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Abstract
Wepropose and analyse a scheme for single-rail-encoded arbitrarymulti-qubit quantum-state
generation to provide a versatile tool for quantumoptics and quantum information applications. Our
scheme can be realised, for small numbers of qubits, with current technologies using single photon
inputs, passive linear optics, and heraldingmeasurements. The particular examples of two- and three-
qubit cluster states are studied in detail.We show that such states can be preparedwith a high
probability of success. Our analysis quantifies the effects of experimentally relevant imperfections and
inefficiencies. The general case of arbitraryN-qubit preparation is discussed and some interesting
connections to the boson sampling problem are given.

1. Introduction

An activefield of research in quantumoptics and quantum information is the development of techniques for
producing arbitrary quantum states of different physical systems. This is by virtue of the broad range of
applications including quantum computation and communication [1, 2], quantum simulation [3], and
quantummetrology [4], that each need different specific quantum states as a resource.

Light is a key quantum systemwhich can be interfacedwith a variety of other individual quantum systems
[5–7]. There are particular states, e.g.,W-states [8], GHZ-states [9], and cluster states [10, 11], which are of great
importance formany protocols, and it is anticipated that the exploration of othermultimode states will also be
promising. Thus, having a single easily reconfigurable device [12]which prepares arbitrarymultimode quantum
states would provide considerable versatility for numerous applications. Towards this goal, a number of
theoretical and experimental studies have been performed concerning the preparation of arbitrary single-mode
[13–15] aswell as arbitrarymultimode quantum states [16–18]. It is usually the case that universal schemes
possess a high degree of complexity due to their extremely large number of degrees of freedom, even for a small
number ofmodes, whichmakes them impractical without some restrictions. A feasible approach to this
problem can be taken if we restrict the dimensionality of each outputmode to two. In other words, we restrict
ourselves to arbitrarymulti-qubit state generation. Regarding the cost of the scheme, wewill be utilising passive
linear transformations; avoiding any active elements, which in turnmeans to only use beam splitters and phase
shifters, andwe allowmeasurements on some ancillary systems to introduce the required nonlinearity.

Wewould also like to encode quantumbits in the absence or presence of photons, the so-called single-rail
encoding [19]. Aswell as requiring fewer resources, such states are efficient under temporalmultiplexing [20]
and suitable for interactions withmatter quantum systems. The key goal is thus a devicewhich produces
arbitrary single-railmulti-qubit resource states for a variety of quantum tasks. Importantly, wewant to prepare
the target state by heralding viameasurements of the ancillae andwithout postselection. To the best of authors’
knowledge, our scheme is thefirst of this kindwhich provides all of the propertiesmentioned above.

In the present contribution, we introduce and analyse a universal scheme for generation of arbitrarymulti-
qubit quantum states in a single-rail encoding using passive linear optics and heraldingmeasurements. Our
schememakes use ofN single-photon input states.We extract part of their amplitude using beam splitters and
inject it into a unitary network of sizeM(N). The other ports of the unitarywill receiveK ancillary single-photon
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inputs and - -M N K ancillary vacuum inputs, while therewill be L projections onto single-qubits andM – L
vacuummeasurements at the output.We showour scheme is universal and give particular examples of two- and
three-qubit cluster states as target states, a class of states known to be very hard to prepare in single-rail encoding.
We show that our scheme delivers a high probability of success, for lownumbers of photons, even compared to
non-universal schemeswhere there exists a fairly comparable strategy.We also analyse the effects of loss and
imperfections. Our scheme is experimentally feasible for a small number of photons using current technology.
Moreover, we study the general case ofN-qubit generation and give interesting connections to the boson
sampling problem [21]. Themethod presented here is equally applicable to other bosonic systems, e.g. spin
ensembles [23] and optomechanics [22] bymaking use of light–matter beam splitter interactions and photonic
ancillae.

2. Arbitrary two-qubit state preparation

In this sectionwe design a linear-optics scheme to generate arbitrary two-qubit target states,

y ñ = ñ + ñ + ñ + ñ∣ ∣ ∣ ∣ ∣ ( )c c c c00 01 10 11 , 1tar 00 01 10 11

with { }cij (i, j=0, 1) being complex numbers. Such a state can be for example shared between two distant
parties, Alice and Bob.

Amajor problem in any such a device thenwould be the suppression of the two-photon terms ñ∣02 and ñ∣20
due toHong–Ou–Mandel effect. It has been shown thatwithout relying onmeasurements one cannot avoid
these bunching effects [24]. A simpleway to circumvent this issue is by preventing the photons from exchanging
between two principalmodes from input to output, rather than using Fock basis truncations [25]; see figure 1.
Wewill show that this technique, despite its simplicity, is very effective.

