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Summary

Prolonged infusion of β-lactam antibiotics as either exten-
ded (over at least 2 hours) or continuous infusion is increas-
ingly applied in intensive care units around the world in
an attempt to optimise treatment with this most commonly
used class of antibiotics, whose effectiveness is challenged
by increasing resistance rates.
The pharmacokinetics of β-lactam antibiotics in critically
ill patients is profoundly altered secondary to an increased
volume of distribution and the presence of altered renal
function, including augmented renal clearance. This may
lead to a significant decrease in plasma concentrations of
β-lactam antibiotics. As a consequence, low pharmacokin-
etic/pharmacodynamic (PK/PD) target attainment, which is
described as the percentage of time that the free drug con-
centration is maintained above the minimal inhibitory con-
centration (MIC) of the causative organism (fT>MIC), has
been documented for β-lactam treatment in these patients
when using standard intermittent bolus dosing, even for the
most conservative target (50% fT>MIC).
Prolonged infusion of β-lactams has consistently been
shown to improve PK/PD target attainment, particularly in
patients with severe infections. However, evidence regard-
ing relevant patient outcomes is still limited. Whereas pre-
vious observational studies have suggested a clinical bene-
fit of prolonged infusion, results from two recent random-
ised controlled trials of continuous infusion versus inter-
mittent bolus administration of β-lactams are conflicting.
In particular, the larger, double-blind placebo-controlled
randomised controlled trial including 443 patients did not
demonstrate any difference in clinical outcomes.
We believe that a personalised approach is required to truly
optimise β-lactam treatment in critically ill patients. This
may include therapeutic drug monitoring with real-time
adaptive feedback, rapid MIC determination and the use
of antibiotic dosing software tools that incorporate patient

parameters, dosing history, drug concentration and site of
infection.
Universal administration of β-lactam antibiotics as pro-
longed infusion, even if supported by therapeutic drug
monitoring, is not yet ready for “prime time”, as evidence
for its clinical benefit is modest. There is a need for pro-
spective randomised controlled trials that assess patient-
centred outcomes (e.g. mortality) of a personalised ap-
proach in selected critically ill patients including prolonged
infusion of β-lactams compared with the current standard
of care.
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Introduction

Beta-lactam antibiotics have been the cornerstone of anti-
biotic treatment since the early 1940s [1]. Owing to their
wide spectrum of antibiotic activity and favourable safety
profile, they remain the primary choice for treatment of
severe infections worldwide. However, increasing resist-
ance rates have challenged their widespread application in
clinical practice. Rapid spread of β-lactamases in Gram-
negative bacteria represents a genuine threat to successful
treatment of both uncomplicated and serious infections [2,
3]. To make matters worse, the research and development
pipeline for new antibiotics has declined over recent dec-
ades, and novel treatment strategies have mostly yielded
disappointing results in sepsis trials [4, 5].
For decades, development of doses for new antibiotics for
clinical registration was based on in vitro studies using his-
torical models of pharmacokinetics (PK) and pharmaco-
dynamics (PD) in healthy volunteers or non-critically ill
individuals. Traditionally, individualising antibiotic ther-
apy was more focused on the choice of antibiotic rather
than the optimal dosage and mode of administration. With
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the exception of renal impairment, patient characteristics
were largely neglected when choosing the dose of β-lactam
antibiotics – a one-size-fits-all approach. However, recent
evidence highlights that one size cannot fit all [6–10]. Im-
portantly, optimal antibiotic exposure may not be achieved
with traditional dosing strategies in a significant number
of patients (e.g. critically ill or infected by resistant organ-
isms), which may lead to microbiological and clinical fail-
ure, and may promote the emergence of antibiotic resist-
ance [8–10].
Given increasing resistance rates and the limited availab-
ility of new treatment options, clinical researchers have
concentrated their efforts on optimising treatment with β-
lactam antibiotics. This includes identifying patient popu-
lations at risk for underdosing and applying PK/PD prin-
ciples to define optimal dosing strategies. As a result, pro-
longed infusion of β-lactam antibiotics has been suggested
as one of the dosing strategies to improve achievement of
PK/PD targets and may improve patient outcomes, partic-
ularly in the intensive care unit (ICU). Although evidence
supporting its efficacy is currently scarce, prolonged infu-
sion dosing of β-lactam antibiotics is being increasingly ad-
opted in many ICUs around the world.
In this article, we review the arguments and theory under-
lying the use of prolonged infusion dosing of β-lactam anti-
biotics, current evidence and caveats, and identify areas for
future research.

