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Abstract 

In designing an energy efficient impinging jet dryer, it is essential to match the energy 

demand for drying with the supply of heat by convection to avoid overheating and energy 

wastage. One way to achieve this is by intermittently supply heat to the drying chamber. By 

using computational fluid dynamics (CFD) approach, this study numerically investigates the 

possibility of energy saving by intermittency. First, inlet temperature intermittency is applied. 

This is conducted by alternately raise it to drying temperature and lowers it to the ambient 

temperature at certain period. Second, inlet velocity intermittency is applied which is 

conducted by alternately supplying the hot air to the several drying chamber. One, two, three 

and four chamber configurations are evaluated. In addition, the intermittency period of 10, 20 

and 30 minutes were examined. The results reveal that the steady impinging jet offers faster 

drying rate as compared to intermittent impinging jet drying under the same inlet conditions. 

In addition it was found that drying rate goes down as the number of drying chamber 

increases. However, the intermittent impinging jet drying offers advantages in term of 
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temperature uniformity and energy conservation. For the same energy usage, the production 

rate of single drying configuration is only one fourth of the four chamber configuration. This 

indicates the potential of multi chamber configuration in a real drying application.  

Keywords: energy saving, intermittent impinging jet, numerical study, performance 

evaluation, thermal drying. 

1. Introduction 

For industrial drying operation which requires short drying time, impinging jet of various 

configurations is preferred. It is particularly desirable to dry flat and thin product such as 

tissue paper, coated paper, tiles, textiles, wood veneer, lumber and carpet [1]. Impinging jet 

offers high heat and mass transfer rate [2,3] which is essential in drying as drying rate is 

dictated by the rate of heat and mass transfer occurs within the drying substrate and in the 

surrounding. Despite their potential, designing impinging jet dryer is challenging, considering 

the complexity of various transport processes and interactions that occur simultaneously 

during drying. Therefore, understanding of the fundamental of heat and mass transfer and 

effect of various parameters on the drying performance is essential.  

In effort to elucidate basic mechanisms of impinging jet drying, numerous experimental and 

numerical investigations have been conducted and reported. Ratanawilai et al. [4] 

investigated drying characteristic of rubber wood in dryer with combination of impinging jet 

hot air and microwave heating. It was found that impinging jet increase the drying rate and 

significantly reduce the drying time. Nuntadusit and Waehahyee [5] evaluated impinging jet 

drying system for rubber sheet. They developed the dryer using an array of hot air jet in 

staggered arrangement impinging on both side of the rubber. The results indicated that 

impingement is not beneficial for all cases as drying rate is controlled by rubber properties. 

The performance of impinging jet drying on a moving plate was studied by Bai et al. [6]. 



  

Several key parameters affecting the heat and moisture transfer performance were evaluated. 

Etemoglu and Can [7] evaluated thermal performance of single and multiple impinging jet 

system with various size, shapes and configurations. Based on their evaluation, for drying 

application three parameters are important, i.e. nozzle height, nozzle size and nozzle pitch. 

Summary of the effect of various design parameters (e.g. type of nozzle, nozzle array 

arrangement, nozzle diameter) on the performance of impinging jet drying has also been 

reported [8]. 

While having impressive drying performance, the application of steady impinging jet for 

drying is hindered by its inherent drawbacks of higher energy consumption as compared to 

traditional parallel flow drying and high possibility of burning product due to over-heating. 

Hence, it is crucial to match the heat supply to the heat required for drying to obtain an 

optimum drying process – high transfer rate, minimum energy consumption and high quality 

dried product. One way to achieve it is by supplying heat to the drying process periodically or 

intermittently according to the needs of the drying application; for example, pulsating and 

intermittent heat supply. The benefits of pulsating and intermittent flow in heat transfer 

applications (heating, cooling and drying) have been reported by several researchers. Islam et 

al. [9] numerically investigated intermittency in temperature, velocity and relative humidity 

for parallel flow dryer. It was found that intermittency is potential for energy saving while 

maintaining good drying performance. Xu et al. [10,11] carried out numerical simulation on 

the intermittent impinging jet and reported significant heat transfer enhancement by 

intermittent pulsation. Yahyaee et al [12] conducted numerical study of the motion and 

drying characteristic of wet particle in a pulsed opposing jet contactor (POJC). POJC was 

found promising for particulate heat transfer and drying. Panao et al [13] highlighted in their 

article that intermittent spray cooling is beneficial for intelligent thermal management. 

