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Key points summary 

• Cold water immersion and active recovery are common post-exercise recovery 

treatments. A key assumption about the benefits of cold water immersion is that it 

reduces inflammation in skeletal muscle. However, no data are available from 

humans to support this notion. 

• We compared the effects of cold water immersion and active recovery on 

inflammatory and cellular stress responses in skeletal muscle from exercise-trained 

men 2, 24 and 48 h during recovery after acute resistance exercise. 

• Exercise led to the infiltration of inflammatory cells, with increased mRNA expression 

of pro-inflammatory cytokines and neurotrophins, and the subcellular translocation 

of heat shock proteins in muscle. These responses did not differ significantly 

between cold water immersion and active recovery. 

• Our results suggest that cold water immersion is no more effective than active 

recovery for minimizing the inflammatory and stress responses in muscle after 

resistance exercise. 
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ABSTRACT 1 

Cold water immersion and active recovery are common post-exercise recovery treatments. 2 

However, little is known about whether these treatments influence inflammation and 3 

cellular stress in human skeletal muscle after exercise. We compared the effects of cold 4 

water immersion versus active recovery on inflammatory cells, pro-inflammatory cytokines, 5 

neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance 6 

exercise. Nine active men performed unilateral lower-body resistance exercise on separate 7 

days, at least 1 wk apart. On one day, they immersed their lower body in cold water (10°C) 8 

for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after 9 

exercise. Muscle biopsies were collected from the exercised leg before, 2, 24, and 48 h after 10 

exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts 11 

MAC1 and CD163 mRNA expression (P<0.05). Exercise also increased IL1β, TNF, IL6, CCL2, 12 

CCL4, CXCL2, IL8 and LIF mRNA expression (P<0.05). As evidence of hyperalgesia, the 13 

expression of NGF and GDNF mRNA increased after exercise (P<0.05). The cytosolic protein 14 

content of αB-crystallin and HSP70 protein content decreased after exercise (P<0.05). This 15 

response was accompanied by increases in the cytoskeletal protein content of αB-crystallin 16 

and the percentage of type II fibres stained for αB-crystallin. Changes in inflammatory cells, 17 

cytokines, neurotrophins, and HSPs did not differ significantly between the recovery 18 

treatments. These findings indicate that cold water immersion is no more effective than 19 

active recovery for reducing inflammation or cellular stress in muscle after a bout of 20 

resistance exercise. 21 

 22 

  23 
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Abbreviations 24 

BSA, bovine serum albumin; CCL2, monocyte chemotactic protein 1; CCL4, macrophage 25 

inflammatory protein 1β); CD, cluster of differentiation; CXCL2 (macrophage inflammatory 26 

protein 2α); FoxO, forkhead transcription factor; GDNF, glial cell derived neurotrophic 27 

factor; HSP, heat shock protein; IGF, insulin-like growth factor; IL, interleukin; LIF, leukaemia 28 

inhibitory factor; MAC, macrophage integrin; mTOR, mammalian target of rapamycin; NGF, 29 

nerve growth factor; TBST, Tris-buffered saline–Tween 20; TGF, transforming growth factor; 30 

TNF, tumour necrosis factor. 31 

  32 
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INTRODUCTION 33 

Our group has previously reported that, compared with active recovery, regular application 34 

of cold water immersion after exercise reduces gains in muscle mass and strength following 35 

3 months of resistance training (Roberts et al., 2015b). Cold water immersion may have 36 

attenuated long-term adaptive responses to resistance exercise by modulating 37 

inflammation and cellular stress. There exists a long-standing belief that by reducing 38 

temperature and blood flow in skeletal muscle, cryotherapy such as icing or cold water 39 

immersion reduces the metabolic rate of and/or inflammation in tissues within and around 40 

the injured site in skeletal muscle. This supposedly protects neighbouring cells against 41 

ischaemia after injury, which is thought to reduce the risk of secondary cell injury or death 42 

(Bleakley et al., 2010). Animal studies demonstrate the effectiveness of ice massage (Puntel 43 

et al., 2011; Takagi et al., 2011; Vieira Ramos et al., 2016) or local infusion of cold saline (Lee 44 

et al., 2005; Schaser et al., 2007) for reducing inflammation in muscle following injury. 45 

However, no research has examined whether cold water immersion reduces local 46 

inflammation in human skeletal muscle after resistance exercise. 47 

Understanding the effects of treatments such as cold water immersion and active 48 

recovery on inflammation within skeletal muscle after exercise is important. Cold water 49 

immersion is a widespread practice among various sports, and a growing body of evidence 50 

suggest that these strategies may affect muscle recovery from strenuous exercise. Repair of 51 

skeletal muscle tissue following injury is complex. It involves interactions between 52 

inflammatory cells, satellite cells, fibroblasts and endothelial cells, and a range of soluble 53 

factors secreted by these cells (Chazaud, 2016). Reducing inflammation in muscle after 54 

injury often impedes muscle repair (Urso, 2013). The notion that the anti-inflammatory 55 

effects of cryotherapy such as icing or cold water immersion is beneficial for muscle repair 56 

has underpinned sports medicine practice for many years (Meeusen & Lievens, 1986). 57 

However, research directly supporting this notion in humans is currently lacking. 58 

The aim of the current study was to investigate whether cold water immersion reduces 59 

local inflammation in muscle following exercise compared with active recovery. To conduct 60 

this analysis, we used muscle samples that we collected as part of a large study (Roberts et 61 

al., 2015b). In this large study, we compared cold water immersion with active recovery for 62 
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two reasons. First, active recovery in the form of a low-intensity ‘warm down’ is also a 63 

common strategy that athletes use to recover after exercise (Reilly & Ekblom, 2005) in the 64 

belief that it helps to reduce soreness and remove metabolic by-products in muscle after 65 

exercise. Second, compared with remaining sedentary, active recovery after exercise 66 

increases cardiac output and muscle blood flow, and reduces total peripheral resistance 67 

(Bangsbo et al., 1994; Journeay et al., 2005). We have also previously demonstrated that 68 

active recovery and cold water immersion cause divergent changes in cardiac output, 69 

temperature, and microvascular blood flow in muscle after exercise (Roberts et al., 2015a). 70 

In the current study, we measured: neutrophil and macrophage infiltration in muscle 71 

because these cells are important mediators of inflammation during muscle repair (Tidball & 72 