Accordingly, we split the circuit into two stages: (i) an entangling projector—this could be carried out by a
third party, say Charlie, as a central stationwho sends signals to Alice and Bob on the successful events, and (ii) a
quantum pick-off; this could be done locally with the help of Alice and Bob (see figure 1). In the followingwe give
a detailed description of both stages.

2.1. Entanglingmeasurement
Firstly, let us discuss what wemean by entanglingmeasurement in our scheme.Wenote that to be able to
produce the state in(1), there is a need for independent control of the four complex coefficients { }cij (i, j=0, 1).
For themoment, we do not take into account the reduction of degrees of freedomby normalisation constraint,
because it should be possible to equate any of the coefficients with zero. This demands Charlie to realise
projectors of the form

já = á + á + á + á
+ á + á

∣ ∣ ∣ ∣ ∣
∣ ∣ ( )

d d d d

d d

00 01 10 11

02 20 , 2
00 01 10 11

02 20

such that thefirst four complex coefficients, { }dij (i, j=0, 1), are arbitrarily controllable. Notice that the need
for two-photon components arises from the use of linear optics as previously commented. Aswewill show, a

Figure 1. Scheme for two-qubit state generation. Alice and Bob split their single-photons and send it to Charlie. Hemakes an
entanglingmeasurement and remotely prepares arbitrary joint states for Alice and Bob. The blue dashed boxes refer to the optional
feed-forward correction of the outputs depending on the single-qubitmeasurements outcomes.
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ˆ ( )U 3 unitary operationwith an ancillary vacuummeasurement and two arbitrary single-qubit projectors is the
smallest unitary circuit having the capability to produce já ∣. Using a retrodictive approach, we now calculate the
projector infigure 1 just before the unitary. This is given by

 

j

a b a b

á = á

= á + Ä +

∣ ∣ ˆ ( )
∣( ) ( ) ˆ ( ) ( )

q q U

a a U

0 3

000 3 , 3

123 123 1 2

123 1 1 1 1 2 2 2 2

inwhich a bá = á +∣ ∣( )q a0i i i i i i i (i=1, 2)with a b+ =∣ ∣ ∣ ∣ 11,2
2

1,2
2 . Using the definition

= å =
ˆ ( ) ˆ ( )†

U a U u a3 3i j ij j1
3 ( =i 1, 2, 3), we now switch to theHeisenberg picture via the isomorphicmatrix

representation,

=
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( )

u u

u
u
u

U
S

3
2

4
31 32

13

23

33

inwhich

= ⎡
⎣⎢

⎤
⎦⎥( ) ( )u u

u uS 2 . 511 12

21 22

Wecall the submatrix ( )S 2 the active submatrix. Rearranging the resulting components in(3) and projecting
onto the ancillary vacuum input, ñ∣0 3, gives

já = á + á + á + á
+ á + á

∣ ∣ ∣ ∣ ∣
∣ ∣ ( )

d d d d

d d

00 01 10 11

02 20 , 6
12 12 00 12 01 12 10 12 11

12 02 12 20

inwhich

a a= ( )d , 700 1 2

 
 


a b a b
a b a b
b b

= +
= +
= ( )

d

d

d

,

,

, 8

01 1 2 2;2 2 1 1;2

10 1 2 2;1 2 1 1;1

11 2 1 12;12

 
 

b b
b b

=
= ( )

d

d

,

. 9
02 2 1 1;2 2;2

20 2 1 1;1 2;1

Here3,   ij p kl q; represents the permanent of the active submatrix, which are obtained from elements on the
intersection of rows ¼i j p, , , and columns ¼k l q, , , . Note that, permanents have cyclic symmetry, that is
 = s s s s s s   ( ) ( ) ( ) ( ) ( ) ( )ij p kl q i j p k l q; ; for any permutationσ of the index set, and  = ui j ij; trivially.

2.2. Pick-off
At the second stage, we need to chop off the extra dimensions of our entanglingmeasurement. For this, Alice and
Bob split their single-photons using two variable beamsplitters, characterised by transmissivity-reflectivity
ratios t r:1 1 and t r:2 2 (see figure 1). That is, ñ Ä ñ  ñ Ä ñ∣ ∣ ∣ ∣b b01 011A 2B 1 1A 2 2B

= ñ + ñ Ä ñ + ñ( ∣ ∣ ) ( ∣ ∣ )t r t r01 10 01 101 1A 1 1A 2 2B 2 2B upon beamsplitter transformation

