
Space invaders; biological invasions in marine conservation planning 1 

Authors: Sylvaine Giakoumi1,2, François Guilhaumon3, Salit Kark2, Antonio Terlizzi4,5, Joachim Claudet6,7, 2 

Serena Felline4, Carlo Cerrano8, Marta Coll9, 10, Roberto Danovaro5,8, Simonetta Fraschetti4, Drosos 3 

Koutsoubas11,12, Jean-Batiste Ledoux10,13, Tessa Mazor14, Bastien Mérigot15, Fiorenza Micheli16 and Stelios 4 

Katsanevakis11 5 

1Université Nice Sophia Antipolis, CNRS, FRE 3729 ECOMERS, Parc Valrose, 28 Avenue Valrose, 06108 6 
Nice, France; s.giakoumi@uq.edu.au 7 
2 The Biodiversity Research Group, ARC Centre of Excellence for Environmental Decisions and NESP 8 
Threatened Species Recovery hub, School of Biological Sciences, The University of Queensland, Brisbane, 9 
Queensland, Australia; salit.kark@gmail.com 10 
3Institut de Recherche pour le Développement (IRD), MARBEC - Biodiversité Marine et ses usages, UMR 11 
9190 - University of Montpellier, Montpellier, France;  francois.guilhaumon@ird.fr 12 
4 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, CoNISMa, 73100 13 
Lecce, Italy; antonio.terlizzi@unisalento.it; serena.felline@unisalento.it; simona.fraschetti@unisalento.it 14 
5 Stazione Zoologica Anton Dohrn, Villa Comunale I, Napoli, Italia 15 
6 National Center for Scientific Research, CRIOBE, USR 3278 CNRS-EPHE-UPVD, Perpignan, France; 16 
joachim.claudet@gmail.com  17 
7 Laboratoire d’Excellence CORAIL, 58 Avenue Paul Alduy, 66860, Perpignan cedex, France 18 
8 Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, UO CoNISMa, 19 
via Brecce Bianche, I-60131, Ancona, Italy; c.cerrano@univpm.it; r.danovaro@univpm.it 20 
9 Institut de Recherche pour le Développement (IRD), UMR MARBEC & LMI ICEMASA, University of 21 
Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa; marta.coll.work@gmail.com 22 
10 Institut de Ciències del Mar CSIC, Passeig Maritim de la Barceloneta 37-49, E-08003, Barcelona, Spain;  23 
jbaptiste.ledoux@gmail.com 24 
11 University of the Aegean, Department of Marine Sciences, University Hill, Mytilene 81100, Greece; 25 
drosos@aegean.gr; stelios@katsanevakis.com 26 
12 National Marine Park of Zakynthos, Zakynthos 29100, Greece 27 
13 CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 28 
Porto, Portugal  29 
14 CSIRO Oceans and Atmosphere Flagship, EcoSciences Precinct 41, Brisbane, QLD, Australia; 30 
tessa.mazor@csiro.au 31 
15 University of Montpellier, UMR 9190 MARBEC, Station Ifremer, Avenue Jean Monnet, BP 171, 34203 32 
Sète Cedex, France; bastien.merigot@univ-montp2.fr 33 
16 Hopkins Marine Station, Stanford University, Pacific Grove CA 93950, USA; micheli@stanford.edu 34 

 35 

Keywords: alien species, biological invasions, conservation planning, impacts, marine biogeographic 36 

regions, marine protected areas, management actions, Mediterranean Sea.  37 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/83974509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Running title: Biological invasions in marine conservation planning 38 

Article Type: Biodiversity Research 39 

Corresponding author: Sylvaine Giakoumi 40 

Word count 41 

Main body: 4884 42 

Abstract: 298  43 

References: 59  44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 



ABSTRACT 60 

Aim Biological invasions are major contributors to global change and native biodiversity decline. However, 61 

they are overlooked in marine conservation plans. Here, we examine for the first time the extent to which 62 

marine conservation planning research has addressed (or ignored) biological invasions. Furthermore, we 63 

explore the change of spatial priorities in conservation plans when different approaches are used to 64 

incorporate the presence and impacts of invasive species. 65 

Location Global analysis with a focus on the Mediterranean Sea region. 66 

Methods We conducted a systematic literature review consisting of three steps: 1) article selection using a 67 

search engine, 2) abstract screening, and 3) review of pertinent articles, which were identified in the second 68 

step. The information extracted included the scale and geographic location of each case study as well as the 69 

approach followed regarding invasive species. We also applied the software Marxan to produce and compare 70 

conservation plans for the Mediterranean Sea that either protect, or avoid areas impacted by invasives, or 71 

ignore the issue. One case study focused on the protection of critical habitats, and the other on endemic fish 72 

species. 73 

Results We found that of 119 papers on marine spatial plans in specific biogeographic regions only three 74 