Intermittency was also applied for cryogenic spray cooling using liquid nitrogen to achieve 



  

the required operating temperature which otherwise difficult to achieve with steady flow [14]. 

On drying application, Kurnia et al [15] reported that impinging jet drying with pulsation and 

intermittent flow offers promising energy saving while having comparable drying 

performance as those with steady flow. In the reported study, however, only one intermittent 

configuration was evaluated:  intermittency of inlet velocity 1 on 1 off. There are several 

possible configurations that have not been evaluated and will be beneficial if carefully 

examined. 

The objective of the current study is therefore to numerically evaluate drying performance 

and potential energy saving of thermal drying with impinging jet with various intermittent 

configurations by utilizing computational fluid dynamics (CFD) approach. First, intermittent 

of inlet temperature is introduced by alternately raising and lowering the temperature of 

supplied drying air (hot and cold jet).  In this configuration, the drying air is steady supplied 

to the drying chamber. To further reduce the energy usage, inlet velocity intermittency is 

implemented by alternately supplying hot drying air to several drying chambers. Several 

possible intermittent scenarios will be evaluated: one chamber (steady jet), two chambers 

(intermittent 1 on 1 off), three chambers (intermittent 1 on 2 off) and four chambers 

(intermittent 1 on 3 off) configurations.  The effect of intermittency period will be 

investigated as well. The drying performance in term of drying rate and potential energy 

savings will be evaluated in the light of numerical result.  

2. Model formulation 

The mathematical model is based on the validated model in our previous study [15]: A slice 

of potato is dried inside a drying chamber under a slot impinging jet, as illustrated in Figure 

1. Simultaneous transport phenomena occurring in this process are: 

• Diffusion of water moisture from the inner drying substrate to its surface 



  

• Convection from drying air to the surface of drying substrate 

• Conduction within the drying substrate 

• Evaporation and convection of vapor from the surface of drying substrate to the 

drying air. 

Due to its complex nature, several assumptions are required to develop the model: 

• The drying substrate is homogeneous and it has uniform initial temperature and 

moisture content. 

• Inside the drying substrate, water vapor diffuses significantly faster than liquid water. 

Moisture transfer is modeled as diffusive process. 

• The properties of the drying substrate are isotropic and dependent of temperature and 

moisture content. 

• The properties of drying air are temperature-dependent.  

• Due to the slenderness of the drying substrate, variation of dependent variables in 

span wise direction is assumed to be negligible. Hence the process can be treated as 

two-dimensional problem. 

• Neither shrinkage nor deformation is considered in this study. 

2.1. Governing equations 

Based on the given assumptions, the conservation of mass and energy inside the drying 

substrate, accounting for both water vapor and liquid water, can be expressed as [15, 16]  
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Here, cl is the liquid water concentration, cv is the water vapor concentration, Dlb and Dvb are 

the liquid water and water vapor diffusivities in the drying substrate, respectively. T is 

temperature, q is the evaporation induced cooling rate, K is the water vapor production rate, 

b is the drying substrate density, cpb is drying substrate specific heat and kb is the drying 

substrate heat conductivity. 

Meanwhile, conservation of mass, momentum and energy as well as conservation of vapor 

species in the drying air are given by [10, 15] 
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where u is the air mean velocity, u' is the air fluctuate velocity, p is pressure,  is the air 

dynamic viscosity, a is the drying air density, cpa is the drying air specific heat, ka is the 

drying air thermal conductivity, and Dva is the water vapor diffusivity in the drying air. 

Similar to our previous study [15], the Reynolds Stress Model [17] is implemented to take 

into account the turbulent flow of the drying air, i.e. 
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are the accumulation, convective, production, diffusion, dissipation, pressure-strain 

interaction and rotation terms, respectively. The variables Rij, δij, Cμ, σk, C1 and C2 are the 

Reynolds stress tensor, Kronecker delta and constants whose values are given in Table 1. The 

turbulent kinetic energy k and turbulent dissipation  in the above equation can be found by 

solving k- turbulent model [17], i.e. 
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where Gk is the generation of turbulence kinetic energy due to the mean velocity gradients, 

C1 and C2 are constants, σk and σε are the turbulent Prandtl numbers for k and ε, 

respectively. The turbulent viscosity is given by .2   kC
t
  

2.2. Constitutive relations 

In this study, polynomial functions are adopted to represent temperature dependent properties 

of drying air which were obtained from Kays et al. [18]. The drying air properties are 

summarized in Table 2 together with the properties for drying substrate. 