Pharmacokinetic/pharmacodynamic
targets for β-lactam antibiotics

The two main areas of pharmacology are PK and PD. PK
refers to the time-course of drug concentration in tissue
and body fluids, whereas PD, in the case of antibiotics, de-
scribes their antibiotic activity, clinical effects and toxico-
logy. Antibiotic PD helps to define which dosing strategies
should be used for different antibiotic classes (table 1), and
is mainly dependent on the minimal inhibitory concentra-
tion (MIC) of the pathogen and the presence of a post-anti-
biotic effect [11].
For β-lactams, the time that the free (unbound) drug con-
centration remains above the MIC (fT>MIC) has been de-

Figure 1

Differences in the time that β-lactam concentrations exceed the
MIC (fT>MIC) of two different pathogens (MIC of 0.125 mg/l and 8
mg/l, respectively) according to the mode of β-lactam
administration. (A) Intermittent bolus administration. (B) Extended
infusion (blue line) and continuous infusion (red line).
IB = intermittent bolus administration; MIC = minimal inhibitory
concentration; fT>MIC = time that the free drug concentration is
above the MIC

scribed as the PK/PD index that best correlates with bac-
tericidal activity [12, 13] (fig. 1). Maximal killing rates for
β-lactams are attained at low multiples of the MIC (2–4 x
MIC), which is related to the fact that low drug concentra-
tions are sufficient to saturate all possible binding sites and
consequently inhibit peptidoglycan synthesis [14]. Con-
versely, drug concentrations below the MIC may permit re-
growth of many organisms within a short period of time
secondary to a lack of a relevant post-antibiotic effect [15].
Previous animal and clinical studies have found that the
time interval in which the free drug concentration is above
the MIC is the central parameter for optimal bacterial
killing and clinical efficacy (45–100% for cephalosporins,
40–50% for penicillins and 40–75% for carbapenems [16]).
However, these targets were mainly derived from experi-
ments involving neutropenic animal models [11] and relat-
ively susceptible bacterial strains, and do not account for
the variable penetration of β-lactams into various tissues.
For example, the patient’s immune system may be able to
clear a minor pulmonary infection even if antibiotic treat-
ment only achieves bacteriostasis. Conversely, higher drug
exposures may be required to clear serious pulmonary in-
fections in an immunocompromised host, such as a critic-
ally ill patient, or for a β-lactam with limited penetration
into the lung.
In addition, although rarely considered clinically at this
time, different targets may be used to suppress emergence
of resistance, to attenuate selective pressure or to success-
fully kill pathogens which have already acquired certain
resistance mechanisms (mutant population). Clinical cure
was higher when concentrations of β-lactams were main-
tained above the MIC for extended periods (fT>MIC
≥75–100%) [17, 18], and several studies have identified the
time above four times the MIC (fT>4xMIC) as a target for
achieving maximal bactericidal activity and microbiologic-
al success [15, 19–21], taking into account of reduced anti-
biotic penetration in infected tissues. Although the optimal
PK/PD target is still a matter of debate [22], recent clin-
ical studies have shown that extending β-lactam exposure
to more than 50% of the dosing interval is associated with
improved outcome in critically ill patients with severe in-
fections [7, 18, 23–25]. Limitations of these studies include
the lack of data on actual MICs of the causative pathogen
(a “worst-case scenario” was used in many instances), on
drug concentration at the site of infection, on free (non-
protein-bound) drug concentrations (only free drug is mi-
crobiological active [14, 26], and free drug concentrations
are often derived from published protein binding values
[24]), and the inclusion of patients with concomitant (act-
ive) antibiotic treatment.
In summary, the magnitude of PK/PD indices required for
clinical efficacy is still controversial and may vary ac-
cording to the severity and site of infection. Conservative
targets such as 50% fT>MIC are probably sufficient when
treating less severe infections with a removable focus (e.g.
catheter-related or urinary tract infection), whereas in-
creased drug exposure (100% fT>MIC or 100% fT>4xMIC)
may be needed for treatment of serious infections, which
often involve resistant organisms with a high bacterial load
(e.g. hospital-acquired pulmonary infections) and/or lim-
ited penetration of β-lactams into the site of infection [19,
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20, 27]. When interpreting studies on pharmacology of β-
lactam antibiotics, it is important to realise that PK/PD en-
dpoints vary considerably between studies, including sig-
nificant differences in the definition of target/theoretical
MICs (as exact MICs are rarely measured and reported).
As a consequence, these studies often report “worst-case”
scenarios from a pharmacological perspective, and correla-
tion with clinical outcomes is clearly desirable.

