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Abstract	11	

A	variety	of	studies	have	suggested	that	epithelial	to	mesenchymal	transition	(EMT)	may	be	12	

important	in	the	progression	of	cancer	in	patients	through	metastasis	and/or	therapeutic	resistance.	13	

A	number	of	pathways	have	been	investigated	in	EMT	in	cancer	cells.	Recently,	changes	in	plasma	14	

membrane	ion	channel	expression	as	a	consequence	of	EMT	have	been	reported.	Other	studies	have	15	

identified	specific	ion	channels	able	to	regulate	aspects	of	EMT	induction.	The	utility	of	plasma	16	

membrane	ion	channels	as	targets	for	pharmacological	modulation	make	them	attractive	for	17	

therapeutic	approaches	to	target	EMT.	In	this	review,	we	provide	an	overview	of	some	of	the	key	18	

plasma	membrane	ion	channel	types	and	highlight	some	of	the	studies	that	are	beginning	to	define	19	

changes	in	plasma	membrane	ion	channels	as	a	consequence	of	EMT	and	also	their	possible	roles	in	20	

EMT	induction.	21	

	22	
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Introduction	23	

Epithelial	to	Mesenchymal	transition	(EMT)	refers	to	the	process	whereby	epithelial	cells	which	24	

typically	exhibit	features	such	as	strong	cell	to	cell	adhesion	and	apical-basal	polarity,	lose	these	25	

properties	and	acquire	others	such	as	greater	motility	and	a	spindle	like	morphology	(van	Denderen	26	

and	Thompson	2013)	(Thiery,	et	al.	2009)	(Fig.	1).	EMT	is	a	key	event	in	developmental	processes	27	

including	embryogenesis	where	it	is	associated	with	implantation	and	embryonic	gastrulation	(Kalluri	28	

and	Weinberg	2009).	EMT	is	also	a	feature	of	other	aspects	of	normal	physiology	such	as	wound	29	

healing	where	it	has	an	important	role	in	tissue	regeneration,	and	organ	fibrosis	(Kalluri	and	30	

Weinberg	2009).		31	

EMT	in	cancer		 	32	

Metastasis	is	the	cause	of	mortality	in	cancer	types	that	originate	from	organs	where	surgical	33	

resection	and/or	treatment	of	the	primary	tumour	are	often	feasible	(e.g.	breast	and	prostate).	34	

Metastasis	is	a	highly	regulated	process	whereby	cells	escape	the	primary	tumour,	enter	the	35	

circulatory	system	and	deposit	at	a	metastatic	site	(Hanahan	and	Weinberg	2011).	There	is	clear	36	

coordination	of	processes	in	metastasis	and	this	is	reflected	in	the	propensity	of	different	cancer	37	

subtypes	to	preferentially	form	metastatic	lesions	in	specific	sites.	The	loss	of	cell-to-cell	adhesion,	38	

the	acquisition	of	motility,	the	ability	to	degrade	the	surrounding	extracellular	matrix	and	to	survive	39	

stresses	such	as	that	induced	by	entry	into	the	circulation	are	all	features	that	are	required	of	cancer	40	

cells	during	metastasis.	It	is	therefore	not	surprising	that	it	is	believed	that	as	cells	leave	the	primary	41	

tumour	they	may	undergo	processes	similar	to	EMT	(Heerboth,	et	al.	2015).	These	include	the	42	

expression	of	the	specific	transcription	factors	Snail	and	Twist,	expression	of	mesenchymal	markers	43	

such	as	vimentin	and	N-Cadherin,	and	loss	of	epithelial	markers	such	as	E-cadherin	(Tsai	and	Yang	44	

2013).	Indeed,	the	consequences	of	EMT	have	been	reported	as	increased	motility	and	a	remodelling	45	

of	cellular	adhesion	(Lamouille,	et	al.	2014).	EMT	in	cancer	cells	is	also	associated	with	the	46	

acquisition	of	therapeutic	resistance	(Singh	and	Settleman	2010).	Although	some	very	recent	studies	47	
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indicate	that	in	some	cancers	EMT	may	be	more	important	in	the	acquisition	of	therapeutic	48	

resistance	than	metastasis	(Fischer,	et	al.	2015;	Zheng,	et	al.	2015),	understanding	the	induction	of	49	