  

As that in our previous study [15], the concept of vapor rate production [16] is adopted in this 

study. To account for water depletion in the drying substrate, a negative source term, Kcl, is 

introduced to the conservation equation of liquid water (Eq. 1) whereas a positive source term 

is incorporated in the conservation equation of water vapor (Eq. 2) to take into account water 

vapor production inside the drying substrate. The rate of water vapor production is 

represented by an Arrhenius-type function, i.e. 
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where K0 is constant, Ea is the activation energy and R is the universal gas constant. 

Meanwhile the rate of cooling due to evaporation, q , is given by 
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Here, Ml, is the molar mass of water, hevap is total heat of evaporation which is given by 

 wfgevap Hhh   (14) 

where hfg is latent heat of evaporation and Hw is the heat of wetting which is the heat needed 

to evaporate the bound water. Correlations of both are presented in Table 2.  

The dry basis moisture content, X, is defined as 
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and is related to the wet basis moisture content, W, by 
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By substituting density of drying substrate into the definition of wet basis moisture content, a 

relation between moisture content and water concentration inside the drying substrate can be 

obtained, i.e. 
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This quadratic equation can be solved to obtain the root which provides the expression for 

moisture content [15]. Similar to study by Chemki et al. [19], to calculate the equilibrium 

moisture content, Guggenheim-Andersson-deBoer (GAB) equation is used.  

The total energy consumption is calculated as the total of energy for pumping and heating the 

drying air within one hour.  

heatingpumptotal
QPE   (18) 

The former is calculated as power required to drive the drying air, i.e. 
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while the later is the energy needed to raise the temperature of drying air from ambient 

temperature to the drying temperature given by 

 ,
ambinpaheating

TTcmQ    (20) 

where pump is pump efficiency (assumed to be 70%), V is the volumetric flow rate, Tin and 

Tamb are the jet inlet and ambient temperature (taken to be 298.15 K), respectively. Mass flow 

rate of drying air, ,m is calculated as 

incaa
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where vin is the inlet velocity. To evaluate and compare energy usage for each drying 

scenario, a parameter called ratio required energy is defined as the ratio between the energy 



  

usages of each scenario as compared to that of steady set which is chosen as the benchmark, 

i.e. 

jetsteady  ofn consumptioenergy  Total

caseeach  ofn consumptioenergy  Total
energy required Ratio   (22) 

 

2.3. Initial and boundary conditions 

The initial conditions for drying substrate are:  
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Meanwhile, the initial conditions for drying are 
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whose values are summarized in Table 1. The required boundary conditions to solve the 

model are summarized as follows 

 Inlet 
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 Coupled boundary condition was set at drying substrate/air interface 
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Here, n is unit vector normal to the given surface,  and + denote condition inside and 

outside the drying substrate. 

2.4. Numerical methodology 

The computational domain was created, meshed and labeled in Gambit preprocessor software 

(please refer to Fig. 1 for the computational domain representation). Before proceeding into 

the studied cases, a mesh independent test was conducted by systematically doubling the 

amount of mesh; starting from 0.510
3
, 110

3
, 210

3
, 410

3
 and 810

3
 elements. It was 

found that mesh size amounting 410
3
 elements differs by less than 2% as compared to mesh 

size of 810
3
  elements with respect to drying rate, while it differs by more than 8%, 12% and 

20%  as compared to mesh size of 210
3
, 110

3
  and 0.510

3
  elements, respectively.  Thus, 

it can be deduced that mesh size of 410
3
 is sufficient for our purpose. A fine structured mesh 

was implemented on the inlet, impinging region and drying substrate to capture the impinging 

jet flow and the corresponding heat and mass transfer. Meanwhile, to optimize the 

computational resources and time, an increasingly coarser mesh is applied towards the outlet. 

The mathematical model (Eqs. 1-11), together with constitutive relations and boundary 

conditions are solved by utilizing ANSYS Fluent 15. ANSYS user-defined function (UDF) 

written in C language is incorporated to take into account the temperature dependency of 

drying air and drying substrate thermal properties. User-defined scalar (UDS) and user-

defined memory (UDM) functionalities are utilized to account for moisture content within the 

drying substrate and drying air. The model was solved with Semi-Implicit Pressure-Linked 

Equation (SIMPLE) algorithm, second order upwind discretization and Algebraic Multi-grid 

(AMG) method. A convergence criterion of 10
-4

 was set for conservation of mass and 10
-6

 for 

other parameters. For 4 hours simulated drying time, approximately 12-14 hours simulation 

time is required on a personal computer with 2.0 GHz quad processor and 6 GB RAM. 