Pathophysiological alterations that
may influence β-lactam
pharmacokinetics

Interpatient variability in drug exposure is considerable
when administering β-lactams at a fixed dose and time in-
terval. The PK of antibiotics is complex in hospitalised pa-
tients, particularly in critically ill and obese patients, and
is inadequately explained by traditional patient factors such
as age, gender, disease severity or glomerular filtration rate.
Two parameters markedly influence β-lactam exposure in
critically ill patients (fig. 2): altered renal function and an
increased volume of distribution [28].

Figure 2

Pathophysiological alterations in critically-ill patients and their
predicted influence on β-lactam pharmacokinetics.
Vd = volume of distribution.

Changes of volume of distribution

Target site distribution
Endothelial dysfunction with increased vascular permeab-
ility secondary to a systemic inflammatory response and/
or direct endothelial damage is a hallmark of critically ill
patients, particularly in patients with severe inflammatory
conditions (e.g. pancreatitis, burn injuries) and septic shock
[29]. Capillary leakage results in fluid extravasation in-
to the interstitial space and systemic hypotension [30]. In
response, large amounts of intravenous fluids are admin-
istered. As a consequence, the volume of distribution of
some drugs may increase substantially within a short peri-
od of time (within hours to a few days) [31]. The presen-
ce of mechanical ventilation, extracorporeal circuits, sur-
gical drains and hypoalbuminaemia may further expand
the volume of distribution in critically ill patients [28].
For hydrophilic drugs such as β-lactam antibiotics, volume
of distribution is heavily influenced by extracellular water
volume and hence may increase several-fold in critically
ill patients [27, 32]. In addition, observed interpatient vari-
ability is substantial compared with healthy individuals
[27]. Drug concentrations may be considerably lower in the
early period of critical illness before stable serum concen-
trations are reached.

Hypoalbuminaemia
Hypoalbuminaemia, defined as a serum albumin concen-
tration <25 g/l, is present in 40–50% of critically ill patients
[33], and has two prominent effects on the PK of β-lactam
antibiotics [34]. Firstly, it increases the concentration of
unbound antibiotic, which in turn is available for distribu-
tion and renal clearance. Secondly, it increases the volume
of distribution of β-lactam antibiotics by augmenting fluid
shifts into the interstitial space. This is particularly relevant
for highly protein bound β-lactam antibiotics such as fluc-
loxacillin, ertapenem and ceftriaxone [34, 35]. While hy-
poalbuminaemia may temporarily result in higher concen-
trations of highly protein bound β-lactam antibiotics, a re-
duced fT>MIC will eventually result as a consequence of an
increased dilution and drug clearance [34].

Table 1: Pharmacokinetic/pharmacodynamic properties of selected antibiotics that correlate with efficacy.

Pharmacodynamic kill characteristics
Time dependent Concentration dependent Concentration dependent with time

dependence
Antibiotic Penicillins

Cephalosporins
Carbapenems
Linezolid
Clarithromycin
Clindamycin

Aminoglycosides
Metronidazole
Daptomycin
Fluoroquinolones

Fluoroquinolones
Azithromycin
Glycopeptides
Tetracyclines
Tigecycline
Linezolid
Aminoglycosides

Optimal PK/PD index (and target
examples for selected drugs)

T>MIC

e.g. 40–100% T>MIC for β-lactams
Cmax:MIC
e.g. Cmax:MIC 8–10 for aminoglycosides

AUC0–24:MIC
e.g. AUC0–24:MIC ≥400 for vancomycin

Objective Maximise duration of exposure Maximise concentration Maximise amount of drug exposure

Measures Frequent administration or prolonged
infusion dosing

Infrequent (once daily) administration of
high doses

Administration of a high total daily dose

MIC = minimal inhibitory concentration; PK/PD = pharmacokinetics/pharmacodynamics; AUC0-24:MIC = the ratio of the area under the concentration time curve during a
24-hour period to MIC; Cmax:MIC = the ratio of the maximum plasma concentration to MIC; T>MIC = time that the drug concentration is above the MIC;
Note: For some antibiotics therapeutic efficacy may be correlated with more than one pharmacokinetic/pharmacodynamic parameter (e.g. aminoglycosides or
fluoroquinolones).
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Changes of drug clearance

