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Abstract

Today, data exploration platforms are widely used to assist users in locating interesting ob-

jects within large volumes of scientific and business data. In those platforms, users try to make

sense of the underlying data space by iteratively posing numerous queries over large databases.

Hence, data exploration platforms rely on methods for the extraction of representative data to

provide users with a concise and meaningful representation of query results. That is, extracting

a few tuples from a query result to provide quick insights in the potentially huge answer space.

In the past few years, importance of diversification while extracting representative subsets of

data has been greatly emphasized. It has been shown that diverse subsets provide more effec-

tive representation of the underlying data by minimizing redundancy and increasing coverage.

Meanwhile, search results diversification adds additional cost to an already computationally

expensive exploration process.

In this PhD thesis, we have focused on the design, implementation and evaluation of scal-

able diversification algorithms and schemes for the data exploration platforms. Particularly,

this research stipulates that extracting diverse representative results during data exploration

requires addressing several challenges including: 1) scaling to big volumes of high dimensional

data, 2) large number of users, and 3) enabling real time continuous exploration. To address

those challenges we focus on two broad aspects: 1) Diversification of high dimensional large

data sets and 2) Diversification of multiple user queries.

The existing work conducts diversification in two steps: first compute all relevant query

results, and then diversify the query results to select a small diverse subset. Similarly, all the

dimensional attributes of all the data points in a query result are considered for diversifica-

tion. Such a generic approach would be a performance bottleneck in high-dimensional large

databases. To efficiently compute diverse subsets of query results exhibiting both high dimen-

sionality and high-cardinality, we have proposed the Progressive Diversification Scheme. Our

proposed scheme, utilizes the partial distance computations to reduce the amount of CPU and

I/O incurred during query diversification. Moreover, to avoid the overhead of computing all

relevant results first, we propose embedding diversification in query evaluation step by utiliz-

ing column-based data storage systems. In addition to computational cost of diversification

methods, we have also considered the complexity of diversity objective function in high dimen-

sional databases. Often, computing diverse solutions along all the dimensions is not a realistic

approach. In fact, users may have some pre-specified preferences over some dimensions of the

data, while expecting good coverage over the other dimensions. Motivated by that need, we

propose a novel scheme, which aims to generate representative data that balance the tradeoff
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between regret minimization and diversity maximization. Our scheme is based on a hybrid

objective function that combines both regret and diversity. Additionally, it employs several

algorithms that are designed to maximize that objective function.

We also address the diversification of multiple queries across and within user sessions. While,

most of the current work is focused on the diversification of a single query result, we have pro-

posed two scalable schemes for the diversification of both concurrent and sequential multiple

queries. The results of the concurrent queries are available simultaneously and hence, provide

an opportunity to exploit the overlap in those results. Our proposed algorithms leverage the

natural overlap in search results in conjunction with the concurrent diversification of those

overlapping results. In order to further reduce the processing costs of diversification, we have

employed various approximation techniques that provide orders of magnitude reductions in

cost, while maintaining a quality of diversification comparable to that of near optimal schemes.

In contrast to the concurrent queries across user sessions, the queries within a single session

are submitted sequentially at different intervals of time. Therefore, we have proposed a sequen-

tial diversification scheme that exploits the properties of data diversification functions while

leveraging the natural overlap occurring between the results of different queries. Our proposed

scheme relies on a regression model-based diversification method and an order based cache. In

particular, we employ an adaptive regression model to estimate the diversity of a diverse subset.

Such estimation of diversity value allows us to select diverse results without scanning all the

query results. In order to further expedite the diversification process, we propose an order-based

caching scheme to leverage the overlap between sequence of data exploration queries.

Our extensive experimental evaluation on both synthetic and real data sets shows the sig-

nificant benefits provided by our proposed schemes as compared to existing diversification

methods.
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Chapter 1

Introduction

1.1 Overview

Data exploration is a key ingredient in a widely diverse set of discovery-oriented applications

including the ones from science, business and finance [15,54,78]. In those applications, generally

users explore their data interactively for locating interesting objects. This data discovery

process is typically ad-hoc and labor intensive as: i) datasets are complex and heterogeneous,

ii) the users come from diverse backgrounds with different understanding of the underlying

datasets, and iii) the users may not have a prior notion of interesting objects. For instance,

consider the Sloan Digital Sky Survey (SDSS) science database 1, which describes over 140

million objects and is over 30 TB in size [54]. Both professional and amateur astronomers access

the SDSS archive. The professional users typically pose fairly complex queries on position,

colors and other attributes of sky objects. Whereas, the amateur users initially explore the

datasets with simpler queries and as they learn more about the detailed properties of the stars

and galaxies, they are expected to define more sophisticated queries. The most common queries

against SDSS database are spatial queries involving a small region in the sky [8]. For instance,

consider the following example:

Example 1. Assume an amateur user, who is curious about finding a region in the sky having

group of objects with some interesting features. To locate those objects the user needs to access

the PhotoObj table in SDSS that has around 500 attributes, most of which are floating point

numbers, and more than 600 million rows. Those attributes define various features of stars,

galaxies and sky samples stored in SDSS. However, the user has no prior information about

which of those attributes and their corresponding values will make an object interesting. Hence,

1http://www.sdss.org

1
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Figure 1.1: Series of exploratory queries generated in a user session

the user will start querying the database with some intuitive coordinate values for specifying a

certain area of the sky. As shown in Figure 1.1, the user will first pose query Q1 and review

all the results returned by Q1. Guided by the results returned by Q1, the user may refine the

query predicates to pose another query Q2. The result set of each query enhances the user’s

understanding of the underlying data and allow him to pose a more precise query. This iterative

process continues until the user finally finds a region of interest, which is represented by query

Q3 in Figure 1.1.

It should be clear from the example 1 that before locating the interesting results, a user

may execute multiple exploratory queries that are initially vague and imprecise. Those queries

potentially return thousands of results. It is essential for a user to review those results to

assess their interestingness and refine their query based on them. However, comprehending

large number of results is a time consuming and challenging task. Therefore, to reduce the user

effort and overall exploration time, Data exploration platforms rely on several representative

data extraction techniques to provide a synoptic understanding of the underlying query result.

In particular, few representative results help user have a quick understanding of what is available

in the whole result set and significantly reduce their result review time .

Thus, in the past years researchers have focused on developing effective representative data

extraction methods. Beyond the well-studied top-k (e.g., [37, 51]), skyline (e.g., [13, 92]), sam-

pling (e.g., [3–5]) and clustering techniques (e.g., [9,61,84]), Diversification is rapidly becoming

the technique of choice for extracting representative subsets with high coverage and minimum
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redundancy.

During a Data exploration session, a user query is first processed against the stored database,

and the corresponding results are generated. The results of user queries are in the form of tuples

that can be generally viewed as a set of attribute values represented as data points in a multi-

dimensional data space. Those results are then further processed to compute a small diverse

subset. Formally defined, let X = {x1, . . . , xm} be a set of results generated in response to

some user query Q. In general, the goal of result diversification is to select a subset S∗ of X

with |S∗| = k, k ≤ m, such that the diversity of the results in S∗ is maximized. There are

various definitions of diversity [97]. Most of them can be classified in one of the following

categories: (i) content based, i.e., selecting results that are dissimilar to each other (e.g., [97]),

(ii) novelty based, i.e., selecting results that contain new information when compared to what

was previously presented to the user (e.g., [21]) and, (iii) semantic coverage based, i.e., selecting

results that belong to different categories or topics (e.g., [6]).

In this work, we primarily focus on the widely used content-based definition of diversity,

whose objective is to maximize the overall dissimilarity within a set of selected results. In

particular, given a distance measure between two results, e.g., the Euclidean distance, the

diversity of a set S is measured by a diversity function that captures the dissimilarity between

the results in S based on either the average or the minimum of the pairwise distances between

results [31, 97].

Since, computing a diverse subset of query result is a combinatorial optimization problem,

identifying an optimal diverse subset S∗ has been shown to be NP-hard ( [35]). Hence, due to the

high computational cost of identifying an optimal diverse subset, approximation methods are

typically employed to select a near optimal diverse subset. However, the existing approximation

algorithms have a computational complexity linear to the input data size. For small datasets,

those algorithms are efficient but they fall short in scaling to data-intensive and computationally

expensive data exploration tasks. Thus, achieving effective and efficient diversification in data

exploration platforms still remains a challenging task. Therefore, this PhD thesis is aimed at

developing scalable and efficient diversification schemes that are particularly suited to Data

Exploration platforms. Next, we present the contributions of this thesis towards that goal.

1.2 Thesis Contributions

While diversification provides users with quick insights into the query answers, it adds addi-

tional complexity and requires extra computational resources. Thus, motivated by the need
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to efficiently provide users with effective insights during data exploration, we have addressed

the scalability of diversification algorithms at two levels: 1) Query Level: optimizing the di-

versification of a single query result in large high dimensional datasets, and 2) Session Level:

optimizing the diversification of multiple query results in an exploratory session.

1.2.1 Query Level Optimizations

Exploratory queries are imprecise by nature and potentially return large result sets. Meanwhile,

current techniques to data diversification follow a general process-first-diversify-next approach,

in which a query is first executed on the database to generate a result which is then diversified

to compute a small diverse subset. One drawback of that approach is that all the data points

(i.e., tuples) in a query result are accessed from disk while only few diverse results are needed

by the user. Similarly, all the dimensional attributes of all the data points in a query result are

considered for diversification. However, only very few of those points will be included in the

diverse set, while most of the remaining points will be discarded. Clearly, that generic approach

would hinder the performance of applying diversification in high-dimensional large databases,

in which results returned by queries exhibit both high-dimensionality and high-cardinality.

Apart from computational complexity of diversification algorithms in high dimensional

spaces, the complexity of diversification objective function also need to be considered. Current

diversification approaches present results diversified along all dimensions. In many applica-

tions, however, the user might require coverage along some dimensions while have some notion

of preference associated with other dimensions of the data. In that case, it is desired to select

representatives that: 1) maximize diversity over the dimensions targeted for coverage(i.e., low

redundancy), and 2) minimize regret over the preference dimensions (i.e., high utility).

To address the aforementioned problems, we have proposed two novel schemes [48,57]:

• Progressive and integrated Diversification Scheme: We propose the Progressive

Data Diversification (pDiverse) scheme [57]. The main idea underlying pDiverse is to uti-

lize partial distance computation to reduce the amount of CPU and I/O incurred during

query diversification. In a traditional approach where diversification is decoupled from

query processing, our scheme allows to quickly detect and prune those data points in

the query result that cannot be included in the final diverse set. The early pruning of

those points provides significant reduction in the CPU cost required for distance com-

putations. Moreover, we propose integrating data diversification with query processing,

which enables pushing down partial distance computation closer to the raw data, and
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hence provides pruning at the data storage layer. This allows for saving the I/O costs

incurred in accessing those pruned values, especially in vertically partitioned data (i.e.,

column-stores). In particular, Column-store systems vertically partition a database into

a collection of individual columns, which are stored separately. Hence, instead of reading

all the attribute values of all the data points accessed by a query, pDiverse leverages a

column-based storage to selectively read only those attribute values of the unpruned data

points and save I/O cost. We further optimize pDiverse by incorporating novel techniques

for ordering of dimensions and approximation of diversity. Our extensive experimental

evaluation on real and synthetic data sets illustrate the benefits achieved by pDiverse.

• Diversity with Regret minimization: Diversity maximization has been adopted as

one technique to generate representative data with high coverage and low redundancy.

Orthogonally, regret minimization has emerged as another technique to generate repre-

sentative data with high utility that satisfy the user’s preference. In reality, however,

users typically have some pre-specified preferences over some dimensions of the data,

while expecting good coverage over the other dimensions. Motivated by that need, we

propose a novel scheme called ReDi, which aims to generate representative data that

balance the tradeoff between regret minimization and diversity maximization [48]. ReDi

is based on a hybrid objective function that combines both regret and diversity. Ad-

ditionally, it employs several algorithms that are designed to maximize that objective

function. We perform extensive experimental evaluation to measure the tradeoff between

the effectiveness and efficiency provided by the different ReDi algorithms.

1.2.2 Session Level Optimizations

During Data exploration, the user interaction with the database takes the form of an exploratory

session, or session for short. In a session, a user issues a sequence of related queries, in which

each query serves as a springboard to the next. Hence, it is essential to present a diverse

representative subset of query result to help user quickly formulate their next query. However,

the computational cost of diversifying the results of multiple queries within an exploratory

session, increases linearly with the increase in the session length (i.e., number of queries). The

diversification process becomes even more computationally challenging as Data exploration

platforms host multiple users running multiple sessions simultaneously. Meanwhile, delivering

near real time performance remains an essential requirement for Data Exploration platforms so

that to match the intrinsic nature of interactive and iterative data exploration to ensure user
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satisfaction. Hence, there is a need for efficient diversification methods in Data Exploration

platforms which are scalable to: i) Number of user sessions, and ii) Length of each user session.

Towards that end, we propose novel schemes for diversification of multiple concurrent and

sequential queries [55, 56,58].

• Diversification for Multiple Concurrent queries: We propose the DivM (Diversifi-

cation of Multiple Search Results) scheme that addresses the problem of efficiently diversi-

fying the results of multiple concurrent queries across different user sessions. Towards this

goal, DivM leverages the natural overlap in search results in conjunction with concurrent

diversification of those results using partial aggregation techniques. This enables DivM

to provide the same quality of diversification as that of the sequential methods, while

significantly reducing the processing costs. We further generalize and extend the DivM

scheme to exploit various approximation techniques that provide orders of magnitude re-

ductions in processing cost, while maintaining a quality of diversification comparable to

that of near optimal schemes. Our extensive experimental evaluation on both real and

synthetic data sets shows the scalability exhibited by our proposed scheme under various

workload settings, and the significant benefits it provides compared to existing methods.

• Diversification for Multiple Sequential queries: A user typically execute numerous

related queries during a data exploration session. Unlike the concurrent queries executed

across different sessions, the queries within a user session are executed in a sequence.

Hence, the natural overlap in results of different queries in not known in advance. There-

fore, to optimize the diversification of multiple sequential queries within a user session,

we propose an efficient Diversification Scheme. Our proposed scheme, called AdOr, relies

on two main interrelated components, namely: 1) an adaptive model-based diversification

method, and 2) an order-based caching scheme. In particular, AdOr employs an adaptive

model based diversification method to estimate the diversity of a diverse subset and hence

selects diverse results without scanning all the query results. In order to further expedite

the diversification process, AdOr employs an order-based caching scheme to leverage the

overlap between sequence of data exploration queries. We conduct extensive experimental

evaluation on real and synthetic data sets, which compare the performance of multiple

diversification schemes and illustrate the benefits achieved by AdOr.
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1.3 Thesis Layout

The rest of the thesis is organized as follows: In Chapter 2, we present preliminaries and related

work. In Chapter 3, we present the progressive diversification scheme for high dimensional

large datasets and an integrated model that combines the processing of a range query with

the diversification of its results in column databases. In Chapter 4, we formulate the multiple

search results diversification problem and present novel algorithms to extract multiple diverse

subsets concurrently. In Chapter 5, we present the interactive diversification scheme for session

based exploratory search. In Chapter 6, we formulate a hybrid objective function to combine

diversity and regret minimization, and present efficient algorithms to evaluate representative

subsets based on that combined objective function. Finally, Chapter 7 concludes this thesis

and overviews future work.
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Chapter 2

Preliminaries and Related Work

2.1 Data Exploration

Traditional Database Management Systems are well suited for applications in which the user

queries are precise and well understood. However, users of many discovery-oriented applications,

including ones from scientific computing, financial analysis and evidence-based medicine, are

searching for interesting insights in the data without a prior knowledge of what they are exactly

looking for [15]. In short, user queries are imprecise and vague. Hence, Exploratory Search is

ascending to a new level of importance because of its indispensible role in many discovery-

oriented applications [54, 78]. In contrast to traditional database search, exploratory search

process is inherently hard as users do not always have a clear idea of what they are looking

for. Therefore, before locating interesting results, a user may execute large number of related

queries.

For instance, Figure 2.1 shows a typical interaction of a user with a data exploration plat-

form. Consider a database DB, which consists of a set of D-dimensional tuples. Each tuple

xi =<xi,1, xi,2, ..., xi,D> is basically a point in a D-dimensional space, where the value of xi,j

Figure 2.1: Data Exploration Session

9
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is drawn from the domain of attribute Aj. User starts the exploration process by submitting

a query. For instance let Q0 be a range query submitted by a user. Q0 is executed by the

database system and the result set X0 = {x1, . . . , xn}, comprising the set of data points that

fall within the multi-dimensional range specified by Q0, is retrieved and presented to the user.

If the user does not find the result set interesting, next query Q1 is formulated by redefining

the previous query Q0. This marks the end of one data exploration cycle that can be defined

as:

Definition 1. Data Exploration Cycle: Sequence of steps performed to execute one user query.

These steps involve query formulation/refinement, query execution and results review.

Thus a user explores a D-dimensional database in multiple data exploration cycles. At the

end of each cycle, the result setXi to the user query Qi is aimed to aid the user in understanding

the data and provide guidance to formulate the next query Qi+1. This exploration process

continues till the user finds a result set that provides interesting insights. Let us call this

process as one data exploration session that can be defined as follows:

Definition 2. Data Exploration Session: A sequence of data exploration cycles performed by

the user in order to extract one target result set.

It should be clear from the discussion above that the data exploratory sessions can be

long, laborious and computationally expensive. Hence, automated data exploration solutions

have emerged to enable users to extract knowledge out of data with ease and efficiency (e.g.,

[15, 28, 50, 52, 69]). Here, we categorize the research efforts towards efficient data exploration

along three phases of data exploration cycle namely: i) Query formulation/refinement, ii) Query

execution, and iii) Result review.

• Query Formulation/Refinement : It is often difficult for users to pose precise queries

without having good understanding of the data. Manually redefining queries after re-

viewing initial query results is a labor-intensive task. Thus, significant research work is

aimed at assisting users formulate and refine their exploratory queries [2]. For instance,

data driven systems are designed to define a query for users who are not aware of the

exact query predicates but who are aware of data items relevant to their exploration

task [70,82,94]. In those systems, queries are defined on the basis of the example output

tuples. Recently, solutions for tuning imprecise queries, where the relevance of query

predicates is uncertain to the user are also proposed [71]. In literature, many techniques

are also proposed for query recommendation [38]. Beyond query formulation, in [28] a new
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exploration interface is proposed that retrieves the relevant objects using only relevance

feedback from users.

• Query Execution Once a query is formulated, the next key step in the data exploration

cycle is the query execution. Since, an exploration session may comprise of many user

queries it is important to reduce the execution time of each query in order to provide

interactive performance. Data pre-fetching, caching and query approximation are impor-

tant techniques used to reduce the query execution times. Recently, these techniques

have been studied within the context of data exploration. For instance, data prefetching

is used to optimize the spatial exploratory queries [93]. Cached results from previous

queries are also used to generate the results of new queries [58]. Online query processing

methods are used to generate approximate answers to user queries in order to give users

a quick understanding of the actual query result set [45]. Another approach to generate

approximate query results is to execute a query on a sampled data set. Many sampling

techniques are proposed for generating quality query results within bounded execution

times [4, 5, 83] .

• Result Review: The result set of each query acts as a dashboard for the next query

in the data exploration session. Therefore it is very important that the query results

are presented in a way that enhances user’s understanding of the underlying data. As

exploratory queries are often imprecise, query result set can be very large. Capturing

interesting insights from large number of results is a challenging task even for expert

users. Towards that end, data visualization and representative data extraction techniques

have been shown to be effective in helping users comprehend the query results.

Visual analytic tools such as Tableau [88], GGobi [90] and Improvise [98] help users to

construct multi-dimensional views of data. Visualization systems that focus on displaying

as many results as possible to provide users feedback as they refine their queries are

also proposed [46, 53]. Besides displaying query results, some visualization systems are

designed to recommend interesting data visualizations to users automatically [34,69]

Another approach to address the too-many-results problem is to present only representa-

tive query results. That is, extracting a few tuples from a query result to provide quick

insights in the potentially huge answer space. That small representative subset of results

should help users learn what is available in the whole result set and assist them in finding

what they are looking for. One of the approaches to select the representative results is



12 Chapter 2. Preliminaries and Related Work

to present best results with respect to some user preference criteria. Early examples of

such representative data generation methods include the well-studied top-k and skyline

queries [92]. In top-k, the user’s preference is captured by means of a utility function over

different dimensions of data, whereas in skyline, that preference is captured by applying

the dominance property over those dimensions. Recently, regret minimization has been

proposed as a practical alternative for both queries [66]. In regret minimization, a small

representative set is generated by considering the universe of all possible utility functions.

However, often standard database query results comprise a set of tuples, with no as-

sociated ranking or preference [11]. Also, during data exploration the aim of represen-

tative result set is not to show the best results to users, rather help them understand

what is available in the whole result set. Thus, in the absence of preference, cluster-

ing (e.g., [9, 61, 84]) and sampling (e.g., [3–5]) methods have been used to generate rep-

resentative data. Cluster medoids can be viewed as representative results (e.g., [11]).

However, clustering algorithms often ignore sparse data areas and tend to select more

representatives from the dense areas. Similarly, data sampling techniques often lack the

ability to discover outliers in data which for some applications may be indispensable.

Therefore, diversification methods have been recently employed to generate representa-

tive sets that provide high coverage of the accessed data, while minimizing redundancy

(e.g., [6, 31–33,55,56,97]).

In this work, our focus is on scalable diversification of search results in data exploration

platforms, which is motivated by the need to provide users with a diverse representative subset

of results. A detailed overview of search results diversification is presented next.

2.2 Search Results Diversification

The goal of search result diversification, or diversification for short, is to return to the user the

set of representative results that are not only relevant to the user query but are also diversified.

The rationale behind such approach is to reduce the risk of result redundancy and maximize the

coverage of query results. One of the earliest works emphasizing the importance of diversity in

search results is presented in [14] as Maximal Marginal Relevance (MMR) problem. It shows

how a trade-off between novelty and relevance of search results can be made explicit through

the use of two different functions. The first measures the similarity among documents, and the

other measures the similarity between documents and the query. Similarly in [101], it is stated
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Symbol Description

D Dimensionality of the database

Q User Query

X Result set of Q

n Size of result set X

S Diverse subset of X

k Diverse subset size

f(S, d) Diversity function

d(xi, xj) Distance between two points

SetDist(x, S) Set distance between a point x and diverse subset S

Table 2.1: Table of Symbols.

that in general it is not sufficient to return a set of results relevant to the keyword query as the

correlation among the returned results is also very important.

In the past years, diversification has been shown to be effective in many different domains;

e.g., web search [6, 7, 97], recommender systems [86, 99, 100, 103], database search [63, 96] and

query suggestions [24, 77, 85]. Regardless of the domain, in general the diversification problem

can be defined as follows:

Definition 3. Given a set X of n results and an integer k (k ≤ n) that defines the size of the

output set, select a subset S∗ of X with |S∗| = k, such that the diversity of the results in S∗ is

maximized.

There are various definitions of diversity in literature [97]. Most of them can be classified

in one of the following categories:

• Content-based Diversity: Objective of Content-based diversity is to maximize the overall

dissimilarity within a set of selected objects. (e.g., [97])

• Novelty-based Diversity: Novelty-based diversity emphasizes on selecting results that

contain new information when compared to what was previously presented to the user

(e.g., [21])

• Coverage-based Diversity: Coverage-based diversity focuses on selecting results that be-

long to different categories or topics (e.g., [6]). Hence, diversity is considered as a means

for selecting results that cover many different interpretations of the informational need of

a user.
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(a) Sample Data (b) MaxSum (c) MaxMin

Figure 2.2: MaxSum vs MaxMin diverse solutions for n=40 and k=8

In this work, we primarily focus on the widely used content-based definition of diversity.

Content-based diversity maximizes the overall dissimilarity within a set of selected objects

[35]. In particular, given a metric d that measures the distance between two results, e.g., the

Euclidean distance among two data points, the diversity of a set S of size k is measured by a

diversity function f(S, d) that captures the dissimilarity between the results in S. To that end,

a number of different diversity functions have been employed in the literature [97].

The most common diversity functions were originally studied in Operations Research for

the facility dispersion problem [74]. More precisely, the problem concerned selecting locations

for some dangerous or obnoxious facilities in order to make them mutually distant to each

other. To address the facility dispersion problem, four different, but related, functions are

proposed in [36]. The four functions are formulated in a general way, without reference to a

specific solution space or distance metric. These formulations apply to the discrete version of

the facility dispersion problem, where the locations for the new facilities are chosen from a finite

set of candidate points in a multi-dimensional space, in order to maximize one of the following

four functions:

• MaxMinMin: Maximize the minimum distance between each pair of facilities.

• MaxSumMin: Maximize the sum of the minimum distances from each facility to its

closest neighbor.

• MaxMinSum: Maximize the minimum sum of the distances from each facility to all its

neighbors.

• MaxSumSum: Maximize the sum of all the hub distances for all located facilities.

