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ABSTRACT 8 

Reservoir and cap-rock core samples with variable lithology’s representative of 9 

siliciclastic reservoirs used for CO2 storage have been characterized and reacted at reservoir 10 

conditions with an impure CO2 stream and low salinity brine.  Mineralogical controls on the 11 

resulting changes to porosity and water chemistry have been identified.  The tested siliciclastic 12 

reservoir core samples can be grouped generally into three responses to impure CO2-brine 13 

reaction, dependent on mineralogy.  The mineralogically clean quartzose reservoir cores had 14 

high porosities with negligible change, after reaction, in resolvable porosity or mineralogy, 15 

calculated using X-ray micro computed tomography and QEMSCAN.  However, strong brine 16 

acidification and a high concentration of dissolved sulphate were generated in experiments 17 

owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block 18 

pore throats and reduce permeability.  The reaction of the impure CO2-brine with calcite-19 

cemented cap-rock core samples caused the largest porosity changes after reaction through 20 

calcite dissolution; to the extent that one sample developed a connection of open pores that 21 

extended into the sample.  This has the potential to both favor injectivity but also affect CO2 22 
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migration.  The dissolution of calcite caused the buffering of acidity resulting in no significant 23 

observable silicate dissolution.  Clay-rich cap-rock core samples with minor amounts of 24 

carbonate minerals had only small changes after reaction.  Created porosity appeared mainly 25 

disconnected.    Changes were instead associated with decreases in density from Fe-leaching of 26 

chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded 27 

sandstone and shale core also developed increased porosity parallel to bedding through 28 

dissolution of carbonates and reactive silicates in the sandy layers.  Tight interbedded cap-rocks 29 

could be expected to act as baffles to fluids preventing vertical fluid migration.   Concentrations 30 

of dissolved elements including Ca, Fe, Mn, and Ni increased during reactions of several core 31 

samples.  Precipitation of gypsum, Fe-oxides and clays on seal core samples sequestered 32 

dissolved elements including Fe through co-precipitation or adsorption.  A conceptual model of 33 

impure CO2-water-rock interactions for a siliciclastic reservoir is discussed.  34 

 35 

KEYWORDS 36 

CO2 geological storage; sandstone reservoir; cap-rock, SO2 impurities, O2 impurities; CO2-water-37 

rock interactions; micro CT 38 

 39 

1. INTRODUCTION  40 

CO2-water-rock reactions during CO2 storage may not only affect water quality and mineralogy, 41 

but can also dynamically shape the pore and throat morphologies of the rock potentially 42 

changing porosity and permeability and hence fluid migration (Farquhar et al., 2015; Luquot et 43 

al., 2016; Navarre-Sitchler et al., 2013).  Capture gas streams, from industrial processes such as 44 

coal fired power plants (e.g. post combustion capture or oxy-fuel processing), gas processing, 45 
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lime, steel, or cement production, sequestered subsurface can contain different concentrations 46 

and mixtures of impurity gases along with CO2 (Porter et al., 2015; Talman, 2015).  For coal 47 

combustion, depending on the combustion and capture system, concentrations of O2 ranging 48 

from 0 – 5 % have been reported, with SOx concentrations of 0 – 70 ppm.  SOX concentrations 49 

up to 0.5 and 2.5% have been considered by authors as representative of capture from cement 50 

production or unprocessed flue gas (Last and Schmick 2011; Talman, 2015).  The concentrations 51 

of SO2 and O2 in experiments were selected to represent an average of those suggested by 52 

literature.  The majority of current capture techniques however require scrubbing of SOX to low 53 

concentrations, for example <10ppm for MEA, hence re-addition of SO2 to the CO2 stream post 54 

purification may be necessary to attain higher concentrations.  CO2 streams containing impurity 55 

gases including SOX, O2, NOX and H2S have been identified as potentially more reactive than 56 

pure CO2 to rock and well-bore materials (Jacquemet et al., 2008; Pearce et al., 2015a; Ruhl and 57 

Kranzmann, 2013; Wilke et al., 2012).  The majority of experimental and geochemical modelling 58 

studies of CO2-water-rock interactions, however, have used pure CO2. Relatively few studies 59 

have presented experimental and modelling data with the presence of one or more impurity 60 

gases, and data for O2 or NOx co-injection are extremely sparse (Pearce et al., 2016).  SO2 has 61 

been observed to acidify formation water, enhancing silicate dissolution, and also to reduce Fe3+ 62 

to Fe2+ making it available for mineral trapping as siderite or formation of sulphate minerals 63 

(Palandri and Kharaka, 2005; Pearce et al., 2015b).  Some geochemical modelling studies have 64 

predicted strong acidification with SO2 co-injection, however other studies have shown that the 65 

presence of carbonate minerals can buffer the pH (Kirste et al., 2016; Xu et al., 2005).  O2 has 66 

the potential to oxidize co-injected SO2 or minerals such as pyrite, acidifying formation water, 67 

and also induce precipitation of oxide minerals (Jung et al., 2013; Lu et al., 2016; Lu et al., 2014; 68 
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Schaef et al., 2013; Shao et al., 2014).  Changes to system redox potential through injecting CO2 69 

(± SO2, H2S, O2 or NOX) can potentially mobilize elements such as Fe and Mn to solution or 70 

immobilize them in or on minerals such as siderite, Fe-oxides and hydroxides, these metals can 71 

be of concern if fluids migrate to drinking water aquifers or bores (Karamalidis et al., 2013; 72 

Marcon and Kaszuba, 2015).  This higher reactivity of impure gas streams also has the potential 73 

to lead to benefits such as enhanced mineral trapping and remediation or self-sealing as long as 74 

potential negative impacts can be identified and mitigated.  A reduction in capture and 75 

purification costs has also been suggested by avoiding, for example, SOx scrubbers and co-76 

injecting SO2 in certain situations (Glezakou et al., 2012; Xu et al., 2007).  Capture cost 77 

reductions have recently been reported for CO2 and H2S co-injection at the Carbfix site.     78 

            Automated rock core analyses such as QEMSCAN (automated mineral analysis), 3D X-79 

ray micro computed tomography (micro-CT) and Hylogger, are increasingly used for large scale 80 

characterization of core mineralogy and rock properties by the oil and gas industry and more 81 

recently for CO2 sequestration sites (Farquhar et al., 2013; Golab et al., 2015b; Higgs et al., 82 

