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Abstract

Recent times have seen increasing attention on representing images and videos on Riemannian

manifolds. Such representations offer new means of preserving intrinsic data structures, which

Euclidean-based representations often fail to capture. Preserving the intrinsic structure can bring

superior benefits in terms of richer representations and robustness to variations. However, to intrinsi-

cally operate on the manifold incurs expensive computation complexity because of using non-linear

operators. Furthermore, it is difficult to extend the existing computer vision techniques which were

originally developed in Euclidean space into the manifold. To address these issues, recent research

often uses extrinsic approaches such as tangent space projection and kernelised approaches. Unfor-

tunately, these methods are not free of drawbacks in terms of low accuracy and high computational

load. To that end, this research studies approaches for analysing manifold features which achieve su-

perior performance from the manifold structures whilst computational complexity can be massively

reduced. This thesis illustrates the general steps of manifold approaches for image and video analysis,

here called manifold scheme, followed by discussions on the possible ways to reduce the computa-

tional complexities. Guided by the manifold scheme, this research further proposes two frameworks

to analyse manifold features: random projection on Riemannian manifolds and convex hull on Sym-

metric Positive Definite manifolds. To solve the problems posed by each framework, we present three

solutions. Through experiments on several computer vision tasks, we verified that our proposed meth-

ods can massively reduce the computational load, while still achieving competitive performance. In

addition, our manifold scheme shows another possible way to reduce the computational load of man-

ifold approaches through the generating manifold model using effective lower-level features with low

dimensionality. Thus, this thesis proposes a landmark manifold model generated by effective land-

mark points for facial emotion recognition, which shows competitive performance with much lower

computational complexity compared to state-of-the-art manifold methods.
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Chapter 1

Introduction

Learn from yesterday, live for today, hope

for tomorrow. The important thing is not to

stop questioning.

Albert Einstein

Chapter Summary: There has been an increasing interest in representing images and

videos with the consideration of their critical natural structures that usually lie on the

manifold. Unfortunately, current manifold approaches in computer vision suffer from

some drawbacks in terms of accuracy loss and computational burden. Exploiting fast

and accurate approaches to process the data lying in the manifold, will benefit various

computer vision applications.

1.1 Overview

Discriminative representations that capture the critical structure of data form the basis of many algo-

rithms in computer vision. In recent years, reformulating vision data (images/videos) over Rieman-

nian manifolds has been growing in importance due to its effectiveness in various computer vision

applications. In this thesis, we look into efficient manifold approaches for image and video analysis.

This chapter first gives a brief introduction to the manifold. Then we introduce our research problem

and its significance. Furthermore, the research questions and objectives are illustrated in this chapter.

Finally, the contributions and thesis outline are summarised.

1.2 Introduction to Manifolds

The computer vision community has witnessed increasing interest in embedding the manifold geom-

etry in the development of vision frameworks. This is mainly due to the fact that despite the large

size of vision data (images and videos), the critical structure of the data actually lies on much lower-
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dimensional manifolds [124]. Finding the low-dimensional structure can massively simplify these

high-dimensional vision data and avoid the curse of dimensionality [41].

The manifold is a low-dimensional space embedded in a higher Euclidean space [138]. For exam-

ple, given a set of face images of one person taken with a moving camera under the same conditions,

one could represent each face image using n×m pixel values, resulting in a data point in Rnm. How-

ever, the intrinsic dimensionality of this image set space is simply the number of different orientations

of the camera. Thus, the intrinsic structure of this image set actually is a curve embedded in Rnm. The

curve is an example of a one-dimensional manifold. If other conditions such as lighting and scaling,

are also changing, the intrinsic dimensionality of the set of images would increase. This creates a

d-dimensional manifold structure embedded in Rnm, where d� nm. [124].

The manifold structure has been successfully utilised in the manifold learning area, which focuses

on non-linear dimensionality reduction techniques that seek a low dimensional representation of a set

of high-dimensional points [45, 93]. They assume that the structure of the underlying manifold is

unknown. Contrary to this, recently, manifold approaches that assume that the underlying geometry

is known have attracted increasing interests in the computer vision community [27, 109, 114, 144].

This thesis focuses on this latter research that is based on the known manifold geometry.

In the context of manifold with known geometry, the vision data is represented by matrices, which

are usually informative, robust to affine transformations and illumination changes [114, 144]. There-

fore, a variety of computer vision applications have enjoyed tremendous success by the use of man-

ifold features (e.g., dynamic textures [27], human action recognition [56], face recognition [109],

visual tracking [114] and pedestrian detection [144]). Furthermore, the application of manifold fea-

tures is not limited to computer vision. For instance, other areas such as speech recognition [164] and

Magnetic Resonance Imaging (MRI) [88] are also found to benefit from manifold features.

1.3 Research Problem and Significance

One of the key properties of the manifold is its non-linearity. The distances between data points are not

straight lines, but a curved geodesic. Thus, even the simplest Euclidean operations such as addition

and subtraction are may not be valid in the manifold. To develop the statistical tools, the manifold

is usually endowed with a Riemannian metric in its tangent space, which leads to the concept of

Riemannian manifolds [111]. The Riemannian metric enables one to define the geometric concepts

such as distances and angles. Riemannian manifold approaches have been proven to have superior

accuracy in computer vision [109, 114, 144]. When it comes to the practical applications, where huge

amounts of visual data such as videos and images are uploaded every second [21], it is a necessity to

make the manifold approaches possess low computational complexities.

Unfortunately, the computations of the Riemannian metric tend to be extremely high, especially

when the manifold dimensionality is large. Also, since the Riemannian metric only operates in a

tangent space, often methods employing the metric require multiple iterations to compute their solu-

tions. One such example is a method to compute mean of a distribution of points. Obviously, this
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further increases computational load. Furthermore, since the Riemannian manifolds is not a Euclidean

space in general, many popular Euclidean-based learning algorithms including Support Vector Ma-

chines (SVM), Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) cannot

be applied directly on the Riemannian manifolds.

Some existing proposals address these issues either by flattening the manifold structure by pro-

jecting the manifold points onto a tangent space [166], or by embedding the manifold points onto the

Reproducing Kernel Hilbert Space (RKHS) and then using the kernelised learning algorithms [76].

Here, we call this group of methods as extrinsic methods.

However, manifold topological structure will be distorted when projecting manifold points to a

tangent space, as only the distances between the origin of the tangent space and other points are well

preserved. Alternatively, learning algorithms in RKHS usually can achieve superior performance,

however, they are generally computationally demanding especially when the cardinality of the data is

extremely large. Therefore, when developing the mapping function for extrinsic methods, it is critical

to find a projection space that can preserve manifold structure, but avoid the use of kernelised learning

algorithms. This provides a direction to develop more efficient manifold approaches.

One popular machine learning approach to process manifold data is the Geodesic Nearest Neigh-

bour due to its simplicity. In principal, the Geodesic Nearest Neighbour is fairly similar to the Near-

est Neighbour method in Euclidean space. Despite its simplicity and efficacy, the Geodesic Nearest

Neighbour is suffered from issues faced by the Euclidean Nearest Neighbour. In general, Nearest

Neighbour approaches are sensitive to noise and more inferior to the other more complex approaches

such as the Support Vector Machine and nearest convex-hull approach [115]. Thus, if one could

generalise the advanced Euclidean-based classifiers to Riemannian manifolds, the performance of the

Geodesic Nearest Neighbour would be improved. However, it is vital to devise efficient solutions to

the manifold classifiers, as high computational complexities will make the classifiers impractical to

use.

Additionally, to represent the vision data as a point in a manifold, one usually computes the

covariance matrix or the singular value decomposition of a group of lower-level features. We note

that, to obtain superior performance, previous work tends to use high-dimensional lower-level features

to generate the manifold points. For example, computing the covariance matrices of the Histogram

of Oriented Gradients (HOG) features of video frames [97] results in high-dimensional manifold

representations. However, the computational complexity of the manifold approaches is highly related

to the dimensionality of the manifold. Currently, it is still challenging to find more effective lower-

level features with low dimensionality to generate the manifold points.

Without suitable solutions, the computational issues will hinder the applications of Riemannian

manifold approaches for computer vision applications which demand real-time performance. Conse-

quently, this thesis focuses on the research questions listed in the following section. We believe that

solving these research questions will fuel the application of manifold approaches in computer vision.
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1.3.1 Research Questions

In the light of previous discussions, we list the research questions as follows:

Q1: Is it possible to devise an extrinsic mapping function that projects manifold data points into a

Euclidean space wherein computational complexity is considerably reduced? If so, can the manifold

structure be well-preserved in the newly created space produced by such a mapping function?

Q2: Is it possible to improve the performance and computational time of the Geodesic Nearest

Neighbour by utilising intrinsic classifiers on manifolds?

Q3: Can we reduce the dimensionality of the manifold points by finding discriminative lower-level

features with low dimensionality to generate the manifold model?

1.3.2 Aim and Objectives

The main aim of this thesis is to develop fast and accurate Riemannian manifold approaches for image

and video analysis. The specific objectives of this thesis are listed as follows:

• Formulate a mapping function for the manifold valued data: this mapping function should

project manifold points onto a Euclidean space wherein the computational complexity is con-

siderably reduced and similar performance to the state-of-the-art kernelised learning algorithms

can be achieved.

• Formulate classifiers on manifolds to improve the performance of the Geodesic Nearest Neigh-

bour by use of the intrinsic manifold structures, and providing solutions to reduce the compu-

tational complexities of this formulation.

• Find effective lower-level features with low dimensionality to generate the manifold repre-

sentations for the specific computer vision application. This will produce a low-dimensional

manifold and in turn lead to low computational load.

1.4 Contributions

This thesis provides a number of significant contributions. We present the general steps of manifold

approaches for image and video analysis, here called manifold scheme. Based on this scheme, we

discuss several possible ways to reduce the computational cost without obvious accuracy loss when

analysing the manifold features. There are three main components contributing to this discussion:

• Component-1: Developing geometric-aware mapping functions for extrinsic methods;

• Component-2: Exploring effective intrinsic methods on manifolds with fast approximated so-

lutions;

• Component-3: Selecting discriminative lower-level features with low dimensionality to produce

the more effective-yet-efficient manifold representations.
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Following the above three components that are in the consideration of reducing the computational

cost of manifold approaches, we furthermore propose two novel frameworks in Chapter 4 and Chap-

ter 5 relating to Component-1 and Component-2. Additionally, in Chapter 6, we propose an efficient

model, called the landmark manifold model, for facial emotion recognition. This work uses the sim-

ple low-dimensional facial landmark locations to generate the manifold representations. This is an

application-specific study for Component-3.

The first framework, called the random projection framework, for clustering purpose, significantly

reduces the computational complexity, but still maintains excellent performance.

The contributions with regards to the random project framework are listed as follows:

• Proposing a kernelised random projection framework, which can map manifold points onto a

Euclidean space. In general, the term projection is not well defined in Riemannian manifolds.

Therefore, we address this via the Reproducing Kernel Hilbert Space (RKHS) constructed from

a small subset of data;

• From our framework, it becomes clear that random hyperplane generation is essential. We first

adapt the random projection method proposed in our previous work [5] to this framework and

rename it as Kernelised Gaussian Random Projection (KGRP). Also, we further develop two

projection hyperplane generation algorithms which also follow in our framework: Kernelised

Orthonormal Random Projection (KORP) and Kernel Principal Component Analysis Random

Projection (KPCA-RP);

• Evaluating our random projection framework on several clustering tasks in computer vision.

It is shown that the random projection framework maintains the excellent performance whilst

massively reducing computational complexity by over two orders of magnitude in some cases.

• As the random projection framework are not restricted to clustering tasks, we additionally eval-

uate the performance on two classification tasks: Action and Gait-based Gender Recognition.

Comparisons with kernelised classifiers show that the proposed random projection framework

achieve nearly 3-fold speed up on average whilst maintaining the accuracy.

The second framework, Manifold Convex Hull (MACH), is a generalisation of the Euclidean nearest

convex hull classifier to the manifold. Specifically, the contributions of this framework are listed as

follows:

• Proposing a novel mathematical framework, here called MACH, to solve classification tasks on

manifolds. Especially, we define the convex combinations and the nearest convex hull distance

over the manifold;

• Proposing a solution to the optimisation problem of the framework, MACH-1, which preserves

the intrinsic manifold structure by the use of Affine Invariant Riemannian Metric (AIRM). To

reduce the computational complexity, two approximated solutions are provided: MACH-2 and

MACH-3;
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• Evaluating the proposed MACH on several computer vision applications, which shows that

MACH significantly outperforms the other intrinsic classifiers and has competitive performance

to the-state-of-the-art methods.

Additionally, we revisit the manifold approaches for emotion recognition. We found that using the

simple landmark locations as features can establish an efficient manifold model for emotion recogni-

tion. The contributions regarding the landmark manifold include:

• Proposing landmark manifold that models the extracted facial landmark points on one sin-

gle Riemannian manifold. The landmark manifold model is computationally efficient, while

achieving competitive performance with the state-of-art manifold methods for facial emotion

recognition;

• Investigating the effects of two popular facial landmark tracking methods on the proposed land-

mark manifold;

• Proposing a fusion method to improve the performance of manifold model based on the esti-

mated landmarks.

1.5 Outline

The reminder of this thesis is as follows. Chapter 2 provides the overview of the background theory

and related works. Chapter 3 illustrates the general steps of Riemannian manifold approaches for

image and video analysis. Also, we discuss some possible ways to reducing the computational load

for Riemannian manifold approaches. Chapter 4 presents the random projection framework followed

by the three hyperplane generation methods. Chapter 5 elaborates the convex hull framework and

provides three optimisation methods to solve the nearest convex hull classification problem. Chap-

ter 6 presents the landmark manifold approach for facial emotion recognition. The three chapters 4, 5

and 6 represent the main work of this thesis and they include the relevant research problem, pro-

posed approaches, relevant experimental results and discussions. The conclusion and possible future

directions are presented in Chapter 7.

Figure 1.1 shows the flow chart that illustrated the connection between the chapters in this thesis.

• Chapter 2: Background Theory and Literature Review. This chapter first provides a brief

introduction of the relevant theory used in this thesis. Specially, it includes the definitions

and explanations of manifold geometry. Also it elaborates the geodesic distances and kernel

functions for two popular types of manifolds- Symmetric Definite Positive manifold and Grass-

mann manifolds. Then, this chapter reviews the current progress of Riemannian manifolds in

computer vision.

• Chapter 3: Manifold Scheme for Image and Video Analysis. This chapter illustrate the gen-

eral steps of manifold approaches for image and video analysis, here called manifold scheme.
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1.Introduction 

2. Background Theory and 

Literature Review

3. Manifold Scheme

4. Random Projection 5. Convex Hull 6. Landmark Manifold

7. Conclusion

Figure 1.1: Flow chart illustrating the connection between the chapters in this thesis.

Based on this scheme, we discuss some possible ways to reduce the computational complexity

when developing the manifold approaches.

• Chapter 4: Random Projection on Riemannian Manifolds. This chapter proposes the ran-

dom projection framework to tackle the high computation complexity problem when perform-

ing image or video analysis on Riemannian manifolds. Specifically, we propose three different

projection generation methods for our framework. Through the evaluation on large data sets,

we demonstrate that our proposed framework massively reduces computational complexity by

over two orders of magnitude in some cases while still maintaining the competitive accuracy.

• Chapter 5: Convex Hull on Symmetric Positive Definite (SPD) Manifolds. In this chapter,

we study the convex hull analysis on SPD manifolds. We formalise a framework for the nearest

convex hull classifier on SPD manifolds. To solve the optimisation problem in our proposed

framework, three different solutions, MACH-1, MACH-2 and MACH-3, are presented. The lat-

ter two solutions are approximated methods that are used to speed up the optimisation process.

The efficiency of our framework is verified by several computer vision applications.

• Chapter 6: Landmark Manifold to Recognize Facial Emotions. In this chapter, we study

the Riemannian manifold approaches for facial emotion recognition. We propose to model the

landmark locations on one single Riemannian manifold, which shows excellent performance
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and low computational complexity compared to the state-of-the-art Riemannian manifold ap-

proaches that use multiple kernel functions and manifold models for facial emotion recognition.

Specifically, we study the landmark manifold in terms of SPD and Grassmann manifold. Also,

we conduct experiments by using two popular landmark estimation methods to evaluate the

effects on the proposed landmark manifold. Finally, a fusion method is proposed to further

improve the performance of the landmark manifold constructed by the estimated landmark lo-

cations.

• Chapter 7: Conclusions and Further Work. This chapter concludes the thesis and also

provides the possible directions for our future work.
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Chapter 2

Background Theory and Literature Review

Look deep into nature, and then

you will understand everything better.

Albert Einstein

Chapter Summary: Understanding the mathematical theory of the manifolds, as well

as the current progress of the manifold approaches in computer vision, allows a more

detailed observation of the components that contribute to the proposed framework.

2.1 Overview

This chapter introduces the background theory and related works that provide the foundation for the

rest of the thesis. First, the concepts of manifolds are presented, followed by the explanation of

the tangent space and Riemannian metrics. Then we introduce two popular types of Riemannian

manifolds in computer vision community: Symmetric Positive Definite manifolds and Grassmann

manifolds. The recent progress in use of Riemannian manifold geometry in computer vision is also

summarised in this chapter.

2.2 The Geometry of Riemannian Manifolds

Intuitively, a manifold,M, is a generalisation of curves and surfaces to higher dimensions [138]. It

is locally Euclidean, where every point has a neighbourhood that is homeomorphic to an open subset

of Rn. For example, the earth can be regarded as a manifold where each location has a flat map (refer

to Figure 2.1). More formally, we can define a topological manifold [138] as follows:

Definition 2.2.1 A topological manifold of dimension n is a second countable Hausdorff space M
for which each point has a neighbourhood homeomorphic to an open set in Rn.

Remarks. The spaceM is a hausdorff space, if for everyX,Y ∈M, there are two open subsets Ui,
Uj ⊆ M with Ui ∩ Uj = ∅ where X ∈ Ui and Y ∈ Uj or there is one open subset Ui ⊆ M where
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Figure 2.1: One example of manifold.

Figure 2.2: Transition maps

X,Y ∈ Ui. If the open subset Ui has a countable subset, then M is second countable. To further

explain the concepts of manifolds, we need to review the following related definitions.

Definition 2.2.2 Chart, Parameterisation. Given a manifoldM in Rn, for two open subsets U ⊆M
and V ⊆ Rn, there is a homeomorphism φ : U 7→ V such that φ(U) = V . The pair (U , φ) is called a

chart onM. The inverse map φ−1 is a parameterisation of U [138].

Remarks. Recall that for every point P ∈ M there is a neighbourhood U ⊆ M and φ(P ) =

(x1(P ), . . . , xn(P )), xi(P ) ∈ V . We call x1(P ), . . . , xn(P ) the local coordinates of P . The coor-

dinates on a chart enable one to apply the Euclidean computations. Intuitively, the chart provides a

flattened local map at one point of the manifold.
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Figure 2.3: Logarithm and exponential mapping

Definition 2.2.3 Atlas, Transition Maps. An atlas on M is a collection of charts f = {(Ui, φi)}
such thatM =

⋃
i Ui. The homeomorphisms φjφ−1i : φi(Ui ∩ Uj) 7→ φj(Ui ∩ Uj) are the transition

maps or coordinate transformations between two charts [138] (Refer to Figure 2.2).

Remarks. If all transition maps on the manifold are C∞ differentiable, which means that the infinite

continuous partial derivatives for all these maps exist, we term it as a smooth manifold. Equipped with

a Riemannian metric endowed on the tangent space, the smooth manifold then becomes a Riemannian

manifold [138].

Definition 2.2.4 Riemannian metric. A Riemannian metric g on a smooth manifold is an inner

product gA : TA(M)× TA(M) 7→ R on each of the tangent spaces TA(M) ofM [138].

Definition 2.2.5 Tangent Space. The tangent space TA(M) is the set of all tangent vectors at the

point A constrained to move on the manifoldM, where a tangent vector is the derivative of a differ-

entiable curve passing through the pointA [138].