  

3. Results and discussion 

A typical drying condition, as summarized in Table 3, was numerically simulated in this 

study. Before proceeding towards investigation of intermittency, model validation is 

conducted and is presented in the following section. 

3.1. Model validation 

The current model is based on the model developed in our previous study [19] which has 

been validated against the experimental data by Islam et al [9]. To provide better overview, 

the validation is re-presented in Fig. 2. Overall, the model predictions achieve good 

agreement with the experimental measured counterpart over the entire period of drying, 

providing evidence on the validity of the model. The model is then utilized to investigate the 

drying performance and potential energy saving of thermal drying with impinging jet with 

various intermittent configurations.   

3.2. Inlet temperature intermittency 

As stated previously, the steady impinging jet has inherent drawback of higher energy 

consumption and higher possibility of overheating which will lead to product damage (burnt). 

Hence, it is crucial to match the heat supplied with the demand for optimal drying. Here, the 

drying air is supplied steadily but the temperature is alternately changed between 298.15 K 

(25C) and 318.15 K (45C) Fig. 3 presents drying kinetics of impinging jet with steady and 

intermittent inlet temperature.  As can be observed, steady jet offers faster drying compared 

with that of intermittent jet under the same inlet condition. This is expected since for the 

intermittent temperature cases, the drying substrate will be alternately exposed to cold and 

hot air. When cold air is supplied, the temperature of the drying substrate will reduce, leading 

to a slower evaporation and thus slower drying. Subsequently, when the hot air is supplied, 



  

the drying substrate will take some time to reach the temperature for the evaporation to take 

place, resulting in a longer drying time. The reduction in drying rate is more prominent for 

intermittent with longer "off" period. This is most likely attributed to the longer cooling 

period which brings down the drying substrate temperature to a lower level, thus lengthen the 

required re-heating period. 

Looking into the effect of intermittent period, as presented in Fig. 4, it can be seen that the 

intermittent period play marginal role in determining the drying rate even though on closer 

inspection it is clear that longer intermittent period is beneficial in securing faster drying. For 

all studied cases, the intermittent period of 30 mins offers faster drying as compared to the 

shorter intermittent period. It may be due to the fact that the drying substrate require some 

time during re-heating process to reach optimum temperature for evaporation. With shorter 

intermittent period, this condition may have not been achieved when the changes in drying air 

temperature take place. 

Despite the weakness in term of slower drying, intermittent temperature has advantages of 

lower substrate temperature during drying, minimizing the possibility of burning the product 

due to overheating. This lower temperature is also beneficial for drying of temperature 

sensitive products, such as pharmaceutical products. Figs 5 and 6 present temperature and 

moisture content distribution in drying substrate for steady and intermittent temperature jet, 

respectively. As can be inferred, steady velocity jet reaches higher drying substrate 

temperature which may not be desirable as it can lead to overheating and thus reducing the 

quality of the drying product. On the other hand, intermittent jet yields lower temperature 

where longer "off" period results in even lower product temperature. Closer inspection 

reveals that, on average, about 6 ºC temperature difference is noticed between steady 

temperature and intermittent 1-on-1-off. While lesser temperature difference of about 3 ºC 



  

and 1 ºC is observed for 1-on-2-off and 1-on-3-off designs, respectively. Clearly, careful 

consideration on cooling period has to be taken though as too low temperature may drag the 

drying time even longer. Another consideration which need to be taken into account is the 

cooling temperature, it may be better if the cooling temperature is increased little bit such that 

the optimum evaporation point can be achieved faster while maintaining the product 

temperature below overheating condition. This study will be conducted in the near future.  