2015).  These data can be incorporated into larger scale site models to improve predictability of 83 

reservoir scale behavior, especially when combined with traditional methods such as X-ray 84 

diffraction (XRD) or mercury intrusion capillary pressure.  A handful of studies have used 85 

micro-CT imaging or core scale CT imaging and QEMSCAN before and after pure CO2-brine 86 

rock reactions, either coupled with water chemical analyses or geomechanical characterization 87 

including (Farquhar et al., 2015; Hangx et al., 2013; Luquot et al., 2016; Smith et al., 2013).  The 88 

formation of wormholes in limestone or evaporite cap-rock core samples or dissolution of calcite 89 

and dolomite cements around quartz framework grains in siliciclastic core samples has been 90 

observed by CT in batch or flow through reactions.  Fracture evolution and permeability 91 
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reduction through fines movement in fractured carbonate cap-rock has also been characterized by 92 

CT (Ellis et al., 2013; Ellis et al., 2011).  The coupling of high resolution micro-CT imaging with 93 

QEMSCAN analysis and conventional scanning electron microscope energy dispersive spectra 94 

(SEM-EDS) allows the characterization, quantification and visualization of pores, throats and 95 

mineral distributions (Golab et al., 2015b).  The further coupling of these rock characterization 96 

techniques with dynamic water chemical changes during gas-water-rock interactions reveals the 97 

reactions controlling pore network morphology, which can be linked to rock lithology and assist 98 

interpretation.  The potential effect on water chemistry or mineral trapping can be assessed; in 99 

addition identifying the reaction of minor amounts of minerals not resolvable by rock 100 

characterization often necessitates identification through changes in water chemistry. 101 

Several target sandstone reservoirs internationally have variable lithology, with similar reactive 102 

minerals to the study site including calcite and ferroan carbonates, chlorite, and plagioclase 103 

feldspars e.g. the Stuttgard Formation of the Ketzin site, Germany, the Archer Daniels Midland 104 

demonstration site, Illinois Basin, USA, or the Adventdalen Group, Norway (Alemu et al., 2011; 105 

Carroll et al., 2013; Fischer et al., 2013).  Fe-rich chlorite has been observed in several sites 106 

including Ketzin and Krechba, Algeria, (Armitage et al., 2010).   107 

Comparing the reactivity of cores of different lithologies often present in CO2 storage reservoirs 108 

allows a broader understanding of potential changes to porosity, mineralogy, and water 109 

chemistry linked to lithology.  The objective of this study was to determine the responses of 110 

different lithology cores to impure CO2.  Six representative lithologies of the quartzoze Precipice 111 

Sandstone, and calcite cemented or clay-rich Evergreen Formation and Hutton Sandstone core 112 

samples from a target low salinity CO2 sequestration site in the Surat Basin, Australia, were 113 

characterized before and after reaction with a range of techniques.  Core samples were reacted 114 
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with O2-SO2-CO2-brine at reservoir conditions with periodic fluid sampling and analyses.  A 115 

generalized conceptual model linking siliciclastic core lithology with changes to water 116 

chemistry, mineralogy, porosity and pore connectivity was developed.              117 

2. METHODS 118 

Six core sections from the West Wandoan 1 well drilled in the Surat Basin, Queensland, 119 

Australia, for a CO2 storage feasibility study were tested.  Two quartzose core sections from the 120 

reservoir unit, the Precipice Sandstone, sampled at 1217.48 and 1165.44 m depths, referred to as 121 

P1217m and P1165m were selected (note, after reaction the core samples or sub-plugs are 122 

referred to as e.g., P1217mR).  Three core sections from the lithologically heterogeneous 123 

Evergreen Formation (cap-rock) sampled at 1056.10 m, 1043.70 m, and 981.24 m were reacted.  124 

Additionally one core sample from the overlying Hutton Sandstone at 800.83 m was also tested.  125 

The analytical techniques applied to the cores are summarized in Table A1.  126 

The characterization of different core samples by a similar technique with 3D micro-CT and 127 

QEMSCAN have been described in detail previously (Farquhar et al., 2015; Golab et al., 2014).  128 

Briefly, whole core sections were first scanned by FEI HeliScan micro-CT at low resolution to 129 

select representative areas to core sub-plugs of 3 - 8 mm diameter that were subsequently imaged 130 

by FEI HeliScan micro-CT to produce tomograms at 1.7 – 5.1 µm voxel size.  Core sub-plugs 131 

from the Evergreen Formation and Hutton Sandstone were 3 mm in diameter, with the Precipice 132 

Sandstone P1165m sub-plug 6 mm in diameter and P1217m sub-plug 8 mm in diameter.  Voxel 133 

sizes were 1.7 μm for E1056m, 2.1 μm for E981m and E1043m, 2.3 μm for H800m, 3.7 μm for 134 

P1165m, and 5.1 μm for P1217m.  Adjacent sub-plugs were also prepared for reaction with pure 135 

CO2 as reported elsewhere (Dawson et al., 2015).  A slice was trimmed from each sub-plug with 136 

a polished section prepared for higher-resolution 2D FEI Quanta FEG 650F SEM imaging and 137 
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FEI QEMSCAN analysis (Golab et al., 2015c; Golab et al., 2010; Knackstedt et al., 2013).   This 138 

process was repeated after the sub-plugs were reacted, with the polished section taken from the 139 

same end of the sub-plug. The same end was used so that the two polished sections can be 140 

compared but differences could occur owing to minor vertical heterogeneities.   141 

The pre and post reaction tomograms were then registered into perfect geometric alignment with 142 

one another to characterize changes caused during the gas-brine-rock interaction. The two 3D 143 

tomograms were also registered to the 2D SEM image mosaics and then to the 2D mineral maps 144 

from QEMSCAN.   This allowed the characterization of µm-scale features, e.g. the 3D 145 

occurrence and distribution of heavy minerals, pores, cements, clay minerals and organic 146 

material.  In the pre-reaction sub-plugs, sub-resolution pores (pores smaller than the given 147 

resolution) associated with clay minerals, weathered grains and/or diagenetic cements were 148 

characterized using a tomogram differencing technique described below and in Golab et al. 149 

(2010). Each sub-plug was first imaged by micro-CT in the dry state, then saturated with an X-150 

ray dense brine (KCl) to highlight the connected pore space and re-imaged in the saturated state. 151 