Augmented renal clearance
In contrast to the commonly perceived risk of overdosing,
the presence of altered renal function actually exposes ICU
patients to significant underdosing, particularly in two set-
tings. Firstly, systemic inflammation, increased cardiac
output, fluid resuscitation and administration of
vasopressors may result in increased renal perfusion and
subsequently increased renal clearance. Augmented renal
clearance is defined as enhanced elimination of solutes (in-
cluding β-lactam antibiotics) or, more specifically, as a cre-
atinine clearance of ≥130 ml/min [36]. Risk factors for the
phenomenon include younger age, sepsis, trauma, febrile
neutropenia, burn injury and cystic fibrosis [36]. Recent
studies reported the presence of augmented renal clearance
on at least one day in up to 50–60% of critically ill patients
during their ICU stay [37, 38]. Consequently, β-lactam ex-
posure is markedly reduced in these patients and aggressive
PK/PD targets such as 100% fT>MIC or 100% fT>4xMIC may
not be achieved in a considerable proportion of critically ill
patients [6, 39, 40].
Similarly, moderate to severe renal failure may put ICU pa-
tients at risk for underdosing, in particular in the early treat-
ment period. Clinicians may choose inappropriately low
β-lactam doses secondary to the inappropriate use of for-
mulas for estimating renal function [41], fear of overdos-
ing and side effects, and limited acknowledgement of rapid
changes in volume of distribution (e.g. during fluid resus-
citation).

Renal replacement therapy
Renal replacement therapy prescribed for acute kidney in-
jury increases the complexity of antibiotic dosing owing to
variability in the mode of renal replacement therapy and in
its differential effect on β-lactam antibiotics. Consequently,
both inadequate and (infrequently) excessive β-lactam drug
exposures have been documented in this setting with ad-
justed and standard doses, highlighting the current lack of
knowledge of how to dose during renal replacement ther-
apy in this situation.

Pharmacokinetic/pharmacodynamic
target attainment in ICU patients

The prevalence of subtherapeutic β-lactam concentrations
and inadequate drug exposure was explored in a recent
large, multicentre study [7]. Plasma concentrations at 50
and 100% of the dosing interval were determined once for
eight different β-lactam antibiotics in 361 patients from
68 hospitals. The key results of this analysis included the
presence of an extreme variability in free β-lactam concen-
trations (up to 500-fold) and nonachievement of the most
conservative (50% fT>MIC) and the most aggressive (100%
fT>4xMIC) PK/PD targets in 21% and 75% of patients, re-
spectively. In addition, a significant association of a posit-
ive clinical outcome with increasing antibiotic concentra-
tions at 50 and 100% of the dosing interval was observed.
Of note, increasing creatinine clearance and use of inter-
mittent bolus dosing emerged as significant risk factors for
target nonattainment in this study [42].

To make the situation even more complex, intraindividual
serum concentrations vary considerably over time [43] and,
furthermore, plasma concentrations may not necessarily
correspond to concentrations measured at the infection site.
This is particularly true for many β-lactams in the case of
pulmonary infections [44, 45], the most common site of
severe infection [46]. Penetration into pulmonary epithelial
lining fluid ranges from 20–25% in the case of ceftazidime
[47] and ceftobiprole [48] to 50% for piperacillin [44, 49]
and 100% for cefepime [50]. Interpretation of these values
is hampered by the fact that significant variability in lung
penetration of the same antibiotic has been documented (up
to 100%) [44, 51] and because the effect of the local im-
mune system is not considered. In addition, PK/PD targets
of different β-lactam antibiotics may vary, which has not
been assessed in detail in clinical studies.