Remarks. Illustrated in Figure 2.3, a tangent space TA(M), can be thought as a plane tangent to the

surface of the manifoldM at the point A. Note that the tangent space is a vector space that allows

all of the Euclidean statistical tools. Therefore, through mapping back and forth between M and

TA(M), one can compute the statistics for any arbitrary point A ∈ M. Give a curve γ (t) on the
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manifold, one can compute the instantaneous speed vector ˙γ (t) and proceed by integrating this value

along the curve, then the length of the curve can be computed by [110]:

Lba(γ) =

∫ b

a

|| ˙γ (t)||γ(t)dt . (2.1)

Definition 2.2.6 Geodesic Distance. The geodesic distance from point A to B on the manifold is

the length of the shortest curve between the two points, which can be formulated by the following

equation [110]:

distM(A,B) = min
γ
L(γ), γ(0) = A, γ(1) = B . (2.2)

However, the geodesic distance derived from Riemannian metric are not always available in closed

form, so one can also adopt other distance functions which are available in closed form to compute

the distances. We will show some examples of the distance functions in Section 2.2.1 and Section

2.2.2. As shown in Figure 2.3, the mapping from TA(M) toM is called exponential map. It maps

each vector a to the point of the manifold reached in a unit time [110]:

expA : TA(M) 7→ M, b 7→ expA(b) = γ(A,b)(1) . (2.3)

This function defines a local diffeomorphism from a sufficiently small neighbourhood of 0 in the

tangent space TA(M) into a neighbourhood of the pointA ∈M. The inverse map of expA is called

logarithm map:

logA = exp
(−1)
A :M 7→ TA(M),B 7→ logA(B) , (2.4)

which projects the points from the TA(M) to the manifoldM.

From now on, a manifold in this thesis will refer to a Riemannian manifold. Recently, two man-

ifolds have been used in the computer vision applications. The Symmetric Positive Definite (SPD)

matrices endowed with a Riemannian metric form a SPD manifold (e.g., covariance region descriptors

and diffusion tensors). Linear subspaces of a Euclidean space, which form another type of Rieman-

nian manifold named the Grassmann manifold, are commonly used to model image sets and video

frames.

The statistical analysis of manifold-valued data has been explored by Pennec et al. [10, 110, 111],

Absil et al. [3] and Turaga et al. [139]. In the following sections, we give a brief introduction of some

statistical analysis on SPD and Grassmann manifolds, respectively.

2.2.1 Symmetric Positive Definite Manifolds

The Symmetric Positive Definite (SPD) manifold is one of the most popular Riemannian manifolds

in computer vision. One method to model images/videos onto the SPD manifold is to compute the

covariance matrix of a group of descriptors extracted from the video/image. The covariance matrix

fuses multiple features into one single compact representation that captures the second order statistics

34



Chapter 2. Background Theory and Literature Review

independent of the feature dimensions, and elements represent the correlations between the features.

Also, as the computations of covariance involve subtracting the feature mean, the noise can be filtered

out. When these descriptors are independent, with an appropriate Riemannian metric, the covariance

matrices will induce the SPD manifold structure. In other words, these matrices can be considered as

points on the SPD manifolds.

The geodesic distance between two SPD points is defined as the length of the shortest curve on

the manifold. A widely used distance function is Affine Invariant Riemannian Metric (AIRM) [111]:

dg(X,Y ) = || log(X−
1
2Y X−

1
2 )||F ,X,Y ∈M . (2.5)

We can also use the recently introduced Log-Euclidean (LE) metric [10] and Stein Divergence (SD) [133]

to compute the distance between two points on SPD manifolds:

dLE(X,Y ) = || logX − logY ||F ,X,Y ∈M . (2.6)

dSD(X,Y ) = log

(
det

(
X + Y

2

))
− 1

2
log (det (XY )) . (2.7)

The Gaussian kernel with dLE and then can be respectively formulated by:

KLED(X,Y ) = exp(−β · || log(X)− log(Y )||2F ) (2.8)

and

KSD(X,Y ) = exp(−β · log

(
det

(
X + Y

2

))
− 1

2
log (det (XY ))) . (2.9)

Note that, in order to become a Mercer kernel, the Gaussian kernel with SD requires β to be of the

form: β ∈
{

1
2
, 2
2
, ..., d−1

2

}
. Compared to the distance dg defined in Eqn. (2.5), the computational cost

of dLE defined in Eqn. (2.6) and dSD defined in Eqn. (2.7) is much less. Nevertheless, dg is more

accurate. For further discussions on SPD manifolds, the readers are referred to [10, 110, 111].

2.2.2 Grassmann Manifolds

The Grassmann manifold Gn,d is the set of all the d-dimensional subspaces of the vector space Rn[3].

Each subspace S ∈ Gn,d can be denoted by a matrix in Rn×d whose columns are the orthonormal

subspace basis. The geodesic distance between two Grassmann points can be computed using their

basis principal angles. More specifically, let X , Y be two orthonormal matrices of size n × d. The

principal angles, 0 ≤ θ1 ≤ ... ≤ θm ≤ π/2, between two subspaces span(X) and span(Y ) are

defined recursively in [3] by:

cos θk = max
uk∈span(X)

max
vk∈span(Y )

uk
>vk (2.10)
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subject to

uk
>uk = 1, vk>vk = 1,

uk
>ui = 0, vk>vi = 0, (i = 1, ..., k − 1) .

The principal angles can be computed from the Single Value Decomposition (SVD) ofX>Y [3]:

X>Y = U(cos θ)V > , (2.11)

where cos θ = diag (cos θ1, ..., cos θm). The principal angles are related to the geodesic distance by:

d2G(X,Y ) =
∑
i

θ2i . (2.12)

Projection kernel is one of the most popular kernels used over Grassmann manifolds and has been

shown to have superior performance with low computation complexity [59, 148]. It can be formulated

as:

K(X,Y ) = β · ||X>Y ||2F . (2.13)

We refer readers to [3, 139] for further treatment on Grassmann manifolds.

2.3 Literature Review

The Riemannian manifold geometry has been widely used in various areas of science and engineering.

For example, in 1910s, Albert Einstein developed the general theory of relativity using the Rieman-

nian manifold theory. In the branch of control system design, many theoretic solutions were rooted in

manifold geometry [43, 87, 150]. The employment of Riemannian manifold theory can be also found

in other areas such as speech recognition [164] and Magnetic Resonance Imaging [88].

In computer vision, the Riemannian manifold geometry has been used as an important tool to

explore the solutions in various computer vision applications such as object tracking, face recognition

and action recognition.

One of the most successful applications using SPD manifolds is the region covariance matrices

based object tracking [90, 91, 114, 142, 160]. The covariance matrices are first introduced as the

object descriptors by Tuzel et al. [142]. It has been shown that covariance matrices derived from

appearance silhouettes are robust to affine transformations, illumination changes, and camera param-

eters variations [114, 142]. These enable SPD manifolds to perform well in surveillance applications

that include multi-cameras [143].

In the face recognition application, the use of SPD manifolds was explored in several publications.

Pang et al. [109] represented a face as a set of Gabor features whose covariance matrix was modelled

on SPD manifolds. Wang et al. proposed Covariance Discriminative Learning that projected SPD

points onto the kernel space and then applied Linear Discriminant Analysis (LDA) / Partial Least

Squares (PLS) for the face recognition task [151]. Sirvalingam et al. [130], Harandi et al. [66] and
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Cherian et al. [31] applied sparse decomposition to reformulate a SPD point as a linear combination

of dictionary atoms. There are also some applications such as human cell classification [48], texture

classification [31, 32, 66, 72, 76, 129, 142, 161] and action recognition [2, 32, 56, 57, 64, 148, 167]

that found improved performance by using of SPD manifolds.

Another school of thought is to model videos or image sets as linear subspaces, which lie on an-

other type of Riemannian manifold, the Grassmann manifold. For example, in the face recognition ap-

plication, a set of face images of the same person is represented as linear subspaces [15, 60, 58, 68, 63,

74, 77, 92, 98, 102, 139, 152, 153, 163], which can be regarded as a point on the Grassmann manifold.

Liu et al. proposed a stochastic gradient technique to solve an optimization problem on Grassmann

manifolds for face recognition [98]. Lin et al. derived a maximum effective information criterion for

optimising the projections on Grassmann manifolds for face recognition [92]. Hamm et al. described

kernelised Linear Discriminant Analysis (LDA) with projection and the Binet–Cauchy metric to per-

form the face recognition tasks [60, 58]. Wang et al. explored kernel functions with the geodesic

distance on Grassmann manifolds [152]. Harandi et al. utilised graph embedding on Grassmann

manifolds for face recognition from videos [68]. Jayasumana et al. [77] presented that the kernelised

SVM with projection Gaussian kernel on Grassmann manifolds achieved superior performance than

other Grassmann manifold methods for face recognition such as Grassmann Discriminant Analysis

[60] and Graph-embedding Grassmann Discriminant Analysis [68].

Another popular application that utilized the Grassmann manifold is the action recognition [7,

69, 100, 103, 127, 139, 140, 141, 146]. Turaga et al. modelled human activities by Time-Varying

Linear Dynamic Systems (TV-LDS) [139]. Then each action is represented by a trajectory over

the Grassmann manifold. Harandi et al. [69] proposed to represent the spatio-temporal aspect of

the action by subspaces of a Grassmann manifold. Then, they embedded this manifold into kernel

space to tackle the problem of action classification. More recently, Slama et al. represented the 3D

skeletal sequence as point on the Grassmann manifold and utilised tangent spaces to address the action

recognition task [100]. Similarly, the geometry of Grassmann manifold also were explored in other

computer vision applications such as objection recognition [60, 139, 158], gender classification [61,

65], Hand Gesture Recognition [61, 62].

The above computer vision problems usually fall into two main categories: clustering and classi-

fication. In the following sections, we review the recent manifold methods to tackle the classification

and clustering on manifolds, respectively.

2.3.1 Clustering on Riemannian Manifolds

Clustering analysis is a critical tool for understanding visual data. It is an automated process that

groups unlabelled data into subsets (here called clusters) that may express the underlying structure

of the data [40, 75]. For instance, significant amounts of visual data such as videos and pictures

are uploaded every second [21]. Indeed, this is the case for YouTube where 100 hours of video are

uploaded every minute [1]. Although these videos have titles and some additional meta-information,
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it is often desirable to automatically group the videos in terms of specific criteria such as visual

similarity or detected objects.

Despite the fact that clustering methods have been studied since the 1950s [50, 75], applying such

methods directly on data represented on Riemannian manifolds is not trivial, as Riemannian manifolds

generally do not conform to Euclidean space [111, 139]. To address this, one could use manifold

tangent spaces which are locally homeomorphic to Euclidean space [111]. However, this brings

another challenge to applying existing clustering algorithms as some general algebraic operations are

not well defined [110]. For instance, K-means requires the computation of the mean within a cluster

which cannot be computed directly. To this end, Pennec et al. [110] reformulated the computation

of the mean as a solution to an optimisation problem. Using this formulation, the mean point is

considered as the point over the manifold minimising the geodesic distance (i.e., the true distance on

the manifold between two points) from the mean point to all other points. The algorithm to solve

this problem is called Riemannian centre of mass [80, 110]. Thanks to the Riemannian centre of

mass, Turaga et al. [139] extended the K-means algorithm into the Riemannian manifold, which

is regarded as intrinsic K-means and has been applied to activity-based video clustering. Intrinsic

K-means has further demonstrated better performance than Euclidean-based methods (for example,

Protein Clustering [134]).

We shall categorise these methods as intrinsic methods as discussed in the above paragraph. Gen-

erally, intrinsic methods that completely honour the manifold topology lead to higher accuracy. Un-

fortunately, the computational cost of intrinsic methods is extremely high since these need to map all

of the data to tangent spaces repeatedly.

Extrinsic methods, on the other hand, seek solutions that may not completely consider the mani-

fold topology [48, 49, 65, 76, 78, 166]. The most simplistic way, here called Log Euclidean methods,

is to embed all of the points into a designated tangent space at a particular point [9]. Log Euclidean

methods can be considered as flattening the manifold. This has been used in various computer vision

applications, such as human action recognition [48] and cell classification [166]. This addresses the

computational cost issues suffered by the intrinsic methods, as the tangent space is homeomorphic

to the Euclidean space and well-known Euclidean clustering approaches such as K-means can be di-

rectly applied. Unfortunately, as the flattening step distorts the pair-wise distances in regions far from

the origin of the tangent space, accuracy is severely compromised. Much of the value of the manifold

approach is lost.

Other approaches that fall in the extrinsic method category are kernel-based approaches [65, 76,

78], such as kernel K-means. In essence, the data in manifold are first embedded into the Reproduc-

ing Kernel Hilbert Space (RKHS) [125]. As the embedding function is defined implicitly, generally

kernel-based approaches make use of the inner products in the RKHS in their formulation. These

inner products are then arranged in a Gram matrix. It is often observed that the right choice of kernel

could significantly improve the performance [76]. Furthermore, in general, kernel inner products with

specified metrics have much less computational complexity than geodesic distances [5, 127]. With

these properties, kernel-based approaches could be suitable to address issues suffered in both the in-
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trinsic approach and the Log Euclidean approach. Unfortunately, the kernel-based approaches cannot

scale easily, as the Gram matrix computation is O(n2) where n is the number of data points. Also,

it is often quite challenging to kernelise the existing algorithms that do not have known kernelised

versions [24]. Furthermore, Nikhil et al. demonstrated that clustering data in the RKHS may lead

to unexpected results since the clusters obtained in the RKHS may not exhibit the structure of the

original data [108].

2.3.2 Classification on Riemannian Manifolds

To solve the classification problem, one needs to employ appropriate classifiers for manifold. As

the geometry of Riemannian manifold is non-Euclidean, Euclidean-based classifiers such as Support

Vector Machine (SVM) cannot be directly applied.

One line of research is to apply intrinsic methods which directly operate on the manifold. In this

scenario, the true manifold geometry will be fully considered and this usually yields superior and

robust classification performance. In its simplest form, one could use the nearest neighbour classifier

utilising the true geodesic distance [111]. It has been shown that this approach can achieve good

accuracy; however, it is generally computationally expensive especially if the size of dataset is huge

or the manifold-valued data possesses large dimensions [72]. Additionally, the nearest neighbour

classifier is susceptible to outliers in the data [113] and often inferior to other classifiers such as

SVM, nearest convex hull and sparse representation classifier.

Recently, some researchers pursued to generalise Euclidean-based classifiers to manifolds. For

example, Sivalingam et al. proposed tensor sparse coding for Symmetric Positive Definite (SPD)

manifolds [129]. Since their method used log-determinant divergence to model the loss function, it

suffered from high computational complexity. Also, the manifold structure is not well-preserved by

the log-determinant divergence, thus the accuracy is not excellent. Cerian et al. proposed Riemannian

Sparse Coding for SPD manifolds [31], which used the geodesic distance to preserve the manifold

structure. However, the use of the matrix addition forces the summation of the weighted SPD points

out of the manifold in some cases.

The computational complexity issue in the intrinsic methods could be addressed by mapping all

the data points onto a tangent space at a designated location [48, 61, 136, 144, 166]. Unfortunately,

as it has been discussed multiple times, this mapping may adversely affect the performance since it

will significantly distort the manifold structure in regions far from the tangent space location.

Another popular school of thought is to map manifold points onto a Reproducing Kernel Hilbert

Space (RKHS) and apply kernel-based classifiers [61, 70, 76, 148]. As Euclidean geometry applies

in the RKHS, this can be thought of a decoupling between machine learning and data representa-

tion [81]. Nevertheless, to choose an appropriate kernel could be challenging. In fact, several works

have been devoted to address this [76, 148]. When the kernel is poorly chosen it leads to inferior

performance [148]. In addition, kernel methods are generally computationally demanding especially

when training data is extremely large [155].
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Table 2.1: Summary of the popular methods compared to our proposal.

Approach Exploits Manifold Structure Accuracy Computational
Complexity

Intrinsic Methods [31, 110, 139, 134, 161] Yes High High
Log-Euclidean Methods [48, 49, 136, 166] Minimal Low Low

Kernel Methods [65, 70, 76, 78, 148] Approximately High Moderate
The aim of This Thesis Approximately High Low

2.4 Conclusions of Literature Review

From the discussions in Section 2.3, we found that the manifold approaches for the clustering and clas-

sification problems can be broadly categorised into two groups: intrinsic and extrinsic methods (e.g.,

Log-Euclidean methods and Kernel methods). We summarise the advantages and shortcomings of

these manifold approaches in Table 2.1.

Although the existing methods give advancement in computer vision, additional work is still

needed when dealing with computational complexity issues and the trade-off between approxima-

tion and accuracy. For example, intrinsic methods that precisely exploit the manifold structure by

using the Riemannian metric usually possess high accuracy. However, the computational complex-

ity is high. Log-Euclidean methods produce a first-order approximation of the manifold structure

by the tangent space at a particular point. These methods massively reduce the computational load

of the original manifold. However, the accuracy is usually sacrificed. Kernel methods utilise kernel

functions that embed the Riemannian manifold points into RKHS. Generally, one can achieve high

accuracy. However, the computational burden of kernel calculations and kernel-based learning al-

gorithms is high for large datasets. Our aim in this thesis is to develop fast and accurate manifold

approach, which preserves the critical manifold structure, as well as is computationally efficient.

2.5 Summary

In this chapter, we presented the overview of Riemannian geometry. Two types of Riemannian man-

ifolds, SPD manifold and Grassmann manifold were introduced with the definition of distance and

kernel functions. In addition, the current progress regarding Riemannian manifold approaches in

computer vision was discussed. In the next chapter, the manifold approach scheme for image and

video analysis are presented to provide clues to improve the current manifold approaches for image

and video analysis.

40



Chapter 3

Manifold Scheme for Image and Video
Analysis

Everything should be made as

simple as possible, but not sim-

pler.

Albert Einstein

Chapter Summary: The general steps of manifold approaches for image and video anal-

ysis are presented, which give clues to the possible ways to reduce the computational

complexities of current manifold approaches.

3.1 Overview

In this chapter, we present the general steps of manifold approaches for image and video analysis,

here called the manifold scheme. Based on the components of the scheme, we discuss some possible

ways to reduce the computational load for Riemannian manifold approaches, whilst the performance

is free from obvious loss.

3.2 Manifold Scheme for Image and Video Analysis

There are some general steps to analyse images and videos using manifold geometry. For the sake of

clarity, we call these general steps as the manifold scheme, which is illustrated in Figure 3.1. The first

step is to obtain the lower-level features and then model these features into manifolds.

To model vision data to the SPD manifold, the most popular method is to use region covari-

ance [142] (refer to Figure 3.2). Specifically, given an image I , the lower-level feature vectors

[z1, z2, ...,zS] from the region of interest of this image are first extracted. For example, the fea-
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Figure 3.1: Manifold scheme for image and video analysis

ture vector zi can be associated to image intensities and derivatives inside the region R: zi =

[I(x, y), |Ix|, |Iy|, |Ixx|, |Iyy|]. Then the region covariance CR can be computed by:

CR =
1

S − 1

S∑
i=1

(zi − µ) (zi − µ)> , (3.1)

where µ is the vector of the means of the corresponding features within the region R. For the image

set problem, where each exemplar is represented by a set of images or a single video, the modelling

process is illustrated in Figure 3.3. the lower-level feature vector such as pixel intensities, SIFT and

HOG for each image or video frame is first extracted. Then the entire image set can be represented

as: F = [f 1,f 2, . . . ,fn], where fi ∈ Rd is the i-th image or video frame with d-dimensional feature

description. Then one can model the image set on the SPD manifold by computing the covariance

matrix of these lower-level features as follows:

C =
1

n− 1

n∑
i=1

(
f i − f̄

) (
f i − f̄

)> ,

f̄ =
1

n

n∑
i=1

f i .

(3.2)

Alternatively, one can represent the image set by a linear subspace P via the Singular Value De-

composition method on these lower-level features (refer to Eqn.(3.3)), which is a data point on the

Grassmann manifold.
n∑
1

f if
>
i = PΛP> . (3.3)

After modelling the images or videos on the manifold, one needs to apply some learning algo-

rithms to tackle the computer vision tasks. As discussed in Section 2.3, these algorithms can be

broadly categorized by intrinsic methods and extrinsic methods. Recall that the main goal of this

thesis is to develop fast and accurate manifold-based approaches for image and video analysis. In the

next section, we discuss some possible directions that we can consider to reach our goal.
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Figure 3.2: An illustration of how to model vision data on SPD manifold by computing the region
covariance

3.3 Discussions

Given the scheme illustrated in Figure 3.1, we found that there are many directions for making

progress in developing fast and accurate manifold approaches. We give some brief discussions on a

few of those directions. There are three main components contributing to this discussion: Component-

1:Developing geometric-aware mapping functions for extrinsic methods; Component-2: Exploring ef-

fective intrinsic methods on manifolds with fast approximated solutions and Component-3: Selecting

discriminative lower-level features with low dimensionality to produce the more effective-yet-efficient

manifold representations.