The two tomograms were then registered into perfect geometric alignment and a difference 152 

tomogram was created by appropriately calibrating attenuation and then subtracting the 153 

registered tomograms. In this difference tomogram the greyscale values directly correspond to 154 

the volume of brine filling the connected porosity at each voxel. A voxel fully capturing a pore 155 

will have a value on one end of the grey scale spectrum, a voxel capturing a solid material, thus 156 

having no brine response at all will be at the other end of the grey scale spectrum. Since only the 157 

brine response is captured, the grey scale values of partially filled voxels will change linearly 158 

between those endpoints depending on their sub-resolution porosity. 159 
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This digital processing was followed by porosity segmentation to calculate and map the total 160 

effective porosity. For this purpose, each voxel within the images is designated to either 161 

represent resolved pores, solids, or the intermediate region, based on three-phase image 162 

segmentation.  Subsequently, voxels segmented as resolved pores were assigned a 100% porosity 163 

value and those segmented as solid a 0% porosity value. All voxels of the intermediate region of 164 

the three-phase segmentation were binned based on their intensity. This allows representation of 165 

the porosity of each voxel from the greyscale value between 0% porosity and 100% porosity. 166 

This procedure allows the mapping and quantification of the total connected porosity averaged 167 

over the entire plug tomograms.  Increases in the sub-resolution porosity caused by reactions 168 

were calculated from the decrease in X-ray density between the pre- and post-reaction 169 

tomograms. Other causes of changes in X-ray density between the pre- and post-reaction 170 

tomograms are Fe leaching from Fe-chlorite or movement of fines.  On registering the post-171 

reaction tomogram it was found that the Fe-chlorite had become less X-Ray attenuating but SEM 172 

images of it post reaction didn't show an increase in porosity.  In the literature there are multiple 173 

references to Fe leaching of chlorite so it was assumed that the loss of X-Ray attenuation without 174 

an increase in porosity was due to leaching of Fe.   175 

QEMSCAN™ is useful for gaining quantitative data on coarser grained rocks but on very fine 176 

grained or clay-rich lithologies it is less useful because the interaction volume is too large to 177 

allow the accurate identification of minerals. Hence, for very fine-grained material, the energy 178 

dispersive X-ray spectra collected for a given pixel may be a mix of multiple minerals, resulting 179 

in a component of unclassified or trace unidentified minerals. 180 

Spot SEM-EDS was also performed on uncoated unpolished core blocks pre- and post-reaction 181 

with a JEOL JSM-6460LA environmental SEM fitted with a Minicup EDS, where the same 182 
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positions were analyzed pre- and post-reaction, where possible, to avoid ambiguity with previous 183 

diagenetic alteration.  Unstressed nitrogen and 1500 mg/kg NaCl brine permeability of selected 184 

15 mm core blocks was also measured pre and post reaction by a differential pressure technique 185 

using a linear fit applying the Klinkenburg correction (Dawson et al., 2015).       186 

Adjacent core sections were subjected to whole rock fusion and elemental analysis by 187 

inductively coupled plasma optical emission spectroscopy (ICP-OES) to determine major 188 

elemental compositions of the core sub-samples reported as percentage oxides.  Loss on ignition 189 

(LOI) was also determined, along with trace element analysis by HNO3-HF-HCl whole rock acid 190 

digestion and analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) with an 191 

error less than 5% as described previously (Pearce et al., 2015b).  The reacted core section of 192 

E1056mR was also analysed for minor and trace element content.  E 1056R and precipitated 193 

material on H800mR were characterized by XRD post-reaction to identify any precipitates with a 194 

Bruker D8 Advance diffractometer.   195 

Core sub-plugs and 15mm blocks were submerged in 100ml of deoxygenated 1500 mg/kg NaCl 196 

brine and reacted in unstirred, lined, reactors at 60° C and 12 MPa with a water-rock ratio of 10, 197 

with the reactors shown in Figure 1 (Pearce et al., 2015a).  The reactors are based on unstirred 198 

Parr reactors with temperature control through a dedicated Labview interface.  They are 199 

pressurized with an ISCO injection pump.  Vessels and the fluid sampler system are fully lined 200 

in PEEK, with PEEK core sample holders to prevent contact of reaction fluids with the vessel.  201 

The E1056m rock sample was however reacted in a 1% KCl brine to prevent potential 202 

disaggregation by swelling clays.  The reactors were first purged and pressurized with N2, and 203 

after 3 days fluids were sampled, the reactors depressurized, and repressurized with a gas 204 

mixture of 2% O2, 0.16% SO2 and a balance of CO2.  Fluids were sampled periodically, with pH 205 
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and conductivity measured immediately ex situ (TPS WP81, error ± 0.01).  Samples were 206 

filtered (0.45 µm), diluted 10 times, acidified with 2% HNO3 and analysed by Inductively 207 

Coupled Plasma Optical Emission Spectroscopy (ICP-OES) with a Perkin Elmer Optima 208 

3300DV, and error less than 5%.  Unfiltered samples from the reactions of the cap-rock cores 209 

were also analysed by ICP-OES for total metals.  Selected samples were filtered, diluted, 210 

acidified with ultrapure HNO3 and analysed by ICP-MS.  Sulphate was measured by ion 211 

chromatography (ALS Environmental, Brisbane, ± 1 mg/kg) and alkalinity by titration on 212 

selected unacidified samples.  A blank experiment without rock was also performed to ascertain 213 

any baseline cations from the brine or minor reactor corrosion.  After reaction rock blocks and 214 

sub-plugs were removed and oven dried at 60°C.  215 

Experiments were modelled using the react module of Geochemist Workbench 9 (GWB) using 216 

experimental data as the initial water chemistry and mineralogical input to determine in situ pH 217 

and assist interpretation (Bethke and Yeakel, 2012; Delany and Lundeen, 1989).  Input kinetic 218 

parameters and surface areas are described previously and are in the supporting material of this 219 

article (Pearce et al., 2015a).         220 

  221 

3. RESULTS  222 

 223 

3.1 Changes to core mineralogy and porosity  224 

3.1.1 Precipice Sandstone 225 

The Precipice Sandstone sections P1217m and P1165m of the WW1 well are quartzose with 2-3 226 

area% pore filling kaolin as determined by QEMSCAN and traces of muscovite and rutile (Fig. 227 