Prolonged infusion of β-lactam
antibiotics – PK/PD target attainment

Modulation of β-lactam dosing is required to address sub-
therapeutic drug exposures in critically ill patients. This
may include increasing the dose, shortening the dosing in-
terval, prolonging the infusion time either for the entire
dosing interval (continuous infusion) or for 40–50% of the
dosing interval (3–4 hours; extended infusion), or a com-
bination of these (fig. 1). In theory, current PK/PD targets
may be attained with all the above dosing strategies, de-
pending on the known/likely MIC. However, disadvantages
of dose escalation include unnecessarily high peak concen-
trations (which may increase the risk of side effects, includ-
ing seizures) and higher costs, the latter also being the case
for more frequent administration. Limited drug stability,
drug-drug incompatibilities or the need for constant avail-
ability of vascular access may present a challenge for im-
plementing continuous infusion dosing. Nevertheless, con-
tinuous infusion dosing has gained widespread popularity
as a promising solution for enhancing the activity of current
β-lactam antibiotics against increasingly resistant (Gram-
negative) bacteria.
The majority of studies have shown that prolonged infusion
dosing of β-lactam antibiotics improves PK/PD target at-
tainment, albeit often using Monte Carlo simulations based
on drug concentration measurements in a limited number
of patients [52, 53]. A unique feature of these simulations is
prediction of target attainment for a chosen dosing strategy
against the distribution of MICs and renal clearance, which
may be used to select the target population that will most
likely benefit from prolonged infusion. For example, Asin-
Prieto et al. demonstrated that standard intermittent bolus
administration of piperacillin/tazobactam (4.5 g eight
hourly) may be sufficient to achieve 100% fT>MIC in pa-
tients with moderate renal impairment up to an MIC of 4
mg/l (which is the case for the majority of Enterobacteri-
aceae in Europe), whereas extended or even continuous
infusions are required for treating organisms with higher
MICs or in patients with augmented renal clearance [54].
This was illustrated by Udy et al., who found target nonat-
tainment (100% fT>MIC) for intermittent bolus dosing in the
majority of patients with a creatinine clearance >90 ml/min
when targeting an MIC of at least 8 mg/l [40].

Review article: Biomedical intelligence Swiss Med Wkly. 2016;146:w14368

Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 4 of 13



However, desirable PK/PD targets may not be achieved
even with the use of extended infusion dosing in patients
with augmented renal clearance [55] or resistant organisms
[56], as highlighted by Carlier et al. [57], who reported that
55% of patients on extended infusion did not achieve 100%
fT>MIC, when targeting the MIC susceptibility breakpoints
for piperacillin/tazobactam and meropenem. Furthermore,
100% fT>MIC was achieved in only approximately 70% of
febrile neutropenic patients on extended infusion dosing
of piperacillin/tazobactam [58]. In this setting – augmen-
ted renal clearance and high MICs – continuous infusion is
more likely than extended infusion dosing to achieve PK/
PD targets of β-lactam antibiotics [54, 59].
There is a paucity of data regarding the effect of prolonged
infusion dosing on resistance development. In theory,
altered dosing schemes may result in drug concentrations
that lie in the mutant selection window (the concentration
range between the MIC and the mutant prevention concen-
tration) for a longer period of time than with intermittent
bolus dosing. Clinical studies have suggested a neutral ef-
fect of optimised piperacillin dosing with respect to resist-
ance development [60], and a recent in vitro hollow-fibre
infection model with Pseudomonas aeruginosa suggested
similar rates of resistance emergence when comparing in-
termittent bolus with extended infusion dosing. However,
achievement of higher trough concentrations seems to be
required in the case of extended infusion versus intermit-
tent bolus dosing for suppression of resistance (trough con-
centration [Cmin] / MIC of 10.4 vs 3.4, respectively) [61].

Prolonged infusion of β-lactam
antibiotics – clinical outcome data

A number of observational and randomised controlled tri-
als have compared prolonged infusion with intermittent
bolus dosing of β-lactams in different patient populations.
Overall, two recent meta-analyses have documented a mor-
tality benefit favouring prolonged infusion over intermit-
tent bolus dosing [60, 62], but with conflicting results in
terms of clinical cure and with a lack of mortality benefit
when the analysis was restricted to meropenem treatment
only [60, 62]. The observed reduction in all-cause mortality
was mainly driven by results from observational trials,
whereas a mortality benefit was lacking if only data from
randomised controlled trials were included [62, 63]. Ad-
verse events were similar. Inclusion of a homogeneous pa-
tient population that would most likely benefit from op-
timised administration (Gram-negative infections, higher
severity of illness, multi-drug resistant pathogens) in obser-
vational studies may explain the differences observed.
Two major trials of continuous infusion versus intermittent
bolus administration in patients with severe sepsis have
recently been published. In a multicentre, double-blind,
double-dummy placebo-controlled trial, Dulhunty et al.
randomised 443 patients with severe sepsis to continuous
infusion or intermittent bolus dosing of β-lactam antibiot-
ics, of whom 432 were analysed [64]. This trial failed to
demonstrate any benefit of continuous infusion over inter-
mittent bolus administration with regards to all endpoints
analysed, including 90-day all-cause mortality and clinical
cure after 14 days after antibiotic cessation. Several limit-

