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 Abstract 

This study evaluated the effect of mesoporous bioglass (MBG) dissolution on the 

differentiation of bone marrow mesenchymal stem cells (BMSCs) derived from either 

sham control or ovariectomized (OVX) rats. MBG was fabricated by 

evaporation-induced self-assembly method. Cell proliferation was tested by Cell 

Counting Kit-8 assay, and cytoskeletal morphology was observed by fluorescence 

microscopy. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) 

staining and activity, Alizarin Red staining, while adipogenic differentiation was 

assessed by Oil Red-O staining. Quantitative real-time PCR and Western blot analysis 

were taken to evaluate the expression of runt-related transcription factor 2 (Runx2) 

and proliferator-activated receptor-γ (PPARγ). We found that MBG dissolution (0, 25, 

50, 100, 200µg/ml) was nontoxic to BMSCs growth. Sham and OVX BMSCs 

exhibited the highest ALP activity in 50µg/ml of MBG osteogenic dissolution, except 

that sham BMSCs in 100µg/ml showed the highest ALP activity on day 14. Runx2 

was significantly upregulated after 100µg/ml of MBG stimulation in sham and OVX 

BMSCs for 7 and 14 days, except that 25µg/ml showed highest upregulation effect on 
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OVX BMSCs at day 7. PPARγ was downregulated after MBG stimulation. The 

protein level of Runx2 from the sham BMSCs group was significantly upregulated 

after lower doses (25 and 50µg/ml) of MBG stimulation, whereas PPARγ was 

downregulated in the sham and OVX BMSCs group. Thus, both the osteogenic and 

adipogenic abilities of BMSCs were damaged under OVX condition. Moreover, lower 

concentration of MBG dissolution can promote osteogenesis but inhibit adipogenesis 

of the sham and OVX BMSCs. 

Key words  

Mesoporous bioglass (MBG); Bone marrow mesenchymal stem cells (BMSCs); 
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Introduction 

Bioactive glass (BG) was discovered in 1969 and is now widely applied in bone tissue 

regeneration because of their biocompatibility, osteoconduction, and osteoinduction 

properties 
1,2

. Mesoporous bioglass (MBG) with an ordered mesopore channel 

structure elicits better performance as bone substitutes than BG, and this performance 

is attributed to a faster release of Ca, P, and Si ions and the porous structure of MBG 

3,4
. MBG soaked in physiological fluid releases Ca

2+
 and Na

+
 exchange with H

+ 
from 

the fluid to form a hydrated silica gel on the surface. This gel turns into an amorphous 

CaO-P2O5-SiO2 layer with a continuously consumption of Ca
2+

 and PO4
3-

, and 

subsequently crystallizes into a hydroxycarbonate apatite (HCA) layer through 

constant incorporating with Ca
2+

, PO4
3-

, OH
- 
and CO3

2-
 

5,6
 The growing HCA layer 

provides an ideal environment for osteoblasts colonization, proliferation and 

differentiation 
7
. Our previously studies showed the importance of MBG during 

osteoblast differentiation and mineralization both in vivo and in vitro 
8,9

. Other groups 

have also reported that the released soluble ions from bioglass can stimulate 

osteogenesis 
10,11

. For instance, the dissolution media of 45S5 Bioglass
® 

with Si ion 

concentration of 15 and 20µg/ml tends to promote osteoblast proliferation and 

differentiation
11

. However, the involved cellular mechanism was ambiguous, 

especially in bone disease such as osteoporosis.  

 

Osteoporosis is a common bone disease among post-menopausal women and the 

aging population, characterized by poor bone strength, low bone mass and bone 

microarchitectural impairment 
12

. Osteoporosis is induced by the disruption of bone 

remodeling resulting from an imbalance between bone formation and resorption 
13

. 

