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Abstract

We propose and analyse a scheme for single-rail-encoded arbitrary multi-qubit quantum-state
generation to provide a versatile tool for quantum optics and quantum information applications. Our
scheme can be realised, for small numbers of qubits, with current technologies using single photon
inputs, passive linear optics, and heralding measurements. The particular examples of two- and three-
qubit cluster states are studied in detail. We show that such states can be prepared with a high
probability of success. Our analysis quantifies the effects of experimentally relevant imperfections and
inefficiencies. The general case of arbitrary N-qubit preparation is discussed and some interesting
connections to the boson sampling problem are given.

1. Introduction

An active field of research in quantum optics and quantum information is the development of techniques for
producing arbitrary quantum states of different physical systems. This is by virtue of the broad range of
applications including quantum computation and communication [ 1, 2], quantum simulation [3], and
quantum metrology [4], that each need different specific quantum states as a resource.

Light is a key quantum system which can be interfaced with a variety of other individual quantum systems
[5-7]. There are particular states, e.g., W-states [8], GHZ-states [9], and cluster states [ 10, 11], which are of great
importance for many protocols, and it is anticipated that the exploration of other multimode states will also be
promising. Thus, having a single easily reconfigurable device [12] which prepares arbitrary multimode quantum
states would provide considerable versatility for numerous applications. Towards this goal, a number of
theoretical and experimental studies have been performed concerning the preparation of arbitrary single-mode
[13—15] as well as arbitrary multimode quantum states [ 16—18]. It is usually the case that universal schemes
possess a high degree of complexity due to their extremely large number of degrees of freedom, even for a small
number of modes, which makes them impractical without some restrictions. A feasible approach to this
problem can be taken if we restrict the dimensionality of each output mode to two. In other words, we restrict
ourselves to arbitrary multi-qubit state generation. Regarding the cost of the scheme, we will be utilising passive
linear transformations; avoiding any active elements, which in turn means to only use beam splitters and phase
shifters, and we allow measurements on some ancillary systems to introduce the required nonlinearity.

We would also like to encode quantum bits in the absence or presence of photons, the so-called single-rail
encoding [19]. As well as requiring fewer resources, such states are efficient under temporal multiplexing [20]
and suitable for interactions with matter quantum systems. The key goal is thus a device which produces
arbitrary single-rail multi-qubit resource states for a variety of quantum tasks. Importantly, we want to prepare
the target state by heralding via measurements of the ancillae and without postselection. To the best of authors’
knowledge, our scheme is the first of this kind which provides all of the properties mentioned above.

In the present contribution, we introduce and analyse a universal scheme for generation of arbitrary multi-
qubit quantum states in a single-rail encoding using passive linear optics and heralding measurements. Our
scheme makes use of N single-photon input states. We extract part of their amplitude using beam splitters and
inject it into a unitary network of size M(N). The other ports of the unitary will receive K ancillary single-photon

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Scheme for two-qubit state generation. Alice and Bob split their single-photons and send it to Charlie. He makes an
entangling measurement and remotely prepares arbitrary joint states for Alice and Bob. The blue dashed boxes refer to the optional
feed-forward correction of the outputs depending on the single-qubit measurements outcomes.

inputsand M — N — K ancillary vacuum inputs, while there will be L projections onto single-qubits and M — L
vacuum measurements at the output. We show our scheme is universal and give particular examples of two- and
three-qubit cluster states as target states, a class of states known to be very hard to prepare in single-rail encoding.
We show that our scheme delivers a high probability of success, for low numbers of photons, even compared to
non-universal schemes where there exists a fairly comparable strategy. We also analyse the effects of loss and
imperfections. Our scheme is experimentally feasible for a small number of photons using current technology.
Moreover, we study the general case of N-qubit generation and give interesting connections to the boson
sampling problem [21]. The method presented here is equally applicable to other bosonic systems, e.g. spin
ensembles [23] and optomechanics [22] by making use of light—matter beam splitter interactions and photonic
ancillae.

2. Arbitrary two-qubit state preparation

In this section we design a linear-optics scheme to generate arbitrary two-qubit target states,
[Utar) = €00l00) + c01l01) + c0l10) + cl11), ey

with {c;;} (i, j = 0, 1) being complex numbers. Such a state can be for example shared between two distant
parties, Alice and Bob.

