
RESEARCH ARTICLE
10.1002/2016WR019101

Analytical solutions of seawater intrusion in sloping confined
and unconfined coastal aquifers
Chunhui Lu1, Pei Xin1, Jun Kong1, Ling Li1,2, and Jian Luo3

1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China, 2School
of Civil Engineering, University of Queensland, Brisbane, Queensland, Australia, 3School of Civil and Environmental
Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

Abstract Sloping coastal aquifers in reality are ubiquitous and well documented. Steady state sharp-
interface analytical solutions for describing seawater intrusion in sloping confined and unconfined coastal
aquifers are developed based on the Dupuit-Forchheimer approximation. Specifically, analytical solutions
based on the constant-flux inland boundary condition are derived by solving the discharge equation for the
interface zone with the continuity conditions of the head and flux applied at the interface between the
freshwater zone and the interface zone. Analytical solutions for the constant-head inland boundary are then
obtained by developing the relationship between the inland freshwater flux and hydraulic head and com-
bining this relationship with the solutions of the constant-flux inland boundary. It is found that for the
constant-flux inland boundary, the shape of the saltwater interface is independent of the geometry of the
bottom confining layer for both aquifer types, despite that the geometry of the bottom confining layer
determines the location of the interface tip. This is attributed to that the hydraulic head at the interface is
identical to that of the coastal boundary, so the shape of the bed below the interface is irrelevant to the
interface position. Moreover, developed analytical solutions with an empirical factor on the density factor
are in good agreement with the results of variable-density flow numerical modeling. Analytical solutions
developed in this study provide a powerful tool for assessment of seawater intrusion in sloping coastal aqui-
fers as well as in coastal aquifers with a known freshwater flux but an arbitrary geometry of the bottom
confining layer.

1. Introduction

The problem of seawater intrusion in coastal aquifers has increasingly become the main issue in managing
freshwater resources in coastal regions and has attracted growing attention over recent decades [Post and
Abarca, 2010; Werner et al., 2013]. The location of the interface between freshwater and seawater subject to
various hydrologic and/or hydraulic stresses such as pumping and recharge is a key indicator for the sus-
tainable management of coastal aquifers, reflecting the situation of aquifer salinization. Despite the avail-
ability of various numerical models [e.g., Langevin and Guo, 2006; Bakker, 2013], analytical solutions, as an
effective first-order assessment tool, are frequently used to predict the steady state interface location.

Locating the freshwater-seawater interface requires solving simultaneously two coupled flow systems (i.e.,
flow in the freshwater zone and flow in the interface zone) in conjunction with the continuity conditions of
the head and flux across the interface between the two zones. To facilitate the derivation of an analytical
solution, a sharp interface is usually assumed, neglecting freshwater-seawater mixing. In other words, these
two waters are considered immiscible. This assumption may be not appropriate for coastal aquifers where
there is a thick mixing zone [e.g., Lu et al., 2009; Lu and Luo, 2010; Lu et al., 2013b]. Furthermore, analytical
studies are typically based on the steady state condition assuming negligible hydrodynamic flow conditions
caused by waves, tides, and seasonal variability in precipitation and groundwater extraction [e.g., Ataie-
Ashtiani et al., 1999; Xin et al., 2010; Kuan et al., 2012].

Exact solutions have been developed for determining the sharp interface using the hodograph method in
combination with conformal mapping [e.g., Bear, 1972; Kacimov, 2001; Kacimov and Obnosov, 2001; Bakker,
2014]. Moreover, sharp-interface analytical solutions have been derived based on the Ghyben-Herzberg
relation [Badon Ghyben and Drabbe, 1888; Herzberg, 1901] together with the Dupuit-Forchheimer
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approximation [Dupuit, 1863; Forchheimer, 1886] that neglects the flow in the vertical direction. Strack
[1976], among others, presented an analytical technique for solving 3-D interface problems in a homoge-
neous coastal aquifer. This technique is based upon the use of a single potential throughout all zones
(defined by the type of flow occurring) of an aquifer. Pool and Carrera [2011] introduced an empirical formu-
la to take the mixing effect into account in the Strack potential by modifying the saltwater density accord-
ing to the aquifer thickness and transverse dispersivity. Beebe et al. [2016] found that application of this
empirical formula did not significantly improve the field results because of mismatches between simplifying
assumptions of the analytical model and complex field settings. Strack and Ausk [2015] presented a compre-
hensive potential for interface flow in stratified aquifers, extending the applicability of the single-potential
theory.

As a simple and pragmatic method, the single-potential approach has interested many researchers in solv-
ing interface flow problems under a verity of conditions [e.g., Park et al., 2009; Lu et al., 2015]. For example,
this approach has been employed to develop effective pumping well optimization strategies in coastal
aquifers subject to seawater intrusion problems [e.g., Cheng et al., 2000; Mantoglou, 2003; Lu et al., 2013c],
to explore the vulnerability of coastal aquifers to groundwater use and sea-level rise [Ferguson and Gleeson,
2012; Lu et al., 2013a], and to examine the impact of the boundary condition and aquifer size on the maxi-
mum pumping rate in a coastal aquifer [Lu et al., 2012; Lu and Luo, 2014].