2a, Table 1).  Both kaolinite and dickite polymorphs were identified in XRD of adjacent core 228 
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samples, both kaolinite and dickite were previously identified in Precipice Sandstone core from 229 

the Chinchilla-4 well (Dawson et al., 2015).  P1165m was fine to medium grained, and P1217m 230 

course grained, friable and poorly sorted.  At the core scale coarser grained horizontal layers 231 

were visible in P1217m. Micro-CT resolvable porosity of the sub-plugs is 20.9 % and 19.4 % for 232 

P1217m and P1165m respectively (Table 2a), in good agreement with 22 and 18.5% porosity 233 

respectively determined by mercury injection of adjacent core sections (Dawson et al., 2015).  234 

This is also in good agreement with helium porosities of Precipice Sandstone core samples from 235 

the same well reported elsewhere in the range 13.6 – 25% with the majority above 20% (Golab et 236 

al., 2015a).  Trace minerals identified in the core blocks by SEM-EDS (and confirmed by XRD) 237 

included Na-carbonates, K-(Na)-sulphates (Fig. 3a, c), and calcite (Fig. 3c) in P1217m only.  It 238 

is, however, possible that the K-sulphates originated from precipitated drilling fluids.  239 

Rhodochrosite, orthoclase and muscovite in trace amounts were identified in adjacent core 240 

sections of both core section depths in XRD.  Ti-oxides (Fig. 3e), sporadic framboidal pyrite, and 241 

siderite were observed by SEM-EDS in both core depths.  Fe-oxide laminations have been 242 

reported elsewhere in all cores, with Fe-oxides observed in P1165m via petrography.  The core 243 

trace element contents are given in Table 3b, a high Ti concentration reflects the Ti-oxide 244 

content.   245 

Post-reaction the trace amounts of Na-carbonates, K-sulphates, calcite and siderite dissolved in 246 

P1217m (Fig. 3b,d).  Specks of precipitated oxides and sulphides containing Fe, Ni, Cr and S 247 

were observed on kaolinite post reaction.  The decrease in calculated micro-CT resolvable 248 

porosity of P1165m was less than 0.5 % and attributed to dissolution of trace minerals and fines 249 

or clay movement (Table 2b). Movement of kaolinite was observed by both SEM on block 250 

surfaces (Fig. 3f) and when comparing pre and post reaction micro-CT images in both P1165m 251 
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and P1217m (Fig. 1S, supporting material).  The brine permeability of P1165m decreased 252 

slightly from 294 mD to 277.5 mD post-reaction, and the N2 permeability of P1217m increased 253 

from 1480.9 mD to 1650.5 mD (brine permeability of P1217m was above instrument range) 254 

(supporting material).  The initial permeabilities are within the ranges of those measured with air 255 

and brine from various Precipice Sandstone core plugs from the same well reported elsewhere 256 

(Golab et al., 2015a). The air permeabilities were generally higher in the lower Precipice 257 

Sandstone, with a very low permeability in the cores measured around 1207 – 1212 m depth.        258 

 259 

3.1.2 Evergreen Formation 260 

The Evergreen Formation core E1056m is calcite cemented around quartz, plagioclase, and K-261 

feldspar framework grains, with pore filling illite-smectite, and chlorite, kaolinite and muscovite 262 

(Fig. 2b, Fig. 4a), 25 area% calcite was quantified in the sub-plug slice by QEMSCAN (Table 1).  263 

The plagioclase was identified as  both albite and calcium-rich labradorite in electron microprobe 264 

and XRD reported elsewhere with lesser orthoclase (Dawson et al., 2015).  Apatite, Ti-oxide and 265 

coal are present in trace amounts (Fig. 5a), along with sporadic sphalerite and chalcopyrite.  266 

Micro-CT quantified 0.5% of possible organic content in E1056m.  Higher major and trace 267 

element contents were generally present in all Evergreen Formation core samples compared to 268 

the Precipice Sandstone (Table 3), including Fe, Cr, Ni, V, Zn, and Li.  After reaction, trace 269 

element content generally decreased slightly in E1056m core (supporting material).  Micro-CT 270 

resolvable porosity was 0.6% in the sub-plug, but the image differencing technique yielded a 271 

porosity of 4.4% (Table 2a) (micro-CT image analysis of the sister sample used for pure CO2 272 

reaction yielded a higher porosity of 6.8%) (Golab et al., 2015c). Porosity determined by 273 

mercury injection capillary pressure analysis of an adjacent core sample was higher at 8.2 % 274 
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which may reflect core heterogeneity.   E1056m contains ~11 % illite-smectite that could 275 

alternatively host sub-micron porosity in the range 3-4 nm.  Brine permeability was below mD 276 

range.  Helium porosity of a similar depth core sample from the same well (from 1056.24 m) has 277 

also been reported elsewhere at 6.8%, with helium porosities of Evergreen cores reported in the 278 

range 4.7 – 13.7 indicating significant variability with depth (Golab et al., 2015a). 279 

Post-reaction, calcite cement was dissolved from E1056mR, with a reduction of 9 area% calcite 280 

in the sub-plug polished section (Table 1), and porosity was created extending into the center of 281 

the sub-plug (Fig. 4a,b,c).  High resolution SEM images of polished slices through the sub-plug 282 

show calcite dissolution at the edges leaving residual framework silicate grains and clays.  In the 283 

center of the sub-plug calcite cement remains but contains channels through pre-existing micro 284 

fractures in the calcite cement (Fig. 3S, supporting material).  The change in tomograms after 285 

reaction was 9.1% (Table 2b), which includes porosity changes from mineral dissolution but 286 

potentially also small changes from fine particle movement, Fe-leaching from chlorite or slight 287 

misalignment of tomograms.  Pore-filling clay was revealed by calcite dissolution potentially 288 

hosting sub-micron porosity (Fig. 5a).  Silicates and Ti-oxide grains showed little to no 289 

corrosion.  Barite crystals were precipitated on the core block surface, with Ca-sulphate 290 

precipitated in the reactor (Fig. 5c-f).  Illite/muscovite content determined by QEMSCAN 291 

increased post-reaction (Table 1) indicating potential precipitation of illite (or heterogeneity 292 

caused by the use of a different polished section before and after reaction).  Semi quantitative 293 