Component-1: Developing geometric-aware mapping functions for extrinsic methods. The eas-

iest way that one can speed up the manifold approaches is to develop a mapping function which can

project manifold points onto a Euclidean space whilst preserving the critical manifold structure. Then

all the Euclidean based-methods could be used. This will avoid the manifold operators, resulting in

much less computational cost. To ensure the excellent performance, the mapping function should

be in a form that minimises the loss from the manifold to the Euclidean space. In Chapter 4, we
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Figure 3.3: An illustration on how to represent a video or an image set using SPD and Grassmann
manifolds.

propose a random projection framework with three extrinsic mapping functions that show excellent

performance with fast speed in several computer vision applications.

Component-2: Exploring effective intrinsic methods on manifolds with fast approximated so-
lutions. Unlike Component-1, Component-2 focuses on improving the accuracy and computational

complexity of specific intrinsic methods, which involve the use of Riemannian metric. As discussed in

Section 2.3.2, intrinsic methods tend to have high accuracy as they are using the Riemannian metric.

However, due to the nonlinearity of manifold, it is usually non-trivial to find the global solutions for

the optimisation problems. Thus, there are limited numbers of intrinsic methods have been developed,

especially for classification problems. The goal of Component-2 is to explore more effective intrin-

sic methods to improve existing ones, in terms of accuracy and computational time. Furthermore,
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Table 3.1: Theoretical complexity analysis for computations on manifolds.

Computations Complexity
Sym+

d Gd,q
Computing the covariance matrix O(d2) n/a

Computing the SVD n/a O(d3)

Exponential map O(d3) O(q3)

Logarithm map O(d3) O(q3)

Geodesic distance O(d3) O(q3)

in this component, we are interested whether it is possible to further improve the intrinsic method

computational complexity. We note that the intrinsic methods usually require multiple projections

between the manifold and the tangent spaces, which makes them suffer from the highly demanding

computational load. One way to alleviate this limitation is to find an approximated solution to the

optimisation problem defined in the intrinsic method. The optimality of the approximation may not

be guaranteed or perfect in some cases. However, it may be possible to find an approximation that

does not significantly sacrifice the method accuracy whilst computationally more efficient.

In this thesis, we focus on intrinsic classifiers on manifolds. One of most widely used intrinsic

classifier for manifold points is the Geodesic Nearest Neighbour. More specifically, In Chapter 5,

the thesis will study on how to improve the Geodesic Nearest Neighbour classifier by developing a

novel intrinsic method. The computational time of the novel intrinsic method will then be sped up by

proposing various effective approximation methods.

Component-3: Selecting discriminative lower-level features with low dimensionality to produce
the more effective-yet-efficient manifold representations. The first step illustrated in Figure 3.1

will output the d-dimensional feature vectors, which mainly determine the dimensionality of the man-

ifold points. The dimensionality of the manifold points highly impacts the computational cost of the

following steps. For example, computing the covariance matrix requires O(d2) and computing the

SVD requires O(d3) as listed in Table 3.1. Also, the logarithm and exponential mapping often used

in the learning process, requires O(d3) for SPD manifolds. Thus, finding the effective lower-level

feature vectors with low dimensionality can obviously reduce the computational load of the following

analysis process. In Chapter 6, the thesis discusses an application-based study to show it is possible

that the lower-level features benefit the computational complexity of the manifold approach.

3.4 Summary

To explain the process of manifold approaches, we presented a manifold scheme for image and video

analysis in this chapter. With the goal of developing fast and accurate manifold approaches for im-

age and video analysis, we further discussed some possible directions to reduce the computational

cost while maintaining the excellent accuracy for computer vision applications. In next chapter, we

propose the random projection framework following the Component-1 in this scheme.
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Chapter 4

Random Projection on Riemannian
Manifolds

There are two ways to live:

you can live as if nothing is a miracle;

you can live as if everything is a miracle.

Albert Einstein

Chapter Summary: Based on the Johnson-Lindenstrauss lemma, we propose the random

projection framework, which projects the manifold points onto a Euclidean space by suf-

ficient random projections, wherein the pairwise distances of the manifold points are still

well-preserved, but the complexity is significantly reduced.

4.1 Overview

In this chapter, we first review the definition and generation method of random projection in Euclidean

space. We then extend these notions into the Riemannian manifold and propose the random projec-

tion framework for manifold points. This framework implements random projections for manifold

points via kernel space, which can preserve the geometric structure of the original space, but is com-

putationally efficient. Here, we introduce three methods that follow our framework. We then validate

our framework on several clustering and classification tasks problems by comparing against several

recent state-of-the-art methods on Riemannian manifolds. Experimental results demonstrate that our

framework maintains the performance whilst massively reducing computational complexity by over

two orders of magnitude in some cases.

4.2 Introduction

In this chapter, we propose a random projection framework for Riemannian manifolds, which sig-

nificantly reduces the computational complexity, but still maintains acceptable performance. The
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inspirations are drawn from the random projection for Euclidean spaces which has enjoyed success

in various domains [16, 55, 84] due to its simplicity and theoretical guarantees [4]. The contributions

of this chapter are listed as follows:

1. We propose a random projection framework for manifold features. In general, the term pro-

jection is not well defined in Riemannian manifolds. Therefore, we address this via the RKHS

constructed from a small subset of data.

2. From our framework, it becomes clear that random hyperplane generation is essential. Thus,

we describe three generation algorithms which are followed in our framework: (1) Kernelised

Gaussian Random Projection (KGRP); (2) Kernelised Orthonormal Random Projection (KORP)

and (3) Kernel Principal Component Analysis Random Projection (KPCA-RP).

4.3 Random Projection in Euclidean Space

In Euclidean space, the random projection embeds original data into a much lower dimensional space

whilst preserving the geometric structure [147]. This can significantly reduce the computational com-

plexity of learning algorithms, such as classification or clustering. For instance, as a result, this is

used to achieve real time performance in object tracking [119].

A point x ∈ Rd in Euclidean space can be projected into a random k-dimensional subspace

(k � d) via a set of randomly generated hyperplanes {r1}ki=1 where ri ∈ Rd. This can be formulated

as:

f(x) = x>R , (4.1)

where R is the random matrix that arranges the random hyperplanes as column vectors. Note that

in order to minimise distortions produced by the projection, the matrix R should possess a particular

property. We introduce this property in Definition 1. When the random projection matrixR possesses

such a property, then the Johnson-Lindenstrauss Lemma (JL-Lemma) [79] applies.

Lemma 4.3.1 [Johnson-Lindenstrauss Lemma [79]] For any ε such that ε > 0, and any set of points

X with |X | = n upon projection to a uniform random k-dimension subspace where k ≥ O(ε−2 log n),

the following property holds for every pair u,v ∈ X , (1 − ε)||u − v||2 ≤ || f(u) − f(v)||2 ≤
(1 + ε)||u− v||2, where f(u), f(v) are the projections of u,v.

Remarks The JL-Lemma principally states that a set of high dimensional points can be embedded

using a set of uniform random hyperplanes into lower dimensional space wherein the pairwise dis-

tance between two points is well preserved (with high probability). The original proof of JL-Lemma

uses quite challenging geometric approximation machinery [79]. Frankl and Meahara [52] simplified

that proof by considering a projection into k random orthonormal vectors. Recently there have been

several properties of the random matrix where JL-Lemma still applies. We shall call the type of pro-

jection wherein the random matrix has properties that allow the JL-Lemma to be applied as a JL-Type

projection.
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Definition 1 (JL-Type projection) LetR = [r1 · · · rk], ri ∈ Rd be a random matrix whose columns

are the random hyperplanes. The projection f(u) = R>u,u ∈ Rd, f(u) ∈ Rk is called JL-Type

projection when the matrixR possesses at least one of the following properties:

1. The columns ofR are orthogonal unit-length vectors [52];

2. Each element in R is selected independently from a standard Gaussian distribution N(0, 1) or

uniform distribution U(−1, 1) [8];

3. R is a sparse matrix, whose elements belong to {−1, 0,+1}with the probability {1/6, 2/3, 1/6}
[89].

We note that Property 1 in Definition 1 considers columns of the random matrix R as the basis of a

random space, thus they are required to be pairwise orthogonal [52]. To this end, one needs to apply an

orthogonalisation technique such as the Gram-Schmidt method [157] onR. Arriaga et al. [8] proved

that it suffices to use random non-orthonormal matrices with independent elements chosen from some

distributions which are listed in Property 2 of Definition 1. Recently, Li et al. [89] proposed a sparse

random projection matrix presented in Property 3 of Definition 1. The sparse random projection

achieves a further threefold speed-up as only 1/3 of the matrix have non-zero elements.

We note that the random projection is not data driven. It means that it does not need a set of

labelled training data, making it suitable for unsupervised learning scenarios such as clustering [20,

118].

4.4 Random Projection in Riemannian Manifolds

To apply the random projection on points residing in the Riemannian manifold is not trivial, due

to the notion of projection itself being generally not well defined. We approach this problem by

reformulating the problem in the RKHS. Recall that, the random matrix containing column vector of

hyperplanes ri should be generated from a particular process. Thus, the projection of each individual

dimension into the projected space is carried out as follows:

fi(x) = x>ri , (4.2)

where fi(·) is the i-th dimension of the projected vector x.

In the RKHS, the above formulation can be rewritten as:

fi(x) = φ(x)>ri , (4.3)

where φ(·) is the function that embeds the input space into the RKHS. Note that, in this case, the

hyperplane ri is now defined in the RKHS, ri ∈ H. The projection in the RKHS can be considered

as the inner product which is defined as the kernel similarity function.

Eqn. (4.3) provides insight that the JL-Type projection could be achieved as long as one could

generate the hyperplanes that follow one of the above properties in Definition 1 in the RKHS. In
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Manifold space

Random projection space

RKHS 

Figure 4.1: The illustration of our proposed framework. We first generate the hyperplanes in RKHS.
Each point in the manifold is then mapped into the projected space via the kernel inner product.

similar fashion, when the data point x is replaced by a pointX in manifoldX ∈M, then one could

use Eqn. (4.3) as the framework to achieve JL-Type projection in the manifold. As such, we propose

a random projection framework for manifold points, which is briefly illustrated in Figure 4.1. This

hyperplane generation is the central idea in this chapter. First, we generate the hyperplanes over the

RKHS. The points over the manifold are then projected into the projected space by using the specified

kernel similarity function, such as the Gaussian kernel or projection kernel. Once the manifold points

have been embedded into the projected space, we apply the Euclidean-based learning methods (e.g.,

using K-means algorithm to perform clustering).

In this chapter, we explore three hyperplane generation methods for manifold points: (1) KGRP;

(2) KORP and (3) KPCA-RP. The diagram of our proposed generation methods is illustrated in Fig-

ure 4.2. Briefly speaking, the hyperplanes are generated using a randomly selected subset from the

dataset. The projection made by the hyperplanes will follow one of the properties in Definition 1. We

will elaborate on the generation process and theoretical analysis in the following section. Note that

the descriptions of generation process of our methods are based on the clustering scenarios and can

be easily adapted to classification scenarios (refer to Section 4.6 for details).

4.4.1 Kernelised Gaussian Random Projection (KGRP)

In the KGRP method, the hyperplanes are generated from the standard Gaussian distributionN (0, I).

Each hyperplane ri ∈ H is assumed to be spanned by a group of data points randomly selected.

To this end, first a subset S containing p points {φ(X1), . . . , φ(Xp)} is randomly chosen from the

dataset, φ(X i) is the representation of manifold pointsX i in the RKHS. Each data point φ(X i) from

the subset is considered as a vector generated from a particular distribution D with unknown mean µ

and unknown covariance Σ. Thanks to the Central Limit Theorem (CLT) [117], one can still produce

standard Gaussian distribution data points from these data. More precisely, the CLT states that when

the number of data points grows larger, the difference between the population mean and the sample

mean approximates the normal distribution N (0,Σ). As such, we first randomly select t, t < p, data
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Figure 4.2: The diagram of our proposed generation methods: KORP, KGRP and KPCA-RP.

points from S and let these points be the set S1 ⊂ S . Let zt = 1
t

∑
i∈S1 φ(X i) be the sample mean

over S1. By applying the CLT and the Whitening transform [42], the vector ri = Σ−
1
2

√
t(zt − µ)

can be considered as the point generated from a standard Gaussian distribution; thus ri could be used

as a random projection hyperplane. Therefore, we denote our embedding function that projects data

points in the RKHS to the random projection space by:

f(φ(X i)) = φ(X i)
TΣ−

1
2

√
t(zt − µ) . (4.4)

The mean is implicitly estimated as µ = 1
p

∑p
i=1 φ(X i), and the covariance matrix Σ is also formed

over the p data points. In order to compute Eqn. (4.4), one could use a similar approach to that of

Kernel Principal Component Analysis (KPCA) [122]. Specifically, let the Eigen-decomposition of

the covariance matrix Σ and the kernel matrix over p data points KS , be V ΛV > and UΘU> re-

spectively. Based on the fact that the non-zero eigenvalues of V are equal to the non-zero eigenvalues

of Θ, Kulis-Grauman [83] proved that Eqn. (4.4) is the same as:∑p

i=1
w(i)(φ(X i)

Tφ(X)) , (4.5)
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Algorithm 1: Kernelized Gaussian Random Projection (KGRP)

Input: the entire dataset: a set of manifold-valued data points {X i}ni=1, X i ∈M; the size of S : p;
the desired projected space dimensionality : b

Output: {xi}ni=1, xi ∈ Rb the data points in the projected space
1: Randomly select p points {X i}pi=1 from the entire dataset
2: Compute the Kernel Gram matrixKS over points {X i}pi=1,KS = φ(X i)

> φ(Xj), ∀X i,∀Xj ∈
{X i}pi=1, let S = {φ(X i)}pi=1 denote the representations for these p points in the RKHS

3: Compute the projection matrixW = {w1, ...,wb}, ∀wi ∈ Rp

4: for i = 1→ b do
5: S1 ← Randomly select t data points from S
6: eS = [∆1, ...,∆p] if φ(X i) ∈ S1, ∆i = 1; otherwise ∆i = 0

7: wi =
√

p−1
t
K
− 1

2
S eS

8: end for
9: Project each point X i into the random projection space: xi = K̃W , where K̃ is the Gram

matrix betweenX i and the points {X i}pi=1

where

w(i) =
1

t

p∑
j=1

∑
l∈S1

Kij
− 3

2Kjl . (4.6)

Note that S1 is the set of t points which are randomly selected from S. Further, defining e as a vector

of all ones, and eS1 as a zero vector with ones in the entries corresponding to the indices of S1, the

expression in Eqn. (4.6) can be further simplified to:

w =

√
p− 1

t
K
− 1

2
S eS1 . (4.7)

The pseudo code for KGRP is summarised in Algorithm 1. We note that the above formulation was

first described for developing the kernelise locality sensitive hashing method in Euclidean scenar-

ios [83]. We then adapted the method in our previous work [5] to perform random projection on SPD

manifolds for classification purposes. In this chapter, we further apply the method for clustering on

Riemannian manifold problems.

We note that the total computational complexity of the KGRP algorithm is O(np + p3 + np2).

Specifically, there are three factors contributing to the computational complexity:

1. Computing the kernel Gram matrixKn,p between n points and p selected points which requires

O(np) operations (p� n);

2. Generating the random hyperplanes, necessitates calculation of the kernel matrixK−1/2S for the

p points in S which requires O(p3) operations;

3. Projecting all of the data points into the random projection space which requires O(np2) oper-

ations;
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4.4.2 Kernelised Orthonormal Random Projection (KORP)

In the second method, we generate orthonormal random hyperplanes (i.e., the first property). We first

present the following Lemma that relates the JL-Lemma to the margin of the linear hyperplane in

supervised learning settings [18].

Lemma 4.4.1 Consider any distribution over labelled examples in Euclidean space such that there

exists a linear separator w> · x = 0 with margin λ. If we draw d ≥ 8
ε

[
1
λ2

ln 1
δ

]
examples z1, · · · , zd

iid from this distribution, with probability ≥ 1− δ, there exists a vector w′ in span (z1, · · · , zd) that

has error at most ε at margin λ
2

[18].

Proof. We refer the readers to [18] for the proof of this Lemma.

Remarks. Lemma 4.4.1 essentially states that, with a high probability, the margin is still well pre-

served (with error at most ε) when the hyperplane w′ is selected from the space spanned by a subset

of the data points. Note that, as suggested in [126], when the margin is well preserved, then the angle

and distance between points are also well preserved.

This Lemma can also be applied for cases where the data points are in the RKHS. This is because

the RKHS is essentially an infinite-dimensional Euclidean space [18]. Given a set of points which

are linearly separable with margin λ under a particular kernel function, we draw d random examples

x1, · · · ,xd from the same distribution. Then, according to Lemma 4.4.1, with probability ≥ 1 − δ,
there exists a separator in RKHSw′ ∈ H andw′ = α1φ(x1) + · · ·+ αdφ(xd) with error rate at most

ε. Note that asw′> · φ(x) = α1 K(x,x1) + ...+αd K(x,xd), we then can simply consider the vector

of [K(x,x1) · · ·K(x,xd)] as the feature representation of x in the space spanned by {φ(xi)}di=1.

In other words, the K(x,xi) is considered as the i-th feature of x. We can further formalise this

observation with the following Corollary [18].

Corollary 4.4.2 If distribution P has margin λ in the RKHS, then with the probability ≥ 1 − δ ,

d = 8
ε

[
1
λ2

ln 1
δ

]
, if x1, · · · ,xd , are drawn from the same distribution, the mapping: F1(x) =

[K(x,x1), · · · ,K(x,xd)] produces a distribution F1(P ) on labelled examples in Rd that is linearly

separable with error at most ε [18].

Remarks. The above Corollary suggests the following points:

• One could generate random projection hyperplanes by randomly selecting a subset of data

points in RKHS and then projecting a point into this space by using F1(x);

• This projection is a JL-Type projection.

In light of these facts, for our case, we randomly select p points, denote S = {φ(X1), · · · , φ(Xp)}
as the implicit representations of the p points in RKHS. However, as it is possible that some hyper-

planes are not linearly independent, then the hyperplanes could be highly correlated. To that end, one

needs to orthogonalise the hyperplane set S [18]. In this work, we apply QR decomposition [157]

to construct a set of orthonormal basis from the original basis spanning the same subspace. Let us
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arrange the original basis {φ(X i)}pi=1 into a matrix A. Then the matrix A can be decomposed into

Q and R̃ as follows:

A = [φ(X1), · · · , φ(Xp)] = QR̃ , (4.8)

where Q is the orthonormal basis and R̃ is the upper triangular matrix. Assuming that we have the

orthonormal basisQ, then we can observe the following when a data point φ(X) is projected into the

orthonormal basisQ:

φ(X)>Q = φ(X)>QR̃R̃
−1

= φ(X)>[φ(X1), ..., φ(Xp)]R̃
−1

= [φ(X)> φ(X1), ..., φ(X)> φ(Xp)]R̃
−1

= [K(X,X1), ...,K(X,Xp)]R̃
−1

.

(4.9)

In other words, one only needs to determine the upper triangular R̃ in order to do the projection.

We note that as the original basis {φ(X i)}pi=1 are in the RKHS then it is not trivial to apply the QR

decomposition to matrix A. To that end, we first multiply the matrix A by its transpose. By doing

this, we will get the kernel matrixKS , whereKS(i, j) = φ(X i)
> φ(Xj), ∀φ(X i) and ∀φ(Xj) ∈ S.

Thus:

KS = A>A

= (QR̃)>QR̃

= R̃
>
Q>QR̃

= R̃
>
R̃ .

(4.10)

We can employ the Cholesky Factorisation [157] on the kernel matrix KS , in order to compute the

upper triangular R̃. Algorithm 2 outlines the algorithm for the proposed Kernelised Orthonormal

Random Projection (KORP).

The computational complexity of KORP depends on the following steps:

1. Computing the kernel Gram matrix between the entire dataset and the subset S which requires

O(np) operations;

2. Applying Cholesky Factorisation on the kernel Gram matrix of the p points in S which requires

O(p3) operations;

3. Applying the matrix inverse of the right triangular matrix R̃ which demands O(p3) operations;

4. Projecting all of the data points into the orthonormal space with O(np2) operations;

Hence, the total computational complexity is O(np+ p3 + np2).
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Algorithm 2: Kernelised Orthonormal Random Projection (KORP)

Input: the entire dataset: a set of manifold-valued data points {X i}ni=1, X i ∈ M; the desired
projected space dimensionality : p

Output: {xi}ni=1, xi ∈ Rp the data points in the projected space
1: Randomly select p points {X i}pi=1 from the entire dataset
2: Compute the kernel Gram matrix KS over points {X i}pi=1 KS = φ(X i)

> φ(Xj), ∀X i,∀Xj ∈
{X i}pi=1

3: Apply Cholesky Factorisation to the kernel matrixKS = R̃R̃
>

4: Project each point X i into the random projection space: xi = K̃R̃
−1

, where K̃ is the Gram
matrix betweenX i and the points {X i}pi=1,

4.4.3 KPCA-based Random Projection (KPCA-RP)

Inspired by the previous method, one can derive orthonormal projections using the Kernel PCA

(KPCA). More precisely, after generating random projection hyperplanes by randomly selecting the

subset S, one can obtain the principal components of the data points in S by applying the KPCA.