Relying on the single-potential approach, Koussis et al. [2012] developed analytical solutions for regional
seawater intrusion in sloping unconfined coastal aquifers with uniform recharge and a line sink. The dis-
charge potential of the interface zone shares the same form as that of Strack [1976] for the case of a hori-
zontal aquifer, but with a different constant. The flow potential of the upgradient side of the interface tip
(i.e., the freshwater zone) is obtained through the approximation of a linearized hydraulic potential due to
gravity. Mazi et al. [2013] applied the analytical solution of Koussis et al. [2012] to evaluate the impact of
sea-level rise on seawater intrusion in both flux-controlled and head-controlled sloping unconfined coastal
aquifers. Moreover, Mazi et al. [2013] adopted the analytical solution of Koussis et al. [2012] to investigate
seawater intrusion in three major Mediterranean aquifers. More recently, Koussis et al. [2015] introduced a
correction to their analytical solutions to account for the submarine outflow gap. In addition to analytical
studies, the numerical approach has been taken to study seawater intrusion in an unconfined sloping aqui-
fer [e.g., Qahman and Zhou, 2001; Abarca et al., 2002].

In fact, the topic of flow in a sloping aquifer has long been investigated [e.g., Henderson and Wooding, 1964;
Huang et al., 2014]. Steady state solutions of the nonlinear Boussinesq equation for homogeneous uncon-
fined flow in sloping aquifers with recharge have been derived analytically by McEnroe [1993], Verhoest and
Troch [2000], Chapuis [2002], and Lo�aiciga [2005]. The latter three solutions have been reviewed and com-
pared by Chapuis [2011]. It is found that the two solutions developed by Chapuis [2002] and Lo�aiciga [2005]
are essentially the same, both based on the Dupuit-Forchheimer approximation. Based on the linearized
Boussinesq equation, various analytical solutions have been developed for transient unconfined flow in
sloping aquifers with recharge [e.g., Basha and Maalouf, 2005; Akylas et al., 2006].

This study aims to develop steady state sharp-interface analytical solutions for seawater intrusion in sloping
coastal aquifers. Examples of sloping coastal aquifers in reality are numerous [e.g., Sherif and Singh, 1999;
Koussis et al., 2010]. Different from the single-potential method used in Koussis et al. [2012], analytical solu-
tions will be developed by solving the discharge equation for the interface zone and applying the continui-
ty conditions of the head and flux at the interface between the freshwater zone and the interface zone.
Although unconfined sloping aquifers have been investigated, analytical solutions for seawater intrusion in
confined sloping aquifers are not available, to the best of our knowledge, and will also be derived in this
study. For both types of aquifers, constant-head and constant-flux inland boundary conditions will be con-
sidered. The importance of the inland boundary condition on seawater intrusion has been highlighted by a
number of studies [Werner and Simmons, 2009; Lu et al., 2012; Mazi et al., 2013; Lu et al., 2015]. Hypothetical
examples will be used to demonstrate the application of the new analytical solutions.

2. Conceptual Model

We consider both confined and unconfined sloping coastal aquifers, which are idealized and simplified. For both
aquifer types, the following assumptions are made in deriving the analytical solutions: (1) flow systems are under
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steady state; (2) the interface
between freshwater and seawa-
ter is sharp; (3) the aquifer is
hydraulically homogeneous and
isotropic; and (4) the flow in the
vertical direction is neglected (i.e.,
the Dupuit-Forchheimer approxi-
mation is adopted).

Figure 1 shows the conceptual
models of a sloping confined
and a sloping unconfined coast-
al aquifer. For both conceptual
models, the origin of the co-
ordinate system is located at
the intersection of the coastal
boundary and the bottom con-
fining layer. Specifically, the z
axis is vertically upward, while
the x axis is pointing horizontal-
ly landward. The datum of the
aquifer system is at the same
level as the x-axis. The elevation
of the sea level is Hs. The fresh-
water flux flowing from inland
to the sea is Qf (negative). The
hydraulic head at the distance L

from the coastline is HL. When deriving the analytical solution, we apply only one inland boundary condition
(i.e., either Qf or HL), i.e., solutions will be derived respectively for the constant-head and the constant-flux
inland boundary condition. The vertical thickness of the layer between the sea level and the interface is hs,
while the vertical thickness of the freshwater lens is h. u is the hydraulic head above the datum (i.e. the x
axis). For the unconfined aquifer, a uniform recharge (N) is considered along the entire aquifer surface.

For the confined coastal aquifer, both the top and bottom confining layers may be inclined, with angles of
b1and b2, respectively. The vertical thickness of the confined aquifer at the coastal boundary is H. For the
unconfined coastal aquifer, the bottom confining layer is assumed inclined, with an angle of b.

3. Derivation of Analytical Solutions

In the following, we derive analytical solutions for both confined and unconfined coastal aquifers. For
each type of aquifer, a constant-flux and a constant-head inland boundary condition will be adopted,
respectively.