XRD of the core block after reaction was in reasonable agreement with QEMSCAN and did not 294 

indicate detectable substantial mineral precipitation (supporting material).      295 

E1043m is a fine-grained sandstone and E981m an interlaminated sandstone and siltstone (Fig. 296 

2c,d, Fig. 4d).  Sub-plugs of E1043m and E981m contain 3.8 and 7.6 % chlorite that is Fe-rich 297 
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(Table 1, Fig. 6a).  SEM-EDS also indicated E1043m contained trace calcite, gypsum, and 298 

sphalerite with some plagioclase Ca-rich (Fig. 6a).  E981m contained trace fine-grained ankerite 299 

(and possibly siderite) associated with the chlorite (Fig. 7a).  E1043m contained 4.4 % possible 300 

organic content calculated from the tomograms, and E981m 1.1 % possible organic content.  301 

Along with coal, trace minerals in both E1043m and E981m include barite, apatite, Ti-oxide, 302 

(REE,U)-monazite (Fig. 6E), zircon, sphalerite, Cu-pyrite.  Trace FeO(OH) (lepidocrocite) was 303 

also identified in adjacent sections of E1043m by XRD reported elsewhere (Dawson et al., 304 

2015).  The E1043m sub-plug has a porosity of 6.3 % from micro-CT analysis, and E981m 8.3 305 

% (Golab et al., 2015c).  This is in good agreement with mercury injection porosities of 5.5 and 306 

8.4 % respectively measured for adjacent core blocks.  A similar depth core sample (1043.72 m) 307 

was also characterized elsewhere by helium porosity at 7.6% (Golab et al., 2015a).  E981m also 308 

contains ~23% illite-smectite that could potentially host sub-micron porosity in the range 3-4 309 

nm.  Brine permeabilities were below the mD range measured.         310 

After reaction, remaining chlorite had a reduction in X-ray density in both sub-plug tomograms 311 

with in some cases no created porosity indicating a reduction in Fe content in the chlorite (Fig. 312 

4e,f).  Chlorite also appeared to have a reduction in Fe content in separate SEM-EDS analysis.  313 

Trace carbonates, calcite and ankerite, were also dissolved (Fig. 6b, and 1Ssupporting material), 314 

with more visible changes to the sandy section of E981mR (Fig. 4f).  K-feldspar and Ca-rich 315 

plagioclase grains were observed in SEM to be corroded (Fig. 6c, d, 7 c, d) along with sphalerite 316 

and phosphate (Fig. 6b,f).    Fine grained precipitated material covered areas of the core samples 317 

including silica booklets on pre-existing K-feldspar in E1043 m (Fig. 6d).  Both core samples 318 

were covered by precipitated barite, and Fe rich oxides and clays (Fig. 6d).  Trace barite was also 319 

identified in QEMSCAN in E1043mR although this may have been present pre-reaction (Fig. 4S, 320 
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supporting material). The QEMSCAN determined kaolinite content slightly increased post 321 

reaction in both E1043mR and E981mR.  The micro-CT calculated change in porosity after 322 

reaction of E1043m was 3.5%, and of E981mR was 3 %.  The calculated increase includes 323 

density changes from Fe leaching of chlorite or loss of fines.  Apparent created, horizontally 324 

connected, porosity is visible in the sandy layer of the E981mR sub-plug (Fig. 4e,f), with created 325 

porosity or density changes otherwise appearing disconnected in the shaley section of E981mR 326 

(Fig. 4f), and also in E1043mR (Fig. 1S, supporting material).  Brine permeability did not 327 

measurably increase in E1043mR.              328 

 329 

3.1.3 Hutton Sandstone 330 

H800m is highly calcite cemented around quartz and feldspar framework grains with some pore 331 

filling kaolinite, and coal laminations (Fig. 2e, Fig. 8a).  The sub-plug polished section contained 332 

37 % calcite, with also muscovite/illite, chlorite, plagioclase and biotite identified by 333 

QEMSCAN (Table 1, Fig. 8c).  Plagioclase was identified as a mixture of albite and Ca-Na-334 

plagioclase by XRD, and trace Ca-phosphate was observed in SEM-EDS of the core blocks 335 

along with sphalerite.  Occasional REE, U-monazites and pyrite/FeS were reported in adjacent 336 

core sections (Dawson et al., 2015).  Trace metal content is generally higher than in the Precipice 337 

Sandstone core samples including Sr, Ba, Zn, P along with the major Ca oxide content (Table 3).  338 

Micro-CT image analysis porosity is 3.8 % (and micro-CT image analysis of the sister sample 339 

used for pure CO2 reaction yielded a higher porosity of 5.2%) (Golab et al., 2015 Appendix B). 340 

Porosity determined by mercury injection capillary pressure analysis of an adjacent core sample 341 

was 6.7 %. The brine permeability was below mD range (recent measurements of other sections 342 
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of this core have μD range permeability), with vertical N2 permeability of 0.2 mD (supporting 343 

material). 344 

Calcite cement dissolved and Ca-sulphate crystals with a gypsum morphology were visibly 345 

precipitated over the H800mR core samples post reaction (Fig. 8b,e,f).  The precipitated 346 

crystalline material was analyzed by XRD confirming its identity as gypsum.  A loss of 18% 347 

calcite was calculated from the two sub-plug polished sections by QEMSCAN analysis (Table 348 

1), with an 8.4 % increase in kaolinite content indicating kaolinite precipitation (or heterogeneity 349 

caused by the use of a different polished section before and after reaction).  Fine-grained 350 

precipitates with an EDS signature indicating kaolinite were also observed.  Although gypsum 351 

was precipitated over the surface of the sub-plug, most crystals broke off in transit and 352 

preparation for post-reaction characterization, with QEMSCAN only detecting 0.2 area% 353 

gypsum (supporting material).  Phosphates were corroded, and fine-grained cubic precipitates 354 

(~5 μm) also covered some silicates (Fig. 8d).  Calcite dissolution appeared mainly around the 355 

edges of the H800mR sub-plug with created porosity less extensive (Fig. 1S, supporting 356 

material) than in the calcite cemented E1056mR sub-plug. The micro-CT calculated change in 357 

porosity after reaction was 3.7% in the H800mR sub-plug, less than the porosity increase in the 358 

calcite cemented E1056mR (Table 3b).  The core N2 permeability also increased to 4.5 mD.           359 