Among the four dispersion objective functions, the MaxMinMin and the MaxSumSum func-

tions have been widely adopted for diversification of search results [42] and subject of much
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research [60]. The MaxMinMin function is often referred to as the MaxMin diversity and the

MaxSumSum function is more commonly known as MaxSum or MaxAverage diversity. The

MaxSum diversity function tries to maximize the overall dissimilarity of the selected results,

while MaxMin diversity function selects the results that are always separated by a minimum

distance. Figure 2.2 shows a comparison of the results selected by both measures. The sample

dataset is the data of swimming pools in Brisbane region comprising of ten attributes providing

address and available facilities information of each pool (Figure 2.2(a)). The data is diversified

only on the latitude and longitude attributes. As shown in Figure 2.2(b), the MaxSum function

tends to focus more on the outskirts of the dataset. Whereas, MaxMin function picks results

from the center as well and tends to provide more coverage (Figure 2.2(c)).

Formally, given a diverse subset S and a distance metric d, the MaxMin diversity function

is defined as:

f(S, d) = min
xi,xj∈S
xi 6=xj

d(xi, xj)

However, if the diversity is measured as the average distance among the results in S then

the MaxSum diversity function is defined as:

f(S, d) =
1

k(k − 1)

k∑
i=1

k∑
j>i

d(xi, xj)

Hence, the diversification of search results problem in general can be defined as follows:

Definition 4. Let X be the set of results that satisfy a user query Q and k be a positive integer

such that k ≤ |X|. Let also d be a distance metric and f a diversity function. Then, the

Diversification problem is defined as selecting a subset S∗ of X, such that:

S∗ = argmax
S⊆X
|S|=k

f(S, d)

2.2.1 Diversification Algorithms

The Diversification problem has been shown to be NP-hard for both MaxMin and MaxSum

diversity functions [25,36]. Since, a diverse set of size k−1 may not be a subset of diverse set of

size k, it is not possible to design an incremental optimal solution. For instance, given a result

set of size n, it is possible to find an optimal solution for k = 2 in O(n2) time. However, the

solution for k = 2 cannot be used to build a solution of size k = 3. Hence, in order to solve the

larger instances of diversification problem in polynomial time, many approximation algorithms
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Algorithm 1 Greedy construction.
Input: A set of query results X, an integer k.

Output: A set Sk with the k most diverse results in X.
1: x← random result ∈ X

2: t← 1

3: St ← {x}

4: t← t+ 1

5: while t < k do

6: xmax ← argmaxx∈X setDist(x, St−1)

7: St ← St−1 ∪ {xmax}

8: t← t+ 1

9: end while

10: return St

have been proposed. Those algorithms can be broadly divided into two categories [31]: i)

Greedy Algorithms (e.g., [18, 85,97,103]) and ii) Interchange Algorithms (e.g., [97, 99]).

Greedy Algorithms

Greedy algorithms are very popular for solving diversification problem as they are intuitive

and efficient. It has been shown that the solution provided by the greedy algorithm is a 1
2

-approximation of the optimal solution and that no polynomial algorithm can provide a better

guarantee [91]). Generally, a Greedy algorithm starts with an empty set S and iteratively adds

a result from X to S, based on some criterion. It terminates once k results are selected in S.

An alternate approach is to initialize set S with all results in X and iteratively remove one

result from S until only k results are left in S [40]. In most works, the former approach is used

and is formally called greedy construction algorithm [31, 97].

In particular, Greedy construction algorithm initializes the diverse subset S by some result

in X. Then, it proceeds through a number of iterations, until k results have been selected. The

result that is selected in each iteration is the one that has the maximum set distance from S.

The set distance, denoted setDist(x, S), between a result x and a set S is derived directly from

the definition of f(S, d). Hence, for MaxSum diversity function the set distance is defined as:

setDist(x, S) =
1

|S|

i∑
j=1

d(x, xj)

and for MaxMin diversity function set distance is defined as:
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setDist(x, S) = min
xj∈S

d(x, xj)

The details of greedy construction algorithm are presented in Algorithm 1. Many variations

of greedy construction algorithm are used in literature. For instance, in [35] the initial diverse

subset S is initialized by the most distant pair inX. Whereas in [40] S is initialized by a random

result in X. In [42] another variation of greedy algorithm is employed. In each iteration, two

results from the remaining results in X having maximum pairwise distance are added to the

subset S. Often diversity is combined with some other ranking criterion, most commonly that

of relevance to the user query. In that case, the initial subset S is initialized by the most

relevant result in X [14]. In subsequent iterations, the best result maximizing the combined

objective function is added to the subset S.

Interchange Algorithms

Like Greedy algorithms, interchange algorithms are also widely used in solving the diversifica-

tion problem [63, 99]. In general, an interchange algorithm starts out with a complete initial

solution and then attempts to find a better solution in the neighborhood of that initial one.

For the diversification problem, the basic idea underlying the interchange algorithm is to start

with an initial set S of size k and then iteratively modify the set S in order to improve the value

of the diversity function. Generally, the subset S is initialized with k random results in X. In

each iteration the result contributing least to the diversity of the set S is swapped with a result

in X/S. This process continues until there is no possible interchanges that can improve the

diversity of the set S. When combined with relevance, the initial subset S is constructed using

most relevant k results [97]. The details of interchange algorithm are presented in Algorithm

2.

2.2.2 Complexity of Diversification Algorithms

The computational cost of Greedy construction algorithm, in terms of number of distance

computations, is O(k2n) [31]. This asymptotic cost is the product of two components: the cost

of calculating the set distance setDist(x, S) and the number of times setDist(x, S) is calculated.

Let wi denote the cost of calculating setDist(x, S) at the ith iteration, and tk denote the number

of such calculations required by the algorithm to identify the k diverse results. The number

of iterations performed up to and including the ith iteration can be modeled as a recurrence

relation. In particular, at the first iteration (i.e., i = 1), the most diverse result can be trivially
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Algorithm 2 Interchange.
Input: A set of query results X, an integer k.

Output: A set S with the k most diverse results in X.
1: Set S to be a random solution

2: while interchange occurs do

3: find si, sj s.t d(si, sj) = min (d(si, sj) : si, sj ∈ S, si 6= Sj

4: for all xi ∈ X\S do

5: S ′ ← S\si ∪ xi
6: S ′′ ← S\sj ∪ xi
7: if f(S ′, d) > f(S, d) and f(S ′, d) > f(S ′′, d) then

8: S ← S ′

9: end if

10: if f(S ′′, d) > f(S, d) and f(S ′′, d) > f(S ′, d) then

11: S ← S ′′

12: end if

13: end for

14: end while

15: return S

selected as any random result in X, independently of the other diverse results, since S = Φ

at this point. Thus t1 is 0. At the ith iteration, with i > 1, the set distance setDist(x, S) is

calculated for each result x ∈ X/S, which amounts to a total of n-(i-1) results. Therefore, ti=

n-(i-1). These two observations can be modeled as the base and recursion steps of a first-order

linear recurrence, respectively [22]. It can be easily shown by solving this linear recursion that

tk = O(kn) for k < n. Since, the cost wi for calculating set distance is at most k − 1 in terms

of distance computations, the total cost of Greedy construction algorithm is O(k2n).

The complexity of the Interchange algorithm depends upon the number of iterations and the

cost incurred to compute diversity of set S in each iteration. The diversity of set S of size k can

be computed in O(k2) time. However, the number of iterations for interchange algorithm are

not known in advance. In the worst case, Interchange algorithm can iterate to try all possible

combinations of k diverse subsets of set X of size n. Hence, in the worst case Interchange

algorithm can perform O(nk) iterations.
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2.3 Scalable Diversification for Data Exploration

As mentioned above, the diversification algorithms are based on the computation of pairwise

comparisons. In general, O(k2n) comparisons are necessary for generating a diverse subset

of size k out of n results. While this polynomial cost is still feasible in scenarios with small

amounts of data with few user queries, it becomes prohibitive when computing diverse subsets

of large data across numerous user queries. Hence, there is a need to revisit the diversification

problem from the perspective of exploratory search. In particular, data exploration platforms

pose following challenges to diversification of results in databases.

• Scalability in Data: For high dimensional large data sets, the diversification methods are

expected to scale in both the database size, e.g. thousands of query results, as well as in

the number of dimensions, e.g., tens to hundreds of the attributes in the database.

• Interactive Performance: Data exploration process involves processing of series of queries.

The result of each query must be computed with interactive performance, e.g., within

seconds, in order to minimize the overall exploration time. Hence, guaranteeing interactive

performance when diversifying results of large number of queries becomes another key

challenge.

To address the aforementioned challenges, novel solutions for processing diversification

queries are needed that are scalable to data-intensive and time consuming exploration tasks.

Typically, techniques like indexing, caching and multi query optimization are employed for

efficient query processing in databases. Below, we summarize some of the existing diversifica-

tion methods based on those techniques and discuss the applicability of those methods in data

exploration.

• Indexing: In general, indexing techniques are used for efficient retrieval of data. The

existing diversification solutions based on indexing employ distance based access methods.

Those methods are generally based on pre-computation and indexing of the solution

space considering one query spanning whole data set. For instance, a Cover tree based

implementation of greedy algorithm is proposed for MaxMin diversification problem in

[30]. In particular, diverse subsets for all possible values of k are indexed using a Cover

tree. Similarly, a spatial index called M-tree is used in [32] for the fast computation of

diverse results based on coverage based diversity measure. Indexing is also used in [39]

to implement relevance and distance based sorted access methods to retrieve the top-k
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diverse results. A space partitioning and probing algorithm is employed to minimize the

number of accessed results, by pruning space around already selected results.

A pre-indexing and probing approach is used to retrieve a diverse results of queries with

varying selection predicates and values of k in [96]. Only a bounded number of results

within a distinct value are explored and a B+ tree index is used to skip over the similar

results. However, the proposed methods consider diversity based on priority ordering of

attributes. Two results that differ in a highly important attribute are considered highly

diverse, even if they are similar in other low priority attributes. Such a diversity measure

allows the exploitation of a Dewey encoding of results that can be used to build a B+

index. A similar problem is addressed in [62] in which a novel D-index is proposed that

is based on the concept of computing a core cover, for evaluating both static as well as

dynamic diversity queries. Indexing methods used in both [62, 96] are based on specific

measure of diversity which is not applicable in the general case.

The application of index based diversification methods is limited in modern data explo-

ration platforms. Firstly, the time required building state of the art indices over millions

of data records can be a significant bottleneck in data exploration systems. Secondly, in

the absence of predefined queries the indexes build a priori will rarely be useful [104].

For instance, the indexes used in [30, 32, 39] are build by computing distances between

results along all data dimensions. Those indexes are no longer valid when new queries

are posed that select subset of data projected along some of the dimensions. Hence, the

fast computation of diverse results is gauranteed as long as the same query is repeatedly

posed with varying values of k. The indexing methods used in [62, 96] require users to

explicitly specify the priority ordering of each attribute which is often not feasible for

users with little familiarity of underlying attribute space.

• Data Caching: Data caching is another effective technique for reducing query processing

time in databases [27, 29]. Caches are used to both speed up repeated accesses to static

data and to avoid recomputation by storing the results of a computation. For result

diversification problem, caching has been mainly used for addressing the continuous di-

versity problem where diversified subsets are computed for each sliding window over data

streams [33, 65]. Instead of re-evaluating all the k diverse results, the proposed scheme

in [33] initializes the diverse subset of the new data window using the diverse results from

the previous window. Whereas, in [65] an interchange algorithm is proposed to update

the diverse subset as new data objects arrive. As a new object arrives it is replaced with
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one of the existing objects in the current solution only if this replacement increases diver-

sity. The cost of diversity evaluation of current solution is reduced by caching distance

computations.

Multi-query optimizations: Multi query optimization techniques have been widely

used to minimize the overall processing time of multiple queries [75]. However, most of

the existing work on multi query optimization is focused on efficient query processing for

fast retrieval of query results. For the post query processing tasks like diversification, only

in [19] a multiple query diversification scheme is proposed in the context of microblogging.

Specifically, the goal in [19] is to compute the smallest subset of posts that cover all other

posts relevant to multiple queries with respect to a diversity dimension. The solution pro-

posed in [19] only considers one dimension for diversity i.e., time or sentiment. While the

single dimension diversity model is appropriate for the applications like microblogging, it

is rarely applicable in database search where diverse representatives need to be computed

along multiple dimensions.

Despite substantial work towards efficient methods of diversification, there has been limited

focus on the scalable diversification methods specifically suited for data exploration. For di-

versification of high dimensional large data sets, schemes beyond traditional indexing methods

are needed. Moreover, in a multi query data exploration environment, caching and multi-query

optimization techniques need to be extended from query processing to post query processing

tasks i.e., diversification. In particular, cache based diversification can provide the ability to

compute diverse query results quickly based on the diverse results of prior queries that have

been stored by the system. Similarly, multi query optimization techniques can be applied for

efficient computation of multiple diverse subsets of multiple concurrent queries. Thus, to bridge

the gap between current work on diversification and data exploration, in this thesis we have

proposed novel diversification techniques that work in synergy with data exploration systems.

In particular, we have presented diversification algorithms that are scalable to dimensionality

of data, number of users, session length and complexity of diversity objective function.
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Chapter 3

Progressive Diversification for Data

Exploration Platforms

Data diversification plays an important role in providing users with a concise and meaningful

representation of query results in exploratory search. Meanwhile, current techniques to data

diversification follow a general process-first-diversify-next approach, in which a query is first

executed on the database to generate a result, then the generated result is diversified to extract

a small diverse set. One drawback of that approach is that all the data points (i.e., tuples)

in a query result are accessed from disk while the user needs only few diverse results. Simi-

larly, all the dimensional attributes of all the data points in a query result are considered for

diversification. However, only very few of those points will be included in the diverse set, while

most of the remaining points will be discarded. Clearly, that generic approach would hinder

the performance of applying diversification in modern data exploration platforms that employ

high-dimensional large databases. The result sets returned by those databases for user queries

exhibit both high-dimensionality and high-cardinality.

Motivated by the need to efficiently provide users with diverse results during data explo-

ration, here we propose the Progressive Data Diversification (pDiverse) scheme. The main idea

underlying pDiverse is to utilize partial distance computation to reduce the amount of CPU

and I/O incurred during query diversification. In a traditional approach where diversification

is decoupled from query processing, our scheme allows to quickly detect and prune those data

points in the query result that cannot be included in the final diverse set. The early pruning of

those points provides significant reduction in the CPU cost required for distance computations.

Moreover, we propose integrating data diversification with query processing, which enables

pushing down partial distance computation closer to the raw data, and hence provides pruning

23
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at the data storage layer. This allows for saving the I/O costs incurred in accessing those

pruned values, especially in vertically partitioned data (i.e., column-stores). In particular,

Column-store systems vertically partition a database into a collection of individual columns,

which are stored separately [1]. Hence, instead of reading all the attribute values of all the

data points accessed by a query, pDiverse leverages a column-based storage to selectively read

only those attribute values of the unpruned data points and save I/O cost. We summarize our

contributions below:

• We propose the Progressive Greedy (pGreedy) heuristic, which forms the core of our pDi-

verse scheme. pGreedy utilizes partial distance computation for pruning and reducing

CPU costs.

• We extend pGreedy to work in synergy with vertically partitioned data (i.e., column-

store), which provides substantial reductions in I/O cost.

• We propose an integrated model, in which the processing of a range query is combined

with the diversification of its results towards achieving further reductions in both CPU

and I/O costs.

• We further optimize pDiverse by incorporating novel techniques for ordering of dimensions

and approximation of diversity.

• We conduct extensive experimental evaluation on real and synthetic data sets, which

illustrate the benefits achieved by pDiverse.

The rest of this chapter is structured as follows. We present query diversification model in

Section 3.1. Next we introduce our pDiverse scheme in Sections 3.2 and present optimization

techniques included in pDiverse in Section3.3. Our evaluation testbed and results are reported

in Sections 3.4 and 3.5, respectively. We present the related work in 3.6 and we conclude in

Section 3.7.

3.1 Query Diversification Model

We consider queries submitted to a database system or data exploration platform (e.g., [15,

54]). Such queries retrieve a number of results, or items, from the database. For instance,

consider a database DB, which consists of a set of D-dimensional tuples. Each tuple xi =<

xi,1, xi,2, ..., xi,D> is basically a point in a D-dimensional space, where the value of xi,j is drawn
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from the domain of attribute Aj. Recall from chapter 2 that in a data exploration platform,

a user typically explores a D-dimensional database by posing a sequence of range queries. A

range query over databse DB is simply represented as a multi-dimensional box, also known as

hyper-rectangle. Given a range query Q, let X = {x1, . . . , xn} be the set of data points that

fall within the multi-dimensional range specified by Q. The aim of query diversification is to

present a small diversified subset of X to the users instead of showing them all the results in

X.

Below we present summary of the diversification problem detailed in Chapter 2 and revisit

the complexity of Greedy algorithm.

3.1.1 Data Diversification

There are various definitions of diversity [97]. As mentioned in Chapter 2, we primarily focus

on the widely used content-based definition of diversity in this thesis. Content diversity is an

instance of the p-dispersion problem [36], whose objective is to maximize the overall dissimilarity

within a set of selected objects. In particular, given a distance function d(., .), which measures

the distance between two data points (e.g., Euclidean distance), the diversity of a set S is

measured by a diversity function f(S) that captures the dissimilarity between the results in

S. Without loss of generality, in this work, we focus on measuring the diversity based on the

average of the pairwise distances between results which is formulated as:

f(S) =
1

k(k − 1)

k∑
i=1
xi∈S

k∑
j>i
xj∈S

d(xi, xj)

Putting it together, the data diversification problem is formally defined as follows: Let X

be the set of results that satisfy a user query Q and k be a positive integer such that k ≤ |X|.

Let also d(., .) be a distance function and f(.) a diversity function. Then, the diversification

problem is defined as selecting a subset S∗ of X, such that:

S∗ = argmax
S⊆X
|S|=k

f(S)

Identifying an optimal diverse subset S∗ has been shown to be NP-hard (e.g., [35]). There-

fore, approximation methods are typically employed to select a near optimal diverse subset.

Among many approximation methods, greedy-based heuristics are the ones most widely used

because of their simplicity and performance. For instance, Greedy algorithm(Algorithm 1),

initializes the diversified set S by selecting a random result in X. Then, it proceeds through
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a number of iterations, until k results have been selected. In each iteration t, the result with

the maximum set distance from the already selected results is added to the partially computed

diverse set St. The set distance, denoted setdist(xi, St), between a point xi and a set St is

derived directly from the definition of f(S) as:

setdist(xi, St) =
1

|St|

t∑
j=1
xj∈S

d(xi, xj)

From the above, it is straightforward to derive the complexity of Greedy Construction in

terms of number of distance computation tasks as O(k2n) where n = |X| [31]. However, caching

distance computations across different iterations leads to further reduction in the number of

pairwise distance computations, resulting in a complexity of O(kn) [65]. A pairwise distance

computation in a multi-dimensional space is typically performed under the Lp-norm metric. In

particular, given any two D-dimensional data objects xi and xj, the Lp-norm distance function

d(xi, xj) is defined as: d(xi, xj) = p

√∑D
m=1(xi,m − xj,m)p where 1 ≤ p ≤ ∞. Hence, irrespective

of the choice of p, the complexity of Greedy in terms of number of CPU operations is O(knD).

3.1.2 Problem Definition

Current data diversification techniques compute a diverse subset in two steps: 1) a query Q

is executed on the database DB to generate a result X, and 2) the result S is diversified to

generate a small diverse set S. Hence, in the first step, all the data points in X are read from

disk while only few diversified results are needed by the user. Furthermore, in the second step,

pairwise distance computations are applied to all the data points in X while most of those

points will not be included in the diverse set S. Ideally, only those data points that belong to

S should be accessed and presented to the user. While such an oracle solution is unrealistic,

our goal in this work is to minimize the amount of accessed data (i.e., the I/O cost incurred in

step 1) and the amount of distance computations (i.e., the CPU cost incurred in step 2), which

are defined as follows:

Definition 5. Diversification I/O Cost CI/O: Given a query Q over database DB, CI/O is

the number of disk blocks accessed to produce a diverse subset S of size k for query Q.

Definition 6. Diversification CPU Cost CCPU : Given a query Q over database DB, CCPU

is the number of distance computations incurred to produce a diverse subset S of size k for

query Q.
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3.2 Progressive Data Diversification Scheme

Distance computation is a core requirement of data diversification. However, calculating such

pair-wise distance for all points in X across all D dimensions incurs high CPU costs, especially

when only few points (i.e., k) are needed. Taking this observation further, the decoupling

between processing Q and its diversification, incurs significant additional CPU and I/O costs

for generating the results X, where again very few of those results are included in the final

diverse set S. Motivated by those two observations, we present the pDiverse approach for data

diversification. The main idea underlying pDiverse is to utilize partial distance computation

to reduce the amount of CPU and I/O incurred during query diversification. Such goal can be

achieved during the following two stages:

1. Result Diversification: utilizing partial distance computation allows to quickly detect

and prune those points in X that cannot be included in the final diverse set S. This allows

for saving the CPU cost incurred in computing the distance over those pruned values.

2. Query Processing: integrating data diversification with query processing enables push-

ing down partial distance computation closer to the raw data, and hence provides pruning

at the data storage layer. This allows for saving the I/O costs incurred in accessing those

pruned values as well as the CPU costs incurred in processing them.

To achieve the benefits outlined above, pDiverse approach utilizes several techniques, which

are described in the following sections.

3.2.1 Computing Partial Distances

Clearly, computing the pairwise distances between all data points in a query result (i.e., X)

incurs a high computational overhead. The amount of that overhead is further magnified when

considering that only a small number of points (i.e., k) are eventually selected in the final diverse

set S. This observation motivates us to utilize partial distance computation as a solution for

reducing the overall cost incurred in identifying the points in a diverse set. The basic idea is

to quickly prune a data point once it is clear enough from its partial distance that it cannot be

included in the final diverse set.

While relying on partial distance computations is expected to provide significant savings in

terms of CPU cost (i.e., number of computations), the amount of savings in terms of I/O cost

(i.e., amount of accessed data) depends on the underlying data storage model. In a row-store,
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Algorithm 3 pGreedy.
Input: A set of query results X, an integer k.

Output: A set Sk with the k most diverse results in X.
1: x← random result ∈ X

2: t← 1

3: St ← {x}

4: t← t+ 1

5: while t < k do

6: if Greedy then

7: xmax ← argmaxxi∈X
∑

xj∈St−1
d(xi, xj)

8: else if pGreedy then

9: xmax ← hPrune(St−1, X)

10: end if

11: St ← St−1 ∪ {xmax}

12: t← t+ 1

13: end while

14: return St

for any data point xi, which has been pruned after computing a partial distance on dimensions

A1, ..., Ah, where h � D, the amount of CPU savings is proportional to D − h. However,

since xi is stored as a row, all the attributes values of xi are already read from storage leading

to no savings in terms of I/O. To the contrary, column-store systems (e.g. C-store [89] and

MonetDB [49]) vertically partition a database into a collection of individual columns, which

are stored separately [1]. A column-store enables queries to read just the attributes they need,

rather than having to read entire rows from disk and then discard those unneeded attributes

after already incurring the I/O costs for reading them [44]. Thus, to complement the savings

in CPU computation with corresponding savings in I/O access, pDiverse utilizes the benefits

of the vertically partitioned storages (i.e., column-store).

3.2.2 Progressive Greedy Construction

Heuristics based on Greedy Construction, or Greedy for short, have been shown to provide both

efficient and effective solutions to the data diversification problem [31, 97]. In this work, we

propose Progressive Greedy (pGreedy), which utilizes partial distance computation for efficient
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Figure 3.1: Horizontal and Vertical Pruning of candidate points

progressive data diversification, especially in high-dimensional databases. For clarity of presen-

tation, in this section we assume that X is generated as the result of processing some query Q.

Hence, all the data points in X are stored in memory and the goal is to generate a diverse set

S while minimizing the number of distance computations (i.e., CPU cost). Such assumption is

to be relaxed in later sections.

As shown in Algorithm 3, pGreedy follows the same steps as the original Greedy heuristic

(e.g., [31,97]), except for allowing pruning of values based on partial distances. Specifically, in

each iteration t of pGreedy, a new point from X is selected to join the current diverse subset St.

In the original Greedy heuristic, the distance of each point in X from St is calculated and the

one with the maximum distance is chosen (step 6 of Algorithm 3). In pGreedy, however, that

decision is based on partial distance computation, which allows for significant pruning, while

providing the same exact solution achieved via full distance computation (step 8 of Algorithm 3).

To utilize partial distance, pGreedy relies on two operators: hPrune, and vPrune (shown

in Algorithms 4 and 5, respectively), which work in tandem to enable efficient pruning of

data values, as shown in Figure 3.1. Particularly, during each iteration of pGreedy, hPrune

progresses incrementally through the dimensions (i.e., attributes) of the result X, allowing for

some dimensions to be completely pruned from distance computation (i.e., horizontal pruning).

If a dimension is not pruned, vPrune is invoked to process the data points in X under that

dimension, while at the same time pruning some of those points (i.e., vertical pruning). Next,

we first describe the details of vPrune, followed by hPrune.