The ovariectomized (OVX) animal model is widely used as a golden standard to study 

the pathophysiological conditions of postmenopausal osteoporosis 
8,14,15

. Osteoporotic 

bone loss has been associated with increased adipogenesis in bone marrow post 

ovariectomy or glucocorticoid treatment 
16,17

. 
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Primary bone marrow mesenchymal stem cells (BMSCs) are widely used to study 

skeletal biology due to their potential to differentiate into mesodermal lineages such 

as osteoblasts, chondrocytes and adipocytes 
18-21

. BMSCs, which are vital components 

during new bone formation, can be easily accessed and they show a low risk of 

tumorigenesis after implantation 
22

. Interestingly, osteoblasts and adipocytes share a 

common precursor in the bone marrow stroma, and the imbalance between BMSCs 

osteogenesis and adipogenesis can lead to osteoporosis 
23

. Two main transcription 

factors namely, runt-related transcription factor 2 (Runx2) and peroxisome 

proliferator-activated receptor-γ (PPARγ), are generally regarded as the master 

regulators during osteogenesis and adipogenesis 
24-26

.  

 

We fabricated MBG through an evaporation-induced self-assembly method 
27

. MBG 

dissolution was diluted into different concentrations to investigate its effects on 

morphology, proliferation and differentiation of sham and OVX BMSCs. We also 

studied the expression patterns of Runx2 and PPARγ during osteogenesis and 

adipogenesis.  

 

Materials and methods 

2.1 Materials  

Nonionic block copolymer EO20PO70EO20 (P123), tetraethyl orthosilicate (TEOS), 

Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O), triethyl phosphate (TEP), 

FITC-phalloidin, β-glycerol phosphate, L-ascorbic acid, insulin, indometacin, 

dexamethasone and 1-methyl-3-isobutylxanthine were purchased from Sigma-Aldrich. 

Alizarin Red power, Oil Red-O power, p-nitrophenyl phosphate and p-nitrophenol 

were purchased from Aladdin. Penicillin/streptomycin (P/S) solution and α-MEM 

were purchased from HyClone. Fetal bovine serum (FBS) was purchased from Gibco. 

Triton X-100 was purchased from Amresco. DAPI was purchased from Beyotime. 

CCK-8 was purchased from Dojindo Molecular Technologies. ALP staining kit was 

purchased from Nanjing Jiangcheng Bioengineering Institute. PPARγ and Runx2 
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antibody were purchased from Cell Signaling Technology.  

 

2.2 Preparation of mesoporous bioglass 

MBG was synthesized using a reported evaporation-induced self-assembly process 
28

. 

In a typical synthesis, 4.0 g P123, 6.7 g TEOS, 1.4 g Ca(NO3)2·4H2O, 0.73 g TEP and 

1.0 g HCl (0.5 mM) were added into 60 g absolute ethanol and stirred in a 100 ml 

glass bottle for 1 day at 24 °C. Then the mixture was transferred into a Petri Dish for 

the evaporation-induced self-assembling. The dried products were calcined at 700 °C 

for 5 h to obtain the final MBG. The feeding molar ratio of Si and Ca is 80: 15. 

 

2.3 Characterization 

Transmission electron microscopy (TEM) images were taken with a JEOL 1010 

transmission electron microscope operated at 100 KV. Before TEM test, samples were 

dispersed in ethanol and transferred to a copper grid. Both the scanning electron 

microscopy (SEM) images and Energy Dispersive X-ray (EDX) analysis were taken 

with a JEOL 7001F scanning electron microscope equipped with an EDX detector 

operated at 10 kV. For SEM test, the samples were placed on conductive carbon film 

on SEM mount and coated with carbon using sputter coater (Quorun Tech. Co.). 

 

2.4 BMSCs isolation and in vitro culture 

All animal experiments were approved by the Ethics Committee at the School of 

Dentistry in Wuhan University, People’s Republic of China. Wistar female rats were 

subjected to bilateral sham or OVX operation at 8-week-old, and BMSCs from either 

sham or OVX rats were isolated after 2 months induction. After euthanasia by sodium 

pentobarbital and cervical dislocation, bone marrow was flushed out of the femur and 

tibia by using α-MEM containing 15% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin (P/S). Cells were cultured in a 5% CO2 incubator at 37 °C, the 

culture medium was changed every three days until the cells were passaged. BMSCs 

at passage 2 were used in our study. 
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2.5 Preparation of MBG dissolution extracts 

1 mg MBG was autoclaved before use. To prepare dissolution media, the particles 

were soaked in 50 ml α-MEM without serum at 37 °C for 48 h. After filtration by 10 

ml syringe with a 0.22 µm syringe filter (Millipore, US), the supernatant was 

collected and added with 15% FBS and 1% P/S to make the highest concentration 

(200µg/ml). Then 100µg/ml, 50µg/ml, and 25µg/ml concentration media were 

obtained by double dilution method for cell culture experiments.  