 360 

3.2 Water Chemistry 361 

3.2.1 Precipice Sandstone 362 

Solution pH decreased from 4 - 5 during the N2-brine-rock soak of P1217m and P1165m (with 363 

an alkalinity of 43 mg/kg as CaCO3), to a minimum of pH 1 after O2-SO2-CO2 gas injection, and 364 

was subsequently buffered to a maximum of 1.8 (Table 4, Fig. 9a).  Dissolved element 365 
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concentrations in solution were generally low (Table 4a, b), except Fe increased to 75 mg/kg 366 

during reaction of P1165m and subsequently decreased to 39 mg/kg (Fig. 9c), and K increased to 367 

195 mg/kg during reaction of P1217m.  Solution electrical conductivity increased to a maximum 368 

of 11 ms/cm during reaction of P1217m, and 34 ms/cm on reaction of P1165m subsequently 369 

decreasing to 13 ms/cm.  Sulphate concentration increased from 193 mg/kg to 1613 mg/kg at 72 370 

h, 1493 mg/kg at 216 h, and decreased to 607 mg/kg at 696 h during reaction of P1217m, and 371 

increased from 21 mg/kg to 1507 mg/kg at 672 h for P1165m.  Cr concentration reached 16 372 

mg/kg during reaction of P1165m but subsequently decreased.  Trace concentrations of dissolved 373 

P were also detected in reaction of P1165m (Table 5).Calculated in situ pH was in excellent 374 

agreement, decreasing sharply to 1.8 for P1217m, and for P1165 to 1.5 (Fig. 5S, supporting 375 

material).  Several minerals were saturated including nontronite, and also hematite which 376 

precipitated in P1165m.   377 

   378 

3.2.2 Evergreen Formation  379 

During reaction of E1056m, pH initially decreased slightly but was subsequently buffered by the 380 

dissolution of calcite cement to 6.3 (Fig. 9a, Table 4), initial alkalinity was 110 mg/kg as CaCO3, 381 

and conductivity increased.  Dissolved element concentrations were high compared to Precipice 382 

core reactions, with Ca concentration initially increasing rapidly then gradually to 1156 mg/kg, 383 

Mn to 56 mg/kg, Mg to 9 mg/kg and Ni to 29 mg/kg after 624 h reaction (Fig. 9b).  Fe, Al and 384 

Si, however, remained at low concentrations, with dissolved total S increasing to 387 mg/kg 385 

(Fig. 9c, d, Table 4).  Unfiltered samples of all Evergreen core reactions were also tested for total 386 

metals (Table 2S, supporting material); generally concentrations were comparable within error to 387 

filtered waters, with some elevated concentrations of Fe in all and also Cr in the case of E1056 m 388 
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reaction indicating either some Fe-rich clay fines or Fe-rich precipitates larger than 45 µm 389 

present in solutions.  The total concentration of P in Evergreen reactions was also highest from 390 

E1056m, likely from apatite dissolution.  Calculated in situ pH was stable at ~5 (Fig. 5S, 391 

supporting material), calcite dissolution dominated with predicted dissolved Ca concentration 392 

slightly low (Fig. 7S, supporting material).  No precipitation or saturation of gypsum or 393 

anhydrite was predicted (Fig.7S, supporting material); however glauconite, nontronite, hematite 394 

and jarosite were saturated.  395 

      396 

Solution pH sharply decreased and was subsequently slightly buffered to 2.3 during reaction of 397 

E1043m and E981m (Fig. 9a, Table 4).  Conductivity increased and subsequently decreased by 398 

the end of experiments.  Concentrations of dissolved Ca, Mg, K, Na increased (Fig. 9b, Table 4), 399 

Fe increased and subsequently decreased after ~ 200 h during both reactions, with Al 400 

concentration increasing and subsequently decreasing during reaction of E1043m only (Fig. 401 

9c,d).  Fe, Al, Si and Li concentrations were generally higher than during reaction of other rock 402 

cores.  Initial alkalinity during the E1043m reaction was 155 mg/kg, with sulphate concentration 403 

increasing from 5 to 1709 mg/kg at 648 h reaction.  Cr concentration reached 23 mg/kg and 404 

subsequently decreased to 7.6 mg/kg during reaction of E1043m, but remained below 2.9 mg/kg 405 

from E981m.  The concentration of Zn was relatively high from both cores (Table 4b).  406 

Dissolved P was measured during reaction of E1043m, its concentration was initially high (Table 407 

5).  Analysis of unfiltered waters indicated P increased during reaction of both E1043m and 408 

E981m (Table 2S, supporting material).  Total Fe and K concentrations were higher in unfiltered 409 

waters potentially indicating some fines or micron sized precipitates (e.g. potentially jarosite or 410 

alunite) (Table 2S, supporting material).  Calculated in situ pH was in excellent agreement with 411 
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the E1043m experiment decreasing to 1.8 and buffering slightly to 2.7 by model terminations.  412 

Chlorite, plagioclase, and calcite were the main minerals dissolving and contributing to Ca, Fe, 413 

and Al in the models.  Calculated pH increased from 1.9 to 3 in good agreement with 414 

experimentally measured pH during reaction of E981m (Fig. 5S, supporting material).  Chlorite, 415 

calcite, siderite/ankerite and K-feldspar were the main minerals predicted to dissolve, with 416 

nontronite, hematite, glauconite, and jarasite saturated.  Predicted precipitation of alunite 417 

controlled dissolved Al concentration in modelled reaction of E1043 m.      418 

     419 

3.2.3 Hutton Sandstone 420 

Solution pH during reaction of H800m decreased from 6.4 to 5.6 after O2-SO2-CO2 gas 421 

injection and was subsequently buffered to 5.9 by calcite dissolution, while electrical 422 

conductivity increased from 3.7 to 5.4 ms/cm3 (Fig. 9a, Table 4).  The initial alkalinity 423 

was 99 mg/kg as CaCO3, with sulphate concentration increasing from 4 to 1251 mg/kg at 424 

72h, 927 mg/kg at 216 h, to 1077 mg/kg after 696 h. Ca concentration increased rapidly 425 

from 302 to 1039 mg/kg after 384 h, and then gradually decreased to 965 mg/kg after 696 426 

h, Mn also increased to 32 mg/kg after 384 h then decreased slightly to 31 mg/kg after 427 

