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ABSTRACT 

Cyclotides are bioactive cyclic peptides that have been discovered in plants from the 

Violaceae, Rubiaceae, Fabaceae, Cucurbitaceae and Solanaceae families. They are sparsely 

distributed in most of these families, but appear to be ubiquitous in the Violaceae, having 

been found in every plant so far screened from this family. However, not all geographic 

regions have been examined so far and this is the first study to report on the discovery of 

cyclotides from a Viola species from South-East Asia, specifically Viola sumatrana Miq. 

from Thailand. Two novel cyclotides (Visu 1 and 2) and two known cyclotides (kalata S and 

kalata B1) were identified in V. sumatrana after their isolation, purification and peptide 

sequencing. NMR studies revealed that kalata S and kalata B1 had similar secondary 

structures. The biological activities of kalata S and kalata B1 in V. sumatrana were 

determined in cytotoxicity assays; both had similar cytotoxic activity and both exhibited the 

highest cytotoxicity on U87 cells compared to other cell lines. Overall, the study strongly 

supports the ubiquity of cyclotides in the Violaceae and adds to our understanding of their 

distribution and cytotoxic activity.  
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Cyclotides1,2 are the largest family of naturally occurring circular disulfide-rich peptides. 

They comprise 28–37 amino acid residues with a head-to-tail cyclized backbone and six 

conserved cysteine residues that form three interconnecting disulfide bonds (CysI-CysIV, 

CysII-CysV and CysIII-CysVI). A small embedded ring is formed by two intra-cysteine 

backbone segments connected by two disulfide bonds (CysI-CysIV, CysII-CysV) and this ring 

is penetrated by the third disulfide bond (CysIII-CysVI) to form a cystine knot. The 

combination of the cystine knot and cyclic backbone is known as a cyclic cystine knot (CCK) 

motif and renders cyclotides extremely resistant to thermal, chemical or enzymatic 

degradation.1-3 Cyclotides are classified into two major subgroups, referred to as the Möbius 

and bracelet subfamilies, which are formally defined by the presence or absence of a X-Pro 

peptide bond in a cis configuration but also differ in the type and number of amino acid 

residues in the backbone loops between cysteine residues. Möbius subfamily cyclotides are 

characterized by a cis-proline residue in loop 5, which causes a ‘twist’ in the circular peptide 

backbone. Both subfamilies have high sequence homology, with certain amino acids showing 

strong conservation in loop 1 (glutamic acid, E) and loop 6 (aspartic acid, D; asparagine, N).4, 

5 A third cyclotide subfamily (the trypsin inhibitor subfamily) was based on the discovery of 

two trypsin inhibitor peptides, MCoTI-I and MCoTI-II, extracted from the seeds of 

Momordica cochinchinensis.6, 7 Recently this subfamily has been expanded with the 

discovery of a series of related peptides in other Momordica species.8, 9 MCoTI-II and related 

trypsin inhibitor cyclotides have been pivotal in understanding the biosynthetic processing of 

cyclic peptides in angiosperms.9  

   The prototypic cyclotide, kalata B1, first came to notice following a report by a 

Norwegian doctor who studied the bioactive component a Congolese traditional medicine 

“kalata kalata”, which was derived from boiling leaves of Oldenlandia affinis (Roem & 

Schult. DC, Rubiaceae) to make a tea used for accelerating childbirth.10, 11
  The discovery of 
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the bioactivity of kalata B1 was followed many years later by the complete characterization 

of the peptide sequence, circular backbone, cystine knot and 3D structure by Saether et al.12 

A wide range of other cyclotides were later reported in O. affinis
13 and in other plants.1,2 