ations of this study need to be acknowledged. Firstly, 26%
of the patients were on renal replacement therapy, which
is associated with a reduced likelihood of subtherapeut-
ic β-lactam concentrations in patients on intermittent bol-
us dosing compared with patients not on renal replacement
therapy [65]. Secondly, patients were receiving continuous
infusion treatment on average for only 3.2 days, a dura-
tion that may have been too short to test for a signific-
ant difference between the treatment groups. Thirdly, caus-
ative organisms were identified in less than 20% (only
bloodstream isolates were reported) without exact MIC de-
termination, and therapeutic drug monitoring was not per-
formed. Hence, achievement of therapeutic concentrations
could not be verified. This is of importance, as even some
patients on continuous infusion therapy may not achieve
sufficient drug levels [24], and as therapeutic drug monit-
oring results may have provided explanations for the ob-
served lack of benefit. For example, attainment of thera-
peutic concentrations may have been the same in both
groups or only slightly different (without clinical relev-
ance), given that most cases of severe sepsis in the study
region are caused by susceptible pathogens with low MICs
[66]. Lastly, combination treatment was utilised in a sub-
stantial number of participants (continuous infusion vs in-
termittent bolus dosing: aminoglycoside use in 11 and
15%, quinolone use in 9 and 14%, glycopeptide use in 36
and 31%, respectively), which might have obscured any
treatment effect.
The second study by Abdul-Aziz et al. [67] was an open-
label, randomised controlled trial of continuous infusion
versus intermittent bolus dosing of β-lactam antibiotics in
140 patients with severe sepsis in two ICUs in Malaysia.
Clinical cure at 14 days after cessation of antibiotic treat-
ment was higher in the continuous infusion group (56% vs
34%, p = 0.011), particularly in patients receiving pipera-
cillin/tazobactam, without concomitant antibiotic treatment
and with pulmonary infection. Survival and ICU-free days
were similar. Importantly, this study also demonstrated that
PK/PD target attainment (albeit using surrogate MICs) was
higher for continuous infusion patients, particularly when
the more aggressive target (100% fT>MIC) was analysed.
Limitations of this study include the open-label design, a
larger antibiotic dose on day 1 in the continuous infusion
arm (due to administration of a loading dose in this group
only), concomitant antibiotic therapy in 47% of patients
and a lack of exact MIC determination. Major differences
from the first study are a longer treatment duration (median
7, interquartile range [IQR] 5–9 days vs 3, IQR 2–6 days),
exclusion of patients on renal replacement therapy, infre-
quent use of Gram-negative combination therapy (6% vs
>15%) and more frequent isolation of causative pathogens
(74% vs 20%) with a higher incidence of difficult to treat
Gram-negative organisms (41% vs <10% of isolates were
Acinetobacter baumannii or P. aeruginosa).
A more recently published meta-analysis of individual pa-
tient data (n = 632 patients with severe sepsis) [68] in-
cluded both randomised controlled trials mentioned above
plus a previous pilot study of continuous infusion versus
intermittent bolus dosing of β-lactam antibiotics in patients
with severe sepsis [24]. In this analysis, continuous in-
fusion was superior to intermittent bolus dosing with re-
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spect to 30-day in-hospital mortality (odds ratio 0.62, p =
0.03), but not with respect to clinical cure, ICU-free days
at Day 28 and ICU mortality. The impact of continuous in-
fusion was more evident in patients with higher APACHE
II scores, not on renal replacement therapy and treated
with piperacillin/tazobactam (APACHE: acute physiology
and chronic health evaluation). Similar high-quality ran-
domised controlled trials of extended infusion dosing of β-
lactams and comparing continuous infusion with extended
infusion dosing in severe sepsis patients are lacking.

The future: personalised medicine
including improved dosing strategies,
therapeutic drug monitoring and rapid
MIC determination

What are the lessons learned from these real-world studies?
Firstly, a one-size-fits-all approach (which failed so many
times in sepsis trials in the last three decades [5]) to dosing
of β-lactam antibiotics in a heterogeneous population irre-
spective of disease severity, causative organism, infection
site and requirement for renal replacement therapy is not
necessarily successful in improving patient outcomes. Se-
condly, a definitive randomised controlled trial is clearly
desirable to quantify any effects of prolonged infusion dos-
ing of β-lactams on patient-centred outcomes. Thirdly, to
move the field forward, a more holistic and personalised