(2.5%) explicitly took into account invasive species. When comparing the different conservation plans for 75 

each case study, we found that the majority of selected sites for protection (ca. 80%) changed in the critical 76 

habitat case study, while this proportion was lower but substantial (27%) in the endemic fish species case 77 

study.  78 

Main conclusions Biological invasions are being widely disregarded when planning for conservation in the 79 

marine environment across local to global scales. More explicit consideration of biological invasions can 80 

significantly alter spatial conservation priorities. Future conservation plans should explicitly account for 81 

biological invasions to optimize the selection of marine protected areas. 82 

 83 
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INTRODUCTION 86 

Biological invasions are amongst the major components of current global change and drivers of native 87 

biodiversity loss in terrestrial, freshwater, and marine ecosystems (Pyšek & Richardson, 2010; Simberloff et 88 

al., 2013). Alien species (i.e. organisms introduced outside their natural range) can become invasive and 89 

substantially change species composition and the functioning of native ecosystems by a range of processes: 90 

competition, predation, overgrazing, release of toxins, hybridization, disease transmission, and habitat 91 

alteration (Levine, 2008; Vilà et al., 2011). In the marine environment, ecological impacts including the loss 92 

of native genotypes, degradation of habitats, changes in trophic interactions, and displacement of native 93 

species have been documented (Albins, 2012; Katsanevakis et al., 2014; Verges et al., 2014). Invasives can 94 

also impact the provision of ecosystem services with negative socio-economic consequences for coastal 95 

communities, for instance causing the decline of commercial fish and shellfish stocks or decreasing the 96 

potential for recreational activities (Bax et al., 2003; Katsanevakis et al., 2014). Moreover, some marine 97 

invasives are venomous or toxic and can have negative impacts on human health (Streftaris & Zenetos, 98 

2006). The multi-dimensional consequences of invasives render their distribution and impacts major topics 99 

of scientific interest with crucial conservation implications (Molnar et al., 2008; Katsanevakis et al., 2016). 100 

Globally, there is an urgent need to adopt management strategies for the control of invasive populations and 101 

the mitigation of their impacts. The Aichi Target 9 of the Convention on Biological Diversity (CBD) states 102 

that by 2020: i) invasive alien species and pathways are identified and prioritized, ii) priority species are 103 

controlled or eradicated, and iii) measures are in place to manage pathways to prevent their introduction and 104 

establishment (Convention on Biological Diversity, 2015). Regional policies have also focused on the uptake 105 

of management actions for the mitigation of invasives’ impacts. For instance, under the European Union 106 

Marine Strategy Framework Directive (EU, 2008), member states are committed to developing strategies to 107 

achieve Good Environmental Status (GES) by 2020. One of the GES descriptors dictates that alien species 108 

should be at density levels that do not adversely alter ecosystems. Nevertheless, comprehensive strategies to 109 

mitigate impacts of alien species on marine biodiversity and ecosystem services have not yet been developed 110 

in the EU. 111 

Despite the increasing number of studies addressing the assessment of invasion pathways (e.g., Seebens et 112 

al., 2013; Essl et al., 2015) and impacts of biological invasions on marine ecosystems (e.g., Katsanevakis et 113 



al., 2014; Katsanevakis et al., 2016), there is still a gap in our understanding of how to use such information 114 

to guide conservation planning. Should conservation plans target areas that are highly invaded by alien 115 

species and invest resources in mitigating negative impacts of invasives? Alternatively, should plans avoid 116 

highly invaded areas and invest resources in non-invaded or less invaded areas? In marine conservation 117 

planning, the first hypothesis would favour an approach to protect areas highly impacted by invasives in 118 

order to restore them by taking additional management actions, e.g., eradication, within those areas. The 119 

second hypothesis would lead planners to avoid such areas and protect areas less vulnerable to invasions. In 120 

the absence of a good knowledge base on which hypothesis is valid under which conditions, the easy 121 

approach is to just ignore the issue.  122 

Here, we examine whether marine conservation plans have directly addressed biological invasions by either 123 

protecting or avoiding impacted areas, or not (thus they have ignored the issue deliberately or not). 124 

Furthermore, we use two case studies (one habitat-based and one species-based) to explore how spatial 125 

priorities change when areas with high alien species density and impacts are protected, avoided, or ignored 126 

(i.e. information about biological invasions was not considered). We base our case studies in the 127 

Mediterranean Sea, one of the major hotspots of marine biological invasions (Edelist et al., 2013). 128 