EMT	and	the	properties	of	the	mesenchymal	state	would	clearly	help	identify	novel	therapeutic	50	

targets.			51	

A	number	of	factors	in	the	tumour	microenvironment	have	been	identified	as	inducers	of	EMT	in	52	

cancer	cells.	In	breast	cancer	cells,	growth	factors	such	as	epidermal	growth	factor	(EGF),	and	53	

hypoxia	have	been	shown	to	induce	EMT	in	a	variety	of	in	vitro	models,	such	as	MDA-MB-468	breast	54	

cancer	cells	and	ZR-75-1	breast	cancer	cells	(Davis,	et	al.	2014a;	Lester,	et	al.	2007).	In	prostate	55	

cancer	cells,	EMT	is	induced	by	epidermal	growth	factor	(EGF)	(Zhang,	et	al.	2013b)	and	Growth	and	56	

differentiation	factor	9	(GDF-9)	(Bokobza,	et	al.	2011).	Studies	in	lung	cancer	cells	have	57	

demonstrated	that	hypoxia	induces	EMT	through	protein	kinase	A	(PKA)	activity	in	a	hypoxia-58	

inducible	factor	1-alpha	(HIF1-α)	dependent	manner	(Shaikh,	et	al.	2012).	A	variety	of	drugable	59	

targets	have	been	identified	as	potential	mechanisms	to	control	EMT	induction	and/or	target	the	60	

mesenchymal	phenotype	which	is	a	consequence	of	EMT	(Davis,	et	al.	2014b).	One	class	of	proteins	61	

that	are	the	target	of	existing	drugs	and	many	drug	development	programs	are	ion	channels.	62	

Plasmalemmal	ion	channels	in	particular	are	often	amenable	to	pharmacological	modulation	due	to	63	

their	extracellular	domains.		The	availability	of	selective	inhibitors	to	specific	ion	channel	isoforms	64	

also	allows	chemogenomic	and	other	methods	to	develop	new	therapeutics.	65	

Ion	channels	as	regulators	of	cellular	processes	66	

The	presence	of	ion	gradients	across	the	plasma	membrane	is	a	defining	feature	of	mammalian	cells.	67	

The	sodium	ion	gradient	is	maintained	by	Na+/K+-ATPases	that	actively	pump	Na+	ions	from	the	68	

cytoplasm	to	maintain	a	lower	intracellular	free	Na+	level	compared	to	those	of	the	extracellular	69	

space	(Castillo,	et	al.	2015).	Changes	in	this	gradient	can	lead	to	rapid	changes	in	membrane	70	

potential	and	drive	action	potentials	in	excitable	cells.	Similarly,	changes	in	cytosolic	free	Ca2+	71	

([Ca2+]CYT)	levels	can	be	mediated	by	activation	of	Ca2+	permeable	ion	channels	and	such	changes	72	
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have	important	roles	in	an	array	of	cellular	processes	including	fertilization,	muscle	contraction,	73	

hormone	secretion,	gene	transcription	and	cell	death	(Berridge,	et	al.	2003).	The	diversity	of	74	

processes	influenced	by	changes	in	Na+,	Ca2+	and	K+	and	other	ions	through	the	opening	of	ion	75	

channels,	requires	the	cell	to	selectively	control	such	changes	and	the	way	such	changes	are	76	

decoded	to	alter	cellular	processes.	Hence,	it	is	not	surprising	that	there	are	a	plethora	of	ion	77	

channels	in	cells.	For	example	there	are	over	20	genes	that	encode	for	just	one	specific	class	of	ion	78	

channel	-	transient	receptor	potential	(TRP)	channels	in	humans.	The	next	section	provides	an	79	

outline	of	the	general	properties	of	ion	channels	relevant	to	this	review.	We	then	provide	a	specific	80	

overview	of	studies	that	have	identified	roles	of	ion	channels	in	EMT	induction	and/or	remodelling.	81	

