrm{~m}, 8 \mathrm{H}), 1.06-2.15(\mathrm{~m}, 18 \mathrm{H}), 2.93-3.07(\mathrm{~m}, 1 \mathrm{H})$, $3.36-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.92-4.17(\mathrm{~m}, 3 \mathrm{H}), 4.28-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.80-4.89$ $(\mathrm{m}, 1 \mathrm{H}), 6.71-6.86(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.47(\mathrm{~m}, 2 \mathrm{H})$.
37	$\begin{aligned} & \mathrm{H}_{2} \mathrm{~N}_{-\sim^{\sim}} \\ & \mathrm{H}_{2} \mathrm{~N}^{-} \end{aligned}$	$\mathrm{t}_{\mathrm{R}}=8.7 \mathrm{~min}$ (5 to $100 \% \mathrm{~B}$ in 15 min); HRMS: calc. for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+}$ $[\mathrm{MH}]^{+} 538.3752$, found 538.3752; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two

		rotamers in a ratio of 1:1), $\delta 0.80-0.96(\mathrm{~m}, 8 \mathrm{H}), 1.02-1.22(\mathrm{~m}, 4 \mathrm{H})$, $1.26-2.08(\mathrm{~m}, 14 \mathrm{H}), 2.95-3.08\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}\right.$ of piperidine- $\left.\mathrm{CH}_{2}\right), 3.41$ (br m, $1 \mathrm{H}, 1 \times$ of piperidine- CH_{2}), 3.55 (br m, $1 \mathrm{H}, 1 \times \mathrm{H}$ of Dap- β CH_{2}), $3.75\left(\mathrm{br} \mathrm{m}, 1 \mathrm{H}, 1 \times \mathrm{H}\right.$ of Dap- $\beta-\mathrm{CH}_{2}$), $4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 1 \times \mathrm{H}$ of piperidine $\left.-\mathrm{CH}_{2}\right), 4.61-4.36(\mathrm{~m}, 3 \mathrm{H}, 2 \times \alpha-\mathrm{CH}$ and $1 \times \mathrm{H}$ of piperidine$\left.\mathrm{CH}_{2}\right), 4.80-4.88(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 6.75-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.30(\mathrm{~m}$, $4 \mathrm{H}), 7.31-9.60(6 \mathrm{H}$, incl. $1 \times$ very br s at $\delta 8.50$ and $3 \times$ br s at $\delta 7.36$, 8.89 and 8.96).
38		$\mathrm{t}_{\mathrm{R}}=9.6 \mathrm{~min}$ (5 to $100 \% \mathrm{~B}$ in 15 min); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{4}^{+}$ $[\mathrm{MH}]^{+} 566.3701$, found $566.3701 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $1: 1) \delta 0.81-0.98(\mathrm{~m}, 8 \mathrm{H}), 1.02-1.23(\mathrm{~m}, 4 \mathrm{H})$, $1.53-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.54-2.12(\mathrm{~m}, 10 \mathrm{H}), 2.88-3.08(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}$ of piperidine $-\mathrm{CH}_{2}$ and Asn- $\beta-\mathrm{CH}_{2}$), 3.38-3.48 (m, 1 H), 4.13-4.19 (m, $1 \mathrm{H}), 4.46-4.62\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times \alpha-\mathrm{CH}\right.$ and $1 \times \mathrm{H}$ of piperidine $\left.-\mathrm{CH}_{2}\right), 4.82-$ $4.88(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 6.75-6.82(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.52-8.72$ ($\mathrm{m}, 6 \mathrm{H}$, incl. $1 \times$ very br s at $\delta 8.32,1 \times$ br s at $\delta 7.58$, and $3 \times$ doublets at $\delta 7.65, J=7.6 \mathrm{~Hz}, \delta 8.59, J=6.4 \mathrm{~Hz}$ and $\delta 8.70, J=6.4 \mathrm{~Hz}$).
39	\sim^{N}	$\mathrm{t}_{\mathrm{R}}=5.6 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+}$ 549.3799 , found $549.3792 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.83-0.98(\mathrm{~m}, 9 \mathrm{H}), 1.07-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.50$ $(\mathrm{m}, 3 \mathrm{H}), 1.60-1.75(\mathrm{~m}, 7 \mathrm{H}), 1.88-2.14(\mathrm{~m}, 5 \mathrm{H}), 2.40-2.53(\mathrm{~m}, 2 \mathrm{H})$, $3.00-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.50(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.69$ $(\mathrm{m}, 2 \mathrm{H}), 4.71-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.99(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.85(\mathrm{~m}, 2 \mathrm{H})$, $7.17-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.90-8.0$ (m, 1H).
40		$\mathrm{t}_{\mathrm{R}}=8.3 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 563.3592 , found $563.3598 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.87-1.03(\mathrm{~m}, 7 \mathrm{H}), 1.09-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.57$ $(\mathrm{m}, 4 \mathrm{H}), 1.58-1.84(\mathrm{~m}, 7 \mathrm{H}), 1.90-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.30(\mathrm{~m}, 2 \mathrm{H})$, $2.39-2.59(\mathrm{~m}, 3 \mathrm{H}), 3.04-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.55(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.28$ $(\mathrm{m}, 2 \mathrm{H}), 4.53-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.90-4.95(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.86(\mathrm{~m}, 2 \mathrm{H})$, $6.99-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.39(\mathrm{~m}, 6 \mathrm{H})$.
41		$\mathrm{Rt}=9.8 \mathrm{~min}$ (Method I); HRMS: calc. for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+}$ 563.3956, found $563.3956 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.85-0.99(\mathrm{~m}, 7 \mathrm{H}), 1.15-1.27(\mathrm{~m}, 7 \mathrm{H}), 1.33-1.55$ $(\mathrm{m}, 4 \mathrm{H}), 1.88-2.17(\mathrm{~m}, 12 \mathrm{H}), 2.50-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.98-3.04(\mathrm{~m}, 3 \mathrm{H})$, $3.40-3.57(\mathrm{~m}, 3 \mathrm{H}), 4.13-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{q}, 1 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 6.73-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.35(\mathrm{~m}, 6 \mathrm{H})$.
42		$\mathrm{V}=8.0 \mathrm{~min}$ (Method IV); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{O}_{3}{ }^{+}[\mathrm{MH}]^{+}$ 563.3704, found 563.3704; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $64: 36) \delta 0.84-0.99(\mathrm{~m}, 8 \mathrm{H}), 1.06-2.12(\mathrm{~m}, 18 \mathrm{H}), 3.00-$ $3.07(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.92-3.99(\mathrm{~m}, 1 \mathrm{H})$, $4.11-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.79-4.87$ (m, 1H), 6.79-6.83 (m, 2H), 7.16-7.34 (m, 4H), $7.40(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 7.83$ (br s, 2H), $8.00(\mathrm{~d}, 0.36 \mathrm{H}, J=7.2 \mathrm{~Hz}), 8.09(\mathrm{~d}, 0.36 \mathrm{H}, J=6.0 \mathrm{~Hz}), 8.35$ (br s, 0.64 H$), 8.69(\mathrm{br} \mathrm{s}, 0.64 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 11.2/11.5 (Ile- $\delta-\mathrm{CH}_{3}$), 15.8/16.1 (Ile- $\gamma-\mathrm{CH}_{3}$), 24.2(8)/24.3(3), 26.2, 26.4, 32.6(7)/32.6(9), 33.3(8)/33.4(4), 33.4(8)/33.5(2), 34.3/34.4, 37.7, $39.4,41.4 / 41.5,45.1 / 45.5,47.2 / 47.3,51.9 / 52.1,53.0 / 53.2,53.4 / 53.5$,

| | $57.2(6) / 57.2(9)$, | $121.5 / 121.8$, | 121.9, | $125.7 / 125.8$, | $127.4 / 127.5$, |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| | $131.1 / 131.2$, | $139.6 / 139.7$, | $142.7 / 142.9$, | $150.9 / 151.0$, | 160.5, |
| | $170.6 / 170.7$, | $172.7 / 172.9$. | | | |