= - +ˆ ( ) ˆ ( )† † † † † † †B a a B t a r a r a t a, ,1 A 1 1 1 A 1 1 1 A . Now, Charlie applies his entangling projector on two branches he
receives fromAlice andBob, and thus the un-normalised output is4

y jñ = á ñ Ä ñ
= ñ + ñ

+ ñ + ñ

∣ ∣(∣ ∣ )
∣ ∣

∣ ∣ ( )

b b

r r d r t d

t r d t t d

00 01

10 11 , 10

out
11

12 1 1A 2 2B

1 2 11 AB 1 2 10 AB

1 2 01 AB 1 2 00 AB

inwhich + =∣ ∣ ∣ ∣t r 11,2
2

1,2
2 and { }dij (i, j=0, 1) are given by equations (7) and(8). For future reference, we

have used the superscript 11 to indicate that the inputwas ñ∣11 AB. The probability of success for getting the
desired target state is then given by the trace of output state, y y= ñá∣ ∣Pr Trtar out

11
out
11 . By comparing equation (10)

with equation (1), we canwrite down a set of nonlinear equations to be solved for all parameters, such that the
probability of success is optimised:

3
These equations result from following photons paths, e.g. in thefirst relation in equation (8), there are two contributions to d01, that is the

casewhen a single photon is input into port two and no photons into port one: (i) either a photon is detected at the outputmode twowith
probability amplitude of b2 coming frommode twowith a transition probability amplitude of 2;2, (ii) or a photon is detected at the output
mode onewith probability amplitude of b1 coming frommode twowith a transition probability amplitude of 1;2. Also a1,2 represent the
probability amplitudes of getting no photons in the other port.
4
This equation can also be readily interpreted. For instance, thefirst term can be thought of as the product of probability amplitudes of: (i)

both input photons are reflected from input beamsplitters, and thus directed toward entangling device, and (ii) triggering themeasurement
device upon receiving two single photons.
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There are also constraints to be satisfied by the ( )U 3 entries: (i) each rowmust be normalised, and (ii) each row
must be orthogonal to all other rows. Let us show that a ( )U 3 matrix is the smallest unitarymatrix for which the
set(11) possesses a solution under the aforementioned constraints. First, we note that c11 is uniquely determined
by d00 through a1 and a2, independent of the unitary. Therefore, we need to control three amplitudes and only
three phases using the unitary. Second, notice that thematrix ( )U 3 in equation (4) has six free parameters, three
amplitudes and three phases. Also, one should note that one of the phases is global which could determine the
relative phase between ñ∣11 and the other components. However, this can be also absorbed into the phase of a1,2.
As a result, only two phases are sufficient. Nevertheless, due to the fact that three free amplitudes are required,
the smallestmatrix would be that of a ( )U 3 . In appendix A, we have shown that the set of equations (11) indeed
possesses a solutionwhen there are three complex variables available. In the next sections wewill first describe
how it is possible to perform single-qubit projections, and thenwe demonstrate our solution strategy to these
equations through an example.

2.3. Single-qubit projectors
In the scheme already discussed, two arbitrary single-qubit projectors at the output of the unitary network play
crucial roles. For instance, their coefficient directly determine the coefficient of ñ∣11 component; see e.g.
equations (7) and(10). Herewe describe how thesemeasurements can be realised and discuss the associated
heralding probabilities.

First, let us propose a simpleway of implementing our arbitrary single-qubit projector. In this proposal, a
coherent state añ∣ 4 hits a beamsplitter of trasmissivity-reflectivity t r: ; see figure 2. For simplicity, we are
assuming both trasmissivity and reflectivity take on real values. The output is thenmeasured by two single-

photon counters. The beamsplitter transformation is assumed to be = - +ˆ ( ) ˆ ( )† † † † † † †B a a B ta ra ra ta, ,1 4 1 4 1 4

with + =t r 12 2 , thus, the resulting projector can be calculated as

a aá = á ñ = á + á- a
∣ ∣ ˆ∣ ( ∣ ∣ ) ( )

∣ ∣
q B r t10 e 0 1 . 121 14 4 1 1

2

2

Choosing a = 1can generate any single-qubitmeasurement with probability of -e 1, while the phases can be
implemented via some phase shifts on beamsplitter.