Approximately 1,000 alien species have been reported in the Mediterranean Sea (Zenetos et al., 2012), and 129 

this number is expected to grow after the enlargement of the Suez Canal (Galil et al., 2014). Simultaneously, 130 

the identification of priority areas for conservation is ongoing in the region, as Mediterranean countries aim 131 

to achieve Aichi Target 11 of the CBD by protecting 10% of the sea under their jurisdiction. Invasive species 132 

may nullify or in some cases benefit (Schlaepfer et al., 2011) the effects of protection, such as ecosystem 133 

recovery. Thus, the presence of such species and their impacts should be explicitly considered when 134 

selecting marine protected areas (MPAs). Synthesizing our findings we identify gaps in knowledge that need 135 

to be filled in order to optimize MPA site-selection under global changes, specifically when accounting for 136 

invasive species, in the Mediterranean region and beyond.  137 

METHODS 138 

Literature review and synthesis 139 

We performed a bibliographic search using the Elsevier’s Scopus database (www.scopus.com). Eligibility 140 

criteria included any paper or review published between 1950 and the cut-off date 18 April 2015 with the 141 



terms ‘conservation planning’ and ‘marine’ or ‘sea’ in the title, keywords or abstract. Grey literature and 142 

non-English publications were not considered in this review. 143 

The results summed up to 793 peer-reviewed papers. Our review started with a screening of these 793 paper 144 

abstracts. Articles were excluded if they: 1) were unrelated to conservation planning, 2) did not include a 145 

specific case study for which a conservation plan was developed, 3) took into account only terrestrial or 146 

freshwater species, habitats, or ecosystems and not marine, or 4) mentioned the term “conservation planning” 147 

only for justification or discussion of results but did not produce a conservation plan. As a result, 214 148 

abstracts (27%) qualified for the next round of reviews. These were papers that presented conservation plans 149 

in marine environments, or included content that was potentially relevant after reading the abstract alone, and 150 

were thus retained for the second step of the analysis. 151 

In the second selection process, the entire 214 articles were read, using the same exclusion criteria listed 152 

above. Finally, 119 studies were suitable for the qualitative and quantitative synthesis (see Appendix S1in 153 

Supporting Information for final list of articles).  154 

The following information was extracted from each article (Table S1): 1) year of publication; 2) scale of case 155 

study (local < national < regional < global); 3) geographic location of the case study; 4) the relevant marine 156 

biogeographic region ("realm" according to Spalding et al. (2007); 5) the features (species, habitats, 157 

ecosystems) that were targeted for conservation; 6) the conservation planning method/tool that was used 158 

(e.g., Marxan, Zonation); 7) the approach the study followed regarding biological invasions, i.e. whether 159 

biological invasions were taken into account in the planning process by ‘protecting’ or ‘avoiding’ areas 160 

impacted by invasive species or the issue was ‘ignored’; and 8) the method that was used if the ‘avoid’ or 161 

‘protect’ approach was followed.  162 

Conservation plans: applying the ‘protect’, ‘avoid’, or ‘ignore’ approaches in two Mediterranean case 163 

studies 164 

In addition to the literature review exploring how biological invasions have been treated in past conservation 165 

plans, we examined whether and how spatial priorities change when biological invasions are explicitly 166 

accounted in conservation planning. Here, we used two case studies to compare systematic conservation 167 

plans that followed three different approaches for dealing with invasive species: protect, avoid, or ignore 168 



areas impacted by invasives. One case study aimed to account for impacts of invasives on two critical marine 169 

habitats, the seagrass Posidonia oceanica meadows and coralligenous formations. The second case study 170 

aimed to assess changes in priority conservation areas for endemic fish species when accounting (or not) for 171 

invasives.  172 

To identify conservation priority areas for our features of interest (habitats and species), we used the 173 

conservation planning software Marxan (Ball et al., 2009). This software uses a simulated annealing 174 

algorithm to find a suite of good near-optimal systems of priority areas that meet conservation targets while 175 

minimizing socio-economic costs. In Marxan, the user sets a target for every feature to be protected, which 176 

in our case was expressed as the percentage of the feature’s overall distribution range (see below case studies 177 

1 & 2). The study area was the entire Mediterranean Sea excluding areas deeper than 1,000 m, where the 178 

habitats and species included in these analyses do not occur (Giakoumi et al., 2013; Guilhaumon et al., 179 

2015). The study area was divided into a grid of 12,828 cells (hereafter planning units) each of 10 x10 km. 180 