3.1 Confined Aquifer With A Constant-Flux Inland Boundary Condition
Based on the Dupuit-Forchheimer approximation, the freshwater discharge is calculated by:

Qf 52Kh
du
dx

(1)

Applying the Ghyben-Herzberg relation, the vertical thickness of the freshwater lens (h) in the interface
zone can be written as (see Appendix A):

h5a u2Hsð Þ2 Hs2H2xtan ðb1Þ½ � (2)

in which a is the density ratio defined as the freshwater density relative to the density difference between
seawater and freshwater. Taking the first-order derivative with respect to x on both sides of equation (2)
yields:

Figure 1. Conceptual models of a (a) confined and (b) unconfined sloping coastal aquifer.
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dh
dx

5a
du
dx

1tan ðb1Þ (3)

Combining equations (1) and (3) gives:

dh
dx

5a 2
Qf

Kh

� �
1tan ðb1Þ (4)

Equation (4) can be written as:

dh

2a Qf
Kh 1tan ðb1Þ

� �5dx (5)

The derivation of the solution of equation (5) depends on the condition whether the value of b1is equal to zero.

If b150, equation (5) is simplified as:

Khdh
2aQf

5dx (6)

The solution of equation (6) is given by:

K
2aQf

h2

2
5x1C1 (7)

in which C1 is an integration constant, and can be determined by the coastal boundary condition:

x50; h50; (8)

Thus, C1 5 0 and equation (7) is then expressed as:

x5
K

2aQf

h2

2
(9)

Equation (9) can be used to determine the interface location. At the interface tip, the relationship between
the vertical thickness of the freshwater lens (ht) and the x-coordinate (xt) is given by:

ht5H2xttan ðb2Þ (10)

Replacing x and h in equation (9) by xt and ht , respectively, and substitution of equations (10) into (9) yield:

xt5
K

2aQf

H2xttan ðb2Þ½ �2

2
(11)

If b250, the confined aquifer is horizontal with a constant thickness. The location of the interface tip deter-
mined by equation (11) is exactly the same as the solution derived previously by the single-potential meth-
od [Strack, 1989; Lu et al., 2015]. If b2 6¼ 0, rearrangement of equation (11) gives:

Ktan 2ðb2Þx2
t 1ð2aQf 22HKtan ðb2ÞÞxt1KH250 (12)

The solution of equation (12) is derived as:

xt5
2ðaQf 2HKtan ðb2ÞÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2Q2

f 22HKaQf tan ðb2Þ
q

tan 2ðb2ÞK
(13)

Note that the other solution to equation (12) with the positive square root term is not physically meaningful, since
xt increases with decreasing freshwater influx (i.e., 2Qf ) but with increasing H and K. It is obvious that when
b150, the solution of xt is continuous at b250. A maximum value of xt occurs, when a2Q2

f 22HKaQf tan ðb2Þ50.
Because Qf is negative, tan ðb2Þmust be negative such that the maximum interface tip location (xmax

t ) exists:

xmax
t 52

H
tan ðb2Þ

(14)

It is shown that xmax
t is only a function of H and b2. Furthermore, since xt is a real number,

a2Q2
f 22HKaQf tan ðb2Þ � 0, which leads to Qf � 2HKtan b2ð Þ

a . Qf is always less than 2HKtan b2ð Þ
a , if tan b2ð Þ � 0.
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However, if tan b2ð Þ < 0 and Qf >
2HKtan b2ð Þ

a , no solution of xt exists because there is no intersection
between the interface and the bottom confining layer, i.e., the absolute gradient of the interface above the
bottom confining layer is less than that of the bottom confining layer.

If b1 6¼ 0, equation (5) can be rearranged as:

11
aQf

2aQf 1Khtan ðb1Þ

� �
dh5tan ðb1Þdx (15)

Integrating both sides of the equation gives:

h1
aQf

Ktan ðb1Þ
ln 2aQf 1Khtan ðb1Þ½ �5xtan ðb1Þ1C2 (16)

in which C2 is an integration constant and can be determined by the coastal boundary condition (i.e., equa-
tion (8)):

C25
aQf

Ktan ðb1Þ
ln 2aQf½ � (17)

Thus, substitution of equation (17) into (16) generates:

h1
aQf

Ktan ðb1Þ
ln 11

Khtan ðb1Þ
2aQf

� �
5xtan ðb1Þ (18)

Equation (18) can be employed to determine the interface location. At the interface tip, the relationship
between ht and xt is given by:

ht5H2xttan ðb2Þ1xttan ðb1Þ (19)

Replacing x and h in equation (18) by xt and htand inserting equation (19) into (18) yield:

H2xttan ðb2Þ1
aQf

Ktan ðb1Þ
ln 11

Ktan ðb1Þ H2xttan ðb2Þ1xttan ðb1Þð Þ
2aQf

� �
50 (20)

xt can be determined based on equation (20) using the Newton-Raphson method.

The analytical solutions for seawater intrusion in confined aquifers with a constant-flux boundary condition
and various conditions of b1 and b2 are listed in Table 1.

3.2. Confined Aquifer With A Constant-Head Inland Boundary Condition
Alternatively, the hydraulic head at a distance of L from the coastline (i.e.,HL) may be available,
while the freshwater flux from inland (i.e.,Qf ) is unknown. The analytical solution for the constant-
head inland boundary condition can be developed by deriving the relationship between the inland
freshwater flux and hydraulic head and using the analytical solution of the constant-flux boundary
condition.