Plasma	membrane	ion	channels	82	

There	are	a	variety	of	ion	channels	with	different	permeability	and	selectivity	for	cations	or	anions.	A	83	

comprehensive	review	of	all	ion	channels	even	just	those	of	the	plasma	membrane	is	well	beyond	84	

the	scope	of	this	review.	Hence,	readers	are	directed	to	sources	of	comprehensive	lists	and	review	of	85	

ion	channels	such	as	the	IUPHAR/BPS	guide	to	pharmacology	(Southan,	et	al.	2016),	which	includes	86	

other	channels	not	discussed	in	this	review	such	as	acid-sensing	(proton-gated)	ion	channels	(ASICs)	87	

and	some	ligand	gated	Ca2+	channels	such	as	ionotropic	glutamate	receptors.	Arguably,	the	most	88	

extensively	studied	plasma	membrane	ion	channels	are	those	depicted	in	Fig.	2	–	which	include	89	

calcium	channels,	sodium	channels,	potassium	channels	and	chloride	channels.	Examination	of	each	90	

of	these	channel	types	provides	insight	into	their	diversity.	These	channels	can	differ	dramatically	in	91	

their	properties	from	ion	selectivity	to	their	mechanism	of	activation.	92	

The	diversity	in	ion	channel	properties	is	clear	in	the	plasma	membrane	Ca2+	channels	presented	in	93	

Fig.	2	–	Orai,	TRP,	P2X	and	voltage	gated	Ca2+	channels	(VGCC).	These	classes	have	clear	differences	94	

in	their	mechanism	of	activation.	For	example	the	Orai1	protein	is	part	of	a	complex	whereby	Ca2+	95	

influx	is	activated	by	the	depletion	of	endoplasmic	reticulum	Ca2+	stores	(Azimi,	et	al.	2014).	In	96	

contrast,	TRP	channels	have	been	described	as	sensors,	as	exemplified	by	TRPV1	a	Ca2+	permeable	97	
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ion	channel	activated	by	heat	and	the	hot	chilli	component,	capsaicin	(Azimi	et	al.	2014).	Other	98	

ligand	gated	calcium	channels	include	ionotropic	glutamate	receptors	and	also	P2X	channels	that	are	99	

activated	by	some	nucleosides	(e.g.	ATP)	whereas	VGCCs	are	activated	by	changes	in	membrane	100	

potential	(Azimi	et	al.	2014).	Even	within	classes	of	Ca2+	channels	there	is	great	diversity	of	activators	101	

(e.g.	TRPV1	is	activated	by	capsaicin	whereas	TRPM8	is	activated	by	menthol)	and	ion	selectivity	(e.g.	102	

TRPV6	is	highly	selective	for	Ca2+	ions	whereas	TRPV1	is	also	permeable	to	Na+	ions)	(Azimi	et	al.	103	

2014).		The	remodelling	of	Ca2+	channel	expression	has	been	defined	in	some	cancers	and	some	have	104	

been	identified	as	potential	therapeutic	targets	in	some	cancer	subtypes	as	reviewed	elsewhere	105	

(Azimi	et	al.	2014;	Stewart,	et	al.	2015).	Indeed,	SOR-C13,	a	TRPV6	inhibitor	has	been	recently	106	

assessed	in	clinical	trials	of	ovarian	cancer	(www.clinicaltrials.gov,	NCT01578564).		107	

Although	the	association	between	Na+	influx	and	action	potentials	has	seen	a	focus	on	Na+	channel	108	

in	neuroscience	and	cardiovascular	research,	Na+	channels	are	in	fact	expressed	in	a	variety	of	cell	109	

types.	For	example	voltage	gated	sodium	channels	(VGSC)	are	expressed	in	excitable	cells	including	110	

neurons	and	muscle	cells,	where	they	are	responsible	for	action	potential	and	conduction	(Southan	111	

et	al.	2016);	NALCN	has	been	described	as	a	sodium	leak	channel	which	regulates	the	resting	112	

membrane	potential	and	excitability	in	neurons	(Cochet-Bissuel,	et	al.	2014);	and	epithelial	sodium	113	

channels	(ENaC)	play	pivotal	roles	in	the	regulation	of	extracellular	fluid	(ECF)	volume	and	blood	114	

pressure	in	kidney	tubules	(Hanukoglu	and	Hanukoglu	2016).	Potassium	channels	are	equally	as	115	

complex	and	diverse	and	include	those	that	are	voltage	gated	(VGKC),	those	that	are	two-pore	116	

domain	(K2P),	those	that	play	roles	in	Ca2+-activated	K+	transport	(KCa	channels)	and	Inwardly	117	

rectifying	K+	(IRK)	channels	(Hibino,	et	al.	2010).		118	

Chloride	channels	include	channels	that	when	defective	due	to	hereditary	mutation	can	alter	the	119	

fluid	transport	in	epithelial	cells	resulting	in	cystic	fibrosis	(Cystic	Fibrosis	Transmembrane	120	

conductance	Regulator	(CFTR)),	channels	activated	by	intracellular	Ca2+	(CaCC),	those	which	are	121	
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ligand	activated	(LGCC),	or	volume	regulated	(VRAC)	or	the	chloride	channel	superfamily	(CIC)	122	