A major problem in any such a device then would be the suppression of the two-photon terms |02) and |20)
due to Hong—Ou—Mandel effect. It has been shown that without relying on measurements one cannot avoid
these bunching effects [24]. A simple way to circumvent this issue is by preventing the photons from exchanging
between two principal modes from input to output, rather than using Fock basis truncations [25]; see figure 1.
We will show that this technique, despite its simplicity, is very effective.

Accordingly, we split the circuit into two stages: (i) an entangling projector—this could be carried out by a
third party, say Charlie, as a central station who sends signals to Alice and Bob on the successful events, and (ii) a
quantum pick-off; this could be done locally with the help of Alice and Bob (see figure 1). In the following we give
a detailed description of both stages.

2.1. Entangling measurement

Firstly, let us discuss what we mean by entangling measurement in our scheme. We note that to be able to
produce the state in (1), there is a need for independent control of the four complex coefficients {c;;} (i,j = 0, 1).
For the moment, we do not take into account the reduction of degrees of freedom by normalisation constraint,
because it should be possible to equate any of the coefficients with zero. This demands Charlie to realise
projectors of the form

(ol = (00]dgo + (01]do1 + (10]dyo + (11|dy;
+ <02|d02 + <20|d20, 2

such that the first four complex coefficients, {d;;} (i,j = 0, 1), are arbitrarily controllable. Notice that the need
for two-photon components arises from the use of linear optics as previously commented. As we will show, a
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U (3) unitary operation with an ancillary vacuum measurement and two arbitrary single-qubit projectors is the
smallest unitary circuit having the capability to produce (¢|. Using a retrodictive approach, we now calculate the
projector in figure 1 just before the unitary. This is given by

123<§0| = 123<q1q20|0(3)
= 123(000(uI; + Bia) @ (L + Bra) U (3), (3
inwhich ;(g| = ;(0[(;1; + B;a;) (i = 1,2) with o 5|* + |B12]* = 1. Using the definition

o' 3)a;U(3) = Z; _ 1ujia; (0 = 1, 2, 3), wenow switch to the Heisenberg picture via the isomorphic matrix
representation,

U3
2
Uu@3) = 5@ U3 4)
Uzl U3 yss
in which
U u
s =[w w] 5)

We call the submatrix S(2) the active submatrix. Rearranging the resulting components in (3) and projecting
onto the ancillary vacuum input, |0)3, gives

12{¢l = 12(00]doo + 12(01|do1 + 12(10|d1o + 12(11]d1;
+ 12(02]|doy + 12(20|da0, (6)

in which
doo = Q1Qh, (7)

dor = a3y Pap + 251 Pryas

dio = 182 Pr1 + 281 Pr1s

dll - ﬂZ/BIPIZ;IZ) (8)
dOZ = ﬂzﬂlPI;Z,PZ;Z)
dZO = 52/BIP1;1P2;1' (9)

Here’, Pj... pski...q represents the permanent of the active submatrix, which are obtained from elements on the
intersection of rows i, j,...,p and columns k, I, ...,q. Note that, permanents have cyclic symmetry, thatis
Pij...pski--q = Potiyo (j)---o (pyo (ko () o (g fOr any permutation o of the index set, and P;; = u;; trivially.

2.2. Pick-off

Atthe second stage, we need to chop off the extra dimensions of our entangling measurement. For this, Alice and
Bob split their single-photons using two variable beamsplitters, characterised by transmissivity-reflectivity
ratios f; : rpand t, : 1, (see figure 1). Thatis, [01);4 ® [01);5 — |bi)ia ® |b2)28

= (#]01)14 + 11]10)14) ® (2]01)25 + 72|10),p) upon beamsplitter transformation

B (al'k, a[i)ﬁT =(f af - n a;, n af + 1 al). Now, Charlie applies his entangling projector on two branches he
receives from Alice and Bob, and thus the un-normalised output is*

[Voue) = 12{l(Ib)ia ® |b2)ap)
= nndn|00)as + 1it2dio|01)as
+ 611do|10)as + titadool11)as, (10)

in which |#,]* + |n,/* = 1and {d;j} (i,j = 0,1) are given by equations (7) and (8). For future reference, we
have used the superscript 11 to indicate that the input was | 11),p. The probability of success for getting the
desired target state is then given by the trace of output state, Pry, = Tr|ilL,) (1] . By comparing equation (10)

out out
with equation (1), we can write down a set of nonlinear equations to be solved for all parameters, such that the

probability of success is optimised:

? These equations result from following photons paths, e.g. in the first relation in equation (8), there are two contributions to dy;, that is the
case when a single photon is input into port two and no photons into port one: (i) either a photon is detected at the output mode two with
probability amplitude of 3, coming from mode two with a transition probability amplitude of P,,,, (ii) or a photon is detected at the output
mode one with probability amplitude of 3; coming from mode two with a transition probability amplitude of P;,. Also  , represent the
probability amplitudes of getting no photons in the other port.