 

2.6 Cell Counting Kit-8 (CCK-8) assay 

Cell proliferation was measured by CCK-8 method according to the manufacturer’s 

protocol. In brief, either sham or OVX BMSCs were seeded into 96-well plates at a 

density of 3×10
3
 per well. After 24 h, the culture medium was replaced by 100 µl per 

well material dissolution culture medium at the concentrations of 200, 100, 50, 25, 

0µg/ml for 1, 3, 5, 7 and 9 days. The CCK-8 assay was performed at each time point 

by replacing the culture medium with 10% CCK-8 solution at 37 °C with 5% CO2. 1 h 

later, 100 µl of incubated cell suspension was transferred to a 96-well plate for optical 

density (OD) measurement at 490 nm by a microplate reader 
29

. 

 

2.7 Fluorescence microscopy analysis 

Cell culture glass slides (24-well format) were soaked in hydrochloric acid for 24h 

and washed by distilled water before autoclave sterilization. Then, the slides were put 

into the 24-well plates, and 1×10
4
 sham or OVX BMSCs per well were seeded. After 

24 h incubation, cell culture medium was replaced by the prepared MBG dissolution. 

At day 7, the slides were washed with PBS twice and fixed with 4% 

paraformaldehyde for 15 min at room temperature (RT), followed by another three 

times wash in PBS. Cells were stained with FITC-phalloidin (5µg/ml) for 1h at RT. 

After washing twice with PBS, samples were incubated with DAPI (10µg/ml) for 5 

min at RT. The cell morphology and cytoskeletal structure were observed by 

fluorescent microscopy (Leica DM4000, German).  
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2.8 Alkaline phosphatase staining 

Both sham and OVX BMSCs were seeded in 24-well plate at a density of 1×10
5
 cells 

per well. After 24 h incubation, culture medium was replaced by MBG dissolution 

plus osteogenic medium containing α-MEM supplemented with 15% FBS, 10 mM 

sodium β-glycerol phosphate, 50µg/ml L-ascorbic acids and 1.0×10
-8 

M 

dexamethasone. At day 7 and 14, alkaline phosphatase (ALP) staining was performed 

to examine osteogenic differentiation by using the ALP staining kit, according to the 

manufacturer’s instructions. The samples were observed under light microscopy 

(Leica DM IRB). 

 

2.9 Quantitative alkaline phosphatase activity 

The cell seeding density and culture procedures were the same as in ALP staining. 

Quantitative ALP activity was measured at day 7 and 14. At each time point, the 

culture media was removed and washed with PBS three times before treated with 150 

µl per well of 0.3% Triton X-100. The cell suspensions were transferred to 1.5 ml 

tubes and centrifuged at 14000 rcf at 4 °C for 10 min. Then, 50 µl of cell lysates per 

well were transferred to new 96-well plates to determine the ALP activity and total 

amount of protein by p-nitrophenyl phosphate method. After 2 h incubation at 37 °C, 

the reaction was stopped by adding 50 µl of 1 N NaOH per sample. The reaction 

product was determined at 405 nm in a microplate reader. Using p-nitrophenol as a 

standard, the ALP activity was calculated based on standards curves and then 

normalized to the total protein content determined by BCA protein assay kit. 

 

2.10 Alizarin red staining 

The cell seeding density and culture procedures were the same as in ALP staining. 