(Southan	et	al.	2016).		123	

The	outline	of	plasmalemmal	ion	channels	presented	above	highlighted	the	diversity	of	ion	channels	124	

and	their	roles	in	mammalian	cells.	As	discussed	below,	some	of	these	ion	channels	have	recently	125	

been	shown	to	be	remodelled	as	a	consequence	of	EMT	in	cancer	cells	or	play	roles	in	the	induction	126	

of	EMT	markers	induced	by	some	stimuli.		127	

Plasma	membrane	ion	channels	and	EMT	in	cancer	cells	128	

This	review	is	focused	on	the	remodelling	and	in	some	cases	roles	of	ion	channels	in	EMT	in	cancer	129	

cells.	It	should	be	noted	that	other	studies	have	investigated	ion	channels	in	EMT	in	the	context	of	130	

other	EMT	relevant	processes	many	of	which	intersect	with	disease	states	such	as	airway	131	

remodelling	(Arthur	et	al.,	2015)	and	renal	fibrosis	(Mai	et	al.,	2016).	132	

	133	

The	very	different	properties	of	cancer	cells	such	as	the	acquisition	of	therapeutic	resistance	and	the	134	

major	changes	in	the	expression	of	specific	proteins	(e.g.	vimentin)	and	transcription	factors	(e.g.	135	

twist	and	Snail)	as	a	consequence	of	EMT	means	that	changes	in	ion	influx	should	not	have	been	136	

surprising.	The	change	in	phenotype	of	cancer	cells	that	have	undergone	EMT	and	the	very	specific	137	

roles	of	specific	ion	channels	in	different	cell	types	suggests	that	the	mesenchymal	phenotype	will	138	

exploit	different	ion	channels	to	achieve	different	cellular	functions.	In	the	section	below	we	will	139	

provide	an	overview	of	studies	that	have	now	shown	such	changes	and	in	some	cases	implicated	140	

specific	ion	channels	in	EMT	induction.	Many	of	these	studies	are	summarised	in	Table	1.	141	

Sodium	channels	and	EMT	in	cancer	cells	142	

Hypotheses	have	been	proposed	and	an	intellectual	case	made	for	the	potential	of	voltage-gated	143	

sodium	channels	to	regulate	EMT	induction	in	cancer	cells	(Eren	and	Oyan	2014;	Eren,	et	al.	2015).	144	

The	repositioning	of	clinically	used	voltage-gated	sodium	channel	blockers	to	attenuate	metastatic	145	
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progression	and/or	chemotherapy	resistance	through	inhibition	of	EMT	induction	has	also	been	146	

highlighted	(Eren	et	al.	2015).	However,	this	area	has	yet	to	be	fully	assessed	experimentally	with	147	

models	of	EMT	in	cancer	cells,	and	this	represents	an	opportunity	for	future	research.		148	

Potassium	channels	and	EMT	in	cancer	cells	149	

The	association	between	changes	in	the	potassium	gradient	and	EMT	was	suggested	in	early	studies	150	

of	potassium	chloride	co-transporter	3	(KCC3)	(Hsu,	et	al.	2007).	KCC3	is	not	an	ion	channel,	but	its	151	

ability	to	cotransport	K+	and	Cl-	ions	makes	it	an	important	regulator	of	the	flux	of	these	ions	across	152	

the	plasma	membranes	of	many	cell	types	where	it	can	play	an	important	role	in	the	regulation	of	153	

cell	volume	(Hsu	et	al.	2007;	Kahle,	et	al.	2015).	Forced	overexpression	of	KCC3	in	cervical	cancer	154	