The principal components of S are then considered as the set of orthogonal random projection hyper-

planes. Finally, following Eqn. (4.3), the entire data points can be projected into the random projection

space using the hyperplanes.

Let us suppose C is the covariance matrix of the points in S which have been centred:

C =
1

p

p∑
i=1

φ(X i)φ(X i)
>. (4.11)

To apply KPCA, one needs to solve the generalised eigen-decomposition problem:

τV = CV . (4.12)

Following the same argument as KPCA [122], the eigenvectors of the covariance matrix C lie in the

span of φ(X1), φ(X2), .., φ(Xp):

V k =

p∑
i=1

αki φ(X i) , (4.13)

where the set {αki }
p
i=1 can be determined by solving the following equation:

pτα = KSα , (4.14)

where α = [α1 · · ·αk] is a matrix wherein each column represents the vector αk = [αk1 · · ·αkp]>

whose elements are the linear combination coefficients presented in Eqn. (4.13) andKS is the kernel

matrix of the set S. Note that the above equation suggests that the vectorαk is one of the eigenvectors

ofKS .

55



Chapter 4. Random Projection on Riemannian Manifolds

Let {V k}pk=1 be the set of principal components extracted from Eqn. (4.12). To project a point

into the principal component V k, we perform:

φ(X)> · V k =

p∑
i=1

αki φ(X)>φ(X i) . (4.15)

In the following, we present a theorem that guarantees that projections into the principal components

of the subset S achieves JL-Type projection.

Theorem 4.4.3 If a set of points can be separated by a margin λ in the RKHS, then with probability

≥ 1 − δ, if S = {φ(X1), ..., φ(Xp)}, X i ∈M, φ(X i) ∈ H are drawn from the same distribution

for p = 8
ε

[
1
λ2

ln 1
δ

]
, the mapping F2(x) = F1(x)[α1 · · ·αp], where αk is the k-th eigenvector of KS ,

achieves JL-Type projection with error at most ε.

Proof. As presented in Corollary 4.4.2, F1(x) is the function that maps a point into a random pro-

jection space wherein the set of hyperplanes S is randomly selected from a set of given points. It is

known that principal components of S represent the orthonormal bases spanning the subspace spanned

by S. Henceforth, computing the principal components of S can be considered as orthogonalisation

of the hyperplanes.

Remarks. The above theorem states that applying KPCA on S means orthogonalising the hyperplanes

in S. Therefore, the difference between KPCA-RP and KORP is related to how the hyperplanes are

orthogonalised. We present the KPCA-RP pseudo code in Algorithm 3.

Algorithm 3: KPCA-based Random Projection (KPCA-RP)

Input: the entire dataset: a set of manifold-valued data points {X i}ni=1, X i ∈ M; the desired
projected space dimensionality : p

Output: {xi}ni=1 the data points in the projected space
1: Randomly select p points {X i}pi=1 from the entire dataset
2: Compute the kernel Gram matrix KS over points {X i}pi=1 KS = φ(X i)

> φ(Xj), ∀X i,∀Xj ∈
{X i}pi=1

3: Apply KPCA to kernel matrixKS to obtain the eigenvectors α.
4: Project each pointX i into the random projection space: xi = K̃α, where K̃ is the Gram matrix

betweenX i and the {X i}pi=1

In terms of calculating the computational complexity of the KPCA-RP algorithm, one needs to

consider the following factors:

1. Computing the kernel Gram matrix between the entire dataset and the subset S, which requires

O(np) operations;

2. Applying KPCA on the kernel Gram matrix of subset S, which requires O(p3) operations;

3. Projecting all of the data points into the orthonormal space, which requires O(np2) operations;

Hence, the total computational complexity is O(np+ p3 + np2).
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4.5 Experimental Results on Clustering Tasks

For the clustering tasks, we evaluate our proposal using six benchmark datasets:

• Ballet dataset [154];

• UCSD traffic dataset [26];

• UCF101 Human actions dataset [131];

• Brodatz texture dataset [116];

• KTH-TIPS2b material dataset [23];

• HEp-2 Cell ICIP2013 dataset [71].

In our evaluation, we consider each video of the first three datasets (i.e., Ballet, UCSD and UCF101)

as an image set which can be effectively modelled as a point on Grassmann manifolds. In addition, we

use SPD manifold to model images of the latter three datasets (i.e., Brodatz, KTH-TIPS2b and HEp-2

Cell ICIP2013). To demonstrate the efficacy of our framework, we report the clustering performance

and the run time.

4.5.1 Datasets and Feature Extraction

Ballet action dataset (Ballet) [154] - The Ballet dataset presents sequences of videos of ballet ac-

tions. More precisely, it comprises 44 sequences with 8 different actions: R-L presenting, L-R pre-

senting, Presenting, Jump & swing, Jump, Turn, Step, and Stand still (see Figure 4.3a for examples).

These ballet actions were performed by two men and one woman, resulting in significant intra-class

variations such as speed, clothing and movements. In this evaluation, each video is considered as an

image set. We then represent each image set as a point in the Grassmann manifold. To that end, all

the videos are down sampled to 16 × 16 pixels. A Grassmann point is extracted for every 6 consec-

utive frames. Technically, we first vectorise each frame into a column vector and arrange them into

a 256 × 6 tall matrix (i.e., 256 = 16 × 16). The matrix can be considered as a subspace and the

orthonormal bases spanning the subspace can be determined by applying the Singular Value Decom-

position (SVD). The set of orthonormal bases is considered as a Grassmann point [127]. We use the

projection kernel (see Eqn. (2.13)) in this evaluation.

UCSD traffic dataset (UCSD) [26] - The UCSD traffic dataset consists of 254 video sequences

collected from the highway traffic over two days in Seattle (see Figure 4.3b for examples). It contains

a variety of traffic patterns and weather conditions (i.e., overcast, raining, sunny). In total, there are 44

sequences of heavy traffic (slow, stop and go speeds), 45 sequences of medium traffic (reduced speed),

and 165 sequences of light traffic (normal speed). To extract a Grassmann point, we first randomly

select half the number of frames from each video. Each frame in each sequence is downsized to

140 × 161 pixels and further normalised by subtracting the mean frame and dividing the variance.
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Then, we apply the two dimensional Discrete Cosine Transform (DCT) on the frame and use the

DCT coefficients as the feature vector for each frame. SVD is applied on the feature vectors of the

frames to obtain the set of orthonormal bases. We also choose the projection kernel (see Eqn. (2.13))

for this dataset.

UCF101 Human Actions dataset (UCF101) [131] - This dataset consists of 13, 320 videos that

belong to 101 categories. For example, Applying Eye Makeup, Blow Dry Hair and Mixing Batter

(refer to Figure 4.3c). For each video, we first extract the normalised pixel intensities as features for

all the frames. Then the SVD is applied on these features of each video to obtain the Grassmann

manifold point. Thus, in this dataset, there are 13, 320 manifold points in total. Projection kernel (see

Eqn. (2.13)) is used.

(a)

(b)

(c)

Figure 4.3: Examples from (a) Ballet action dataset [154] (b) UCSD traffic dataset [26] and
(c) UCF101 dataset [131]
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Brodatz texture dataset (Brodatz) [116] - For the Brodatz dataset (refer to Figure 4.4a for examples)

we follow the protocol presented in [129]. The protocol includes 3 subsets with different numbers of

classes: 5-class-texture (5c, 5m, 5v, 5v2, 5v3), 10-class-texture (10, 10v) and 16-class-texture (16c,

16v). Each image is down-sampled to 256×256 pixels and divided into 64 32×32 pixel size regions.

A feature vector f(x, y) for each pixel is calculated using the grayscale intensities and absolute values

of the first- and second-order derivatives of spatial feature vectors. It can be illustrated as:

f(x, y) =
[
I (x, y) ,

∣∣∣∣∂I∂x
∣∣∣∣ , ∣∣∣∣∂I∂y

∣∣∣∣ , ∣∣∣∣∂2I∂x2

∣∣∣∣ , ∣∣∣∣∂2I∂y2

∣∣∣∣] . (4.16)

Each region is represented by a covariance matrix (SPD matrix) formed from these feature vectors.

The Gaussian Kernel with Log-Euclidean distance (see Eqn. (2.8)) is used for this dataset.

KTH-TIPS2b material dataset (KTH-TIPS2b) [23] - This dataset contains 11 material categories

captured under 4 different illuminations, in 3 poses and at 9 scales (refer to Figure 4.4b). Thus, there

are 3× 4× 9 = 108 images for each sample in one category, with 4 samples per material. We extract

a 20-dimensional feature vector for each pixel in the image:

f(x, y) = [I(x, y),Y (x, y),Cb(x, y),Cr(x, y), F 1
(x,y)(Y ) · · ·F 16

(x,y)(Y )] , (4.17)

where I(x, y) is the image grey level value at location (x, y); Y , Cb and Cr are the perceptually

uniform CIELab colour space; The filter banks F i consist of different offset Gaussians applied on

the luminance channel Y [137]. The covariance matrix is computed once the feature vectors are

extracted from every pixel location. This becomes the image representation over a SPD manifold. For

the manifold kernel in this dataset, we use Gaussian kernel with the Stein Divergence (see Eqn. (2.9))

as this has been shown to be effective in various classification problem domains [5, 6].

HEp-2 Cell ICIP2013 dataset [71] - This dataset contains 13, 596 cell images that include six cell

patterns namely Centromere, Golgi, Homogeneous, Nucleolar, Nuclear Membrane, and Speckled

(refer to Figure 4.4c). The cell boundary of every cell image is described by a mask image of the

same size. For each cell image, we first extract the following feature vector of each pixel that belongs

to the cell content:

f(x, y) =
[∣∣∣∣∂I∂x

∣∣∣∣ , ∣∣∣∣∂I∂y
∣∣∣∣ , I (x, y) ,

∣∣∣∣∂2I∂x2

∣∣∣∣ , ∣∣∣∣∂2I∂y2

∣∣∣∣ , arctan(

∣∣∣∣∂I∂x
∣∣∣∣ / ∣∣∣∣∂I∂y

∣∣∣∣)] . (4.18)

Then, the covariance matrix (SPD matrix) is formed from these feature vectors extracted from each

image. We also use Gaussian kernel with the Stein Divergence (see Eqn. (2.9)) for the evaluation on

this dataset.

4.5.2 Experimental Settings

In the clustering tasks, we first randomly project the points and then apply K-means. As such, for

each dataset, we first run each proposed projection method 10 times to generate 10 different random
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projection representations. Then, for each representation, we run the K-means algorithm 10 times,

resulting in each method being repeated 100 times for each evaluation. The average of clustering

performance and run time were reported. As the source of variation for the other approaches is

predominantly on the initial cluster seeds of K-means, we only repeat the experiment 10 times to

obtain the average clustering performance and run time.

All of the approaches are tuned to give the best performance. We find the optimum size of set S
as follows:

• Ballet: 100;

• UCSD: 90;

• UCF101: 101;

• Brodatz: 100;

• KTH-TIPS2b: 48;

(a)

(b)

(c)

Figure 4.4: Examples from (a) BRODATZ texture dataset [116], (b) KTH-TIPS2b material
dataset [23] and (c) HEp-2 Cell ICIP2013 dataset [71].
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• HEp-2 Cell ICIP2013: 60.

In addition, for KGRP, we set the number of dimensionality, b, to 300.

To measure the clustering quality, there are two main types of metrics: internal metrics based

on the distances between data points in the space, and external metrics based on the labels of the

data [104]. The clustering task in our proposed framework is performed in a transformed space which

may have different scale to other spaces used by comparable methods such as LogE (see below for

further discussion on LogE). This may make the internal metrics such as Dunn Index [44] unsuitable

in our case. Thus, we choose four external metrics to measure the clustering quality: Rand Index

(RI), Cluster Purity (CP), F-Measure and Normalized Mutual Information (NMI). More specifically,

RI measures the percentage of decisions that are correct and defined as:

RI =
TP + TN

TP + FP + FN + TN
, (4.19)

where a True Positive (TP) decision assigns two similar points to the same cluster, a True Negative

(TN) decision assigns two dissimilar points to different clusters, a False Positive (FP) decision assigns

two dissimilar points to the same cluster and a False Negative (FN) decision assigns two similar points

to different clusters. CP measures the cluster quality by counting the number of correctly assigned

points defined as:

CP (Ω, C) =
1

N

∑
k

|ωk ∩ cj| , (4.20)

where Ω = {ω1, ω2, ..., ωK} is the set of clusters and C = {c1, c2, ..., cJ}is the set of classes. F-

Measure penalises the FN more strongly by defined as follows:

F-Measure =
(β2 + 1)PR

β2P +R
, (4.21)

where P = TP
TP+FP

, R = TP
TP+FN

and β > 1. In this chapter, we set β = 5, which is one of the most

commonly used value for computing the F-Measure. NMI measures the mutual dependence between

the clusterωk and class cj . It can be formulated as:

NMI (Ω, C) =
I(Ω, C)

[H(Ω) +H(C)]/2
,

I (Ω, C) = P (ωk ∩ cj) log
Pωk ∩ cj
P (ω)kp(cj)

,

H (Ω) = −
∑
k

P (ωk) logP (ωk) ,

H (C ) = −
∑
k

P (ck) logP (ck) ,

(4.22)

where P (ωk), P (cj), and P (ωk ∩ cj) represent the probabilities of a point being cluster ωk, class cj ,

and in the intersection of ωk and cj , respectively. Interested readers are referred to [104] for further

explanation of each metric. we also measure the run time (in seconds) of each approach on every
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evaluation. The run time is measured from the kernel matrix computation until the completion of the

clustering process. Finally, we report the average run time of the approaches.

Our proposal is contrasted to six approaches: (1) Intrinsic K-means [139]; (2) Log-Euclidean K-

means [48]; (3) Kernel K-means [40, 76]; (4) KPCA K-means [76, 122]; (5) Sigma set K-means [72]

and (6) Grassmann clustering [127]. The following is the brief description of each approach.

Intrinsic K-means (Intrinsic): To cluster a set of manifold points, Intrinsic K-means works directly

on the manifold using the appropriate geodesic distance [139]. We note that as the intrinsic approach

is generally very slow, we stop the Intrinsic K-means after 100 iterations.

Log-Euclidean K-means (LogE): We first project all of the manifold points into the tangent space

at the identity [9]. Once projected, each point will be vectorised into a column vector. As for SPD

manifolds, we follow the work in [111] that uses only the upper triangular elements. This trick will

reduce the final representation dimensionality, markedly reducing the run time on the subsequent

process. Unfortunately the trick cannot be used on Grassmann manifolds since the representation

for a point on the Grassmann manifold is not a symmetric matrix. In this case, all the elements are

used in the final representation. This could adversely affect the overall run time when the manifold

dimensionality is high. In the final step, K-means algorithm is applied. Log-Euclidean k-means has

been used for clustering large amount of manifold data [48].

Kernel K-means: This approach embeds manifold points into RKHS. Then Kernel K-means is ap-

plied to perform clustering [40, 76].

KPCA K-means (KPCA): All manifold points are first embedded into RKHS. Then, KPCA is used

for projecting the points in RKHS into the space spanned by the principal components [76, 122].

Finally, the K-means is applied.

Sigma set K-means (SIS): Hong et al. [72] proposed a novel descriptor for SPD manifolds which

simplifies the computations of distance and mean. Using their proposed descriptors, we apply K-

means with novel efficient computations of mean and distance.

Grassmann clustering (G-clustering) Shirazi et al. [127] proposed a clustering method for Grass-

mann manifolds which use the eigenvectors of the normalised projection kernel matrix as the new

features of Grassmann points.

4.5.3 Comparative Analysis on Clustering Quality

Tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 report the average clustering quality of each individual approach

applied on each dataset. In general, our proposed methods perform well and show a close match to

KPCA K-means and Kernel K-means. Also, the performance of the proposed approaches is similar

to each other. These factors suggest that the proposed projection approaches possess the JL-Type pro-

jection properties. Furthermore, we find that the proposed approaches in some cases have markedly

better performance than the Kernel K-means. One of the possible reasons could be that the random

projection reduces the eccentricity of original Gaussian-distributed clusters and make clusters in pro-

jected spaces more spherical [36].
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Table 4.1: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster Purity
(CP), F-Measure and Normalized Mutual Information (NMI) on Ballet dataset. The best performance
is in bold. We refer to Section 4.5.2 for further explanation of each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [139] 73.68±0.00 34.92±0.00 33.81± 0.00 21.73± 0.00

LogE [48] 78.23±0.15 20.85±2.66 14.81± 0.37 3.91± 0.81

G-clustering [127] 76.41±0.07 18.63±0.58 16.39± 0.25 3.51± 0.47

Kernel K-means [40, 76] 79.89±0.80 40.86±3.06 32.92± 3.21 32.00± 2.73

KPCA [76, 122] 78.62±2.14 42.30±3.33 36.27± 2.68 34.80± 3.48

KGRP 78.02±1.79 41.89±2.43 37.98± 2.79 34.05± 2.41

KORP 78.28±1.68 42.54±2.37 38.68± 2.81 35.30± 2.80

KPCA-RP 77.81±1.94 41.90±2.31 38.23± 3.11 34.64± 2.75

Table 4.2: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster Purity
(CP), F-Measure and Normalized Mutual Information (NMI) on UCSD dataset. The best performance
is in bold. We refer to Section 4.5.2 for further explanation of each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [139] 73.26±0.00 74.70±0.00 75.15± 0.00 36.18± 0.00

LogE [48] 55.24±3.25 67.23±2.66 40.39± 2.81 19.11± 3.59

G-clustering [127] 50.68±0.11 64.82±0.00 34.31± 0.12 0.92± 0.29

Kernel K-means [40, 76] 69.98±7.06 77.96±4.77 57.34± 10.22 45.50± 9.71

KPCA [76, 122] 77.90±5.97 80.08±2.96 69.29± 7.56 51.31± 6.09

KGRP 75.61±3.48 79.64±2.07 66.97± 5.17 48.29± 3.80

KORP 77.25±1.25 80.18±0.74 68.99± 1.62 50.58± 1.67

KPCA-RP 76.46±2.79 79.64±1.68 68.60± 3.50 49.74± 3.02

Table 4.3: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster Purity
(CP), F-Measure and Normalized Mutual Information (NMI) on UCF101 dataset. The best perfor-
mance is in bold. We refer to Section 4.5.2 for further explanation of each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [139] 97.53± 0.00 12.94± 0.00 7.43± 0.00 27.65± 0.00

LogE [48] 97.89± 0.02 8.21± 0.15 3.62± 0.06 18.68± 0.07

Kernel K-means [40, 76] 97.71± 0.06 15.97± 0.48 8.80± 0.35 32.35± 0.31

KPCA [76, 122] 97.69± 0.02 17.66± 0.33 9.47± 0.19 33.66± 0.18

KGRP 97.90± 0.03 15.38± 0.28 7.40± 0.15 30.96± 0.21

KORP 97.90± 0.02 15.69± 0.28 7.62± 0.17 31.47± 0.17

KPCA-RP 97.89± 0.03 15.66± 0.33 7.59± 0.17 31.38± 0.23
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Table 4.4: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster Pu-
rity (CP), F-Measure and Normalized Mutual Information (NMI) on BRODATZ dataset. The best
performance is in bold. We refer to Section 4.5.2 for further explanation of each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [139] 92.29±0.00 79.05±0.00 74.20± 0.00 75.94± 0.00