Villalta, 2010); intramuscular gene expression of the cytokines and chemokines because 73 

they recruit inflammatory cells to damaged muscle tissue (Peterson et al., 2006; Shireman et 74 

al., 2007; Kohno et al., 2011; Zhang et al., 2013) and regulate muscle repair (Broussard et 75 

al., 2004; Chen et al., 2007; Serrano et al., 2008; Yahiaoui et al., 2008; Zhang et al., 2013); 76 

intramuscular gene expression of the NGF and GDNF because they mediate pain and 77 

nociceptor activity in muscle (Murase et al., 2010; Murase et al., 2013); and the heat shock 78 

proteins HSP70 and αB-crystallin because they have a cytoprotective role, prevent 79 

aggregation of denatured proteins and stabilize the cytoskeleton in cells (Morton et al., 80 

2009). We hypothesised that compared with active recovery, cold water immersion would 81 

attenuate leucocyte infiltration and the expression of pro-inflammatory cytokines, 82 

neurotrophins as mediators of muscle soreness, and heat shock proteins as mediators of 83 

cellular stress in muscle after exercise. 84 

 85 

METHODS 86 

Ethical approval 87 

Before providing their written informed consent, all participants were informed of the 88 

requirements and potential risks of the study. The experimental procedures adhered to the 89 

standards set by the latest revision of the Declaration of Helsinki, and were approved by the 90 

Human Research Ethics Committee of The University of Queensland (project number 91 

2012000662). 92 
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Experimental design 93 

Nine physically active young men (mean ± SD age 22.1 ± 2.2 years, height 1.80 ± 0.06 m, 94 

body mass 83.9 ± 15.9 kg) completed one bout of single-leg resistance exercise on two 95 

separate days (using alternate legs). Each of the sessions was followed by either cold water 96 

immersion or active recovery. Muscle biopsies were collected from the vastus lateralis of 97 

the exercised leg before and after each training session. The order of the two trials was 98 

randomized and counterbalanced to minimize any series order effects. Six of the nine men 99 

completed the two trials 1 week apart, and the other three men completed their trials 4 100 

weeks apart. This variation in the timing of the trials was unavoidable, unfortunately, 101 

because the investigator who performed the muscle biopsies (T.R.) was not available to 102 

perform the biopsies on all of the men at 1-week intervals. All participants had at least 12 103 

months of experience in resistance training ≥3 times per week, and were familiar with all 104 

exercise aspects of the study. The data presented herein are part of a large study, from 105 

which we have previously published two papers containing separate findings, which are 106 

described above (Roberts et al., 2015b; Figueiredo et al., 2016). 107 

Resistance exercises. The resistance training sessions for the two experimental trials were 108 

identical and involved single-leg exercises such as 45° leg press (six sets of 8–12 repetitions), 109 

single-leg squats (three sets of 12 repetitions), knee extensions (six sets of 8–12 repetitions), 110 

and walking lunges (three sets of 12 repetitions). The total duration of the session was ∼45 111 

min. All resistance training was supervised and performed at normal room temperature 112 

(23–25°C).  113 

Recovery therapies. Cold water immersion was initiated 5 min after the training session. For 114 

the cold water immersion treatment, the participants sat in an inflatable bath (iCool iBody, 115 

iCool, Miami, Australia) for 10 min with both legs immersed in water up to the waist. Water 116 

was circulated continuously and maintained at 10.3 ± 0.5°C using a circulatory cooling unit 117 

(iCool LITE, iCool, Miami, Australia). For the active recovery treatment, the participants 118 

performed 10 min of active recovery at a self-selected low intensity on a stationary cycle 119 

ergometer (Wattbike, Nottingham, UK). The mean power output during active recovery was 120 

36.6 ± 13.8 W. The participants minimized any rewarming following cold water immersion 121 

or cooling following active recovery by not showering or bathing for at least 2 h after the 122 
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recovery therapies. We have previously demonstrated that these recovery therapies 123 

stimulate robust and distinct changes in muscle soreness and limb girth (Roberts et al., 124 

2014), cardiac output, muscle temperature, and microvascular perfusion (Roberts et al., 125 

2015a). 126 

Blood and muscle tissue collection. Blood samples were collected before exercise, 127 

immediately after exercise, immediately after the recovery therapies (i.e., 15 min after 128 

exercise) and 30 min, 1, 2, 24, and 48 h after exercise. The blood samples were collected 129 

from an antecubital vein into a serum separation tube (BD, Franklin Lakes, NJ). Serum tubes 130 

were left to clot at room temperature for 30 min before centrifugation at 4°C at 3,000 g for 131 

10 min to separate the serum, which was then stored at −80°C until the day of analysis. 132 

Muscle biopsies were collected from the midportion of the vastus lateralis while the 133 

participants were in a fed state before exercise and again at 2, 24, and 48 h after exercise. 134 

Pre-exercise and 2 h post-exercise biopsies were collected from the same incision. The pre-135 

exercise biopsy was collected with the needle inserted in a distal direction, and the 2 h 136 

biopsy was collected with the needle inserted in a proximal direction. Biopsies at 24 and 48 137 

h were collected from separate incisions, each ∼3 cm proximal from the previous incision, 138 

with a proximal needle insertion. This method ensured that all biopsy sites were separated 139 

by at least 3 cm to minimize any artefact related to inflammation resulting from multiple 140 

biopsies. The same muscle tissue that was analysed in the acute study section of our 141 

previous reports (Roberts et al., 2015b; Figueiredo et al., 2016) was used for the current 142 

analyses.  143 

Control procedures. We attempted to minimize potential variation in training responses by 144 

providing standardized nutrition before and after each training session and by instructing 145 

the participants to avoid performing any extra exercise for 72 h before and for 48 h after 146 

each trial. On the morning of each trial, the participants consumed the same meal 2 h 147 

before the pre-exercise muscle biopsy and a 30 g serve of a whey protein isolate drink after 148 

exercise before each recovery treatment. They were then allowed to drink only water until 149 

the 2 h biopsy was collected, at which time they were provided with another 30 g of whey 150 

protein isolate to drink. The participants were instructed to consume their habitual diet for 151 

2 d before each experimental trial and until the 48 h muscle biopsy. The participants were 152 

instructed to avoid consuming any additional supplements of any kind between 4 d before 153 
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each pre-exercise biopsy and the 48 h post-exercise muscle biopsy. Dietary intake before 154 

and during the first experimental trial was recorded in a food diary and replicated for the 155 

second experimental trial. 156 

 157 

Blood and muscle tissue analysis 158 

Creatine kinase. Serum creatine kinase activity was measured using a spectrophotometric 159 

assay on an automated analyser (Model 7450, Hitachi, Japan). 160 

Plasma cytokines. Plasma cytokine concentrations were measured using commercial 161 

enzyme-linked immunosorbent assays for IL-6, IL-10 and IL-1ra. These particular cytokines 162 

were selected because they consistently show the greatest increase following exercise; the 163 

plasma concentrations of IL-1β, TNF-α and MCP-1 do not increase to the same extent 164 