ID	\mathbf{R}_{2}	Analytical data
43		$\mathrm{t}_{\mathrm{R}} 9.2 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$507.2966, found 507.2965 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $57: 43) \delta 0.86-0.95(\mathrm{~m}, 5 \mathrm{H}), 1.00(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.07(\mathrm{~s}, 4 \mathrm{H})$, $1.13(\mathrm{~s}, 5 \mathrm{H}), 1.39-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.04(\mathrm{~m}$, $2 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.57(\mathrm{~m}, 1 \mathrm{H}), 4.12-$ $4.27(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.92-4.98(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.97-6.98(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 6 \mathrm{H}), 8.34(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$.
44		$\mathrm{t}_{\mathrm{R}} 10.0 \mathrm{~min}(0 \%$ to 100% B in 10 min , then 100% B for extra 5 min$)$; HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{5}{ }^{+}[\mathrm{MH}]^{+} 550.3024$, found 550.3022; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.85-1.54$ $(\mathrm{m}, 10 \mathrm{H}), 1.80-2.22(\mathrm{~m}, 3 \mathrm{H}), 3.06-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.45-$ $3.55(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 4 \mathrm{H}), 4.14$ $(\mathrm{d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.58-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.85(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.34$ $(\mathrm{m}, 1 \mathrm{H}), 6.81-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}) / 7.00(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-$ $7.37(\mathrm{~m}, 4 \mathrm{H}), 7.96(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 8.34(\mathrm{~d}) / 8.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.77-8.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.4 / 11.6$ (Ile-$\left.\delta-\mathrm{CH}_{3}\right), 15.8 / 16.2\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{3}\right), 24.3\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{2}\right), 33.5 / 33.6,34.2 / 34.3$, 37.4, 41.8/42.0, 45.2/45.7, 48.6, 51.9/52.1, 53.3, 54.6/54.7, 58.3/58.4, $63.9,107.5,121.6 / 121.9,122.0,125.8 / 125.9,127.6 / 127.7,131.4$, $139.5 / 139.6,142.8 / 142.9,150.8 / 150.9$, $151.1,157.0,161.6,167.8$, 170.7.
45		$\mathrm{t}_{\mathrm{R}}=11.4 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 561.3435 , found $561.3438 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1) $\delta 0.84-0.96(\mathrm{~m}, 6 \mathrm{H}), 1.02(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.09-$ $1.32(\mathrm{~m}, 7 \mathrm{H}), 1.40-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.78-1.87(\mathrm{~m}$, $2 \mathrm{H}), 1.90-2.05(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.44-$ $3.57(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.92-4.98(\mathrm{~m}$, $1 \mathrm{H}), 6.83-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{t}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.03(\mathrm{dd}, 1 \mathrm{H}, J=8.8$ $\mathrm{Hz}, 16.6 \mathrm{~Hz}), 7.20-7.36(\mathrm{~m}, 5 \mathrm{H}), 8.34-8.35(\mathrm{~m}, 1 \mathrm{H})$.

46: $\mathrm{t}_{\mathrm{R}} 8.7 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}[\mathrm{MH}]^{+} 519.2966$, found 519.2968; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) (two rotamers in a ratio of 1:1) $\delta 0.90-1.03(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.35-$ $1.42(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.72(\mathrm{~m}, 12 \mathrm{H}), 1.75-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.96-2.17(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.48$ (br s, 1H), 4.60-4.64 (m, 1H), 6.79-6.81 (m, 2H), $6.87(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 7.08-7.12(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 7.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, 1 \mathrm{H}, J=$ 1.8 Hz).

ID	\mathbf{R}_{3}	Analytical data
47		$\mathrm{t}_{\mathrm{R}}=11.1 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}[\mathrm{MH}]^{+}$547.3279, found $547.3278 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, two rotamers in a ratio of $\left.3: 2\right) \delta$ $0.92-1.08(\mathrm{~m}, 12 \mathrm{H}), 1.11-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.52(\mathrm{~m}$, $1 \mathrm{H}), 1.63-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.77-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.91-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.99-3.04$ $(\mathrm{m}, 0.6 \mathrm{H}) / 3.09-3.14(\mathrm{~m}, 0.4 \mathrm{H}), 3.41-3.46(\mathrm{~m}, 0.6 \mathrm{H}) / 3.49-3.54(\mathrm{~m}, 0.4 \mathrm{H})$, $4.20-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, 0.4 \mathrm{H}, J=9.6 \mathrm{~Hz}) / 4.99(\mathrm{~d}$, $0.6 \mathrm{H}, J=9.6 \mathrm{~Hz}), 6.71-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.95(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.8,17.4 \mathrm{~Hz}), 7.19-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H})$, $8.34(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz})$.
48		$\mathrm{t}_{\mathrm{R}}=11.9 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}[\mathrm{MH}]^{+}$587.3592, found 587.3588 ; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in a ratio of $1: 1$) $\delta 0.84-1.07(\mathrm{~m}, 4 \mathrm{H}), 1.08-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.30-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.57-1.91(\mathrm{~m}$, $12 \mathrm{H}), 1.95-2.20(\mathrm{~m}, 3 \mathrm{H}), 3.01-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.56(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.12$ $(\mathrm{m}, 1 \mathrm{H}), 4.58-4.75(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.15(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.94-$ $6.95(\mathrm{~m}, 1 \mathrm{H}), 6.99-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.36(\mathrm{~m}, 4 \mathrm{H})$, $8.34(\mathrm{dd}, 1 \mathrm{H}, J=0.8,1.6 \mathrm{~Hz})$.
49		$\mathrm{t}_{\mathrm{R}}=11.1 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{5}^{+}[\mathrm{MH}]^{+}$535.2915, found 535.2915 ; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in a ratio of $1: 1$) $\delta 0.86-1.28(\mathrm{~m}, 8 \mathrm{H}), 1.34-2.14(\mathrm{~m}, 12 \mathrm{H}), 2.84-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.64(\mathrm{~m}$, $1 \mathrm{H}), 4.06-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.97(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.22$ $(\mathrm{m}, 1 \mathrm{H}), 6.80-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.11-7.67(\mathrm{~m}, 6 \mathrm{H})$, $8.35(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$.
50		$\mathrm{t}_{\mathrm{R}}=9.2 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{5}^{+}[\mathrm{MH}]^{+}$549.3071, found $549.3072 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two rotamers in a ratio of $1: 1$) $\delta 0.88-1.32(\mathrm{~m}, 8 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.63-2.16(\mathrm{~m}, 9 \mathrm{H}), 3.07-3.17(\mathrm{~m}$, $1 \mathrm{H}, s$-syn amide piperidine NCH_{2}), $3.35(\mathrm{~s}) / 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.44-3.53$ ($\mathrm{m}, 1 \mathrm{H}, s$-anti amide piperidine NCH_{2}), $3.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Thr}-\beta-\mathrm{CH}), 4.17$ (br s, $1 \mathrm{H}, s$-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.65-4.72(\mathrm{~m}, 1 \mathrm{H}, s$-syn amide piperidine NCH_{2}), 4.72-4.79 (m, 1H, Cha- $\alpha-\mathrm{CH}$), 5.12 (dd, $1 \mathrm{H}, J=8.0,4.0 \mathrm{~Hz}$, Thr- $\alpha-$ CH), $6.83(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}$, indene-CH), $6.85(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}$, indeneCH), $6.96(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$, isoxazole-CH), $7.40-7.19(\mathrm{~m}, 6 \mathrm{H}), 8.35(\mathrm{~d}, 1 \mathrm{H}$, $J=2.0 \mathrm{~Hz}$, isoxazole-CH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.1 / 15.2$ ($\mathrm{Thr}-\gamma-$ CH_{3}), 25.9, 26.1(0)/26.1(4), 26.3, 32.3, 33.2/33.4, 33.7, 34.0, 40.1, 41.6/41.8