SIS [72] 91.42±0.00 76.99±0.00 69.68± 0.00 72.84± 0.00

LogE [48] 92.04±0.78 78.34±2.34 74.10± 2.10 76.13± 1.45

Kernel K-means [40, 76] 93.15±0.95 81.40±2.75 75.62± 2.13 78.19± 1.83

KPCA [76, 122] 93.89±0.22 82.60±1.14 76.64± 0.66 79.44± 0.57

KGRP 93.47±0.78 82.22±2.34 75.84± 1.82 78.49± 1.49

KORP 93.66±0.77 82.58±2.32 76.30± 1.81 79.11± 1.50

KPCA-RP 93.77±0.84 82.81±2.49 76.39± 1.93 79.16± 1.56

Table 4.5: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster Purity
(CP), F-Measure and Normalized Mutual Information (NMI) on KTH-TIPS2b dataset. The best
performance is in bold. We refer to Section 4.5.2 for further explanation of each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [139] 86.99±0.00 49.45±0.00 36.19± 0.00 44.20± 0.00

SIS [72] 80.81±0.00 41.62±0.00 44.45± 0.00 40.47± 0.00

LogE [48] 85.94±0.60 45.19±1.32 33.48± 1.01 40.69± 0.82

Kernel K-means [40, 76] 88.35±0.35 52.59±1.37 41.11± 1.01 51.08± 0.82

KPCA [76, 122] 88.48±0.40 53.38±1.53 41.22± 1.35 50.97± 0.90

KGRP 88.41±0.42 53.15±1.34 40.48± 0.99 49.87± 1.01

KORP 88.36±0.39 53.04±1.10 40.61± 0.93 50.06± 0.92

KPCA-RP 88.35±0.44 53.45±1.35 40.21± 0.91 49.97± 1.09
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Table 4.6: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster Purity
(CP), F-Measure and Normalized Mutual Information (NMI) on HEp-2 Cell ICIP2013 dataset. The
best performance is in bold. We refer to Section 4.5.2 for further explanation of each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [139] 73.96± 0.00 44.02± 0.00 35.69± 0.00 22.65± 0.00

SIS [72] 74.50± 0.00 39.50± 0.00 27.32± 0.00 18.01± 0.00

LogE [48] 74.80± 0.95 46.00± 2.37 34.75± 0.86 23.64± 1.29

Kernel K-means [40, 76] 73.96± 2.14 46.45± 3.30 37.29± 3.29 24.29± 1.95

KPCA [76, 122] 75.74± 2.87 48.48± 1.94 34.23± 2.20 25.29± 0.00

KGRP 75.72± 0.31 49.05± 1.10 34.83± 0.84 25.74± 0.82

KORP 75.63± 0.62 48.70± 2.34 34.73± 1.67 25.49± 1.72

KPCA-RP 75.72± 0.41 48.70± 2.56 34.48± 1.74 25.46± 1.93

Intrinsic K-means gives us reasonable results as it directly works on manifold. Compared to the

intrinsic approach, LogE has a worse performance in most of datasets. An exception is on the Ballet

dataset where the intrinsic approach has a worse Rand Index than the LogE. We conjecture that this is

caused by the failure of the intrinsic algorithm to converge in 100 iterations. Nevertheless, the other

performance metrics such as CP, F-Measure and NMI for the intrinsic approach in this dataset still

show reasonable performance. The worse performance for LogE is due to significant distortion of the

pairwise distance produced when the points are projected into a tangent space. The G-clustering has

a better Rand Index than the intrinsic approach in the Ballet dataset, which is a similar conclusion

drawn in the original work proposing the approach [127]. Note that the measurements for clustering

performance are different from that in [127]. In most cases, the G-clustering is not robust as the

performance of G-clustering measured by CP, F-measure and NMI is usually low. In addition, we do

not report the G-clustering results for the UCF101 dataset, as the K-means does not converge within

a specified amount of time.

We found the performance of our proposed methods does not change significantly, when the

parameters are varied. Figures 4.5 and 4.6 show two examples of the clustering results of KPCA-RP

and KORP with different parameters on the Ballet and HEp-2 Cell ICIP2013 dataset, respectively. We

note that the results on the other datasets also exhibit similar trends. This suggests that the issue raised

in [108], where different parameters may adversely alter the kernel space, may not have significant

effect on our work. We conjecture that this might be due to the selected manifold kernels crafted to

capture the manifold intrinsic structure. However, if in the case where the parameter choice of the

manifold kernel significantly contributes to the clustering results, one could use a randomly selected

small subset of data to perform the parameter search.

The evaluation has clearly shown that our proposal has similar performance to the kernel methods

such as KPCA K-means and Kernel K-means. Indeed, these results alone do not give us much advan-

tage over the other methods. However, we now present the main advantage of our proposal which is

a direct consequence of applying random projection.
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4.5.4 Run Time Comparative Analysis

Table 4.7 presents the average run time of the individual approach on each dataset. One of the striking

observations from this table is that our proposed approaches have very fast run times. In some cases

(i.e., Ballet, UCSD and UCF101 datasets) they outperform the LogE which is expected to be the

fastest method. The bottleneck suffered by LogE in these datasets is from the high dimensionality

of the feature vectors significantly slowing the K-means algorithm. Note that, although the run time

of LogE on Brodatz, KTH-TIPS2b and HEp-2 Cell ICIP2013 dataset is quicker than our proposed

methods, the clustering quality shown in Tables 4.4, 4.5 and 4.6 is much worse than that of ours.

The proposed approaches are considerably faster than the kernel approaches such as KPCA K-

means and Kernel K-means. This is because the proposed approaches only compute the kernel matrix

on a small subset of data points. The benefit will become more pronounced for large datasets such

as KTH-TIPS2b, UCF101 and HEp-2 Cell ICIP2013 datasets where our proposed approach achieves

57.5 (i.e., 675.75
11.75

≈ 57.5), 19.8 (i.e., 2019.55
101.87

≈ 19.8) and 122.5 times (i.e., 2172.87
17.73

≈ 112.5) speed up,

respectively. Thus, the proposed approaches will contribute significantly to the clustering of large

amount of images or video data for practical applications.

The speed up gained by the proposed approaches is attributed to the effect of applying random

projection into a reduced projection space. The proposed approaches also have additional advantages

over the kernel approaches as they do not need to compute the kernel matrix on the entire dataset.
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Figure 4.5: Clustering quality of the proposed KPCA-RP when the kernel parameter β was varied
on the Ballet dataset. The clustering quality is measured by: Rand Index (RI), Cluster Purity (CP),
F-Measure and Normalized Mutual Information (NMI).
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Figure 4.6: Clustering quality of the proposed KORP when the parameter β is varied on the HEp-2
Cell ICIP2013 dataset. The clustering quality is measured by: Rand Index (RI), Cluster Purity (CP),
F-Measure and Normalized Mutual Information (NMI).

In addition, we analyse the computational complexity of each method in Table 4.8. In general,

each method has two main steps: (1) Data pre-processing and (2) K-means steps. Data pre-processing

may include kernel computation and/or projection. Whilst, K-means step comprises cluster member-

ship and cluster mean computations. In Intrinsic K-means, the pre-processing step is not required.

To calculate mean of each cluster, one need to use the intrinsic mean, denoted Riemannian centre

of mass [80, 110] that requires multiple iterations to converge. The intrinsic distance is also used

for membership computation. For LogE, each manifold point needs to be projected onto the Log-

Euclidean space. This projection is done once. Then, K-means is applied in the Log-Euclidean space.

The computational complexity of KPCA and Kernel K-means follows quadratic and cubic growth,

respectively. However, our proposed methods have linear growth, as the number of data points, n, is

much bigger than the size of subset, p. This further corroborates the results presented in Table 4.7.

4.5.5 Further Analysis

In this section, we analyse the parameters contributing to the performance and run time of the pro-

posed methods. Due to space limitations, we only show the performance measured by RI and CP. Note

that the performance measured by F-Measure and NMI also follows the same trends. An obvious pa-
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Table 4.7: The run time (in seconds) of the approaches on each dataset. Lower run time is better. As
in each iteration of K-means, the run time is extremely similar, we report the average run time of each
approach without variance. The datasets presented in the first three columns (i.e., Ballet, UCSD and
UCF101) are modelled in Grassmann manifolds, whilst the other three (i.e., Brodatz, KTH-TIPS2b
and HEp-2 Cell ICIP2013 (shorten as Cell)) are modelled in SPD manifolds. The last three rows are
the proposed approaches. SIS and G-clustering are only applicable for SPD manifolds and Grassmann
manifolds, respectively. We refer to Section 4.5.2 for further explanation of each approach.

Methods/Dataset Ballet UCSD UCF101 Brodatz KTH-TIPS2b Cell

Intrinsic [139] 3966.49 1990.02 1.64× 105 24.63 938.95 564.49

SIS [72] N/A N/A N/A 4.77 60.43 185.81

LogE [48] 3.35 1.55 9088.11 0.15 4.85 2.32

G-clustering [127] 2.81 0.74 N/A N/A N/A N/A

Kernel K-means [40, 76] 1.06 0.70 2019.55 22.57 675.75 2172.87

KPCA [122, 76] 1.47 0.73 6.11× 104 22.42 699.34 2881.10

KGRP 0.51 0.53 238.64 7.08 14.61 21.95

KORP 0.58 0.49 101.87 7.03 11.75 17.73

KPCA-RP 0.60 0.49 102.79 7.75 12.28 17.73

Table 4.8: Computational Complexity of the approaches on each dataset. The dimensionality of SPD
and Grassmann points is d × d and q × d, respectively. For convenience, G is used to represent
Grassmann manifold in this table. Note that: n is the number of points; m is the number of clusters;
` is the number of iterations of K-means; `kar is the number of iterations of the Riemannian centre
of mass; b is the dimensionality of the random projection space generated by KGRP and p is the
dimensionality of the random projection space generated by KORP and KPCA-RP (p = |S|).

Compute Compute Compute Compute Overall
Kernel Projection Mean Membership Complexity

Intrinsic(SPD) [139] N/A N/A O(``karnd
3) O(`nmd3) O(``karnd

3 + `nmd3)

Intrinsic(G) [139] N/A N/A O(``karn(qd2 + d3)) O(`nm(qd2 + d3)) O((``karn+ `nm)(qd2 + d3))

SIS [72] N/A O(nd3) O(`nd2) O(`nmd3) O(`nmd3)

LogE(SPD) [48] N/A O(nd3) O(`nd2) O(`nmd2) O(nd3 + `nmd2)

LogE(G) [48] N/A O(nqd2) O(`nqd) O(`nmqd) O(nqd2 + `nmqd)

G-clustering [127] O(n2) O(n3) O(`n2) O(`n2m) O(n3 + `n2m)

Kernel K-means [40, 76] O(n2) N/A N/A O(`n2m) O(`n2m)

KPCA [122, 76] O(n2) O(n3) O(`n2) O(`n2m) O(n3 + `n2m)

KGRP O(np) O(p3 + np2) O(`npb) O(`nmb) O(np+ p3 + np2 + `nmb)

KORP O(np) O(p3 + np2) O(`np) O(`nmp) O(np+ p3 + np2 + `nmp)

KPCA-RP O(np) O(p3 + np2) O(`np) O(`nmp) O(np+ p3 + np2 + `nmp)
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Figure 4.7: The Rand Index (in %) of the proposed approaches when the size of set S is progressively
increased on the KTH-TIPS2b dataset. KGRP: Kernelised Gaussian Random Projection; KORP:
Kernelised Orthonormal Random Projection; KPCA-RP: Kernel PCA based Random Projection.

rameter is the projected space dimensionality, k. When k is small, each data point will be represented

in a much smaller feature vector, resulting in faster K-means clustering processes. Another parame-

ter is |S|, the size of set S which determines the run time of the kernel matrix computation. As |S|
gets larger, it takes longer to compute the kernel matrix. Smaller |S| gives more advantage to the

proposed methods over the kernel approaches such as Kernel K-means and KPCA that require kernel

computation on the entire data points. We note that k and |S| have an interesting relationship. More

precisely, for KORP and KPCA-RP, |S| determines the projected space dimensionality, k. Therefore,

it is desirable to make |S| as small as possible whilst still preserving as much of the pairwise distance.

In contrast to KORP and KPCA-RP, KGRP separates the projected space dimensionality to |S|.
Nevertheless, we found that |S| still plays an important role in the overall system performance. To

verify this, we vary |S| on the KTH-TIPS2b. As we can see from Figures 4.7 and 4.8, the performance

of the proposed approaches increases as |S| is progressively increased. The performance increase

stops when |S| reaches a particular value. In this analysis we also found that the performance of

KORP and KPCA-RP is markedly better than KGRP when |S| is considerably small. A possible

reason is that the CLT requires the set S to have a minimum number of elements (normally 30) in

order to make the theorem applicable.
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Figure 4.8: The Cluster Purity (in %) of the proposed approaches when the size of set S is pro-
gressively increased on the KTH-TIPS2b dataset. KGRP: Kernelised Gaussian Random Projection;
KORP: Kernelised Orthonormal Random Projection; KPCA-RP: Kernel PCA based Random Projec-
tion.

The above observation suggests the following facts about |S|:

• |S| determines the run time for all the proposed approaches (i.e., on the kernel computation);

• |S| also contributes to the K-means run time for KORP and KPCA-RP;

• The lower bound of |S| in the KGRP is related to the lower bound of the CLT and (4) the lower

bound of |S| for KORP and KPCA-RP is related to the lower bound of k.

The JL-Lemma relates k to the total number of data points, n (refer to Lemma 4.3.1). This

relationship seems unfavourable for KORP and KPCA-RP as this would mean |S| increases as n in-

creases. Fortunately, Lemma 4.4.1 and Theorem 4.4.3 suggest that k is related to the margin between

classes. This means that we now need only consider the separating margin to select |S|. To further

corroborate this empirically, we apply the proposed approaches by varying the dataset size of the

KTH-TIPS2b. We assume that the margin is relatively unchanged though the dataset size is varied.

More precisely, we first fix |S| for each proposed approach. Then we randomly select the data points

from the KTH-TIPS2b to create a smaller version of the dataset. The proposed approaches are applied

on these smaller subsets of the dataset. Note that although |S| is fixed, we still select the elements

of S from the given subset. The results shown in Figures 4.9 and 4.10 suggest that the proposed
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Figure 4.9: The Rand Index (in %) of the proposed approaches, Kernel K-Means and KPCA applied
on subsets of KTH-TIPS2b with various sizes. We fix |S| for all subsets.

0

10

20

30

40

50

60

70

80

90

110 550 1100 2200 3300 4752

C
lu

st
er

aP
u

ri
ty

a(
in

aG
)

Numberaofadataapoints

KernelaK-means KPCA KGRP KORP KPCA-RP

Figure 4.10: The Cluster Purity (in %) of the proposed approaches, Kernel K-Means and KPCA
applied on subsets of KTH-TIPS2b with various sizes. We fix |S| for all subsets.

approaches still have on par performance with both Kernel K-means and KPCA K-means, suggesting

that |S| relates to the margin separation between classes.
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4.6 Experimental Results on Classification Tasks

We note that our random projection framework also can be used for classification tasks, where one

can randomly select the subset S from the training data to generate the random hyperplanes. Then

one can project all the training and test data onto the random projection space spanned by S. In the

random projection framework, the random hyperplanes can be generated by standard Gaussian distri-

bution (KGRP) and orthonormal projections (KORP and KPCA-RP). From the experimental results

in Section 4.5, KGRP is inferior to KORP and KPCA-RP when |S| is extremely small. KORP and

KPCA-RP always performed similar. we simply choose KORP to test the orthonormal hyperplanes on

the classification tasks. To verify the efficiency of the random projection framework on classification,

we validate our proposed method on two applications: gait-based gender recognition using CASIAB

dataset [165] and action recognition using UT-Tower dataset [29].

In the experiments, each video of the datasets is considered as an image set which can be effec-

tively modelled as one point on the Grassmann manifold. We introduce the datasets and experimental

settings as the following.

4.6.1 Datasets and Feature Extraction

CASIAB gait dataset (CASIAB) — This dataset contains 124 individuals (93 males and 31 females).

The gait of each subject was captured from 11 viewpoints (refer to Figure 4.11). There are several

video sequences from each subject under one of the 11 viewing angles. Every video is represented

by a Gait Energy Image (GEI) [23] of size 32 × 32. The subspaces of order 3 in each Grassmann

manifold point are generated from the Singular Value Decomposition (SVD) of 11 GEIs with different

viewpoints. In total, we generate 731 points on G1024,3. Note that the aim of our experiment is

different to the previous work in [94, 168]. In this chapter, the classification task for this dataset is

a two-class problem, gait-based gender recognition. We randomly select 10 male and 10 female as

training data. The remaining individuals are used for testing. The experiment is repeated 10 times

and the average accuracy and run time are reported.

UT-Tower action dataset (UT-Tower) — This dataset consists of 108 video sequences with a frame

resolution of 360 × 240 and a frame rate of 10fps (refer to Figure 4.11). Each of the 9 actions is

performed 2 times by 6 individuals, so there are 12 video sequences per action category. For each

sequence, we extract 2 Grassmann points. To that end, each sequence is divided into two groups of

frames: the first-half and second-half groups. For each group, we downsize the frames to 16 × 16

and then generate one Grassmann point on G128,8 by performing the SVD on the normalised pixel

intensities of 8 video frames. Thus, there are 216 Grassmann point in total. For the evaluation, we

use the standard protocol of this dataset: leave-one-out cross validation where the points from one

randomly selected individual are used for testing and the remaining points from the other five indi-

viduals are used for training. We randomly select the elements of S used for generating hyperplanes

from the training data. In addition, we ensure that the set S has elements belong to the first-half and

second-half groups. The average accuracy and run time are reported.
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4.6.2 Experimental Settings

To evaluate the discriminative power of the orthonormal space generated by the proposed method, we

use three popular classifiers: Nearest Neighbour (NN), Support Vector Machine (SVM) and Sparse

Representation-based Classifier (SRC) [159]. The proposed orthonormal space is compared with the

four types of space:

• Intrinsic space: the intrinsic manifold using the geodesic distance [3];

• Log-Euclidean space: the tangent space at the identity point [139];

• RKHS: the Reproducing Kernel Hilbert Space generated by manifold-based Kernel defined in

Eqn. (2.13) [65];

• ROSE: a random projection space generated by standard Gaussian hyperplanes [5].

For KORP and ROSE, we repeat the experiment 10 times, and average accuracy and run time are

reported. Each time, we randomly select 80 points for CASIAB dataset and 90 points for UT-Tower

dataset to generate the hyperplanes. Thus, the dimensionality of the projected space is 80 and 90

respectively. In the RKHS, we used the kernelised classifiers: Kernel SVM [19, 76] and Kernelised

SRC [53]. We use the Kernel presented function in Eqn. (2.13) for both proposed and kernelised

methods.

4.6.3 Comparative Analysis

Table 4.9 reports the classification accuracy and the run time of the proposed and several recent meth-

ods. The NN in the intrinsic space which is directly working in the manifold, achieves reasonable

accuracy. However, the accuracy of NN are generally much worse than the other classification ma-

chineries such as SVM and SRC. The methods that in the Log-Euclidean space which is generated by

Figure 4.11: Top row: Examples from CASIAB gait dataset [165]. Bottom row: Examples from
UT-Tower action dataset [29].
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Table 4.9: The average classification accuracy (in %) and run time of the approaches on each
dataset. Intrinsic: Intrinsic manifold using Geodesic distances [3]; Log-Euclidean: Log-Euclidean
space [139]; ROSE: random projection space with standard Gaussian hyperplanes [5]; RKHS: Repro-
ducing Kernel Hilbert Space generated by manifold-based Kernel defined in Eqn. (2.13) [65]; KORP:
our proposed method.

CAISAB UT-Tower
Methods Accuracy Run time Accuracy Run time

Nearest Neighbour
Intrinsic 85.70% 4.32 85.65% 0.33

Log-Euclidean 75.81% 14.73 29.17% 0.03

ROSE 84.76% 1.76 81.72% 0.06

KORP without orthogonality 85.18% 1.89 85.83% 0.06

KORP(proposed) 86.37% 2.11 86.86% 0.06

Support Vector Machine (SVM)
Log-Euclidean 87.25% 13.58 47.22% 0.03

RKHS 93.97% 3.60 90.28% 0.11

ROSE 92.40% 1.89 89.62% 0.06

KORP without orthogonality 89.16% 1.88 88.94% 0.06

KORP(proposed) 93.85% 1.86 91.99% 0.06

Sparse Representation Classification (SRC) [159]
Log-Euclidean 85.41% 104.94 43.52% 24.89

RKHS 94.90% 385.30 90.74% 28.37

ROSE 92.94% 104.62 90.80% 14.85

KORP without orthogonality 90.75% 33.97 92.36% 11.24

KORP(proposed) 92.97% 67.85 92.45% 14.45

flattening the manifold at the identity point perform poorly due to the distortion of the global manifold

structure. Compared to the random projection space generated by ROSE [5], the proposed orthonor-

mal space offers more discriminatory power especially on UT-tower dataset. We conjecture that

orthonormal hyperplanes in KORP are more discriminative than the Gaussian hyperplanes generated

by ROSE. To evaluate the contribution of the orthonormalisation step, we also report the performance

of KORP without that step. Results show that the orthonormalisation process improves the perfor-

mance distinctly in most cases. The kernelised classifiers in the RKHS obtain appealing accuracy

since RKHS usually offers much more discriminative power with infinite features. Likewise, using

linear classifiers on the random orthonormal space, KORP achieves a close match of accuracy to ker-

nelised classifiers in the RKHS. This suggests that one can replace the complex kernelised classifiers

with much simpler linear ones via the proposed KORP. Additionally, we find that the performance of

KORP is not susceptible to different selections of elements in S. The standard deviations of KORP
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accuracy (over the 10 repetitions) on CAISAB for NN, SVM and SRC respectively: are 1.97%, 0.72%

and 0.39%; UT-Tower: 1.94%, 1.49% and 1.57%.