Vertical Pruning The pGreedy heuristic relies on vPrune for eliminating data points that

would naturally disqualify to join the diverse set S. Particularly, vPrune works at the dimension-

level and it takes two parameters (Algorithm 4). The first parameter is a partial diverse subset
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St of size t where 1 ≤ t < k. The second parameter is a list of candidate points Ch, where each

entry in Ch is defined as (pid,< x1, ..., xh >) where h ≤ D. That is, each entry in Ch is an

incomplete h-dimensional point x for which the values of D − h dimensions are unknown yet,

whereas pid is a position identifier that simply points to the location of x in memory.

Essentially, vPrune prunes the points in Ch that cannot make it to St and returns a shorter

list C ′h. Particularly, C ′h contains the list of data points that survived the pruning, for which

more dimensions need to be examined. Hence, vPrune is invoked again with an input Ch+1,

where Ch+1 = C ′h.

In order to achieve that pruning, vPrune computes a partial set distance between each

point in Ch and St. Without loss of generality, in this work, we focus on the widely used form

of Lp-norm, in which p = 2 (i.e., Euclidean distance). To compute a partial Euclidean set

distance, let X be a collection of D-dimensional points where x = (x1, x2, . . . , xD) is a point in

X. Hence, the Euclidean distance between two D-dimensional points xi and xj is defined as:

d(xi, xj) =
√∑D

m=1(xi,m − xj,m)2

For h-dimensional points, where 1 ≤ h ≤ D, we define two distance bounds as follows:

Definition 7. Maximum distance bound (d(xi, xj)
h
max): The maximum distance between

two D-dimensional points xi and xj is the sum of two components: i) the distance between those

two points in the h known dimensions, and ii) the maximum possible distance between those

two points in the D− h unknown dimensions. In a unit space, the latter component is equal to√∑D
m=h+1(1.0)2. Hence, d(xi, xj)

h
max is calculated as:

d(xi, xj)
h
max =

√√√√ h∑
m=1

(xi,m − xj,m)2 +
D∑

m=h+1

(1.0)2

Definition 8. Minimum distance bound (d(xi, xj)
h
min): The minimum distance between

two D-dimensional points xi and xj is calculated as:

d(xi, xj)
h
min =

√√√√ h∑
m=1

(xi,m − xj,m)2 +
D∑

m=h+1

(0.0)2

On the basis of the two distance bounds described above, we extend our previous definition

of setdist(., .) (please refer to Section 6.1) to accommodate partial distance calculation. Partic-

ularly, we define a minimum set distance and maximum set distance of a point x from a diverse

set St for h-dimensional points as follows:

minSetDist(x, St) =
t∑

xi∈St

d(x, xi)
h
min
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Algorithm 4 vPrune.
Input: Partial Diverse Subset St, Candidate List of h-dimentional results Ch
Output: Candidate List of h-dimensional results C ′h
1: maxminDist← 0

2: for all xi ∈ Ch do

3: mindistxi
← minSetDist(xi, St, h)

4: if mindistxi
> maxminDist then

5: maxminDist← mindistxi

6: end if

7: end for

8: while i < |Ch| do

9: maxdistxi
← maxSetDist(xi, St, h)

10: if maxdistxi
< maxminDist then

11: Ch ← Ch − {xj}

12: end if

13: end while

14: return Ch

maxSetDist(x, St) =
t∑

xi∈St

d(x, xi)
h
max

For every entry xi in the candidate list Ch, vPrune computes the minimum and maximum

set distance of point xi from the current diverse set St as described above. If a point xi

has a maximum set distance less than the minimum set distance of any point xj in Ch (i.e.,

maximum minimum distance), then xi is immediately pruned. That is, ifmaxSetDist(xi, St) ≤

maxminDist, then xi is pruned and is not considered any further because there exists another

point in the candidate list which is guaranteed to provide better diversity than xi. After

processing dimension h, vPrune returns a shorter list of candidates to hPrune, which progresses

to the next dimension (i.e., h+ 1) as described next.

Horizontal Pruning

The work of vPrune, as described above, is orchestrated by hPrune (Algorithm 5). Partic-

ularly, hPrune progresses incrementally through the different dimensions and invokes vPrune

to process those dimensions. During each iteration t of pGreedy, hPrune is initialized with the

current diverse set St and it invokes vPrune to process the first dimension of all the points in

X (i.e., |C1| = |X|). As it proceeds from one dimension to the next, the bounds imposed by



32 Chapter 3. Progressive Diversification for Data Exploration Platforms

Algorithm 5 hPrune
Input: Partial Diverse Subset St, Result set X

Output: xmax with maximum set distance from St

1: h← 1

2: while h ≤ D do

3: Ch ← SELECT (Ch, P redicatesh)

4: Ch ← vPrune(St, Ch)

5: if |Ch|=1 then

6: xmax ← Ch[0]

7: break;

8: else

9: h← h+ 1

10: end if

11: end while

12: return xmax

A
1

Max=1

Min=0

A
2

Max=0.7

Min=0.4

A
3

Max=0.8

Min=0.6

A
4

Max=0.6

Min=0.4

1 0.82 0.40 0.6 0.44

2 0.25 0.27 0.6 0.59

3 0.06 0.40 0.6 0.56

4 0.79 0.34 0.6 0.51

5 0.09 0.24 0.7 0.48

6 0.12 0.24 0.6 0.41

7 0.11 0.36 0.6 0.45

8 0.69 0.44 0.6 0.42

Figure 3.2: SampleData (accessed values are shaded and pruned values are blank)

partial distance computation grow tighter, and vPrune is able to eliminate more points as it

processes more dimensions.

In each iteration t of pGreedy, hPrune terminates after it invokes vPrune on all dimensions,

or when there is only one candidate point left in the candidate list Ch. In the latter case,

all D − h dimensions that follow dimension h are not considered any further (i.e., horizontal

pruning). In the subsequent iteration t + 1, the same process is repeated. Notice that some

points that have been pruned in one iteration of pGreedy, might be re-considered in subsequent

iterations. In particular, as a new point xmax is added to S in each iteration t, the distance

between each point in X and the diverse set S needs to be updated to reflect the addition of

that new point. Hence, points that have been pruned in iteration t might survive the pruning

in one or more iteration t′ > t.
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Figure 3.3: Selection of next diverse data point xmax

Illustrative Example Consider the data points in SampleData, as shown in Figure 3.2.

Figure 3.3 shows an example of applying one iteration of pGreedy on those data points. In

this example, assume that t = 1, hence St contains one data point. Further, assume that

one data point to be <0.11, 0.4, 0.7, 0.5> During processing attribute A1, hPrune generates a

candidate list C1, which contains a set of 1-dimensional data points. In turn, vPrune processes

C1 and S1 and computes maximum and minimum set distances for each point in C1. Notice

that the maximum minimum set distance is provided by the first data point x1 and is equal to

0.71. Hence all the points with maximum set distance less than or equal to 0.71 are pruned

(= x2, x3, x5, x6, x7).

For the list of remaining points (= x1, x4, x8), attribute A2 is accessed and a list of 2-

dimensional data points C2 is created. Next, vPrune updates the partial set distances of the

points in C2 and prunes all points with maximum set distance less than 0.711, which is the new

maximum minimum set distance. Since only x1 survived the pruning step, hPrune terminates

and xmax is set to x1 and added to S. In comparison to Greedy, where all the dimensions of

all the data points are involved in distance calculations, pGreedy performs far less number of

CPU operations for selecting each new point. For instance, in this particular example, hPrune

computes distance across only 11 dimensional values as compared to 28 in case of Greedy.

3.2.3 Setting the Distance Bounds

Clearly, the power of pruning provided by pGreedy relies on the strength of the calculated

minimum and maximum set distance bounds. That is, the tighter the bounds, the higher

pruning power achieved by pGreedy. While setting the maximum distance between any two

data points along an unknown dimension to 1.0 (as described in the previous section) guarantees

the correctness of bounds, it often results in very loose bounds that reduce the pruning power.
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In fact, a certain minimum number of dimensions h need to be fully accessed before achieving

any pruning. In the case where that maximum is 1.0, that h is computed as follows.

Lemma 3.2.1. In a D-dimensional unit space, given a point x and two h-dimensional points

xi and xj where h ≤ D. If the maximum distance limit along all D dimensions is 1.0, then

d(xi, x)hmin ≥ d(xj, x)hmax is only be possible if h ≥ D
2
.

Proof. The maximum distance bound between xj and x is:

d(xj, x)hmax =

√√√√ h∑
m=1

(xj,m − xm)2 +
D∑

m=h+1

(1.0)2

Hence, the minimum value for d(xj, x)hmax is achieved if the distance in all h dimensions is 0.

That is,
∑h

m=1(xj,m − xm)2 = 0. Similarly, the minimum distance bound between xi and x is

given by:

d(xi, x)hmin =

√√√√ h∑
m=1

(xi,m − xm)2 +
D∑

m=h+1

(0.0)2

Hence, the maximum value for d(xi, x)hmin is achieved if distance in all h dimensions is 1. That

is
∑h

m=1(xi,m − xm)2 = h. Let’s assume the minimum value for d(xj, x)hmax and the maximum

value for d(xi, x)hmin then:

max(d(xi, x)hmin) ≥ min(d(xj, x)hmax)

=

√√√√ h∑
m=1

(1)2 +
D∑

m=h+1

(0.0)2 ≥

√√√√ h∑
m=1

(0)2 +
D∑

m=h+1

(1.0)2

= h ≥ D

2

Hence, it is required to access at least half of the dimensions before getting to prune any

points based on their partial distances. In reality, however, the maximum achievable dis-

tance along any dimension is dependent on the domain range of that particular dimension.

For instance, if the range of a dimension h is between 0.4 and 0.6 then the maximum dis-

tance between two points along this dimension cannot exceed 0.2. Hence, pGreedy utilizes

the statistical information available from the database catalogue to formulate tighter bounds.

Particularly, it simply uses the maximum and minimum value for each attribute Ai when com-

puting maximum set distances. For instance, consider the first two points shown in Figure 3.2:

x1 =< 0.82, 0.4, 0.6, 0.44 > and x2 =< 0.25, 0.27, 0.6, 0.59 >. Further, assume that x1 is the
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only point in the diverse set S. If only the first attribute value of x2 is available, then estimating

the distance between x2 and x1 assuming a a full unit maximum distance will provide following

distance: d(x1, x2)1
max =

√
(0.57)2 + 3 ∗ (1)2 = 1.82. To the contrary, using the maximum and

minimum values for each dimension (as shown in Figure 3.2), provides a tighter bound, which

is calculated as: d(x1, x2)1
max =

√
(0.57)2 + (0.3)2 + (0.2)2 + (0.16)2 = 0.69.

In addition to leveraging the statistical information described above, pGreedy also auto-

matically adjusts the upper bound on distance as the diverse subset evolves. This technique

is based on the observation that as the size of diverse subset increases, the value of diversity

decreases. This is due to the fact that diversification functions are sub-modular in nature [58].

Hence, the distance contribution of any new point cannot be larger than the contribution of

the previous point added to set S. Accordingly, in each iteration, the current diversity value

of the partial diverse subset S serves as the upper bound for the maximum set distance of any

point.

3.2.4 Storage-aware Progressive Diversification

In the previous sections, our focus has been on reducing the computational costs incurred during

data diversification by utilizing partial distances for enabling progressive diversification. The

premise is that calculating pairwise distances for all points in X across all D dimensions is often

unnecessary, which allows for efficient pruning, especially when only very few diverse points are

needed (i.e., diverse set S). In this section, we further leverage progressive diversification to

reduce the I/O costs required for generating a diverse set of points S. In particular, we migrate

from the traditional process-first-diversify-next approach to an integrated approach, in which

data diversification is weaved within query processing.

Recall that the basic idea underlying our proposed progressive diversification is to utilize

partial distance computation to avoid computing pairwise distances along all of the attributes

of a D-dimensional database. Depending on the data characteristics and diversification require-

ments, the pruning power can fall anywhere between pruning very few dimensions of very few

data points, all the way to pruning entire dimensions for most of the data points. Such scenario

naturally lends itself to take advantage of a vertically partitioned data layout, in which data is

stored in columns instead of rows (i.e., column-stores).

Column-store systems vertically partition a database into a collection of individual columns,

which are stored separately [1]. A Column-store enables queries to read just the attributes they
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need, rather than having to read entire rows from disk and then discard those unneeded at-

tributes after already incurring the I/O costs for reading them. Column-store systems employ

concepts that are at a high level similar to vertical partitioning, in addition to many archi-

tectural features that are designed to maximize the performance on analytic workloads. One

such feature is the use of virtual IDs for data access [49]. Particularly, one simple way to

represent a column in a column-store involves associating a tuple identifier with every column

(i.e., additional column). Alternatively, to reduce storage space, the position (i.e., offset) of

the tuple in a column is used as a virtual identifier. Particularly, each attribute is stored as a

fixed-width dense array and each record is stored in the same array position across all columns

of a table. Relying on fixed-width columns simplifies locating a record based on its offset; for

example accessing the i-th value in column A, simply requires to access the value at the location

base(A) + i× width(A) [1].

Irrespective of the particular implementation of a column-store, our propose scheme pDiverse

can leverage vertically partitioned data for reducing the incurred I/O costs. Particularly, instead

of reading all the attribute values of all the data points in a result X then diversifying them,

pDiverse can selectively read those attribute values for only the data points in the candidate

list (i.e., unpruned points). For instance, consider a special case, in which hPrune (as described

in Algorithm 5) narrows the candidate list to one single data point after progressively visiting

h dimensions. In that case, hPrune terminates early and all the remaining D − h dimensions

are not read from disk.

While the case described above might be considered an extreme, during normal scenar-

ios large savings in I/O cost remain attainable. Specifically, recall that in each iteration t

of pGreedy, hPrune incrementally traverses through the different dimensions and prunes the

candidate list of diverse points C accordingly. Hence, as it progresses from one dimension Ah

to the next dimension Ah+1, more data points are pruned. Consequently, only the disk pages

(i.e., blocks) from attribute Ah+1 that contain the points in Ch are read from disk leading to

progressive savings in I/O costs. Furthermore, as pGreedy moves to a next iteration t + 1, a

disk page that contains the values of attribute Ah for some points in Ch is accessed directly

from memory if it has already been read in some previous iteration. That is, only points in Ch
that belong to uncached pages incur additional I/O costs.

In Section 3.3, we propose multiple optimization techniques that enable pDiverse to further

extend the ideas above to minimize I/O costs. Meanwhile, in the next section we describe our

method for integrating data diversification together with the processing of a range query (i.e.,

predicate evaluation).
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Figure 3.4: Selection of next divers result xmax for a range query.

3.2.5 Integrating Query Processing and Diversification

Users typically interact with a a multi-dimensional database by posing range queries. A range

query Q is easily represented as a D-dimensional box (also known as hyper-rectangle), which

is defined in terms of D range predicates P1, P2, ..., PD. Each range predicate Pi is in the form

li ≤ Ai ≤ ui, where Ai is the i-th attribute (i.e., dimension), and li and ui are the lower and

upper limits specified by query Q along dimension Ai, respectively. Note that a dimension Ai

that is not included in Q, is equivalent to Li ≤ Ai ≤ Ui, where Li and Ui are the lower and

upper bounds of dimension Ai, respectively.

While current schemes adopt a two-stage approach to data diversification, in which a range

query is executed first, then its result is diversified, we argue that an integrated approach is well

positioned to minimize the costs of data diversification. In the previous section (Section 3.2.4),

we highlighted the benefits obtained when diversifying the results of an unbounded range query.

That is, a range query where each predicate Pi is defined as Li ≤ Ai ≤ Ui. In this section,

we address the general case of bounded range queries. In a nutshell, applying a predicate

Pi on attribute Ai eliminates those data points that fail to satisfy the predicate. Similarly,

applying hPrune on attribute Ai eliminates those data points that fail to join the diverse set.

The combined impact of integrating those two operations results in a combined reduction in

the number of data points that progress to the next attributes. Hence, reducing the amount of

incurred I/O and CPU costs.

One straightforward approach towards achieving such integration is to encapsulate both

range predicate evaluation together with distance pruning within hPrune. Particularly, when

processing an attribute Ai, hPrune first invokes the database predicate evaluation operator

(i.e., select), which returns a list of those points that satisfy the predicate Pi. That list is

cascaded to vPrune to further eliminate the points that cannot make it to the diverse set.

For example, consider the execution of the following query as shown in Figure 3.4:
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SELECT A1, A2, A3

FROM SampleData

WHERE A1 < 0.9 AND A2 < 0.7

To answer that query, the select operator is applied to eliminate the values in column A1

that that do not satisfy the predicate A1 < 0.9 and C1 is created with points x1, x4, x5, x6, x7.

Then vPrune computes the maximum and minimum set distances for all candidates in C1 and

only those points with maximum set distance greater than the minimum set distances of all the

other points are kept in C ′1 (i.e., x1, x4, x7). The next select operator reads the values of the A2

attribute for all the points in C ′1 and returns the ones that satisfy the predicate A2 < 0.7 (i.e.,

x1, x4, x7). Finally, vPrune is invoked and points x4 and x7 are eliminated, leaving only point

x1 to be returned as the new diverse point xmax.

Though of its simplicity, the approach demonstrated above is expected to raise some inter-

esting anomalies and provide an incorrect diverse set, when compared to a decoupled approach.

To illustrate such anomaly, assume that the predicate condition on attribute A2 is changed to

A2 ≤ 0.5.

Figure 3.5 shows that as the select operator applies the new predicate on A2, point x1 is

eliminated as it does not satisfy the predicate condition. Recall, however, that while pruning

C1, vPrune eliminated points x5 and x6 based on the minimum set distance of x1. Since x1 is

now filtered out, the pruning of x5, x6 becomes invalid and will cause an anomaly.

In order to avoid such anomaly, while at the same time utilizing the pruning power of

partial distance calculation, pGreedy keeps track of the point with the maximum minimum set

distance in C ′h, let this point be xm. In case xm gets eliminated by the select operator, then

some of the points pruned by vPrune in the previous step are revisited. Particularly, the next

point x′m with maximum minimum set distance is located in the list Ch+1. Further, from the

list of pruned points, we bring back those points that have maximum set distance higher than

minimum set distance of x′m. For example, Figure 3.5 shows that after eliminating x1, point

x5 is added to C ′1 since its maximum set distance is higher than minimum set distance of x4,

which is the new x′m point.

3.3 pDiverse Optimizations

In this section, we extend pDiverse to include optimization techniques based on: i) ordering of

dimensions, and ii) approximation of diversity. The details of those techniques are explained
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Figure 3.5: Handling range predicates

next.

3.3.1 Ordering of Dimensions

As presented so far, pDiverse perceives the different dimensions equally and hence, progressively

processes them in the order determined by the scanner operator, which is based on selectivity.

The selectivity of a predicate Pi over column Ai determines the number of data points that fall

within that range (i.e., satisfy the predicate). Accordingly, in a column store, a column scanner

operator consists of a series of pipelined scan nodes, where nodes that yield few qualifying tuples

are pushed as deep as possible. That is, a column that produces fewer tuples is processed first

so that to minimize the number of positions accessed in the next column and reduce processing

costs.

Besides selectivity, imposing some additional criteria on the processing order of columns is

expected to play an essential role in shaping the pruning power achieved by pDiverse. Particu-

larly, in each iteration t of pGreedy, it is highly beneficial to prune as many points as possible

and as early as possible. Hence, pDiverse visits columns according to selectivity, but for those

columns with the same selectivity, it imposes a second level of ordering based on the following

two factors:

1. Attribute Domain (O): Recall that as hPrune progresses from one dimension Ah to the

next dimension Ah+1, it invokes vPrune, which updates the partial distances for all the

points in the candidate list given the new values of attribute Ah+1. As those distances are

updated, new bounds are set and more points are pruned from Ch+1. However, if all the

attribute values in dimension Ah+1 are very close to each other, then updating the partial

distances using those values will have negligible pruning power. To the contrary, if the

attribute values in dimension Ah+1 are spread over a fairly wide domain, then updating

the bounds allows vPrune to easily distinguish the points that are still candidates for

inclusion in S from those that are to be pruned. Hence, dimensions with wide value
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domains should be processed earlier (i.e., assigned high priority), whereas processing

dimensions with relatively smaller value domians should be postponed (i.e., assigned low

priority).

2. Attribute Size (Z): It is expected that the number of pruned points increases, as

hPrune progresses through the different dimensions. This is because as more dimensions

are processed, the calculated bounds get tighter. Thus, to save I/O costs, it is intuitive to

process those dimensions that are stored in fewer disk pages first. Hence, even if the entire

dimension is to be processed, only very few disk pages are accessed. This is especially

important given that in most column-stores, each attribute is stored as a fixed-width

dense array. Accordingly, the values of a small-width attribute will be stored in smaller

columns (i.e., fewer disk pages) than large-width attributes. For instance, a column of

CHARs will take four times less I/O than a column of INTs.

Hence, each attribute Ai is assigned a score value based on its domain (Oi) and size (Zi),

which is defined as follows:

Score(Ai) =
Oi

Zi

Accordingly, dimensions are first ordered according to selectivity, whereas the scoring func-

tion above is used as a secondary criterion for breaking the ties among those dimensions which

have the same selectivity.

3.3.2 Approximation of Diversity

The goal of pDiverse is to utilize partial distance computation to minimize the CPU and I/O

costs required by data diversification. Meanwhile, pDiverse provides the same diversity (i.e., set

of diverse points S) as that provided when using full distance calculations. However, like Greedy,

pDiverse requires k iterations over the data to select k diverse results. Each iteration t is likely

to explore some new points that have been pruned in previous iterations, thus reducing the

benefits obtained from previous pruning. Hence, pDiverse incorporates simple approximation

techniques that provide significant cost reduction, while incurring negligible loss in the diversity

of the final result set. Our proposed approximation techniques are described next.

Page-based Pruning (PP): The main idea underlying this approximation is to give higher

preference to prune those data points that require additional I/O accesses while still having

low chance in joining the diverse set S. Particularly, recall that when selecting a new diverse

point to be added to S, the candidate list of points Ch contains a set of h-dimensional points.
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Next, vPrune processes list Ch to prune some data points and generate a shorter list Ch+1. For

each data point in Ch+1, the attribute values of dimension Ah+1 is accessed. For some points

in Ch, the value of the Ah+1 dimension is already in memory from some previous iteration (i.e.,

in-memory point). Whereas for some other points, that value is on disk and has never been

cached (i.e., on-disk point). That is, the disk pages that contain the attribute Ah+1 values for

those points have not been fetched in any previous iteration.

As mentioned in Section 3.2.2, the points in Ch that have maximum partial set distance less

than the maximum minimum set distance of the point in Ch are pruned. However disk I/O cost

can be reduced if pruning an on-disk point is given a higher preference as long as it is have

minimum impact on the achieved diversity. To achieve this, let xm be an in-memory point, and

let its partial minimum set distance from set S be minSetD(xm, S). Further, let xd be an on-

disk point, and let partial its maximum set distance from set S bemaxSetD(xd, S). Then if the

following condition is met, xd is marked as “to-prune” point: (maxSetD(xd,S)−(minSetD(xm,S)
(maxSetD(xd,S)

≤ θ,

where θ is a threshold parameter that determines the degree of approximation, Meanwhile, all

the unpruned on-disk points that are added to the Ch+1 list are marked as “to-read”. In the end

of vPrune, if a disk page that contains “to-read’ points also contains some “to-prune” points,

then those points are not pruned and are added to Ch+1. To the contrary, if a disk page contains

only “to-prune” points, then those points are pruned and that page is not read.

Column-based Pruning (CP): As mentioned above, the contribution of each dimension to

the pruning power is proportional to its domain range. For instance, if all the attribute values

in a certain dimension are very close to each other, then updating the partial distances using

those values will have negligible pruning power. Hence, pruning those dimensions from partial

distance evaluation is expected to provide substantial savings in terms of I/O costs, while

incurring negligible effect on the achieved diversity. To utilize that observation, pDiverse

employs a threshold value δ, such that if the normalized difference between the maximum and

minimum values in a column Ah is less than δ, then dimension Ah is pruned and the column

that stores the values of Ah is not accessed.

3.4 Experimental Testbed

We perform a number of experiments to evaluate the efficiency and the effectiveness of our

pDiverse scheme. Table 6.3 summarizes the different parameters used in our experimental

evaluation. Schemes: We evaluate the performance of the following schemes:
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Table 3.1: Evaluation Setting.

Parameter Range Default

Number of Dimensions (D) 5–22 22

Database Size 100k 100k

Diverse Subset Size (k) 5–20 5

Page size (B) 4k–64k 4k

Page Pruning Threshold (θ) 0%–10% 2%

Column Pruning Threshold (δ) 0%–5% 1%
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Figure 3.6: Impact of Number of dimensions

• Greedy: Retrieves all relevant query result from disk and then applies the Greedy Con-

struction heuristic to select a diverse subset of query results.

• pDiverse: Progressively reads relevant query results and applies pGreedy to select a di-

verse subset. We evaluate various variations of pDiverse, which are described in the next

section.