SiHa	cells	is	associated	with	the	adoption	of	a	more	mesenchymal-like	morphology,	the	down	155	

regulation	of	the	epithelial	marker	E-cadherin	and	the	upregulation	of	the	mesenchymal	marker	156	

vimentin	(Hsu	et	al.	2007).	Subsequent	to	these	studies	an	association	with	the	EAG1	potassium	157	

channel	and	EMT	in	lung	cancer	cells	has	been	implicated,	because	of	an	increase	in	Eag1	mRNA	158	

levels	in	A549	lung	cancer	cells	treated	with	transforming	growth	factor	beta	1	(TGFβ1),	an	EMT	159	

inducer	in	this	model	(Restrepo-Angulo,	et	al.	2011).	In	context	of	colorectal	cancer,	studies	of	160	

phosphatase	of	regenerating	liver-3	(PRL-3)	induced	EMT	in	LoVo	cells	(a	colon	cancer	cell	line),	has	161	

shown	that	a	pharmacological	inhibitor	of	the	Ca2+	activated	potassium	channel	KCNN4	-	TRAM-34,	162	

supresses	the	mesenchymal	markers	vimentin	and	Snail,	and	increases	the	expression	of	the	163	

epithelial	marker	E-cadherin	(Lai,	et	al.	2013).	Although	the	concentrations	of	TRAM-34	used	may	164	

have	inhibited	other	ion	channels,	siRNA	to	KCNN4	phenocopied	the	effects	of	TRAM-34	(Lai	et	al.	165	

2013).	Moreover,	KCNN4	expression	was	positively	correlated	with	tumour	stage	in	clinical	cohort	of	166	

86	patient	colorectal	tumour	samples	(Lai	et	al.	2013).	Very	recent	studies	have	now	shown	that	167	

silencing	of	KCNN4	in	MDA-MB-231	(a	breast	cancer	cell	line	with	features	of	the	mesenchymal	168	

phenotype)	appeared	to	reduce	the	expression	of	the	mesenchymal	markers	vimentin	and	Snail1	169	

(Zhang,	et	al.	2016).	170	
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Collectively,	the	studies	described	above	are	beginning	to	define	associations	between	specific	171	

potassium	channels	and	EMT	in	cancer	cells.	Further	studies	of	other	potassium	channels	in	the	172	

context	of	changes	in	expression	as	a	consequence	of	EMT	as	well	as	the	induction	of	EMT	and/or	173	

maintenance	of	the	mesenchymal	phenotype	now	seem	appropriate.	Given	the	diversity	of	EMT	174	

models	in	cancer	cells	and	the	variety	of	inducers	of	EMT,	it	is	also	important	that	the	roles	of	175	

specific	potassium	channels	be	investigated	across	a	variety	of	models	and	inducers	of	EMT.	176	

Chloride	channels	and	EMT	in	cancer	cells	177	

An	increasing	number	of	studies	have	identified	the	remodelling	of	expression	of	chloride	channel	178	

components	as	a	consequence	of	EMT	in	cancer	cells.	Examples	of	such	remodelling	include	isoforms	179	

of	chloride	channel	accessory	proteins,	namely	CLCA2	and	CLCA4.	CLCA2	mRNA	levels	are	reduced	in	180	

breast	cancer	cell	lines	associated	with	the	mesenchymal	phenotype	(e.g.	MDA-MB-231	and	BT549)	181	

compared	to	those	often	enriched	in	epithelial	markers	(e.g.	MCF-7).	Indeed,	expression	of	the	EMT	182	

transcription	factor	Snail	supresses	CLCA2	protein	in	the	human	breast	cell	line	MCF10A,	and	CLCA2	183	

levels	are	reduced	in	subpopulations	of	cells	from	the	human	mammary	epithelial	(HMLE)	cell	line	184	

that	are	enriched	in	mesenchymal	markers	(Walia,	et	al.	2012).	Moreover,	CLCA2	levels	are	reduced	185	

during	EMT	induced	by	TGFβ	(Yu,	et	al.	2013).	Similarly,	reduced	levels	of	the	related	isoform	CLCA4	186	

is	a	feature	of	subpopulations	of	cells	from	the	HMLE	cell	line	that	are	enriched	in	mesenchymal	187	

markers	and	a	consequence	of	TGFβ-induced	EMT	(Yu	et	al.	2013).	Consistent	with	the	loss	of	CLCA2	188	

and	CLCA4	in	the	mesenchymal	phenotype,	low	levels	of	CLCA2	and	CLCA4	appear	likely	to	be	189	

associated	with	an	increased	incidence	of	metastasis	(as	assessed	through	metastasis	or	relapse	free	190	

survival)	using	specific	cohorts	of	breast	cancer	patients	(Walia	et	al.	2012;	Yu	et	al.	2013).	In	191	

addition	to	their	remodelling	as	a	consequence	of	EMT,	CLCA2	and	CLCA4	have	also	been	implicated	192	

in	the	regulation	of	the	transition	of	breast	cancer	cells	towards	a	more	mesenchymal	state.	193	