(Peake et al., 2015). IL-6 was measured using a Quantikine® High-Sensitivity Colorimetric 165 

Sandwich ELISA (SS600B) from R&D Systems Inc. (Minneapolis, MN, USA). IL-10 was 166 

measured using an OptEIA ELISA Kit II (BD-550613) from BD Biosciences (San Diego, CA, 167 

USA). IL-1ra was measured using a Quantikine® Colorimetric Sandwich ELISA (SRA00B) from 168 

R&D Systems, Inc. Measurements were made using a microplate reader (VERSAmax, 169 

Molecular Devices, Sunnyvale, CA, USA). 170 

RT-PCR. Total RNA was extracted from ∼20 mg of muscle tissue using the AllPrep® 171 

DNA/RNA/miRNA Universal Kit (QIAGEN GmbH, Hilden, Germany) according to the 172 

manufacturer’s instructions. cDNA was synthesized using High-Capacity RNA-to-cDNA™ kit 173 

(Life Technologies, Carlsbad, CA). mRNA expression was then measured using RT-PCR on a 174 

LightCycler 480 II (Roche Applied Science, Penzberg, Germany) using SYBR Green I Master 175 

Mix (Roche Applied Science). The sequences for the primers used in this study are shown in 176 

Table 1. The geometric mean of three housekeeping genes (i.e., chromosome 1 open 177 

reading frame 43, charged multivesicular body protein 2A, and endoplasmic reticulum 178 

membrane protein complex subunit 7) was used for normalization (Vandesompele et al., 179 

2002). Standard and melting curves were obtained for each target to establish primer 180 

efficiency and single product amplification. 181 
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Western blotting. Pieces of muscle tissue weighing 45−55 mg were homogenized and 182 

fractionated into cytosolic and cytoskeletal fractions using a commercial fractionation kit 183 

(ProteoExtract Subcellular Proteome Extraction Kit, Cat#539790, Calbiochem, EMD 184 

Biosciences, Germany) according to the manufacturer’s procedures. The purity of the 185 

fractions were confirmed by specific markers for the respective fractions (GAPDH (cytosol 186 

and nuclear), PARP (nuclear), COX2 (membrane) and desmin (cytoskeletal). Protein 187 

concentration was measured in triplicate using a commercial kit (DC Protein Microplate 188 

assay, Cat#0113, Cat#0114, Cat#0115, Bio-Rad, Hercules, CA), a filter photometer (Expert 189 

96, ASYS Hitech, UK), and the software provided (Kim, ver. 5.45.0.1, Daniel Kittrich, Prague, 190 

Czech Republic).  191 

Equal amounts of protein were loaded per well (16−50 µg) and were separated by 192 

4−12% SDS-PAGE under denaturizing conditions for 35−45 min at 200 V in cold MES running 193 

buffer (NuPAGE MES SDS Running Buffer, Invitrogen, Carlsbad, CA). All samples were run in 194 

duplicate. After gel electrophoresis, the proteins were transferred onto a polyvinylidene 195 

fluoride membrane for 90 min at 30 V using an XCell II Blot Module (Thermo Fisher 196 

Scientific, Hemel Hempstead, UK) and NuPAGE transfer buffer (Invitrogen, Carlsbad, CA). 197 

Membranes were blocked at room temperature for 2 h in a 5% fat-free skimmed milk and 198 

0.1% Tris-buffered saline with Tween 20 (TBST) (Cat#170-6435, Bio-Rad; Tween-20, 199 

Cat#437082Q, VWR International, Radnor, PA; skim milk, Cat#1.15363, Merck, Darmstadt, 200 

Germany). Blocked membranes were incubated overnight at 4°C with a primary monoclonal 201 

antibody against αB-crystallin (mouse anti-αB-crystallin, Cat#ADI-SPA-222, Enzo Life 202 

Sciences, Farmingdale, NY) diluted 1:4000. After incubation, membranes were washed and 203 

incubated with a secondary antibody at room temperature for 1 h. The membranes for αB-204 

crystallin immunoblotting were incubated with a secondary antibody diluted 1:30 000 (goat 205 

anti-mouse, Cat#31430, Thermo Scientific/Pierce Biotechnology, Rockford, IL).  206 

Membranes used for HSP70 quantification were incubated initially with another primary 207 

antibody (anti-FoxO3a; data not shown) and secondary antibody. The primary and 208 

secondary antibodies were then stripped from the membranes using Restore Western Blot 209 

Stripping Buffer (Cat#21059, Thermo Fisher Scientific), blocked for 2 h at room temperature, 210 

and incubated with the primary polyclonal antibody to HSP70 (rabbit anti-HSP70, Cat#ADI-211 
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SPA-812, Enzo Life Sciences) diluted 1:4000 at 4°C overnight. The membranes were then 212 

incubated in a secondary antibody (anti-rabbit IgG, HRP-linked antibody, Cat#7074, Cell 213 

Signaling Technology, Danvers, MA). All antibodies were diluted in a 1% fat-free skimmed 214 

milk and 0.1% TBST solution. Between stages, membranes were washed in 0.1% TBST. Bands 215 

were visualized using an HRP detection system (Super Signal West Dura Extended Duration 216 

Substrate, Cat#34076, Thermo Scientific/Pierce Biotechnology). Chemiluminescence was 217 

measured using a ChemiDoc MP System (Bio-Rad Laboratories), and band intensities were 218 

calculated with molecular imaging software (Image Lab, Bio-Rad Laboratories). All samples 219 

were analysed in duplicate, and mean values were used for statistical analyses. 220 

Immunohistochemistry. Eight-micrometre-thick cross-sections of muscle tissue were cut 221 

using a microtome at −20°C (CM3050, Leica Biosystems, GmbH), mounted on microscope 222 

slides (Superfrost Plus, Thermo Scientific, Boston, MA), air-dried, and stored at −80°C. 223 

Muscle sections from each subject obtained at all time points before and after both trials 224 

were mounted on the same microscope slide. Before immunostaining, frozen sections were 225 

air-dried and blocked in 1% bovine serum albumin (BSA) in PBS for 30 min. Sections were 226 

then incubated with primary antibodies (listed in Table 2) in 1% BSA overnight at 4°C. The 227 

following primary antibodies were used: anti-laminin to stain the inner surface of myofibres 228 