To further verify the advantage of our proposed method, we also report the run time of each

approach in Table 4.9. The run time in the Log-Euclidean space highly depends on the dimensionality

of the Grassmann points. Note that the manifold dimensionality of CASIAB and UT-Tower dataset is

G1024,3, G128,8. Thus, algorithms in the Log-Euclidean space for CASIAB dataset are much slower

than UT-Tower dataset. Compared to the Log-Euclidean and ROSE, our proposed method KORP

requires similar or slightly longer run time in some cases, however, it generally achieves much better

accuracy. In contrast to the kernelised classifiers in the RKHS whose accuracy are comparable with

ours, we find that our proposed method achieves significant speed up, which is nearly 3-fold on

average. Thus, our proposed method offers an excellent trade-off between accuracy and run time;

important factors for video surveillance applications.

4.7 Summary

In this chapter, we proposed a novel framework with random projection to tackle the learning prob-

lems over Riemannian manifolds. Based on the framework, we presented three random projection

methods for manifold points: KGRP, KORP and KPCA-RP. Through experiments on several com-

puter vision applications, we demonstrated that our proposed framework achieved significant speed

increases while maintaining clustering performance in comparison to the other conventional meth-

ods such Kernel K-means. Furthermore, we analysed the parameters that impact the performance

and run time of our proposed methods. As the random projection framework can also be used for

the classification tasks, we additionally tested our proposed methods on several classification appli-

cations, which also exhibited significant speed up without obvious accuracy loss comparing to the

kernelised classifiers. Chapter 5 continues by proposing the convex hull framework that following the

Component-2 in the manifold scheme (refer to Figure 3.1).
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Chapter 5

Convex Hull on Symmetric Positive Definite
Manifolds

You can never solve a problem on the

level on which it was created.

Albert Einstein

Chapter Summary: To improve the performance and computational time of geodesic

nearest neighbour, we extend the Euclidean convex hull model to the manifold. Also, fast

approximated solutions to the nearest convex hull problem in manifold are proposed.

5.1 Overview

In this chapter, we extend the nearest convex hull classification method to Symmetric Positive Def-

inite (SPD) manifolds. Specifically, we first review the nearest convex hull classifier in Euclidean

space. Then, we present the proposed nearest convex hull classifier over SPD, which utilises a novel

mathematical framework, named Manifold Convex Hull (MACH). To solve the optimisation problem

posed by the MACH, we propose three solutions. The intrinsic solution MACH-1 achieves superior

performance than several recent methods. To further solve the computational issue of MACH-1, we

propose approximated solutions MACH-2 and MACH-3, which possess lower computational load

without significant accuracy loss.

5.2 Introduction

SPD manifold features have been shown to have excellent performance in a number of image/video

classification tasks. Unfortunately, SPD manifolds naturally possess non-Euclidean geometry, so

existing Euclidean machineries cannot be used directly. The simplest yet most popular classifier in

SPD manifolds is the Geodesic Nearest Neighbour. This chapter studies possible ways to improve
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Y

Figure 5.1: Illustration of the proposed Manifold Convex Hull (MACH) approach. Given a set of
SPD points S, we construct a convex hull by the convex combinations of these points under certain
conditions. To classify a SPD point Y , we compute the smallest distance between the convex hull
and the point Y . This distance can be viewed as the distance between the point Y and X̃ which is
generated from a convex combination of points in S.

the accuracy and computational complexity of the Geodesic Nearest Neighbour. As discussed in

Section 5.3.2, the Geodesic Nearest Neighbour suffers from various issues.

One possible option to address the classification issues is by modelling a set of points over the

manifold as a convex hull, which has been successfully applied in the Euclidean space [25, 30, 73,

106, 115, 169]. A convex hull models all possible convex linear combinations of the samples in a

hull, which is shown to be less sensitive to noise [25]. However, due to the non-linear topological

structure, it is not clear how to perform convex hull analysis over the manifolds.

In this chapter, we propose to perform convex hull analysis on the SPD manifolds. To our knowl-

edge this is the first time convex hull analysis is studied in the context of SPD manifolds.

We propose convex hull analysis on the SPD manifold by the following:

• We present a novel mathematical framework, here called Manifold Convex Hull (MACH) to

solve classification tasks on manifolds; especially, we define the convex combinations and the

nearest convex hull distance over the SPD manifold;

• We propose three optimisation methods MACH-1, MACH-2 and MACH-3 for the proposed

framework.

• In the experiments, we show that the proposed nearest convex hull classifiers significantly out-

perform the other intrinsic classifiers and have competitive performance to the state-of-the-art

methods.

5.3 Nearest Convex Hull Classification in Euclidean Space

In this section, we will first provide a brief introduction of convex hull model in the Euclidean space.

Then the conventional formulation for nearest convex hull classification will be presented.
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5.3.1 Convex Hull Model

Given a set of points S = {xi}Ni=1, xi ∈ Rd, the convex hull model of S, is the intersection of

all half-spaces which contain S. Alternatively speaking, the convex hull of S includes all convex

combinations of S. One can construct a convex hull C by:

C =

{
N∑
i=1

wixi

}
,
N∑
i=1

wi = 1, wi ≥ 0. (5.1)

The convex hull distance of a point y to the set S is defined as the minimal distance of y to any point

in the convex hull C constructed from S by the following:

d2
cvx(y,S) = min

x̃∈C
||y − x̃||22 (5.2)

= min
wi

||y −
N∑
i=1

wixi||22,

s.t.
n∑
i=1

wi = 1 ,wi ≥ 0, i = 1, 2, ..., n .

The solution to the above optimisation problem is the closest distance between x̃ =
∑N

i=1wixi, that

belongs to the convex set generated from S , and the query point y.

The convex hull model has been widely used in numerous real world applications, for instance,

geographical information systems, robot navigation and micromagnetic modelling [12]. In the com-

puter vision community, convex hull model can also be used to address classification problems [25,

30, 73, 115, 169].

5.3.2 Nearest Convex Hull Classification

To tackle the classification tasks using convex hull model, each class is modelled as the smallest con-

vex set representing the distribution of the training data [106]. Jiang et al. [115] and Zhou et al. [169]

used the convex hull of all points in each class to represent the class. On the other hand, Vin-

cent et al. [149] proposed to use k-local convex hulls of each class. Recently, the convex hull model

also shows superior performance for image set classification tasks [25, 30, 73], in which one can use

geometric distances to compare the sets. Some properties of the nearest convex hull classifiers are

attractive [25, 115]:

• Similar to the nearest neighbour classifier, the nearest convex hull classifier assigns the label of

the test point to a given class without any information from other classes;

• It is robust to the noise and less sensitive to small number of training samples;

• Convex hulls are affine invariant— this means the models do not change when affine transfor-

mation is applied on their samples;
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• Compared to the nearest neighbour classifier, the convex hull classifier provides infinite samples

that constructed by linear combinations of training samples, whereas nearest neighbour only

uses a limited training set;

• Compared to SVM, the convex hull classifier can be directly used for multi-class problems —

SVM usually needs to decompose multi-class problems into many two-class problems.

For a m-class classification problem, let y be a query and Si be the set of samples from i-th class,

the classifier finds the nearest convex hull as follows:

min
i

d2
cvx(y,Si) , i ∈ {1, ...,m} . (5.3)

The nearest convex hull classifier is similar to the nearest neighbour classifier, although there is a

difference in how the training samples are represented. In the nearest neighbour classifier, the training

samples are represented explicitly, whereas in the nearest convex hull classifier, most of training

samples are implicitly represented by convex combinations of the set of training samples.

5.4 Manifold Convex Hull (MACH) for SPD Manifold

In this section, we propose the MAnifold Convex Hull for SPD manifold (MACH). First, the for-

mulations related with manifold convex hull are introduced. Then we further provide three practical

solutions to use convex hull for classification tasks on SPD manifolds.

5.4.1 Formulations for Manifold Convex Hull

As mentioned in Section 5.3.1, the convex hull of a set of points S in Euclidean space can be con-

structed by the intersection of all half-spaces that contain S. However, It is not trivial to generalise

this convex hull construction process to the SPD manifold due to the space curvature. SPD manifolds

generally do not admit half-spaces.

Fortunately, one can use the horoball as the replacement of half-space on the SPD manifolds [51].

The horoball is a ball fixed at a point, whose radius is allowed to grow to infinity. In Euclidean space,

the horoball actually produces a half-space passing through the fixed point. In SPD manifold, the

horoball is not flat due to the curvature of this space. However, it is guaranteed to be convex and

closed, acting as an effective proxy for the half-space to define the construction of the convex hull in

SPD manifolds. To that end, according to Fletcher’s work [51], we can use the following theorem to

present the existence of convex hull in the SPD manifold.

Theorem 5.4.1 Given a group of points S on the SPD manifold, S = {X i}Ni=1, X i ∈ Sym+
d , the

intersection of all horoballs containing S would yield a ball hull. The ball hull can be regarded as a

generalisation of Euclidean convex hull to SPD manifolds.

Proof. We refer the readers to [51] for the proof of this theorem.
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Remarks. Figure 5.2 illustrates how the horoballs can be used to construct a ball hall. The above

theorem shows that this concept can be generalised into the SPD manifold.

To use the convex hull as a geometric tool to perform the classification tasks, there are two issues

to be addressed: (1) how to the mathematical definition of the convex hull model on SPD manifolds,

and (2) for a query point Y , how to compute the distance between Y and the convex hull model.

Following the convex hull conception in Euclidean space, we first give the general mathematical

definition of convex hull on SPD manifolds as follows:

Definition 5.4.2 The convex hull model of a group of points S = {X i}Ni=1, X i ∈ Sym+
d , is all the

convex combinations of these points and formulated as:

CSPD =
N⊕
i=1

wiX i , (5.4)

where wi ∈ R and
⊕

is the convex combination operator over SPD manifolds.

The definitions of convex combination operator in a metric space can be found in Terán’s work [135].

Specially, for SPD manifolds, we can represent a convex combination of the given points by the

results minimising a weighted sum of squared distances [54, 135]. Thus, the convex hull model then

can be illustrated using the following theorem:

Theorem 5.4.3 The weighted sum of squared distances allows the construction of the convex hull

CSPD for the group of points S = {X i}Ni=1,X i ∈ Sym+
d :

CSPD =

{
X̃|∀X̃ ∈ arg min

X̃

N∑
i=1

wid
2
g(X i, X̃), s.t.

N∑
i=1

wi = 1, wi ≥ 0

}
, (5.5)

where dg is the geodesic distance and wi ∈ R is the weight of the i-th pointX i.

Figure 5.2: An illustration of a ball hull constructed by the intersection of horoballs [51].
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Proof. We refer the readers to [54] for the proof of this theorem.

This theorem shows that the convex hull of S is the set of all X̃ that minimised the weighted

sum of squared distances to each point X i within S . After we present the mathematical definition of

convex hull in SPD manifold, we then need to define how to compute the distance between a query

point Y and a convex hull model CSPD.

Note that the convex hull is the smallest convex set including the given set of points. The distance

between a query point Y and a convex hull model CSPD can be defined as the geodesic distance from

a point to a convex set in the manifold [145]:

dcvx
2(Y , CSPD) = min dg

2(Y , X̃),∀X̃ ∈ CSPD . (5.6)

Eqn. (5.6) states that the distance between a query point Y and a convex hull model CSPD is the

smallest geodesic distance between Y and points in CSPD.

Now, we are ready to define the nearest convex hull classifier on SPD manifolds. Similar to

Euclidean space, given a m-class classification problem, the nearest convex hull classifier on SPD

manifolds can be formulated as:

F (i) = min
i

d2
cvx(Y , CiSPD) , (5.7)

where CiSPD defined in Eqn. (5.5), is the convex hull model for training class i (i = 1, ...,m,, where m

is the number of classes). To classify a query point Y , Y ∈ Sym+
d , one need to compute the distance

between Y and each convex hull CiSPD. Finally, the query point Y would be assigned the label of the

training class wherein the distance between the convex hull CiSPD and Y is the nearest.

In the following sections, we present three solutions to address the above optimisation problems.

Specifically, we first present a solution that intrinsically solved the convex hull classification problem

on SPD manifolds. Then, for the consideration of efficiency, we propose two approximate solutions

based on different relax conditions.

5.4.2 Convex Hull Distance Based on Riemannian Centre of Mass — MACH-1

To solve the optimisation problem in Eqn. (5.7), one need to compute the distances between the query

point Y and all the convex hull models for the dataset. To that end, as defined in Eqn. (5.6), one need

to find the point X̃ that from the convex hull model, which has the minimum distance with the query

point Y . where X̃ is defined in Eqn. (5.5). If the weights {wi}Ni=1 is fixed to some certain values, X̃

will become a weighted Riemannian centre of mass of the given group of points [105]. Thus, convex

hull model defined in Eqn. (5.5) contains all the possible weighted Riemannian centre of mass of the

group of points, which is generated by varying the weights {wi}Ni=1.
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According to the solution of weighted Riemannian centre of mass that adapted the Gauss-Newton

scheme [111], to obtain the nearest point X̃ , the following equation can be achieved in the t-th

iteration of the optimisation process:

X̃ t+1 = expX̃t
(
N∑
i=1

wi logX̃t
(X i)) (5.8)

When the convergence reaches, it implies X̃ t+1 ≈ X̃ t. Thus,

N∑
i=1

wi logX̃t
(X i) ≈ 0 (5.9)

Since X̃t is the nearest point to the query point Y , one can approximately replace X̃t with Y in

Eqn. (5.9). This implies that the sum of the tangent vectors
∑N

i=1wi logY (X i) should be closed

to zero. For the sake of notational simplicity, we use Li = logY (X i), which is the Riemannian

logarithmic map logY (X i) :M 7→ TY (M) given by:

logY (X i) = Y
1
2 log(Y −

1
2X iY

− 1
2 )Y

1
2 (5.10)

where log denotes the matrix logarithm. Therefore, we actually can use the following objective func-

tion to compute the distance between Y and the convex hull model CSPD:

d2cvx(Y , CSPD) = d2
g(Y, X̃)

≈ min
{wi}Ni=1

N∑
i=1

w2
i ||Li||2Y

= min
{wi}Ni=1

N∑
i=1

w2
i Tr(Y −1LiY

−1Li)

= min
{wi}Ni=1

N∑
i=1

Tr(Y −1wiLiY
−1wiLi)) ,

s.t.

N∑
i=1

wi = 1 ,wi ≥ 0, i = 1, 2, ..., n . (5.11)

where || · ||Y denotes the norm induced by the inner product on TY (M) and Li = logY (X i) that can

be computed by Eqn. 5.10. The optimisation can be addressed by the nonlinear programming solver

presented in [22].

5.4.3 Convex Hull Distance Based on a Confined Set — MACH-2

Solving the optimisation in Eqn. (5.11) can be computational expensive. To speed up the optimi-

sation process, we propose an approximate solution by relaxing the construction conditions of the
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convex hull model in Eqn. (5.5). Our approximation is based on the following propriety of weighted

Riemannian centre of mass (refer to [85] for proof):

X̃ = arg min
X̃

N∑
i=1

wid
2
g(X i, X̃) �

N∑
i=1

wiX i (5.12)

Thus, one can utilise
N∑
i=1

wiX i as a relaxed construction of the convex hull model CSPD. However, to

ensure the distance function:

d2cvx(Y , CSPD) = min
{wi}Ni=1

d2g(Y ,
N∑
i=1

wiX i) , (5.13)

to be convex, one need further narrow down the set representing the convex hull model to the follow-

ing set:

A :=

{
w|

N∑
i=1

wiX i � Y ,
N∑
i=1

wi = 1 ,wi ≥ 0

}
. (5.14)

This means that the approximated convex hull model can be constructed by only using the weighted

linear combinations of samples which under-determine the query point Y .

For the convexity proof of the function in Eqn.(5.13), we refer readers to [31]. Note that, the

difference between our work and the work in [31] is that we restrict the sum of wi equals one and the

optimization is based on each class. These two points are the essential requirements of convex hull

that gives us much better performance comparing with [31].

Following [31], to solve the above optimization problem on this restricted set, we first rewrite the

objective function in Eqn. (5.13) by settingM =
N∑
i=1

wiX i:

f(w) = d2g(Y ,
N∑
i=1

wiX i)

= || log(Y −
1
2MY −

1
2 )||2F

= tr
{

log(Y −
1
2MY −

1
2 )> log(Y −

1
2MY −

1
2 )
}

, (5.15)

wherew is an N-dimensional vector whose elements are the set of convex linear combination weights

{wi}Ni=1 and tr is the matrix trace. Then the partial derivative of the above function can be defined as

follows:

∂ f

∂wi
=2 tr

{
log(Y −

1
2MY −

1
2 )(Y −

1
2MY −

1
2 )−1

×∂(Y −
1
2MY −

1
2 )

∂wi

}
,
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where

∂(Y −
1
2MY −

1
2 )

∂wi
= Y −

1
2
∂M

∂wi
Y −

1
2

= Y −
1
2XiY

− 1
2 .

(5.16)

Substituting Eqn. (5.16) to Eqn. (5.16), we get the following expression:

∂ f

∂wi
= 2 tr

{
log(Y −

1
2MY −

1
2 )Y

1
2M−1X iY

− 1
2

}
. (5.17)

We use a gradient-projection scheme that essentially performs the iteration:

wk+1
i = P

[
wki − λk

∂ f

wki

]
,

s.t.
N∑
i=1

wi = 1 ,wi ≥ 0, i = 1, 2, ..., n, wi ∈ A ,
(5.18)

where P is the projection function operator defined via:

P(w) ≡ w 7→ arg min
w′

1

2
‖w′ − w‖22, w′ ∈ A . (5.19)

In the implementation, we use the Spectral Projected Gradient method (SPG) [17] implemented

by Schmidt et al. in [121]. We name this proposed solution as MACH-2.

5.4.4 Convex Hull Distance Based on LE Metric— MACH-3

The geodesic distance defined in Eqn. (2.5) can be computational expensive. Thus, for the third

solution, we consider to use approximate metric to compute the distances for Eqn. (5.6) and Eqn. (5.5).

Specifically, we use the Log-Euclidean (LE) metric defined in Eqn. (2.6). The advantage of using LE

metric is that the calculation could be hundreds of times faster. Also, the weighted mean computed by

LE metric have been proven to be similar or even equal to the Riemannian centre of mass X̃(defined

in Eqn. (5.5)) in some cases [10]. This fact guarantees that our approximation does not severely affect
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the accuracy of the convex hull classifier. We named this solution as MACH-3, where the optimisation

problem in Eqn. (5.6) can be rewritten as:

d2cvx(Y , CSPD) = min
{wi}Ni=1

∥∥∥∥∥log(Y )−
N∑
i=1

wi log(Xi))

∥∥∥∥∥
2

F

= min
{wi}Ni=1

[(logY · logY )

− 2
N∑
i=1

wi(logY · logX i)

+
N∑
i=1

N∑
j=1

wiwj(logX i · logXj)] , (5.20)

where log is the matrix logarithm, log(X) can be thought as embedding the manifold points onto a

tangent space which has Euclidean geometry. We also apply the convexity constraints
∑N

i=1wi = 1

and wi ≥ 0 to the above optimisation problem. Since Euclidean geometry applies in the space

generated by the LE metric, we can simply vectorise the pointA = log(X) [111] as:

Vec(A) = [a1,1,
√

2a1,2, a2,2,
√

2a1,3,
√

2a2,3, a3,3,

...,
√

2a1,d, ...,
√

2ad−1,d, ad,d]
> .