The -e 1overhead from this scheme is entirely due to the exponential prefactor which originates from the use
of a coherent state input. This overhead could be eliminated if the state were confined to the lowest two Fock
basis states. Therefore, inspired by thework of Ralph et al [26]which proposes the use of real-time adaptive

Figure 2.The scheme for probabilistic projection onto a single-qubit basis using a beam splitter, a coherent state input, and two single-
photon counters.
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detection of phase from [27] to deterministically prepare superposition states of zero and one photon, we propose
the following. Assuming that one can deterministically prepare arbitrary single-qubit states via adaptive phase
measurement, the coherent state añ∣ 4 is replaced by a single-qubit state b añ + ñ∣ ∣0 14 4 and the beamsplitter is
beingfixed to be balanced. At the output, there are three possible events containing different combinations of
zero and one clicks: ( )1, 0 , ( )0, 1 , and F (the failure event). Considering the ( )1, 0 event, using a retrodictive
approach, we find

b a a bá = á ñ + ñ = á + á∣ ∣ ˆ ( ∣ ∣ ) ( ∣ ∣ ) ( )q B10 0 1
1

2
0 1 , 131 14 4 4 1 1

This is half of the desired event, in the sense that if we inject the correct state ñ∣q 1 into the device, only half of the
times it will pop-up the occurrence of the event. There are, however, two other possible events: F, the total failure
event, and ( )0, 1 . The latter is of particular interest as wewill see shortly. If we get the event ( )0, 1 instead of
( )1, 0 , we have

b a a bá = á ñ + ñ = á - á˜∣ ∣ ˆ ( ∣ ∣ ) ( ∣ ∣ ) ( )q B01 0 1
1

2
0 1 . 141 14 4 4 1 1

In the following, we show that one could correct the output state simply by feed-forwarding two extra classical
bits to the principal outputmodes. Notably, in general, the two positive operator-valued-measure elements
P = ñ á∣ ∣( ) q q1

1 and P = ñ á∣ ˜ ˜∣( ) q q2
1 are not orthogonal. The failure event is also given

as « P = - P - P( ) ( ) ( )F 0 1 2 .
Note that the event space of the clicks for our two-qubit scheme is nine fold: P º P Ä P{ }( ) ( ) ( )i j i j,

( =i j, 0, 1, 2), and only one of them is the desired click, namely P( )1,1 , corresponding to two ( )0, 1 events of the
form(13) and resulting the projection já ∣ 212 of equation (6). Importantly, the factor of 1/2 causes the overall
probability of success to reduce by a factor of 4with respect to the ideal case.

Now, suppose that we get the invert event P( )2,2 . In view of equation (14), this will result in two phase shifts of
π in b1,2 and thus, according to equations (7),(8), and(10), nothing is changed except the two coefficients d01
and d10 which pick up an extra phase ofπ. Evidently, the invert output occurs with exactly the same probability
of success as the desired one.Moreover, wemay correct the invert output by feed-forwarding the outcome to
apply two local phase shifts to the principalmodes; see equation (10). Such phase shifts will change the sign of the
coefficients of ñ∣01 and ñ∣10 terms leaving the ñ∣11 component intact.

Wemay ask howmuch does the correction improve the overall probability of success? To answer, we note
the probability of success of invert event to be the same as desired event. This implies that taking into account the
possibility of feed-forward correction doubles the overall probability of success, and decreases its reduction due
to nondeterministicmeasurements to a factor of 2with respect to the ideal case.

2.4. Example: a cluster state
Let us consider the example of preparing the state,

y ñ = ñ + ñ + ñ + ñ
c

f∣ (∣ ∣ ∣ ∣ ) ( )e

2
00 01 10 e 11 , 15cl

i
i

which gives the usual two-qubit cluster state when f p= .We consider the output state(10) andwithout loss of
generality assume5 a a qe1,2 1,2

i with a Î1,2 and that b a= - Î11,2 1,2
2 .We also take t1 and t2 to be

real. Similar to equation (11), these lead to the following set of nonlinear equations
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5
Any phase difference betweenα1,2 can be absorbed into the unitary elements, as they can be represented by some phase shifters in front of

the unitary circuit.
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inwhich z q cº - , and it is constrained to

* * *

  
  

     

+ + =
+ + =

+ + =

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣

( )

1,

1,

0. 17

1;1
2

1;2
2

1;3
2

2;1
2

2;2
2

2;3
2

1;1 2;1 1;2 2;2 1;3 2;3

The success probability for this state is given by the normof the output state,

a a= ∣ ∣ ( )t tPr 4 . 18cl 1 2 1 2
2

This set of equations is a regular chain the solution of which can be obtained by solving thefirst equation for one
variable, substituting the result into the second one, and then continuing until all the variables are expressed in
terms offive variables, say  a,1;2 1,2 and t1,2. The step-by-step algorithm for numerical optimisation is given in
appendix C. The last step is to run an optimisation for the probability of success(18) over parameter ranges.We
have depicted the probability of success of the scheme for a range of relative phase  f p0 infigure 3. In
particular, the success probability at f p= is »Pr 0.088cl . Oncewe have found the optimal solution for a
particular phasef, we can use thewell-knowndecomposition by Reck et al [28] to evaluate the parameters of the
linear optical network realising ˆ ( )U 3 . For the special case of c = 0 and f p= , the resulting unitarymatrix has
been given in appendixD.