The natural role of cyclotides in plants is postulated to be as host defense agents based 

on their insecticidal activities14-16 but they have been reported to exhibit a wide range of other 

biological activities, including uterotonic activity,9-12 anti-HIV activity,17-20 hemolytic 

activity,21 antimicrobial activity,22 antifouling activity,23 nematocidal activity,24 molluscicidal 

activity,25 neurotensin antagonism26 as well as cytotoxic activity to mammalian cells,27-29 

green algae, and some soil bacteria.30 Recently, cyclotides have also been reported as 

proteinase inhibitors31 and immunosuppressive peptides.32, 33 As cyclotides have a stable 

structure and exhibit a range of biological activities, they have found application in drug 

design and pharmaceutical development.34, 35 

 To date more than 400 cyclotides have been discovered in five plant families, 

including the Rubiaceae (50 cyclotides), Fabaceae (18 cyclotides), Cucurbitaceae (5 

cyclotides), Solanaceae (3 cyclotides) and Violaceae (337 cyclotides), with the Violaceae 

containing the majority of known cyclotides.36, 37 In an early study, Simonsen et al.38 

suggested that a single plant species could contain more than 100 cyclotides. Evidence for 

this level of complexity was provided in Viola odorata with 30 sequenced cyclotides, and 

more than 100 cyclotide-like masses detected.39 Until recently, the discovery of cyclotides 

has probably been biased toward the detection of the most abundant peptides in a given 

extract, but combined transcriptomic and proteome mining approaches are beginning to be 

used, for example as recently utilised in the analysis of Viola tricolor, resulting in the 

characterization of 164 cyclotides.40 
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In the current study we focused specifically on the Violaceae (violets) family, which 

comprises 25 genera and approximately 900 species.41 Cyclotides have been reported in 

many genera of the Violaceae, including Gloeospermum, Hybanthus, Leonia, Melicytus, 

Rinorea and Viola sp. and they are found most commonly in Viola, Hybanthus and Rinorea. 

Viola is the largest genus in the Violaceae, containing more than half of the total species.41 

Several studies have focused on the discovery and biological properties of cyclotides from 

plants in this genus, including Viola abyssinica,42 Viola arvensis,43 Viola biflora,44 Viola 

hederacea,20 Viola odorata,22, 45, 46 Viola tricolor,40, 47 Viola yedoensis
18 and Viola 

philippica,27 but many more species have yet to be examined. 

The previously studied Viola species were collected from far-reaching locations 

around the world, including Asia (China), Europe (Sweden), South America (Argentina), 

Africa (Ethiopia) and Australia. Although every Viola plant that has been studied so far 

contains cyclotides there have been no Viola species endemic to South-East Asia that have 

been examined for cyclotides. Here we examined cyclotide expression in a Viola species, 

Viola sumatrana Miq., also known as Viola hossei W. Becker or Hong-Ron (local Thai 

name), which is widely distributed in South-East Asian countries, including Indonesia, 

Malaysia, Myanmar, Vietnam, Thailand and China. Although some Viola species have been 

used as traditional medicines, a literature search (using SciFinder and NAPALERT) on V. 

sumatrana yielded only reports on its morphological characterization and biological 

diversity.48  

We report the characterization of two novel cyclotides (Visu 1 and 2) and the 

presence of two known cyclotides (kalata S and kalata B1) in V. sumatrana. Additionally, the 

structure of kalata S was evaluated by NMR and found to be homologous to the prototypic 

cyclotide kalata B1. Kalata S and kalata B1 were tested in cytotoxicity assays and both 

exhibited toxicity against cancer cells at low micromolar concentrations. 
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RESULTS AND DISCUSSION 

Isolation, purification and mass spectrometric sequencing of cyclotides from V. 

sumatrana. Fresh leaves of V. sumatrana were extracted using 50% (v/v) acetonitrile in 1% 

formic acid and the resultant extract was freeze-dried, yielding 2 g of crude extract. The 

extract was subjected to nanoelectrospray LC-MS, as shown in Figure 1. The three most 

abundant peaks contained signals corresponding to four masses in the molecular weight range 

typical of cyclotides (2800–3500 Da). Kalata S and kalata B1 co-eluted at the same retention 

time (40.03 min), while Visu 1 and Visu 2 eluted slightly later (41.46 min and 41.73 min, 

respectively). The crude extract was partially purified using solid-phase extraction (SPE) in 

which cyclotides were eluted using a stepwise acetonitrile (10% steps) gradient. SPE 

fractions corresponding to elution with 30–50% acetonitrile were found to contain cyclotides 

and were further purified using RP-HPLC. The HPLC fractions were subjected to peptide 

sequencing and cytotoxicity assays. 