(#Z009701-2; DakoCytomation, Glostrup, Denmark; dilution 1:1000); CD66b to stain 229 

granulocytes (#M1594; clone CLB-B13.9, Sanquin Reagents, Amsterdam, The Netherlands; 230 

dilution 1:500); CD68 to stain macrophages and cells with bilobed nuclei (#M0718; clone 231 

EBM-11, DakoCytomation; dilution 1:300); anti-αB-crystallin to stain αB-crystallin bound to 232 

cytoskeletal/myofibrillar structures (#ADI-SPA-222, Enzo Life Sciences, Farmingdale, NY; 233 

dilution 1:200), and SC-71 to quantify type IIa and IIx fibres (#SC-71, Developmental Studies 234 

Hybridoma Bank, Iowa City, USA; dilution 1:500). 235 

After overnight incubation, the slides were washed three times in PBS for 10 min. 236 

Sections were then incubated for 1 h with secondary antibodies diluted 1:200 in 1% BSA at 237 

room temperature. The secondary antibodies used were Alexa Fluor® 594 F(ab′)2 fragment 238 

of goat anti-rabbit IgG (#A-11072, Invitrogen, Eugene, OR), Alexa Fluor®488 anti-mouse IgG 239 

((#A-11029, Invitrogen, Eugene, OR), CF488A goat anti-mouse IgG (#20010, Biotium, 240 

Hayward, CA), and CF594 goat anti-rabbit IgG (#20112, Biotium). The fluorochrome-stained 241 

sections were washed three times in PBS for 10 min. After the last wash, the sections were 242 
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mounted with ProLong® Gold Antifade reagent with 4′,6-diamidino-2-phenylindole (DAPI; 243 

Invitrogen, Eugene, OR). 244 

Muscle sections were visualized using a high-resolution camera (DP72, Olympus, Japan) 245 

mounted on a microscope (BX61, Olympus) with a fluorescent light source (X-Cite 120PCQ, 246 

EXFO, Canada). For leucocyte analysis, the numbers of CD66b- and CD68-positive cells, and 247 

the total number of muscle fibres from the area examined were counted (see Figures 2 and 248 

3). The data are presented as the number of CD66b- or CD68-positively stained cells per 100 249 

skeletal muscle fibres. For the αB-crystallin analysis, the numbers of αB-crystallin-positive 250 

and -negative fibres were counted. A fibre was considered positive if the staining inside the 251 

fibre was scattered and uneven, and negative if the staining was homogeneous. The data 252 

are presented as the percentage of αB-crystallin-positive fibres. Areas of sections that 253 

contained freeze damage or were folded during the cutting procedure were not included in 254 

the analyses.  255 

 256 

Statistical analysis 257 

Before statistical analysis, all data were checked to determine if they were normally 258 

distributed. Log transformations were applied to data that were not normally distributed 259 

(i.e., macrophage cell counts; MAC1, TNF, and NGF mRNA; serum creatine kinase activity). 260 

Normally distributed data (i.e., GDNF mRNA, HSP70, αB-crystallin and plasma cytokine 261 

concentrations) were analysed using a 2 × 3 repeated-measures ANOVA to calculate the 262 

main effects of time and time × trial interaction. When a significant main effect was evident 263 

(P < 0.05), post hoc paired t tests were used to compare changes over time and differences 264 

between the trials. Normally distributed data are presented as mean ± SD, and log-265 

transformed data are presented as the geometric mean ± 95% confidence interval of the 266 

geometric mean. Data that were not normally distributed (i.e., neutrophil cell counts; 267 

CD163, IL1β, IL-6, CCL2, and HSP70 mRNA) were analysed using Friedman’s test, followed by 268 

Wilcoxon’s signed-ranked tests to compare changes over time and differences between the 269 

trials. Non-normally distributed data are presented as median ± interquartile range. The 270 

false discovery rate was used to correct for multiple comparisons. 271 
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 272 

RESULTS 273 

Inflammatory cell infiltration. Exercise induced a strong and sustained inflammatory 274 

response in muscle (Figure 1). The number of CD66b+ neutrophils in muscle was higher than 275 

the pre-exercise number at 2 h after active recovery (9-fold difference; P = 0.015) and 276 

tended to be higher at 2 h after cold water immersion (3-fold difference; P = 0.086). mRNA 277 

expression of macrophage cell surface receptors increased in muscle after exercise. As a 278 

general marker of pro-inflammatory cells, MAC1 expression was higher than the pre-279 

exercise expression at 24 h (1.2-fold; P = 0.020) and 48 h (2.4-fold; P = 0.010) after active 280 

recovery, and 48 h after cold water immersion (1.8-fold; P = 0.036). The number of CD68+ 281 

macrophages in muscle was higher than before exercise at 48 h after active recovery (1.5-282 

fold P = 0.008) and tended to be higher 48 h after cold water immersion (1.7-fold; P = 283 

0.071). As a marker of anti-inflammatory macrophages, CD163 expression was higher than 284 

the pre-exercise expression at 24 h (6.7-fold; P = 0.008) and 48 h (3.2-fold; P = 0.011) after 285 

active recovery, and at 24 h after cold water immersion (3.2-fold; P = 0.008). MAC1 and 286 

CD163 mRNA expression and neutrophil and macrophage counts in muscle did not differ 287 

significantly between the trials. Representative images of staining for CD66b+ neutrophils 288 

and CD68+ macrophages are shown in Figures 2 and 3. 289 

Cytokines and chemokines. Exercise induced the expression of several pro-inflammatory 290 

cytokine and chemokine genes in muscle (Figures 4 and 5). IL1β expression was higher than 291 

before exercise at 2 h after active recovery (9-fold; P = 0.011) and at 2 h after cold water 292 

immersion (27-fold; P = 0.021). TNF expression was higher than before exercise at 2 h (2.6-293 

fold; P = 0.004) and 24 h (2.9-fold; P = 0.005) after active recovery, and at 2 h after cold 294 

water immersion (2.7-fold; P = 0.026). IL6 expression was higher than before exercise at 2 h 295 

after active recovery (11-fold; P = 0.004) and at 2 h (8.6-fold; P = 0.008), 24 h (1.7-fold; P = 296 

0.021), and 48 h (2.2-fold; P = 0.015) after cold water immersion. CCL2 expression was 297 

higher than before exercise at 2 h after active recovery (21-fold; P = 0.008) and cold water 298 

immersion (30-fold; P = 0.008), and it remained higher at 24 h and 48 h after both trials. 299 

CCL4 expression was higher than before exercise at 24 h after active recovery (2.8-fold; P = 300 