0.685 g Alizarin powder was dissolved into 50 ml distilled water, and the staining 

(pH=4.2) was adjusted by adding ammonium hydroxide. At day 14, cells were fixed 

and stained in Alizarin Red solution for 15 min and washed in distilled water to 

remove excess stain. The calcium nodule staining was photographed by Canon DSLR 

camera (Nikon Eclipse TS100) 
30,31

. 
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2.11 Oil red-O staining 

Both sham or OVX BMSCs were seeded at 1.0×10
5
 cells per well into 24-well plate, 

and the culture medium was replaced by MBG dissolution plus adipogenic medium 

containing α-MEM supplemented with 15% FBS, 1 mM 

3-isobutyl-1-methylxanthine,10ng/ml insulin and 60µM indomethacin and 1.0×10
-7 

M 

dexamethasone after 24 h incubation. The medium was changed every 3 days. At day 

14, the cells were fixed and stained with Oil Red solution for 10 minutes at RT. After 

removing excess stain, the red stained lipid droplets were photographed by light mi 

croscopy (Nikon Eclipse TS100). 

 

2.12 Quantitative real-time RT-PCR 

The cell seeding density and culture procedures were the same as in ALP staining. 

Sham and OVX BMSCs were washed with PBS and total cellular RNA was extracted 

using RNA kit (Omega, USA).Total RNA was reverse transcribed in accordance with 

the manufacturer’s instructions (Takara, Japan). PCR amplification was performed in 

a real-time PCR system with specific primers for Runx2, PPARγ, and GAPDH. The 

reaction conditions for PCR were 40 cycles of denaturation at 95°C for 15s, annealing 

at 55°C for 34s, and extension at 72°C for 1 min. Primer sequences for differentiation 

markers are detailed in Table 1. 

 

2.13 Western blotting 

1×10
6
 sham or OVX BMSCs were seeded per 10 cm cell culture dish. After 24h 

incubation, the culture medium was replaced by MBG dissolution and changed every 

three days till day 7 or 14. To obtain total protein, cells were lysed in ice cold RIPA 

lysis buffer and centrifuged at 12000 rcf for 10 min at 4°C to remove debris. Protein 

concentrations were determined by using BCA protein assay kit, and the protein 

extracts were heat denatured in SDS-PAGE sample loading buffer. Then, the protein 

samples were separated by 10% sodium dodecysulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and transferred onto polyvinylidene fluoride (PVDF) 
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membranes. The membranes were then probed with primary antibodies, including 

anti- PPARγ (1:1000), anti-Runx2 (1:1000) and anti-β-actin (1:500) at 4°C overnight. 

  

 

2.14 Statistical analysis 

All samples were measured in triplicate. The results were presented as mean ± 

standard deviation (SD). The data were submitted to analysis of variance, and means 

were compared by the Student’s test. Statistical significance was set to p<0.05. 

 

3 Results 

3.1 Characterization of MBG 

The TEM image of MBG showed a highly ordered one dimensional pore channel 

structure with the pore size of approximately 5 nm (Fig. 1A). The SEM image 

illustrated the irregular particle shapes of MBG with smooth surfaces (Fig. 1B). 

Corresponding EDX analysis confirmed the existence of Si, Ca, and P (Inset in the 

Fig. 1B). The mass ratio of Si to Ca was tested to be 88: 12 according to EDX results, 

close to the feeding molar ratio.  

 

3.2 Cell proliferation and morphology 

The biocompatibility of sham and OVX BMSCs cultured in MBG dissolutions was 

evaluated by CCK-8 assay (Fig.2). Sham and OVX BMSCs showed similar 

proliferation pattern within 9 days of culture (Fig.2A); this finding indicated that 

BMSCs proliferation was not affected by the concentration of MBG dissolution. 

Compared with sham BMSCs, OVX BMSCs exhibited a lower viability on days 7 

and 9 (Fig 2B) (P<0.05).  

 

Additionally, sham and OVX BMSCs were similar in cell size. The cytoskeletons of 

the two BMSCs were stained on day 7 by FITC-phalloidin which presents 

high-affinity to actin filaments. The sham BMSCs expanded with an elongated shape, 
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whereas the OVX BMSCs in MBG dissolution tended to be distributed in polygonal, 

short, and flat shapes (Fig 3). In addition, sham BMSCs exhibited increased 

production of pseudopodia around the cells compared with OVX BMSCs at lower 

concentrations of MBG dissolution (Fig.3B and 3G).  