Datasets: We use both synthetic and real datasets. The dimensionality of our synthetic

dataset varies in the range [5–22], with the default being 22-dimensional data. The values in

each dimension are generated according to a zipf distribution, for which the skewness parameter

is set in the range 0.0 (i.e., uniform) to 0.9 (skewed). Further, the width of each dimension is

also generated according to a zipf distribution over the values: 2-bytes, 4-bytes, and 8-bytes.

For all data sets, attribute values are normalized to [0–1]. Our Real dataset is generated from

photoObj and SpacObj tables of Sloan Digital Sky Server Database. That data set contains

100k tuples and has 15 numerical dimensions.

Performance: We have implemented all the components of pDiverse from scratch in C++.

Similar to [10, 44], we have implemented a simple vertically partitioned data store, in which
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Figure 3.7: Impact of approximations

we experimented with different configurations of page size for storing data columns. Moreover,

all reported performance results are for cold cache execution and prefetching degree of 0. The

performance of each scheme is measured based on the following metrics:

• I/O Cost: measured as the number of data pages read from disk.

• CPU Cost: measured as the number of distance and comparison operations.

• Diversity: measured as the value of the diversity function of the diversified subset S.

Queries: Our query workload contains both bounded and unbounded range queries. An

unbounded range query is basically extracting a diverse subset from all the data points in

the database without applying any predicates, whereas a bounded range query specifies range

predicates on some dimensions.

3.5 Experimental Evaluation

In Section 3.5.1, we present our evaluation results for simple unbounded range queries on

real and synthetic databases, whereas our results for bounded range queries are presented in

Section 3.5.2. Experimenting with unbounded range queries highlights the pure benefits of

utilizing partial distance computation, independently from the additional benefits obtained

from integrating predicate evaluation with data diversification.

3.5.1 Unbounded Queries

Impact of number of dimensions:

Figure 3.6(a) and Figure 3.6(b) show that both I/O and CPU costs increase with increasing

the number of dimensions for both Greedy and pDiverse. However, pDiverse performs less

number of I/O and CPU operations as compared to Greedy. As shown in Figure 3.6(a), the
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Figure 3.9: Impact of Theta (θ)

savings in I/O increase from 6% to 28% as the dimensionality increases from 5 to 22. Meanwhile,

the savings in CPU operations increase from 32% to 66% as shown in Figure 3.6(b).

Impact of page size: Figure 3.8 shows the I/O cost incurred by pDiverse with increasing

page size. As the figure shows, for page sizes of 4k and 16k, pDiverse manages to reduce I/O

cost by 30% and 17%, respectively. However, if the page size is very large, many column values

are packed in a single page. Thus even if only few values are accessed in a page, the whole page

is still read from disk and reductions in I/O cost is minimal. This highlights the need for our

I/O-based approximations presented in Section 3.3 and evaluated next.

Impact of Data Size:

In this experiment, we have evaluated the scalability of our proposed scheme to data size.

As shown in Figure 3.10, the number of CPU and I/O operations increase for both Greedy

and pDiverse as the data size increases. However, pDiverse consistently performs much less

number of CPU and I/O operations as compared to Greedy. Figure 3.10(a) shows that pDiverse

performs on average 22% less I/O operations for datasets of various sizes. Similarly, in Figure

3.10(b), it has been shown that pDiverse performs around 64% less CPU operations as the

data set size varies from 25000 tuples to 100,000 tuples. As the pruning power of pDiverse is
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(a) I/O Cost (b) CPU Cost

Figure 3.10: Impact of data size on I/O and CPU cost.

independent of the number of tuples in a data set, we do not see an increasing or decreasing

trend in the cost savings for pDiverse as the data set size varies.

Impact of approximations: In this experiment, we evaluate the performance of our approx-

imation methods, namely: pDiverse(PP) and pDiverse(CP), which apply page- and column-

based pruning, respectively. Recall that pDiverse(PP) is controlled using a threshold parameter

θ, whereas pDiverse(CP) is controlled using a threshold parameter δ. In this experiment, we

use the default values θ = 2%, and δ = 1%. Figure 3.7(a) shows the performance in terms

of I/O with increasing the value of k. As the figure shows, both approximation methods pDi-

verse(PP) and pDiverse(CP) perform better than the original pDiverse. Figure 3.7(b) shows

similar trend for CPU operations. While pDiverse(CP) incurs the least amount of I/O since

few columns are completely pruned, pDiverse(PP) performs better than pDiverse(CP) in terms

of CPU operations for higher values of k. This is because pDiverse(PP) is able to prune more

values vertically.

Figure 3.7(c) shows that approximation methods are able to achieve diverse subsets of

comparable diversity to Greedy and pDiverse. However, some loss in diversity is seen as k

approaches 20. The loss in diversity is higher for pDiverse(PP) as compared to pDiverse(CP).

This is because pDiverse(PP) selects slightly less diverse in-memory points to avoid disk I/O,

whereas the dimensions eliminated by pDiverse(CP) are those that are expected to have minimal

impact on distance between two points.

Figure 3.9(a) shows the impact of θ on I/O costs. As the value of θ increases from 0% to

10%, the savings in I/O increase from 38% to 70%. This increase in I/O savings, however,

comes at the expense of some loss in diversity, as shown in Figure 3.9(b). For instance, the

diversity decreases by only 0.01% at θ = 5%, whereas as θ approaches 10%, the loss in diversity

reaches 14%.
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Figure 3.11: Performance of pDiverse on SDSS Dataset
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Figure 3.12: Impact of k on cost of Range Queries

SDSS real dataset: Figure 3.11 shows a similar performance of pDiverse and its approxi-

mation methods on the real data set generated from the SDSS database. For instance, Fig-

ure 3.11(a) shows that pDiverse is able to reduce I/O cost by more than 30%, whereas Fig-

ure 3.11(b) shows reductions in CPU cost up to 35%. However, by incorporating our proposed

approximations, pDiverse is able to achieve around 65% savings in I/O cost and up to 80%

savings in CPU cost.

3.5.2 Bounded Range Queries

In the following, we generated bounded range queries with range predicates posed on up to

4 out of the 22 dimensions. Range predicates are generated uniformly in the domain [0–

1]. In order to assess the impact of our methods for ordering of dimensions, described in

Section 3.3, we evaluated the following variants of pDiverse : i) pDiverse(sel): dimensions are

ordered in descending order of their selectivity, ii) pDiverse(sel+size): dimensions are ordered

in descending order of their selectivity, and the size of each dimension is used for tie breaking,

iii) pDiverse(sel+range): dimensions are ordered in descending order of their selectivity, and

the range of each dimension is used for tie breaking, and iv) pDiverse(sel+score): dimensions
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are sorted in descending order of their selectivity and the score of each dimension, as computed

in Section 3.3, is used for tie breaking.

Impact of diverse set size: Figure 3.12 shows the sensitivity of all the above schemes to in-

creasing k. Naturally, Greedy is indifferent to the value of k as it provides no I/O optimizations,

whereas the I/O cost incurred by pDiverse increases as k increases. Figure 3.12 shows that the

savings in terms of I/O cost achieved by pDiverse are more than 30% for smaller values of k but

decrease to around 7% for higher values of k. However, these savings are significantly higher for

pDiverse variants, which employ methods for ordering of dimensions (i.e., pDiverse(sel+range),

pDiverse(sel+size), pDiverse(sel+score)). For instance, for k = 20, I/O cost savings are up to

23% as compared to 7% achieved by pDiverse. It is worth highlighting that among the different

variants of pDiverse, pDiverse(sel+score) performs better in terms of I/O since dimensions with

smaller size and larger range are read first, which provides significant data reduction as more

candidates are pruned earlier.

Figure 3.12(b) shows the CPU operations performed by each of the pDiverse variants in

comparison to that performed by Greedy. Similar to I/O cost, all the pDiverse variants per-

form less number of CPU operations as compared to Greedy for all values of k. However,

pDiverse(sel+size) performs higher number of CPU operations as compared to the other vari-

ants. This is because it prefers reading dimensions with smaller size first to save on disk I/O

cost, without considering the pruning power of each dimension.

3.5.3 Summary of Experimental Evaluation

In our experimental study, we have evaluated the robustness of our proposed schemes to high

dimensional datasets. The experiments conducted on both real and synthetic data sets measure

the pruning efficiency and performance of various pDiverse variants. As compared to the

baseline Greedy construction heuristic, our proposed pDiverse scheme performs less number

of I/O and CPU operations for computing a diverse subset of same diversity as computed

by Greedy. Those cost savings increase with the increase in the number of dimensions as the

pruning power of pDiverse rely on the number of dimensions. Without using any approximations

and reordering of dimensions, pDiverse performs up to 28% less I/O operations and 66% less

CPU operations for a dataset with 22 dimensions. We have also evaluated the scalability of

pDiverse to the diverse subset size k. For smaller values of k, pDiverse saves substantial I/O

cost. However, for the higher values of k the I/O cost savings are decreased to only 7%. Hence,

for higher values of k the variants of pDiverse with dimension ordering and approximations can
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be used for better I/O performance. The pDiverse variants with approximations rely on tuning

parameters for balancing the trade-off between the diversity of the subset and the computational

cost. The I/O cost savings by approximate pDiverse variants are up to 40% for a negligible

loss in diversity, which is equal to 0.01%.

3.6 Current Approaches to Efficient Diverse Set Selection

Efficient diversification schemes have been proposed in the literature to compute a diverse

subset without considering all relevant results. For instance, in [62,96] pre-indexing and probing

approaches are used to retrieve top-k diverse results. Database tuples are organized in a tree

structure using a Dewey encoding which is later used to select the k most diverse tuples.

However, the approaches presented in [62, 96] consider diversity based on priority ordering

of attributes and are not applicable to general content based diversity measure. In contrast,

pDiverse proposed in this chapter is generic to any Lp norm based diversity measure.

In [33], a cover tree based approach is used to index the data tuples with respect to their

distances among themselves. Once a cover tree is constructed over a result set, it can be ex-

ploited to retrieve k diverse tuples in O(k) time. Since, in [33] cover tree is used for dynamic

diversification problem it is assumed that the user query remains same while underlying data

is changing. Hence, a cover tree is initially generated using query result set and is then dynam-

ically updated as the data changes. However, in our work we address the problem of executing

different range queries over static data. In that case, constructing a new cover tree for every

range query is infeasible. Another approach to generate diverse result set without retrieving

all relevant results is proposed in [39]. A space partitioning and probing algorithm is used

to minimize the number of accessed results by pruning space around already selected results.

Unlike pDiverse, the proposed solution in [39] makes use of both relevance based and distance

based sorted access methods to compute the diverse top k results. In our solution, we do not

make use of any prior distance or relevance scores.

One of the key components of our proposed solution is computation of partial distances. Rely-

ing on partial distances has been shown to provide significant benefits in the context of k-NN

similarity search (e.g., [10, 23, 59, 64]). However, to the best of our knowledge, this is the first

work to investigate utilizing partial distance computation for data diversification. In the fol-

lowing, we highlight some of the substantial differences between the two problems. In k-NN,
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distance comparison is performed with respect to a single query point, hence, k nearest neigh-

bors can be selected within a single iteration over a candidate set, such that pruned points are

never re-visited (as in [10,23]). To the contrary, in data diversification, distance comparison is

performed with respect to the current set of diverse points, hence, k iterations are needed, such

that in the end of each iteration, a new data point is added to the diverse set. Accordingly,

as the diverse set S evolves, points that have been previously pruned, might be re-considered

again in future iterations. That dependency between the evolving set S and the data points in

X challenges the pruning power of partial distance computation, and pDiverse has addressed

that challenge.

3.7 Summary

In this chapter we presented the progressive data diversification scheme (pDiverse), which uti-

lizes partial distance computation for pruning and reducing the CPU costs of diversification.

We extended our scheme to work in synergy with vertically partitioned data (i.e., column-store),

which provides substantial reductions in I/O cost. Our proposed integrated model combines the

diversification of query results with the processing of a range query and hence achieves further

reductions in both CPU and I/O costs. We have provided extensive experimental evaluation

on real and synthetic data sets, which illustrate the benefits achieved by pDiverse.
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Chapter 4

Concurrent Diversification of Multiple

Search Results

Current Diversification schemes are centered around processing results of one query at a time.

Scalable Diversification methods in general, attempt to minimize the processing cost of a single

query (e.g., [39, 62, 96, 104]). Towards that end, in Chapter 3 we proposed the progressive

diversification scheme for the efficient diversification of a single query result. However, Data

exploration platforms host multiple users running multiple data analysis sessions. Many of

those sessions are executed in parallel to maximize the utilization of resources. This leads to

simultaneous execution of many exploratory queries. Such environments highlight the need for

a diversification system that is able to effectively and efficiently diversify the results of many

queries concurrently.

In this chapter, we present the DivM (Diversification of Multiple Search Results) scheme

that targets the problem of efficiently diversifying the results of multiple queries. Towards this

goal, DivM leverages the natural overlap in search results in conjunction with the concurrent

diversification of those overlapping results. This enables DivM to provide the same quality of

diversification as that of the sequential methods, while significantly reducing the processing

costs. Moreover, DivM also exploits various approximation techniques that provide orders of

magnitude reductions in processing cost, while maintaining a quality of diversification compa-

rable to that of near optimal schemes. To achieve that, DivM incorporates methods for tuning

the degree of approximation as well as refining the accuracy of the diversified results.

The contributions of this work are summarized below:

• We define the problem of Concurrent Diversification of Multiple search results

• We propose the DivM scheme that leverages the natural overlap in search results in

51
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Figure 4.1: Multiple Search Result Diversification Model.

conjunction with the concurrent diversification of those overlapping results.

• We further generalize and extend the DivM scheme to exploit various approximation

techniques for further reductions in diversification cost.

• We conduct extensive experimental evaluation on both real and synthetic data sets to

shows the scalability exhibited by our proposed scheme under various workload settings.

The remainder of this chapter is organized as follows. We formalize the multiple search result

diversification problem in Section 4.1. The DivM scheme and our algorithms are presented in

Section 4.2. The experimental testbed and evaluation results are reported in Section 4.3 and

Section 4.4, respectively. We conclude in Section 4.5.

4.1 Multiple Search Results Diversification

Since their early stages, data management platforms have been designed to support the con-

current execution of queries and transactions. Concurrency is an indispensable feature for

any database system as it allows for maximizing the utilization of limited resources as well

as exploiting the overlaps that naturally occur between the different data processing tasks.

Supporting concurrency in database systems has motivated a wealth of well-studied research,

especially in the areas of transaction management and multiple query optimization [73]. For

instance, multiple query optimization techniques typically employ schemes that leverage partial

aggregation [43] and data subsumption [75] in order to minimize the overall costs for processing

multiple queries simultaneously.

This has been particularly beneficial in data exploration systems, in which multiple users

are running multiple data analysis sessions (e.g., [15,54,102]). From a system perspective, this

leads to the simultaneous execution of large number of queries that are essentially of exploratory
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nature. For example, Figure 4.1 shows the interaction of multiple users with the database sys-

tem. The parallel execution of user queries retrieve query results that are available at the same

time. Those query results are then further processed to extract diverse subsets. Although,

individual queries may be regarded as independent and generated by independent users. Often

those queries may be similar or share the subspace of data. Under these circumstances, diver-

sifying the set of overlapping results of various queries together is clearly beneficial. Hence, we

formulate the problem of concurrent diversification of multiple query results as presented next.

4.1.1 Problem Definition

In environments where multiple queries are submitted by a number of different users, we define

the diversification of multiple search results as follows:

Definition 9. Let Q = {Q1, Q2, . . . , QN} be a set of N user queries. Let Xi be the set of results

that satisfy Qi and k be a positive integer with k ≤ |Xi|, 1 ≤ i ≤ N . Let also d be a distance

metric and f a diversity function. Then, Multiple Search Result Diversification is defined as

selecting a set S∗ of n subsets {S∗1 , S∗2 , . . . , S∗N}, such that:

S∗i = argmax
Si⊆Xi
|Si|=k

f(Si, d)

Without loss of generality, in this work we focus on the MaxSum diversity function defined

as:

f(Si, d) =
1

k(k − 1)

k∑
i=1
xi∈S

k∑
j>i
xj∈S

d(xi, xj)

According to Definition 9, a diversification system should ideally locate an optimal set of diverse

subsets S∗ for the input queries. However, due to the inherit NP-hardness of the diversifica-

tion problem, this is not feasible. Hence, to measure the efficiency and the effectiveness of a

diversification system, we define the following metrics:

Definition 10. Diversification Cost, C(Si), is defined as the processing cost, in terms of number

of distance and comparison operations, required to process a result Xi to produce a diversified

result Si of size k. Accordingly, the average diversification cost for a session of N queries is:
1
N

∑N
i=1 C(Si).

Definition 11. Diversification Quality, D(Si), is defined as the value of diversity f(Si, d)

offered by the diversified result Si. Accordingly, the average diversification quality for N queries

is: 1
N

∑N
i=1D(Si).
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Hence, the success of any diversification system can be easily measured in terms of average

diversification cost and average diversity. In particular, our goal in this work is to optimize the

diversification of multiple query results (i.e., minimize diversification cost of computing each

diverse subset Si) while computing high quality diverse subsets (i.e., maximize diversity for

each diverse subset Si). In the next section, we present our scheme and discuss its impact on

both the efficiency and effectiveness of diversification.

4.2 Concurrent Diversification of Multiple Search Results

Before presenting our DivM scheme, we first examine Naïve Greedy, a straightforward extension

of the classical Greedy algorithm, in which multiple results are diversified sequentially and

independently. Next, we present details of DivM scheme and explain its underlying fundamental

ideas.

4.2.1 Naïve Greedy

A naïve solution to simultaneously diversifying multiple search results would be to retrieve the

search result Xi for each query Qi ∈ Q and then apply the Greedy heuristic (i.e., Algorithm 1)

on each Xi separately to detect its respective diverse subset Si. This method is called “Naïve

Greedy”.

Under this baseline approach, each search result is diversified independently and, thus, the

complexity of Naïve Greedy is simply computed as: O(k2|X1|) + . . . + O(k2|XN |). Hence, the

total processing cost of Naïve Greedy is:

CNaïve-Greedy(S) = O(Nk2 max
i
|Xi|)

Naïve Greedy treats each user query independently, hence its complexity essentially in-

creases linearly with the increase in the number of result sets to be diversified (i.e., N). In

many real-life applications, however, it is often the case for many queries to have overlapping

result sets.

Example 2. Consider two queries submitted simultaneously to the Sloan Digital Sky Survey

database. The first query, Q1, retrieves all galaxies that are brighter than magnitude 22, given

that local extinction is larger than 0.75. The second query, Q2, retrieves all galaxies that are

brighter than magnitude 18, given that local extinction is larger than 0.85. Both queries will

retrieve all available results concerning galaxies brighter than magnitude 22 where the local
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Figure 4.2: Result and diverse sets for two queries. Diverse items (i.e., results) are shown in bold.

extinction is greater than 0.85. Depending on the available data, there may be significant data

overlap between the two result sets X1 and X2. This data overlap might potentially translate

into further overlap between the two diverse subsets S1, S2 selected for the two queries.

Our proposed DivM scheme, described next, attempts to leverage this overlap among the

result sets of the various queries for the efficient evaluation of their respective diverse subsets.

4.2.2 DivM

In comparison to the Naïve Greedy approach, instead of processing the overlapping portions

of the results multiple times, DivM processes those portions only once leading to an overall

amortized processing cost. Before explaining the details of DivM (in Sections 4.2.2 and 4.2.2),

in the following we give an overview of DivM and explain its underlying fundamental ideas.

In principle, DivM can be perceived as an instance of the partial aggregation technique

typically used in multiple query optimization (e.g., [43]). Result diversification, however, in-

troduces further complexities due to the dependency between each result set (i.e., Xi) and its

respective diverse set (i.e., Si) during the computation of distance functions. In particular,

result diversification is an iterative process, in which a raw result set Xi is continuously pro-

cessed in conjunction with its respective partial diverse set Si until the final diversity goal is

achieved. Handling such dependency, while at the same time exploiting the opportunities of

shared processing of overlapping data processing, is one of the features provided by DivM.

At a high-level, DivM is based on the Naïve Greedy algorithm presented in Section 4.2.1. In

DivM, however, all the search results are processed concurrently and in each iteration, one item

(i.e., result) of Xi is selected for inclusion in Si, 1 ≤ i ≤ N . Towards exploiting the overlap in

search results for concurrent processing, the following two observations are made:

1. the distance function d between any item xj ∈ Xi and the items in Si is computed

independently of any other items in Xi, and

2. the distance function d between any item xj ∈ Xi and the items in Si can be assembled

from its partial values.
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X2

X1

Figure 4.3: Mapping objects to the grid. Circles and squares denote results for Q1 and Q2

respectively. The shaded cells denote the overlapping region for the two queries.

To illustrate the second observation above, consider the following example:

Example 3. Assume two queries Q1 and Q2 and their respective result sets X1 and X2. Further,

assume that in any arbitrary iteration of DivM, S1 and S2 are the current diverse sets of X1

and X2, respectively. In such iteration, S1 and S2 might have few overlapping results (as shown

in Figure 4.2). In that case, S1 can be clearly expressed as the difference between S1 and S2

union their intersection. That is, S1 = ((S1\S2) ∪ (S1 ∩ S2)). S2 can be expressed similarly.

In the example above, for a single item xj ∈ X1, the distance function d(xj, S1) can be

computed as:

d(xj, S1) = d(xj, S1\S2) + d(xj, S1 ∩ S2)

Similarly, if item xj ∈ X2, the distance function d(xj, S2) can be computed as:

d(xj, S2) = d(xj, S2\S1) + d(xj, S1 ∩ S2)

Hence the term d(xj, S1 ∩S2) can be evaluated only once for every item xj ∈ X1 ∩X2 when

computing d(xj, S1) and d(xj, S2).

Clearly, the calculation of d(xj, S1) outlined above is an example of applying partial aggre-

gation, in which the final value of the distance is easily assembled from its partial values. This

is applicable over all distributive and algebraic distance functions that are typically used in

measuring (dis)similarity, such as all variants of Lp norm including the Euclidean distance.

The combination of the first and second observation listed above allows DivM to exploit the

data overlap exhibited by the queries in Example 3 along two orthogonal dimensions:

1. Overlap in Result Sets: Process the sets X1\X2, X2\X1 and X1 ∩ X2 separately at

each iteration of the algorithm, and

2. Overlap in Diverse Sets: Process the set S1 ∩ S2 only once at each iteration of the

algorithm.

Towards detecting and leveraging overlaps in both the result sets and diverse sets, DivM

incorporates a preprocessing phase in which:
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1. Grid Construction: DivM imposes a multi-dimensional grid structure on the available

results space [67]. In particular, this grid structure is used to partition the results space

into D-dimensional cells, where D is the dimensionality of the search results. For sim-

plicity, we assume that all dimensions are normalized and are in the range [0, 1]. The grid

cells are obtained by partitioning each dimension into intervals of equal width γ. That

is, γ is the resolution of the grid.

Algorithm 6 DivM-Point
Input: Result sets (X1, X2...XN), an integer k.

Output: S1, S2...SN with the k most diverse items of (X1, X2...XN) respectively.

1: X ← X1 ∪ X2 . . . ∪ XN

2: for all Queries do

3: qi.S ← random x where x ∈ Xi

4: end for

5: while |q.S| < k do

6: for all xi ∈ X do

7: Q← all queries sharing xi

8: S ′ ← q1.S ∩ q2.S . . . ∩ q|Q|.S

9: dx ← d(xi, S
′)

10: for all qi ∈ Q do

11: ds ← dx + d(xi, q.S\S ′)

12: if (ds > d(q.candidate, q.S) then

13: q.candidate← xi

14: end if

15: end for

16: end for

17: for all Queries do

18: qi.S ← qi.S ∪ {qi.candidate}

19: end for

20: end while

21: return q1.S, q2.S, . . . , qN .S

2. Data Mapping: DivM scans the set of multiple results available for diversification (i.e.,

X), each result (i.e., item) xj ∈ Xi is perceived as a point in the partitioned multi-

dimensional space created by the grid structure. Hence, for each point xj, DivM locates a
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Figure 4.4: Result and diverse sets for multiple queries.

respective grid cell cl that corresponds to the multi-dimensional coordinates of xj. A cell

c that contains points from two or more result sets is considered to be in the “overlapping

region” for those specific sets (Figure 4.3).

At this point, it is important to classify the types of overlap detected by DivM into the following:

1. Point-based overlap: Under point-based overlap, two data items are considered similar

if they have the same exact values across all the grid dimensions.

2. Cell-based overlap: Under cell-based overlap, two data items are considered similar

if they are mapped to the same grid cell.

Clearly, point-based overlap detects the exact natural overlap among search results, in which

different search results might contain identical items (i.e., points). Meanwhile, cell-based over-

lap introduces approximate overlaps, in which different items from the same search result or

different search results are considered identical.

Based on the above classification, we can broadly depict our proposed DivM scheme into:

1) DivM-Point, and 2) DivM-Cell. In particular, DivM-Point exploits the exact notion of

overlap (i.e., point-based overlap), whereas DivM-Cell extends and generalizes DivM-Point via

exploiting the more relaxed notion of cell-based overlap. As expected, each of those two version

provides its own trade-off between processing cost vs. quality of diversification.