* This equation can also be readily interpreted. For instance, the first term can be thought of as the product of probability amplitudes of: (i)

both input photons are reflected from input beamsplitters, and thus directed toward entangling device, and (ii) triggering the measurement
device upon receiving two single photons.
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Figure 2. The scheme for probabilistic projection onto a single-qubit basis using a beam splitter, a coherent state input, and two single-
photon counters.
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There are also constraints to be satisfied by the U(3) entries: (i) each row must be normalised, and (ii) each row
must be orthogonal to all other rows. Let us show that a U(3) matrix is the smallest unitary matrix for which the
set (11) possesses a solution under the aforementioned constraints. First, we note that ¢;; is uniquely determined
by dyo through o and oy, independent of the unitary. Therefore, we need to control three amplitudes and only
three phases using the unitary. Second, notice that the matrix U(3) in equation (4) has six free parameters, three
amplitudes and three phases. Also, one should note that one of the phases is global which could determine the
relative phase between |11) and the other components. However, this can be also absorbed into the phase of ¢ ».
As aresult, only two phases are sufficient. Nevertheless, due to the fact that three free amplitudes are required,
the smallest matrix would be that of a U(3). In appendix A, we have shown that the set of equations (11) indeed
possesses a solution when there are three complex variables available. In the next sections we will first describe
how itis possible to perform single-qubit projections, and then we demonstrate our solution strategy to these
equations through an example.

2.3. Single-qubit projectors

In the scheme already discussed, two arbitrary single-qubit projectors at the output of the unitary network play
crucial roles. For instance, their coefficient directly determine the coefficient of |11) component; see e.g.
equations (7) and (10). Here we describe how these measurements can be realised and discuss the associated
heralding probabilities.

First, let us propose a simple way of implementing our arbitrary single-qubit projector. In this proposal, a
coherent state |a)y hits a beamsplitter of trasmissivity-reflectivity ¢ : r; see figure 2. For simplicity, we are
assuming both trasmissivity and reflectivity take on real values. The output is then measured by two single-
photon counters. The beamsplitter transformation is assumed to be B(a;’, a} )J§Jr = (ta — raf, ra + ta))
with t2 + r? = 1, thus, the resulting projector can be calculated as

gl = 14(10(Bla)s = e (1 (0frar + 1(1]1). (12)

Choosing @ = 1 can generate any single-qubit measurement with probability of e~!, while the phases can be
implemented via some phase shifts on beamsplitter.

The e ! overhead from this scheme is entirely due to the exponential prefactor which originates from the use
of a coherent state input. This overhead could be eliminated if the state were confined to the lowest two Fock
basis states. Therefore, inspired by the work of Ralph et al[26] which proposes the use of real-time adaptive

4
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detection of phase from [27] to deterministically prepare superposition states of zero and one photon, we propose
the following. Assuming that one can deterministically prepare arbitrary single-qubit states via adaptive phase
measurement, the coherent state |«), is replaced by a single-qubit state 5]0), + «|1), and the beamsplitter is
being fixed to be balanced. At the output, there are three possible events containing different combinations of
zero and one clicks: (1, 0), (0, 1), and F (the failure event). Considering the (1, 0) event, using a retrodictive
approach, we find

al = 1 (10BI0) + all)s) = <= {0l +1(115), (13)
V2

This is half of the desired event, in the sense that if we inject the correct state |g); into the device, only half of the
times it will pop-up the occurrence of the event. There are, however, two other possible events: F, the total failure
event, and (0, 1). Thelatter is of particular interest as we will see shortly. If we get the event (0, 1) instead of
(1, 0), we have

1
V2
In the following, we show that one could correct the output state simply by feed-forwarding two extra classical
bits to the principal output modes. Notably, in general, the two positive operator-valued-measure elements
M = |g); (gland I® = |§), (4| are not orthogonal. The failure event is also given
asF e 1O =T — IO — 1@,

Note that the event space of the clicks for our two-qubit scheme is nine fold: {TI¢) = 1 @ 10}

(i, j = 0, 1, 2),and only one of them is the desired click, namely TI!-D, corresponding to two (0, 1) events of the
form (13) and resulting the projection 1, {(|/2 of equation (6). Importantly, the factor of 1/2 causes the overall
probability of success to reduce by a factor of 4 with respect to the ideal case.