		(s-syn amide piperidine NCH_{2}), 45.2/45.6 (s-anti amide piperidine NCH_{2}), 51.4 (Cha- $\alpha-\mathrm{CH}$), $51.8 / 52.0$ (spiro-C), $52.7 / 52.9$ (Thr- $\alpha-\mathrm{CH}$), $56.9\left(\mathrm{OCH}_{3}\right)$, 106.9 (isoxazole-CH), 121.5/121.6 (CH), 121.7 (CH), 125.5/125.6 (CH), $127.3(\mathrm{CH}), \quad 130.9(6) / 131.0(0)$ (indene-CH), 139.5/139.6 (indene-CH), 142.6/142.7, 150.7(6)/150.8(4), 151.0(4) (isoxazole-CH), 155.7, 162.2, 168.1/168.2, 171.6/171.8.
51		$\mathrm{t}_{\mathrm{R}}=10.1 \mathrm{~min}$ (Method I); HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+}[\mathrm{MH}]^{+} 534.3075$, found $534.3070 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in a ratio of 1:1) $\delta 0.82-1.22(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.82(\mathrm{~m}, 8 \mathrm{H}), 1.92-2.08(\mathrm{~m}$, $3 \mathrm{H}), 2.20-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.82-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.38-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.08$ $(\mathrm{m}, 1 \mathrm{H}), 4.46-4.74(\mathrm{~m}, 2 \mathrm{H}), 5.04-5.14(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.14-7.33(\mathrm{~m}, 4 \mathrm{H}), 8.0-8.17(\mathrm{br} \mathrm{m}, 5 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.9,26.1,26.2,30.0 / 30.4,32.1(5) / 32.2(2), 33.1 / 33.2$, $33.5 / 33.6 / 33.8,34.1,36.1,39.1 / 39.2$, 41.5/41.6 (s-syn amide piperidine NCH_{2}), 44.5/44.7 (s-anti amide piperidine NCH_{2}), 47.0/47.1 (Dab- $\alpha-\mathrm{CH}$), 51.7/51.8 (spiro-C), $51.9 / 52.0 \quad$ (Cha- $\alpha-\mathrm{CH}$), 107.0 (isoxazole-CH), $121.65(1) / 121.6(0)(\mathrm{CH}), 121.6(3) / 121.6(9)(\mathrm{CH}), 125.5 / 125.6(\mathrm{CH}), 127.3$ (CH), 130.9(6)/131.0(0) (indene-CH), 139.4 (indene-CH), 142.6/142.7, 150.7/150.8, 151.2 (isoxazole-CH), 156.3(7)/156.4(1), 161.9(6)/162.0(4), 168.6/168.8, 173.1/173.2.
52		$\mathrm{t}_{\mathrm{R}}=10.1 \mathrm{~min}$ (Method I); HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{5}{ }^{+}[\mathrm{MH}]^{+}$548.2867, found $548.2869 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $1: 1$) $\delta 0.82-2.30(\mathrm{~m}, 17 \mathrm{H}), 2.56-2.90(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.54(\mathrm{~m}$, $1 \mathrm{H}), 4.06-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.64(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.34(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{br} \mathrm{s})$ and $6.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.74-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 7.14-7.63$ $(\mathrm{m}, 6 \mathrm{H}), 8.35(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz})$.
53		$\mathrm{t}_{\mathrm{R}}=9.1 \mathrm{~min}$ (Method I); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{6} \mathrm{O}_{4}{ }^{+}[\mathrm{MH}]^{+}$571.3027, found $571.3026 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $54: 46) \delta 0.80-1.20(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.80(\mathrm{~m}, 10 \mathrm{H}), 1.95-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.92-$ $3.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-syn amide piperidine NCH_{2} and $\left.\mathrm{His}-\beta-\mathrm{CH}_{2}\right), 3.44-3.58$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 3.96-4.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-anti amide piperidine NCH_{2}), 4.48-4.71 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}$ of s-syn amide piperidine NCH_{2} and Cha- $\alpha-\mathrm{CH}$), 5.24-5.33 (m, 1 H , His- $\alpha-\mathrm{CH}$), 6.77-7.00 (m, 3 H), $7.14-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.85(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$, Cha-NH), $8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, major) and 8.04 (d, $J=8.4 \mathrm{~Hz}$, minor, 1 H , His-NH), $8.32(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$, His-CH), 8.51 (br s, 1H, isoxazole-CH).

ID	\mathbf{R}_{4}	Analytical data

		incl. $1 \times$ epoxide- CH and H_{eq} of s-anti amide piperidine NCH_{2}), 4.30 (d, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}, 1 \times$ epoxide-CH), 4.60-4.78 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}$ of s-syn amide piperidine NCH_{2}), 4.78-4.86 (m, 1 H$), 4.92-5.03(\mathrm{~m}, 1 \mathrm{H})$, $6.96(\mathrm{~m}, 1 \mathrm{H}$, isoxazole-CH), $7.05-7.53(\mathrm{~m}, 6 \mathrm{H}, 4 \times \mathrm{PhCH}$ and $2 \times$ NH), 8.32 (m, 1H, isoxazole-CH).
55		$\mathrm{t}_{\mathrm{R}}=9.9 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{NaO}_{6} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+} 650.2983$, found $650.2985 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 2:1) $\delta 0.85-1.03(\mathrm{~m}, 8 \mathrm{H}), 1.09-2.10(\mathrm{~m}$, $18 \mathrm{H}), 2.80-2.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-syn amide piperidine NCH_{2}), $2.94(\mathrm{~s}) / 2.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{Me}\right), 3.24-3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti amide piperidine NCH_{2}), 3.86-3.93 (m, 2H, indole- NCH_{2}), 4.14-4.24 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}$ of s-anti amide piperidine NCH_{2}), 4.56-4.74 (m, 2H, Cha- $\alpha-$ CH and H_{eq} of s-syn amide piperidine NCH_{2}), 4.87-4.91 (m, 1 H , Ile-$\alpha-\mathrm{CH}), 6.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, major) and $6.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, minor, 1 H , isoxazole-CH), 7.05-7.31 (m, 4H), 7.37-7.42 (m, 1H, NH), 7.45 (d, $J=8.8 \mathrm{~Hz}$, minor) and $7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, major, $1 \mathrm{H}, \mathrm{NH}$), 8.35 (d, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, isoxazole-CH).
56		$\mathrm{t}_{\mathrm{R}}=9.6 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{NaO}_{6}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 587.2840 , found $587.2843 \cdot{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in a ratio of $72: 28) \delta 0.88-1.90(\mathrm{~m}, 24 \mathrm{H}), 2.00-2.16(\mathrm{~m}$, $1 \mathrm{H}, 1 \times \mathrm{H}$ of s-syn amide piperidine $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 2.29-2.37 (m, 1 H , $1 \times \mathrm{H}$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.14-3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-syn amide piperidine NCH_{2}), 3.63-3.71 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {ax }}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.17-4.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {eq }}\right.$ of s-anti amide piperidine NCH_{2}), 4.66-4.76 (m, 2 H , Cha- $\alpha-\mathrm{CH}$ and H_{eq} of s-syn amide piperidine NCH_{2}), 4.89-4.94 (m, 1H, Ile- $\alpha-\mathrm{CH}$), 6.95 (d, 1 H , $J=2.0 \mathrm{~Hz}), 6.88(\mathrm{~d}, 0.28 \mathrm{H}, J=8.8 \mathrm{~Hz})$ and $7.03(\mathrm{~d}, 0.72 \mathrm{H}, J=8.8$ Hz , Ile-NH), 7.16-7.21 (m, 1H, Cha-NH), 7.35 (d, 0.28H, $J=$ $8.0 \mathrm{~Hz})$ and $7.45(\mathrm{~d}, 0.72 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.54-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.68-$ $7.73(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.95(\mathrm{~m}, 1 \mathrm{H}), 8.35(\mathrm{~d}, 0.28 \mathrm{H}, J=2.0 \mathrm{~Hz})$ and $8.36(\mathrm{~d}, 1 \mathrm{H}, 0.72 \mathrm{H}, J=2.0 \mathrm{~Hz}$, isoxazole-CH).
57		$\mathrm{t}_{\mathrm{R}}=10.4 \min$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{6}^{+}[\mathrm{MH}]^{+}$ 579.3177 , found $579.3178 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $55: 45) \delta 0.85-1.08(\mathrm{~m}, 8 \mathrm{H}), 1.03-1.40(\mathrm{~m}$, $5 \mathrm{H}), 1.43-1.84(\mathrm{~m}, 11 \mathrm{H}), 2.11-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.82(\mathrm{~m}, 2 \mathrm{H}$, benzopyranone- CH_{2}), $3.10-3.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-syn amide piperidine NCH_{2}), 3.56-3.69 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 3.93-4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {eq }}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right)$, 4.37-4.47 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {eq }}$ of s-syn amide piperidine NCH_{2}), 4.62-4.72 (m, 1H, Cha- $\alpha-\mathrm{CH}$), 4.85 (app t, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}$, Ile- $\alpha-\mathrm{CH}$), 6.94 (d, $J=2.0 \mathrm{~Hz})$ and $6.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, isoxazole- CH$), 6.99-7.08$ $(\mathrm{m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, major) and $7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, minor, 1 H, Cha-NH), $7.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, minor) and $7.44(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, major, 1 H , Ile-NH), $7.50-7.56$ (m, 1H), 7.87-7.91 (m, 1H), 8.35 (d, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, isoxazole- CH).
58		$\mathrm{t}_{\mathrm{R}}=10.6 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{5}{ }^{+}[\mathrm{MH}]^{+}$ 565.3384, found 565.3385; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $1: 1) \delta 0.85-1.00(\mathrm{~m}, 8 \mathrm{H}), 1.11-1.24(\mathrm{~m}, 6 \mathrm{H})$, $1.49-2.22(\mathrm{~m}, 14 \mathrm{H}), 2.77-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of $s-$