DivM-Point

DivM-Point, as outlined in Algorithm 6, recognizes and leverage the natural overlap in data that

is expected to occur during the concurrent diversification of multiple results (i.e., point-based

overlap). Hence, after finishing the two pre-processing steps listed in Section 4.2.2, the common

items across the different search results are detected (Algorithm 6: line 1). In particular, each

cell is further processed to detect identical data items without introducing any approximation.

In that sense, the grid structure acts merely as a hashing scheme to reduce the costs of detecting
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identical data items. That is, only the data items that are mapped to the same cell are further

compared to detect if they are identical instead of comparing all the data items in all the results

sets. DivM-Point then proceeds as outlined in Algorithm 6. In particular, all the search results

are processed concurrently and in each iteration, one item of Xi is selected for inclusion in Si,

1 ≤ i ≤ N . DivM-Point exploits the overlap in search results as well as in diverse sets as

explained in Section 4.2.2 and as outlined in Algorithm 6: lines 7–11.

Referring back to Example 3, the processing cost C(S1, S2) incurred by DivM-Point in

detecting the diverse set for X1 and X2 in that example can be expressed as:

C(S1, S2) = CNaïve-Greedy(S1, S2)−O(k|S1 ∩ S2||X1 ∩X2|)

Example 3 can be easily extended to the general case of N result sets (Figure 4.4), in which

the cost C(S) for processing n result sets (X1,X2, .., XN) is expressed as:

C(S) = CNaïve-Greedy(S)−O(k(
N∑
i=2

(
N

i

)
|S ′||X ′|))

where S ′ is the intersection of two diverse subsets, and X ′ is intersection of two result sets.

Compared to Naïve Greedy, DivM-Point produces exactly the same set of diverse sets (S1,

S2, .., SN). During each iteration, however, DivM-Point clearly requires less operations for the

computation and comparison of distance functions. Note that in addition to the processing

costs required to locate the diverse sets, DivM-Point incurs additional costs for detecting the

identical items in each cell. Clearly, that cost is dependent on different factors including grid

resolution and data distribution. However, the reductions provided by DivM-Point during

locating the diverse sets clearly outweighs that overhead (please see Section 4.4).

While DivM-Point is based on the general DivM approach, it introduces no approximations.

Next, we introduce DivM-Cell, which introduces further flexibility in tuning the trade-off be-

tween efficiency and effectiveness.

DivM-Cell

Clearly the amount of reductions in processing time provided by DivM-Point is dependent on

two orthogonal factors: (i) the amount of overlap among the diverse sets, and (ii) the amount

of overlap among the result sets. For instance, consider again Example 3. In that example, for

a sufficiently large |X1 ∩X2|, DivM-Point will provide significant gains over Naïve Greedy only

if |S1 ∩ S2| is also large enough. This amount of gain, however, is expected to decrease with

the decrease in |S1 ∩ S2| until it eventually disappears as |S1 ∩ S2| approaches zero, despite of
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a large |X1 ∩ X2|. Hence, an overlap in the result sets Xi cannot necessarily guarantee any

performance gains in its own and is dependent on the amount of overlap in the diverse sets Si.

Here, we propose DivM-Cell, which overcomes that limitation.

DivM-Cell exploits the more relaxed cell-based notion of overlap to reduce the computa-

tional costs of diversification by orders of magnitude while achieving high levels of quality in

diversification.

To illustrate that point, consider again two user queries Q1, and Q2 and their respective

result sets X1, and X2 and diverse sets S1, and S2. Hence, it is possible to have two subsets

S ′1 and S ′2 that are selected for inclusion in S1 and S2, respectively, such that each item in S ′1
is close to some item in S ′2, but not identical. In that case, there will be no natural overlap

between S1 and S2 for DivM-Point to exploit (i.e., |S1 ∩ S2| = 0). However, if the individual

results (i.e., items) in S ′1 and S ′2 that are very similar to each other were considered the same,

then this overlap between the diverse subsets would increase and we could exploit this fact

to reduce the total computational cost. That is precisely the intuition underlying DivM-Cell

algorithm (Algorithm 7), which involves the following steps:

1. Selecting grid representatives. DivM exploits the cell-based notion of overlap by

selecting a representative point for each cell. This representative may be an actual point

in the cell or a “virtual” point placed at the geometric center of the cell. Here, we choose

as representatives the points that are closest to the geometric center of their respective

cell. The representative of cell c is denoted as Rep(c).

2. Approximating result sets. Given the grid representatives, each data point xj in a

cell cl is approximated by Rep(cl). In turn, each set of results Xi is approximated by

a set of representatives XR
i . It is expected for |XR

i | to be much smaller than Xi, since

many of the original points could be mapped to the same cell. This approximation is

also expected to increase the overlap among the various result sets S. That is, different

items from different search results that are sufficiently similar to each other are considered

identical. In either case, the impact of approximation depends on many factors including:

grid resolution, result dimensionality, and the distribution of results over the data space.

3. Locating diverse sets. In DivM, the diverse set Si for each Xi is evaluated by invoking

the DivM-Point algorithm (see Section 4.2.2). To leverage the introduced approximations,

however, DivM-Point is invoked to operate on sets of representatives (i.e., XR
i generated

in step 1) rather than the original sets of results (i.e., Xi). Similarly, in each iteration,

one representative is selected to be added to the approximated diverse result set SR
i ,
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Figure 4.5: Alternative replacement options for DivM

1 ≤ i ≤ N . Hence, each result sRi in SR
i is basically a representative of some cell cl (i.e.,

Rep(cl)).

In comparison to DivM-Point, DivM-Cell provides the following advantages:

• It represents each search result set Xi by a smaller approximated set XR
i , which results

in less processing and significant cost reductions.

• It creates overlap in search results (i.e., X) by considering points that belong to the same

cell as similar, which also translates into higher degrees of overlap between diverse sets

(i.e., S).

Although DivM-Cell uses only representatives of search results to evaluate diverse subsets,

the diversity of SR
i provided by DivM-Cell is comparable to Si computed by DivM-Point as

proved next.

Algorithm 7 DivM-Cell.
Input: Result sets X1, . . . , Xn, an integer k, a resolution γ.

Output: Diverse sets S1, . . . , SN with the k most diverse results of X1, . . . , XN respectively.
1: G ← Construct grid with resolution γ

2: map X1 ∪ . . . ∪Xn to G

3: select a representative Rep(c) for each cell c in G

4: for i = 1 to n do

5: XR
i = {Rep(cj) : xj ∈ Xi with xj mapped to cj}

6: end for

7: S1, . . . , Sn ← DivM-Point((XR
1 , . . . , X

R
n ), k)

8: refine S1, . . . , SN

9: return S1, . . . , SN
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4.2.3 DivM Refinement

As such, the value of the grid resolution γ acts as a “knob" for tuning the amount of approxima-

tion introduced by DivM. Moreover, as described so far, a result sRi in the approximate diverse

set SR
i is basically a representative of some result that should be included in the actual diverse

set Si but not the exact one. In fact, SR
i might also contain results that belong to other sets

Xj, such that j 6= i. For those reason, DivM employs an additional refinement step to replace

those representatives with more accurate results in order to transform SR
i into Si. In the fol-

lowing, we discuss several alternatives for performing such refinement in terms of: (i) method

of refinement (i.e., how to refine), and (ii) timing of refinement (i.e., when to refine).

Regarding the method of refinement, DivM first maps sRi to its corresponding cell cl. This

is a straightforward step since sRi = Rep(cl). Then, the goal is to replace sRi with a point si in

cl that is as close as possible to the one that would have been generated without introducing

any approximation. Towards this, we have considered the following two alternatives:

1. Nearest Neighbor Replacement. sRi is replaced with si, such that: (i) si ∈ Xi, and (ii) si

is the nearest neighbor to sRi (i.e., d(si, s
R
i ) is minimum).

2. Greedy Replacement. sRi is replaced with si, such that: (i) si ∈ Xi, and (ii) si has

maximum distance from the current instance of SR
i (i.e., d(si, S

R
i ) is maximum).

In terms of efficiency, Nearest Neighbor Replacement requires less number of distance com-

putations and comparisons than a Greedy Replacement. For example, if there arem points that

belong to Xi in cl, Nearest Neighbor replacement will perform only m distance computations

to find a point closest to Rep(cl), whereas Greedy replacement will perform m|SR
i | distance

computations. On the other hand, the overall diversity provided by Greedy replacement is

expected to be higher than or equal to that provided by the alternative Nearest Neighbor re-

placement. This is because Greedy replacement tries to select the best possible point in cl to

replace Rep(cl) as it employs the same logic of the Greedy algorithm for diversification but at

the local-level of a cell. For instance, as shown in Figure 4.5, x2 selected by Greedy replacement

has bigger distance from set S than x1 selected by Nearest Neighbor replacement. In terms of

the timing of refinement, we have also considered the following two alternatives:

1. Eager Refinement. The refinement step is applied at the end of each iteration. That is,

as soon as sRi (or equivalently, Rep(cl)) is selected to be added to SR
i , it is immediately

replaced by another point from cl according to one of the refinement methods above.
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Table 4.1: Evaluation Parameters.
Parameter Description Range Default

m Data size 5k–1500k 40k

D Data dimensionality 2–10 2

N Number of queries 2–1000 20

k Diverse subset size 10–100 100

γ Grid resolution 0–1 0.025

O Overlap of queries 0%–100% -
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Figure 4.6: DivM vs Greedy when varying k (Cost)

2. Lazy Refinement. The refinement step is applied once at the end of the algorithm. That

is, once all the k most diverse results are added to SR
i , it is scanned again and each sRi

(or equivalently, Rep(cl)) is replaced by another point from cl according to one of the

refinement methods above.

Clearly, eager refinement leverages approximation to only introduce overlaps between the

result sets, but not the diverse sets, for which it relies only on natural overlaps for cost reduc-

tions. Meanwhile, lazy refinement allows virtual overlap in both diverse sets and result sets,

which is expected to result in significant cost reductions.

DivM-Cell controls the trade-off between approximation and efficiency via tuning the grid

resolution as well as configuring the refinement step described above. In the next section, we

evaluate the impact of those parameters and others on the performance provided by DivM.

4.3 Experimental Testbed

We perform a number of experiments to evaluate the efficiency and the effectiveness of our

DivM scheme. In particular, we compared the performance of our DivM algorithms, presented
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Figure 4.7: DivM vs Greedy when varying k (Diversity).

in Section 4.2, against the baseline approach of using the Naïve Greedy algorithm for multiple

search result diversification. Table 4.1 reports the various parameters used in our experiments

throughout this section.

Schemes: We evaluate the following schemes:

• Greedy: Apply the Greedy heuristic independently on each result set to select the respec-

tive diverse subset (Naïve Greedy in Section 4.2.1).

• DivM-E: Process common search results only once for all queries and combine results

using partial aggregation techniques (DivM-Exact in Section 4.2.2).

• DivM-A: Use spatial proximity between data via a grid mapping to increase the over-

lap among the various result sets (DivM-Approximate in Section 4.2.2). For which, we

evaluate the following alternatives for refinements: DivM-A(NN, Lazy), DivM-A(Greedy,

Lazy), DivM-A(NN, Eager), DivM-A(Greedy, Eager).

Performance Measures: The performance of each algorithm is measured based on the fol-

lowing metrics:

• Cost C(S), measured as the sum of operations performed to locate set S of N subsets

{S1, S2, . . . , SN}, where each operation represent one distance computation and data com-

parison task.

• Diversity D(S), measured as
∑

Si∈S f(Si, d), across the set of diversified subsets S. More-

over, in order to get a better understanding of the performance of our scheme and its

fairness, we also report the l2 norm of diversity given as
√∑

Si∈S(f(Si, d))2 as well as the

perceived maximum error (i.e., inaccuracy) in diversity.

Data sets: We use both synthetic and real data sets. Our synthetic data sets consist of

points in the D-dimensional Euclidean space, where D is a simulation parameter. Points are
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either uniformly distributed (“Uniform”) or form clusters around a random number of points

(“Clustered”). Our real data set “Cities” contains 2-dimensional points representing the locations

of 5922 towns (previously used in [31]). For all the data sets, dimensions are normalized in

[0–1].

Queries: We generate a random set of range queries. For each experiment, the number of

queries n is in the range [2–1000]. Further, we introduce a simulation parameter O to tune the

amount of overlap between search results of any two range queries, where O varies between 0%

to 100%. Each query is also associated with the size of diverse set k, which takes values in the

range [10–100].

4.4 Experimental Evaluation

In the following experimental results, we report average values over ten runs with different sets

of random range queries.

4.4.1 Impact of Diverse Set Size

In this experiment, we report on the impact of the required number of diverse results k. We

first focus on one of our data sets, namely “Uniform”. Figure 4.6 shows the average number

of operations performed by Greedy and our DivM algorithms for different values of k. We see

that, as the value of k increases, the number of performed operations increases for all schemes.

DivM-E, however, is performing up to 20% less operations when compared to Greedy. The

cost savings are larger for larger values of k. The reason for this is that, for larger values of k,

even a small percentage of overlap between result sets will provide more shared diverse results.

However the cost savings for DivM-A increase along k, by more than 94% on average for all

values of k.

Figure 4.7(a) shows that the overall diversity decreases with k for all schemes. The diversity

achieved by DivM-E is equal to that achieved by Greedy. This is due to the fact that no

approximation techniques are used. To the contrary, DivM-A operates on the representatives

of the data, which essentially introduces virtual overlap among search results. Naturally, this

leads to DivM-A achieving less diverse solutions than DivM-E. This loss in diversity, however,

is marginal when compared to the gains achieved in efficiency. For instance, while the loss in

diversity offered by DivM-A varies between 2% to 14%, the benefits it provides in terms of cost

savings is more than 95%.



66 Chapter 4. Concurrent Diversification of Multiple Search Results

�

� �� �� �� �� ��� ���

�
�
�
��
�	


�
�

�

��	�

��	�


�	�

��	�

����
�

�����������
��������

����������������

������

(a) Cost (Clustered)

�

� �� �� �� �� ��� ���

�
��
�
��
�	



���

��	


��


�	

���

��	

	��

��

���

������

���������

������
��

�������������
��

(b) Diversity (Clustered)

�

� �� �� �� �� ��� ���

�
�
�
��
�	


�
�

�

��	


��	


��	


��	


��	�

����
�

�����������
��������

����������������

������

(c) Cost (Cities)

�

� �� �� �� �� ��� ���

�
��
�
��
�	



�

�

�

�

	

�

���
��

������

�������
���
��������

����������������

(d) Diversity (Cities)

Figure 4.8: DivM vs Greedy when varying k (Clustered and Cities data sets).

In order to capture the trade-off between the worst case diversity (Figure 4.7(b)) and the

average case one (Figure 4.7(a)), the diversity achieved by each scheme in form of l2 norm is

shown in Figure 4.7(c). All the three metrics show that the diversity of DivM-A is comparable

to DivM-E. Further, Figure 4.6 shows that all DivM-A variants perform orders of magnitude

less operations than both Greedy and DivM-E. Among those variants, DivM-A(Greedy, Eager)

provides better diversity (Figure 4.7(a)) but clearly at the expense of higher cost. For clarity

of presentation, in the rest of this section, we only present the results of DivM(Greedy,Eager),

unless otherwise mentioned.

Figure 4.8 reports the performance on clustered and cities data sets. As expected, when

mapping clustered data to a grid, most of the search results fall in few cells. This leads to

an interesting case where for some queries the number of representatives selected by DivM-A

might be less than k, which renders the lazy refinement method inapplicable. Therefore, we

report the results of eager versions of DivM-A. Figure 4.8(a) shows that DivM-E performs up to

20% less operations as compared to Greedy. DivM-A achieves up to 94% reductions in number

of operations. Figure 4.8(b) shows that for clustered data set, DivM(Greedy,Eager) achieves

diversity within 6% of that of DivM-E. However, the diversity of DivM-A(NN,Eager) declines
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(a) Cost vs. number of queries. (b) Diversity vs. Number of

queries.

(c) Cost Savings.

Figure 4.9: Impact of Number of Queries.

when applied to that same data set. This is due to the fact that when the number of repre-

sentatives is less than k, applying the Nearest Neighbour technique to select new points from

already selected cells will have adverse effect on the diversity of the final subset. Figures 4.8(c)

and 4.8(d) show similar performance for the cities data set in terms of cost and diversity,

respectively.

4.4.2 Impact of Number of Queries

Figure 4.9(a) shows that the number of performed operations increases for all the algorithms

with increasing number of queries. The cost savings achieved by DivM-E increase as N ap-

proaches 1000, and reaches upto 50%. However, as shown in Figure 4.9(c), the rate of increase

in cost savings tends to slow down for higher values of N . This is due to the higher overhead

of detecting overlapping results among large number of queries For instance, the difference in

percentage of cost savings between 300 and 500 queries is around 7, whereas the difference

in percentage of cost savings between 500 and 700 queries is only 3. Meanwhile, DivM-A

performs consistently and achieves significant cost savings. As DivM-A processes only small

number of representative results, the overhead of detecting overlapping results is compensated

by the massive reductions in the data diversification costs. For instance, as Figure 4.9 shows,

the cost reductions provided by DivM-A are up to 90% for N = 1000. Figure 4.9(b) shows

that diversity of N sets evaluated by DivM-A decreases by at most 7% with increasing the

number of queries. This decrease is due to the presence of more overlapping regions that result

in higher number of approximated points in diverse subsets, which is evaluated next.
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Figure 4.10: Impact of Query Overlap on operations.
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Figure 4.11: Impact of Data Size on Operations.

4.4.3 Impact of Query Overlap

To study the impact of the overlap between queries, we first generate one query Q1 for our

“Uniform” dataset. Then, we generate an identical second query Q2 and we “slide” Q2 over Q1

to control the overlapping area between the result sets of the queries. Figure 4.10 shows that

the number of operations performed by Greedy are not affected by the change in data overlap.

However, the cost of DivM-E and DivM-A decreases as the amount of overlap increases, since

in that case, there is more data overlap that can be exploited by both schemes. The maximum

performance gain is achieved when the two queries have identical result sets, i.e., when their

overlap is 100%. In that case, the cost savings of DivM-E are around 50% and that of DivM-A

around 99%.

4.4.4 Impact of Data Size

Next, we perform an experiment to see how our algorithms scale when the data size m is

increased. Figure 4.11 shows that DivM-A scales well since it performs distance computations

among the representatives of the various cells as opposed to the whole data set. Greedy and

DivM-E scale linearly along m. Although DivM-E performs less operations than Greedy, the

ratio in performance of DivM-E to Greedy is increasing. This is due to the fact that in a

highly dense data space, it is highly unlikely that natural overlap occurs in diverse subsets.
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(a) Cost vs grid resolution.
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(b) Diversity vs grid resolution.

Figure 4.12: Impact of Grid Resolution.

Meanwhile, the cost savings achieved by DivM-A increase from 88% to 92% as the number

of representative points selected from the Grid depends upon the Grid resolution and not the

data size. Hence, as more data points in each Grid cell are represented by one single point the

relative cost savings increase.

4.4.5 Impact of Grid Resolution

Figure 4.12(a) shows the variations in number of performed operations along the employed grid

resolution γ. At the two extreme cases, where γ ' 0 (i.e., each cell contains a single result or

many identical results) or γ = 1 (i.e., there is only one cell in the grid), DivM-A is reduced to

DivM-E and Greedy, respectively. In-between these two extremes, as the resolution increases,

the number of operations decreases until a local minimum is reached and later increases again.

This is because with increasing γ, the number of cells decreases. Hence, DivM-A algorithm

evaluates fewer representatives. However when the number of representatives become less than

k, DivM-A selects multiple items from the same grid cell. The cost of this process depends on

the density of the cell. With higher values of γ we have highly populated grid cells, therefore the

number of operations performed by DivM-A starts increasing. Among the DivM-A variants,

DivM(Eager, Greedy) is the most expensive since its refinement process is more involved,

especially for higher resolutions where each cell contains more results. However, DivM(Eager,

Greedy) is the most effective variant in terms of diversity (Figure 4.12(b)).

4.4.6 Impact of Number of Dimensions

Finally, we perform an experiment to see how the dimensionality D of the data affect the

performance of our algorithms. Figure 4.13 shows the corresponding results for one of our

datasets “Uniform”. DivM-E remains generally unaffected when D is increased. DivM-A,
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Figure 4.13: Impact of Number of Dimensions.

however, performs a larger number of operations. Clearly, this is a side-effect of the curse of

dimensionality. That is, as D becomes larger, the data space becomes sparser and less results

are mapped into a single cell. Therefore, as the number of dimensions increase, the number of

representatives also increases and, thus, the computational cost of DivM-A is increased as well.

4.5 Summary

In this chapter, we focused on the NP-hard problem of diversifying the results of multiple

queries and proposed DoS, an efficient scheme to locate approximate solutions. As compared

to the existing techniques for multiple search result diversification, our proposed algorithm

not only leverages the natural overlap in the search results but also increases this overlap

by mapping the data space to a multi-dimensional grid. Our algorithm provides solutions of

quality comparable to that of sequential methods, while significantly reducing processing costs

as shown in our experimental evaluation.



Chapter 5

Sequential Diversification of Multiple

Search Results

During Data Exploration, the user interaction with the database takes the form of an exploratory

session, or session for short [15]. A session typically involves a lengthy sequence of related

queries to retrieve interesting data objects. This requires processing of numerous queries that

potentially return large number of results. Diversification of those query results adds additional

computational cost to the exploration process. This highlights the need for efficient schemes for

the diversification of multiple query results within a user session. In Chapter 4, we addressed

the similar problem of diversifying the results of multiple concurrent queries. Our proposed

DivM scheme utilizes the overlaps between query results to eliminate redundant computations.

Although, sequential queries in a user session are also likely to access overlapping portions of

data, those overlaps are not known a prior. Hence, in this chapter we propose an efficient

scheme for sequential diversification in data exploration platforms

Our proposed scheme, called AdOr relies on two main interrelated components, namely:

1) an adaptive model-based diversification method, and 2) an order-based caching scheme. In

particular, AdOr employs an adaptive model based diversification method to estimate the diver-

sity of a diverse subset and hence selects diverse results without scanning all the query results.

In order to further expedite the diversification process, AdOr employs an order-based caching

scheme to leverage the overlap between sequence of data exploration queries. Specifically, aim of

AdOr scheme is to balance the trade off between the efficiency of diversification (i.e., processing

cost) and its effectiveness (i.e., accuracy of diversification) during data exploration.

In a nutshell the contributions of this work are as follows:

• We formulate the problem of Sequential Diversification for data exploration, together

71
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Figure 5.1: Series of exploratory queries generated in a user session

with metrics that captures both the efficiency and effectiveness of diversification.

• We propose the novel AdOr scheme, which utilizes an adaptive model-based approach,

that is particularly suitable for the efficient and effective diversification in Data Explo-

ration platforms.

• We propose an ordered-based caching scheme that leverage the overlap between query

results within an exploratory session towards efficient diversification.

• We conduct extensive experimental evaluation on real and synthetic data sets, which

compare the performance of multiple diversification schemes and illustrate the benefits

achieved by AdOr.

Rest of the chapter is organized as follows. We define the search result diversification for

session based data exploration in Section 5.1. Next we introduce our AdOr scheme in section

5.2. The evaluation testbed and results are reported in Section 5.3 and Section 5.4 respectively.

We compare our proposed approach to current approaches for multiple query diversification in

Section 5.5 and we summarize the chapter in Section 5.6.

5.1 Sequential Diversification Model

In this section, we extend the notion of result diversification to the problem of sequential diver-

sification during data exploration. In Table 5.1, we summarize all the symbols and notations

used in the rest of the chapter.
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Table 5.1: Table of Symbols.

Symbol Description

N Total number of queries in a user session

k Diverse subset size

Qc Current query to be diversified

Xc Result set of Qc

Sc Diverse subset of Xc

xmax Result in Xc with maximum distance from Sc

QH Set of history queries

SH Union of diverse subsets of history queries

QO,c Set of queries overlapping with Qc

SO,c Union of diverse subsets overlapping with Xc

SR,c Reusable diverse results for Qc

θ Deviation Threshold

γ Model Threshold

5.1.1 Sequential Diversification

Scientists and analysts typically explore a relational database through a sequence of exploratory

queries to discover interesting portions of data. This process starts as a user submits an initial

exploratory query and continues until one or more target queries have been identified, where

each target query basically defines the contour lines of a portion of the data space that contain

data of high interest to the user. In order to guide the user throughout the data space, a data

exploration platform is expected to manipulate the query result to help user understand the

underlying data and further explore related queries.

As a consequence, the series of queries submitted by a user during an exploratory session

are typically correlated in a sense that the user formulates the next query in the sequence after

having reviewed the results of previous queries [17]. This leads to an exploratory session, in

which a user executes numerous selection queries iteratively using different predicates [28]. For

example, consider a user searching for some interesting results in a two dimensional data space

as shown in Figure 5.1. The user will first pose query Q1 and after reviewing the results she

might reformulate it into another query Q2 and so on. The sequence of queries illustrated

in Figure 5.1 starts with query Q1 with predicates: Q1= 0.750 < dim1 < 0.425 AND 0.575

< dim2 < 0.882 and ends with query Q4 with predicates Q4= 0.450 < dim1 < 0.750 AND
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0.430 < dim2 < 0.750.