Knockdown	of	CLCA2	or	CLCA4	is	sufficient	in	HMLE	cells	to	induce	the	expression	of	the	194	

mesenchymal	marker	vimentin	and	supress	the	epithelial	marker	E-Cadherin	(Walia	et	al.	2012;	Yu	et	195	
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al.	2013).	In	the	case	of	CLCA2,	the	regulation	of	EMT	may	at	least	in	part	be	through	interactions	196	

with	the	cell	junctional	protein	EVA1	(Ramena,	et	al.	2016).	Future	studies	are	now	required	to	197	

define	the	relative	importance	in	changes	in	chloride	flux	in	these	events,	and	the	ability	of	the	loss	198	

of	CLCA2	or	CLCA4	to	induce	a	mesenchymal	phenotype	in	other	models	of	EMT,	including	those	not	199	

of	breast	cancer	origin.	200	

Breast	cancer	cells	have	also	been	the	focus	of	investigators	exploring	the	relationship	between	201	

CFTR	and	EMT.	The	EMT	inducer	TGFβ1	causes	a	down	regulation	of	CFTR	in	MCF-7	cells,	which	is	202	

also	associated	with	a	down	regulation	of	the	epithelial	marker	E-cadherin	(Zhang,	et	al.	2013a).	A	203	

functional	role	for	CFTR	in	EMT	induction	is	suggested	by	the	ability	of	CFTR	silencing	to	induce	the	204	

expression	of	a	variety	of	mesenchymal	markers	in	MCF-7	breast	cancer	cells.	This	proposed	function	205	

of	CFTR	is	further	supported	by	the	ability	of	CFTR	overexpression	in	mesenchymal-like	MDA-MB-206	

231	breast	cancer	cells	to	suppress	the	expression	of	vimentin	(a	mesenchymal	marker)	and	induce	207	

the	expression	of	E-cadherin	(an	epithelial	marker)	(Zhang	et	al.	2013a).	As	would	be	predicted	208	

based	on	these	results,	reduced	levels	of	CFTR	are	associated	with	poor	prognosis	in	breast	cancer	209	

patients	(Zhang	et	al.	2013a).	More	recent	studies	have	begun	to	explore	chloride	channels	in	the	210	

context	of	EMT	in	other	cancer	types,	such	as	squamous	cell	carcinomas	of	the	head	and	neck	211	

(Shiwarski,	et	al.	2014).	TMEM16A	(also	known	as	ANO1),	is	one	of	a	reported	subset	(termed	212	

Anoctamins)	of	calcium	activated	chloride	channels	(Kunzelmann,	et	al.	2011).	Levels	of	TMEM16A	213	

are	reduced	in	cancer	cells	in	metastatic	lymph	nodes	compared	to	those	of	the	primary	tumour	in	214	

squamous	cell	carcinomas	of	the	head	and	neck	(Shiwarski	et	al.	2014).		TMEM16A	seems	to	be	215	

more	than	a	potential	marker	of	EMT,	since	silencing	of	TMEM16A	in	T24	cells	(a	human	bladder	216	

carcinoma	cell	line),	produces	a	mesenchymal-like	phenotype	(spindle	morphology,	lower	E-217	

cadherin,	increased	Snail)	and	overexpression	of	TMEM16A	produces	an	epithelial-like	phenotype	218	

(rounded	packed	morphology,		increased	E-cadherin,	reduced	vimentin	and	fibronectin)	(Shiwarski	219	

et	al.	2014).		220	
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The	work	described	above,	performed	by	a	variety	of	investigators	using	an	array	of	models	and	221	

approaches	has	now	helped	define	a	remodelling	of	specific	chloride	channels	(or	components)	in	222	