3.3 Inlet velocity intermittency 

In previous section, the heating energy has been alternately supplied to the drying air to 

reduce energy usage. To minimize energy consumption even further, the drying air is 

alternately supplied to several drying chambers instead of single drying chamber. As stated 

previously 4 different scenarios are investigated: (i) steady jet which correspond to single 

chamber configuration, (ii) 1 on 1 off intermittent jet which correspond to 2 drying chamber 

configuration where the hot drying air is alternately supplied to chamber 1 and chamber 2 

with interval of 1/2 period (1/2 ), (iii) 1 on 2 off intermittent jet which represent 3 drying 

chamber configuration where at every 1/3 period (1/3 ) only 1 chamber is supplied with hot 

drying air (on) while the other 2 chamber are not supplied (off), (iv) 1 on 3 off intermittent jet 

which correspond to 4 drying chamber configuration where hot drying air is alternately 

supplied to each chamber with interval of 1/4 period (1/4 ). The considered velocity 

intermittent scenarios are presented in Fig 7. The drying kinetics of impinging jet with 

intermittent inlet velocity is presented in Fig. 8. In-line with the finding for intermittent 

temperature, the steady jet offers faster drying. However, the difference in drying rate for 

steady and intermittent velocity is not as large as those in intermittent temperature cases. This 

is most likely attributed to the fact that in this case the cooling process is slower as compared 

to the intermittent temperature where the drying substrate is blown with cold air. Hence the 



  

re-heating process is faster, thus leading to faster drying than those of intermittent 

temperature. 

Turning our attention towards the effect of intermittent period on drying kinetics, as 

presented in Fig. 9, we found similar trend with the previous cases where the effect of period 

is marginal. On closer observation, however, it was found that, in contrast to intermittent 

temperature cases, longer intermittent period result in slower drying. This is attributed to the 

fact that in intermittent temperature, air is steadily supplied albeit at lower temperature. 

Hence transfer of water vapor from the substrate to the drying air is remaining. In contrast, in 

intermittent velocity, air is alternately supplied. As such the longer the period of 

intermittency, the slower mass transfer occurs from the substrate to the drying air. This is 

somewhat beneficial to the drying quality as the moisture has sufficient time to diffuse 

throughout the substrate which, in turn, gives rise to a more uniform temperature and 

moisture distribution. In some heat sensitive materials, the uniformity of temperature and 

moisture can be of importance due to the fact that it affects structural deformation and thus 

final product quality.  

Fig. 10 presents temperature distribution in drying substrate for steady and intermittent 

velocity jet, respectively. Similar to intermittent temperature cases, steady velocity jet (one 

chamber) reaches higher temperature and intermittent jet yields lower temperature where 

dryer with more chamber results in lower temperature. As compared to intermittent 

temperature cases, higher temperature is observed for intermittent velocity. This is mainly 

attributed to the fact that in intermittent case during drying hot and cold air are supplied 

alternately. During cold air impingement, cooling process take place, reducing the substrate 

temperature. Accordingly, lower moisture content is observed for the intermittent velocity 

cases, as illustrated in Fig. 11.  This is due to higher temperature of the substrate in 



  

intermittent velocity cases, providing sufficient driving force for moisture content 

evaporation. For intermittent temperature cases, on contrary, low temperature hinder the 

evaporation process and thus slower the drying. 

3.4 Energy savings 

Thus far, the drying performance of various intermittency configuration and scenario has 

been evaluated. Here, the energy consumption and potential energy saving arising from 

intermittent drying with jet impingement is quantified and examined. The overall energy 

consumption figure for the studied cases is presented in Fig. 12. The energy consumption is 

calculated for 1 hour time frame for which the intermittent period has no effect on the 

calculation. The energy consumption for steady flow is set as a benchmark for this 

assessment. The energy consumption for steady flow is attributed from fan pumping power 

(78 J/h) and heater (642 kJ/h). This figure implies that the dominant energy consumption is 

heating of drying air. 

From the figure, it is clear that intermittency offers considerable reduction on energy 

consumption. Furthermore, higher energy saving can be obtain by increasing the number of 

drying chambers. Notably about 50%, 67% and 75% energy savings can be obtained for two, 

three and four chambers arrangement, respectively. The potential of energy savings of up to 

75% for four chambers arrangement together with more uniform moisture content 

distribution show potential for practical/industrial application of the multiple chamber 

arrangement at a cost of longer drying time (~1.6 times longer). Clearly, optimization 

between design and operating parameters is required to obtain optimum drying performance.  