Based on the Dupuit-Forchheimer approximation, the freshwater discharge in the aquifer section between
the inland boundary and the interface tip (i.e., the freshwater zone) follows:

Qf 52K H1ðtan ðb1Þ2tan ðb2ÞÞxð Þ du
dx

(21)

If b15b2, equation (21) is simplified as:

Qf 52KH
du
dx

(22)

Integrating equation (22) yields:

u52
Qf

KH
x1C3 (23)

The integration constant C3 can be determined using the inland boundary condition (i.e., x5L, u5HL):
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C35
Qf

KH
L1HL (24)

Equation (23) is then expressed as:

u52
Qf

KH
ðx2LÞ1HL (25)

At the interface tip, we have:

x5xt; u5ut5
11a

a
Hs2xttan ðb2Þð Þ1xttan ðb2Þ (26)

Substitution of equation (26) into (25) yields:

11a
a

Hs2xttan ðb2Þð Þ1xttan ðb2Þ52
Qf

KH
ðxt2LÞ1HL (27)

Thus, Qf can be expressed as:

Qf 52
KH
ðxt2LÞ

11a
a

Hs2xttan ðb2Þð Þ1xttan ðb2Þ2HL

� �
(28)

If b1 6¼ b2, equation (21) can be integrated as:

u52
Qf

Kðtan ðb1Þ2tan ðb2ÞÞ
ln H1ðtan ðb1Þ2tan ðb2ÞÞx½ �1C4 (29)

The integration constant C4 can be determined using the inland boundary condition:

C45
Qf

Kðtan ðb1Þ2tan ðb2ÞÞ
ln H1ðtan ðb1Þ2tan ðb2ÞÞL½ �1HL (30)

Thus, equation (29) is expressed as:

u52
Qf

Kðtan ðb1Þ2tan ðb2ÞÞ
ln

H1ðtan ðb1Þ2tan ðb2ÞÞx
H1ðtan ðb1Þ2tan ðb2ÞÞL

� �
1HL (31)

The validity of equation (31) requires the logarithm of a positive real number, resulting in that
L < 2 H

ðtan ðb1Þ2tan ðb2ÞÞ
when tan ðb1Þ2tan ðb2Þ < 0. Applying the boundary condition at the interface tip and

substituting equation (26) into (31) yield:

11a
a

Hs2xttan ðb2Þð Þ1xttan ðb2Þ52
Qf

Kðtan ðb1Þ2tan ðb2ÞÞ
ln

H1ðtan ðb1Þ2tan ðb2ÞÞxt

H1ðtan ðb1Þ2tan ðb2ÞÞL

� �
1HL (32)

Rearrangement of equation (32) gives:

Qf 5
2K tan ðb1Þ2tan ðb2Þð Þ 11a

a Hs2
tan ðb2Þ

a xt2HL

h i
ln H1ðtan ðb1Þ2tan ðb2ÞÞxt

H1ðtan ðb1Þ2tan ðb2ÞÞL

h i (33)

Equation (28) or (33) can be used in conjunction with the solution of the constant-flux inland boundary
condition (i.e., equation (13) or (20)) to determine xt and Qf for the constant-head inland boundary condi-
tion using the trial-and-error method. Subsequently, the interface location can be derived using
equation (9) or (18).

Table 1. Analytical Solutions of Seawater Intrusion in Confined Aquifers With a Constant-Flux Boundary Condition

b1 b2 Interface Tip Location Interface Location

0
0 xt5

KH2

22aQf
x5 K

2aQf

h2

2

6¼ 0
xt5

2ðaQf 2HKtan ðb2ÞÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 Q2

f 22HKaQf tan ðb2Þ
p

tan 2ðb2ÞK

6¼ 0
0

H2xt tan ðb2Þ1 aQf
Ktan ðb1Þ

ln 11
Ktan ðb1Þ H2xt tan ðb2Þ1xt tan ðb1Þð Þ

2aQf

h i
50 h1 aQf

Ktan ðb1Þ
ln 11

Khtan ðb1Þ
2aQf

h i
5xtan ðb1Þ6¼ 0
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3.3. Unconfined Aquifer With A Constant-Flux Inland Boundary Condition
Similarly, the freshwater discharge can be determined for the unconfined aquifer based on the Dupuit-
Forchheimer approximation:

Qf 2ðL2xÞN52Kh
du
dx

(34)

For the interface zone, the relation between h and u is given by the Ghyben-Herzberg relation:

h5ð11aÞðu2HsÞ (35)

Inserting equation (35) into (34) and integrating the equation give:

Qf x2NLx1N
x2

2
1C552ð11aÞK u2Hsð Þ2

2
(36)

in which C5 is the integration constant and equal to zero, determined by the coastal boundary condition
(i.e., x50, u5Hs). The relation between u and hs is given by:

hs5aðu2HsÞ (37)

Combining equations (36) and (37) and eliminating u produce:

Qf x2NLx1N
x2

2
52ð11aÞK h2

s

2a2
(38)