Now, suppose that we get the invert event I1*?. In view of equation (14), this will result in two phase shifts of
min (3, and thus, according to equations (7), (8), and (10), nothing is changed except the two coefficients dy;
and d, o which pick up an extra phase of 7. Evidently, the invert output occurs with exactly the same probability
of success as the desired one. Moreover, we may correct the invert output by feed-forwarding the outcome to
apply two local phase shifts to the principal modes; see equation (10). Such phase shifts will change the sign of the
coefficients of |01) and |10) terms leaving the |11) component intact.

We may ask how much does the correction improve the overall probability of success? To answer, we note
the probability of success of invert event to be the same as desired event. This implies that taking into account the
possibility of feed-forward correction doubles the overall probability of success, and decreases its reduction due
to nondeterministic measurements to a factor of 2 with respect to the ideal case.

g = 14(0LB(BI0)s + all)y) = ((0la — 1(1]9). (14)

2.4. Example: a cluster state
Let us consider the example of preparing the state,

[a) = ezﬁ(|00> +101) + |10) + e*|11)), (15)

which gives the usual two-qubit cluster state when ¢ = 7. We consider the output state (10) and without loss of
generality assume’ o, — e with a;, € Randthat 3, = /1 — ozlz’z € R.Wealso take t; and t, to be
real. Similar to equation (11), these lead to the following set of nonlinear equations

0=¢—¢
J1 — a3 J1 —af 1 —
72732;2 + . Pis2
(67%) (6751

1)

7“1_a%7>2;1+ “1_a‘2PI;1 A S
(67%) (&5}

i}

2
53 el — 1,

>

J = o)1 - o)1 - HA — 1)
(03X 71515

Piy12ei?-9) = 1, (16)

5 . . . . .
Any phase difference between «; , can be absorbed into the unitary elements, as they can be represented by some phase shifters in front of
the unitary circuit.
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Figure 3. Plot of optimal success probability versus relative phase, ¢, of the generalised two-qubit cluster state given in equation (15)
for x = 0.

inwhich ( = 0 — x, and itis constrained to

[Pl + [Pl + |Pisl> =1,
|P2;1|2 + |P2;2|2 + |,P2;3|2 =1,
PiiP31 + PiaPia + PisPis =0. (17)

The success probability for this state is given by the norm of the output state,

Pryg = 4logantity)*. (18)

This set of equations is a regular chain the solution of which can be obtained by solving the first equation for one
variable, substituting the result into the second one, and then continuing until all the variables are expressed in
terms of five variables, say P.,, oy, and f ;. The step-by-step algorithm for numerical optimisation is given in
appendix C. Thelast step is to run an optimisation for the probability of success (18) over parameter ranges. We
have depicted the probability of success of the scheme for a range of relative phase 0 < ¢ < = infigure 3.In
particular, the success probability at ¢p = 7 is Prq &~ 0.088. Once we have found the optimal solution for a
particular phase ¢, we can use the well-known decomposition by Reck et al [28] to evaluate the parameters of the
linear optical network realising U (3). For the special case of Y = 0 and ¢ = 7, the resulting unitary matrix has
been given in appendix D.

We can compare the method used here against other schemes for achieving this particular output state. Knill
[33] was motivated to find optimised probabilities for Controlled-Z rotations between optical qubits using linear
interactions and post-selection in the Fock basis. Knill’s constructions were single-rail as for the case of the
Controlled-Z rotations the single-rail operations are directly embedded in the dual-rail operations. The result of
Knill also did not have the multi-party preparation model that is used in this paper and hence considered
arbitrary linear ineractions between all modes. Knill found that when ¢ = 7 and with two ancillary modes
containing single photons the highest probability of success was 2/27 ~ 0.074. Later extensive numerical
searches confirmed this maximal probability over a wider range of networks with more ancillary modes [34].
The ability to exceed this value for the device presented here can be attributed to the lack of need to constructa
gate which operates over an entire Hilbert space. The protocol here is merely the generating of the state and
hence leaves open the possibility for probabilities exceeding that from implementations which utilise gates.