(5.21)

Also, the term logY · logY in Eqn. (5.20) is constant and can be excluded from Eqn. (5.20). Finally,

the optimisation problem is rewritten as:

min
w
w>Dw − 2 Vec(logY )D

s.t. e>w = 1,w ≥ 0 ,
(5.22)

whereD = [Vec(logX1) · · ·Vec(logXn)], e = [1 · · · 1]>. The above problem is a quadratic optimi-

sation problem which can be solved using a standard quadratic programming solver.

5.5 Experimental Results

We evaluated the proposed manifold convex hull on four computer vision applications:

• Traffic scene classification using UCSD traffic dataset [26];

• Object recognition using ETH80 object dataset [86];

• Texture classification using Brodatz dataset [116];

• Person re-identification using ETHZ dataset [46].

For our comparisons, we considered three baseline classifiers on SPD manifolds: (1) Geodesic

Nearest Neighbour (Geo-NN); (2) Kernel SVM (KSVM); and (3) Sparse coding (SPD-Sc).
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Geo-NN — We used the intrinsic geodesic distance as presented in Eqn. (2.5).

KSVM— An effective implementation of KSVM, LibSVM [28], was used in conjunction with the

Stein divergence kernel [132] which has excellent performance for SPD manifolds [67].

SPD-Sc — Sparse coding with SPD points. Here, the state of the art solution of SPD sparse coding

proposed in [31] was used. Once the sparse coefficients were determined, the sparse coding classifier

proposed in [159] was used as the classifier.

To further demonstrate the effectiveness of our framework, we also present comparisons with a

number of recent methods on each dataset.

5.5.1 Traffic Scene Classification Using UCSD Dataset

The UCSD traffic dataset [26] comprises 254 video sequences collected from the highway traffic

in Seattle over two days (see Figure 5.3 for examples). It contains a variety of traffic patterns and

weather conditions (i.e.,, overcast, raining, sunny). There are three different classes:

• Heavy traffic (44 sequences);

• Medium traffic (45 sequences);

• Light traffic (165 sequences).

Each frame in each sequence was downsized to 140 × 161 pixels and further normalized by sub-

tracting the mean frame and dividing the variance. Then, we applied the two dimensional Discrete

Cosine Transform (DCT) on the frame and used the DCT coefficients as the feature vector for each

frame. In the consideration of successive frame variation of each sequence, we generated the SPD

manifold features by computing the covariance matrix of 15 successive frames in each video se-

quence. In particular, the selection was random and repeated 10 times.

We compare the performance of our convex hull methods, MACH-1, MACH-2 and MACH-3 with

the baselines, Geo-NN, KSVM and SPD-Sc. Table 5.1 shows our methods outperform all of these

baselines. In addition, Table 5.1 also presents the performance of the recent methods such as Linear

Dynamical Systems model (LDS) [120], Compressive Sensing LDS (CSLDS) [120], Spatio-temporal

Orientation Analysis (SOA) [39] and Non-Linear Stationary Subspace Analysis (DNLSSA) [11]. The

accuracy of our methods is considerably better than both LDS and CSLDS. We achieve competitive

performance to the state-of-the-art results of DNLSSA and SOA. It is noteworthy to mention that

DNLSSA and SOA are considerably more complex. As SOA requires matching distributions of

space-time orientation structure and DNLSSA solves an optimisation problem in the kernel space

with manifold regularization. Furthermore, our methods do not require any parameter tuning.

5.5.2 Object Recognition Using ETH80 Dataset

The ETH80 dataset [86] contains eight object categories. In each category, there are 10 different

object instances. For each object instance, ETH80 provides 41 images of different views as one

image set. The typical variations are shown in Figure 5.4.
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Figure 5.3: Example frames from the UCSD traffic video dataset [26]. The frames depict various
traffic congestion conditions and can be categorized as heavy traffic (bottom row), medium (middle
row) and light (top row).

Method Accuracy

LDS [120] 87.5

CS-LDS [120] 89.1

SOA [39] 95.2

DNLSSA - RBF Kernel [11] 94.5

SPD-Sc [31] 90.9

KSVM 93.7

Geo-NN 91.3

MACH-1 (proposed) 94.07

MACH-2 (proposed) 94.5

MACH-3 (proposed) 94.1

Table 5.1: Traffic Scene classification task: average accuracy (in %) on the UCSD traffic video
dataset [26].
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Figure 5.4: Sample images from ETH-80 object dataset [86].

Method Accuracy

CHISD [25] 77.3

SANP [73] 75.5

SPD-Sc [31] 88.5

KSVM 89.5

Geo-NN 87.3

MACH-1 (proposed) 92.25

MACH-2 (proposed) 90.5

MACH-3 (proposed) 93.3

Table 5.2: Object recognition task: average accuracy (in %) on the ETH80 dataset [86].

We applied two dimensional DCT on the images and used the 80-dimensional DCT coefficients

as the feature vector for each image. To obtain the SPD features, we then computed the 80 × 80

covariance matrix of each image set. For each category, we used five randomly chosen instances for

training and five for testing. The random selection of train and test was repeated 10 times and the

average performance is reported here.

The experimental results for this dataset are summarized in Table 5.2. The maximum accuracy of

93.3% is achieved by MACH-3, which is nearly six percentage points better than Geo-NN. We also

compare our proposed methods with Convex Hull based Image Set Distance (CHISD) [25] and Sparse

Approximated Nearest Points (SANP) [73]. Again, the proposed methods outperform these methods.

Note that CHISD and SANP are Euclidean-based convex hull methods. The performance improve-

ment from CHISD and SANP is significant. This could be attributed to using manifold features and

the nearest convex hull classifier to do this classification task.
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Method Accuracy

LE-SR [57] 66.3

TSC [128] 79.8

RLPP [70] 86.1

SPD-Sc [31] 77.6

KSVM 82.6

Geo-NN 84.9

MACH-1 (proposed) 87.98

MACH-2 (proposed) 88.0

MACH-3 (proposed) 87.8

Table 5.3: Texture recognition task: average accuracy on the Brodatz texture dataset [116].

Figure 5.5: Example images from the BRODATZ texture dataset [116].

5.5.3 Texture Classification Using Brodatz Dataset

We followed the protocol presented in [129]. This protocol includes three subsets with different

numbers of classes: 5-class-texture (5c, 5m, 5v, 5v2, 5v3); 10-class-texture (10, 10v) and 16-class-

texture (16c, 16v).

Each image was resized to 256 × 256 pixels and divided into 64 regions with size 32 × 32. A

feature vector F (x, y) for each pixel was calculated using the grayscale intensity and absolute values

of the first- and second-order derivatives of spatial features:

F (x, y) =
[
I (x, y) ,

∣∣∣∣∂I∂x
∣∣∣∣ , ∣∣∣∣∂I∂y

∣∣∣∣ , ∣∣∣∣∂2I∂x2

∣∣∣∣ , ∣∣∣∣∂2I∂y2

∣∣∣∣] . (5.23)

Then, each region was represented by a covariance matrix (SPD matrix) formed from these feature

vectors. For each scenario, only five SPD points per class were randomly selected as training, the rest

were used for test. The random selection of training/testing data was repeated 10 times.

Table 5.3 compares the proposed MACH-1, MACH-2 and MACH-3 to various methods. Note that

the number of training data per class is only five. The proposed methods significantly outperform all

the baselines. This corroborates the previous findings in the Euclidean space [169], that suggest the

nearest convex hull classifier is generally more robust to small number of training samples. Compared

to the recent methods such as LE-SR [57], TSC [128] and RLPP [70], the proposed methods perform

much better.
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Figure 5.6: Example images from the ETHZ data set [46].

5.5.4 Person Re-identification Using ETHZ Dataset

For the final task we considered the person re-identification task using the modified version [123] of

the ETHZ dataset [46]. The dataset was captured from a moving camera, containing wide variations

in the appearance of people.

The dataset is divided into three sequences. Sequence 1 contains 83 pedestrians captured in 4,857

images, sequence 2 contains 35 pedestrians captured in 1,936 images, and sequence 3 contains 28

pedestrians captured in 1,762 images. Examples of images are shown in Figure 5.6.

We first resized all the images into 64 × 32 pixels. Then the SPD features were generated by

computing covariance matrix of the pixels feature vectors defined as:

Fx,y=
[
x, y, Rx,y, Gx,y, Bx,y, R

′
x,y, G

′
x,y, B

′
x,y, R

′′
x,y, G

′′
x,y, B

′′
x,y

]
, (5.24)

where x and y represent the position of a pixel, while Rx,y, Gx,y and Bx,y represent the corresponding

colour information, respectively.

In this experiment, 10 randomly selected images per class were used as training set, while the rest

were formed as testing. To obtain a reliable average performance, the random selection of training

and testing data was repeated 10 times.

The recognition accuracy of different methods is reported in Table 5.4. Our proposed methods

are the best two among all methods and achieve considerably better results than the three baselines:

Geo-NN, KSVM and SPD-Sc. Furthermore, the proposed methods significantly outperform PLS [46]

and HPE [13]. This is could be attributed to the efficacy of our proposed classifier with SPD manifold

features.

Comparisons between MACH-1, MACH-2 and MACH-3: As shown in our experiments, MACH-

1, MACH-2 and MACH-3 have on par performance in most cases. Table 5.5 shows the running time

for the three methods. MACH-1 that requires projection onto the tangent space at each query point is

the slowest method. However, the approximation methods, MACH-2 and MACH-3, are much more

efficient.
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Method Accuracy

PLS [46] 77.3

HPE [13] 84.2

SPD-Sc [31] 90.1

KSVM 89.5

Geo-NN 87.1

MACH-1 (proposed) 93.35

MACH-2 (proposed) 92.0

MACH-3 (proposed) 90.6

Table 5.4: Person re-identification task: average accuracy (in %) on the ETHZ dataset [46].

Method UCSD ETH80 BRODATZ ETHZ

MACH-1 110.03 46.04 279.62 28486.08

MACH-2 19.83 46.15 160.74 2338.49

MACH-3 2.64 3.74 33.09 1511.71

Table 5.5: Time comparison: The run time (in seconds) of MACH-1, MACH-2 and MACH-3 on each
dataset.

Comparisons between MACH and Geo-NN. As mentioned in the section 5.3, Geo-NN is sensitive

to the small number of training data. To verify this, we performed an empirical experiment on ETH80.

In particular, we increased the training data for Geo-NN using artificial points randomly generated

by using the weighted Riemannian centre of mass of the training points [105]. We found that 160

artificial training points is required for Geo-NN to achieve the comparable accuracy with MACH.

Unfortunately, this process is extremely expensive, as the generation of these artificial points which

used weighted Riemannian centre of mass required 22min. While, the average running time for

MACH-3 on the ETH80 is only 3.74s. This indicates the additional advantage of MACH over the

intrinsic approaches such as Geo-NN when only a small number of training data is available.

Comparisons between MACH and SPD-Sc. In all experiments, our proposed method MACH

achieved much better performance than SPD-Sc, especially on Brodatz (10.4 percentage points bet-

ter). We conjecture that the improvement could be attributed to the restricted condition on the weights

wi, as well as the convex hull optimisation that based on each separate class.

5.6 Summary

In this chapter, we presented a Manifold Convex Hull (MACH) framework for classification tasks

on SPD points. To solve the optimisation problem posed when performing convex hull analysis, we

studied three different solutions MACH-1, MACH-2 and MACH-3. MACH-1 served as the intrinsic

solution, whilst MACH-2 and MACH-3 are the approximated solutions that possess lower computa-
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tional load, as well as competitive accuracy compared to MACH-1. Experiments were performed on

four computer vision applications where our proposed methods showed superior performance than

several recent methods. Chapter 6 continues by proposing the landmark manifold that following the

Component-3 in the manifold scheme (refer to Figure 3.1).
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Chapter 6

Landmark Manifold to Recognise Facial
Emotions

Intellectuals solve problems,

geniuses prevent them.

Albert Einstein

Chapter Summary: Manifold approaches can be potentially sped up by using lower-

dimensional manifold points. In this chapter, we propose to use the landmark locations to

model an efficient manifold model for facial emotion recognition.

6.1 Overview

Automatically recognising facial emotions has drawn increasing attention in computer vision. Facial

landmark based methods are one of the most widely used approaches to perform this task. However,

these approaches do not provide good performance. Thus, researchers usually tend to combine more

information such as textural and audio information to increase the recognition rate. In this chapter we

propose a novel method, here called the landmark manifold, which shows the possibility to achieve

competitive performance by facial landmark information alone. Through experiments on the well-

known dataset: marked Cohn-Kanade extended facial emotion dataset (CK+) [101], we show that with

accurate facial landmarks, our simple approach is fast to run and can achieve competitive performance

compared with enormously expensive methods.

6.2 Introduction

In this chapter, we study manifold methods for emotion recognition. Facial emotions play an im-

portant role in our daily life and human beings can distinguish different emotions without much

effort. Also, it is an important component for various applications such as Human-Computer Inter-
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actions (HCI) and automated video annotations [82]. However, automatically recognising the facial

emotions is still a challenging problem for computer systems.

Facial emotions usually are categorised into six classes: angry, happy, sad, disgust, fear and sur-

prise [101]. In the past decade, a number of different approaches have been proposed to tackle this

problem [95, 97, 101, 156]. Broadly speaking, there are two common approaches to deal with the

representations: geometric shape based methods and appearance based methods. Geometric shape

based methods use facial landmark information alone. The facial landmarks could be estimated using

methods such as: Active appearance model (AAM) [34], Constrained Local Model (CLM) [35], and

Supervised Descent Method (SDM) [162]. However, it is usually difficult to get reliable performance

using facial landmark information alone in many complex scenarios. For instance, poor illumination

or high face pose angle could severely affect the system due to errors introduced by the estimated

facial landmarks. On the other hand, the appearance based methods use texture information such as

Scale Invariant Feature Transform (SIFT) and Local Binary Patterns (LBP) [99, 107]. After the fea-

tures have been extracted, various learning methods are employed to select discriminative features.

Some classification schemes such as Support Vector Machine (SVM), Linear Discriminant Analysis

(LDA) and Sparse Representation Classifier (SRC) could be then applied on the selected features.

It is noted that facial emotions are mainly generated by the movements of the facial muscles. This

leads to changes in the facial landmark locations. Thus, capturing the change of facial landmarks

could be useful in addressing the facial emotion recognition. In this chapter, we propose to model

the set of facial landmarks estimated from each frame within a video as a point on a Riemannian

manifold. Riemannian manifolds have been used to address various challenging vision applications

such as face recognition and pedestrian detection [142, 144].

Employing Riemannian manifolds to address the facial emotion recognition problem has been

used in several previous works [96, 97]. The best performance is achieved by Liu et al. in [97], where

three different Riemannian manifolds were used by modelling features extracted from Histogram

of Oriented Gradients (HOG) and SIFT features. Then, combined multiple kernels that calculated

from the three manifolds were employed. We note that despite the excellent results achieved by this

method, the computational cost is expensive for large datasets.

6.3 The Proposed Landmark Manifold

In this section, the proposed method, denoted Landmark Manifold, is presented. Our method com-

prises two main steps. First, we extract the facial landmarks for each video frame. Then we model

these landmarks onto SPD manifolds and Grassmann manifolds. Finally, for landmark on SPD man-

ifold, we conduct the emotion recognition task by applying the Log-Euclidean metric with Linear

SVM. On the other hand, for landmark on Grassmann manifold, kernel SVM with the kernel defined

in Eqn. (2.13) is employed. We note that kernel calculation on Grassmann is much cheaper than SPD.

Thus, we opt to use the kernel approach for Grassmann manifold.
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6.3.1 Facial Landmark Estimation

A number of face alignment methods have been proposed to track the facial landmarks for emotion

recognition, including the classic Active Appearance Model (AAM) [34], Constrained Local Model

(CLM) [35], and Supervised Descent Method (SDM) [162]. Recently, it has been shown that the

Coarse-to-Fine Shape Searching (CFSS) achieved the state-of-the-art performance compared to the

other facial landmarking methods. In our work, we consider these two methods: SDM and CFSS.

Besides the state-of-the-art method, CFSS, we opt to consider SDM because it is currently widely

used for face alignment [38].

Supervised Descent Method (SDM)

SDM is a cascaded regression method. We define a shape s ∈ R2n as a set of n landmark coordinates,

s = [x1, y1, · · · , xn, yn]. The goal of SDM is to estimate a shape s as close as possible to its ground

truth landmarks, s∗:

min‖s− s∗‖2 . (6.1)

In general, the cascaded regression face alignment methods start from an initial shape s0 ∈ R2n

and refine the shape by applying a cascade of regressors through T stages. At the t-th stage, shape-

indexed features f t are extracted from the image I based on the shape estimated at the previous

iteration st−1. Each regressor determines an update, 4s ∈ R2n based on the shape-indexed features.

The current shape of the t-th stage st is updated by adding the update 4s to the shape of the previous

iteration st−1 via:

st = st−1 + 4s . (6.2)

SDM uses linear regression and local Scale-Invariant Feature Transform (SIFT) features on local

patches centred on the current estimated landmark positions to determine the update, ∆s. Thus,

Eqn. (6.2) is then replaced by:

st = st−1 + Rt−1 φt−1 + bt−1 , (6.3)

where Rt−1 and bt−1 are a sequence of generic descent directions and bias terms respectively; φt−1

represents a feature vector obtained by concatenating SIFT features around currently estimated land-

marks st−1. The Rt and bt can be learned by minimising:

min
Rt,bt
‖4s∗ − Rt φt− bt‖2 , (6.4)

where 4s∗ is the difference between current shape and ground truth shape 4s∗ = s∗ − st.

Coarse-to-Fine Shape Searching (CFSS)

In order to make the face alignment method more robust, Zhu et al. proposed a Coarse-to-Fine Shape

Searching method (CFSS) [170]. The central idea of CFSS is to search a shape sub-region at each
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stage in a coarse-to-fine manner so that the estimated shape can avoid being trapped by the local

optima if given a poor initialization.

The search is within a shape space S = {s1, s2, ..., sN}, which contains N candidate shapes

obtained from the training set. In a coarse-to-fine manner, the searching is performed through l =

1, ..., L stages. At each l-th stage, the goal is to find a finer shape sub-region represented by a sub-

region centre s̄(l) and shape probability distribution PR
(l) (represents the scope of the sub-region).

Each l-th stage starts from sampling Nl initial shapes from the shape space S according to the

probability learned from the previous stage PR
(l−1). Then the Nl initial shapes are regressed to ground

truth shapes in a cascaded manner. The cascaded regression method used here is similar to SDM.

After learning the regressors and obtaining the regressed Nl candidate shapes, the sub-region centre

s̄(l) is estimated by;

s̄(l) =

Nl∑
j=1

wjsiT , (6.5)

where the weight wj of each candidate shape is estimated by the dominant set approach.

At the last stage sub-region centre s̄(L) is the final estimated shape.

6.3.2 Modelling Landmarks on SPD Manifolds

For each video, we extract a group of facial landmark features S = {s1, s2, ..., sn}, n is the number

of frames. si is represented by p landmarks, si = {x1, y1, x2, y2, ..., xp, yp}>. Then we compute the

covariance matrix by:

C =
1

n− 1

n∑
i=1

(si − s̄) (si − s̄)> , (6.6)

where s̄ is the mean vector of the facial landmarks. The covariance matrixC can be regarded as points

on the SPD manifold. A number of machine learning methods have been proposed to address clas-

sification problem on SPD manifolds [31, 144]. In this work, we use a simple-yet-effective method

comprising the linear SVM in conjunction with the Log-Euclidean metric. This method is fast to run

and shows extremely good performance for emotion recognition.

Technically, to employ the linear SVM, we first map the SPD points from the SPD manifold onto

the tangent space at the identity matrix (i.e., the Log-Euclidean space) via: A = log (C). This

essentially flattens the manifold into the Euclidean space. Following Pennec et al. [112], a vectorised

feature vector can be extracted as:

Vec(A) = [a1,1,
√

2a1,2, a2,2,
√

2a1,3,
√

2a2,3, a3,3,

...,
√

2a1,d, ...,
√

2ad−1,d, ad,d]
> .

(6.7)

These features are then fed into the linear SVM. We note that the Euclidean distance of the above

features is the same as the Log-Euclidean metric presented in Eqn. (2.6).
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6.3.3 Modelling Landmarks on Grassmann Manifolds

Modelling the frames to one video as a group of linear spaces have been shown to be superior on a

number of video-based analysis such as object recognition [68] and face recognition [47]. The group

of linear spaces can be regarded as points on the Grassmann manifold. Also, Begelfor et al. [14]

exploited affine invariant clustering of shapes by using the Grassmann manifold structure.