All cyclotides were first reduced with dithiothreitol followed by alkylation of the 

cysteines with iodoacetamide. An increase in mass of 348 Da following reduction and 

alkylation indicated the presence of six cysteines, and hence three disulfide bonds, in the 

native peptides. After reduction and alkylation, each cyclotide was subjected to enzymatic 

digestion with two proteolytic enzymes (endo-GluC and trypsin, individually and in 

combination) before tandem MS sequencing. More than ten cyclotide-like masses were 

detected in the crude extract, most of which were of low abundance. From these, we fully 

characterized two new cyclotides (Visu 1 and Visu 2) and two known cyclotides (kalata S 

and kalata B1), which were the four most abundant cyclotides in the extract. The isolated 

cyclotide sequences and their expected and theoretical masses are shown in Table 1.  
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Sequence homology of the new peptides to those previously reported was used to 

guide assignment of the positions of leucine and isoleucine in the new cyclotides. The new 

sequences contain Glu7 in loop 1 and Asn29 in loop 6, with the latter known to be critical for 

excision from the precursor protein and required for enzymatic cyclization. Visu 2 is 

categorized as a bracelet cyclotide based on the lack of a Pro residue in loop 5, whereas 

kalata S and kalata B1 belong to the Möbius subfamily. Loop 5 of Visu 1 (TWPV) has a 

single conservative amino acid substitution compared to ‘SWPV’ commonly observed in the 

corresponding position among Möbius cyclotides, which suggests that a cis-proline 

conformation is more likely to be maintained in this loop than not, hence the classification of 

Visu 1 here as a member of the Möbius subfamily. Due to an insufficient amount of purified 

Visu 1, further characterization of the cis-proline could not be made by NMR. Visu 1 has the 

same molecular weight as cycloviolacin O22, but has two conservative amino acid changes in 

loops 5 and 6 (Val4 to Ile4 and Thr22 to Ser22, respectively). Similarly, Visu 2 has the same 

molecular weight as the known cyclotide, cycloviolacin O1. These isobaric cyclotides contain 

different amino acid sequences in loops 3 (Ile15 to Val15) and 5 (Lys24 to Ser24, Ser25 to 

Asn25 and Lys26 to Arg26). 

MS/MS spectra used for the characterization of Visu 1 and Visu 2, with assigned b- 

and y- ion series, after reduction, alkylation and enzymatic digestion are presented in Figures 

2 and 3, respectively. Interestingly, we observed deamidation of Asn29 of Visu 1 and Asn30 

of Visu 2 as artifacts of sample preparation. The monoisotopic mass [M+H]+ of Visu 2 

shifted from 3115.4 to 3116.4 Da after adjusting the pH of the sample prior to enzymatic 

digestion (Figure 4). Deamidation of Asn residues has been reported previously as a direct 

result of sample handling, with Asn residues immediately before Gly residues known to be 

particularly susceptible.49 The conditions employed in proteomic analyses such as 

temperature, ionic strength of the buffer and pH all directly influence the rate of Asn 
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deamidation. Scotchier and co-workers50 reported the maximum stability of Asn in peptides 

is at pH 6. Although previous analyses reported artefactual deamidation for cyclotides 

following reduction and alkylation reactions involving prolonged incubation at elevated 

temperatures,40, 42 in the current study  we found that simply dissolving them in ammonium 

bicarbonate buffer (pH 8.0) resulted in rapid and extensive (approximately 90%) deamidation 

of Asn residues within 30 minutes, consistent with results reported by Scotchier et al.50  

 

Structural analysis of kalata S by NMR. Kalata S (alternatively named varv A) was 

the first cyclotide discovered from V. arvensis (Violaceae) and is also found in several other 

members of the Violaceae family. To date, only amino acid sequencing data and biological 

activities have been reported for cyclotides from this plant, and therefore it was of interest to 

determine the structure of kalata S as no NMR data have been reported so far. A NOESY 

sequential assignment based on αHi-NH(i+1) connectivities is shown in Figure 5, with a 

complete list of chemical shifts shown in Table 2. To determine the secondary structure of 

kalata S, its αH secondary chemical shifts were compared with those of kalata B1, which has 

been well characterized structurally. Kalata S showed similar secondary shifts to kalata B1, 

indicating that both peptides indeed have similar secondary structure (Figure 6).  