4. Conclusions 



  

A computational investigation on the effect of intermittency of inlet temperature and velocity 

on the drying kinetics of an impinging jet system is reported. The drying performances of 

steady and intermittent impinging jets have been compared with each other, and the effect of 

intermittent period on the drying rate has been discussed. The numerical results indicate that 

the steady impinging jet offers faster drying rate compared with intermittent impinging jet 

drying under same inlet conditions, and longer intermittent temperature period and shorter 

intermittent velocity period can slightly increase drying rate. However, the intermittent 

impinging jet drying indicate advantages in temperature uniformity and energy conservation, 

which indicates the potential of multi chamber configuration in a real drying application. An 

important note is that during cooling process, the temperature of the substrate may be too low 

which result is slower re-heating and in turn slower drying. Continuation study will be 

conducted to investigate the effect of cold air temperature on the drying performance and 

energy saving. 

NOMENCLATURES 

c Concentration mol m
-3

 

cp Specific heat J kg
-1

 K
-1

 

D Diffusivity m
2
 s

-1
 

Ea Activation energy J mol
-1

 

hfg Latent heat of evaporation J kg
-1

 

Hw Heat of wetting J kg
-1

 

k Thermal conductivity W m
-2

 K
-1

 

K Water vapor production rate s
-1

 

K0 Constant of water vapor production rate s
-1

 

M Molar mass kg mol
-1

 

n Normal vector - 



  

p Pressure Pa 

q  Cooling rate due to evaporation W m
-3

 

R Universal gas constant J K
-1

 mol
-1

 

T Temperature K 

u, u, v Velocity m s
-1

 

X Dry basis moisture content kg kg
-1

 

Xe Equilibirum moisture content kg kg
-1

 

W Wet basis moisture content kg kg
-1

 

Greek letter 

 Density kg m
3
 

 Dynamic viscosity Pa s 

hevap Total heat of evaporation J kg
-1

 

 Intermittent period min 

Subscript 

0 Initial condition  

a Drying air  

amb Ambient  

b Drying substrate  

in Inlet  

l Liquid water  

out Outlet  

v Water vapor  
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Table and Figure Captions 

Table 1 Geometry and operating parameters 

Table 2 Properties of drying air and drying substrate (potato) 

Table 3 Intermittency parameters 

Fig. 1. (a) Schematic of multiple drying chambers configurations, (b) considered 

computational domain, and (c) mesh element of the computational domain. 

Fig. 2. Validation of drying model with experimental data by Islam et al [9]. 

Fig. 3. Effect of inlet temperature intermittency on the drying kinetics ( = 10 mins). 

Fig. 4. Effect of period () on the kinetics of impinging jet drying with intermittent inlet 

temperature: (a) intermittent 1 on 1 off, (b) intermittent 1 on 2 off, and (c) intermittent 1 on 3 

off. Drying kinetics for steady jet is given as reference. 

Fig. 5. Temperature distributions in drying substrate for steady and intermittent temperature 

jets ( = 10 mins) at various time: (a) t = 30 mins, (b) 60 mins, (c) 120 mins and (d) 180 mins. 

Fig. 6. Moisture content distributions in drying substrate for steady and intermittent 

temperature jets ( = 10 mins) at various time: (a) t = 30 mins, (b) 60 mins, (c) 120 mins and 

(d) 180 mins. 

Fig. 7. Various velocity intermittency scenarios and their corresponding drying chamber 

arrangements: (a) steady jet (single chamber), (b) 1 on 1 off intermittent jet (two chambers), 

(c) 1 on 2 off intermittent jet (three chambers) and (d) 1 on 3 off intermittent jet (4 

chambers). 

Fig. 8. Effect of inlet velocity intermittency on the drying kinetics ( = 10 mins). 

Fig. 9. Effect of period on the kinetics of impinging jet drying with intermittent inlet velocity: 

(a) intermittent 1 on 1 off, (b) intermittent 1 on 2 off, and (c) intermittent 1 on 3 off. Drying 

kinetics for steady jet is given as reference. 

Fig. 10. Temperature distributions in drying substrate for steady and intermittent velocity jets 

( = 10 mins) at various time: (a) t = 30 mins, (b) 60 mins, (c) 120 mins and (d) 180 mins. 

Fig. 11. Moisture content distributions in drying substrate for steady and intermittent velocity 

jets ( = 10 mins) at various time: (a) t = 30 mins, (b) 60 mins, (c) 120 mins and (d) 180 mins. 