Specifically, the descriptor of each video is first formed as: S = {s1, s2, ..., sn}, where n is the

number of frames and each si is represented by p landmark points, si = {x1, y1, x2, y2, . . . , xp, yp}>.

As shown in [37], the pairwise landmark distances provided more robust information for the image-

based emotion recognition. Therefore, we model the dynamic changes of these pairwise distances

from each frame on the Grassmann manifold. Specifically, we applied the Singular Value Decompo-

sition (SVD) on the following matrixW :

W = {w1,w1, ...,wn} ,

wi = [|x1 − x2| , ..., |xn−1 − xn| , |, y1 − y2| , ..., |yn−1 − yn|]> .
(6.8)

The SVD operation is to get the group of subspaces U :

W = UDU>, (6.9)

where U = {u1, ...,ud} is the top d eigenvectors and is a point on the Grassmann manifold. For the

consideration of speed and performance, the kernel SVM with projection kernel (refer to Eqn. (2.13))

is applied.

6.4 Experimental Results

In the experiments, we use the Cohn–Kanade extended facial emotion (CK+) dataset [101] to perform

a number of evaluations and analyse the efficacy of our proposed landmark manifold method. We

further provide discussions on the estimated landmark locations given by CFSS and SDM.

6.4.1 Dataset Description

The CK+ dataset (refer to Figure 6.2 for examples) is widely used to benchmark the emotion recogni-

tion methods. The database contains 123 different subjects and 593 frontal sequences. Among these,

118 subjects are labelled with the seven emotion categories (anger, contempt, disgust, fear, happy,

sad and surprise). The sequences were annotated with 68 landmark points. The key-frames within

each video sequence were manually labelled, while the remaining frames were estimated by AAM.

Thus, we call these original landmarks AAM landmarks. Following the work of Lucey et al. [101],

the leave-one-subject-out protocol is used in our experiments.
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6.4.2 Experimental Results with Original Landmarks

In this experiment, we use the CK+ dataset with the original CK+ landmarks [101]. First, we model

the landmarks onto the SPD manifold through Eqn. (6.6). Then we project the SPD points onto the

log-Euclidean space and vectorise them using Eqn. (6.7). We train a multi-class SVM using the leave-

one-subject-out protocol. The variations of our proposed method are named in the following style:

landmarking method-manifold used. For instance, AAM-SPD is the method using AAM modelled in

SPD.

The results for each emotion category are shown in Figure 6.3. The overall and average accuracy

are listed in Table 6.2. In particular, the average accuracy is computed by the mean of each category

accuracy. Whilst, the overall accuracy is determined by the percentage of videos that are correctly

classified over all tests. We found that the proposed method achieves nearly perfect performance

for the high energy emotions such as ‘happy’, ‘disgust’ and ‘surprise’ (i.e., the ones exhibiting large

displacements of the facial landmarks). Even for the complex emotions such as ‘fear’ and ‘sad’, the

performance is significantly better than the best performance reported by Lucey et al. [101] (65.2%

vs 88% and 68.0% vs 82.14% for ‘fear’ and ‘sad’, respectively). It is noted that the best performance

from [101] used the shape and textural information based on same landmarks. However, our superior

performance is obtained by only using the shape information. These results suggest that the proposed

manifold landmark captures important information to perform the facial emotion recognition.

We further contrast our system to single manifold methods discussed by Liu et al. [97]. In par-

ticular, the SPD features are extracted from the textural features (i.e., either HOG or SIFT). We call

these methods HOG-SPD and SIFT-SPD. As can be seen from Table 6.1, the proposed AAM-SPD

outperforms both methods.

Our proposed AAM-SPD method also achieved much better performance than the recent meth-

ods: HHM [156], ITBN [156], 3DCNN [95], 3DCNN-DAP [95] and MCF [33]. Compared to the

state-of-the-art performance from Liu et al. [97] based on fusion of six different manifold kernels and

two textural features (HOG+SIFT-SPD+G+Gaussian), our simple landmark model achieves compet-

itive recognition rates. To indicate the effectiveness of our proposed AAM-SPD features, we show

some intermediate visualisation results for different emotions on CK+ dataset in Figure 6.1. We use

the full range of colours to display the SPD features generated using AAM landmarks. Note that in

Figure 6.1a and Figure 6.1b, images from a same column are with same emotion labels, but from dif-

ferent subjects. From the visualisation, we found that the AAM-SPD features are quite discriminative

for the emotion recognition task.

It is noteworthy to mention that our landmark manifold has a much smaller number of parame-

ters. In addition, the Riemannian kernel computation is expensive especially for large datasets. For

example, in the test stage, computing the RBF kernel used in [97] requires O(NtrNted
3), where Ntr

is the number of training points, Nte is the number of test points and d is the dimensionality of the

manifold points. Their best performance [97] is achieved by computing 12 kernel matrices in total.

However, in our AAM-SPD, the main computation cost is the Log-Euclidean projection (log (C)),
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(a) Emotion class: Disgust, Happy, Surprise, Angry (from left to right). Images from a same column are with

same emotion labels, but from different subjects.

(b) Emotion class: Contempt, Sadness, Fear (from left to right). Images from a same column are with same

emotion labels, but from different subjects.

Figure 6.1: Intermediate visualisation results for AAM-SPD features on CK+ dataset.

which is O((Nted
3). The average time to test one video using AAM-SPD is only 0.15s in Matlab on

an Intel Core 2 Duo processor running at 3 GHz.

We also report the results of modelling the original landmarks on the Grassmann manifold (AAM-

G) (refer to section 6.3.3 for details). Compared to the AAM-SPD, the AAM-G accuracy for ‘con-

tempt’, ‘fear’ and ‘sad’ shown in Figure 6.4, is much worse. However, we note that the average and

overall accuracy of AAM-G are still better than textural-based Grassmann manifold methods: HOG-
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Figure 6.2: Emotion examples from CK+ Dataset [101]: Disgust, Happy, Surprise, Angry, Sadness, Fear (from

left to right, top to bottom). Note that we only show six emotion examples and the copyrights belong to their

respective owner Jeffrey Cohn.

Figure 6.3: Percentage recognition rates on the SPD manifold with original landmarks (AAM-SPD).

G and SIFT-G [97] listed in Table 6.1. This again demonstrates that modelling the facial landmark on

Riemannian manifolds is much more effective than modelling textural features on the manifolds.

Figure 6.4: Percentage recognition rates on the Grassmann manifold with original landmarks (AAM-G).
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Table 6.1: The comparisons between the proposed landmark manifold with recent state-of-the-art face
emotion recognition methods.

Methods Average Acc Overall Acc
AAM [101] 83.3 88.3

HMM [156] 83.5 n/a
ITBN [156] 86.3 88.8

3DCNN [95] 78.0 85.9

3DCNN-DAP [95] 87.9 92.4

MCF [33] 92.7 n/a
Riemannian manifold-based methods

HOG-SPD [97] 91.63 n/a
SIFT-SPD [97] 89.4 n/a
HOG-G [97] 83.6 n/a
SIFT-G [97] 84.4 n/a

HOG+SIFT-SPD+G+Gaussian [97] 94.8 96.6

Proposed landmark manifolds
AAM-SPD 93.5 95.7

AAM-G 87.6 92.7

Table 6.2: Recognition rates on SPD and Grassmann manifold with different landmarks methods.

Methods Average Acc Overall Acc
SDM-SPD 78.9 86.9

CFSS-SPD 81.9 88.7

CFSS+SDM-SPD 82.7 89.3

AAM(mouth)+SDM-SPD 87.4 91.4

AAM(mouth)+CFSS-SPD 88.2 92.4

AAM-SPD 93.5 95.7

SDM-G 82.4 89.6

CFSS-G 84.8 89.9

CFSS+SDM-G 86.1 91.5

AAM-G 87.6 92.7

6.4.3 Experimental Results with CFSS and SDM Landmarks

When dealing with ‘in-the-wild’ data, estimating accurate facial landmarks is a challenging problem.

Misalignments often happen when using the facial alignment approaches to estimate the facial land-

mark locations from the uncontrolled real-world videos. To that end, in this section, we study how

our proposed landmark manifold would perform when provide with the inaccurate facial landmark

locations. We perform the experiments using the landmarks estimated by the recent state-of-the-art

face alignment methods such as CFSS and SDM.
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Figure 6.5: Examples of landmark errors by CFSS (left image) and SDM (right image). The ‘red dot’ points

are the original AAM landmarks, ‘blue x-mark’ points are the CFSS and SDM landmarks.

SPD Landmark Manifolds

We first study the SPD manifold with CFSS and SDM landmarks. As shown in Table 6.2, inaccurate

facial landmarks severely affect the performance of the SPD manifold (i.e., from 93% to 78% and

81%, for CFSS-SPD and SDM-SPD, respectively). This is probably because the SPD manifold is

sensitive to the errors of the landmark locations.

To further boost the performance of our proposed landmark manifold, we use the fusion landmark

locations from CFSS and SDM for each frame si, i = 1, 2, ..., n:

si = {λ ∗ sCFSS,i + (1− λ) ∗ sSDM,i} , (6.10)

where the sCFSS,i and sSDM,i are the landmark locations generated by CFSS and SDM separately.

We denote the fusion method as CFSS+SDM-SPD. The performance shows a slight increase. Upon

closer examination, we found that the landmark points are not correctly estimated around the mouth

by CFSS and SDM (refer to Figure 6.5 for examples). To further verify this hypothesis, we performed

experiments by replacing the mouth landmark points of CFSS and SDM with the corresponding points

from AAM. The average accuracy increases from 81.9% to 88.2% for CFSS-SPD, from 78.9% to

87.4% for SDM-SPD. Thus, to get excellent performance, the proposed SPD model requires more

accurate landmark locations.

Grassmann Landmark Manifolds

In this section, we study the Grassmann manifold with CFSS landmarks and SDM landmarks. The

results of CFSS-G and SDM-G are reported in Table 6.2, Figure 6.6 and 6.7. Again, we see a perfor-

mance decrease is shown when inaccurate facial landmarks are given.

From Table 6.2, we found that the fusion landmark manifold (CFSS+SDM-G) actually can achieve

competitive performance to the AAM-G. These results suggest that it is possible to improve the per-

formance of the proposed landmark manifold by combining multiple landmarks obtained from various

methods.
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Figure 6.6: Percentage recognition rates on the Grassmann manifold with CFSS landmarks.

Figure 6.7: Percentage recognition rates on the Grassmann manifold with SDM landmarks.

Figure 6.8: Percentage recognition rates on Grassmann manifold with the fusion landmarks.
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6.5 Summary

In this chapter, we found that the dynamic information from the facial landmarks plays a significant

role on the emotion recognition task. To that end, we proposed a method named the landmark man-

ifold that utilises this information. When using accurate facial landmarks obtained from each video

frame on CK+ dataset, our proposed method achieved competitive performance to the recent state-of-

the-art methods which employ multiple manifold models and much more complex kernelised learn-

ing algorithms. Thus, our proposed landmark manifold possessed a lower computational complexity

without significant accuracy loss. To deal with the errors generated from the inaccurate estimated fa-

cial landmarks, we showed that it was possible to fuse multiple facial landmarks estimated by various

methods.
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Chapter 7

Conclusions and Future Work

The true sign of intelligence is not

knowledge but imagination.

Albert Einstein

Chapter Summary: Current manifold approaches with superior performance suffer from

intensive computational cost, especially when the dataset is large. This thesis explores

three avenues to address the problem and proposes various methods which have much

lower computational complexities, whilst still maintaining excellent performance in the

examined computer vision applications. Future avenues of exploration include optimised

projection functions, extension to other types of manifolds and learning improved lower-

level features.

7.1 Thesis Summary and Conclusions

Manifold models have been proven to have superior performance in various computer vision appli-

cations. Despite a steady progress in developing manifold approaches for image and video anal-

ysis, there are still some remaining challenges. Unlike the Euclidean space, manifolds naturally

possess nonlinear structures, which makes the operations such as computing geodesics and learning

models suffer from intensive computational cost. This thesis proposed three different paths, random

projection framework, convex hull framework and landmark manifold, to reduce the computational

complexities of manifold approaches without significant accuracy loss for image and video analysis.

These results have significant benefits in computer vision applications in terms of classification and

clustering scenario.

Chapter 1 briefly introduced the manifolds and our research problems. Also, the research ques-

tions, goals and contributions were listed in this chapter.

Chapter 2 elaborated the background theory of manifold geometries, as well as the related work

in manifold approaches for computer vision.
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In Chapter 3, we presented a comprehensive scheme for manifold approaches, illustrated in Fig-

ure 3.1. Currently, some manifold approaches suffer from high computational load when the dataset

is extremely large. Based on this scheme, we discussed several different directions to reduce the

computational cost, while still maintaining the excellent accuracy in image and video analysis. Each

direction can be covered by a research question that is listed in below Section 1.3.1.

Illustrated by the scheme in Figure 3.1, given the manifold features, the learning approaches can

be broadly categorized into intrinsic methods and extrinsic methods. Extrinsic methods first map the

manifold to a Euclidean space, and then apply Euclidean-based learning logarithm in the new space.

One of the most popular extrinsic methods is using kernel functions, which usually achieve excellent

performance. However, kernel-based learning algorithms such as kernel k-means suffer from high

computational cost, especially for large datasets. Due to the issues with the current extrinsic methods,

the first research question posed is:

Q1: Is it possible to devise a mapping function that maps manifold data points into a Euclidean

space wherein computational complexity is considerably reduced? If so, can the manifold struc-

ture be well-preserved in the newly created space produced by such a mapping function?

The answer to this question is: Yes, it is possible to devise a mapping function. In addition, the

manifold structure could be potentially preserved. More specifically, the thesis adapted the random

projection concept in Euclidean space into the manifold. According to the Johnson-Lindestrauss’s

Lemma (refer to Lemma 4.3.1), the topological structure from the original space could be preserved

up to some points. Equipped with this lemma, Chapter 4 proposed a random projection framework

for manifold points. The core part of this framework is the random hyperplane generation. In this

chapter, we described three hyperplane generation algorithms: KGRP, KORP and KPCA-RP. Through

experiments on several computer vision applications, it has been verified that the proposed framework

significantly reduced the computational complexity, but still maintained excellent performance.

On the other hand, there is a school of thought to research intrinsic methods on the manifold.

Geodesic Nearest Neighbour is one of the most popular intrinsic methods for classification tasks.

However, the computational complexity suffers a linear growth with the number of training data.

Driven by these concerns, we pose the second research question:

Q2: Is it possible to improve the performance and computational time of the Geodesic Nearest

Neighbour by utilising the intrinsic classifiers on manifolds?

The answer to this question is: Yes, it is possible to improve the performance and computational

time of the Geodesic Nearest Neighbour. Inspired by the development of classifiers in the Euclidean

counterpart, we noted that nearest convex hull classifiers that can improve the performance of Nearest

Neighbour through modelling each class using all the convex combinations of training points. Thus,

we extend the convex hull concept in Euclidean space into the manifold. More specifically, in Chap-

ter 5, we proposed a manifold convex hull to tackle the classification tasks on SPD manifolds. This is

a novel mathematical framework with the definition of the convex combinations and the nearest con-

vex hull distance over the SPD manifolds. MACH-1 was proposed to solve the optimisation method

108



Chapter 7. Conclusions and Future Work

using the intrinsic structures, which is slow. To speed up the computations, MACH-2 and MACH-3

were proposed whose accuracies are competitive with MACH-1. The experimental results on several

different computer vision applications showed that the proposed manifold convex hull outperforms

other intrinsic methods and some state-of-the-art methods.

Further examination of the manifold scheme, we found that the dimensionality of the manifold

points also has significant impact on the computational load of the following learning process. To that

end, one can apply dimensionality reduction techniques to obtain low-dimensional manifold points.

Alternatively, one can use features with small dimensions to form the manifold model. We focused

on the second method that was more direct to research. This led to the third research question:

Q3: Can we reduce the dimensionality of the manifold points by finding discriminative lower-level

features with low dimensionality to generate the manifold model?

The answer to this question is: Yes, we can find discriminative lower-level features with low dimen-

sionality to generate the manifold model. This leads to a more efficient lower-dimensional manifold

model. To evaluate the performance, we performed an application-based study in this thesis. More

specifically in Chapter 6, we revisited the state-of-the-art manifold method for emotional recognition.

We found that their method [97] used complex and high-dimensional features (SIFT and HOG) to

form three different manifold models. Then, multiple kernels were used to obtain the final recog-

nition results. This resulted in intensive computational load. In our work, we identified that it is

possible to use the simple landmark locations as the lower-level features to form only one manifold

model. This achieved competitive performance with the multiple kernel methods proposed in [97].

This chapter therefore answered the research question Q3 by showing that it is possible to use effec-

tive features to form a lower-dimensional manifold for the emotion recognition application without

obvious accuracy loss. The lower-dimensional manifold led to lower computational complexities.

7.2 Future Work

To make the manifold approaches more applicable in computer vision, it is necessary to tackle the

computational complexity issues and therefore develop fast and accurate approaches. The research

questions presented in this thesis and the approaches proposed lead us to several promising future

directions. In this section, we outline a few directions for our future work.

The random projection framework proposed in Chapter 4 showed that it is possible to project the

manifold points onto a discriminative Euclidean space and use linear learning methods to tackle the

computer vision tasks. Due to the properties of random projection, the errors of projection functions

we used in this chapter are bounded but not minimised. In the future work, it will be ideal to de-

velop optimised projection functions that can map manifold points onto a Euclidean space, where

the classification/clustering error is minimised. Another direction can be the development of the in-

trinsic random projection framework for manifolds. To that end, one needs to research the intrinsic

projection definitions and how to generate the intrinsic random projection hyperplanes on manifolds.
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The manifold convex hull proposed in Chapter 5 showed excellent performance in the examined

computer vision applications. This approach focused on SPD manifold. One direction for the fu-

ture work are the extension work on the nearest convex hull classifiers on types of manifolds such

as Grassmann manifolds. To that end, one need to develop the solutions to the optimisation prob-

lems based on metrics on Grassmann manifolds. To decrease the computational complexity, one can

consider to develop the hashing techniques based on the weights obtained by the nearest convex hull

framework.

In Chapter 6, we focused on a specified application– emotional recognition. Manifold approaches

showed superior performance in recognising the facial emotions due to its ability to capture the dy-

namic changes on the faces. However, the question remains open on what are the best features to form

the manifold model for emotion recognition. We showed that the simple landmark locations can form

a low-dimensional manifold that is computationally efficient for the emotion recognition. However,

this landmark manifold is sensitive to the landmark location errors. Thus, it did not perform well

when some landmark estimation methods were used. Fortunately, the performance would increase if

one used the fusion landmark features formed from different estimations. Further work is needed on

the feature learning algorithms that can minimise the landmark errors. Another possible direction will

be the research on other types of lower-level features with small dimensions to generate the manifold

model. How to find the best lower-level features for different manifold model is still an open question.

7.3 Concluding Remarks

In the recent years, there has been a large growth in the amount of vision data. Classifying or cluster-

ing data into different categories helps people to better understand the characteristics of the data. The

recent advances of computer vision have proven that the intrinsic data structure lies in a nonlinear

space. The manifold geometry provides an effective tool to capture the intrinsic structure of the vi-

sion data, which leads to superior classification/clustering [124]. For example, utilising the manifold

geometry can achieve high success in pedestrian detection and tracking [142]. Effective face recog-

nition algorithms have been developed using manifold representations [60]. Despite the progress in

manifold approaches in computer vision, the computational load issues still remain a significant bar-

rier to applications that require real time performance. This thesis presented three paths to reduce the

computational load of manifold approaches.

The first path is to devise a mapping function that maps the manifold points onto a Euclidean

space wherein the computational load is reduced (pondered in research question 1). We addressed

this by proposing the random projection framework in Chapter 4. The second path is to extend the

effective classifiers originally developed for Euclidean space into the manifold and devise efficient

solutions to ensure a low computational load (pondered in research question 2). We addressed this by

proposing the convex hull framework in Chapter 5. The last path considered in this thesis, is to use

effective lower-level features with low dimensionality to generate the manifold model, which would

lead to less computational load when processing the manifold points (pondered in research question
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3). We addressed this by studying manifold approaches on facial emotion recognition and proposing

the landmark manifold model in Chapter 6.

After reducing the computational load of manifold approaches without significant accuracy loss,

the vision data can be more easily analysed using manifold approaches. Accurate, as well as fast,

manifold approaches enhance the classification and clustering of similar images/videos, which in

turn enables effective automated solutions for computer vision applications required real-time perfor-

mance.
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