We can compare themethod used here against other schemes for achieving this particular output state. Knill
[33]wasmotivated tofind optimised probabilities for Controlled-Z rotations between optical qubits using linear
interactions and post-selection in the Fock basis. Knill’s constructions were single-rail as for the case of the
Controlled-Z rotations the single-rail operations are directly embedded in the dual-rail operations. The result of
Knill also did not have themulti-party preparationmodel that is used in this paper and hence considered
arbitrary linear ineractions between allmodes. Knill found that when f p= andwith two ancillarymodes
containing single photons the highest probability of success was »2 27 0.074. Later extensive numerical
searches confirmed thismaximal probability over a wider range of networkswithmore ancillarymodes [34].
The ability to exceed this value for the device presented here can be attributed to the lack of need to construct a
gate which operates over an entireHilbert space. The protocol here ismerely the generating of the state and
hence leaves open the possibility for probabilities exceeding that from implementations which utilise gates.

2.5. Two-qubit passive state transformation
It is of interest to ask ‘how the scheme offigure 1may transform a given two-qubit input state?’ in the first place,
our scheme is passive in the sense that there is no possibility for photon addition to any of themodes. secondly,
one cannot switch photons between the twomodes (bitflip) and this is exactly howwe prevented the photon
bunching effect in the outputmodes, i.e., the ñ∣02 and ñ∣20 components. it is straight forward to calculate the
output state similar to that of equation (10) startingwith an arbitrary two-qubit state state
y ñ = ñ + ñ + ñ + ñ∣ ∣ ∣ ∣ ∣a a a a00 01 10 11in 00 01 10 11 . It turns out that the coefficients of the output are just linear
combinations of dijʼs of equations (7)–(9). A regular chain remains as a regular chain under linear combination
of equations, and thus the resultant set always possesses a solution. thismeans that our scheme is also a universal
quantum statemodifier for a known two-qubit inputs in a passive way.Of course, startingwith an input state
within a subspace of Ä1 2 with only one or no photonsmeans an overhead in the free parameters of the
scheme. however, such redundancywill be automatically resolved via optimisation of success probability.

Figure 3.Plot of optimal success probability versus relative phase,f, of the generalised two-qubit cluster state given in equation (15)
for c = 0.
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2.6. Effect of inefficiencies and losses
Inefficiencies and losses are present in any experiment. Here, we analyse such deleterious effects, which are four
fold: (i) imperfect single photon sources, (ii) the transmission losses through channels, (iii) losses through the
unitary circuit, and (iv) inefficientmeasurements. These imperfections directly affect thefidelity of the output
state. Therefore, to simplify the analysis, wemake the following assumptions:

(i) All themeasurement devices are the same, and thus they have equal losses,

(ii) Wemodel all the losses within the unitary network via symmetric losses on all inputmodes.

(iii) All the photon sources are the same having equal purities, and,

(iv) The losses within the principal outputmodes are equal to that of entanglingmeasurement circuit.

It is known that when the losses within all output ports of a linear network are equal, one can commute the
loss with the network. In this way, using the assumptions above, wemay express all the imperfections just in
terms of imperfect photon sources, and considering all the other elements to be ideal. To justify the last
assumption, wemay think of a lossymeasurement process on the output state such that it exactly equates the loss
of entanglingmeasurement circuit.We can thereforemodel all the losses using impure input states, i.e.,

 m m= ñá + - ñá Äˆ ( ∣ ∣ ( )∣ ∣) ( )1 1 1 0 0 , 19I
2

inwhichμ is assumed to be the overall efficiency of the scheme.Now, the un-normalised output,  mˆ ( )AB , is
clearly amixture of four input combinations, ñ∣00 12, ñ∣10 12, ñ∣01 12, and ñ∣11 12.We have already calculated the
output resulting from the last input, y ñ∣ out

11 . The other threewill give

y

y

y

ñ = ñ = ñ

ñ= ñ + ñ

= ñ + ñ
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= ñ + ñ

∣ ∣ ∣

∣ ∣ ∣
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t
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11 tar

1 2
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2
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2 00 AB 2 01 AB
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1
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inwhich Prtar is the probability of success for getting the desired target state when the input states are pure single
photons. Using the expressions in equation (20) it is straight forward to evaluate the success probability as

m y m
m m m m

ñ =
= + - + -

( ∣ ) ˆ ( )
[ ( ) ( ) ] ( )A B
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Pr 1 1 , 21
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2 2
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This result demonstrates the fact that, having imperfections, the heralding probability strongly depends on the
target state aswell as losses. In a similar way, one can calculate the fidelity of the output state as


m y

y m y
m

m m m m
m m m m

ñ =
á ñ

=
+ - + -
+ - + -

( ∣ ) ∣ ˆ ( )∣
( )