The presence of a proline in loop 5 of kalata S classifies it as a member of the Möbius 

subfamily, assuming that the Pro residue is in a cis conformation. This was confirmed by 

noting that Pro24 in kalata S has similar αH and βH chemical shifts to kalata B1, and αH(i-1)- 

αH(i) NOE, indicating a conserved cis-peptide bond conformation. Overall, the similarity 

observed for the NMR data and amino acid sequencing from mass spectrometry revealed that 

kalata S contains the unique CCK motif and is structurally similar to kalata B1. On the one 

hand, this is not unexpected since the sequences of kalata S and kalata B1 differ by only one 
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amino acid in loop 4, i.e. Ser20 to Thr20, but on the other hand, this single residue in loop 4 

is thought to be involved in crucial stabilizing hydrogen bonding interactions via the 

hydroxyl sidechain5 and the structural data reported here are the first experimental validation 

of that suggestion. 

Cytotoxic activity. The cytotoxicity of kalata B1 against HT29 cells has been 

reported previously using the FMCA assay.51 Therefore it was of interest to assess the 

cytotoxicity of three well-known cyclotides (kalata S, kalata B1 and cycloviolacin O2) 

against a range of different human cell lines under standardized conditions with an MTT 

assay. Kalata S and kalata B1 were synthesized due to the limited amounts that could be 

isolated from the plant extract. Both cyclotides were evaluated using a MTT assay against 

HUVEC cells (a non-cancer cell line) and four different human cancer cell lines (U87, U251, 

HT29 and MCF7) to determine the specificity of any toxicity for cell type. Cycloviolacin O2 

was selected as a positive control based on previous reports47, 51, 52 that describe it as the most 

cytotoxic cyclotide tested to date. Previous publications have reported cytotoxicity screening 

of cycloviolacin O2 against U251, HT29 and MCF7 using SRB,47 FMCA51 and MTT 

assays52, respectively.  

The results of the cytotoxicity assays are shown in Figure 7 and a summary of IC50 

values is given in Table 3. Among the tested cyclotides, cycloviolacin O2 has the lowest 

(most potent) IC50 value. The IC50 values of cycloviolacin O2 for HUVEC, U87, U251, HT29 

and MCF7 cells were 0.35, 0.45, 0.79, 0.87 and 0.29 µM, respectively. Cycloviolacin O2 was 

found to be the most cytotoxic against the MCF7 cell line, consistent with previous reports.47, 

51, 52 The higher activity of cycloviolacin O2 might be due to its different spatial distribution 

of hydrophobic amino acids on the cyclotide surface compared to other cyclotides and net 

charge,51 since both bracelet and Möbius families have similar ratios of hydrophobic residues 

but different spatial distributions.53 Although the cytotoxicity of cycloviolacin O2 against 
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MCF7 has been reported using an MTT assay by Gerlach et al.,17 different experimental 

conditions, including incubation periods and dyes for assessing cell viability were used in the 

current study but the results were comparable. 

It is interesting to compare the IC50 values of kalata S and kalata B1 as they differ in 

only one amino acid residue but that residue forms part of the embedded ring of the cystine 

knot motif and, as noted earlier, is involved in crucial hydrogen bonding interactions. Both 

cyclotides were found to have similar IC50 values for all tested cell lines, suggesting that both 

maintain a similar cyclotide-membrane interaction and have similar structures, with the 

difference in loop 4 (i.e. Ser or Thr) not playing a crucial role in activity. Among the cell 

lines tested, kalata B1 and kalata S exhibited the highest cytotoxicity on U87 with an IC50 of 

3-5 µM, which is 2-3 fold lower than for other cell lines (Table 3).  

EXPERIMENTAL SECTION  

Plant material. Fresh leaves of V. sumatrana were collected from Chanthaburi 

province, Thailand in May 2013. A voucher specimen (SN065812) has been deposited at the 

Queen Sirikit Botanical Garden Herbarium: QBG, Mae Rim, Chiang Mai, Thailand.  