		syn amide piperidine NCH_{2}), 3.57-3.69 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 3.92-4.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.40-4.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right)$, $4.68-4.76(\mathrm{~m}, 1 \mathrm{H}$, Cha- $\alpha-\mathrm{CH}$), $4.90(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}$, Ile- $\alpha-\mathrm{CH}$), $6.82-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.58(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{NH}), 8.34(\mathrm{~d}, 1 \mathrm{H}, J=1.2$ Hz , isoxazole-CH).
59		$\mathrm{t}_{\mathrm{R}}=9.1 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{6}{ }^{+}[\mathrm{MH}]^{+}$ 555.3177, found 555.3179; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) (two rotamers in a ratio of $58: 42) \delta 0.89-1.98(\mathrm{~m}, 22 \mathrm{H}), 2.75-2.95(\mathrm{~m}$, 2 H), 3.64-3.97 ($\mathrm{m}, 8 \mathrm{H}$, including MeO singlets at $\delta 3.82$ and 3.84), $4.54-4.87(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~s}) / 6.87(\mathrm{~s}) / 6.89(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=2.0$ Hz, minor) and $7.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, major, 1 H , isoxazole- CH), 8.29 (d, $J=8.8 \mathrm{~Hz}$, minor) and $8.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, major, $1 \mathrm{H}, \mathrm{NH}$), 8.86 (d, 1H, $J=2.0 \mathrm{~Hz}$, isoxazole-CH), $9.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, minor $)$ and 9.01 (d, $J=8.0 \mathrm{~Hz}$, major, $1 \mathrm{H}, \mathrm{NH}$).
60		$\mathrm{t}_{\mathrm{R}}=13.6 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{5}{ }^{+}[\mathrm{MH}]^{+}$ 600.4119, found 600.4118; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) (two rotamers in a ratio of 1:1) $\delta 0.76-0.91(\mathrm{~m}, 8 \mathrm{H}), 0.97-1.36(\mathrm{~m}, 18 \mathrm{H})$, $1.40-1.70(\mathrm{~m}, 15 \mathrm{H}), 1.77-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.95(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{t}$, $1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 3.64(\mathrm{dd}, 1 \mathrm{H}, J=4.4,13.2 \mathrm{~Hz}), 4.41-4.54(\mathrm{~m}$, $2 \mathrm{H}), 4.65(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 4.78-4.81(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.13$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}), 8.11(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.72(\mathrm{~d}, 1 \mathrm{H}, J=1.6$ $\mathrm{Hz}), 8.91(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$.
61		$\mathrm{t}_{\mathrm{R}}=9.3 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{5}^{+}[\mathrm{MH}]^{+}$ 546.3650, found 546.3653; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) (two rotamers in a ratio of 2:1) $\delta 0.76-0.92(\mathrm{~m}, 10 \mathrm{H}), 0.97-1.23(\mathrm{~m}, 6 \mathrm{H})$, $1.16-1.26(\mathrm{~m}, 11 \mathrm{H}), 1.27-1.44(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.67(\mathrm{~m}, 12 \mathrm{H}), 1.76-$ $1.81(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.98(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 4.49-$ $4.55(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.92-4.94(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}$, $1 \mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 8.06(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 8.72(\mathrm{~d}, 1 \mathrm{H}$, $J=2.0 \mathrm{~Hz}), 8.91(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$.
62		$\mathrm{t}_{\mathrm{R}}=28.6 \mathrm{~min}(0 \%$ to $100 \% \mathrm{~B}$ linear gradient over 30 min followed by a further 10 min at $100 \% \mathrm{~B}$); HRMS: calc. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+}$ $[\mathrm{MH}]^{+} 524.3231$, found 524.3243 ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) (two rotamers in a ratio of 1:1) 0.78-0.72 (m, 6H); 0.84-0.89 (m, $2 \mathrm{H}), 1.02-1.11(\mathrm{~m}, 4 \mathrm{H}), 1.22-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.64(\mathrm{~m}, 8 \mathrm{H})$, $1.77-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.94-3.13(\mathrm{~m}, 5 \mathrm{H}), 3.49-3.77(\mathrm{~m}, 8 \mathrm{H}), 4.49-$ $4.55(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{t}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.79(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.92$ $(\mathrm{d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=7.3$, $8.7 \mathrm{~Hz}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.88(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz})$.
63		$\mathrm{t}_{\mathrm{R}}=8.2 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{FN}_{5} \mathrm{O}_{4}{ }^{+}[\mathrm{MH}]^{+}$ 542.3137, found 542.3137; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $1: 1) \delta 0.85-1.02(\mathrm{~m}, 8 \mathrm{H}), 1.07-1.29(\mathrm{~m}, 4 \mathrm{H})$, $1.30-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.85(\mathrm{~m}, 10 \mathrm{H}), 3.16-$ $3.36(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.01-4.07(\mathrm{~m}$, $1 \mathrm{H}), 4.11-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Cha}-\alpha-\mathrm{CH}), 4.80(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz})$ and $4.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ile- $\alpha-\mathrm{CH}$), $6.91(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ $\mathrm{Hz}), 6.93-7.17(\mathrm{~m}, 6 \mathrm{H}), 8.34(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$.