( ) ( )
( ) ( )

( )

F

C D

A B

,
Pr

1 1

1 1
, 23

tar
tar AB tar

tar

2 2

2 2

inwhich
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=
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∣ ∣
∣ ∣ ∣ ∣ ( )

C c c
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,

. 24

00 11
2

11 10 01 00
2

11 01 10 00
2

Expanding thefidelity around one, wefind the rate at which it decays as

m
m y ñ = -m=( ∣ )∣ ( )F B D

d

d
, , 25tar 1
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or, equivalently, for nearly perfect efficiency (m  1)

m y mñ » - - -( ∣ ) ( )( ) ( )F B D, 1 1 . 26tar

For the example of a cluster stateD=0 and thus, this rate is given by

m
m y ñ = +m=( ∣ )∣ ( )F

t t

d

d
,

1 1
. 27cl 1

1
2

2
2

Wewould like to additionally comment here that other errors due to the temporal and spectralmismatches
of the input single photons could exist. Awidely used technique tominimise such imperfections is to use the
single-photon generation recipes with high spectral purity fromdown-conversion sources [29–31]. In addition,
such impurities can always be further reduced by including spectralfilters at the cost of reduced heralding
rates [32].

3. Arbitrary three-qubit state preparation

A similar strategy as the previous section can be taken to generate arbitrary three-qubit states.We take three
single-photon input states, split them andmake an entanglingmeasurement. The scheme thuswould consist of
a ( )U 6 matrix instead of ( )U 3 as described in appendix B, injection of three single photons and three ancillary
vacua into the circuit, three arbitrary single-qubit and three vacuummeasurements (seefigure 4).

After repeating the process, wefind the projector

já = á + á + á
+ á + á + á
+ á + á
+

∣ ∣ ∣ ∣
∣ ∣ ∣
∣ ∣ ( )

d d d

d d d

d d

000 100 010

001 110 101

011 111

terms containing two or three photons

in either of modes,

28

123 123 000 123 100 123 010

123 001 123 110 123 101

123 011 123 111

inwhich

  
  
  
  
  
  


a a a
a a b a a b a a b
a a b a a b a a b
a a b a a b a a b
a b b a b b a b b
a b b a b b a b b
a b b a b b a b b
b b b

=
= + +
= + +
= + +
= + +
= + +
= + +
= ( )

d
d

d

d

d

d

d

d . 29

000 1 2 3

100 2 3 1 1;1 1 3 2 2;1 1 2 3 3;1

010 2 3 1 1;2 1 3 2 2;2 1 2 3 3;2

001 2 3 1 1;3 1 3 2 2;3 1 2 3 3;3

110 1 2 3 23;12 2 1 3 13;12 3 1 2 12;12

101 1 2 3 23;13 2 1 3 13;13 3 1 2 12;13

011 1 2 3 23;23 2 1 3 13;23 3 1 2 12;23

111 1 2 3 123;123

As an example, we have determined the optimal probability of success for generation of a generalised
Greenberger–Horne–Zeilinger (GHZ) state,

Figure 4.The scheme for universal three-qubit state generation. This time, Charlie uses a ( )U 6 to perform the entangling
measurement.
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y ñ = ñ + ñf∣ (∣ ∣ ) ( )1

2
000 e 111 , 30GHZ

i

to be »Pr 0.0024GHZ . Clearly, the probability of preparing such a state is independent of the phase valuef, since
it can be obtained by a localf-phase shift of one of the bits at the output.

In parallel with discussions of section 2.3, wemay represent events as P º P Ä P Ä P{ }( ) ( ) ( ) ( )i j k i j k, ,

( =i j k, , 0, 1, 2). For this scheme aswell, all the arguments of section 2.3 hold such thatwemay improve the
heralding probability by a factor of 2, if we take into account not only the event P( )1,1,1 , but also the invert event
P( )2,2,2 . From equations (28) and(29), it is evident that wemay correct the output just by feed-forwarding three
extra classical bits and operating locally on the principal outputmodes by phase shifters of angleπ.

A second important thing to note is that, as we can see, all the permanents of the active submatrix of ( )U 6
appear in the expressions for the coefficients of the projector. In the next section, wewill show that this is
generally true for arbitrary large number of qubits.We also discuss the implication of this pattern about the
scalability of our scheme, andwewill see that this puts strong limitations on anymeasurement based scheme.