Marxan was run 1,000 times and consisted of 1,000,000 iterations per run. We defined areas of greater 181 

irreplaceability by using the selection frequency of each planning unit, which is the proportion of runs in 182 

which a planning unit is selected amongst the 1,000 runs. These areas were considered higher priority for 183 

protection. The Boundary Length Modifier (BLM, measure of trade-off between cost and compactness of the 184 

solution) was set to 0, as our aim was to examine differences in the selection of priority areas among the 185 

scenarios and not to design an MPA network with a desirable level of compactness. 186 

Case study 1: Critical habitats  187 

Data (presence/absence) on the distribution of seagrass P. oceanica meadows and coralligenous formations 188 

were obtained from Giakoumi et al. (2013). We set a 60% target of the current distribution of the P. 189 

oceanica meadows and 40% of the distribution of coralligenous formations as per Giakoumi et al. (2013) 190 

following guidelines by the EU (ETC/BD, 2010). Although these targets are policy-based and are not 191 

supported by solid ecological evidence, they represent the current practice in EU and it is thus a pragmatic 192 

approach to follow.  In the ‘protect’ scenario we targeted the proportion of seagrass meadows and 193 

coralligenous formations impacted by alien species in each planning unit. The impacted habitat feature 194 

within each site was estimated based on the CIMPAL index (Cumulative IMPacts of invasive ALien species) 195 

developed by Katsanevakis et al. (2016). For the CIMPAL index, cumulative impact scores were estimated 196 



on the basis of the distributions of habitats and alien species, the reported magnitude of ecological impacts, 197 

and the strength of such evidence. Evidence for most of the reported impacts of marine aliens in the literature 198 

is weak, mostly based on expert judgement or dubious correlations (Katsanevakis et al., 2014). Hence, in the 199 

estimation of the CIMPAL index the weights of impacts with low supporting evidence are downweighted, in 200 

comparison to impacts documented through manipulative or descriptive experiments (Katsanevakis et al., 201 

2016). The index was normalized as follows to obtain values between 0 and 1: 
( )

( ) ( )xminxmax
xminx=I i

i −
−

 , 202 

where iI  is the normalized index value and ix  is the initial index value for the planning unit i. 203 

Then, to estimate an index (E) of the magnitude of impacts on each planning unit i in which a specific feature 204 

is present, the presence or absence of the feature (F) was multiplied by the index value (I):  205 

iii IF=E ∗  206 

In the ‘avoid’ scenario, we only set targets for the features in good condition (i.e. not impacted by alien 207 

species). An index of the condition (H) of a specific feature in each planning unit i was estimated as: 208 

 209 

In the ‘ignore’ scenario we did not consider the information about impacts from invasives on the critical 210 

habitats as per Giakoumi et al. (2013).  211 

The most commonly accounted for and significant cost in marine planning is opportunity cost, e.g., fishing 212 

profits that are forgone when an area is made a no-take zone (Ban & Klein, 2009). The socio-economic cost 213 

used herein represents the spatial distribution of the combined opportunity cost for three marine sectors: 214 

commercial (small and large-scale) fishing, non-commercial fishing (recreational and subsistence), and 215 

aquaculture. Data were obtained from Mazor et al. (2014).  216 

Case study 2: Endemic fish species  217 

Data on the distribution of 80 endemic fish species were obtained from Guilhaumon et al. (2015). Among the 218 

80 species, 54 were benthic, 18 demersal, and 8 pelagic (Appendix S2). We used area-based species-specific 219 

representation targets following the methods in Guilhaumon et al. (2015). A representation target of 100% 220 

was set for endemic species with restricted-ranges (geographic range of <1,000 km2) and a target of 10% was 221 



used for widespread endemics (those endemic species with a geographic range > 35,860 km2, corresponding 222 

to one third of the species). For endemics with intermediate range sizes, the target was interpolated as a 223 

linear function of log-transformed area of occupancy. Additionally, we modified the area-based targets 224 

according to the  species level of threat as determined by the IUCN Red List categories (Abdul Malak et al., 225 

2011). Following Kark et al. (2009) the representation target of critically endangered species (n=1) was set 226 

to 100% irrespective of their geographic range; the targets for species that are vulnerable (n=1) or 227 

endangered (n=3) were defined as the maximum between the 30% of their geographic range and their 228 

linearly interpolated target. Data deficient species (n=1) and species not evaluated by IUCN (n=71) were 229 

attributed the “least-concern” IUCN category (Appendix S2).  230 

We accounted for impacts of alien species by combining the values of the relative Functional Nearest 231 

Neighbour index (FNNr; see Elleouet et al.,  2014) with the socio-economic cost (Mazor et al., 2014). The 232 