64		$\mathrm{t}_{\mathrm{R}}=5.7 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{FN}_{5} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 556.3294, found 556.3291; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) (two rotamers in a ratio of 1:1) $\delta 0.90-1.09(\mathrm{~m}, 8 \mathrm{H}) 1.13-1.49(\mathrm{~m}, 6 \mathrm{H})$, 1.52-1.94 (m, 10H), 2.82-3.18 (m, 4H), 3.58 ($\mathrm{CH}_{2} \mathrm{Ar}$, overlapped with water peak), 4.38-4.58 (m, 4H), 4.59-4.64 (m, 1H, Cha- $\alpha-$ CH), 4.65-4.70 (app t, 1H, $J=8.4 \mathrm{~Hz}$, Ile- $\alpha-\mathrm{CH}$), 7.27 (s, 1 H , isoxazole-CH), 7.43-7.45 (m, 2H), 7.65-7.67 (m, 2H), 8.28 (d, 1H, $J=8.0 \mathrm{~Hz}$), 8.88 ($\mathrm{s}, 1 \mathrm{H}$, isoxazole- CH), $9.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
66		$\mathrm{t}_{\mathrm{R}}=12.7 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{ClN}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 577.2889, found 577.2894; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $1: 1) \delta 0.84-1.03(\mathrm{~m}, 8 \mathrm{H}), 1.07-1.38(\mathrm{~m}, 6 \mathrm{H})$, 1.44-2.00 $(\mathrm{m}, 12 \mathrm{H}), 2.66-2.79\left(\mathrm{~m}, 2 \mathrm{H}\right.$, piperidine-CHAr and $\mathrm{H}_{\text {ax }}$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 3.15-3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti amide piperidine NCH_{2}), 4.12-4.19 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-anti amide piperidine NCH_{2}), 4.65-4.71 (m, $\left.1 \mathrm{H}, \alpha-\mathrm{CH}\right), 4.74-4.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-syn amide piperidine NCH_{2}), 4.86-4.91 (m, $\left.1 \mathrm{H}, \alpha-\mathrm{CH}\right), 6.74-$ $6.79(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$, isoxazole-CH), 7.04-7.08(m, $1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 2 \mathrm{H}), 8.33(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, isoxazole-CH).
67		$\mathrm{t}_{\mathrm{R}}=11.7 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{5}{ }^{+}[\mathrm{MH}]^{+}$ 553.3384, found 553.3384; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $1: 1) \delta 0.84-1.03(\mathrm{~m}, 8 \mathrm{H}), 1.06-1.36(\mathrm{~m}, 5 \mathrm{H})$, 1.43-2.00 $(\mathrm{m}, 13 \mathrm{H}), 2.71-2.78\left(\mathrm{~m}, 2 \mathrm{H}\right.$, piperidine-CHAr and H_{ax} of s-syn amide piperidine NCH_{2}), 3.17-3.22 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti amide piperidine NCH_{2}), $3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.15-4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-anti amide piperidine NCH_{2}), 4.65-4.70 (m, $\left.1 \mathrm{H}, \alpha-\mathrm{CH}\right), 4.73-$ $4.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.87-4.93(\mathrm{~m}$, $1 \mathrm{H}, \alpha-\mathrm{CH}), 6.84-6.94(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 3 \mathrm{H}), 8.33(\mathrm{~d}, 1 \mathrm{H}, J=$ 2.0 Hz , isoxazole-CH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.3/11.5 (Ile-$\left.\delta-\mathrm{CH}_{3}\right)$, 15.7/16.1 $\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{3}\right)$, 24.0/24.1 $\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{2}\right), 26.0,26.1$, $26.332 .6 / 32.7,33.1 / 33.3,33.6,34.0,38.0(6) / 38.1(1), 40.2$, $41.5 / 41.8,43.1$ (br s), 46.6/47.1, 51.4 (br s), 53.0/53.1/53.2, 55.2/55.3, 106.8 (isoxazole-4-CH), 113.9(6)/140.0(1), 127.5/127.6, $136.8 / 136.9, \quad 151.0, \quad 155.4,158.2 / 158.3,162.4,169.9 / 170.0$, 171.1(5)/171.2(1).
68		

		$\begin{aligned} & 23.9(9) / 24.0(4)\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{2}\right), 26.0,26.1,26.331 .4(5) / 31.5(3), 32.2, \\ & 32.5 / 32.6, \quad 33.6, \quad 34.0 / 34.1, \quad 35.5 / 35.9, \quad 38.1, \quad 40.2, \quad 43.3 / 43.4, \\ & 46.7 / 47.1, \quad 51.3(5) / 51.4(2), \quad 53.0 / 53.1, \quad 55.7, \quad 55.8 / 55.9, \quad 106.7, \\ & 110.6 / 111.0,111.3,113.4 / 113.8,127.3,134.1,151.0,153.7,155.4, \\ & 162.4,169.8 / 169.9,171.1 / 171.2 . \end{aligned}$
69		$\mathrm{t}_{\mathrm{R}}=12.8 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}[\mathrm{MH}]^{+}$ 591.3153, found $591.3156 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $59: 41) \delta 0.86-1.07(\mathrm{~m}, 8 \mathrm{H}), 1.08-1.59(\mathrm{~m}$, $7 \mathrm{H}), 1.61-2.01(\mathrm{~m}, 9 \mathrm{H}), 2.70-2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 3.19-3.28\left(\mathrm{~m}, 2 \mathrm{H}\right.$, piperidine-CHAr and H_{ax} of s anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.16-4.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-anti amide piperidine NCH_{2}), 4.66-4.74 (m, 1H, Cha- $\alpha-\mathrm{CH}$), 4.81 ($\mathrm{d}, \mathrm{J}=13.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.89-4.94(\mathrm{~m}, 1 \mathrm{H}$, Ile-$\alpha-\mathrm{CH}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, minor) and $6.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, major, $1 \mathrm{H}), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}$, isoxazole-CH), 7.08-7.13 (m, 1H), $7.31-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.67(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{~d}$, $1 \mathrm{H}, J=1.8 \mathrm{~Hz}$, isoxazole- CH).
70		$\mathrm{t}_{\mathrm{R}}=12.0 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{5}^{+}[\mathrm{MH}]^{+}$ 675.2976, found 675.2976; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 2:1), $\delta 0.86-1.03(\mathrm{~m}, 8 \mathrm{H}), 1.08-2.30(\mathrm{~m}$, $19 \mathrm{H}), 3.17-3.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right)$, 3.66$3.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 3.98(\mathrm{~d}, J=13.2$ Hz , minor) and $4.04\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}\right.$, major, $1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}$ of s-anti amide piperidine NCH_{2}), 4.61-4.68 (m, 2H, Cha- $\alpha-\mathrm{CH}$ and $\mathrm{H}_{\text {eq }}$ of s-syn amide piperidine NCH_{2}), 4.87-4.91 (m, 1 H , $\mathrm{Ile}-\alpha-\mathrm{CH}$), 6.78 (d, $J=$ 9.0 Hz, minor) and $6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, major, $1 \mathrm{H}, \mathrm{NH}), 6.92(\mathrm{~d}, J=$ 1.8 Hz , major) and $6.94(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, minor, 1 H , isoxazole- CH), 7.03 (d, J = 7.8 Hz , major) and 7.07 (d, $J=8.4 \mathrm{~Hz}$, minor, $1 \mathrm{H}, \mathrm{NH}$), $7.71(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.78-7.82(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.35(\mathrm{~d}$, $1 \mathrm{H}, J=1.8 \mathrm{~Hz}$, isoxazole-CH).
71		$\mathrm{t}_{\mathrm{R}}=8.3 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{5}^{+}[\mathrm{MH}]^{+}$ 580.3493, found 580.3493; ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) (two rotamers in a ratio of 62:38), $\delta 0.79-0.93(\mathrm{~m}, 8 \mathrm{H}), 1.01-1.33(\mathrm{~m}$, $5 \mathrm{H}), 1.46-1.85(\mathrm{~m}, 11 \mathrm{H}), 1.88$ (s, minor) and 1.91 (s, major, 3 H , Ac), 2.38-2.45 (m, 2H), 2.83-2.90 (m, 1H, H_{ax} of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 3.24-3.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 3.97-4.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right)$, $4.27\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}\right.$, minor) and $4.34\left(\mathrm{~d}, J=12.6 \mathrm{H}\right.$, major, $1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}$ of s-syn amide piperidine NCH_{2}), $4.52-4.58(\mathrm{~m}, 2 \mathrm{H}, 2 \times \alpha-\mathrm{CH})$, 7.13 (d, $J=1.8 \mathrm{~Hz}$, major), and $7.16(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, minor, 1 H , isoxazole-CH), 7.18-7.22 (m, 1H), 7.26-7.34 (m, 4H), 8.06 (s, major) and $8.07(\mathrm{~s}$, minor, $1 \mathrm{H}, \mathrm{AcNH}), 8.16(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, minor) and $8.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, major, $1 \mathrm{H}, \mathrm{NH}), 8.73(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, major) and $8.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, minor, 1 H , isoxazole-CH), $8.91(\mathrm{~d}, J=8.4$ Hz, minor) and 8.92 (d, major, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \quad \mathrm{CDCl}_{3}$): 11.5/11.6 (Ile- $\delta-\mathrm{CH}_{3}$), 16.0/16.1 ($\mathrm{Ile}-\gamma-\mathrm{CH}_{3}$), $23.9(6) / 24.0(3) \quad(\mathrm{Ac}), \quad 24.3(9) / 24.4(3) \quad\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{2}\right), \quad 26.0$, $26.1(6) / 26.2(1) / 26.2(8), 26.5,32.2 / 32.3,33.6 / 33.7,34.1 / 34.2,35.4$, $36.1 / 36.3,36.5 / 36.7,38.2(9) / 38.3(4)$, $39.3(3) / 39.4(1)$, $42.0 / 42.2$,