2.5. Two-qubit passive state transformation

Itis of interest to ask ‘how the scheme of figure 1 may transform a given two-qubit input state?” in the first place,
our scheme is passive in the sense that there is no possibility for photon addition to any of the modes. secondly,
one cannot switch photons between the two modes (bit flip) and this is exactly how we prevented the photon
bunching effect in the output modes, i.., the [02) and |20) components. it is straight forward to calculate the
output state similar to that of equation (10) starting with an arbitrary two-qubit state state

[im) = a00l00) + agi|01) 4 ay|10) + ay3|11). It turns out that the coefficients of the output are just linear
combinations of d;;'s of equations (7)—(9). A regular chain remains as a regular chain under linear combination
of equations, and thus the resultant set always possesses a solution. this means that our scheme is also a universal
quantum state modifier for a known two-qubit inputs in a passive way. Of course, starting with an input state
within a subspace of H; ® H, with only one or no photons means an overhead in the free parameters of the
scheme. however, such redundancy will be automatically resolved via optimisation of success probability.

6
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2.6. Effect of inefficiencies and losses

Inefficiencies and losses are present in any experiment. Here, we analyse such deleterious effects, which are four
fold: (i) imperfect single photon sources, (ii) the transmission losses through channels, (iii) losses through the
unitary circuit, and (iv) inefficient measurements. These imperfections directly affect the fidelity of the output
state. Therefore, to simplify the analysis, we make the following assumptions:

(i) Allthe measurement devices are the same, and thus they have equal losses,
(ii) We model all the losses within the unitary network via symmetric losses on all input modes.
(iii) All the photon sources are the same having equal purities, and,

(iv) Thelosses within the principal output modes are equal to that of entangling measurement circuit.

It is known that when the losses within all output ports of a linear network are equal, one can commute the
loss with the network. In this way, using the assumptions above, we may express all the imperfections justin
terms of imperfect photon sources, and considering all the other elements to be ideal. To justify the last
assumption, we may think of alossy measurement process on the output state such that it exactly equates the loss
of entangling measurement circuit. We can therefore model all the losses using impure input states, i.e.,

o1 = (uI1) (1] + (1 — w)]0) (02, (19)
in which g is assumed to be the overall efficiency of the scheme. Now, the un-normalised output, o5 (1), is
clearly a mixture of four input combinations, [00);,, |10}, |01)15, and |11);,. We have already calculated the
output resulting from the last input, [¢).},). The other three will give

out
[SRRV; Prtar

[0 = dool00)ap =
Lty

[V = tidool 10)ap + 11d10|00)ap

v Pria

== (a1]10)ap + €01]00)aB),
2

[V04) = tadool01)ap + r2d01/00)ap

v Priar

= T(CII|OI>AB + €10/00)aB), (20)
|

|00>AB >

in which Pr,, is the probability of success for getting the desired target state when the input states are pure single
photons. Using the expressions in equation (20) it is straight forward to evaluate the success probability as

Prtar(;u/) |wtar>) = Tr@O(,U/)

= Pt [p* + (1 — u)*A + p(1 — p)BI, (21)
in which
A= |C;1|j . B= lel? Jrz ol i el Jrz |C10|2. 22)
ity 153 4

This result demonstrates the fact that, having imperfections, the heralding probability strongly depends on the
target state as well as losses. In a similar way, one can calculate the fidelity of the output state as

S, |wtar>) _ <wtar|@AB(,Uf)|7/)tar>
Prior (1)
_ 2+ 0= pwPCH @ — WD (23)
(4 (1 — p)*A + p(l — p)B
in which
C = leooal
D = |¢hao + cicool® + lericor + eroeool- (24)
Expanding the fidelity around one, we find the rate at which it decays as
i%(,u’ |wtar>)|u:1 =B - D, (25)
dp
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Figure 4. The scheme for universal three-qubit state generation. This time, Charlie uses a U(6) to perform the entangling
measurement.

or, equivalently, for nearly perfect efficiency (1 — 1)

S 1Y) ~ 1 — (B — D)(1 — p). (26)

For the example of a cluster state D = 0 and thus, this rate is given by

d 1 1
ES(% |¢cl>)|y:1 = ? + g (27)

We would like to additionally comment here that other errors due to the temporal and spectral mismatches
of the input single photons could exist. A widely used technique to minimise such imperfections is to use the
single-photon generation recipes with high spectral purity from down-conversion sources [29-31]. In addition,
such impurities can always be further reduced by including spectral filters at the cost of reduced heralding
rates [32].