696 h (Fig. 9b, Table 4).  Dissolved Al, Si, and Mg concentrations remained relatively 428 

low, with Fe, Ni, and Zn increasing and subsequently decreasing by 696 h reaction.    429 

Calculated in situ pH was initially 4.2 decreasing to 3.5 then rapidly buffered to 4.8 430 

(supporting material), with kaolinite and gypsum/anhydrite precipitated.  Nontronite, 431 

hematite, glauconite and jarosite were also saturated.                 432 

 433 

4. DISCUSSION 434 
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 435 

4.1 Quartzoze cores 436 

The quartzose reservoir core samples from the Precipice Sandstone have a relatively high 437 

porosity calculated from micro-CT image analysis in good agreement with that determined by 438 

mercury injection and indicative of a suitable storage reservoir.  The relatively low reactivity 439 

with O2-SO2-CO2-brine indicates a low likelihood of plugging by precipitation; however, 440 

kaolinite movement was observed which has the potential to plug pores and reduce permeability.  441 

The movement of kaolinite was also observed in similar core samples on pure CO2 reaction 442 

indicating it is not specific to co-injection of SO2 and O2 gas (Golab et al., 2014).  The 443 

conversion of SO2 to sulphuric acid resulted in a low pH that was not buffered in the absence of 444 

significant reactive mineral phases, with high concentrations of dissolved sulphate.  The 445 

oxidation of trace amounts of sulphides present in core samples potentially also contributed to 446 

the lower pH.  Geochemical modelling of SO2 co-injection in siliciclastic US Gulf aquifers 447 

predicted acidification to pH values as low as zero (Xu et al., 2007).  Recent reactive transport 448 

modelling, however, indicates trace amounts of calcite in the Precipice Sandstone can buffer 449 

acidity from co-injection of SO2 with CO2 (Kirste et al., 2015).     450 

Dissolution of reactive minerals present in trace amounts in Precipice Sandstone core samples 451 

including carbonates, clays and K-Al-sulphate resulted in dissolved major elements in solution at 452 

generally low concentrations compared to other rock types, except Fe and K.  Although 453 

dissolved Fe was generally high, its concentration followed a decreasing trend.  Dissolved Fe and 454 

K were also elevated on pure CO2 reaction of similar core samples although at around 7 and 10 455 

times lower concentrations respectively than with impure CO2 (Dawson et al., 2015).  The 456 

dissolved concentrations of minor elements including Zn and Cr were elevated (maximum of 4 457 
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and 16 mg/kg) during O2-SO2-CO2 reactions of Precipice Sandstones core samples even though 458 

the rock content of these elements was low relative to other rocks.  Dissolved Ni and Cr however 459 

decreased, and were observed in Fe-oxides precipitated on kaolin indicating a sink for these 460 

metals.    Sulphide minerals which were observed in trace amounts in the core samples have been 461 

suggested to be a potential source of dissolved Cu, Zn, Ni or Cr in other rocks (Lu et al., 2014).    462 

Oxidation of 0.7 wt% pyrite was linked to mobilization of Zn from Cardium Sandstone in O2-463 

CO2-brine reactions with 3.5% O2 (Lu et al., 2014).  A high dissolved Zn concentration on 464 

reaction of P1217 m indicates the possible oxidative dissolution of trace sphalerite contributing 465 

to minor or trace metals.  The reaction of pyrite in the model also improved the match to 466 

experimental Fe concentrations.  The predicted in situ pH was in good agreement with 467 

experiments for the quatzoze core reactions.  The low pH was controlled by sulphuric acid which 468 

did not degass on experimental sampling resulting in the good agreement.  It should be noted 469 

however that the very low pH generated in the Precipice Sandstone experiments is not expected 470 

in the field where pH is often buffered by groundwater alkalinity, and any co-injected gases 471 

would be at lower concentrations.  Reaction of impure CO2 with quartzoze cores had a greater 472 

impact to pH than reaction with pure CO2 by ~ 3 units.  However the lack of reactive silicates 473 

present meant that the changes to the rocks by mineral dissolution were the same.  The Fe 474 

concentration decreased toward the end of the O2-SO2-CO2 reactions indicating a trace of 475 

mineral precipitation.  Hematite precipitation was predicted in the geochemical model of 476 

P1165m.  Allowing hematite precipitation however resulted in an under prediction of dissolved 477 

Fe compared to the experiment through an over prediction of the amount of hematite 478 

precipitated.  The rate of hematite precipitation used was the same as the rate of dissolution 479 
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given the lack of data for mineral precipitation rates, modifying the nucleation rate improved the 480 

prediction but this highlights the need for mineral precipitation data.     481 

 482 

4.2 Calcite cemented cores 483 

The O2-SO2-CO2 reactions of calcite cemented core samples were dominated by calcite 484 

dissolution with relatively large increases in porosity and N2 permeability after reaction. The pH 485 

was quickly buffered preventing significant silicate mineral dissolution.  Gypsum was 486 

precipitated on the H800m core sample from reaction of dissolved sulphate (from SO2) with Ca 487 

from dissolved calcite.  Kaolinite also precipitated along with small cubic crystals of an 488 

unknown mineral, potentially re-precipitated calcite.  Precipitated gypsum was also observed in 489 

previous experiments reacting SO2-CO2 with calcite cemented Hutton Sandstone or siderite-490 

ankerite minerals (Pearce et al., 2015a; Pearce et al., 2015b).  Elsewhere basalts reacted with an 491 

O2-SO2-CO2 gas mixture (1 wt% of each impurity) resulted in gypsum and also jarosite-alunite 492 

precipitation (Schaef et al., 2014).  Precipitation of gypsum has also been observed in fractured 493 

limestone cores, marl cap-rock, and carbonate cemented sandstones reacted with CO2 and 494 

sulphate rich brines (Dávila et al., 2016; Garcia-Rios et al., 2015; Luquot et al., 2016).  The 495 

increase in sub-plug porosity from the H800 m sub-plug was  3.66% in the presence of SO2 and 496 

O2 where gypsum precipitated, with dissolution of 18.2 area % calcite cement from the analyzed 497 

slice (Appendix A2).  The increase in porosity during pure CO2 reaction however was almost 498 

double that at 6.1 %, with no mineral precipitation (Golab et al., 2015c).  The precipitated 499 

gypsum during impure CO2 reaction may have armored the core from further calcite dissolution.    500 