Equation (38) can be applied to determine the interface toe location. As indicated, the shape of the inter-
face is independent of the geometry of the aquifer bed. The reason for this phenomenon is that the hydrau-
lic head at the interface is determined by the coastal boundary, so the shape of the bed below the interface
is in no relation to the interface position. At the interface tip, we have:

x5xt; u5ut5
11a

a
Hs2xttan ðbÞð Þ1xttan ðbÞ (39)

The location of the interface tip is obtained by inserting equation (39) into (36):

Qf xt2NLxt1N
x2

t

2
52ð11aÞK

1
a Hs2xttan ðbÞð Þ
	 
2

2
(40)

Rearrangement of equation (40) yields:

N1
ð11aÞ

a2
Ktan 2ðbÞ

� �
x2

t 12 Qf 2NL2
ð11aÞ

a2
KHstan ðbÞ

� �
xt1
ð11aÞ

a2
KH2

s 50 (41)

Equation (40) is essentially the same as equation ((26)b) in Koussis et al. [2012]. Note that the x axis in Koussis
et al. [2012] is along the aquifer bed. In addition, Koussis et al. [2012] considered an additional term of a line
sink in their equation. The line sink can be readily included in our conceptual model as well as in the equa-
tion above. To solve equation (41), we let:

a5N1
ð11aÞ

a2 Ktan 2ðbÞ (42a)

b52 Qf 2NL2
ð11aÞ

a2
KHstan ðbÞ

� �
(42b)

c5
ð11aÞ

a2
KH2

s (42c)

If a50, N and tan ðbÞ must equal to zero. The simplified case is exactly the same as that in Strack [1976].
Under such a scenario, the solution is given by:

xt52
ð11aÞ

a2

KH2
s

2Qf
(43)

Equation (43) is exactly the same as that previously developed by Strack [1976].
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If a 6¼ 0, the solutions of equation (41) are expressed by:

xt5
2b6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b224ac
p

2a
(44)

The existence of real roots requires that b224ac � 0. As indicated by Koussis et al. [2012], only the negative
square root term is physically meaningful, since xt increases with increasing Hs and K but with decreasing 2

Qf and N. Moreover, a maximum value of xt occurs when b224ac50:

xmax
t 5

Hs

a
ð11aÞK½ �1=2 N1

ð11aÞ
a2

Ktan 2ðbÞ
� �21=2

(45)

Equation (45) is essentially the same as equation (28) in Koussis et al. [2012]. If we assume N50,
b224ac54Q2

f 28 ð11aÞ
a2 KHsQf tan ðbÞ. Since Qf is negative, tan ðbÞ must be negative such that b224ac can be

equal to zero. Then, equation (45) is simplified to:

xmax
t 52

Hs

tan ðbÞ (46)

Equation (46) is similar to equation (14). The difference between two equations is that the numerator in
equation (14) is H, while in equation (46) it is Hs.

3.4. Unconfined Aquifer With A Constant-Head Inland Boundary Condition
To develop analytical solutions for the unconfined sloping aquifer with a constant-head inland boundary
condition, again one only needs to derive the relationship between the inland hydraulic head and freshwa-
ter discharge, given the availability of the solutions for the constant-flux inland boundary condition. The
freshwater discharge is given by equation (34). For the aquifer between the inland boundary and the inter-
face tip, h is expressed by:

h5u2xtan ðbÞ (47)

Taking the first-order derivative of h with respect to x:

dh
dx

5
du
dx

2tan ðbÞ (48)

Substitution of equation (48) into (34) gives:

h
dh
dx

1htan ðbÞ1 Qf 2N L2xð Þ
K

50 (49)

The solution of equation (49) depends on whether N is zero or not. If N50, equation (49) can be simplified
as:

h
dh
dx

1htan ðbÞ1 Qf

K
50 (50)

If b50, the confining bed is horizontal, and the interface tip location has been derived by Lu et al. [2015]:

xt5
ð11aÞLH2

s

a2H2
L 2ð11aÞaH2

s
(51)

The solution of equation (50) for the condition of b 6¼ 0 is expressed by:

h2
Qf

Ktan ðbÞ ln 2Khtan ðbÞ2Qf½ �52xtan ðbÞ1C6 (52)

The integration constant C6 can be determined using the inland boundary condition (i.e., x5L,
h5HL2Ltan ðbÞ):

C65HL2
Qf

Ktan ðbÞ ln 2KðHL2Ltan ðbÞÞtan ðbÞ2Qf½ � (53)

Thus, equation (52) is expressed as:

Water Resources Research 10.1002/2016WR019101

LU ET AL. SEAWATER INTRUSION IN SLOPING COASTAL AQUIFERS 6996



h52xtan ðbÞ1HL1
Qf

Ktan ðbÞ ln
2Khtan ðbÞ2Qf

2KðHL2Ltan ðbÞÞtan ðbÞ2Qf

� �
(54)

Applying the boundary condition at the interface tip (i.e., x5xt , h5ut2xttan ðbÞ) to equation (54) gives:

ut5HL1
Qf

Ktan ðbÞ ln
2Kðut2xttan ðbÞÞtan ðbÞ2Qf

2KðHL2Ltan ðbÞÞtan ðbÞ2Qf

� �
(55)

in which ut5
11a

a Hs2xttan ðbÞð Þ1xttan ðbÞ. Equation (55) is an implicit equation for Qf , while Qf in equation
(40) can be explicitly expressed. Thus, Qf in equation (55) can be replaced by the analytical expression
based on equation (40), resulting in an equation that only involves an unknown parameter of xt . Then, xt

can be determined numerically using the Newton-Raphson method. Moreover, the validity of equation (55)
requires that L > HL

tan ðbÞ1
Qf

Ktan 2ðbÞ if tan ðbÞ > 0.