0.019), and tended to be higher than before exercise at 24 h after cold water immersion 301 
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(1.7-fold; P = 0.068). CCL5 expression showed a similar pattern of changes to CCL4 (data not 302 

shown). CXCL2 expression was higher than before exercise at 2 h after active recovery (9.4-303 

fold; P < 0.001) and cold water immersion (17-fold; P < 0.001). It also tended to be higher 304 

than before exercise at 24 h after active recovery (1.8-fold; P = 0.065) and was higher 24 h 305 

after cold water immersion (1.6-fold; P = 0.017). IL8 expression was higher than before 306 

exercise at 2 h after active recovery (125-fold; P < 0.001) and cold water immersion (272-307 

fold; P < 0.001). It was also higher than before exercise at 24 h after active recovery (8.9-308 

fold; P = 0.030) and tended to be higher 24 h after cold water immersion (5.3-fold; P = 309 

0.052). LIF expression was higher than before exercise at 2 h after active recovery (32-fold; P 310 

< 0.001) and cold water immersion (37-fold; P < 0.001). It also tended to be higher than 311 

before exercise at 24 h after active recovery (2.5-fold; P = 0.065) and was higher 24 h after 312 

cold water immersion (2.2-fold; P = 0.037). Cytokine and chemokine mRNA expression in 313 

muscle did not differ significantly between the trials. 314 

Neurotrophins. Exercise stimulated the expression of two neurotrophins associated with 315 

muscle soreness in muscle (Figure 5). GDNF and NGF expression increased in muscle after 316 

exercise. GDNF expression was higher than before exercise at 2 h after active recovery (3.7-317 

fold; P = 0.001) and cold water immersion (4.3-fold; P < 0.001). NGF expression was higher 318 

than before exercise at 24 h after active recovery (2.0-fold; P = 0.040), and at 2 h (1.2-fold; P 319 

= 0.040), 24 h (2.1-fold; P = 0.010) and 48 h (1.5-fold; P = 0.010) after cold water immersion. 320 

GDNF or NGF expression in muscle did not differ significantly between the trials. 321 

HSPs. HSP70 mRNA expression was higher than before exercise at 2 h after active recovery 322 

(2.1-fold; P = 0.013) and cold water immersion (2.0-fold; P = 0.028) (Figure 6). The protein 323 

content of HSP70 in the cytosol fraction of muscle homogenates was lower than before 324 

exercise at 2 h (14%; P = 0.032) and 48 h (15%; P = 0.034) after active recovery, and at 2 h 325 

after cold water immersion (18%; P = 0.044) (Figure 7). The protein content of HSP70 in the 326 

cytoskeletal fraction was unchanged after both trials. The protein content of αB-crystallin in 327 

the cytosol fraction of muscle homogenates was lower than before exercise at 2 h after both 328 

active recovery (−33%; P = 0.001) and cold water immersion (−36%; P = 0.003) (Figure 8). It 329 

remained lower than the pre-exercise value for the rest of the post-exercise recovery period 330 

in both trials. Conversely, the protein content of αB-crystallin in the cytoskeletal fraction of 331 

muscle homogenates showed a strong trend toward an increase after exercise (P = 0.052). 332 
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This response was accompanied by an increase in the percentage of αB-crystallin-positive 333 

fibres (Figure 9). The median percentage of αB-crystallin-positive fibres was 26% 334 

(interquartile range 3−77%) at 2 h after active recovery and 19% (interquartile range 2−43%) 335 

at 2 h after cold water immersion. Staining for αB-crystallin was scattered and evident 336 

mainly in type II fibres (Figure 9). The percentage of αB-crystallin-positive fibres did not 337 

differ significantly between the trials. 338 

Creatine kinase and cytokines. A systemic indirect marker of muscle damage, serum creatine 339 

kinase activity increased moderately after both exercise trials (P < 0.05) (Figure 10). It 340 

remained elevated up to 48 h after active recovery (P < 0.05). Plasma IL-6 concentration also 341 

increased moderately after both exercise trials, and remained elevated up to 2 h after 342 

exercise (Table 2). By contrast, the plasma concentrations of IL-10 (P = 0.40) and IL-1ra (P = 343 

0.24) did not change after either trial (Table 2). The magnitude of the changes in creatine 344 

kinase and cytokines was consistent with the intermittent nature and limited muscle mass 345 

used for the single-leg resistance exercise. There were no significant differences in serum 346 

creatine kinase activity or plasma cytokine concentrations between the trials. 347 

 348 

DISCUSSION 349 

To our knowledge, this is the first study to compare the effects of cold water immersion 350 

versus active recovery on inflammation, neurotrophins, and HSPs within skeletal muscle 351 

following exercise in humans. Exercise stimulated intramuscular inflammation, as 352 

demonstrated by increased mRNA expression of MAC1 and CD163, and increased the 353 

numbers of neutrophils and macrophages. Intramuscular gene expression of cytokines and 354 

neurotrophins also increased, and HSPs translocated from the cytosol to cytoskeletal 355 

structures in muscle after exercise. Contrary to our hypothesis, these responses did not 356 

differ substantially between cold water immersion and active recovery. These findings 357 

provide evidence against the traditional notion that cryotherapy such as cold water 358 

immersion helps to restrict inflammation and cellular stress responses in muscle following 359 

exercise. Taking into account our previous observation that regular application of cold water 360 

immersion attenuated long-term muscle adaptation compared with active recovery 361 
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(Roberts et al., 2015b), the present findings suggest that this response was not due to a 362 

reduction in inflammation and/or cellular stress after cold water immersion. 363 

Animal studies have demonstrated that icing (Puntel et al., 2011) or infusing cold saline 364 

(Lee et al., 2005; Schaser et al., 2007) into injured muscle of rats reduces leucocyte rolling 365 

and adhesion, and neutrophil infiltration and activation. By contrast, another study found 366 

that cold water immersion did not reduce leucocyte counts in muscle of rats after exercise 367 

(Camargo et al., 2012). Icing reduces and/or delays macrophage infiltration in rat muscle 368 

after muscle injury (Takagi et al., 2011; Vieira Ramos et al., 2016). In the present study, 369 

there were no significant differences in the numbers of neutrophils and macrophages, or 370 

mRNA expression of the cell surface receptors MAC1 and CD163 between cold water 371 

immersion and active recovery (Figure 1).  372 

Compared with research into the effects of cryotherapy on cell infiltration into muscle, 373 

less is known about its effects on the intramuscular expression of cytokines. In the present 374 

study, we focused on changes in the gene expression of IL-1β, TNF-α, IL-6, CCL2 (MCP-1), 375 