Isolation and extraction of cyclotides from V. sumatrana. Fresh leaves of V. 

sumatrana were cooled with liquid nitrogen and ground with a mortar and pestle, giving 2 g 

of total crude powder. The crude powder was dissolved in 100 mL of 50% (v/v) acetonitrile 

in 1% formic acid and stirred at room temperature (25°C) for 4 h during peptide extraction. 

The crude solution was centrifuged for 45 min at 8,000 rpm and the supernatant was retained. 

The supernatant was lyophilized using a freeze drier (CHRIST Alpha 2-4 LD Freeze dryer).  

Solid-phase extraction and RP-HPLC purification. The crude extract was partially 

purified by solid-phase extraction (SPE) and followed by peptide isolation using reversed-

Page 10 of 32

John Wiley & Sons, Inc.

Biopolymers: Peptide Science

This article is protected by copyright. All rights reserved.



11 

 

phase high performance liquid chromatography (RP-HPLC). Crude extract (2 g) was 

dissolved in 20 mL of 1% (v/v) formic acid before SPE. C18 SPE cartridges (Waters, 500 

mg) were activated and equilibrated with 10 mL of methanol and 1% (v/v) formic acid, 

respectively. The crude extract was then loaded to the cartridges and eluted sequentially with 

10 mL volumes of 20–80% (v/v) acetonitrile in 1% (v/v) formic acid for cyclotide separation. 

Cyclotide-containing fractions were freeze-dried after fractionation and re-dissolved in 0.05% 

(v/v) trifluoroacetic acid/water (buffer A). This solution was then loaded to a Phenomenex 

C18 semi-preparative column (250 mm x 10 mm, 10 µm, 300 Å, 3 mL min-1 flow rate) on a 

RP-HPLC (LC10, Shimadzu) and run with a 0.5% min-1 gradient from 20–80% solvent B 

(0.45% trifluoroacetic acid/90% acetonitrile) to yield pure cyclotides. All eluting cyclotides 

were detected at 215 nm and 280 nm. This purification step was repeated several times to 

obtain high purity cyclotides for use in biological assays and further peptide characterization. 

Reduction and alkylation of cyclotides. Each isolated cyclotide was dissolved in 

100 µL 10 mM NH4HCO3 (pH 8). To reduce disulfide bonds, 10 µL of 100 mM dithiothreitol 

(DTT) was added and the solution was incubated for 30 min (60ºC, under nitrogen). To block 

cysteines and prevent sample reoxidation, 10 µL of 250 mM iodoacetamide was added and 

the solutions were incubated for 30 min at room temperature. Finally, the reduced and 

alkylated sample was desalted with C18 Ziptips (Millipore) and eluted in 10 µL of 80% (v/v) 

acetonitrile with 1% formic acid. An aliquot of the desalted cyclotide was mixed in a 1:1 ratio 

with 7 mg/mL of MALDI matrix (α-cyano-4-hydroxycinnamic acid (CHCA) in 50% (v/v) 

acetonitrile/ 1% (v/v) formic acid) and analyzed with MALDI-TOF MS to determine the 

molecular weight of each cyclotide. 

Enzymatic digestion coupled with nanospray and MALDI-TOF MS/MS 

sequencing. Reduced and alkylated samples prepared as above were also used for enzymatic 

digestion. Enzymes used in this study are endoproteinase Glu-C, trypsin or a mixture of both. 
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For single enzyme digestions, 2 µL of 1 µg/µL endoproteinase Glu-C or trypsin enzyme was 

added into a 20-µL sample. Meanwhile 20 µL of sample was mixed with 2 µL of both 

enzymes for double enzyme digestion. All digested peptides were then incubated at 37°C for 