		51.3/51.4 ($\alpha-\mathrm{CH}$), 52.6/52.7 ($\alpha-\mathrm{CH}$), 56.5/56.7 (C), 106.6/106.7 (isoxazole-4-CH), 125.3/125.5 (CH), 126.7/126.8 (CH), 128.5/129.6 (CH), 147.1/147.2 (C), 152.1(8)/152.2(3) (isoxazole-3-CH), 155.8 (C), 162.8 (C), 163.2 (C), 169.6/169.8 (C), 171.6/171.7 (C).
72		$\mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 537.3435, found 537.3449; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) (two rotamers in a ratio of 58:42), $\delta 0.76-1.40(\mathrm{~m}, 15 \mathrm{H}), 1.40-1.82(\mathrm{~m}$, $12 \mathrm{H}), 2.32-2.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {ax }}\right.$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 2.50$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$, overlapped with the solvent peak), 2.89-2.98 (m, 1H, H_{ax} of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.02\left(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}\right.$ of s anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.31-4.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {eq }}\right.$ of s-syn amide piperidine NCH_{2}), $4.50-4.60(\mathrm{~m}, 2 \mathrm{H}, 2 \times \alpha-\mathrm{CH}), 7.12-7.30(\mathrm{~m}, 6 \mathrm{H})$, 8.04 (d, $J=8.8 \mathrm{~Hz}$, minor) and 8.16 (d, $J=9.2 \mathrm{~Hz}$, major, $1 \mathrm{H}, \mathrm{NH}$) 8.74 (s, minor) and 8.76 (s, major, 1 H , isoxazole- CH), 8.89-8.95 (m, 1H, NH).
73		$\mathrm{t}_{\mathrm{R}}=14.3 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 599.3592, found 599.3597; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 56:44), $\delta 0.79-1.54(\mathrm{~m}, 14 \mathrm{H}), 1.54-1.86(\mathrm{~m}$, $12 \mathrm{H}), 2.45-2.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 2.91-$ $2.99\left(\mathrm{~m}, 2 \mathrm{H}\right.$, piperidine-CHAr and H_{ax} of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.05\left(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}, \mathrm{H}_{\text {eq }}\right.$ of s-anti amide piperidine NCH_{2}), 4.65-4.72 (m, $2 \mathrm{H}, \alpha-\mathrm{CH}$ and H_{eq} of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.82-4.90(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 6.86(\mathrm{~d}, J=9.2 \mathrm{~Hz})$ and $6.92(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, minor) and $6.94(\mathrm{~d}, J=1.8$ Hz , major, 1 H , isoxazole-CH), 7.11 (d, $J=8.8 \mathrm{~Hz}$) and $7.16(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.19-7.45(\mathrm{~m}, 9 \mathrm{H}), 8.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, major) and 8.34 (d, $J=1.8 \mathrm{~Hz}$, major, 1 H , isoxazole-CH) ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): 11.4/11.7 $\left(\mathrm{Ile}-\delta-\mathrm{CH}_{3}\right)$, 15.8/16.3 $\left(\mathrm{Ile}-\gamma-\mathrm{CH}_{3}\right), 24.2$ (Ile- γ CH_{2}), 26.1(3)/26.2(0)/26.2(5)/26.3(3), 26.4(3)/26.4(4), 32.7/32.8, $33.2, \quad 33.8 / 34.1 / 34.3, \quad 38.2(6), \quad 38.3(4) / 38.4(8), \quad 40.4 / 40.5$, $43.1(8) / 43.2(3), 46.7 / 47.1,51.4 / 51.5 / 51.6,53.0(6) / 53.1(1) / 53.1(6)$, 106.9, 126.2(6)/126.2(8), 127.1(6)/127.2(4), 128.0, 128.4, 129.3, $130.4 / 139.6,141.6,141.7 / 141.8,142.1(9) / 141.2(3), 151.2,155.5$, 162.6, 170.0, 171.3.
74		$\mathrm{t}_{\mathrm{R}}=14.3 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}[\mathrm{MH}]^{+}$ 599.3592, found $599.3590 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of $1: 1), \delta 0.84-2.09(\mathrm{~m}, 26 \mathrm{H}), 2.72-2.89(\mathrm{~m}, 2 \mathrm{H}$, piperidine-CHAr and H_{ax} of s-syn amide piperidine NCH_{2}), 3.20$3.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.18-4.25(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}$ of s-anti amide piperidine NCH_{2}), 4.66-4.72 (m, 1H, $\left.\alpha-\mathrm{CH}\right)$, $4.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right)$, $4.88-4.96(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 6.92(\mathrm{~d}, J=2.0 \mathrm{~Hz})$ and $6.94(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}$, isoxazole-CH), 6.99-7.04 (m, 1H), 7.14-7.60 (m, 10H), $8.33(\mathrm{~d}, J=2.0 \mathrm{~Hz})$ and $8.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, isoxazole- CH$) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.3/11.5 (Ile- $\delta-\mathrm{CH}_{3}$), 15.7/16.1 (Ile- γ CH_{3}), 24.0/24.1 ($\mathrm{Ile}-\gamma-\mathrm{CH}_{2}$), 26.0/26.1/26.2, 32.5/32.6, 32.9/33.0, $33.6,33.8,34.0(5) / 34.1(0), 38.1,40.2,42.5 / 42.8,43.2,46.6 / 47.1$, $51.3 / 51.4 / 51.5, \quad 53.0 / 53.1 / 53.2, \quad 106.8, \quad 125.5 / 125.6 / 125.7$, $127.2 / 127.3,128.7 / 129.1,141.1,141.6(6) / 141.7(0), 145.1 / 145.2$,