FNNr index arises from a trait-based approach and expresses the magnitude of functional similarity (or niche 233 

overlap) between endemic and alien species as a proportion of the total number of endemic species per 234 

planning unit. The FNNr index assumes that co-occurring native and alien species are more likely to interact 235 

if they have greater similarity in their ecological (e.g. habitat use) and biological (e.g. diet) attributes, that is, 236 

greater similarity in their ecological niches (sensu Violle & Jiang, 2009).  237 

In the ‘avoid’ scenario, we summed the values of FNNr index (ranging from 0 to1) and the socio-economic 238 

cost in each planning unit. In order to give the same weight to the two components, the FNNr index and the 239 

socio-economic cost were rescaled to range in the same magnitude. High FNNr index values increased the 240 

cost of planning units in the ‘avoid’ scenario, and thus the optimization algorithm avoided the selection of 241 

these areas. This scheme was reversed in the ‘protect’ scenario, where1-FNNr values were added to the 242 

socio-economic cost. Planning units with high FNNr values contributed less to the cost of the planning units, 243 

and these areas were more likely to be selected for protection. In the ‘ignore’ scenario, we did not consider 244 

the information about potential ecological interactions between endemics and aliens and ran Marxan 245 

considering only the socio-economic cost. 246 

RESULTS 247 

Biological invasions in past marine conservation plans 248 



Since 2000, there has been a progressive increase in the number of publications on marine conservation 249 

plans, resulting in a total of 119 publications (Appendix S1; Fig. S1A). Most of these publications (57%) 250 

referred to local scales (Fig. S1B). The reviewed conservation plans covered all marine realms, with a higher 251 

concentration in the Temperate Northern Atlantic and the Central Indo-Pacific realms (Fig. 1). The majority 252 

of conservation plans (58%) included habitats or ecosystems as features to conserve (Fig. 2). A large 253 

percentage of studies also set fish species distributions as conservation features (33%). Charismatic marine 254 

animals, particularly mammals and birds, were also commonly targeted for protection (23% and 22% 255 

respectively). For the identification of priority areas for conservation of these features, half the studies used 256 

conservation planning software. Of those, the vast majority (88%) used some version of the software 257 

Marxan, whereas the rest of them used C-Plan (Pressey et al., 2009) and Zonation (Moilanen et al., 2009). 258 

The other half of the studies used a variety of tools: geospatial analyses (e.g., ArcGIS), species distribution 259 

and habitat suitability models, complementarity analyses, hotspot analyses, food-web models, univariate and 260 

multivariate statistical methods, GLM models, tracking methods, scoring methods, vulnerability assessments, 261 

and combinations of those. 262 

Out of the 119 papers included in our analyses we found only three papers (Tallis et al., 2008; Giakoumi et 263 

al., 2011; Klein et al., 2013) that explicitly took into account invasive species in their conservation plans 264 

(Table S1). All other papers ignored invasives’ presence and/or impacts (Table S1; Fig. S1A). All three 265 

studies used Marxan software. Tallis et al. (2008) incorporated threats in a site-prioritization exercise for the 266 

Pacific Northwest coast ecoregion (U.S.A.), including invasive species, into Marxan's cost function. Areas 267 

with higher threat had higher cost, thus, highly invaded areas were avoided. Similarly, Klein et al. (2013) in 268 

a conservation plan for California incorporated threats, including invasives, into Marxan by adding an 269 

additional constraint: minimize the chance that the reserved features are in poor condition. The algorithm, 270 

therefore, favoured the selection of priority conservation areas less impacted by threats, one of which was 271 

vulnerability to invasives. In contrast, Giakoumi et al. (2011) set conservation targets for all fish species of 272 

the shallow sublittoral of the Cyclades Archipelago (Greece), including the invasive herbivore species 273 

Siganus luridus; following, thus, the ‘protect’ approach.  274 

Comparing the consequences of ‘protect’, ‘avoid’, or ‘ignore’ strategies for conservation plans  275 

Critical habitats case study 276 



We found that the selection frequency of the great majority of planning units changed depending on the 277 

approach that was followed (protect, avoid or ignore). Only ~13% of the planning units containing a 278 

conservation feature had maximum irreplaceability (i.e., a selection frequency of 1,000) across all three 279 

scenarios (green-bordered planning units in Fig. 3). In all pairwise scenario comparisons (‘protect’ versus 280 

‘ignore’, ‘avoid’ versus ‘ignore’, and ‘protect’ versus ‘avoid’), the selection of ~80% of planning units 281 

differed (Table 1; Fig. 3). Areas highly impacted by invasive species, such as the Balearic Islands (Eastern 282 