6 h and desalted using C18 ziptips before MS/MS peptide sequencing. All digested peptides 

were mixed with CHCA matrix (7 mg/mL in 50% ACN and 2% formic acid) in a ratio 1:1 

before spotting 1 µL of the mixture onto the MALDI target plates. The peptides were 

analyzed using MALDI-TOF mass spectrometry (Bruker UltrafleXtreme TOF-TOF MS and 

SCIEX 4700 TOF-TOF MS). For nanoelectrospray-MS/MS, 10 µL of digested peptides was 

loaded into Thermo Fisher Scientific ES380 nanoES metal-coated spray capillaries before 

analysis by static nanospray on a QSTAR Pulsar mass spectrometer (SCIEX) equipped with 

a Proxeon II nano ion source. The nanospray voltage was set to 900 V with a declustering 

potential of 70 V. TOF-MS data was acquired in the mass range 400–2000 Da and MS/MS 

data was acquired by incrementally increasing the collision energy (from 15 to 50 V) to 

obtain fragment ion coverage and enhanced signal. FlexControl and FlexAnalysis (Bruker) 

and Analyst QS (SCIEX) software packages were used to acquire and process the MS/MS 

data. 

NMR structure analysis. We focused on kalata S for NMR studies. This peptide was 

dissolved in 90% H2O/10% D2O (pH 3.29) and added 1% of 4,4-dimethyl-4-silapentane-1-

sulfonic acid (DSS) as a chemical shift reference for spectral calibration. 1H spectra and two-

dimensional spectra (TOCSY and NOESY) were acquired. TOCSY and NOESY spectra 

were acquired with a mixing time of 80 ms and 200 ms, respectively. All spectra were 

recorded on a Bruker Avance 600 MHz spectrometer at 298 K and were processed using 

TOPSIN 2.1 (Bruker) program. NMR data were analyzed using CCPNMR spectra 

assignment program version win32 2.3.1.54 and all sequential assignments were done 

according to the sequential assignment procedure of Wuthrich et al.55   
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Evaluation of cyclotides in mammalian cell cytotoxicity assays. Cyclotides kalata 

S and kalata B1 were synthesized using Fmoc-based synthesis of disulfide-rich cyclic 

peptides.56 The cytotoxic effects of cyclotides on human umbilical vein endothelial cells 

(HUVEC), two human brain cell lines (U87 and U251), a human colon adenocarcinoma cell 

line (HT29) and a breast cancer cell line (MCF7) were evaluated using an MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma) assay. HUVECs and two 

human gliomablastoma cell lines (U87 and U251) were plated in 96-well plates at 3 x 103 

cells well-1 (100 µL) in 10% FBS/EBM-2 media supplemented with SingleQuots (which 

includes growth factors, cytokines, antibiotics) (Lonza) and 10% FBS/DMEM (Dulbecco’s 

Modified Eagle Medium) (Gibco), respectively. On the other hand, HT29 and MCF7 were 

plated at 2 x 104 cells well-1 (100 µL) in 10% FBS/DMEM. All cells were incubated at 37ºC 

in 5% CO2 for 24 h. Prior to the addition of the test compounds, media were removed and 

replaced with fresh serum-free EBM-2 and DMEM media (100 µL well-1). All cyclotides 

were tested in triplicate with final peptide concentrations ranging from 0.05 to 100 µM, and 

with incubation with cells for 2 h. Controls used in this assay included the vehicle control 

(negative control) and 1% (v/v) Triton (positive control). After 2 h of incubation, 10 µL of 

MTT (5 mg mL-1 in phosphate buffered saline) was added to each well and further incubated 

for 3 h before removing supernatant. The MTT formazan crystals observed in each well were 

dissolved in 100 µL of dimethylsulfoxide and absorbance was measured using BioTek 

PowerWave XS spectrophotometer at 600 nm. Data were analyzed using GraphPad Prism® 

software and IC50 values were obtained from the sigmoidal dose-response curve. 
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Table 1. Amino acid sequences of cyclotides from V. sumatrana.  

a m/z (+3) experimental masses 

                              b All experimental masses were within 10 ppm of theoretical values 

 

 

 

 

 

Cyclotide 

Retention 

time 

(min) 