 

3.3 Osteogenic and adipogenic differentiation of sham and OVX BMSCs 

3.3.1 Osteogenic differentiation 

Sham and OVX BMSCs were stained brown in the cytoplasmic region for ALP 

staining, which was highlighted by the red arrows (Fig. 4). The amount of positively 

stained BMSCs increased on day 14 in both groups.  . 

 

ALP activity was quantified after 7 and 14 days of induction in MBG dissolution plus 

osteogenic medium (Fig. 5). Sham BMSCs exhibited relatively higher levels of ALP 

activity than OVX BMSCs at both time points. Interestingly, the ALP levels in the 

various concentrations of MBG dissolution increased in a dose-dependent manner. 

The ALP levels reached to peak values at 50µg/ml of MBG dissolution, then 

significantly decreased in the highest doses of MBG dissolution (200µg/ml), except 

for the sham BMSCs cultured in 100µg/ml, which showed the highest ALP activity on 

day 14. 

 

To further analyze cell mineralization, Alizarin Red staining was performed after 14 

days of induction in MBG dissolution plus osteogenic medium (Fig. 6). Mineralized 

nodules were formed in all the groups, but the amount of mineralization was higher in 

sham BMSCs groups than in the OVX BMSCs. Additionally, moderate doses (50 and 

100µg/ml) of MBG dissolution induced more mineralized matrix, showing a similar 

trend to the level of ALP activity. 

 

Runx2 is a key transcription factor that regulates bone development and maintenance 

of the extracellular matrix 
32,33

. Quantitative real-time RT-PCR results for Runx2 

mRNA expression, relative to 0 groups as a control, are shown in Fig.7. Runx2 mRNA 
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expression of sham and OVX BMSCs in the various concentrations of MBG 

dissolution increased in a dose-dependent manner after 7 and 14 days of induction. 

100µg/ml of MBG dissolution induced more Runx2 mRNA expression in sham 

BMSCs (Fig. 7A and 7B). For OVX BMSCs, it reached to peak values at 25µg/ml of 

MBG dissolution, and significantly decreased in the highest doses of MBG 

dissolution (200µg/ml) on day 7 (Fig. 7A), whereas the OVX BMSCS cultured in 

100µg/ml showed the highest Runx2 mRNA expression on day 14(Fig. 7B). 

 

The results of Western blot analysis for Runx2 protein expression was shown in Fig.8. 

OVX BMSCs expressed significant lower levels of Runx2 compared with sham 

BMSCs after treating with MBG dissolution (Fig. 8A). Densitometric analyses 

showed that the expression of Runx2 was statistically higher in 50 and 25µg/ml MBG 

dissolution than in the other groups of sham BMSCs (Fig. 8B). The MBG dissolution 

did not rescue the damage of osteoporosis to cells in OVX BMSCs but presented 

suppressive effect in accordance with the expression of Runx2 (Fig. 8B).  

 

3.3.2 Adipogenic differentiation 

Oil Red-O staining and Western blot were performed to investigate the effects of 

MBG dissolution on sham and OVX BMSCs during adipogenic differentiation. The 

two BMSCs showed the accumulation of positively stained lipid vacuoles in their 

cytoplasm in response to adipogenic induction. Sham BMSCs formed significantly 

higher amount of lipid vacuoles than OVX BMSCs at each concentration of MBG 

dissolution (Fig. 9A-9J). Interestingly, 200 and 100µg/ml MBG dissolution induced 

lower Oil Red-O stained area (%) in sham BMSCs group, whereas 50 and 25 µg/ml 

MBG dissolution showed the most significant suppression in OVX BMSCs (Fig. 9K). 

These results suggested that OVX BMSCs were less vulnerable to adipogenic 

differentiation, and a lower dose of MBG was required to dampen adipogenesis in 

osteoporotic condition.  