Figure 3

(A) Algorithm for personalised β-lactam dose optimisation in
critically-ill patients. (B) Calculation of meropenem dose for
empirical and definitive treatment of severe pulmonary sepsis
caused by P. aeruginosa in a neutropenic fever patient (38 years
old, 70 kg). The following parameters are assumed for this
hypothetical calculation: presumed MIC for P. aeruginosa ≤16 mg/L
(local surveillance data), calculated creatinine clearance of 100 ml/
min, treatment with vasoactive agents. Based on concept from Choi
et al. [85].
GFR = glomerular filtration rate; MIC = minimal inhibitory
concentration; PK/PD = pharmacokinetics/pharmacodynamics;
fT>MIC = time that the free drug concentration is above the MIC;
TDM = therapeutic drug monitoring; Vd = volume of distribution

approach should ideally be assessed, in analogy to the suc-
cessfully established bundled approaches in infection pre-
vention [69].
A bundled approach for dose personalisation of β-lactams
might include the following (fig. 3A). After diagnosis of an
infection and selection of the most appropriate antibiotic,
the first loading dose and subsequent 24-hour total dose for
continuous infusion of the chosen empirical β-lactam regi-
men should be estimated. The use of a loading dose is ad-
vocated to rapidly achieve therapeutic concentrations at the
site of infection [70]. The main determinants for estimat-
ing the dosing on the first day are the volume of distribu-
tion, serum protein concentration and the presumed MIC
of the causative pathogen (derived from local MIC surveil-
lance data) [71]. Consequently, normograms derived from
similar critically ill patients and taking into account para-
meters such as age, sex, weight, renal function, presence of
extracorporeal support, volume of distribution and albumin
concentration are paramount in order to select an appropri-
ate loading dose and initial 24-hour total dose [59, 72]. This
may include different targets for different patient groups
and/or sites of infection, as MIC distributions and need for
more aggressive targets may vary accordingly (e.g. neut-
ropenic fever vs community-acquired sepsis vs ventilator-
associated pneumonia) [73, 74]. Essentially, this corres-
ponds to the development of standardised clinical pathways
for selection of empirical doses for patients at risk for un-
derdosing of β-lactams [75].
During the first dosing interval of the continuous infusion,
one or more blood samples for therapeutic drug monitoring
should be drawn. Ideally, turn-around should be quick with
the unbound (microbiologically active [76]) drug concen-
tration results being available within the dosing interval for
the drug, so that the can be dose adjusted at the time of the
next dose. Therapeutic drug monitoring is an integral part
of this approach, as classical patient variables such as renal
function or age poorly predict serum β-lactam concentra-
tions and hence much of the variance in concentrations ob-
served remains unexplained [77].
Subsequently, a personalised dosing recommendation for
the next dosing interval may be generated using antibiotic
dosing software (fig. 3B). These software tools use either
Bayesian forecasting with embedded population PK mod-
els or nonlinear regression. Both approaches can incorpor-
ate patient parameters, dosing history, drug concentration
and even site of infection (assuming differential penetra-
tion of different β-lactams) [28, 78]. Importantly, the first
dose adaptation should ideally occur within 24 hours after
start of empirical therapy to ensure rapid achievement of
therapeutic antibiotic exposure. Although the therapeutic
window for β-lactams is broad, dosing recommendations
should also consider dose reductions, at least for certain an-
tibiotics and clinical scenarios (e.g. cefepime in patients at
risk for neurotoxicity [79, 80]). As intraindividual β-lactam
concentrations may vary over time in critically ill patients
[43], daily therapeutic drug monitoring with adaptive feed-
back may be required until the patient is stable, in particu-
lar after new interventions including major surgery and in-
troduction of extracorporeal circuits [71]. However, at this
point, additional parameters, such as susceptibility data of
the causative pathogen (if isolated) and the need for ex-
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tracorporeal support, should be taken into account. In this
regard, rapid and exact (as opposed to imputed) determin-
ation of the MIC is important to enable verification of PK/
PD target attainment. Alternatively, a “worst-case” scen-
ario may be applied assuming that the MIC for a particular
organism is equal to either the MIC90 (concentration that
inhibits 90% of pathogens) or the susceptibility breakpoint
of the antibiotic used [58], which may lead to a higher tar-
get dose than necessary for more susceptible pathogens.
Using this holistic approach, an evidence-based and per-
sonalised dosing regimen may be generated for each in-
dividual patient. In our opinion, evaluation of a bundled
approach in future prospective clinical studies (in a selec-
ted target population) is more promising than investigating
single interventions (such as investigating only therapeutic
drug monitoring with or without additional population PK
models or only optimised β-lactam administration). Fur-
thermore, comparing a bundled approach to intermittent
bolus dosing without therapeutic drug monitoring in a clin-
ical trial is ethically justifiable, as this standard approach
is still used in the majority of hospitals worldwide [7, 81,
82], although some hospitals that already use therapeut-
ic drug monitoring and/or prolonged infusion dosing may
have ethical concerns with regards to clinical equipoise of
the two approaches. In fact, in a recent survey of 328 hos-
pitals in 53 countries, therapeutic drug monitoring and ex-
tended infusion dosing of β-lactams was utilised in less
than 5 and 30% of all ICUs, respectively [83].
Results from several clinical studies have proven that
therapeutic drug monitoring with real-time feedback and
dose adjustment is feasible and successful with regards to
optimising target attainment [58, 65, 84]. In a pilot-study,
therapeutic drug monitoring with subsequent dose adjust-
ment was applied in 236 ICU patients [65], of whom 50%
required a dose increase after the first measurement. In a
second study, Sime et al. [58] randomised 32 febrile neut-
ropenia patients to therapeutic drug monitoring with imme-
diate dose adjustment during the first 3 days or to standard
care. This study is notable, as many elements of the out-
lined holistic approach were implemented, including pro-
longed infusion dosing, therapeutic drug monitoring with
real-time dose adaptation and, if possible, incorporation
of the exact MIC of the pathogen. Patients initially re-
ceived intermittent bolus dosing of piperacillin/tazobactam
at standard doses (4.5 g eight hourly), which yielded a low
target attainment (target was 100% fT>MIC) of 19% (inter-
vention) and 25% (control) after 24 hours. After dose op-
timisation (including extended infusion dosing and more
frequent administration), day 2 trough levels and target at-
tainment were significantly increased in the intervention
group (69% vs 19%, p = 0.012) with similar effects on day
3. Clinical outcomes were not different in this feasibility
study.
There is a need for prospective randomised controlled trials
that compare the benefit of a personalised approach in se-
lected critically ill patients with standard of care. In the
meantime, hospitals may apply selected interventions of
the outlined bundled approach in patient populations with
unpredictable PK or with difficult-to-treat infections. Im-
plementation of extended infusion dosing of β-lactam anti-
biotics may be feasible in many settings without much ef-