CCL4 (MIP-1β), CXCL2 (MIP-2α), IL-8 and LIF in muscle after exercise because these cytokines 376 

are responsive to mechanical loading associated with exercise (Peake et al., 2015). They also 377 

play important roles in recruiting inflammatory cells to damaged muscle tissue (Peterson et 378 

al., 2006; Shireman et al., 2007; Kohno et al., 2011; Zhang et al., 2013) and regulating 379 

muscle repair (Broussard et al., 2004; Chen et al., 2007; Serrano et al., 2008; Yahiaoui et al., 380 

2008; Zhang et al., 2013). Two animal studies have reported that icing reduces the 381 

expression of TGFβ and TNF in the days following muscle injury (Takagi et al., 2011; Vieira 382 

Ramos et al., 2016). In the present study, IL1β, IL6, TNF, CCL2, CXCL2, IL8 and LIF mRNA 383 

increased in skeletal muscle after both cold water immersion and active recovery (Figures 4 384 

and 5). However, cytokine expression did not differ significantly between the cold water 385 

immersion and active recovery trials. The effects of ice massage (Tseng et al., 2013), cold 386 

water immersion (Vaile et al., 2008; Pointon et al., 2012; Gonzalez et al., 2014; Roberts et 387 

al., 2014), or exposure to −30°C air (Pournot et al., 2011; Guilhem et al., 2013) on systemic 388 

inflammatory responses to intense eccentric exercise or resistance exercise are variable and 389 

are relatively minor. We discovered that although plasma IL-6 concentration increased after 390 

exercise, there was no significant difference between the two trials. Collectively, these 391 
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findings suggest that cryotherapy does not substantially alter local or systemic inflammatory 392 

responses to exercise-induced muscle damage. 393 

Several factors could (theoretically) account for the differences between the present 394 

study and the animal studies described above. First, data from animal studies tend to 395 

indicate that icing (Puntel et al., 2011; Takagi et al., 2011; Vieira Ramos et al., 2016) is more 396 

effective than cold water immersion (Camargo et al., 2012) for reducing inflammation in 397 

muscle. This difference could be related to differences in the temperature of ice compared 398 

with cold water, which are in the range of 9−10°C. Second, we (Roberts et al., 2015a) and 399 

others (Ihsan et al., 2013) have demonstrated that cold water immersion reduces muscle 400 

temperature at a depth of 3 cm and microvascular perfusion at a depth of 1−2 cm. Because 401 

animal muscles are smaller than human muscles, icing or cold water immersion may 402 

produce more extensive changes in muscle temperature and blood flow throughout animal 403 

muscles compared with human muscles. This may partly explain the greater anti-404 

inflammatory effects of icing in animal muscle (Puntel et al., 2011; Takagi et al., 2011; Vieira 405 

Ramos et al., 2016). Third, the animal studies described above induced muscle injury 406 

through blunt impact trauma (Lee et al., 2005; Schaser et al., 2007; Puntel et al., 2011), 407 

freeze injury (Vieira Ramos et al., 2016), or by crushing muscle with forceps (Takagi et al., 408 

2011). No research has directly compared these injury models with exercise. Yet it seems 409 

reasonable to suggest that tissue injury and inflammation may be more severe and 410 

prolonged after blunt impact trauma or freeze or crush injury compared with exercise 411 

(Gayraud-Morel et al., 2009). These differences may influence the efficacy of treatments for 412 

muscle injury and inflammation. Finally, these studies compared the effects of cryotherapy 413 

with no treatment, as opposed to active recovery. 414 

Less muscle soreness after intense exercise may be the most consistent effect of cold 415 

water immersion (Leeder et al., 2011; Versey et al., 2013). We did not assess muscle 416 

soreness in the present study. However, we have previously demonstrated that the same 417 

cold water immersion protocol (i.e., 10 min of cold water immersion at 10°C) significantly 418 

reduced muscle soreness after intense resistance exercise (Roberts et al., 2014). The 419 

mechanisms through which cold water immersion reduces muscle soreness after exercise 420 

are unknown. At rest (i.e., without prior exercise), topical icing of the ankle reduces nerve 421 

conduction velocity, and increases pain threshold and pain tolerance (Algafly & George, 422 
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2007). These findings suggest that cryotherapy may influence the activity of nociceptors in 423 

soft tissues. Pain and nociceptor activity in muscle are mediated, in part, by pro-424 

inflammatory cytokines (Schafers et al., 2003; Hoheisel et al., 2005), bradykinin, and the 425 

neurotrophins NGF and GDNF (Murase et al., 2010; Murase et al., 2013). NGF and GDNF 426 

mRNA expression increases in skeletal muscle following lengthening (eccentric) muscle 427 

contractions in rats (Murase et al., 2010; Murase et al., 2013) and 60 min dynamic knee 428 

extension exercise in humans (Romero et al., 2016). Consistent with these responses, we 429 

found that GDNF expression peaked at 2 h after exercise, whereas NGF expression peaked 430 

at 24 h after exercise (Figure 5). NGF and GDNF expression did not differ significantly after 431 

cold water immersion and active recovery. Therefore, these findings suggest that the 432 

analgesic effects of cold water immersion after exercise do not involve changes in the 433 

expression of these neurotrophins. 434 

HSPs including HSP70 and αB-crystallin play important roles in cytoprotection and as 435 

molecular chaperones to prevent aggregation of denatured proteins. They also regulate the 436 

refolding of proteins and stabilize the cytoskeleton in cells (Morton et al., 2009). We 437 

observed that HSP70 mRNA expression increased (Figure 6), whereas the cytosolic protein 438 

content of HSP70 (Figure 7) and αB-crystallin (Figure 8) in muscle decreased acutely after 439 

both cold water immersion and active recovery, and did not differ significantly between the 440 

trials. The increase in HSP70 mRNA expression is consistent with the findings of other 441 

studies (Paulsen et al., 2007). Previous studies have reported a delayed increase (Paulsen et 442 

al., 2007; Paulsen et al., 2009) or no change (Cumming et al., 2014) in cytosolic HSP70 443 

content and an acute decrease (Paulsen et al., 2009; Cumming et al., 2014) in cytosolic αB-444 

crystallin content. The acute decrease in the cytosolic content of HSPs after exercise reflects 445 

their mobilization to cytoskeletal structures, which was confirmed by the increased αB-446 

crystallin content in the cytoskeletal fraction, where they may help to stabilize and protect 447 

stressed myofibrillar proteins (Paulsen et al., 2007; Paulsen et al., 2009).  448 