 

PPARγ is a nuclear regulator in adipocyte growth, differentiation and metabolism 
34

. 
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Quantitative real-time RT-PCR results for PPARγ mRNA expression were shown in 

Fig.7. Interestingly, moderate doses (25 and 50µg/ml) of MBG dissolution led to a 

distinct decrease PPARγ mRNA expression as compared to that control group in both 

sham and OVX BMSCs. High concentration (200µg/ml) presented relatively weak 

decrease PPARγ mRNA expression of sham and OVX BMSCs (Fig.7C and 7D). 

 

We detected the protein levels of PPARγ both in sham and OVX BMSCs cultured in 

MBG dissolution. Lower expression of PPARγ was found in OVX BMSCs than that 

in sham BMSCs (Fig.8A). Statistical suppression of PPARγ expression was observed 

in sham BMSCs than in the other groups in 200µg/ml concentration MBG dissolution 

compared to other groups (Fig.8C). Treatment with 25, 50, and 200µg/ml MBG 

dissolution led to a distinct decrease PPARγ expression as compared to that at 0µg/ml 

group in OVX BMSCs (Fig. 8C). 

 

4 Discussion 

MBG, as the third generation of biomaterials, can stimulate specific cellular responses 

at the molecular level 
35

. MBG is considered as a promising bone substitute for bone 

defect healing because it release soluble Si, Ca, P and Na ions at contact surface 
7
. 

The present study was to evaluate the dosing effects of MBG dissolution on sham and 

OVX BMSCs during osteogenesis and adipogenesis. Cell viability was not affected 

by MBG dissolution or OVX condition. In addition, both the osteogenesis and 

adipogenesis of BMSCs were significantly reduced under osteoporotic condition 

during MBG stimulation. However, moderate doses (50 and/or 100µg/ml) of MBG 

dissolution can better promote ALP activity and mineralization in osteoporotic and 

healthy models, whereas the doses (200 and/or 100µg/ml) suppressed adipogenesis of 

BMSCs in the healthy model.  

 

Studies reported that Ca ion concentrations above 10mmol are cytotoxic to osteoblasts, 

but suitable Ca ion concentrations (2-8mmol) can promote cell proliferation 
36

. For 

instance, P ions (10 mmol) stimulated the expression of the matrix Gla protein in 
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osteoblasts which is a key regulator during bone formation 
37

. In the current study, we 

first detected the cell viability to evaluate the safe dosing range (0-200µg/ml) of MBG 

dissolution. No statistical difference was found in cell proliferation after culturing in 

the tested ranges of MBG dissolution. In addition, OVX BMSCs proliferated slower 

than sham BMSCs on days 7 and 9, indicating a defective potential of regeneration in 

osteoporosis. Moreover, BMSCs differentiation was accompanied by considerable 

alterations in morphological and cytoskeletal rearrangements. BMSCs changed from a 

characteristic typical spindle shape towards a spherical form
2
 . By contrast, sham and 

OVX BMSCs cultured without MBG dissolution maintained a slender shape. The 

morphological changes might have resulted from the effect of the released Si, Ca, P, 

and Na ions.  

 

ALP, a specific extracellular enzyme secreted by active osteoblasts, can directly 

participate in the synthesis and mineralization of bone matrix 
38

. The present results 

showed that the osteogenic potential of OVX BMSCs was lower than that of sham 

BMSCs, and the moderate doses (50-100µg/ml) of MBG dissolution presented an 

optimal effect on ALP activity and matrix mineralization. We hypothesized that those 

differences are probably attributed to the ions released by MBG. Bioglass releases 

ions involved in the bone metabolism and plays a physiological role in angiogenesis, 

bone tissue growth and mineralization 
39,40

. For instance, Ca ions can directly activate 

intracellular Ca-sensing receptors in osteoblasts 
41

; Si ions can promote mineralization 

42
 and osseointegration 

43
 at the initiation stage of bone formation, which is probably 

ascribed to the effects on collagen I and osteopontin synthesis 
44

. P ions can 

upregulate Glvr-1 and Glvr-2 in odontoblast-like cells and ERK1/2 phosphorylation, 

as well as promote CaP crystalization 
45

. Moreover, the released ions can result in an 

increased pH environment which favors the precipitation of the CaP surface layer 
46

. 