Spain), Sicily (South Italy), and the Greek Ionian coastal waters (Western Greece) presented higher selection 283 

frequency in the ‘protect’ rather than the ‘ignore’ scenario. These same areas presented higher selection in 284 

the ‘ignore’ scenario than in the ‘avoid’. When comparing the ‘protect’ and ‘avoid’ scenarios, the highly 285 

impacted areas presented higher selection in the ‘protect’ than in the ‘avoid’ scenario.  286 

Endemic fish species case study  287 

In all pairwise scenario comparisons, the selection of nearly one third (27%) of planning units differed 288 

(Table 1; Fig. 4). Only ~3% of planning units presented maximum irreplaceability across all three scenarios 289 

(green-bordered planning units in Fig. 4). When comparing the ‘protect’ and ‘ignore’ scenarios, no clear 290 

geographical pattern arose. Planning units showing greater irreplaceability in the ‘protect’ approach were 291 

spread across the Mediterranean Sea. However, some patches of markedly higher irreplaceability could be 292 

identified in the Gulf of Lions (France) and in the Adriatic Sea (eastern Italian coast). These areas presented 293 

higher irreplaceability in the ‘avoid’ scenario compared to the ‘ignore’ scenario. Finally, in the pairwise 294 

comparison ‘protect’ versus ‘avoid’ scenario, irreplaceability substantially increased in the ‘avoid’ scenario 295 

along the coastal waters of Italy in the Adriatic Sea and moderately increased in patchy locations along all 296 

Mediterranean coasts. Planning units exhibiting higher irreplaceability in the ‘protect’ scenario were mainly 297 

located along the Greek coast and remaining Adriatic Sea.   298 

DISCUSSION 299 

Our literature review demonstrates that the role of biological invasions has been widely overlooked when 300 

planning for conservation in the marine environment, at all spatial scales. Yet, the explicit consideration of 301 

biological invasions can significantly change spatial conservation priorities. This is clearly shown by the 302 

comparison we made of conservation plans following three different approaches: ‘avoid’, ‘protect’ or 303 

‘ignore’ areas with high presence and/or impacts of invasives. Our findings have important implications on 304 



the placement of new MPAs in order for countries to achieve the 10% goal set by Aichi Target 11 of the 305 

Convention on Biological Diversity (2015).  306 

In the Mediterranean Sea, invasive species are considered one of the most severe threats to species and 307 

ecosystems (Coll et al., 2012; Micheli et al., 2013a). When making decisions about the establishment of new 308 

MPAs, this threat should be explicitly taken into account for an effective allocation of conservation funds.  309 

Particular attention should be given to areas where changes in the priority selection among scenarios are 310 

more pronounced: the Balearic Islands in Spain, the Gulf of Lions in France, Sicily in Italy, the Adriatic Sea, 311 

and the Greek coasts (especially in the west). The importance of biological invasions in these areas differed 312 

depending on which features were targeted for protection (habitats or fish species). To make informed 313 

decisions about the placement of new MPAs, a holistic approach targeting numerous species and habitats 314 

would be desirable.  315 

We propose that in order to effectively incorporate biological invasions into marine conservation planning in 316 

the future, the scientific community should urgently fill information gaps regarding: 1) the spatial 317 

distribution of invasive species both at present and in the future; 2) the ecological and socio-economic 318 

impacts of biological invasions; and 3) the role of MPAs in controlling invasive populations and mitigating 319 

their impacts. 320 

Extensive mapping efforts of invasive species distributions should urgently be applied. Whether the planning 321 

approach is ‘avoid’ or ‘protect’, accurate information about the distribution of alien species is a prerequisite 322 

for effective planning as we demonstrated in our case studies. Several governmental and intergovernmental 323 

bodies have already invested important resources in the creation of georeferenced databases of the current 324 

distribution of alien species (e.g. Katsanevakis et al., 2015). Nevertheless, biological invasions are a dynamic 325 

threat (Strayer et al., 2006), and predictions of their future distributions is crucial for effective management 326 

plans and selection of new MPA sites. Areas that are currently unaffected by biological invasions may be 327 

severely affected in the future, therefore a dynamic conservation is required. At present, accurate projections 328 

of future distributions of marine alien species are limited. Species distribution models forecasting the spread 329 

of aliens are currently based on climate predictions and may underestimate the potential spread of aliens 330 

(Parravicini et al., 2015), and interactions with other sources of disturbance (Bulleri et al., 2011). Studies 331 

comparing source and front populations across a species new range could prove useful for better 332 



understanding and predicting populations dynamics of marine aliens and thus, providing guidance for 333 

potential mitigation actions and for new MPA siting.  334 

Further research is required to better understand the ecosystem changes biological invasions may cause to 335 

native ecosystems and their impacts on socio-economic activities. To date, evidence shows that most alien 336 

species have negative impacts on native biodiversity and human wellbeing (e.g. Katsanevakis et al., 2014). 337 