The steady state analytical solution for groundwater flow in a sloping unconfined aquifer recharged by a
uniform infiltration has been developed independently by Chapuis [2002] and Lo�aiciga [2005]. The method
used here is similar to that employed by Chapuis [2002]. If N 6¼ 0, we let:

Y5h (56)

X5
Qf 2N L2xð Þð Þ

K

ffiffiffiffi
K
N

r
(57)

Equation (49) can be rewritten as:

Y
dY
dX

1rY1X50 (58)

in which r5tan ðbÞ
ffiffiffi
K
N

q
. It has been shown that the solution of equation (58) depends on the absolute value

of r [Chapuis, 2002; Lo�aiciga, 2005]:

ðX6YÞe X
X6Y 5C7; jrj52

ln jY21rXY1X2j2 2rffiffiffiffiffiffiffiffiffiffiffi
42r2
p arctan

 
2Y1rX

X
ffiffiffiffiffiffiffiffiffiffiffi
42r2
p

!
5C7; jrj < 2

jY2kXjk5C7jY2lXjl; jrj > 2

8>>>>><
>>>>>:

(59)

in which C7 is a constant, and k and l are expressed as:

k; l52
r
2

6

ffiffiffiffiffiffiffiffiffiffiffi
r224
p

2
(60)

The constant C7 can be obtained based on the boundary condition at the interface tip (i.e.,

Xt5
Qf 2N L2xtð Þð Þ

K

ffiffiffi
K
N

q
, Yt5

11a
a Hs2xttan ðbÞð Þ):

C75ðXt6YtÞe
Xt

Xt 6Yt ; jrj52

C75ln jYt
21rXt Yt1Xt

2j2 2rffiffiffiffiffiffiffiffiffiffiffi
42r2
p arctan

 
2Yt1rXt

Xt

ffiffiffiffiffiffiffiffiffiffiffi
42r2
p

!
; jrj < 2

C75
jYt2kXtjk

jYt2lXtjl
; jrj > 2

8>>>>>>>><
>>>>>>>>:

(61)

Thus, equation (59) becomes:

ðX6YÞe X
X6Y 2ðXt6YtÞe

Xt
Xt 6Yt 50; jrj52

ln

"
jY21rXY1X2j
jYt

21rXtYt1Xt
2j

#
2

2rffiffiffiffiffiffiffiffiffiffiffi
42r2
p

"
arctan

 
2Y1rX

X
ffiffiffiffiffiffiffiffiffiffiffi
42r2
p

!
2arctan

 
2Yt1rXt

Xt

ffiffiffiffiffiffiffiffiffiffiffi
42r2
p

!#
50; jrj < 2

jY2kXjkjYt2lXtjl2jYt2kXtjkjY2lXjl50; jrj > 2

8>>>>>><
>>>>>>:

(62)

In addition, we have the following inland boundary condition:
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XL5
Qfffiffiffiffiffiffi
KN
p ; YL5HL2Ltan b; (63)

Then, the interface tip location can be derived based on the equation below:

ðXL6YLÞe
XL

XL6YL 2ðXt6YtÞe
Xt

Xt 6Yt 50; jrj52

ln

"
jYL

21rXLYL1XL
2j

jYt
21rXt Yt1Xt

2j

#
2

2rffiffiffiffiffiffiffiffiffiffiffi
42r2
p

"
arctan

 
2YL1rXL

XL

ffiffiffiffiffiffiffiffiffiffiffi
42r2
p

!
2arctan

 
2Yt1rXt

Xt

ffiffiffiffiffiffiffiffiffiffiffi
42r2
p

!#
50; jrj < 2

jYL2kXLjkjYt2lXtjl2jYt2kXtjkjYL2lXLjl50; jrj > 2

8>>>>><
>>>>>:

(64)

Since the equations presented here are for the constant-head inland boundary condition, Qf and xt are
unknown. The two parameters can be solved by combing equations (44) and (64) using the standard meth-
ods for nonlinear equations.

3.5. Correction Factor
Analytical solutions derived above are based on the assumption of the sharp interface. In other words, the
dispersive mixing between freshwater and seawater is neglected. This assumption usually leads to a signifi-
cant difference between analytical solutions and corresponding variable-density flow numerical solutions.
To overcome this issue, Pool and Carrera [2011] introduced an empirical factor on the density factor:

a05a 12
aT

B

� �1=6
� �21

(65)

in which aT is the transverse dispersivity, and B is the aquifer thickness. Later, Lu and Werner [2013] found
that the exponential of 1/6 should be replaced by 1/4 for better locating the interface toe. As such, we mod-
ify equation (65) as:

a05a 12
aT

B

� �1=4
� �21

(66)

Since the thickness of the sloping aquifers is nonuniform, we assume that B5H for confined aquifers and
B5Hs for unconfined aquifers. We select the aquifer thickness at the coastal boundary instead of the mean
aquifer thickness, because the shape of the interface is not controlled bytan ðb2Þ for a flux-controlled coastal
system, as shown by the solutions above.