Since, different queries within an exploratory session typically explore the data space in a

close vicinity to each other, it is very likely for queries within a session to have overlapping

results as shown in Figure 5.1. Hence, the diversificaition of multiple related queries within

a user session can be viewed as an instance of continuous diversification problem in which a

diverse subset needs to be computed for each sliding window over dynamic data stream. Each

exploratory query can also be perceived as a sliding window. However, in dynamic data stream

a sliding window is moving along the time dimension, whereas an exploratory query is moving

in space over static data. The result set of each query is generated from the new subspace of

data that it covers and a corresponding diverse subset of that result set needs to be computed.

Hence, here we extend the definition of result diversification from chapter 2 to the diversification

of multiple sequential queries as defined below:

Definition 12. Let M represent a set of multiple queries within an exploratory session. That

is, M = {Q1, Q2, . . . , QN}. The sequential diversification problem is the following: For each

query Qi in M with a result set Xi, compute a set S∗i , such that:

S∗i = argmax
S⊆Xi
|Si|=k

f(Si, d)

where

f(Si, d) = min
xi,xj∈S
xi 6=xj

d(xi, xj)

Note that, in this work we focus on the MaxMin diversity measure to define f(Si, d) , as it

adopts a more uniform view to represent all the results in Xi.

The challenge of computing diverse subsets for each query Qi in M is that those diverse

subsets can not be computed incrementally. For instance, let Xi and Xi+1 be result sets of

two overlapping queries in M. Then diverse subset Si+1 can not be computed by updating the

diverse subset Si as the two diverse subsets may be completely different despite substantial

overlap in the result sets Xi and Xi+1. Hence, each diverse subset Si needs to be computed

from scratch. Therefore, the computational cost of diversifying N queries in a session increases

linearly with the increase in N . Hence, in this work we address the problem of designing efficient

diversification methods that are scalable to N i.e., length of a user session.

5.1.2 Problem Definition

To capture the performance of solutions for sequential diversification during a data exploration

session, we define the following metrics:
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Definition 13. Diversification Cost, C(Si), is defined as the processing cost, in terms of number

of distance and comparison operations, required to process a result Xi to produce a diversified

result Si of size k. Accordingly, the average diversification cost for a session of N queries is:
1
N

∑N
i=1 C(Si).

Definition 14. Diversification Quality, D(Si), is defined as the value of diversity f(Si, d)

offered by the diversified result Si. Accordingly, the average diversification quality for a session

of N queries is: 1
N

∑N
i=1D(Si).

Specifically, our goal is to strike a fine balance between the efficiency of diversification

(i.e., minimize 1
N

∑N
i=1C(Si)) and its effectiveness (i.e., maximize 1

N

∑N
i=1D(Si)). In order to

achieve this goal our proposed AdOr scheme utilizes an adaptive model to reduce the cost of

diversification for each query in the exploratory session. AdOr further exploits the fact that the

results of those queries are expected to exhibit some degree of overlap. Thus, AdOr leverage

that overlap between query results by employing an order-based cache to store diverse results

of previous queries. In the next section, we present our scheme and discuss its impact on both

the efficiency and effectiveness of diversification.

5.2 AdOr Scheme for Sequential Diversification

In this section, we present our AdoR scheme for the efficient diversification of query results in

data exploration platforms. The main idea underlying AdoR is to leverage an adaptive regres-

sion model to estimate the diversity of a subset and utilize the overlap in a sequence of queries

(such as the one shown in Figure 5.1) in order to minimize the computational cost incurred

in diversifying each query result set. Towards that goal, AdOr exploits two novel techniques,

namely: 1) Regression model based diversification, and 2) Cache based diversification. Before

going through the details of each of those techniques, we first present our baseline solution for

the diversification of multiple sequential queries, namely: Greedy Construction.

5.2.1 Greedy Construction

In this baseline solution, the Greedy Construction algorithm (or Greedy for short), is directly

applied for the diversification of results. In particular, Greedy (as presented in Algorithm 1)

evaluates the diverse subset S of each query iteratively by computing set distances of all the

results in a query result setX. For instance, in order to select a new result in partially computed
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diverse subset Si, Greedy computes the set distance of each result in X from results already

selected in S as:

setDist(x, S) = min
x∈X
xj∈S

d(x, xj)

The result xmax having the maximum set distance is added to S. Thus, in k iterations Greedy

selects k results to be added to diverse subset S. Also, Greedy processes each query result indi-

vidually without taking into consideration the overlapping in results between different queries.

Recall from Section 2.2.2, the computational complexity of diversifying a single query using

Greedy algorithm is O(k2|Xi|), where |Xi| is the size of the query result and k is the size of the

diverse subset. Clearly, applying Greedy algorithm independently to each exploration query,

results in a computational complexity that increases linearly with the increase in the number

of total queries in a user session (i.e., N). That is, the complexity of Greedy algorithm for N

queries is simply computed as: O(k2|X1|) + . . .+O(k2|XN)|).

5.2.2 Regression Model for Diversity

As mentioned above when diversifying results of the current query Qc, in each iteration i of

the Greedy algorithm, we have a partially computed diverse subset Si−1
c of size i − 1 such

that i − 1 ≤ k. The choice of next optimal result ximax is obviously made after examining

all the candidate results in Xc. In this work, we take an alternate approach for identifying

ximax. Instead of examining all the results in Xc, we aim to predict the maximum value of the

diversity function f(Si, d) that can be achieved by including another result to Si−1
c in advance.

This value can then be leveraged to prune the search space. Hence, if a result xp that provides

diversity value comparable to the estimated diversity value is found, then there is no need to

search the query result set Xc any further. Thus if xp is the pth result in Xc then for remaining

|Xc| − p results, set distance computations are not performed.

Clearly, several statistical and probabilistic models are applicable for estimation of diversity

function. Such models have also been widely used for approximate query processing (e.g.,

[26, 79]). This includes models for Gaussian processes, interpolation, regression, dynamic-

probabilistic models, etc. In this work, we also adopt a regression model that is specifically

suited to the diversification problem to efficiently and accurately estimate f(S, d).

Regression models provide a powerful tool for investigation of relationships between vari-

ables. The basic idea of regression models is to relate a dependent variable VD to an independent

variable VI . Nonlinear regression in particular, is a good choice when there is an evidence to

believe that the relationship between the dependent variable and independent variable follows
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Figure 5.2: Diversity Curve.

a particular functional form ( [68]). A nonlinear regression model has the form:

VD = f ′(VI , β) + ε

where VD is dependent variable, f ′ is a known function of the independent variable VI including

parameters defined by β and ε is a random error ( [68]).

In the case of diversification, the diversity value of a diverse set of results S clearly depends

upon the number of results in that set (i.e., k). Specifically, small diverse subsets tend to exhibit

higher diversity, whereas the value of diversity decreases with increasing the size of S. Hence,

to ascertain the causal effect of diverse subset size k upon the value of the diversity function

f(S, d), we assume the value of the diversity function to be the dependent variable, where the

diverse subset size is the independent variable.

To formally model the dependency between f(S, d) and k, we plot a diversity curve as

shown in Figure 5.2 for a sample query result generated over a uniform data set (for more

details on the different datasets we have experimented with, please see Section 5.3). The curve

is generated by plotting the diverse subset size k on the x-axis and the diversity function value

for the corresponding diverse subset on the y-axis.

As Figure 5.2 shows, the diversity curve clearly exhibits a diminishing marginal gain trend.

This is due to the fact that as new results are added using Greedy, the set of similar results

already selected increases. Thus, with each new addition to the diverse subset the marginal

gain in diversity decreases, which is consistent with the study done in previous work [12]. Such

trend allows us to use a simple model like power series to model the diversity curve (Figure 5.2).

Hence, we can alternatively represent the diversity function f(S, d) in terms of a computa-

tionally inexpensive hypothesis function f ′(k) such that:

Hypothesis Function f ′(k) = ak−b
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where a and b are the parameters we seek that would best fit the function to the sample

data. Standard statistical calculations are used to determine the values of parameters a and

b. Particularly, we use Least Squares estimation to measure the fitness of the regression model

and Root Mean Square Error to measure the accuracy of predicted values. Other estimations

can also be considered to accommodate the impact of outliers in data. The details of how

parameter a and b are evaluated are given in appendix A.

As mentioned above, the regression model relies on observational data to evaluate the hy-

pothesis function parameters. However, in case of query diversification, those observational

values are only available once the query result has been diversified. Hence, in order to learn the

regression parameters we consider two possible approaches. First, we present a baseline static

approach and then we generalize it to an adaptive approach.

Static Model Approach The static model approach relies on the observations made using

a sample query over the database. These observations are then used to evaluate the model

parameters a and b in the hypothesis function. Once those parameters are known they remain

static across various user queries. For instance, to learn the regression model parameters, a

global sample query QG is executed over the database D to retrieve sample result set XG. The

Greedy algorithm is then applied over XG to select a diverse subset SG of size k. In each

iteration i, where i ≤ k, the diversity function value f(Si
G, d) is evaluated and the pair (i,

f(Si
G, d)) is plotted. As Greedy finishes execution, we have k − 1 observations in the form

of (i, f(Si, d) pairs. These observations are used for evaluating values of parameters a and

b. Since, those values are based on observations generated by a single gobal query QG, they

depend upon: (1) the size of the data subspace accessed by QG, and (2) the distribution of data

within that subspace. Thus, the global regression model built based on data retrieved using

global query QG covering whole data space is scaled for every user query Q by a ratio of the

data space covered by Q as compared to the space covered by QG.

Adaptive Model Approach As discussed above, the Static Model Approach relies on the

observation data generated using a sample global query QG. The regression model built using

query QG can be scaled to be used for other queries provided the data space is uniformly

distributed. However, for clustered data, static model approach fails to adjust the model

parameters for each user query effectively. This is due to the fact that in clustered data some

of the queries are overly populated while others return only few results even if the size of the

data space accessed is the same. Thus, even after scaling the regression model, the underlying
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Figure 5.3: Interactive Diversification for Clustered Data.
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Figure 5.4: Diversity Curves.

data does not fit the model very well.

For instance, as shown in Figure 5.3, the size of data space covered by Q1 is the same as the

space covered by Q2, however, the data distribution for both queries is very different. Although,

the diversity values evaluated for both queries, for the same values of k, are expected to be

quite different, scaling global regression model for both Q1 and Q2 will generate same values

for parameters a and b. For example, Figure 5.4 shows the corresponding diversity curves for

both Q1 and Q2. Clearly, the scaled regression model fits the diversity curve of Q1 while fails

to adjust to the diversity curve of Q2.

To address the limitations of static model approach, we consider a more general approach

based on adaptive regression model that learns model parameters individually for each user

query and does not rely on any prior observation data. The main idea underlying the adaptive

model approach is to utilize the observations from the current query being diversified. Instead

of using an existing global model, for each individual query the regression model is built on the
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go as we diversify the query. The adaptive model approach can be summarized in the following

steps:

• Step 1: An initial diverse subset Sc of size two is generated using Greedy construction

algorithm.

• Step 2: The diversity function value of Sc is used as first observation and initial values

for model parameters a and b are evaluated.

• Step 3: Based on the hypothesis function, diversity function value is estimated as Dive

for the next iteration of Greedy algorithm.

• Step 4: New result with the maximum set distance from the already selected results in Sc

is added to Sc. The actual diversity function value for newly updated set Sc is computed

as Diva and added to the obseravation data.

• Step 5: The difference in the actual diversity function value (Diva )and the estimated

diversity value predicted using hypotheis function(Dive) is computed. The regression

model is assumed to be stable if the following condition is true:

γ ≥ Diva −Dive
Dive

where γ is the threshold value defining the acceptable difference ratio between estimated

diversity value and the actual diversity value. If the above condition is not met then the

actual diversity value Diva is added to the observation data. The new values of model

parameters a and b are computed based on updated updated observations and Steps 3 to

5 are repeated.

5.2.3 Model based Greedy Algorithm

In this section, we present a model based Greedy algorithm called mGreedy for selecting diverse

query results. We assume that the hypothesis function f ′(k) = ak−b has been defined with

parameters a and b using either static or adaptive approach. Note that, in case of adaptive

approach some of the diverse results are already selected and mGreedy is applied to select the

remaining diverse results. Let Qc be the current query and Xc be the respective result set of Qc.

Like, Greedy algorithm, mGreedy also builds the diverse subset iteratively. In each iteration i, an

estimated value of the diversity function is computed using the hypothesis function formulated

above (i.e, f ′(i)). To decide on the next result to be added to Si−1
c , mGreedy uses a deviation
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Algorithm 8 mGreedy
Input: Query Result set X = (x1, x2..., xm), Set of previous overlapping diverse results SR,

deviation threshold θ, a hypothesis function f ′(i), Partially computed diverse subset S,

Diverse subset size k

Output: S with k diverse results
1: X ′ ← X \ SR

2: while |Si| < k do

3: if (Best Fit) then

4: x̄max ← argmaxx̄max∈SR,cminxj∈Si−1d(x̄max, xj))

5: Si ← Si−1 ∪ {x̄max}

6: if (deviation(x̄max) > θ) then

7: Si ← Si−1 − {x̄max}

8: xmax ← argmaxxmax∈X′cminxj∈Si−1d(xmax, xj))

9: end if

10: end if

11: if (First Fit) then

12: x̄max ← xj s.t xj ∈ SR,c, deviation(xj) ≤ θ

13: if (x̄max = φ) then

14: x̄max ← xj s.t xj ∈ X ′c, deviation(xj) ≤ θ

15: end if

16: xmax ← x̄max

17: end if

18: S ← S ∪ xmax

19: end while

20: return S

threshold θ which is user-specified and a deviation value. The deviation value of any result

x ∈ Xc with respect to the diverse subset Si
c is evaluated as:

deviation(x) =
∣∣f ′(i)− f(Si−1

c ∪ {x}, d)
∣∣

Particularly, mGreedy selects a result x̄max, which has the deviation less than θ. As soon

as such a result is identified the iteration is terminated. Hence, if x̄imax is the pth result in Xc

then this saves |Xc| − p set distance calculations for the remaining candidate results in Xc. It

is important to mention here that x̄imax is an approximation of ximax. Thus, instead of adding

ximax to Si−1
c the approximated result x̄imax is added to Si−1

c . Therefore, f(Si−1
c ∪ {ximax}, d) ≥
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f(Si−1
c ∪ {x̄imax}, d).

Applying mGreedy individually to each query reduces the cost of diversification, however,

in the worst case scenario it might have to look at large number of results before it locates

x̄imax. In order to locate the promising results quickly we make use of the overlapping diverse

results from the previous queries. In the next section we discuss how AdoR exploits caching

to leverage the overlap between different queries and reduces the cost of diversification even

further.

5.2.4 Cache based Sequential Diversification of Overlapping Queries

A data exploration session generally involves multiple related queries, overlapping between

results of those queries is naturally expected to occur. To formally express that overlap between

exploratory queries, consider a current query Qc for which a diversified set Sc is to be computed,

and a history of processed queries QH = {Q1, Q2, ..., Qc−1}. Hence, there exists QO,c ⊆ QH

such that the result Xi of each query Qi ∈ QO,c overlaps with the result Xc of the current query

Qc (i.e., Xi ∩Xc 6= φ).

Clearly, the diversified results of these overlapping queries QO,c can be utilized for reducing

the cost of diversifying Qc. Particularly, in this work, we propose using a cache of diversified

results for improving the efficiency of diversification. A Cache SH , which contains the diversified

results of all previously processed queries QH , is expressed as follows:

Definition 15. Cached Diverse Results, SH , is the set of diversified results corresponding to

the queries in QH . That is, SH = {S1, S2, ..., Sc−1}.

Given a query Qc, it is then straightforward to fetch the cached diverse results of the set of

queries QO,c that overlap with Qc. We denote the cached diverse results of queries overlapping

with Qc as SO,c, which is defined as:

Definition 16. Diverse Results of overlapping Queries, SO,c, is the union of the diversified sets

of all the queries in QO,c.

Intuitively, SO,c is expected to contain some points that are common with the results of query

Qc (i.e., Xc ∩ SO,c 6= φ). That set of common points SR,c provides an excellent opportunity to

reuse in constructing the diverse set Sc and is simply defined as follows:

Definition 17. Reusable Diverse Results, SR,c, such that SR,c ⊆ SO,c and contains all diverse

results in SO,c that fall in the range of Qc (i.e., SO,c ∩Xc).
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Algorithm 9 AdoR
Input: Query Result set Xc = (x1, x2..., xm), an integer k, Set of previous overlapping diverse

results SR,c, deviation threshold θ, a hypothesis function f ′(i)

Output: Set Sk=(s1, s2...sk) with the k most diverse items of Xc.
1: prediction← false

2: i← 1

3: x←a random result in Xc

4: Si ← {x}

5: i← i+ 1

6: if f’(i)= Null then

7: xmax ← argmaxxmax∈Xc
minxj∈Si−1d(xmax, xj))

8: Si ← {xmax}

9: O ← O ∪ {(i, f(Si, d))}

10: f ′(i)← BuildModel(O)

11: i← i+ 1

12: while NOT (StableModel) do

13: estdiv ← f ′(i)

14: xmax ← argmaxxmax∈Xc
minxj∈Si−1d(xmax, xj))

15: Si ← {xmax}

16: if (Ratio(estdiv, f(Si, d)) ≤ γ) then

17: StableModel← true

18: else

19: O ← O ∪ {(i, f(Si, d))}

20: f ′(i)← BuildModel(O)

21: end if

22: i← i+ 1

23: end while

24: end if

25: Sk ← Si ∪mGreedy(Xc, SR,c, S
i, θ, f ′(i), k − i)

26: return Sk



84 Chapter 5. Sequential Diversification of Multiple Search Results

Xc

X1 X2

SR,c

Two similar results

Figure 5.5: Reusable Set SR,c for current query result set Xc generated from diverse overlapping
results of previous queries

Thus, one idea towards utilizing overlapping result set SR,c across multiple queries when

diversifying Qc is to simply initialize Sc with SR,c. Clearly, however, that idea has a major

drawback that is: the results in SR,c might exhibit high degree of redundancy. This will lead

to a selection of many non diverse results in Sc. To further explain that point, notice that

the results in each Si ∈ SO,c are diverse in their own. However, this assumption breaks once

combining some of those diverse results together into SR,c. This is because the results in two

different sets Si and Sj might be very similar to each other if their corresponding queries

explored roughly the same data subspace.

For instance, Figure 5.5 shows result sets of three overlapping queries. As shown in figure, Xc

is the result of a newly submitted query Qc, which overlaps with two other historical results X1

and X2. The diversified set S1 extracted from X1 is shown in squares, whereas the diversified

set S2 extracted from X2 is shown in triangles. The diverse results from both queries that

overlap with Xc are retrieved and form the set of reusable diverse results SR,c. It is clear from

Figure 5.5, however, that set SR,c may contain few results that are very similar to each other.

Thus, initializing diverse subset Sc with SR,c will adversely affect the final diversity of set Sc.

Taking advantage of natural overlap occurring between various queries during an exploration

session and at the same time ensuring that only dissimilar results are selected to be included in

the diverse subset of current query is precisely the goal of our AdoR scheme. Next we present

in detail how the AdoR scheme achieves this goal.

Dividing the Search Space

Recall that in each iteration of the mGreedy algorithm, the first result that provides the

diversity close to the estimated diversity value as predicted by the regression model is added

to the diverse subset. Clearly, with random order of results, the optimal result may reside
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Figure 5.6: AdoR Architecture.

in the end of the result list requiring many set distance computations for results appearing

before it. For large data sets where numerous results are returned in response to each query,

and where near real time performance is expected, the goal of AdoR is to minimize the cost

incurred in locating the result x̄imax in potentially large search space defined by the results in

Xc. To minimize that cost, AdoR divides the search space (i.e., Xc) into two disjoint subsets,

as follows:

1. Reusable Diverse Results (SR,c): The set of diversified results of QO,c that overlap

with the results in Xc. That is, as defined above, SR,c= Xc ∩ SO,c.

2. New Query Results (X ′c): This is the set of results in Xc after excluding SR,c. That

is, X ′c = Xc \ SR,c

Selection of Diverse Results Using Cache

As mentioned above, the set of results in SR,c have high potential to appear in the diversified set

Sc. However, instead of blindly initializing Sc with SR,c, AdoR alternates between the two sets of

results (i.e., X ′c and SR,c) in an efficient manner and during that process it “selectively" chooses

only the most promising results guided by the regression model so that to avoid compromising

the quality of diversification.

As shown in Figure 5.6, to diversify a result set Xc, AdoR divides Xc into two subsets: the

reusable diverse result set SR,c and the new query result set X ′c. For selecting that result x̄imax,

AdoR uses the following two alternative selection methods:

• First Fit Diversification (AdoR-FF): Search the set SR,c for the first result x̄imax,

which has the deviation value less than the deviation threshold θ. If such a result is
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found, it is added to set Si−1
c , else X ′c is searched until x̄imax is located.

• Best Fit Diversification (AdoR-BF): Search the set SR,c for the result x̄imax, which

will maximize the diversity function value if added to set Si−1
c If the deviation(x̄imax)

is less than deviation threshold θ, then x̄imax is added to the set Si−1
c . Otherwise, the

optimal result ximax is located in X ′c and in turn, added to Si−1
c .

Clearly, each time a result is located in SR,c, it saves at least |Xc|−|SR,c| number of distance

calculations and data comparison operations. In particular, AdoR-FF picks the first result that

provides comparable diversity to the one predicted by the regression model. Whereas while

searching SR,c, AdoR-BF evaluates the deviation value of the result with maximum set distance

from the diverse subset Si−1
c . In order to locate that result AdoR-BF examines all the results

in SR,c. Thus, AdoR-BF tries to find diverse subsets with higher diversity at the expense of

higher computational cost. The working of the AdoR scheme are presented in Algorithm 9.

The Algorithm 9 shows the general adaptive model. However, to employ the static approach

the input parameter f ′(i) can be initialized by a hypothesis function computed a prior using a

static model.

Ordering of cached diverse results

Obviously, the performance of AdoR-FF depends a lot on the order in which the results are

stored in SR,c. If the results distant from the current partial diverse subset Si
c−1 appear earlier

in the search list then the cost savings are higher. Keeping this goal in mind, we propose an

ordering scheme that processes the promising overlapping diverse subsets first. In order to

elaborate the ordering scheme consider the following example.
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Let Qc be the current query with result set Xc for which a diverse subset Sc needs to be

generated. Also, let QO,c be set of three previous queries overlapping with Qc containing Q1,

Q2 and Q3 as shown in Figure 5.7 . In a random iteration i of greedy heuristic the diverse

results already selected in Si
c are shown in red circle shapes. The overlapping diverse results

from the previous queries are shown in square shapes. As clear from the Figure 5.7, the results

in Q3 are most distant from the results already in Si
c. However, since the results are stored in

the order in which the queries were generated, the results in Q3 will be examined last.

Thus, in order to prioritize the order in which queries from QO,c are examined, we identify

the intersecting rectangles between Qc and each of the overlapping cached queries in QO,c as

shown in solid boundaries in Figure 5.7. Next, we determine the centroid of each of these

intersecting rectangles. Those centroids represent their respective query in QO,c and are shown

as diamond shapes in Figure 5.7. The set distance between each query Q in QO,c from the

diverse subset Si
c is calculated as:

setDist(Q,Si
c) = setDist(centroidQ, S

i
c)

The queries with higher set distance from the diverse subset Si
c have the higher potential

of containing x̄imax as compared to the queries with smaller set distances from Si
c. Hence, each

query in QO,c is assigned a priority score as: Scorei(Q) = setDist(Q,Si
c). All the queries in

QO,c are then processed in the decreasing order of their scores. It means the diverse results

from the most distant overlapping query are processed first.

It should be noted that Scorei(Q) is the priority of Q with respect to Si
c in iteration i. As the

diverse subset Sc evolves in subsequent iterations the score of each query in QO,c also changes.

Hence, in each iteration the score of each overlapping query is re-evaluated by computing a set

distance between the centroid of the query and the diverse subset Sc.

The additional cost of computing priority scores in terms of number of set distance com-

putations is equal to the number of overlapping queries (|QO,c|). Since, the number of over-

lapping queries is usually much small as compared to the number of reusable diverse results

(|QO,c| � |SR,c|), overall cost savings in terms of number of distance computations can still be

expected. However, with increasing number of queries in cache the number of queries overlap-

ping with the Qc can also increase. This will not only have an impact on the computational cost

of priority scores but will also increase the storage cost. Hence, in order to keep the number of

cached queries limited yet achieving the benefits of previously cached results we employ some

effective cache management techniques as discussed next.
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Table 5.2: Adaptive Model Schemes.