The increase in the number of αB-crystallin-positive fibres (fibres with scattered and 449 

uneven αB-crystallin staining) is further evidence that this stress protein binds to damaged 450 

cytoskeletal or myofibrillar structures. We have previously reported a similar staining 451 

pattern after high-force eccentric exercise, and more detailed observations with 452 
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immunogold staining and electron microscopy revealed accumulation of αB-crystallin in Z-453 

disks connected to disrupted sarcomeres (Paulsen et al., 2009). Consistent with other 454 

reports of the accumulation of another small HSP (HSP27) in type II fibres after resistance 455 

exercise (Folkesson et al., 2008), the scattered αB-crystallin staining was evident mainly in 456 

type II fibres in the present study. This finding suggests that the mechanical strain on 457 

myofibrillar structures was more pronounced in type II fibres. Collectively, the current 458 

findings suggest that cold water immersion did not mitigate the stress-related signals that 459 

stimulate cellular movement of HSPs in skeletal muscle after exercise. This may also partly 460 

explain why cold water immersion did not significantly alter the infiltration of inflammatory 461 

cells or cytokine gene expression in skeletal muscle following exercise. 462 

Several methodological considerations relating to the present study warrant brief 463 

discussion. First, several studies have reported that exercise with one leg induces adaptation 464 

in the contralateral leg (Howatson & van Someren, 2007; Starbuck & Eston, 2012; Xin et al., 465 

2014). To address this issue, we analysed the changes in cellular infiltration and the 466 

expression of cytokine mRNA, neurotrophin mRNA and heat shock proteins between the 467 

first and second bout of exercise that each participant performed (independent of cold 468 

water immersion or active recovery treatments). Indeed, there were no statistically 469 

significant differences (P < 0.05) between the first and second bouts of exercise for any of 470 

these variables, which suggests that no adaptation occurred in the contralateral leg 471 

between the first and second bouts of exercise. 472 

Second, some studies have reported that repeated muscle biopsies can cause injury and 473 

inflammation in muscle (Guerra et al., 2011; Van Thienen et al., 2014). By contrast, we and 474 

others have found that repeated muscle biopsies do not alter the expression of a wide array 475 

of genes (Lundby et al., 2005) or the infiltration of inflammatory cells in muscle (Paulsen et 476 

al., 2010). We aimed to minimize injury and inflammation arising from the muscle biopsies 477 

in two ways: (1) for the pre-exercise and 2 h post-exercise biopsy, we inserted the biopsy 478 

needle in opposite directions; (2) for the 24 h and 48 h biopsies, we inserted the biopsy 479 

needle at two separate sites, 3 cm and 6 cm distal (respectively) from the previous incisions. 480 

Third, we acknowledge that comparing cold water immersion with inactive recovery may 481 

have been optimal for true experimental purposes. However, in reality, athletes are unlikely 482 
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to remain completely sedentary after exercise (Reilly & Ekblom, 2005). We contend that our 483 

comparison between cold water immersion and active recovery is more reflective of typical 484 

athletic practice. We also believe that the effects of active recovery itself were relatively 485 

minor, because other research has demonstrated little or no difference in plasma creatine 486 

kinase activity (Saxton & Donnelly, 1995) or circulating cytokines (including IL-6 and IL-10) 487 

(Andersson et al., 2010) between active recovery and inactive/sedentary recovery after 488 

exercise. Notwithstanding possible differences between systemic versus intramuscular 489 

markers of tissue damage/inflammation, the findings from these studies tend to suggest 490 

that our results would have been similar if we had included inactive/sedentary recovery 491 

rather than active recovery. Last, we did not include women in our study to minimize 492 

variation arising from fluctuations in oestrogen as part of the menstrual cycle. Oestrogen is 493 

known to influence inflammatory responses in muscle after exercise (Tiidus, 2003). We 494 

acknowledge that our results may not be applicable to women. 495 

 In conclusion, contrary to popular anecdotal belief and the findings from preclinical 496 

studies on cryotherapy treatments for muscle injury, we found that compared with active 497 

recovery, cold water immersion did not significantly reduce inflammation or cellular stress 498 

within muscle after exercise. It is important to consider the implications of these findings 499 

within the broader context of understanding the factors that regulate inflammatory 500 

responses in muscle after exercise, and managing athletic conditioning and recovery. 501 

Considering the large differences in cardiac output, temperature, and microvascular blood 502 

flow in muscle that occur after cold water immersion versus active recovery (Roberts et al., 503 

2015a), the present findings suggest that these physiological factors are not major 504 

determinants of local inflammation and cellular stress in human muscle after exercise. Cold 505 

water immersion consistently improves perceptions of fatigue and muscle soreness (Stanley 506 

et al., 2012) and enhances recovery of muscle function/performance following exercise 507 

(Leeder et al., 2011; Versey et al., 2013; Roberts et al., 2014). It also reduces clinical signs of 508 

inflammation such as limb swelling/oedema after exercise (Yanagisawa et al., 2003; 509 

Yanagisawa et al., 2004; Roberts et al., 2014). Therefore, it would appear that cold water 510 

immersion may still confer some short-term clinical and/or functional benefits for athletes, 511 

without any changes in local inflammatory reactions within skeletal muscle during recovery 512 

from exercise. Periodic use of cold water immersion may assist athletes when they need to 513 
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recovery quickly between training sessions or competitive events. However, in the long 514 

term, regular cold water immersion appears to be detrimental for developing muscle 515 

strength and hypertrophy.  516 
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Table 1. mRNA primer sequences 

Primer Sequence 

MAC1 (CD11b) forward TCAGGTGGTGAAAGGCAAGG

MAC1 (CD11b) reverse ATCTGTCCTTCTCTTAGCCGA 

CD163 forward GCGGCTTGCAGTTTCCTCAA 

CD163 reverse CTGAAATCAGCTGACTCATGGGA

NGF forward GAGCGCAGCGAGTTTTGG 

NGF reverse TGGCCAGGATAGAAAGCTGC 

GDNF forward GAACTCTTGCCCCTGACCTG

GDNF reverse GCGGCACCTCGGATCG 

HSP70 forward TGTTCCGTTTCCAGCCCCCAA 

HSP70 reverse GGGCTTGTCTCCGTCGTTGAT

IL6 forward TCAATGAGGAGACTTGCCTGG 

IL6 reverse GGGTCAGGGGTGGTTATTGC 

IL1β forward TTCGAGGCACAAGGCACAA

IL1β reverse TGGCTGCTTCAGACACTTGAG 

IL8 forward ACCGGAAGGAACCATCTCAC

IL8 reverse GGCAAAACTGCACCTTCACAC

LIF forward TGAAAACTGCCGGCATCTGA

LIF reverse CACAACTCCTGCCGCCAA

CCL2 forward GCAATCAATGCCCCAGTCAC 

CCL2 reverse CTTGAAGATCACAGCTTCTTTGGG

CCL4 forward CTCCCAGCCAGCTGTGGTATTC 

CCL4 reverse CCAGGATTCACTGGGATCAGC 

CXCL2 forward GAAAGCTTGTCTCAACCCCG

CXCL2 reverse TGGTCAGTTGGATTTGCCATTTT 

TNF forward  AGCCCATGTTGTAGCAAACC 

TNF reverse TGAGGTACAGGCCCTCTGAT

EMC7, forward GGGCTGGACAGACTTTCTAATG 

EMC7, reverse CTCCATTTCCCGTCTCATGTCAG 

CHMP2A, forward CGCTATGTGCGCAAGTTTGT
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CHMP2A, reverse GGGGCAACTTCAGCTGTCTG 