4. Examples

4.1. Confined Aquifers
We first consider confined aquifers with a constant-flux inland boundary condition. The two confining beds
may be inclined. The data are given below.

Figure 2. (a) Interface tip locations and (b) inland hydraulic heads in a confined aquifer with a constant-flux inland boundary condition
(Qf 5 20.3 m2/d) for different combinations of tan ðb1Þ and tan ðb2Þ between 20.01 and 0.01.
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H530m; K510m=d; a540; Qf 520:3m2=d; Hs540m; (67)

In addition, we assume that tan ðb1Þ and tan ðb2Þare varied between 20.01 and 0.01, corresponding to
anglesb1 and b2 between 20.578 and 0.578, respectively.

Figure 2 shows the interface tip locations and corresponding inland hydraulic heads at L 5 1000 m for con-
fined aquifer cases with a constant-flux inland boundary condition for different combinations of tan ðb1Þ
and tan ðb2Þ. It is shown that xt is varied between 327.4 and 842.7 m, and a larger tan ðb1Þ and a smaller tan
ðb2Þ result in a larger xt . By contrast, HL at L 5 1000 m is between 41.29 and 41.98 m, and a smaller tan ðb1Þ
and a higher tan ðb2Þ yield a higher HL.

Figure 3 shows the saltwater interfaces (fine lines) and bottom confining layers (coarse lines) for tan ðb1Þ5
20.01, 0, and 0.01, and tan ðb2Þ5 20.01, 0, and 0.01. Given a value oftan ðb1Þ, the interfaces for different
values of tan ðb2Þoverlap for the upper section, while tan ðb2Þ controls the interface tip location, as sug-
gested by equations (18) and (20). In comparison to a horizontal upper confining layer, a positive value of
tan ðb1Þleads to a more inland interface and a negative value a more seaward interface. Moreover, a small-
ertan ðb2Þresults in a larger difference of xt between cases with differenttan ðb1Þ, which is consistent with
the finding in Figure 2.

Then, a constant-head inland boundary condition at L 5 1000 m is fixed with HL 5 41.6 m. Figure 4 shows
the interface tip locations and corresponding inland freshwater fluxes for different combinations of tan ðb1Þ
andtan ðb2Þ. xt is between 321.5 and 490.9 m and a smaller tan ðb1Þ and tan ðb2Þ lead to a larger xt , while
the magnitude of the inland freshwater flux (i.e., 2Qf ) is between 0.18 and 0.38 m2/d, increasing with a larg-
er tan ðb1Þ and a smaller tan ðb2Þ.

Figure 4. (a) Interface tip locations and (b) the inland freshwater fluxes in a confined aquifer with a constant-head inland boundary condition (HL 5 41.6 m) for different combinations of
tan ðb1Þ and tan ðb2Þ between 20.01 and 0.01.

Figure 3. Interface toes (solid lines) and bottom aquifer beds (dashed lines) fortan ðb1Þ5 20.01, 0, and 0.01, and tan ðb2Þ5 20.01, 0, and 0.01.
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4.2. Unconfined Aquifers
Unconfined aquifers are considered with the following data:

Hs540m; K510m=d; a540; N5200mm=yr; L51000m; (68)

Here, we assume that tan ðbÞ varies between 20.02 and 0.02 (corresponding to angles between 21.158 and
1.158) such that jrj can be larger, equal to, or less than 2.

Figure 5 shows the values of r, interface tip locations, and inland hydraulic heads for different tan ðbÞ and
Qf 5 20.2, 20.3, and 20.4 m2/d (i.e., a constant-flux inland boundary condition). As shown in Figure 5a, this
range of tan ðbÞ leads to the value of r between 22.7 and 2.7. Therefore, different equations in equation
(64) apply when deriving the relationship between the inland hydraulic head and freshwater flux. When
Qf 5 20.2 m2/d, for example, xt is between 233.8 and 577 m and decreases with increasingtan ðbÞ(see
Figure 5b). It is not surprising that a larger magnitude of the inland freshwater flux results in a smaller xt but
a larger HL (see Figures 5b and 5c).

Figure 6 shows the values of r, interface tip locations, and inland freshwater fluxes for different tan ðbÞ with
HL 5 41.5, 42, and 42.5 m (i.e., a constant-head inland boundary condition). When HL 5 41.5 m, xt is between
281.2 and 635.6 m and decreases with increasing tan ðbÞ(see Figure 6b). The effect of tan ðbÞ on xt is less
significant for a larger HL. For example, when HL 5 42.5 m, xt decreases by only about 15 m as tan ðbÞ
increases from 20.02 to 0.02. On the other hand, a larger HL results in a larger Qf (see Figure 6c). For the
demonstration purpose, the saltwater interfaces in a sloping unconfined aquifer (tan(b) 560:02) with
HL 5 41.5, 42, and 42.5 m are shown in Figure 7. It is clearly shown that tan(b) controls the location of the
interface tip.