fort and additional costs. Introducing continuous infusion
dosing is certainly more challenging as several important
issues and practicalities need to be considered. Regarding
therapeutic drug monitoring, costs, including infrastruc-
ture, staff and the assay itself, may certainly be an issue for
many hospitals.

Conclusion

Universal administration of β-lactams via prolonged infu-
sion dosing is not yet ready for “prime time”, as evidence
for its potential benefit is modest and indirect. Importantly,
reasonable PK/PD targets may be achieved with standard
intermittent bolus dosing in many patients with less severe
disease and infections caused by susceptible organisms.
Today, few strategies are left to successfully treat resistant
organisms and hence we argue that prolonged infusion ad-
ministration should be considered in the sickest patients at
risk for infections with less susceptible organisms and a
high bacterial load – ideally in combination with therapeut-
ic drug monitoring and real-time dose adaptation. Future
studies should clarify the role of such a combined approach
for the treatment of severe infections.
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Figures (large format)

Figure 1

Differences in the time that β-lactam concentrations exceed the MIC (fT>MIC) of two different pathogens (MIC of 0.125 mg/l and 8 mg/l,
respectively) according to the mode of β-lactam administration. (A) Intermittent bolus administration. (B) Extended infusion (blue line) and
continuous infusion (red line).
IB = intermittent bolus administration; MIC = minimal inhibitory concentration; fT>MIC = time that the free drug concentration is above the MIC

Review article: Biomedical intelligence Swiss Med Wkly. 2016;146:w14368

Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 11 of 13



Figure 2

Pathophysiological alterations in critically-ill patients and their predicted influence on β-lactam pharmacokinetics.
Vd = volume of distribution.
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Figure 3

(A) Algorithm for personalised β-lactam dose optimisation in critically-ill patients. (B) Calculation of meropenem dose for empirical and definitive
treatment of severe pulmonary sepsis caused by P. aeruginosa in a neutropenic fever patient (38 years old, 70 kg). The following parameters
are assumed for this hypothetical calculation: presumed MIC for P. aeruginosa ≤16 mg/L (local surveillance data), calculated creatinine
clearance of 100 ml/min, treatment with vasoactive agents. Based on concept from Choi et al. [85].
GFR = glomerular filtration rate; MIC = minimal inhibitory concentration; PK/PD = pharmacokinetics/pharmacodynamics; fT>MIC = time that the
free drug concentration is above the MIC; TDM = therapeutic drug monitoring; Vd = volume of distribution
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