Experimental 

m/z 
a
 

Experimental 

mass (Da) 
b
 

Theoretical 

mass (Da) 
Amino acid sequence 

      kalata S 40.03 959.72 2876.16 2876.18 GLPVCGETCVGGTCNTPG---CSCSWPVCTRN 

kalata B1 40.03 964.39 2890.17 2890.20 GLPVCGETCVGGTCNTPG---CTCSWPVCTRN 

Visu 1 41.46 969.06 2904.18 2904.22 GLPVCGETCVGGTCNTPG---CTCTWPVCTRN     

Visu 2 41.73 1039.46 3114.44 3114.43 GIP—CAESCVYIPCTITALLGCSCKSKVCYN        
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Table 2. NMR Chemical shifts (ppm) of kalata S at 298K, pH 3.29 

Position Residue HN Hα Hβ Others 

1 Gly 8.63 4.25, 3.61 

2 Leu 7.77 5.07 1.94, 1.51 γΗ 1.71; δCΗ3 0.99, 0.93 

3 Pro 5.07 2.46, 1.75 CH2 2.18, 2.05; CH2 3.81, 3.81  

4 Val 8.16 4.67 2.6 δCΗ3 0.86 

5 Cys 7.99 4.47 3.36, 3.00 
 6 Gly 8.52 3.85, 3.75 

7 Glu 7.17 4.81 2.01, 1.89 CH2 2.53 

8 Thr 8.44 4.58 4.46 γCΗ3 1.17 

9 Cys 8.33 4.93 3.18, 2.95 

10 Val 8.51 3.9 2.05 γCΗ3 1.00 

11 Gly 8.73 4.24, 3.86 
12 Gly 8.24 4.41, 4.05 

13 Thr 7.85 4.71 4.11 γCΗ3 1.16 

14 Cys 8.67 4.72 3.06, 2.78 
15 Asn 10.37 4.77 

16 Thr 8.47 4.49 4.22 γCΗ3 1.34 

17 Pro 4.24 2.32. 1.91 CH2 2.01, 2.15; CH2 4.16, 3.72 

18 Gly 8.78 4.19, 3.71 
  19 Cys 7.7 5.32 3.83, 2.63 

20 Ser 9.54 4.69 3.75 
21 Cys 9.08 4.58 3.12, 2.82 
22 Ser 8.94 4.79 3.86 
23 Trp 8.02 4.09 3.27, 3.27  2H 7.32; 4H 7.56; 5H 7.16; 6H 

 
24 Pro 

 
3.46 1.73, -0.13 

7.26; 7H 7.46; NH 10.39 
CH2 1.31, 1.42; CH2 3.25, 3.25 

25 Val 8.25 4.22 1.95 
26 Cys 7.75 5.12 3.22, 2.75 

 27 Thr 9.84 5.08 3.72 γCΗ3 0.89 

28 Arg 8.75 4.76 1.67 γCΗ2 1.44; δCΗ2 3.24 

29 Asn 9.55 4.41 3.11, 2.82 
             

 

*chemical shifts are referenced to DSS 
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Table 3. Cytotoxic activity of cyclotides against cancerous and non-cancerous cells. 

Cyclotide IC50 (µM) ± S.D. 

  HUVEC U87 U251 HT29 MCF7 

      kalata B1 6.43±0.04 3.21±0.07 10.88±0.03 11.43±0.08 5.76±0.05 

kalata S 9.73±0.06 4.63±0.07 8.35±0.04 10.69±0.04 5.46±0.02 

cycloviolacin O2 0.35±0.06 0.45±0.02 0.79±0.06 0.87±0.08 0.29±0.04 
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FIGURE CAPTIONS 

Figure 1. LC-MS total ion chromatogram of crude protein from V. sumatrana. 

 

Figure 2. MS-MS sequencing of Visu 1 after combined trypsin and endoproteinase Glu-C 

digest. (A) MS-MS of precursor m/z 1091.333+ (3271.0 Da).  (B) MS-MS of precursor m/z 

1222.992+ (2444.0 Da). (C) MS-MS of precursor m/z 423.682+ (845.4 Da). 

 

Figure 3. MS-MS sequencing of Visu 2 after combined trypsin and endoproteinase Glu-C 

digest. (A) MS-MS of precursor m/z 1161.523+ (3481.6 Da).  (B) MS-MS of precursor m/z 

773.373+ (2317.1 Da). (C) MS-MS of precursor m/z 592.242+ (1182.5 Da). 