Figure 5. Values of (a) r, (b) xt, and (c) HL for different values of tan(b) and Qf 5 20.2, 20.3, and 20.4 m2/d.

Figure 6. Values of (a) r, (b) xt, and (c) –Qf for different values of tan(b) and HL 5 41.5, 42, and 42.5 m.

Water Resources Research 10.1002/2016WR019101

LU ET AL. SEAWATER INTRUSION IN SLOPING COASTAL AQUIFERS 7000



5. Comparison Between Analytical and Numerical Solutions

To validate analytical solutions developed, we compare them with numerical solutions based on SEAWAT
[Langevin and Guo, 2006]. The length of the grid in the numerical model is uniformly set to 1 m, while the
height of the grid is varied between 0.25 and 0.3 m to produce a sloping aquifer. For all cases, the longitudi-
nal dispersivity and transverse dispersivity are assumed to be 1 and 0.1 m, respectively. The parameter
values for confined aquifers are assumed exactly the same as those in equation (67), while for
unconfined aquifers parameter values in equation (68) together with Qf 5 20.25 m2/d are employed. More-
over, tan ðb1Þ50:01 and tan ðb2Þ5 20.1 and 0.1 are assumed for two confined aquifers, while tan ðbÞ5
20.1 and 0.1 is taken for two unconfined aquifers.

Figure 8 shows the comparison between analytical and numerical solutions for both confined and uncon-
fined aquifer cases. Clearly, the corrected analytical solutions match well with 50% seawater concentration
contourlines for all cases. By contrast, a significant difference between the two types of solutions exists if
the dispersive mixing effects are not considered in the analytical solutions. In particular, this difference is
more pronounced in cases with a negative slope of the bottom confining layer. The benefit of using analyti-
cal solutions is obvious in terms of computation time. The time taken for a typical case using variable-

Figure 7. Saltwater interfaces in a sloping unconfined aquifer with HL 5 41.5, 42, and 42.5 m: (a) tan(b) 5 20.02 and (b) tan(b) 5 0.02.

Figure 8. Comparison between analytical solutions and numerical solutions: (a) confined aquifer (tan ðb1Þ50:01 and tan ðb1Þ520:01), (b)
confined aquifer (tan ðb1Þ50:01 and tan ðb1Þ50:01), (c) unconfined aquifer (tan ðbÞ50:01), and (d) unconfined aquifer (tan ðbÞ520:01).
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density flow numerical modelling is in order of hours, while less than 1 min is needed by adopting devel-
oped analytical solutions.

6. Conclusions

We have derived steady state sharp-interface analytical solutions for seawater intrusion in sloping confined
and unconfined aquifers. The method is based on the Dupuit-Forchheimer approximation and sharp-
interface assumption. Analytical solutions for the constant-flux inland boundary condition are developed by
solving the discharge equation for the interface zone with the continuity conditions of head and flux
applied at the interface between the freshwater zone and the interface zone. Analytical solutions for the
constant-head inland boundary condition are developed by deriving the relationship between the inland
freshwater flux and hydraulic head and combining this relationship with analytical solutions of the
constant-flux inland boundary condition. Based on the developed solutions, we have the following findings:

1. For confined aquifers with a constant-flux inland boundary condition, the solutions of the saltwater inter-
face are different for b150 and b1 6¼ 0, but not a function of b2. Given a value ofb1, b2 determines the
location of the interface tip. The relationship between the inland hydraulic head and freshwater flux
depends on whether b1 is equal to b2 or not.

2. For unconfined aquifers with a constant-flux inland boundary condition, the solution of saltwater inter-
face is independent of b, while b only controls the location of the interface tip. The relationship between
the inland hydraulic head and freshwater flux relies on whether jrj5jtan ðbÞj

ffiffiffi
K
N

q
is larger, equal to, or less

than 2.

In summary, it can be inferred that the interface tip location can be determined for the aquifer with a
known inland freshwater flux and an arbitrary geometrical bottom confining boundary. The hydraulic head
at the interface is physically controlled by the coastal boundary, so the shape of the bed below the interface
is irrelevant to the interface position. Moreover, a good agreement between analytical solutions with a cor-
rection factor and numerical solutions of a variable-density flow model is obtained. Analytical solutions
developed in this study are expected to provide a powerful tool for assessment of seawater intrusion
changes in sloping coastal aquifers in response to various hydrological stresses such as variations in infiltra-
tion or/and sea level rise.

Appendix A: Derivation of Equation (2)

The Ghyben-Herzberg relation gives:

1
a

5
u2Hs

hs
(A1)

Thus, hs can be expressed as:

hs5a u2Hsð Þ (A2)

The vertical thickness of the freshwater lens (h) in the interface zone is determined by:

h5hs2 Hs2H2xtan ðb1Þ½ � (A3)

Combining equations (A2) and (A3) yields:

h5a u2Hsð Þ2 Hs2H2xtan ðb1Þ½ � (A4)
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