Finally, MBG dissolutions can accelerate the osteoblasts cell cycle through the 

transition from G0 to G1 stages, and the MBG substrate could also accelerate cell 

proliferation in S phase and G2-M phase 
47

. 
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Runx2 regulates osteoblastic and chondrogenic cell differentiation 
25

during bone 

formation. Komori et al. first reported that Runx 2
-/-

 displayed a complete lack of 

intramembranous and endochondral ossification because of the immature osteoblasts 

48
. In our study, the mRNA expression of Runx2 of sham BMSCs was relatively 

upregulated after moderate concentration (50-100µg/ml) of MBG dissolution 

stimulation compared to 0µg/ml control group. Moreover, the protein expression of 

Runx2 was expressed 5-10 times higher in sham BMSCs than in OVX BMSCs. 

Afterward, 25 and 50µg/ml of MBG dissolution statistically enhanced Runx2 

expression in sham BMSCs. However, all concentrations of the MBG dissolution 

slightly decreased the protein expression of Runx2 in OVX BMSCs after 14 days 

osteogenic induction. Other transcription factors such as transcriptional activator 

PDZ-binding motif(TAZ)
49

 and osterix 
50

 also demonstrated a proosteogenic and 

antiadipogenic relationship. We hypothesized that the other transcription factors were 

activated by the MBG dissolution induction in the osteoporotic model.  

 

Osteoblasts and adipocytes originated from a common precursor MSCs, and an 

inverse correlation existed between adipogenesis and osteogenesis 
51

. BMSC 

adipogenesis undergoes the determination phase and terminal differentiation phase 
52

. 

Preadipocytes show fibroblastic morphology in determination phase, but differentiate 

into adipocytes and acquire lipid synthesis and storage function during the terminal 

phase of differentiation. The positively stained lipid vacuoles in the cytoplasm of 

sham and OVX BMSCs showed the adipogenic terminal differentiation phase after 14 

days of  induction 
53

. The main cause of pathogenesis in primary osteoporosis is the 

senescence of BMSCs, leading to decrease in proliferation and differentiation
54

. The 

senescence of BMSCs gradually affects BMSCs stem-like properties and finally 

damages potential to engage in multiple differentiation
54,55

. Thus, OVX BMSCs 

exhibited lower adipogenic potential than sham BMSCs, possibly because of their 

damaged differentiation capacity. 50µg/ml MBG dissolution can significantly 

suppress OVX BMSCs adipogenesis, while 200µg/ml and 100µg/ml MBG dissolution 

reduced the adipogenesis in sham BMSCs.  
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PPARγ is the master regulator of adipogenesis and has been well described for its 

anti-osteoblastogenic effects 
24

. All concentration of MBG dissolution showed 

relatively inhibition effect on the mRNA expression of PPARγ in sham and OVX 

BMSCs at day 7 and 14 compared to 0µg/ml control group, especially the moderate 

concentration (25-50µg/ml) of MBG dissolution. Sham BMSCs showed an enhanced 

level of PPARγ expression compared with OVX BMSCs, which further confirmed the 

defective adipogenic phenotype in osteoporotic condition according to the Oil Red-O 

staining results. The MBG dissolution demonstrated a strong anti-adipogenic effect on 

OVX BMSCs, but only 200µg/ml MBG dissolution showed statistical difference in 

sham BMSCs. These phemonena can be explained by an increased production of bone 

marrow adipocytes counterbalanced with a dimished amount of osteogenic cells in 

osteoporotic patients
56

. The imbalance between adipogenesis and osteogenesis has 

been shown to be associated with obesity and osteoporosis 
57,58

. Previous studies 

reported that osteopontin can regulate BMSCs differentiation by inhibiting C/EBPs 

signaling which plays an important role in directing adipogenesis and osteogenesis 
59

. 

In this study, the MBG released ions that contributed to the regulation of osteogenesis 

and adipogenesis in both healthy and osteoporotic conditions. 