However, in some cases, alien species can provide conservation benefits and contribute to conservation 338 

objectives; for instance, they can provide habitat or food resources to rare species, serve as functional 339 

substitutes for extinct taxa, and facilitate the recovery of degraded ecosystems (Schlaepfer et al., 2011). For 340 

example, in New England, USA, the invasion of green crabs, Carcinus maenas, into heavily burrowed salt 341 

marshes partially promoted cordgrass recovery by reversing trophic cascades that were triggered by 342 

overfishing of salt marsh predators (Bertness & Coverdale, 2013). Invasives can also provide new economic 343 

opportunities. For instance, Mollo et al. (2014) showed how targeted exploitation of invasives can lead to 344 

new biotechnological and pharmacological applications. In the Levantine Sea, the world’s most invaded sea, 345 

a large percentage of fisheries is now composed of invasive fish species (Edelist et al., 2013). The 346 

commercial exploitation of such species has created new opportunities for local fisheries. Schlaepfer et al. 347 

(2011) speculate that alien species might contribute to achieving conservation goals in the future because 348 

they may be more likely than native species to persist and provide ecosystem services in areas where climate 349 

and land use are changing rapidly. Nevertheless, the contribution of alien species to achieving conservation 350 

and economic goals is likely species-specific, as is their response to the alternative planning strategies 351 

(‘protect’ or ‘avoid’). Therefore, additional information on the impacts (negative or positive) alien species 352 

have on ecosystems and human activities is crucial for the formulation of conservation targets for specific 353 

species or habitats during the planning process. 354 

Lastly, more information is required on whether MPAs are a useful conservation strategy for the 355 

management of alien populations. The ‘biotic resistance hypothesis’ states that ecosystems with high species 356 

richness are more resistant to invaders than those with low biodiversity (Levine & D'Antonio, 1999; Jeschke, 357 

2014). Hence, the expected recovery of native species richness within MPAs could prevent the penetration 358 

and settlement of alien species. Furthermore, the restoration of top-down regulation processes (e.g., 359 

restoration of top predators’ populations) in MPAs could help control the spreading of some alien species 360 



inside MPAs (Mumby et al., 2011). Nonetheless, numerous studies have reported the opposite pattern, i.e. 361 

positive relationships between the numbers of native and alien species (McKinney, 2002). These 362 

observations led to the ‘biotic acceptance hypothesis’ – which supports the notion that ecosystems can 363 

accommodate the establishment of aliens and their coexistence with native species –and to a rich-get-richer 364 

pattern where areas with high native species richness support high numbers of alien species (Stohlgren et al., 365 

2006). Moreover, the populations of some alien species could be enhanced in MPAs mainly because they 366 

would benefit from non-harvesting (Burfeind et al., 2013). Therefore, further empirical studies are necessary 367 

to assess the potential role of MPAs in controlling alien species and mitigating their impacts. If MPAs prove 368 

to have no effect or even favour invasive species then their establishment in impacted areas should either be 369 

avoided (Boudouresque & Verlaque, 2005), or complemented with other management measures for 370 

successful invasion control and mitigation of invasives’ impacts (Thresher & Kuris, 2004). 371 

Based on current evidence and until the effects of MPAs on alien and particularly invasive species are clearly 372 

demonstrated the ‘protect’ or ‘avoid’ planning approaches should be selected. This selection will depend on 373 

the specificities of the study area, the expected response of invasive populations to protection, and their 374 

negative or positive impacts on ecosystem functioning and services. A ‘protect’ approach could be followed 375 

for the restoration of some habitats and the protection of specific populations impacted by invasives, or for 376 

the protection of alien species that have proven to be beneficial for ecosystems or human wellbeing.  377 

Conversely, an ‘avoid’ approach may be developed for harmful alien species that cannot be controlled at a 378 

reasonable cost as well as for habitats on which no substantial effect of protection is anticipated.  An 379 

alternative would be to prioritize for conservation areas that are always selected as priorities regardless of the 380 

approach, and are thus less susceptible to biological invasions. In our case studies, these areas are those 381 

highlighted in green in Figs 3 and 4, and interestingly most of them coincide with ‘consensus areas’ 382 

proposed by Micheli et al. (2013b).  383 

Despite the potential effectiveness of MPAs in mitigating the impacts of invasive species locally, MPAs 384 

alone are unlikely to be sufficient for managing the impact of invasives. Additional management actions 385 

aimed at prevention as well as mitigation of invasives’ impacts are required both inside and outside MPAs. 386 