3. Arbitrary three-qubit state preparation

A similar strategy as the previous section can be taken to generate arbitrary three-qubit states. We take three
single-photon input states, split them and make an entangling measurement. The scheme thus would consist of
a U(6) matrix instead of U(3) as described in appendix B, injection of three single photons and three ancillary
vacua into the circuit, three arbitrary single-qubit and three vacuum measurements (see figure 4).

After repeating the process, we find the projector

123(21=123(000|dooo + 123(100|d100 + 123(010]|do10
+ 123(001]dgo1 + 123(110]d110 + 123(101]d),
+ 123(011]do11 + 123(111|d11y (28)
+ terms containing two or three photons
in either of modes,

in which

dogo = a3

digo = a3 81 Pr;1 + aus 32 Pt + cn 35P3,0

doro = a3 51 Pryy + w3 2 Payn + B3 Psyn

door = 3 31 Prs + anas 3y Pas + caua 35Ps3

diro = a1 3285 Pas12 + 2 B183Pis2 + s 182 Pin1n

dior = 13283 Paz15 + 183 Piz3 + a3 5152 Pinis

doir = 132335 Pa303 + 28185 Pr30s + 36182 Prasas

diny = 518285 Pio30s (29)

As an example, we have determined the optimal probability of success for generation of a generalised
Greenberger—Horne—Zeilinger (GHZ) state,
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tobe Prgyz ~ 0.0024. Clearly, the probability of preparing such a state is independent of the phase value ¢, since
it can be obtained by alocal ¢-phase shift of one of the bits at the output.

In parallel with discussions of section 2.3, we may represent events as { II*»%) = 10 @ 1) @ T1%®}

@, j, k = 0, 1, 2). For this scheme as well, all the arguments of section 2.3 hold such that we may improve the
heralding probability by a factor of 2, if we take into account not only the event IT"1:Y), but also the invert event
122, From equations (28) and (29), it is evident that we may correct the output just by feed-forwarding three
extra classical bits and operating locally on the principal output modes by phase shifters of angle 7.

A second important thing to note is that, as we can see, all the permanents of the active submatrix of U(6)
appear in the expressions for the coefficients of the projector. In the next section, we will show that this is
generally true for arbitrary large number of qubits. We also discuss the implication of this pattern about the
scalability of our scheme, and we will see that this puts strong limitations on any measurement based scheme.

The non-deterministic remote state preparation of a single-rail GHZ state using linear optics and post-
selection does not appear to have been proposed before. Though the generation probability here is low, to the
best of authors’ knowledge, there is no other schemes with which to fairly compare it to.

[Yeuz) = —=(1000) + €[111)), (30)

4. Multi-qubit Scaling

As we promised, in this section we show that our method can be generalised to prepare arbitrary N-qubit states.
Thus, from an architectural point of view, everything seem to be fine for having such a machine. In appedix B, we
have discussed the size of the unitary matrix and the active submatrix to be considered. In general, M scales as

O (2N), the same as the size of the active submatrix. Let us point out that the active submatrix need not be square
in general. In fact, one can choose the size depending on the required number of free parameters by choosing any
ancillary input port to be injected by a vacuum or a single photon state and any output port to be measured in a
vacuum or a single-qubit basis. As a rule of thumb, the input-port number and the output-port number label the
row and column index respectively. For instance, if the output-port one is the only one being projected onto a
single qubit, and input ports one and two are open to Alice and Bob while the rest are injected by vacuum state,
then the active submatrix is

S@x 1) = [”“]. (31)

Uy

If, in addition, Charlie decides to inject a single photon into the port three, then the resulting active submatrix
will be

(301
S(3 x 1) =|un | (32)
Usy

In the general scenario, we inject N single-photons into N principal modes, extracting a bit of each photon
and processing them through a unitary of size M(N). The ports 1, 2, ...,N of U(M) are dedicated to principal
inputs, the ports N + 1,...,N + K are injected with ancillary single photons and the remaining M — N — K
with ancillary vacua. At the output, single-qubit and vacuum measurements are performed on the ports
1,2,....,Land L + 1,...,M, respectively. Note thatitisrequired to have L > N + K, otherwise there would be
no |1)®N component in the output. The projector ;... (| in this case will have coefficients of the form

o0y = Y Loy Bo)Qoks1) = Qo) Pr) o (KEN+1) (N+K)
o
dyo,..0n = Zﬁo(l) B Br®+1)0ok+2) * Co@) Prl) 0 (K)o (K+1);1 (N+1)-- (N+K)»
o

do,-0y = Zﬁo(l) “ Be@)Bo®+ 1)U ®+2) Qo @) Fr(1) o (K)o (K+1:2(N+ 1) (N+K)s
o

dy1,0y = Zﬂg(l) B Bo k+1) B (kK+2) Qo +3) ** Qo @) Pr(1)-0 K)o K+ 1o (K+2512(N+ 1) (N+K)»
o