Fig. 12. Energy consumptions of various intermittency scenarios 

 



  

Table 2 Geometry and operating parameters 

Parameter Value Unit Reference 

Cμ 0.09 - [17] 

σk 1.0 - [17] 

σ 1.3 - [17] 

C1 1.8 - [17] 

C2 0.6 - [17] 

C1  1.44 - [17] 

C2  1.92 - [17] 

cl0,b 

l

refb

M

W
,0


 

mol m
-3

 [16] 

cv0,b 0 mol m
-3

 [16] 

cl0,a 0 mol m
-3

 [16] 

cv0,a 

 
l

a

MRH

RH

1
1000

0,


 
mol m

-3
 [16] 

X0 4.6 kg kg
-1

 [9]  

 b,ref 1420 kg m
-3

 [20] 

Ml 0.018 kg mol
-1

 [21] 

R 8.314 J K
-1

 mol
-1

 [21] 

Sb 1.4 - [20] 

K0 7000 s
-1 

[15] 

Ea 48.7 kJ mol
-1

 [16] 

C 4.416 - [19] 

KGAB 0.976 - [19] 

Tin 45 °C - 

RHin 20 % - 



  

L 0.4 m [15] 

w 0.02 m [15] 

Ls 0.03  m [15] 

Hs 5x10
-3

 m [15] 

wj 4x10
-3

 m [15] 

 a,45°C 1.110 kg m
-3

 [18] 

 a,45°C 1.934×10
-5

 kg m
-1
 s

-1
 [18] 

 

  



  

Table 2 Properties of drying air and drying substrate (potato) 

Property Expression Unit Reference 

a 326.310039.110076.1 225   TT  kg m
-3

 [18,22] 

a 
78211315 1019.910039.710077.41021.5   TTT

 
kg m

-1
 s

-1
 [18,22] 

ka 
0147.01035.210519.410084.4 427310   TTT

 
W m

-2
 K

-1
 [18,22] 

cp,a 1175599.110837.41067.4 2336   TTT
 

J kg
-1
 K

-1
 [18,22] 

b 
 
SbX

Xfreb





1

1,
 kg m

-3
 [20] 

kb 
X

X

TX 






















  1

611.0

15.335

11

10314.8

47
exp

1

049.0
3  W m

-2
 K

-1
 [9] 

cp,b 











X

X

1
23451750  J kg

-1
 K

-1
 [16] 

Dvb=Dlb ,
2044

exp
725.0

exp1029.1 6

















 

TX  m
2
 s

-1
 [9] 

Dva .10775.210479.410656.1 68210   TT
 

m
2
 s

-1
 [23] 

hfg 125023942 . T . 
 

kJ kg
-1

 [9] 

Hw 
 .2.001.01163

10368.210161.6100.410327.8 6263646





X

XXXX
 kJ kg

-1
 [9] 

Xe   wGABwGABwGAB

wGABm

ACKAKAK

ACKX

1  kg kg
-1

 [19] 

 

  



  

Table 3 Intermittency parameters 

Scenario Inlet temperature intermittency Inlet velocity intermittency 

Single drying 

chamber 

(Steady jet) 
K 15.318

s m 2 -1





in

in

T

v
 

K 15.318

s m 2 -1





in

in

T

v
 

Two drying 

chamber  

(intermittent

1 on 1 off) 

 

   







































112
2

1
for K 15.298

12
2

1
for K 15.318

s m 2 -1

ntn

ntn

T

v

in

in

 
 

   

K 15.318

112
2

1
for 0

12
2

1
for s m 2 1-




































in

in

T

ntn

ntn

v





 

Three drying 

chamber  

(intermittent 

1 on 2 off) 

 

   







































113
3

1
for K 15.298

13
3

1
for K 15.318

s m 2 -1

ntn

ntn

T

v

in

in

 
 

   

K 15.318

113
3

1
for 0

13
3

1
for s m 2 1-




































in

in

T

ntn

ntn

v





 

Four drying 

chamber  

(intermittent 

1 on 3 off) 

 

   







































114
4

1
for K 15.298

14
4

1
for K 15.318

s m 2 -1

ntn

ntn

T

v

in

in

 

 

   

K 15.318

114
4

1
for 0

14
4

1
for s m 2 1-




































in

in

T

ntn

ntn

v




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Fig. 4 

 



  

 

Fig. 5 

 



  

 

Fig. 6 

 



  

 

Fig. 7 

 



  

 

Fig. 8 



  

 

 



  

 

Fig. 9 

 



  

 

Fig. 10 

 



  

 

Fig. 11 

 



  

 

Fig. 12 
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