For instance, eradication of recent alien introductions (Myers et al., 2000; Anderson, 2005) and actions to 387 

control well-established invasive populations, such as harvesting by divers (Green et al., 2014), the use of 388 



selective fishing gear (Archdale et al., 2010) and the controlled development of targeted fisheries may be 389 

examined as management actions to assist the recovery of highly impacted areas under a ‘protect’ approach. 390 

Suppressing invasives below population densities that cause environmental harm can have a similar effect to 391 

complete eradication, in terms of protecting the native biodiversity on a local scale (Green et al., 2014). Such 392 

management actions should be incorporated into spatial plans and be prioritized on the basis of their cost-393 

effectiveness, accounting for the cost of actions and their expected benefits on ecosystems (Giakoumi et al., 394 

2015).  395 

 396 

CONCLUSION 397 

Our review reveals that explicit consideration of biological invasions is lacking in marine conservation plans. 398 

At the same time, our case studies highlight that the approach taken to include this issue (protect or avoid 399 

invasive species) or not (ignore the relevant information) can lead to different recommendations regarding 400 

conservation priorities. The lack of explicit consideration of biological invasion in conservation planning 401 

might be partly driven by the large remaining uncertainty regarding how invasive species respond to 402 

conservation actions, and how they may influence the outcomes of such actions. Other reasons might be: the 403 

limited data availability and scientific understanding of biological invasions; the limited awareness and 404 

concern by policy makers; and consequently, the limited funding directed to the control of alien populations 405 

and mitigation of their impacts. More research is clearly needed to determine the more effective strategy for 406 

incorporating biological invasions in marine conservation planning. Research priorities should involve 407 

multidisciplinary approaches and include: 1) extensive mapping efforts of invasive species distributions and 408 

development of accurate models for the prediction of their future distributions; 2) assessment of invasive 409 

species ecological and socio-economic impacts in host ecosystems; and 3) assessment of the role MPAs have 410 

in controlling invasive populations and mitigating their impacts. Ultimately, the management of invasives 411 

and their potential integration into conservation plans depend on how conservation goals are set in the future. 412 

A shift from a species-based towards a function-based approach, focusing on invasives’ functional role and 413 

their interactions with native communities (see Brown and Mumby (2014) would provide better guidance on 414 

the appropriate strategies for managing invasive species.  415 
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FIGURE LEGENDS  617 

Figure 1. Distribution of marine conservation plans across realms. The different realms (biogeographic 618 

regions) are presented with different colours, whereas conservation plans following: the ‘ignore’ approach is 619 

presented in red, the ‘protect’ in yellow, and the ‘avoid’ in blue. Realms are defined according to Spalding et 620 

al. (2007). 621 

Figure 2. Conservation features accounted for in the conservation plans (frequency computed over a total of 622 

119 publications). 623 

Figure 3. Critical habitats case study (data from Giakoumi et al. 2013).  Difference in planning unit (12,828 624 

cells, 10 x 10 km) selection frequency, from Marxan outputs, when following the different approaches: a) 625 

‘ignore’ vs ‘protect’, b) ‘ignore’ vs ‘avoid’, and c) ‘avoid’ vs ‘protect’. Planning units in red are those 626 

presenting higher selection frequency in the ‘ignore’ scenario, in orange those with higher selection in the 627 

‘protect’ scenario, and in blue those with higher selection in the ‘avoid’ scenario. Planning units are black if 628 

they had maximum selection frequency (1000) in all three scenarios. Scatter plots show the selection 629 

frequency for the planning units under the different scenarios. For the maps we used ETRS89 Lambert 630 

Azimuthal Equal-Area projection. 631 

Figure 4. Fish species case study (data from Guilhaumon et al. 2015). Difference in planning unit (12,828 632 

cells, 10 x 10 km) selection frequency, from Marxan outputs, when following the different approaches: a) 633 

‘ignore’ vs ‘protect’, b) ‘ignore’ vs ‘avoid’, and c) ‘avoid’ vs ‘protect’. Planning units in red are those with a 634 

higher selection frequency in the ‘ignore’ scenario, in orange those with higher selection in the ‘protect’ 635 

scenario, and in blue those with higher selection in the ‘avoid’ scenario. Planning units are black if they had 636 

maximum selection frequency (1000) in all three scenarios. Scatter plots show the selection frequency for the 637 



planning units under the different scenarios. For the maps we used ETRS89 Lambert Azimuthal Equal-638 

Area projection. 639 