 

Figure 4. Data showing deamidation of Visu 2. (A) Monoisotopic mass of Visu 2 after being 

dissolved in water and (B) adjusted with ammonium bicarbonate (pH = 8). 

 

Figure 5. (A) NOESY spectrum and (B) TOCSY spectrum of kalata S in 90% H2O and 10% 

D2O at 298 K, pH 3.29. Peaks are marked using the one-letter amino acid code. R28 (SC) 

refers to the side-chain. 

 

Figure 6. αH secondary chemical shift comparison of kalata S and kalata B1. Both 1H NMR 

spectra were recorded at 298 K and the αH secondary shifts were calculated by subtracting 
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the random coil 1H NMR chemical shifts of Wishart et al.57 from the experimental αH 

chemical shifts. The average of the two αH proton shifts was used for glycine (G) residues. 

 

Figure 7. Cytotoxic activity of known cyclotides (kalata B1, kalata S, cycloviolacin O2 and 

cycloviolacin O12). (A) Human umbilical vein endothelial cell (HUVEC), a non-cancerous 

cell line; (B-C) human brain cancer cell lines, U87 and U251; (D) human colon 

adenocarcinoma cell line (HT29), and (E) breast cancer cell line (MCF7). IC50 values were 

obtained by plotting percentage of cell viability versus peptide concentration using GraphPad 

Prism®.                          
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LC-MS total ion chromatogram of crude protein from V. sumatrana.  
123x102mm (300 x 300 DPI)  
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MS-MS sequencing of Visu 1 after combined trypsin and endoproteinase Glu-C digest. (A) MS-MS of 
precursor m/z 1091.333+ (3271.0 Da).  (B) MS-MS of precursor m/z 1222.992+ (2444.0 Da). (C) MS-MS of 

precursor m/z 423.682+ (845.4 Da).  

289x613mm (300 x 300 DPI)  
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MS-MS sequencing of Visu 2 after combined trypsin and endoproteinase Glu-C digest. (A) MS-MS of 
precursor m/z 1161.523+ (3481.6 Da).  (B) MS-MS of precursor m/z 773.373+ (2317.1 Da). (C) MS-MS of 

precursor m/z 592.242+ (1182.5 Da).  

285x595mm (300 x 300 DPI)  
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Data showing deamidation of Visu 2. (A) Monoisotopic mass of Visu 2 after being dissolved in water and (B) 
adjusted with ammonium bicarbonate (pH = 8).  

272x431mm (300 x 300 DPI)  
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(A) NOESY spectrum and (B) TOCSY spectrum of kalata S in 90% H2O and 10% D2O at 298 K, pH 3.29. 
Peaks are marked using the one-letter amino acid code. R28 (SC) refers to the side-chain.  

294x450mm (300 x 300 DPI)  
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αH secondary chemical shift comparison of kalata S and kalata B1. Both 1H NMR spectra were recorded at 
298 K and the αH secondary shifts were calculated by subtracting the random coil 1H NMR chemical shifts of 
Wishart et al.57 from the experimental αH chemical shifts. The average of the two αH proton shifts was used 

for glycine (G) residues.  
99x50mm (300 x 300 DPI)  
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Cytotoxic activity of known cyclotides (kalata B1, kalata S, cycloviolacin O2 and cycloviolacin O12). (A) 
Human umbilical vein endothelial cell (HUVEC), a non-cancerous cell line; (B-C) human brain cancer cell 
lines, U87 and U251; (D) human colon adenocarcinoma cell line (HT29), and (E) breast cancer cell line 

(MCF7). IC50 values were obtained by plotting percentage of cell viability versus peptide concentration using 
GraphPad Prism®.  

294x861mm (300 x 300 DPI)  
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Cyclotides are bioactive cyclic peptides from plants. Two novel cyclotides (Visu 1 and 2) and two known 
cyclotides were identified in V. sumatrana after their isolation, purification and peptide sequencing.  Overall 
the study strongly supports the ubiquity of cyclotides in the Violaceae and adds to our understanding of their 

distribution and cytotoxic activity.  
76x39mm (300 x 300 DPI)  
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