- No Cache Random Cache Ordered Cache

First Fit Adaptive-FF-NoCache Adaptive-FF-RandomCache Adaptive-FF-OrderedCache

Best Fit Same as Greedy Adaptive-BF-RandomCache Same as Random Cache

5.2.5 Cache Management

In an interactive exploration environment where multiple queries are generated within and

across user sessions, it is very likely that after a while the size of the cache (i.e., SH) will grow

to match the size of underlying data set. This will pose two challenges:

• As the size of cache increases, the search time for locating a reusable set SR,c for a query

Qc also increases.

• The size of the reusable set SR,c may grow to become larger than the size of X ′c.

• The computational cost of evaluating scores for ordering overlapping queries may out

weigh the benefits of ordering.

As a consequence of the observations above, a large cache size would reduce the amounts of

savings provided by AdoR until it reaches zero. That is, the processing cost of AdoR becomes

similar to that of Greedy. The obvious approach to address these challenges is to limit the

reusable set SR,c size. That is, instead of using the entire reusable set SR,c , a subset S′R,c is

used. Accordingly, as new queries are posed, some of the diverse subsets are evicted from cache

to make room for new subsets. Hence, when the number of diverse subsets become greater than

L, AdoR replaces one of the stored diverse subset.

Clearly, choosing the best cache replacement policy is application dependent and can be

determined on the basis of query trends in a particular database application. In this work, we

simply adopted the popular Least Frequently Used (LFU) cache replacement policy to evict the

diverse subset that is accessed the least number of times.

5.3 Experimental Testbed

We perform a number of experiments to evaluate the efficiency and the effectiveness of our AdoR

scheme. In particular, we compare AdoR against two baseline approaches: Greedy and Static

Model Approach. Table 6.3 summarizes the different parameters used in our experimental

evaluation.
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Table 5.3: Evaluation Setting.

Parameter Range Default

Number of Queries (N) 2–1000 100

Diverse Subset Size (k) 10–40 30

Number of Cached Queries (L) 20–100 20

Deviation Threshold (θ) - 0.05

Model Threshold (γ) 0.01–0.05 0.02

Data Size (D) 20k–40k 20k

Data sets Unif., Clust., SDSS Unif.

Schemes: We evaluate the performance of the following schemes:

• Greedy: Applies the Greedy Construction heuristic independently on each query result

set to select the respective diverse subset.

• SGC: Uses Stream Greedy Construction heuristic as presented in [30]. SGC relies on the

overlap that occurs between the results of two consecutive queries (i.e., Xi ∩Xi−1). The

diverse subset Si is initialized with the r overlapping diverse results from Si−1. Thus only

k− r remaining diverse results are computed using Greedy heuristic. The details of SGC

scheme are given in section 5.5.

• Static-No-Cache: Uses Static Model approach to build the regression model based on

sample observations generated by a global query. The regression model is then used to

predict future values of diversity function for the selection of diverse subsets across various

queries.

• Adaptive-No-Cache: Applies Adaptive Model approach to build a regression model for

each individual query.

• Adaptive-Random-Cache: Extends Adaptive Model approach to use diverse results of

previous overlapping queries stored in cache. The diverse results from cache are accessed

in random order.

• Adaptive-Ordered-Cache: Employs a priority scheme to order the results of overlap-

ping queries in cache. The diverse results in cache are accessed in decreasing order of

their distance from already selected diverse results for the current query.
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For all the schemes using cached overlapping diverse results, we further evaluate both best

fit and first fit alternatives.(Section 5.2.2). All the variations of AdoR scheme are summarized

in Table 5.2

Performance Measures: The performance of each algorithm is measured based on the fol-

lowing metrics:

• Cost (
∑N

i=1 C(Si)), measured as the sum of operations performed to evaluate diverse

subsets of N queries, where each operation represents a distance computation and a

comparison evaluation.

• Diversity ( 1
N

∑N
i=1 D(Si)), measured as average diversity across the diversified subsets of

N queries.

Data sets: We use both synthetic and real data sets. Our synthetic data sets consist of points in

the 2-dimensional Euclidean space. Points are either uniformly distributed (“Uniform”) or form

clusters around a random number of points (“Clustered”). Our real data set is based on the SDSS

database and contains 40k data rows. We use the uniformly distributed numerical columns rowc

and colc from PhotoObjAll table. For all data sets, attribute values are normalized to [0–1].

Queries: We simulate random user sessions with multiple range queries. For each experiment,

the number of total queries N , across sessions is in the range [2–1000]. Each query is also

associated with the size of diverse set k, which takes values in the range [10–40]. Cache is

initialized with diverse results of 20 queries.

5.4 Experimental Evaluation

In the following experimental results, we evaluate the sensitivity of AdoR to the different

parameters discussed in the previous section.

5.4.1 Impact of Adaptive Regression Model

In this experiment we compare the performance of Adaptive model approach against the Static

model approach. In this experiment all the queries are generated over clustered data set. We

compare the performance of both schemes without using any cached results to emphasize on the

impact of regression model alone. Hence, under this experimental setting the performance of

Best-Fit diversification approach is similar to Greedy. Therefore we compare the performance

of only First-Fit alternatives by varying the following parameters.
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(a) Cost (b) Diversity

Figure 5.8: Adaptive Model vs. Static Model

(a) Cost (b) Diversity

Figure 5.9: Impact of γ on Cost and Diversity

Impact of varying Diverse Set Size

As shown in Figure 5.8(b) both Adaptive and Static Model schemes perform less number of

operations as compared to Greedy. However cost of the Static Model scheme is upto 15% higher

as compared to Adaptive model. This is because the static model fails to adjust for queries

with different data distributions and hence the diverse results are located by examining most of

the query results. Figure 5.8(a) shows that both schemes locate diverse subsets with diversity

comparable to the subsets located by Greedy heuristic.

Impact of varying γ

In this experiment we focus on the impact of varying threshold parameter γ, that defines

the acceptable difference ratio between the diversity values predicted by model and the actual

diversity values. We compare the performance of Adaptive-FF-no-cache scheme against Greedy

heuristic and Static Model approach. Figure 5.9(a) shows that both Greedy and Static Model

remains unaffected by the change in γ. However as shown in Figure 5.9(a), as the threshold

value is relaxed the adaptive model gets stable earlier and the predicted diversity values are

used to locate diverse results earlier. This can be seen in higher cost savings as the value for

γ increases. The savings in cost increase from 8% to 37% as the value of γ changes from 0.02
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(a) Cost (b) Cost

Figure 5.10: Impact of θ on Cost and Diversity

to 0.054. However these savings in cost are at the expense of decrease in the diversity values

of diverse subsets generated using adaptive model built with higher values of γ as shown in

Figure 5.9(b). For γ = 0.05 the loss in diversity is upto 10%. The value of γ = 0.03 provides a

good balance between cost savings and quality of diversification.

Impact of varying θ

In this experiment the performance of Adaptive-FF-no-cache scheme is compared against

Greedy heuristic and Static model. The threshold value θ determines how close the diver-

sity value of a subset should be from the predicted diversity to be acceptable. Figure 5.10(a)

shows that as the threshold value is relaxed the cost savings for both the adaptive and static

model as compared to the Greedy increase. For adaptive model these cost savings increase

from 20% to 40% and for the static model the increase is from 5% to 30%. The diversity values

decrease upto 12% with increase in the threshold value θ as shown in Figure 5.10(b). This is

due to the fact that results far from predicted diversity value are also included in the diverse

subset. If the user prefer higher cost savings at the expense of slight decrease in quality of

diversification then higher values of θ are suitable, however if quality of diversification is more

important that θ should be kept below 0.02.

5.4.2 Impact of using cached diverse results

In this experiment we evaluate the impact of using cached diverse results from overlapping

queries. In particular, we compare the performance of scheme that employs adaptive regression

model without cached results against the schemes that use adaptive model with cached results.

We have categorized this set of experiments into four sections by varying different experi-

mental parameters.
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Figure 5.11: Impact of cache without model

Impact of Cached results in the absence of a Regression Model

In this experiment we have focused on the impact of using cached diverse results in the absence

of a regression model. We use a hypothetical setting that serves as a yard stick to measure the

effectiveness of using cached diverse results in locating the diverse results for the current query.

Thus we assume the diverse subset for the current query is already evaluated using Greedy

heuristic. Thus the actual diversity of the subset Si
c is known for all the values of i, 2 ≤ i ≤ k.

These diversity values are used in each iteration i to locate the result that when added to Si−1
c

gives the same diversity value as Si
c. We compare the performance of First-Fit and Best-Fit

diversification schemes. As shown in Figure 5.11 the alternative schemes using cached diverse

results are able to generate Sc in approximately 15% less number of operations as compared

to FF-Nocache scheme that does not use any cached results. Also among different schemes

FF-cache-ordered as discussed in section 5.2.4 performs best in terms of cost. Further details

on ordering cached results are given in section 5.4.3

Impact of varying Diverse Set Size

In this experiment, we report on the impact of the required number of diverse results k. Fig-

ure 5.12(a) shows the number of operations (i.e., cost) performed by Greedy, SGC and AdoR

schemes. As the figure shows, as the value of k increases, the cost increases for all schemes.

AdoR, however, is performing up to 50% less operations than Greedy. Meanwhile SGC reduces

diversification cost by only 10% as compared to Greedy. This is due to the fact that SGC

utilizes only limited number of cached diverse results that are obtained from only one previous

overlapping query. Among the two variants of AdoR, Adaptive-FF (first fit diversification)

performs better in terms of cost as compared to Adaptive-BF (best fit diversification). In par-

ticular, FF-Random-Cache reduces the cost by up to 10% compared to BF-Random-Cache.
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(a) Cost (b) Diversity

Figure 5.12: Impact of varying k on Cost and Diversity

This is clearly because First-Fit scheme terminates the search for an optimal result earlier

without having to evaluate all the candidate results.

Further, Figure 5.12(a) also shows that between the two variants of Adaptive-FF scheme, the

Adaptive-FF-Ordered-Cache performs upto 9% less operations as compared to Adaptive-FF-

Random-Cache. Thus in terms of cost, Adaptive-FF-Ordered-Cache gives the best performance.

Figure 5.12(b) shows that the average diversity achieved by each scheme is decreasing with

increasing the value of k. All AdoR schemes achieve comparable average diversity to Greedy.

To highlight the benefits of AdoR in terms of achieved diversity, in Figure 5.12(b) the diversity

values are normalized to the diversity values achieved by Greedy heuristic. As the figure shows,

the maximum loss in diversity for AdoR is within only 5% compared to Greedy whereas it

goes upto 14% for SGC. As the value of k increases the loss in diversity for SGC increases as

it initializes diverse subset with higher number of overlapping results from the previous query

without using any filtering.

Among the AdoR methods, Adaptive-BF performs better in terms of achieved diversity

(Figure 5.12(b) because in each iteration, Adaptive-BF selects the one result providing the

highest diversity if added to the diverse subset. Meanwhile, Adaptive-FF selects the first

result that provides a diversity value within the threshold limit, thus introducing higher degree

of approximation as compared to Adaptive-BF. However as the regression model is used to

control the degree of approximation, the loss in diversity between the two methods is within

2%.

Impact of Cache Size

To study the impact of cache size in terms of number of cached queries, we generate 100

random queries across various user sessions. Then, we vary the number of cached queries L
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(a) Cost (b) Diversity

Figure 5.13: Impact of Cache Size on Cost and Diversity

from 20 to 100. Notice that in this experiment we are only evaluating the performance of AdoR

schemes using cache, as SGC is not affected by the specified cache size. In terms of cost (i.e.,

number of operations), Adaptive-BF-Random-Cache exhibits an interesting pattern as shown

in Figure 5.13(a). In that pattern, the cost of Adaptive-BF-Random-Cache decreases as the

cache size increases up to a point, after which it starts increasing slightly. This is because at a

moderate cache size, Adaptive-BF-Random-Cache has a higher chance to find a cached result

that is close to optimal, while at the same time incurring a relatively low overheard in searching

the cache. As the cache size increases, Adaptive-BF-Random-Cache still finds a cached result

that is close to optimal, but it incurs a much higher cost in searching the rather large cache.

Adaptive-FF-Random-Cache and Adaptive-FF-Ordered-Cache show a similar pattern, but are

more resilient to the cached results as they terminate the search early. Adaptive-FF-Ordered-

Cache has additional overhead of computing set distances from centroids of overlapping queries

in cache. Thus as the cache size increases the difference in cost savings between Adaptive-FF-

Random-Cache and Adaptive-FF-Ordered-Cache decreases to only 4%. Finally, Figure 5.13(b)

shows that AdoR consistently achieves diversity comparable to Greedy algorithm when varying

the number of cached queries.

5.4.3 Impact of Ordering Cache

In this experiment we compare the performance of Adaptive scheme that uses cached results

without any priority and the scheme that re-orders the cached results according to their dis-

tances from the diverse subset of current query. Figure 5.14(a) shows that among different

variations of Adaptive scheme the Adaptive-FF-Ordered-Cache performs least number of op-

erations. In particular, Adaptive-FF-Ordered-Cache performs 9% less operations as compared

to Adaptive-FF-Random-Cache scheme. However the diversity values of the subsets generated
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Figure 5.15: Impact of varying k on Cost and Diversity (SDSS data set)

by both schemes are comparable as shown in Figure 5.14(b).

5.4.4 Results for SDSS Data Set

In this experiment, we report on the performance of AdoR scheme on the SDSS data set.

Figures 5.15(a) and Figure 5.15(b) show that for the SDSS real data set, the performance of

AdoR is comparable to its performance on the uniform data set. For different values of diverse

subset size k, AdoR outperforms Greedy algorithm in terms of number of operations with

negligible loss in achieved diversity.

5.4.5 Summary of Experimental Evaluation

In our experiments on both synthetic and real datasets, we have evaluated the effectiveness

of model based diversification using caching in data exploration platforms. It has been shown

that the regression model based greedy algorithm performs significantly less number of CPU

operations for computing a diverse subset as compared to the greedy construction algorithm.

The cost savings are further enhanced if cached diverse results from the previous queries are

used. Among different methods proposed under AdoR scheme, the one using adaptive model
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with ordered cache gives the best performance in terms of cost savings and quality of diversifi-

cation. However, the number of cached queries needs to be selected carefully to keep the cost

of searching within cache small. Similarly, when using regression model, the diversity of the

subset of results is dependent on the user specified deviation threshold θ. It has been shown

that if value of θ is kept below 0.02, it results in highly diverse subsets with cost savings up

to 20%. All the AdoR variants consistently perform better than Greedy Algorithm for varying

values of diverse subset size k.

5.5 Current Approaches to Multiple Query Diversification

In recent years several diversification approaches have been proposed as in [24, 30, 57, 65, 96,

99, 103]. Despite the considerable interest in diversification, most of the existing approaches

consider diversification of a single query result. Recently, in [19] a new coverage based definition

of diversity is formulated for generating a combined diverse subset that recovers the results of

multiple queries. However, our proposed AdOr scheme computes a separate diverse subset,

using a traditional content-based definition of diversity that represents each query result set.

Also, unlike [19], in our problem setting the queries are generated sequentially at different

intervals of time. Therefore, the query results are not available simultaneously for generating

a combined solution.

The central element of our approach is the use of a probabilistic model to estimate the

diversity value of a diverse subset for future iterations of Greedy algorithm. Lots of work

related to approximate query processing in database community makes use of some form of

probabilistic models (e.g., [26,79]). However, to the best of our knowledge this is the first work

where model based approach is used in the post query processing to diversify the query results.

Data caching and pre-fetching have also been shown as important approaches for reducing

the cost of exploration queries [50]. In particular, caching has been used for efficient compu-

tation of representative data in interactive data exploration. For instance, in [16] a series of

refined queries are evaluated by appropriately exploiting the information generated during the

execution of previous queries in order to return top-K results. In [76], a caching mechanism is

proposed that helps reduce the cost of computing future dynamic skyline queries by caching the

results of previous skyline queries. While different caching approaches have been used in the

literature for efficient representative data extraction, each approach varies in its methodology

on “what to cache” and “how to use the cache” depending upon the end objective. Two closely

related works using caching for search results diversification are presented in [65] and [30].
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Specifically in [65], cached distance computations are used to reduce the cost of Greedy heuris-

tic whereas in [30], the idea of reusing already computed diverse results has been discussed.

Especially, [30] extends the basic Greedy construction heuristic for the case of continuous data

streams. In particular, it perceives diversification as a continuous query, in which the k most

diverse results need to be evaluated for each sliding window over the data stream. Clearly, as

the window slides over the data stream, some new data is added and some expire, leaving some

significant overlap between any two consecutive windows. Similarly, in our problem setting

each exploratory query can be perceived as a sliding window over the data space. Since differ-

ent queries within an exploratory session typically explore the data space in a close vicinity to

each other, it is very likely for two consecutive queries to have common results, similar to two

consecutive sliding windows in a data stream. The premise underlying the proposed Stream

Greedy Construction scheme in [30] is that instead of re-evaluating all the k diverse results for

each sliding window, the diverse subset of the current window is initialized using the diverse

results from the previous window. The drawback of this approach is the assumption that every

window is uniformly populated from the data space. Thus, it is assumed that the valid diverse

results from the previous window are still diverse with respect to the new data in the current

window. However, in many data stream scenarios data distribution across different windows

can be quite different. Thus, in our work we selectively choose only those diverse results from

the cache that are still diverse with respect to the result of the current query. In the section

5.4, we have compared the performance of Stream Greedy Construction (SGC) against our

proposed schemes.

5.6 Summary

Search Results Diversification has emerged as an important representative data extraction tech-

nique for Interactive Data Exploration platforms. In order to reduce the overhead of Diversi-

fication in an already comutationally expensive exploration process, in this chapter, we have

presented the (Adaptive model based diversification AdOr scheme. AdOr targets the problem

of efficiently diversifying the results of multiple queries within and across different exploratory

sessions. Our novel scheme leverages the overlap between query results and utilizes an adaptive

model-based approach that is particularly suitable for the efficient and effective diversification

in IDE. AdOr provides solutions of quality comparable to existing baseline solutions, while sig-

nificantly reducing processing costs. We present experimental results concerning the efficiency

and the effectiveness of our approach on both synthetic and real data sets.
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Diversity with few Regrets

As already mentioned in Chapter 2, emerging Data exploration platforms typically apply novel

post-processing techniques on both the queries and their respective answers to provide users

with guidance and insights. Generating representative data is one such technique that aims to

provide meaningful summary of a potentially large query answer (e.g., [20, 31, 66, 87, 97]). In

Chapters 3, 4 and 5, we have addressed the computational complexity of generating representa-

tive subsets having diversity as the only selection criteria. However, in many applications users

may have some notion of preference along few dimensions whereas the coverage and diversity

is desired along other dimensions. Hence, in this chapter we have focused on the complexity

of the multi-objective function when generating representative subsets. Specifically, we have

considered the problem of combining diversity with other user preferences. Among state of the

art representative extraction techniques, Top-k and Skyline queries have gained much attention

for capturing user preferences. In top-k, the user’s preference is captured by means of a utility

function over different dimensions of data, whereas in skyline, that preference is captured by ap-

plying the dominance property over those dimensions. Recently, regret minimization has been

proposed as a practical alternative for both queries [66]. In regret minimization, a small rep-

resentative set is generated by considering the universe of all possible utility functions. Hence,

a user does not need to specify a specific utility function, as it is the case in top-k, but are

still provided with a small and concise representative set, unlike the skyline query, in which the

result can be arbitrarily large.

While incorporating diversity in top-k (e.g., [6, 41, 72]) and skyline (e.g., [47, 95]) queries

have been studied in literature, objective function using both diversity and regret minimization

criteria has not been considered. Therefore, in this work we have looked in to the problem

of computing representative subsets with an objective of maximizing diversity and minimizing

99
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Table 6.1: Car Database
Car MPG HP Weight Height

p1 51 134 1760 52.4

p2 40 110 2945 48.8

p3 41 191 1875 54.3

p4 35 198 2050 56.3

p5 30 140 2215 50.6

regret. For instance, assume a user who user might have some notion of preference associated

with some dimensions of the data, while other dimensions are neutral. In that case, it is

desired to select representatives that: 1) minimize regret over the preference dimensions (i.e.,

high utility), and 2) maximize diversity over the neutral dimensions (i.e., low redundancy).

For example, consider a tourist visiting downtown Melbourne for SIGMOD and is looking

for few restaurants to try during her visit. That user might have some preference for restaurants

with low price and high rating. At the same time, she might not want all restaurants to be

cluttered in one location so that she gets to see more of the city during her short visit.

To capture that tradeoff between preference and coverage, we propose a novel scheme called

ReDi, which aims to generate representative data that balance the tradeoff between regret

minimization and diversity maximization. Our proposed scheme ReDi is based on a hybrid

objective function formulated as the linear weighted combination of the diversity and regret

objectives. To that end, ReDi incorporates two alternative novel algorithms that are based

on two different algorithmic design approaches. In particular, we propose the ReDi-Greedy

algorithm, which is a constructive based heuristic, and we also propose ReDi-SWAP, which is

a local search based algorithm. Further, we study the tradeoff those two algorithms exhibit in

terms of efficiency and effectiveness.

The rest of this chapter is organized as follows. We present preliminary concepts on regret

minimization in Section 6.1. Next we formulate our hybrid objective function in Section 6.2,

and present our ReDi scheme in Section 6.3. Our evaluation testbed and results are reported

in Section 6.4. We summarize in Section 6.5.

6.1 Minimizing Regret

In the presence of user preference over some of the data dimensions, representatives are typically

selected based on those preferences. There has been lot of work in literature that addresses
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the problem of personalizing user search based on user preferences. For instance, in [87] the

user preferences are expressed as user choice that holds under specific context. The top-k

results to the keyword query are ordered on the basis of the user preferences. More commonly

used approach for specifying user preference in top-k queries is through utility functions. For

instance, in a top-k query, the user specifies a utility function g, such that the utility of a D-

dimensional point p is given by g(p). Hence, the top k points based on their values under that

utility function are then selected as representatives. Alternatively, in a skyline query, any point

for which there is no other point with better values in all D dimensions is selected. However, in

a top-k query the user is required to precisely define a utility function, which is often unknown,

whereas in a skyline query there is no control on the size of the output, which can be arbitrarily

large. Such drawbacks motivated the recent regret minimization methods [66].

Particularly, the goal of regret minimization is to select a subset of size k, which minimizes

the maximum regret ratio for any class of utility functions. This captures how disappointed

any user could be had they seen k representative tuples instead of the whole database [66].

Specifically, for a certain user with a utility function g ∈ G and a subset of points S ⊆ P , the

regret of that user is maxp∈Pg(p) −maxp∈Sg(p), where maxp∈Pg(p) is the maximum utility if

the user saw the entire database P , whereas maxp∈Sg(p) is the maximum utility if the user saw

only the representative set S. Accordingly, given a class of utility functions G, the maximum

regret ratio of a subset S, denoted rrP (S,G), is defined as:

rrP (S,G) = supg∈G
maxp∈Pg(p)−maxp∈Sg(p)

maxp∈Pg(p)

In this work, we restrict G to be the class of linear functions with positive weights, as

in [66]. Given that restriction, consider again the dataset of table 1 and suppose there is

some notion of preference associated with attributes MPG and HP. For simplicity, further

assume G = {g{0.2,0.8}, g{0.4,0.6}, g{0.6,0.4}, g{0.8,0.2}} where: g{x,y}(MPG,HP ) = MPG.x + HP.y

If S = {p1, p2}, then rrP (S,G) = 0.29. If, however, S = {p3, p4}, rrP (S,G) = 0. However, if

the goal is to select a set of 2 cars that is diverse in weight and height, then the set S = {p1, p4}

is the most diverse under the diversity definitions formulated in the previous section.

In general, computing the value rrP (S,G) for a class G is based on finding the “worst" point.

That is, the point that contributes to the currently perceived maximum regret ratio after S

points have been selected. Hence, that computation is achieved by running a linear program

to compute rrS∪{p}(S,G) for each p ∈ P\S to find the one point p′ that is responsible for the

current maximum regret ratio [66]. Hence, rrP (S,G) = rrS∪{p′}(S,G), where rrS∪{p}(S,G) is
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evaluated using the following linear program [66]:

max x

s.t.
D∑
i=1

(p[i]− p′[i])v[i] ≥ x ∀p′ ∈ S

D∑
i=1

p[i]v[i] = 1

v[i] ≥ 0 ∀i ≤ D

x ≥ 0

(6.1)

Notice that in the linear program above, each possible utility function is represented by a

vector v in D dimensions with non negative coordinate values. Hence, the linear program finds

the vector v that maximizes the regret ratio of S relative to S ∪ p, and the value x returned by

the linear program is precisely rrS∪{p}(S,G).

Similar to maximizing diversity, the problem of regret minimization has also been shown

to be NP-hard [20]. Hence, several greedy heuristics have been proposed to find near-optimal

solutions for regret minimization [66]. Those heuristics are based on the Greedy algorithm

proposed in [66], in which S is constructed iteratively, where in each iteration, the point that

contributes to the maximum regret ratio is selected and added to S, until k points are selected.

The pseudo code for this algorithm is given in algorithm 10, where rrS∪{p}(S) is evaluated using

the above linear program.