The non-deterministic remote state preparation of a single-rail GHZ state using linear optics and post-
selection does not appear to have been proposed before. Though the generation probability here is low, to the
best of authors’ knowledge, there is no other schemeswithwhich to fairly compare it to.

4.Multi-qubit Scaling

Aswe promised, in this sectionwe show that ourmethod can be generalised to prepare arbitraryN-qubit states.
Thus, from an architectural point of view, everything seem to befine for having such amachine. In appedix B, we
have discussed the size of the unitarymatrix and the active submatrix to be considered. In general,M scales as

( )O 2N , the same as the size of the active submatrix. Let us point out that the active submatrix need not be square
in general. In fact, one can choose the size depending on the required number of free parameters by choosing any
ancillary input port to be injected by a vacuumor a single photon state and any output port to bemeasured in a
vacuumor a single-qubit basis. As a rule of thumb, the input-port number and the output-port number label the
row and column index respectively. For instance, if the output-port one is the only one being projected onto a
single qubit, and input ports one and two are open toAlice and Bobwhile the rest are injected by vacuum state,
then the active submatrix is

´ = ⎡
⎣⎢

⎤
⎦⎥( ) ( )u

uS 2 1 . 3111

21

If, in addition, Charlie decides to inject a single photon into the port three, then the resulting active submatrix
will be

´ =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

u
u
u

S 3 1 . 32
11

21

31

In the general scenario, we injectN single-photons intoN principalmodes, extracting a bit of each photon
and processing them through a unitary of sizeM(N). The ports ¼ N1, 2, , of ( )MU are dedicated to principal
inputs, the ports + ¼ +N N K1, , are injectedwith ancillary single photons and the remaining - -M N K
with ancillary vacua. At the output, single-qubit and vacuummeasurements are performed on the ports

¼ L1, 2, , and + ¼L M1, , , respectively. Note that it is required to have  +L N K , otherwise therewould be
no ñÄ∣1 N component in the output. The projector já ∣N1 in this case will have coefficients of the form
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where the sums run over all the permutationsσ of L index numbers. Evidently, the size of the active submatrix
is ´ +( )L N K .

According to equation (33), to determine the elements of the active submatrix S and ( )MU one should solve
a set of polynomial equations of degree atmostN+K over complex numbers and optimise the probability of
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success. The question is whether or notwe can determine if the set of equations obtained by comparing
equation (33)with the coefficients of any arbitrary target state possesses a solution and if so, canwefind it? This
question can be answered for complex variables using thewell-knownGröbner basis and elimination techniques
[35]. However, as noted in [16], there is generally no efficient algorithm to calculate solutions to such sets of
equation. Furthermore, we can note from equation (33) thatmerely writing down the problem to be solved is
inefficient as in principle theremay be exponentiallymany d coefficients. If we posed a problem restricted to
polynomiallymany dʼs, then the sumover the entire symmetric groupwill be exponentially large. Finally, even if
therewere only polynomiallymany non-zeroαʼs andβʼs we are still left with evaluatingmatrix permanents, a
problem known to be classically hard to compute, over polynomials of the unknown elements of the active
submatrix S. As a consequence, we are encountering a verification problem. Therefore, the solution to the posed
problem, although itmight exist, cannot be efficiently found.However, it is interesting to note that, in the case
where there is polynomiallymany d coefficients and a polynomial error bound, a universal quantum computer
would very likely be able to implement the projector já ∣N1 on qubits efficiently.

The other important question is how does the success probability scale? Unfortunately there is no unique
answer to this question, because the success probability strongly depends on the target state. For example,
preparingN-mode separable single-photon or vacuum state is trivially possible with success probability of 1
irrespective of the number ofmodes ormeasurements. Similarly, assuming thatwe could performdeterministic
single-qubitmeasurements at the output of ( )MU , bymaking use of a feed-forward strategy and correcting the
phase at the output, the probability of success for preparing anyN-mode separable state would be equal to one.
Including the success probability of the single-qubitmeasurements, however, causes the scale of the scheme to
be ( )O p1 N , where p is the success probability of one single-qubitmeasurement, even for generating separable
states.