		151.0, 155.4, 162.4, 170.1, 171.3/171.4.
75		$\mathrm{t}_{\mathrm{R}}=13.6 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}[\mathrm{MH}]^{+}$ 599.3592, found $599.3594 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two rotamers in a ratio of 1:1), $\delta 0.85-2.07(\mathrm{~m}, 26 \mathrm{H}), 2.70-2.88(\mathrm{~m}, 2 \mathrm{H}$, piperidine-CHAr and H_{ax} of s-syn amide piperidine NCH_{2}), 3.18$3.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}\right.$ of s-anti amide piperidine $\left.\mathrm{NCH}_{2}\right), 4.14-4.20(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}$ of s-anti amide piperidine NCH_{2}), 4.65-4.72 (m, $\left.1 \mathrm{H}, \alpha-\mathrm{CH}\right)$, $4.79\left(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}\right.$ of s-syn amide piperidine $\left.\mathrm{NCH}_{2}\right)$, $4.88-4.94(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 6.75(\mathrm{app} \mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{NH}), 6.93-$ $6.94(\mathrm{~m}, 1 \mathrm{H}$, isoxazole-CH), $7.07(\mathrm{app} \mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{NH}), 7.26-$ $7.58(\mathrm{~m}, 9 \mathrm{H}), 8.33-8.34(\mathrm{~m}, 1 \mathrm{H}$, isoxazole-CH).
76		$\mathrm{t}_{\mathrm{R}}=13.2 \mathrm{~min}$ (Method II); HRMS: calc. for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{5}{ }^{+}[\mathrm{MH}]^{+}$ 615.3541, found 615.3546; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) (two rotamers in a ratio of $64: 36), \delta 0.88-2.00(\mathrm{~m}, 26 \mathrm{H}), 2.69-2.78(\mathrm{~m}$, $1 \mathrm{H}), 2.87-2.94(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.27(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, 1 \mathrm{H}, J=12.8$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{eq}}$ of s-anti amide piperidine NCH_{2}), 4.62-4.75 (m, $3 \mathrm{H}, 2 \times \alpha-$ CH and $\mathrm{H}_{\text {eq }}$ of s-syn amide piperidine NCH_{2}), 7.00-7.58 (m, 10H), $8.21(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, minor) and $8.34(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, major, NH$), 8.83$ (d, $J=1.8 \mathrm{~Hz}$, major) and $8.85(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, minor, 1 H , isoxazoleCH), $9.02(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{NH})$.

Calculation of Volume: Chemical structures of different $R_{1}-R_{4}$ substituents in ligands reported here were drawn in ChemDraw 13.0. "Ligand Preparation" module within Maestro, version 9.5 (Schrödinger, LLC, New York, NY, 2013) was used to convert 2D structures to 3D co-ordinates and saved as mol2 files. Gaussian 09 software was used for calculation of molar volume $\left(\mathrm{cm}^{3} / \mathrm{mole}\right)$ of the R groups. Before quantum chemical calculations, a molecular mechanic minimization was performed with the UFF force field available in Gaussian 09. Further calculations were performed at the level of B3LYP/6-311+g(d,p) basis set in vacuum.

Intracellular calcium release assay. Adherent colorectal adenocarcinoma cells (HT29) were plated at $\sim 2 \times 10^{4}$ cells/well in a 96 -well cleared-bottomed black-walled assay plate (Corning) with equal amounts of medium added and incubated overnight at $37^{\circ} \mathrm{C}$. Before assay, the medium was removed and cells were incubated with dye-loading buffer (12 mL HBSS buffer, 2 mM Fluo-3 AM, $25 \mu \mathrm{~L}$ Pluronic acid F-127 and $1 \% \mathrm{v} / \mathrm{v}$ fetal calf serum) for an hour at $37^{\circ} \mathrm{C}$. After an hour, cells were washed once with assay buffer (HBSS supplemented with 2.5 mM probenecid and 20 mM HEPES, pH 7.4). All final compounds were dissolved in DMSO to make
a 10 mM stock solution for intracellular calcium release assays on HT29 cells. The stock sample was then diluted with HBSS buffer to give the desired concentrations for the calcium efflux assay. The concentration of DMSO in the assay was no more than 2%. For the antagonist assay, the cells were pre-incubated with desired concentrations of the synthesized compounds for 30 min before the addition of agonist (2f-LIGRLO- $\mathrm{NH}_{2}, 1 \mu \mathrm{M}$). Fluostar Optima (BMG Labtechnologies) or FLIPR (Molecular Devices) was used to monitor the intracellular release of Ca^{2+} via fluorescence measurement for at least 60 s (excitation 495 nm , emission 520 nm). The agonist assay was conducted in a similar manner, except that the intracellular Ca^{2+} release was monitored immediately after the injection of the desired concentration of the synthesized compounds. To assess potential antagonist in more detail, concentration dependent inhibition assay was conducted. A range of concentrations of the compound was pre-incubated with the cells. Duplicate measurements were made for each data point, mean \pm SEM are reported from multiple experiments as indicated. Net changes in fluorescence were calculated as a percentage relative to the maximum response given by the test compound. Changes in fluorescence (\% response) were plotted against logarithmic compound concentrations. The half maximal inhibitory concentration $\left(\mathrm{IC}_{50}\right)$ values were derived from the concentration response curve using a nonlinear regression curve in Graphpad Prism v5.

Antagonist surmountability. Cells were prepared as for the calcium mobilization assay. After 1 h incubation with dye loading buffer, cells were incubated with different concentrations of antagonist for 15 min before the addition of agonist (2f-LIGRLO- NH_{2}). The plate was read using FLIPR (Molecular Devices) and examined for concentration-dependent effects on the activity of agonist in the presence of different concentrations of antagonist.

PAR2 transfected CHO cells. Human PAR2 cDNA was cloned into pcDNA5/FRT vector (Invitrogen) at BamHI site and incorporated into Flp-In-CHO cells (Invitrogen) using

Lipofectamine 2000 (Invitrogen) according to manufacturer's instruction. Stable PAR2-CHO cells were then selected using $600 \mu \mathrm{~g} / \mathrm{mL}$ of Hygromycin B.
cAMP accumulation. LANCE Ultra cAMP assay was performed in accordance with manufacturer's instructions (PerkinElmer). In brief, cells were dissociated from flasks by Versene (Invitrogen) on the day of experiment. Cells ($5 \mu \mathrm{~L}, 4 \times 10^{5}$ cells $/ \mathrm{mL}$) were transferred to a 384-well proxiplate (PerkinElmer) and incubated with various concentrations of $\mathbf{6 5}$ for 20 min at room temperature. Forskolin (120 nM) was then added into each well and incubated for a further 10 min at room temperature. Finally, Eu-cAMP tracer ($5 \mu \mathrm{~L}$) and ULight $^{\mathrm{TM}}$-anti-cAMP $(5 \mu \mathrm{~L})$ were added to each well and incubated for 1 h at room temperature. The plate was read using a Pherastar FS fluorimeter (BMG, Germany).

ERK1/2 phosphorylation. SureFire phospho-ERK $1 / 2$ assay was performed in accordance with manufacturer's instructions (PerkinElmer). In brief, cells were seeded overnight in 96-well tissue culture plate $\left(\sim 5 \times 10^{4}\right.$ cells per well). On the day of experiment, cells were treated with various concentrations of compounds dissolved in serum-free medium and incubated for 10 min at $37{ }^{\circ} \mathrm{C}$. Supernatant was removed and cells were lysed with cell lysis buffer provided by the kit. Cell lysate ($4 \mu \mathrm{~L}$) was transferred to a 384 -well proxiplate (PerkinElmer) and incubated with reaction mixture $(7 \mu \mathrm{~L})$ for 2 h at room temperature before plate reading.