6.2 Combining Diversity and Regret

Clearly, the methods for diversity maximization and regret minimization compute different

representative sets that optimize their respective objective functions. For example, consider

Figure 6.1(a), which shows a small data set consisting of 12 points p1, p2, ..., p12, each with 7

dimensions A1, A2, ..., A7. For each point pi, the normalized attribute value for each of its 7

attributes is shown on the y-axis. Further, assume there is some notion of preference associated

with the first four attributes A1 to A4 (e.g., the higher the value, the better), whereas there

is no such notion defined for the remaining three attributes A5 to A7. Hence, in generating

a representative set S, it is desired to select points that: i-minimize regret over the first four

dimensions (i.e, high utility), and ii-maximize diversity over the last three dimensions (i.e., low

redundancy). Figure 6.1(b) shows a set S of size 5 points selected by the Greedy algorithm for

regret minimization (called Reg-Greedy hereafter). The figure shows that selected points have

high values under one or more of the first four attributes (i.e., high utility), but have very similar
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Algorithm 10 Regret Greedy Algorithm
Input: A set of D dimensional points P = {p1, p2, ..., pn} and an integer k for output size

Output: A subset of P of size k denoted by S

S ← {p} such that p = argmax
pi∈P

pi[1]

for i = 1 to k − 1 do

r∗ = 0

p∗ = null

for all p ∈ P \S do

if r∗ < rrS∪{p}(S) then

r∗ ← rrS∪{p}(S)

p∗ ← p

end if

end for

S ← S ∪ {p∗}

end for

values in the last three attributes (i.e., high redundancy). Alternatively, Figure 6.1(c) shows

the set S selected by the Greedy algorithm (Algorithm 1) for diversity maximization (called

Div-Greedy hereafter). In contrast to Figure 6.1(b), Figure 6.1(c) shows that the selected points

have diverse values under the last three attributes (i.e., low redundancy), but miss the user

preference for higher values along the first four dimensions (i.e., low utility). Hence, neither of

the two algorithms manages to achieve both high utility and low redundancy at the same time.

To capture the conflict illustrated in the previous example, we utilize a hybrid function that

considers both diversity and regret. Specifically, for a subset S ⊆ P , an objective function

is formulated as the linear weighted combination of the scaled diversity and regret objectives,

which is defined as:

F(S,G, P, λ) = λ

∑k
i=1

∑k
j>i d(pi, pj)

max
pi,pj∈P

d(pi, pj)
+

(1− λ)
k(k − 1)

2
(1− rrP (S,G))

(6.2)

where k = |S|, and λ is the weight parameter for balancing the tradeoff between diversity and

regret, such that 0 ≤ λ ≤ 1. Notice that the sum of the pairwise distances is divided by the

maximum distance between any pair of points in the whole set so as to normalize the value of

the distances between 0 and 1. Similarly, the regret objective is scaled up by k(k−1)
2

which is

the total number of pairs considered in the sum of the distances for diversity.
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Figure 6.1: Impact of Regret Minimization and Diversification

When diversity and regret are associated with different dimensions, our objective function

defined above is easily modified accordingly. In particular, if Vdiv ⊆ {A1, ..., AD} represents the

dimensions designated for diversification and Vreg ⊆ {A1, ..., AD} represents the dimensions on

which regret minimization is required, our objective function is reformulated as:

F(S,G, P, λ, Vdiv, Vreg) = λ

∑k
i=1

∑k
j>i d(pi, pj, Vdiv)

max
pi,pj∈P

d(pi, pj, Vdiv)
+

(1− λ)
k(k − 1)

2
(1− rrP (S,G, Vreg))

Hence, the goal is to find a set S∗, which balances the tradeoff between diversity and regret

by maximizing the objective function F defined above. Formally:

S∗ = argmax
S⊆D,|S|=k

F(S,G,D, λ, Vdiv, Vreg) (6.3)

Note that in this work we focus on the case where diversification and regret minimization

are desired on different dimensions, which means Vdiv ∩ Vreg = φ. Referring back to the sample

data in table 6.1, assume Vdiv = {Weight,Height}, Vreg = {MPG,HP}, and it is required to

select a representative set S of size 2 (i.e., k = 2). For that data, S = {p1, p3} is the the set

which minimizes the maximum regret ratio in MPG and HP, but provides very low diversity

in Weight and Height. On the other hand, S = {p2, p4} maximizes the diversity in Weight
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and Height, but has a very high maximum regret ratio in the first 2 dimensions. Giving equal

weight to both diversity and regret by setting λ = 0.5 in F , we find that the subset of size

k = 2 which maximizes F is S = {p1, p4}, where the points in S provide the desired balance

between minimizing regret and maximizing diversity.

6.3 The ReDi Scheme

In this section, we present our ReDi scheme for balancing the tradeoff between minimizing

regret and maximizing diversity. In particular, we present two algorithms that aim to achieve

that goal as it is captured by the hybrid function presented in Section 6.2. Towards this, we

present two algorithms: ReDi-Greedy, and ReDi-SWAP, and study the tradeoff they exhibit in

terms of both efficiency and effectiveness.

6.3.1 ReDi-Greedy

ReDi-Greedy follows the same general design adopted by the class of constructive algorithms for

solving different optimization problems, including those for regret minimization, and diversity

maximization. In constructive algorithms, a final solution is achieved incrementally in steps,

where in each step a local decision is made based on some criteria, where the choice of such

criteria depends on the target optimization problem. ReDi-Greedy also constructs the result

set S iteratively by selecting a new point in each iteration, where the criteria for selecting such

point is based on the objective function F defined in Section 6.2. Particularly, based on F ,

it is desirable to select in each iteration a point that can potentially contribute the most to

decreasing the regret of the current set S and also increasing its diversity. In order to locate

such point, ReDi-Greedy employs a heuristic priority function, where each point in P that is

not in S is assigned a score, which is defined as follows:

Score(p, S, Vdiv, Vreg) = λ
SetDist(p, S, Vdiv)

maxpi∈P\SSetDist(pi, S, Vdiv)
+

(1− λ)
rrS∪{p}(S,G, Vreg)

rrP (S,G, Vreg)

Where SetDist(p,S), between a point p and a set of points S is defined based on its distance

from the points in S, as: SetDist(p, S) = 1
|S|
∑

pj∈S d(p, pj).

Thus each candidate point p is assigned a score, which is the weighted sum of its set distance

from S and the maximum regret ratio of set S with respect to p. Both the set distance and

regret components are normalized by dividing the first term by the maximum set distance of S
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Algorithm 11 ReDi-Greedy
Input: A set of D dimensional points P , a set Vdiv, a set Vreg, an integer k and λ

Output: A subset of P of size k denoted by S

S ← {p} such that p = argmax
pi∈P

pi[1]

for i = 1 to k − 1 do

maxScore = 0

p∗ = null

for all p ∈ P \S do

if maxScore < Score(p, S, , Vdiv, Vreg) then

maxScore← Score(p, S, Vdiv, Vreg)

p∗ ← p

end if

end for

S ← S ∪ {p∗}

end for

Table 6.2: Score() vs. F() at S = {p2}

Point p1 p3 p4 p5

Score(p) 0.99 0.96 1 0.528

F (S ∪ p) 0.627 0.726 0.724 0.395

and the second component by the maximum regret ratio of S with respect to the whole set P .

The score of each candidate point p thus measures the potential contribution of p in increasing

the objective function value for set S ∪ p. Therefore in each iteration the point with maximum

score is added to set S (the pseudocode for ReDi-Greedy is presented in algorithm 11).

Although ReDi-Greedy is very efficient in practice, there is no guarantee that the point p∗

picked in each iteration is actually the best point (i.e., local minimum) for the objective function

F given the current representative set. This is because the point p∗ that has the highest score

may not necessarily be the one that improves the combined function value the most. Consider

again the example in table 6.1 and assume that our current set S = {p2} and λ = 0.5. Table

6.2 lists the scores of each of the other points based on the above scoring function as well as

the actual function values obtained by adding that particular point to the current S. As the

table shows, the highest scoring point, p4 does not yield the highest function value when added

to S, which is given by p3.

To address the limitations of ReDi-Greedy, next we present the ReDi-SWAP heuristic, in
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Algorithm 12 ReDi-SWAP Algorithm
Input: A set of D dimensional points P , a set Vdiv, a set Vreg, an integer k and λ

Output: A subset of P of size k denoted by S

S ← regretGreedy(P, k, Vreg)

S ′ ← S

for all p ∈ P \S ′ do

Stemp ← S

p∗ = argmax
p∈P\S′

∑
pi∈S

d(p, pi, Vdiv)

S ′ ← S ′ ∪ {p∗}

for all p′ ∈ S do

if F (Stemp, G, P, λ, Vdiv, Vreg) <

F ({S\p′} ∪ p∗, G, P, λ, Vdiv, Vreg) then

Stemp = {S\p′} ∪ p∗

end if

end for

if F (Stemp, G, P, λ, Vdiv, Vreg) > F (S,G, P, λ, Vdiv, Vreg) then

S ← Stemp

end if

end for

which the selection of points is based on the actual improvement in the value of the objective

function F instead of the expected improvement.

6.3.2 ReDi-SWAP

The ReDi-Greedy algorithm presented in the previous section is of the constructive type. That

is, it starts without a representative set and incrementally constructs it by adding one point at

a time. To the contrary, ReDi-SWAP presented in this section falls under the local search type

of algorithms. In general, a local search algorithm starts out with a complete initial solution

and then attempts to find a better solution in the neighborhood of that initial one. Like

constructive algorithms, local search algorithms are also widely used in solving optimization

problems including generation of representative data. For instance, the SWAP local search

method has been utilized to maximize diversity [31, 97], and in this paper, we further expand

into our ReDi-SWAP method for balancing the tradeoff between regret and diversity.

The basic idea underlying ReDi-SWAP is to start with an initial set S of size k and then
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iteratively modify the set S in order to improve the value of the objective function F . One

of the main design criteria in local search algorithms is the choice of the initial solution. In

ReDi-SWAP, we opt to initialize S with the k points which minimize the regret ratio as selected

by the traditional Reg-Greedy algorithm [66]. Another important criterion is the neighborhood

definition of local search together with the search process. Since we initialize ReDi-SWAP

with the regret minimization set, the neighborhood of the local search is explored based on

the second component of our objective function (i.e., diversity). In particular, the points in

P\S are visited according to their distance from S, such that the points with higher distance

are visited first. Accordingly, in each iteration, from the set of points that haven’t yet been

visited, given by P\S ′, the point with the highest distance from the current set S is tested,

denoted by p∗. This point is tested against each point in S by removing that point p′ from S

and adding p∗ to the set. After going through all the points in S one by one, the swap that

results in the highest function value is made if it also is an improvement over the set S before

the swaps were made. The intuition is to replace the point in S which contributes the least to

its diversity with a point from P\S which would improve that diversity while at the same time

maintaining regret very close (or equal) to that of S, which is easily captured by evaluating the

hybrid objective function F .

Notice that for any candidate point p, the decision made by ReDi-SWAP is based on eval-

uating the objective function F if p is selected to join S. Evaluating F requires O(n) calls

of the linear program to compute the maximum regret ratio and O(k2) distance computations

to calculate the diversity of set S. Under ReDi-Greedy, however, the decision on a candidate

point p is based on assigning a priority value (i.e., score) to p. For that decision, it is enough

to evaluate the regret contributed by p but not the actual regret achieved when p is added to

S, which requires one call of the linear program. Hence, in total, ReDi-Greedy performs O(nk)

calls to the linear program, whereas ReDi-SWAP performs O(n2k). The tradeoff between the

efficiency and effectiveness provided by these two algorithms is evaluated experimentally in the

next section.

6.4 Experimental Evaluation

We perform several experiments to evaluate the performance of the different schemes discussed

in this paper, namely: i) Div-Greedy ii) Reg-Greedy, iii) ReDi-Greedy, and iv) ReDi-SWAP. In

particular, we compare those algorithms in terms of effectiveness, which is measured in terms

of the objective function F , and efficiency, which is measured as total time spent in executing
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Figure 6.2: Cost of different methods in terms of running time
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Figure 6.3: Impact of λ

the linear program optimization.

Experiments are conducted on a simple synthetic 10-dimensional dataset of size 3K tuples,

in which the attribute values of each dimension are generated uniformly in the range [0–1].

Table 6.3 summarizes the database settings together with the other parameters considered in

our evaluation.

Figure 6.3(a) shows the impact of λ on the value of the objective function F . As shown in

the figure, ReDi-SWAP provides the highest values for F followed by ReDi-Greedy. Meanwhile,

Reg-Greedy and Div-Greedy are both oblivious to any tradeoff between regret and diversity,

which translates into lower F values. This is further illustrated in Figures 6.3(b) and 6.3(c).

Figure 6.3(b) shows the happiness measure of a set S computed as 1-regret ratio(S). As

expected, the figure shows that Reg-Greedy provides the highest happiness, whereas Div-Greedy

provides the lowest. The figure also shows that ReDi-Greedy and ReDi-SWAP provide slightly

lower happiness than Reg-Greedy but much higher than Div-Greedy. The same behavior is

exhibited in Figure 6.3(c) with respect to diversity.

The improvement in the F value provided by ReDi-SWAP over ReDi-Greedy (as shown

in Figure 6.3(a)) comes at the expense of increasing the processing time, as shown in Figure

6.2, which shows the time spent in executing the LP optimizations and distance computations.

This is to be expected since ReDi-SWAP has higher complexity than ReDi-Greedy, as discussed
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Table 6.3: Evaluation Setting.

Parameter Range Default

Number of Dimensions (D) 2–10 10

Database Size 3k 300

Representative Set Size (k) 2–10 5

Weighting Factor (λ) 0–1 0.5

Number of Regret Dimensions |Vreg| 2–8 5

Number of Diversity Dimensions |Vdiv| 2–8 5
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Figure 6.4: Impact of dimensions split

in the previous section. eatTo further illustrate the tradeoff between ReDi-Greedy and ReDi-

SWAP, we compare them relative to the optimal solution in Figure ??. The figure shows the

F provided by each of the two algorithms normalized to the optimal exhaustive solution for a

small dataset (n = 30) while varying k. As shown in the figure, the F value of ReDi-SWAp is

95-100% of the optimal, whereas ReDi-Greedy achieves around 85-90% of the optimal.

In all the previous experiments, the 10 dimensions were split evenly between regret and

diversity (i.e., |Vreg| = 5 and |Vdiv| = 5), as in the default setting. In this experiment, we

measure the impact of changing that split as shown in Figure 6.4. The figure shows the F value

as we increase the number of dimensions considered for regret minimization, or equivalently

decreasing the number of dimensions for diversity maximization. As the figure shows, the

overall trend for all algorithms appears to be a decrease in F value as |Vreg| is increased. This

is consistent with results in literature on the impact of dimensions on regret minimization and

diversity maximization. In particular, maximum regret ratio has been observed to worsen,

or increase, with the increase in dimensionality whereas diversity increases with increase in

dimensionality. Both of these observations are consistent with the trend in figure 6.4, where

the F value decreases as the number of dimensions for regret increase and those for diversity

are reduced.
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All the previous results indicate that ReDi-SWAP is a more effective scheme than ReDi-

Greedy. However, that improvement in effectiveness comes at the expense of a higher com-

putational cost. Such a high cost would be prohibitive when applying ReDi-SWAP on large

databases. Hence, from a practical standpoint, ReDi-Greedy presents a more attractive solu-

tion due to its scalability, while at the same time providing F values close to those achieved by

ReDi-SWAP.

6.5 Summary

We considered the problem of simultaneous regret minimization and diversity maximization

on multi-dimensional data where both these objectives are desired on different dimensions. To

that end, we captured the tradeoff between those two objectives by means of a hybrid function,

which also forms the basis of our new ReDi scheme. As part of our ReDi scheme, we proposed

two alternative solutions that fall under two major classes of optimization algorithms, namely:

local search optimization, and constructive optimization. Our experimental evaluation studies

the efficiency and effectiveness of those algorithms under different parameters.
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Chapter 7

Conclusions and Future Work

The goal of this thesis was the design, implementation and evaluation of algorithms and schemes

for the scalable diversification of search results in data exploration platforms. Next, in Section

7.1, we summarize our contributions towards that goal and in Section 7.2, we describe directions

for future work.

7.1 Summary of Contributions

We have addressed the challenging problem of search results diversification in data exploration

platforms. While diversification, like other data summarization techniques, provides users with

quick insights into the query answers, it adds additional complexity to an already computa-

tionally expensive data exploration task. Hence, in order to present users with diverse search

results at minimum additional cost we have proposed various scalable diversification schemes

in this thesis as summarized below.

In Chapter 3, we presented the Progressive Data Diversification (pDiverse) scheme for effi-

cient diversification of high dimensional large datasets. The main idea underlying pDiverse is

to utilize partial distance computation to reduce the amount of CPU and I/O incurred during

query diversification. In a traditional approach where diversification is decoupled from query

processing, our scheme allows to quickly detect and prune those data points in the query result

that cannot be included in the final diverse set. The early pruning of those points provides

significant reduction in the CPU cost required for distance computations. Moreover, we pro-

pose integrating data diversification with query processing, which enables pushing down partial

distance computation closer to the raw data, and hence provides pruning at the data storage

layer. This allows for saving the I/O costs incurred in accessing those pruned values, especially

113
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in vertically partitioned data (i.e., column-stores). In particular, Column-store systems verti-

cally partition a database into a collection of individual columns, which are stored separately.

Hence, instead of reading all the attribute values of all the data points accessed by a query,

pDiverse leverages a column-based storage to selectively read only those attribute values of the

unpruned data points and save I/O cost. Our extensive experimental evaluations on real and

synthetic data sets illustrate the benefits achieved by pDiverse.

Besides processing large volumes of data, another key feature of Data Exploration systems

is the ability to host multiple users, executing multiple queries in parallel sessions. Meanwhile,

delivering near real time performance remains an essential requirement for Data Exploration

platforms so that to match the intrinsic nature of interactive and iterative data exploration

to ensure user satisfaction. Hence, for scalable diversification of multiple queries within and

across users sessions, we have proposed two schemes for diversification of multiple query results

in Chapter 4 and 5.

In Chapter 4, we have proposed the DivM scheme for concurrent diversification of simulta-

neous queries across user sessions. In particular, DivM leverages the natural overlap in search

results in conjunction with concurrent diversification of those results using partial aggregation

techniques. This enables DivM to provide the same quality of diversification as that of the

sequential methods, while significantly reducing the processing costs. We further generalize

and extend the DivM scheme to exploit various approximation techniques that provide orders

of magnitude reductions in processing cost, while maintaining a quality of diversification com-

parable to that of near optimal schemes. Our extensive experimental evaluation on both real

and synthetic data sets shows the scalability exhibited by our proposed scheme under various

workload settings, and the significant benefits it provides compared to existing methods.

For Sequential Diversification of multiple queries within a user session, we have presented

an efficient diversification scheme in Chapter 5. Our proposed scheme, called AdOr, relies on

two main interrelated components, namely: 1) an adaptive model-based diversification method,

and 2) an order-based caching scheme. In particular, AdOr employs an adaptive model based

diversification method to estimate the diversity of a diverse subset and hence selects diverse

results without scanning all the query results. In order to further expedite the diversifica-

tion process, AdOr employs an order-based caching scheme to leverage the overlap between

sequence of data exploration queries. We conducted extensive experimental evaluation on real

and synthetic data sets, which compare the performance of multiple diversification schemes and

illustrate the benefits achieved by AdOr.

Besides the computational complexity of diversification in Data Exploration, we have also



7.2. Future Work 115

addressed the complexity of the objective function when considering diversification with other

criteria. In contrast to the current approaches that focus on one objective function for gener-

ating representative data, we have addressed the problem of combining diversity with regret

minimization. In particular, we address the scenario where users typically have some pre-

specified preferences over some dimensions of the data, while expecting good coverage over the

other dimensions. Our proposed scheme called ReDi, which is presented in Chapter 6, aims

to generate representative data that balance the tradeoff between regret minimization and di-

versity maximization. ReDi is based on a hybrid objective function that combines both regret

and diversity. Additionally, it employs several algorithms that are designed to maximize that

objective function.

7.2 Future Work

In this section, we propose possible directions for the future work.

7.2.1 Distributed Data Diversification

In the future, we propose investigating the diversification problem in a distributed setting where

data is stored across various nodes. The current centralized diversification algorithms require all

the relevant data on a single node. However, in a distributed environment, transfer of such data

from various nodes to a central node is a challenging task, either because of privacy concerns

or due to network bandwidth limitations, or because of the huge amount of distributed data.

Hence, bandwidth efficient distributed diversification algorithms are needed for both vertically

(i.e., different columns/dimensions are stored on different nodes) and horizontally (e.g., rows

of data are distributed across different nodes) partitioned datasets.

For vertically partitioned data, we can extend our pDiverse scheme as presented in Chap-

ter 3. The pDiverse scheme computes diverse subsets of results by progressively visiting each

dimension. Since, all data is available on the same node, the I/O cost of accessing each data

block for all dimensions is the same. Similarly, there are no communication delays involved.

However, in a distributed environment, the cost of accessing data from each node may vary

drastically. Hence, the I/O cost and communication delay for each dimension need to be in-

corporated in the dimension ordering function. Moreover, random data access to retrieve few

values on demand can be an expensive operation when data is stored remotely. Hence, new
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data reduction and pruning methods need to be investigated for minimizing the communication

delays as well as random data accesses when diversifying results over distributed datasets.

For horizontally partitioned datasets, the DivM scheme presented in Chapter 4 can be fur-

ther extended. DivM evaluates diverse subset by partitioning the underlying query result set

into overlapping and non-overlapping sets. Each set is processed independently to select the

local optimum result with maximum distance from already selected diverse results. Those lo-

cal optimum results are later compared to select the global optimum result. The independent

processing of each partition by DivM can be utilized for parallel diversification of results across

multiple data nodes. However, as the diverse subset is updated after each iteration, it needs

to be shared with each data node. Such sharing can be unauthorized in some situations where

data privacy policies are in place. In those situations, new novel methods are needed for evalu-

ating partial diverse subsets at each node and then merging them to compute a global diverse

subset.

7.2.2 Diversification of Multiple Queries over Data Streams

In this thesis, we have addressed the problem of multiple diversification queries over static

datasets. However, there is a growing increase in the number of real time applications that

need to handle continuous queries over streaming data e.g., retail chain transactions, tracking

moving objects, monitoring online network behaviours, and sensor data processing. Note that

unlike static data, stream data objects hold a property related to time, and many applications

often consider that older data objects are less important. Thus, often a time-based sliding

window is assumed. In addition, users are also allowed to specify a region of interest. Then,

the diversification problem over data streams can be defined as to monitor k-diverse data objects

that exist in the user-specified region and arrived within a time window. Thus, diversification

queries are not only parameterized by the diverse subset size k and query range, but also window

properties such as window type, size and slide.

The existing work on continuous diversification problem considers only a single query

(e.g., [33, 65]). However, in many applications a stream processing system should be able

to accommodate a workload of numerous user queries [80, 81], and thus successfully compute

the k diverse results at different intervals of time for each of those queries. Therefore, in the

future, we plan to focus on the problem of multiple diversification queries over data streams.

More specifically, we are interested in monitoring k-diverse data objects for multiple queries
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over sliding-window streams. Multi-query processing over streams gives rise to several novel

and difficult optimization issues that are very different from those of traditional multi-query

optimization. For instance, to extend our existing work on multiple diversification queries to

data streams, new techniques for leveraging overlap in data as well as sliding windows need

to be investigated. Hence, design of efficient diversification methods based on multiple query

optimization techniques for fast retrieval of multiple diverse subsets over dynamic data is a

challenging research problem.
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Appendix A

An Appendix

A.1 Appendix: Regression Model

In statistics, nonlinear regression is a form of regression analysis in which observational data

are modeled by a function which is a nonlinear combination of the model parameters and

depends on one or more independent variables. The data are fitted by a method of successive

approximations. Examples of nonlinear functions include exponential functions, logarithmic

functions, trigonometric functions, power functions, Gaussian function, and Lorenz curves.

In this paper we have used power function that can be represented as: y = ax−b. a and

b are the parameters we seek that would best fit the function to the sample data. These two

parameters can be determined by using Non-linear least squares analysis that is used to fit a

set of m observations with a model that is non-linear in n unknown parameters (m > n). The

basis of the method is to approximate the model by a linear one and to refine the parameters

by successive iterations

Thus the equation for squared error for N sample observations is presented as:

E2 =
N∑
i=1

(yi − f ′(xi))2

The two parameters are found by partial derivative equations:

∂E2

∂a
= 0

∂E2

∂b
= 0

which are solved simultaneously to obtain:

b =

∑
xiln(yi)− 1

N
(
∑
xi)(

∑
ln(yi))

(
∑
x2
i )− 1

N
(
∑
xi)2

131



132 Appendix A. An Appendix

a = exp

[
1

N

∑
ln(yi)− b

∑
xi
N

]
It has been shown that this yields a Coefficient of Determination of:

r2 =

[∑
xiln(yi)− 1

k
(
∑
xi)(

∑
ln(yi))

]2[∑
x2
i −

(
∑

xi)2

k

] [∑
ln(yi)2)− (

∑
ln(yi))2

k

]
As in linear regression case, a value of r2 = 1 infers a good fit of the model to the data.