EMT	and	a	role	for	these	same	channels	in	the	induction	of	EMT	and/or	the	maintenance	of	the	223	

epithelial-like	phenotype.			224	

Calcium	channels	and	EMT	in	cancer	cells	225	

The	calcium	signal	has	been	identified	as	or	could	be	speculated	to	be	a	potential	mechanism	by	226	

which	at	least	some	of	the	aforementioned	ion	channels	may	immediate	their	effects	on	EMT.	For	227	

example	the	mechanism	by	which	KCNN4	may	regulate	EMT	in	colon	cancer	cells	has	been	linked	to	228	

effects	on	calcium	signalling	(Lai	et	al.	2013).	Indeed,	global	chelation	of	intracellular	free	Ca2+	that	229	

attenuates	increases	in	cytosolic	free	Ca2+,	suppresses	both	EGF	and	hypoxia	induced	increases	in	the	230	

mesenchymal	markers	vimentin,	N-cadherin	and	CD44	(Davis	et	al.	2014a)	.	Similar	findings	have	231	

now	been	reported	in	Huh7	and	HepG2	hepatic	cancer	cell	lines	for	EMT	induced	by	doxorubicin	232	

(Wen,	et	al.	2016).		It	is	also	now	clear	that	a	major	remodelling	in	calcium	signalling	and	the	233	

expression	of	specific	calcium	permeable	ion	channels	is	a	feature	of	EMT	and	some	calcium	234	

permeable	ion	channels	are	important	in	the	induction	of	expression	of	some	proteins	associated	235	

with	the	mesenchymal	phenotype.	236	

Alterations	in	the	responses	to	ATP,	able	to	activate	G-protein	coupled	purinergic	receptors	(P2Y	237	

family)	and	ligand	gated	Ca2+	channels	(P2X	family)	is	a	feature	of	both	EGF	and	hypoxia	induced	EMT	238	

in	MDA-MB-468	breast	cancer	cells	(Azimi,	et	al.	2015;	Davis,	et	al.	2011).	EMT	induced	by	hypoxia	239	

and	EGF	is	associated	with	the	attenuation	of	peak	[Ca2+]CYT	and	the	sustained	phase	of	Ca2+	influx	240	

induced	by	ATP.	EMT	is	also	associated	with	a	reduction	in	the	sensitivity	to	ATP	with	an	increase	the	241	

EC50	(Azimi	et	al.	2015;	Davis	et	al.	2011).	Such	changes	in	the	mesenchymal	phenotype	may	be	an	242	

adaption	of	breast	cancer	cells	to	the	high	ATP	concentrations	in	some	tumour	microenvironments.	243	

However,	despite	this	consistent	change	in	ATP-mediated	Ca2+	signalling,	the	nature	of	the	244	

remodelling	of	P2X	receptors	seems	very	different	as	the	upregulation	of	P2X5	mRNA	is	a	feature	of	245	
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EGF	but	not	hypoxia	associated	ATP	(Azimi	et	al.	2015;	Davis	et	al.	2011).	The	attenuation	of	store	246	

operated	Ca2+	entry	(SOCE)	and	basal	Ca2+	influx	is	also	a	feature	of	EGF	induced	EMT	in	MDA-MB-247	

468	(Davis,	et	al.	2012),	however,	assessment	of	such	changes	with	hypoxia	induced	EMT	has	not	248	

been	reported.	Such	studies	are	critical	given	that	in	MCF-7	cells,	the	EMT	inducer	TGF-β1	has	been	249	

reported	to	be	associated	with	enhancement	of	store	operated	Ca2+	entry	(Hu,	et	al.	2011).	250	

In	addition	to	a	remodelling	of	Ca2+	influx	and/or	the	expression	of	some	Ca2+	permeable	ion	251	

channels	in	EMT	in	cancer	cells,	specific	calcium	permeable	ion	channels	have	also	been	identified	as	252	

regulators	of	the	induction	of	at	least	some	hallmarks	of	EMT.	A	focused	siRNA	screen	identified	253	

TRPM7	as	a	regulator	of	EGF-induced	expression	of	the	mesenchymal	marker	vimentin	in	MDA-MB-254	