C1orf43, forward CTATGGGACAGGGGTCTTTGG 

C1orf43, reverse TTTGGCTGCTGACTGGTGAT

 545 

 546 

  547 
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Table 2. Plasma cytokine concentrations. 

 Pre Post Rec 0.5 h 1 h 2 h 24 h 48 h 

IL-6  

(pg/ml) 

    

CWI 1.1 

(0.5) 

2.2 

(1.2) * 

3.0 

(1.2) * 

3.0 

(1.3) * 

3.6 

(1.7) * 

2.0 

(1.8) 

1.5 

(0.5) 

1.9 

(1.7) 

ACT 1.2 

(0.6) 

2.3 

(0.8) * 

3.0 

(1.3) * 

3.3 

(1.6) * 

2.7 

(1.1) * 

2.7 

(1.4) * 

1.3 

(0.7) 

1.2 

(0.3) 

IL-10 

(pg/ml) 

    

CWI 8.4 

(9.0) 

33.0 

(62.0) 

10.0 

(12.8) 

9.1 

(8.2) 

18.7 

(25.3) 

15.2 

(18.0) 

8.8 

(11.3) 

7.7 

(8.4) 

ACT 11.5 

(16.2) 

8.9 

(11.0) 

9.1 

(9.2) 

5.4 

(2.2) 

9.8 

(11.3) 

11.6 

(10.2) 

7.8 

(10.8) 

8.1 

(8.5) 

IL-1ra 

(pg/ml) 

    

CWI 243 

(145) 

343 

(240) 

203 

(158) 

243 

(148) 

293 

(197) 

269 

(167) 

230 

(138) 

262 

(165) 

ACT 263 

(203) 

348 

(234) 

282 

(217) 

425 

(379) 

312 

(216) 

313 

(242) 

281 

(166) 

246 

(138) 

Data are mean (SD). n = 9. * P < 0.05 versus pre-exercise. Pre, pre-exercise; Post, 

immediately post-exercise; Rec, immediately after recovery therapies. 

 548 

   549 
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Figure legends 550 

Figure 1. Post-exercise changes in CD66b+ neutrophil infiltration, CD68+ macrophage 551 

infiltration, and MAC1 and CD163 mRNA expression. Data are presented as the change in 552 

the median ± interquartile range for neutrophils and CD163 mRNA, and the geometric mean 553 

± 95% confidence interval for macrophages and MAC1 mRNA. ACT, active recovery; CWI, 554 

cold water immersion. n = 9. * P < 0.05 versus pre-exercise value. 555 

 556 

Figure 2. Representative image of immunofluorescence staining for CD66b+ neutrophils. 557 

Panel A shows red laminin staining of the sarcolemma; panel B shows blue DAPI staining of 558 

nuclei; panel C shows green staining for CD66b; panel D shows merged images. Arrows 559 

indicate CD66b+ neutrophils. Scale bar represents 50 µm. n = 9. 560 

 561 

Figure 3. Representative image of immunofluorescence staining for CD68+ macrophages. 562 

Panel A shows red laminin staining of the sarcolemma; panel B shows blue DAPI staining of 563 

nuclei; panel C shows green staining for CD68; panel D shows merged images. Arrows 564 

indicate CD68+ macrophages. Scale bar represents 50 µm. n = 9. 565 

 566 

Figure 4. Post-exercise changes in mRNA expression of IL-1β, TNF, IL-6 and CCL2. Data are 567 

presented as changes in the median ± interquartile range for IL1β, IL6, and CCL2 expression, 568 

and the geometric mean ± 95% confidence interval for TNF expression. n = 9. * P < 0.05 569 

versus pre-exercise value. 570 

 571 

Figure 5. Post-exercise changes in mRNA expression of CCL4, CXCL2, IL-8 and LIF. Data are 572 

presented as changes in the geometric mean ± 95% confidence interval. n = 9. * P < 0.05 573 

versus pre-exercise value. 574 

 575 
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Figure 6. Post-exercise changes in mRNA expression of GDNF and NGF mRNA. Data are 576 

presented as changes in the mean ± SD for GDNF and the geometric mean ± 95% confidence 577 

interval for NGF. n = 9. * P < 0.05 versus pre-exercise value. 578 

 579 

Figure 7. Post-exercise changes in expression of HSP70 mRNA. Data are presented as the 580 

change in the median ± interquartile range. n = 9. * P < 0.05 versus pre-exercise value. 581 

 582 

Figure 8. Representative immunoblots and post-exercise changes in the protein content of 583 

HSP70 and αB-crystallin in the cytosol and cytoskeletal fraction of muscle homogenates. 584 

Data are presented as the mean ± SD. n = 9. * P < 0.05 versus pre-exercise value. 585 

 586 

Figure 9. Intramuscular localisation of αB-crystallin. Upper panels show 587 

immunohistochemistry staining for αB-crystallin in muscle fibres before exercise (Panel A) 588 

and at 2 h after exercise (Panel B). A fibre was considered positive if the staining inside the 589 

fibre was scattered and uneven (marked with red asterisks). Fibres were considered 590 

negative if the staining was homogeneous (all fibres in the left image). Lower panels show 591 

immunohistochemistry staining for myosin heavy chain IIA and IIX (SC71 antibody) in 592 

neighbouring sections. Before exercise, there was more αB-crystallin protein present in type 593 

I fibres (marked "I" in Panel C), whereas after exercise, the scattered αB-crystallin staining 594 

was found mainly in type II fibres (Panel D). Scale bar represents 100 µm. n = 9. 595 

 596 

Figure 10. Post-exercise changes in serum creatine kinase activity. Data are presented as the 597 

geometric mean ± 95% confidence interval. n = 9. * P < 0.05 versus pre-exercise value. 598 

 599 
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