5.Outlook and conclusion

In conclusion, we have proposed a technique for the generation of arbitrarymulti-qubit quantum states using
linear optics and heraldingmeasurements in a single-rail encoding scenario.Our approach avoids anymulti-
photon terms at the output.We explicitly showed that our scheme leads to the set of equations, involving
permanents of a submatrix of the linear optical network, which is solvable for a small number of qubits. In
particular, we solved the problem for generalised cluster states of two- and three-qubits as target states and
obtained a heralding probability for our universal schemewhich is comparable to the state-of-the-art proposals
for specific states alone.We also considered the scalability of our scheme and discussed the efficiency offinding a
solution to the general set of equations from various perspectives. It turned out that a universal quantum
computer is the only hope for solving the general problem.Our proposal thus can be reliably used for sharing
universalmulti-qubit quantum states between a few number of parties.Moreover, itmight be extended to
encodings in other degrees of freedom, e.g., using time and frequency correlationmeasurements [37]. Finally,
the frameworkwe have introduced here can be applied equally to other quantumarchitectures such as opto-
mechanics and spin ensembles.
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AppendixA. Existence of a solution to equation (11)

Toprove that we have enough control to produce arbitrary two-qubit states, we need to prove that the set of
equation (11) forms a regular chain.We have
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They involve three independent variables from the set { }u u u u, , ,11 12 22 21 . Suppose that we choose u11, u21, and
u22 as free. Now, it is important to note that f2 and f3 are independent equations. Considering f1 and f2, they have
the variables u11 and u21 in common. They have a common solution over the field of complex numbers if and
only if they possess a vanishing resultant [35]. One commonprocedure tofind the solution is tofirst evaluate the
resultant with respect to one variable,
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where ( )Q P xSyl , , is the Sylvestermatrix of the polynomialsQ andPwith respect to the variable x,
b b=S r r p00 1 2 1 2 , a b=S r t p10 1 2 2 1 , and a b=S r t p11 1 2 1 2 . This gives the unique solution for u21 and putting it

back into f2 gives the solution for u11. A simple calculation then leads to
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Now,we have both solutions in terms of the remaining free variable, u22. Note that u12 is determined from
conditions on ( )U 3 . Therefore, f3 also uniquely determines u22. This analysis completes the proof that ( )U 3 is
the smallest unitarywith enough degrees of freedom for arbitrary entanglingmeasurements in our scheme.

Notably to say, there is also a secondmethod to prove that the set(A1) has a solution, and that is to show that
theMacaulay’s resultant of the set is zero (see [36] for a detailed account of themethod).

Appendix B. Size of the optimal unitary

Let us consider the general case ofN qubits. An arbitrary state has -2 1N free complex coefficients. Therefore,
we need a unitary of the sizeM such that it has enough freemagnitude and phase degrees of freedom. Any
M×M unitary has +( )M M 1 2 free parameters, -( )M M 1 2 ofwhich aremagnitudes andM of them
phases. One should also notice that one of the phases is global whichmakes the difference between ( )MU and

( )MSU (theM×M special unitarymatrices). Therefore,Mmust satisfy

 -
- -

( ) ( )M M
M

1

2
2 1 and 2 1. B1N N

Wenote that the second condition has the a slower growth inM, and thus determinesM as

= - ( )M N2 1 for 2. B2N

ForN=1 there is no need for a unitary at all, since there is enough degrees of freedom inmeasurement and
pick-off.

Besides this general consideration,M could be chosen to be smaller or larger based on the particular value of
N. This is because forM to have enough free parameters is necessary, but themore important is to chose the
active submatrix of the right dimensions to involve enough free parameters in the equations. For example, in the
case ofN=3 of section 3, the coefficient µc d111 000 is uniquely determined via themeasurements; see
equation (29). Thus, the global phase of the unitary can effectively cause a relative phase between ñ∣111 term and
the rest. As a result, instead of a ( )U 7 , a ( )U 6 delivers enough free parameters when a 3×3 active submatrix is
chosen.

AppendixC. Step-by-step algorithm for solving equations (16) and(17)

To solve equations (16) and(17)numerically, we follow the procedure:

(1) Solve the first equation in(16) for 2;2 in terms of 1;2.
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(2) Solve the second equation in(16) for 2;1 in terms of 1;1.

(3) Substitute the results into the third equation and solve it for 1;1 to obtain it as a function of 1;2.

(4) Substitute the result back into the second equation to transform 2;1 in terms of 1;2. At this stage, we have all
the parameters as functions of variables  a t, ,1;2 1,2 1,2, and ζ.

(5)Notice that 1;3 is directly given in terms of 1;2 from the first constraint in(17), since 1;1 is obtained in
step (3).

(6)Now, we are left with two unknowns, 1;2 and 2;3. They can be obtained from the second and third
constraints in(17). However, we prefer to calculate 2;3 from the last one in terms of 1;2.

(7)As the last step, we run an optimisation of the success probability, equation (18), over variables  a t, ,1;2 1,2 1,2,
and ζ constrained to the second condition in equation (17).

AppendixD.Unitary elements for a cluster state

Herewe give our numerical result for the ( )U 3 leading the highest probability of success for generating a two-
qubit cluster state (see equation (15)) of c = 0 and f p= .

=
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+ +
- - +
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The corresponding optimal values for other parameters are
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