468	breast	cancer	cells	(Davis	et	al.	2014a).	A	pharmacological	inhibitor	of	TRPM7	replicated	the	255	

consequences	of	TRPM7	silencing	on	EGF	induced	vimentin	expression.	These	effects	were	not	due	256	

to	general	inhibition	of	EGF	receptor	(EGFR)	signalling	since	EGF-mediated	EGFR	and	AKT	257	

phosphorylation	were	unaffected	by	TRPM7	silencing,	however,	EGF-mediated	STAT3	and	ERK1/2	258	

phosphorylation	were	significantly	reduced	(Davis	et	al.	2014a).	Although	a	Ca2+	permeable	ion	259	

channel,	the	importance	of	TRPM7	in	Mg2+	homeostasis	and	its	ability	to	function	as	an	atypical	260	

alpha	kinase	(Paravicini,	et	al.	2012)	require	further	attention	into	the	nature	of	its	contribution	to	261	

EMT	in	some	cancer	models.	Silencing	of	the	cold	sensor	TRPM8	increases	the	expression	of	the	262	

epithelial	marker	E-cadherin	in	mesenchymal-like	MDA-MB-231	cells	and	reduces	levels	of	the	263	

mesenchymal	marker	vimentin	(Liu,	et	al.	2014).	Consistent	with	a	role	for	TRPM8	in	the	264	

maintenance	and/or	induction	of	the	mesenchymal	phenotype	in	breast	cancer	cells,	overexpression	265	

of	TRPM8	in	the	more	epithelial	like	MCF-7	cell	line	leads	to	EMT	induction	as	indicated	by	down	266	

regulation	of	E-cadherin	and	induction	of	vimentin	(Liu	et	al.	2014).	In	Huh7	and	HepG2	hepatic	267	

cancer	cells,	TRPC6	silencing	attenuates	changes	in	the	expression	of	E-cadherin	induced	by	268	

doxorubicin	suggesting	that	in	the	ability	of	TRPC6	silencing	to	increase	sensitivity	to	doxorubicin	269	

through	effects	of	resistance	pathways	may	be	due	at	least	in	part	to	effects	on	some	aspects	of	EMT	270	

induction	(Wen	et	al.	2016).	271	
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Hence,	studies	of	calcium	signalling	and	Ca2+	permeable	ion	channels	in	EMT	from	a	variety	of	groups	272	

using	an	array	of	EMT	inducers	and	models	have	helped	define	a	critical	role	for	the	Ca2+	signal	in	273	

EMT	in	cancer	cells.		274	

	275	

Conclusion	276	

An	increasing	number	of	studies	have	reported	the	remodelling	of	plasma	membrane	ion	channel	277	

expression	as	a	characterizing	feature	of	EMT	in	cancer	cells.	The	identification	of	the	role	of	specific	278	

ion	channels	in	the	induction	of	EMT	and/or	the	maintenance	of	aspects	of	the	epithelial	or	279	

mesenchymal-like	phenotype	in	cancer	cells	suggest	that	some	ion	channels	may	be	therapeutic	280	

targets	to	control	EMT	and	hence	disease	progression	(e.g.	therapeutic	resistance).	However,	it	is	281	

likely	that	different	EMT	inducers	may	engage	different	ion	channels	to	regulate	the	properties	of	282	

the	mesenchymal	phenotype	and/or	EMT	induction	itself.	This	issue	and	the	study	of	the	283	

intersection	between	sex	hormones	and	receptors	that	regulate	EMT	(Jeon,	et	al.	2016;	Kong,	et	al.	284	

2015;	Zuo,	et	al.	2010;	Sun,	et	al.	2014;	van	der	Horst,	et	al.	2012)	and	ion	channels	which	285	

themselves	intersect	with	sex	hormone	pathways	(Asuthkar,	et	al.	2015;	Hao,	et	al.	2015;	286	

Mahmoodzadeh,	et	al.	2016)	are	areas	for	future	research.		Which	ion	channels	to	pursue	for	287	

therapeutic	targeting	requires	careful	consideration,	and	deciding	factors	will	include	the	expression	288	

of	targets	in	other	cell	types	and	the	likely	adverse	systemic	effects	of	channel	inhibitors.	However,	289	

the	successful	use	of	ion	channel	inhibitors	for	conditions	as	diverse	as	cardiovascular	disease	to	290	

pain	demonstrated	the	need	to	continue	research	in	this	area.	291	
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