 

Conclusion 

The osteogenic and adipogenic potentials of BMSCs were significantly declined in 

osteoporotic condition. MBG dissolution at 50-100µg/ml of MBG dissolution can 

promote osteogenesis in BMSCs of healthy and osteoporotic models, while 

200-100µg/ml of MBG dissolution suppressing adipogenesis of BMSCs in healthy 

models and 25-50µg/ml MBG dissolution suppressing adipogenesis of BMSCs in 

osteoporotic models. These results suggest the potential of MBG as potential 

candidate for bone substitutes in the future applications. 
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Table 1 The primers used for real-time RT-PCR (GAPDH was used as a 

housekeeping gene) 

Primer Sequences 5＇＇＇＇-3＇＇＇＇ 

RUNX2 Forward: ATCCAGCCACCTTCACTTACACC 

Reverse: GGGACCATTGGGAACTGATAGG 

PPARγ Forward: CGC TGA TGC ACT GCC TAT GA 

Reverse: GGG CCA GAA TGG CAT CTC T 

GAPDH Forward: AGAAGGTGGTGAAGCAGGCGG 

Reverse: ATCCTTGCTGGGCTGGGTGG 
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Fig. 1 TEM (A) and SEM (B) image of MBGs. Inset in B is the corresponding EDS pattern.  
Fig.1  
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Fig. 2 CCK-8 assay: Sham and OVX BMSCs (A) cultured in different concentration of MBGs dissolution 
medium (0, 25, 50, 100 and 200 µg/ml) at day 1, 3, 5, and 9. Sham and OVX BMSCs cultured in α-MEM 

culture medium at day 1, 3, 5, 7 and 9 (B). (n=4 in each group; * P<0.05)  
Fig. 2  

69x26mm (600 x 600 DPI)  
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Fig. 3 Cytoskeletal morphology of sham BMSCs (A, B, C, D, E) and OVX BMSCs (F, G, H, I, J) cultured in 
different concentration of MBGs dissolution medium (0, 25, 50, 100 and 200 µg/ml) at day 7 under 

fluorescence microscopy.  

Fig. 3  
69x23mm (600 x 600 DPI)  
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Fig. 4 Alkaline phosphatase staining of sham BMSCs (A, B) and OVX BMSCs (C, D) , which were stained 
brown in cytoplasmic region cultured in osteogenic induction medium at day 7 and 14.  

Fig. 4  
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Fig. 5 Quantitative ALP activity of sham and OVX BMSCs cultured in different concentration of MBGs 
dissolution medium (0, 25, 50, 100 and 200 µg/ml) at day 7(A) and 14 (B). (n=3 in each group; * P<0.05) 

Fig. 5  
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Fig. 6 Alizarin red staining of sham BMSCs (A, B, C, D, E) and OVX BMSCs (F, G, H, I, J) cultured in different 
concentration of MBGs dissolution medium (0, 25, 50, 100 and 200 µg/ml) under osteogenic induction for 14 

days.  

Fig. 6  
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Fig.7 Real-time PCR analysis of gene Runx2 and PPARγ in sham and OVX BMSCs in different concentration of 
MBG extract medium (0, 25, 50, 100 and 200 µg/ml) under osteogenic induction for 7 (A, C) of 14 days (B, 

D). (n=3 per group; * P＜0.05)  

Fig.7  
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Fig. 8 The protein expression of PPARγ and Runx2 in sham and OVX BMSCs cultured in different 
concentration MBGs dissolution medium (0, 25, 50, 100 and 200 µg/ml) for 14 days (A). Densitometric 

analysis for the protein expression of Runx2(B). Densitometric analysis for the protein expression of 
PPARγ(C)  

Fig. 8  
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Fig. 9 Oil Red-O staining of sham BMSCs (A, B, C, D, E) and OVX BMSCs (F, G, H, I, J) cultured in different 
concentration of MBGs dissolution medium (0, 25, 50, 100 and 200 µg/ml) under adipogenic induction for 14 

days. ) (K) Percentage of (+) Oil red staining in sham or OVX BMSCs (n=3 per group; * P<0.05)  
Fig. 9  
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