Ay = 2 B0 BotN+K) o NA+K+1) ** Qo) Pr)e o (N+K)1 - (N+K)» (33)
o

where the sums run over all the permutations o of L index numbers. Evidently, the size of the active submatrix
isL x (N + K).

According to equation (33), to determine the elements of the active submatrix S and U(M) one should solve
aset of polynomial equations of degree at most N + K over complex numbers and optimise the probability of

9
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success. The question is whether or not we can determine if the set of equations obtained by comparing

equation (33) with the coefficients of any arbitrary target state possesses a solution and if so, can we find it? This
question can be answered for complex variables using the well-known Grébner basis and elimination techniques
[35]. However, as noted in [16], there is generally no efficient algorithm to calculate solutions to such sets of
equation. Furthermore, we can note from equation (33) that merely writing down the problem to be solved is
inefficient as in principle there may be exponentially many d coefficients. If we posed a problem restricted to
polynomially many d’s, then the sum over the entire symmetric group will be exponentially large. Finally, even if
there were only polynomially many non-zero o’s and 3’s we are still left with evaluating matrix permanents, a
problem known to be classically hard to compute, over polynomials of the unknown elements of the active
submatrix S. As a consequence, we are encountering a verification problem. Therefore, the solution to the posed
problem, although it might exist, cannot be efficiently found. However, it is interesting to note that, in the case
where there is polynomially many d coefficients and a polynomial error bound, a universal quantum computer
would very likely be able to implement the projector ... (¢| on qubits efficiently.

The other important question is how does the success probability scale? Unfortunately there is no unique
answer to this question, because the success probability strongly depends on the target state. For example,
preparing N-mode separable single-photon or vacuum state is trivially possible with success probability of 1
irrespective of the number of modes or measurements. Similarly, assuming that we could perform deterministic
single-qubit measurements at the output of U(M), by making use of a feed-forward strategy and correcting the
phase at the output, the probability of success for preparing any N-mode separable state would be equal to one.
Including the success probability of the single-qubit measurements, however, causes the scale of the scheme to
be O (1/p™N), where p is the success probability of one single-qubit measurement, even for generating separable
states.

5. Outlook and conclusion

In conclusion, we have proposed a technique for the generation of arbitrary multi-qubit quantum states using
linear optics and heralding measurements in a single-rail encoding scenario. Our approach avoids any multi-
photon terms at the output. We explicitly showed that our scheme leads to the set of equations, involving
permanents of a submatrix of the linear optical network, which is solvable for a small number of qubits. In
particular, we solved the problem for generalised cluster states of two- and three-qubits as target states and
obtained a heralding probability for our universal scheme which is comparable to the state-of-the-art proposals
for specific states alone. We also considered the scalability of our scheme and discussed the efficiency of finding a
solution to the general set of equations from various perspectives. It turned out that a universal quantum
computer is the only hope for solving the general problem. Our proposal thus can be reliably used for sharing
universal multi-qubit quantum states between a few number of parties. Moreover, it might be extended to
encodings in other degrees of freedom, e.g., using time and frequency correlation measurements [37]. Finally,
the framework we have introduced here can be applied equally to other quantum architectures such as opto-
mechanics and spin ensembles.
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Appendix A. Existence of a solution to equation (11)

To prove that we have enough control to produce arbitrary two-qubit states, we need to prove that the set of
equation (11) forms a regular chain. We have

10
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nr. U1ty + Upi
f: 1120182 (112 + wiaty) oo =0,
p
nty (o Prup + a0
£, i (i fot + i) o1 =0,
p
Nt (O + 01U
5, 2t (ou s 22p 2fivn) — (A1)