Stability studies on PAR2 agonists and antagonists in rat plasma and liver homogenate. Blood and whole liver samples were collected from non-drug dosed male and female Wistar rats (aged 8-9 weeks, 200-250 g and 250-300 g respectively). Blood samples were centrifuged at 8 k rpm for 5 min . Plasma samples were pooled and stored at $-80^{\circ} \mathrm{C}$ for later use. The rat livers were homogenized, diluted with three volumes of PBS and cloth filtered. The filtrate was used directly for stability studies. Each compound was dissolved in DMSO to make 5 mM stock solution. $10 \mu \mathrm{~L}$ of the stock was diluted with either rat plasma or liver homogenate ($490 \mu \mathrm{~L}$) to
make up a starting concentration of $10 \mu \mathrm{M}$ (performed in triplicate). The mixtures were vortexed and incubated at $37^{\circ} \mathrm{C}$. At each time point of 0, 30, 60 and 180 minutes, $100 \mu \mathrm{~L}$ of the mixture was taken and diluted with $300 \mu \mathrm{~L}$ of acetonitrile. The mixture was vortexed and centrifuged. $350 \mu \mathrm{~L}$ of the liquid was transferred into a microfuge tube and concentrated using a rotational vacuum concentrator (Christ Beta-RVC, supplied by Quantum Scientific). $100 \mu \mathrm{~L}$ of acetonitrile-water ($9: 1, \mathrm{v} / \mathrm{v}$) was added to the residue, vortexed and immediately analyzed by LCMS/MS. Data from these experiments are expressed as percent of peak area recorded from the LCMS/MS trace at time zero $\left(\mathrm{t}_{0}\right)$.

In vivo efficacy using the PAR2-agonist induced paw oedema. The methods used are based on those previously described. ${ }^{1-3}$ Male Wistar rats ($\mathrm{n}=3-5$ per group) were used. Briefly, rats were given $10 \mathrm{mg} / \mathrm{kg}$ of a compound orally (p.o. via gavage in olive oil, approx. $500 \mu \mathrm{~L}$, weight adjusted). Control animals received only olive oil or saline ($500 \mu \mathrm{~L}$ p.o.). After a relevant absorption period (2 h for oral), the PAR2 agonist 2-f-LIGRLO-NH ($350 \mu \mathrm{~g} / \mathrm{paw}$ in saline, 100 $\mu \mathrm{L}$) was injected into the plantar surface (i.pl.) of the right paw pad using a 30 G needle. The left paw acted as a control, receiving saline only. Paw thickness and width were measured at given time points ($30 \mathrm{~min}, 60 \mathrm{~min}, 2 \mathrm{~h}, 3 \mathrm{~h}$) thereafter using digital callipers (World Precision Instruments, USA) and swelling was calculated in area (mm^{2}; thickness multiplied by width). Data is expressed as a percentage change from baseline of each individual paw, mean \pm SEM. Statistical tests performed were repeated measures ANOVA with Bonferroni planned comparisons, using GraphPad Prism software (v5.0c).

Human tubule epithelial cells (HTEC) isolation and culture. Segments of macroscopically and histologically normal renal cortex ($5-10 \mathrm{~g}$) were obtained aseptically from the noncancerous pole of adult human kidneys removed surgically because of small renal cancers. Patients were otherwise healthy. Informed consent was obtained prior to each operative
procedure and the use of human renal tissue for primary culture was reviewed and approved by the Princess Alexandra Hospital Research Ethics Committee. The method for isolation and primary culture of human tubule epithelial cells (HTEC) is described in detail from literature. ${ }^{4,5}$ Briefly the cortical tissue was minced finely, washed several times and agitated for 20 minutes at $37^{\circ} \mathrm{C}$ in a Hank Balanced Salt Solution (HBSS) with $\mathrm{Ca}^{2+} \& \mathrm{Mg}^{2+}$ containing collagenase type II $(1 \mathrm{mg} / \mathrm{ml})$. Cold HBSS was added and the solution passed through a $297 \mu \mathrm{~m}$ sieve (50 Mesh , Sigma). After washing three times the tubular fragments were resuspended in 45% percoll KHB and centrifuged at 25000 xg . A high density band previously shown to be tubule fragments was removed and cultured in a serum free, hormonally defined media (DMEM/F12 containing $10 \mathrm{ng} / \mathrm{ml}$ epidermal growth factor, $5 \mu \mathrm{~g} / \mathrm{ml}$ insulin, $5 \mu \mathrm{~g} / \mathrm{ml}$ transferrin, 50 nM hydrocortisone, 50 $\mu \mathrm{M}$ prostaglandin $\mathrm{E} 1,50 \mathrm{nM}$ selenium and 5 pM triiodothyronine.

Treatment of human tubule epithelial cells (HTEC). All experiments were performed on confluent passage 2 HTEC, (in 48 well plates), made quiescent by two washes followed by incubation for 24 hours in serum and growth factor free DMEM/F12 media. Compounds diluted in DMEM/F12 were added to the cells at the concentrations shown. Antagonists were added 30 mins prior to agonist addition. Conditioned medium was collected from the cells at 24 h and stored at $-80^{\circ} \mathrm{C}$ until assayed.

Enzyme-linked immunosorbent assay. Cytokines (IL-6 \& TNF- α) were examined either using BD Pharmingen ELISA set or R\&D Duoset according to the manufacturer's protocols. Briefly, plate was coated with capturing antibody at $4^{\circ} \mathrm{C}$ overnight before being blocked with 10% serum or 1% BSA for 1 h at room temperature. Samples and standards were diluted in blocking buffer, added to each well and incubate for 2 h at room temperature. The HRP conjugated detection antibody was added and incubated for a further $1-2 \mathrm{~h}$ at room temperature. K-blue substrate (Elisa Systems, Brisbane Australia) was allowed to develop for 30 min in the
dark and stopped by 2 M sulfuric acid. A BMG Polarstar spectrofluorimeter was used to measure the absorbance at 450 nM .

References

1. Vergnolle, N., Proteinase-activated receptor-2-activating peptides induce leukocyte rolling, adhesion, and extravasation in vivo, J. Immunol. 1999, 163, 5064-5069.
2. Kelso, E. B., Lockhart, J. C., Hembrough, T., Dunning, L., Plevin, R., Hollenberg, M. D., Sommerhoff, C. P., McLean, J. S. \& Ferrell, W. R., Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation, J. Pharmacol. Exp. Ther. 2006, 316, 1017-1024.
3. Kelso, E. B., Ferrell, W. R., Lockhart, J. C., Elias-Jones, I., Hembrough, T., Dunning, L., Gracie, J. A. \& McInnes, I. B., Expression and proinflammatory role of proteinase-activated receptor 2 in rheumatoid synovium: ex vivo studies using a novel proteinase-activated receptor 2 antagonist, Arthritis Rheum. 2007, 56, 765-771.
4. Vesey, D. A., Kruger, W. A., Poronnik, P., Gobe, G. C. \& Johnson, D. W., Proinflammatory and proliferative responses of human proximal tubule cells to PAR-2 activation, Am. J. Physiol. Renal. Physiol. 2007, 293, F1441-1449.
5. Vesey, D. A., Qi, W., Chen, X., Pollock, C. A. \& Johnson, D. W., Isolation and primary culture of human proximal tubule cells, Methods Mol. Biol. 2009, 466, 19-24.

[^0]: ${ }^{a}$ Data represent mean \pm SEM ($\mathrm{n}=3$).