They involve three independent variables from the set {1411, 15, 132, 141}. Suppose that we choose 1y, 15, and
uy, as free. Now, it is important to note that f, and f; are independent equations. Considering f; and f,, they have
the variables 1, and 1,1 in common. They have a common solution over the field of complex numbers if and
only if they possess a vanishing resultant [35]. One common procedure to find the solution is to first evaluate the
resultant with respect to one variable,

Resl,l(ﬁ) fz; upy) = |SY1(fp f2; )|
_ | Soottzz Sooth2tz1 — oo
Sio Si1tha1 — Co1

=0, (A2)
where Syl(Q, P, x) is the Sylvester matrix of the polynomials Q and Pwith respect to the variable x,
Soo = nnB102/p, Sio = ntaan 01/p,and Sy = nit,aq 5,/p. This gives the unique solution for u,, and putting it
back into f; gives the solution for u;;. A simple calculation then leads to

SooCo1U22 — S10€o0

Soo(St1422 — Siot12)

= SO (i)( So0€o1122 — S10€00 ) (A3)
S10 J\ S0 (S111422 — Sio12)

Uy =

Now, we have both solutions in terms of the remaining free variable, u,,. Note that 1, is determined from
conditions on U(3). Therefore, f; also uniquely determines u,,. This analysis completes the proof that U(3) is
the smallest unitary with enough degrees of freedom for arbitrary entangling measurements in our scheme.

Notably to say, there is also a second method to prove that the set (A1) hasa solution, and that is to show that
the Macaulay’s resultant of the set is zero (see [36] for a detailed account of the method).

Appendix B. Size of the optimal unitary

Let us consider the general case of N qubits. An arbitrary state has 2N — 1 free complex coefficients. Therefore,
we need a unitary of the size M such that it has enough free magnitude and phase degrees of freedom. Any

M x Munitaryhas M (M + 1)/2 free parameters, M (M — 1)/2 of which are magnitudes and M of them
phases. One should also notice that one of the phases is global which makes the difference between U (M) and
SU(M) (the M x M special unitary matrices). Therefore, M must satisfy

MM -1
%>2N71 and M >2N — 1, (B1)
We note that the second condition has the a slower growth in M, and thus determines M as
M=28 —1 for N>2. (B2)

For N = 1 thereis no need for a unitary at all, since there is enough degrees of freedom in measurement and
pick-oft.

Besides this general consideration, M could be chosen to be smaller or larger based on the particular value of
N. This is because for M to have enough free parameters is necessary, but the more important is to chose the
active submatrix of the right dimensions to involve enough free parameters in the equations. For example, in the
case of N = 3 of section 3, the coefficient g o< dggo is uniquely determined via the measurements; see
equation (29). Thus, the global phase of the unitary can effectively cause a relative phase between |111) term and
the rest. Asaresult, instead of a U(7), a U(6) delivers enough free parameters whena3 x 3 active submatrix is
chosen.

Appendix C. Step-by-step algorithm for solving equations (16) and (17)
To solve equations (16) and (17) numerically, we follow the procedure:

(1) Solve the first equation in (16) for P, in terms of Py.».

11



10P Publishing

NewJ. Phys. 18 (2016) 103020 F Shahandeh et al

(2) Solve the second equation in (16) for P,; in terms of P ;.
(3) Substitute the results into the third equation and solve it for P},; to obtain it as a function of P;,.

(4) Substitute the result back into the second equation to transform P;,; in terms of P,,,. At this stage, we have all
the parameters as functions of variables Py.5, a5, #12,and ¢.

(5) Notice that P,.5 is directly given in terms of P, from the first constraint in (17), since P, is obtained in
step (3).
(6) Now, we are left with two unknowns, P, and P,.;. They can be obtained from the second and third

constraintsin (17). However, we prefer to calculate 7,3 from the last one in terms of P,.5.

(7) As the last step, we run an optimisation of the success probability, equation (18), over variables P,,5, o, # 2,
and ( constrained to the second condition in equation (17).

Appendix D. Unitary elements for a cluster state

Here we give our numerical result for the U(3) leading the highest probability of success for generating a two-
qubit cluster state (see equation (15)) of y = 0and ¢ = 7.

—0.493 — 0.312i —0.493 — 0.312i 0.565
Ug(3) = 0.338 + 0.214i 0.338 + 0.214i 0.825|. D1)
0.593 — 0.384i —0.593 + 0.384i 0

The corresponding optimal values for other parameters are

oy = 0.452,
a = 0.791,
t = t, = 0.645,
¢ =2.577. (D2)
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