The armoring of dissolving carbonates dolomite and ankerite by precipitated gypsum has been 501 

suggested elsewhere to prevent significant carbonate dissolution (Luquot et al., 2016).  The 502 
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precipitation of gypsum was also linked to decreased permeability at low flow rates in reactions 503 

of fractured limestone with CO2 and sulphate rich brine (Davila et al., 2016).    504 

During reaction of the calcite cemented sandstone samples H800m and E1056m, the buffering of 505 

pH resulted in minimal silicate dissolution and relatively low concentrations of associated 506 

dissolved elements including Fe and Al.  Initially elevated concentrations of dissolved Ni, Zn 507 

etc. during reaction of H800m subsequently decreased and this was likely due to co-precipitation 508 

of those cations with gypsum.   509 

A more extensive porosity increase of 9.11% occurred through the E1056m sub-plug from the 510 

lower Evergreen Formation during reaction (in 1% KCl brine) than the 3.7% porosity increase in 511 

H800m.  Gypsum was predicted to be unsaturated at the higher salinity hence did not precipitate 512 

on E1056m or armor dissolving calcite.  Dissolution of 9.2 % calcite was quantified from the 513 

sub-plug slice.  This agrees well with dissolution of 10.8% calcite calculated by mass balance 514 

from the measured dissolved concentration of Ca in the experiment.  The extensive dissolution of 515 

calcite cement uncovered pore filling clays that could potentially lead to fines migration and 516 

blocking of pore throats.  Several flow through studies reacting pure CO2 saturated brine with 517 

fractured calcite cemented cores also observed carbonate dissolution leaving skeletons of 518 

framework silicate grains or clays (Ellis et al., 2013; Ellis et al., 2011).  Ellis and co-workers 519 

observed fines migration of exposed silicates causing mechanical closure of the fractures or 520 

permeability reduction.  Compared to the pure CO2 reaction of E1056m with a porosity increase 521 

of 6.73% in the sub-plug, during impure CO2 reaction the increase in porosity was greater at 522 

9.11%.      523 

In the current experiments, traces of barite also precipitated likely due to its insolubility during 524 

depressurization.  Dissolved Mn concentration was correlated with Ca (R2 of 0.91) from 525 
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dissolution of the E1056m calcite cement.  Mn remained high and increased, although this was 526 

also the case during pure CO2 reaction of the sister core sample (Dawson et al., 2015).  The 527 

concentrations of Zn and Sr were also correlated with Ca with R2 of 0.84 and 0.81 respectively 528 

and likely were sourced mainly from dissolution of calcite cement.  Assuming all Ca, Mn and 529 

Mg came from calcite, using molar ratios of dissolved concentrations indicates a Ca : Mn : Mg 530 

content of 1 : 0.06 : 0.004 in the E1056m calcite.  For calcite cemented cores, changes to pH and 531 

water chemistry were similar with impure and pure CO2, mineral precipitation was however only 532 

observed with impure CO2 reaction.                      533 

Regarding the geochemical models, published kinetic and thermodynamic parameters for the 534 

minerals could sufficiently predict the experimental water chemistry.  The reactive surface areas 535 

of calcite cement however had to be decreased by a factor of 100 from 10 to 0.1 cm2/g to match 536 

the experimentally observed concentration of Ca from the dissolution of calcite.  The occurrence 537 

of calcite as a pore filling cement and the reaction of the majority of the material as solid core 538 

blocks (larger than the sub-plug) would restrict the access of reactive fluids justifying the lower 539 

surface area.  The lowering of calcite surface areas is consistent with the work of (Kirste et al., 540 

2015; Pearce et al., 2015a).  Surface areas of clays did not need increasing, likely owing to their 541 

being mostly covered by the calcite cements.  The use of published kinetic and thermodynamic 542 

parameters is also consistent with the work of (Carroll et al., 2013) who found only small 543 

adjustments to parameters were needed to fit their model output to experimental results.   544 

4.3 Clay-rich cores 545 

The calculated porosity of clay-rich interlaminated shale and fine-grained sandstone core 546 

samples E981m and E1043m increased slightly after reaction.  However, micro-CT images show 547 

that changes are generally mainly disconnected (rather than connected porosity generation) from 548 
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localized dissolution of carbonates and also silicates including labradorite, with density changes 549 

from Fe-leaching of chlorite.  Increases in porosity were greater after O2-SO2-CO2 brine reaction 550 

of E981m and E1043m (increase by 3.04 and 3.54% respectively) with the lower pH than 551 

equivalent pure CO2 reactions (an increase by 2.01 and 2.74% respectively) (Golab et al., 2015).  552 

Some horizontally connected porosity created through the sandy layer of E981m after O2-SO2-553 

CO2 brine reaction indicates CO2-rich brines could migrate horizontally (baffle) under shales 554 

encouraging residual and mineral trapping and reducing the likelihood of vertical migration 555 

through the cap-rock.  Further reactive transport modelling with batch and flow through 556 

experiments at expected injected gas stream compositions (including NOx) would be needed to 557 

confirm this.   558 

Dissolved concentrations of Fe, Al, Mg, Li, Na, and K were high relative to other rock types 559 

from the dissolution of trace carbonates, chlorite and labradorite owing to the lowered pH.   The 560 

concentration of dissolved Al from the shaley E981m sample was ~ 8 – 15 times higher than on 561 

reaction of the Sandstones P1165m and P1217m.  Dissolved Fe from E981m was also higher at 3 562 

– 10 times that mobilized from P1165m and P1217m.  This is consistent with the observation of 563 

10 and 4 times more Al and Fe respectively from the Eau Claire shale than the Mount Simon 564 

Sandstone during CO2 reaction by (Carroll et al., 2013).   565 

Dissolved Mn was relatively high in concentration from impure CO2 reaction of E1043m with 566 

Ca and Mn correlated with an R2 of 0.99 up until 384 h reaction indicating a similar source.  567 

Dissolved Zn and Ca were also somewhat correlated with an R2 of 0.83 suggesting traces of 568 

carbonates as the main source of Zn, however a contribution from oxidation of sphalerite may 569 

contribute to the non-linearity.  After 384 h, the non-linearity is possibly also from incorporation 570 

of Ca into precipitated gypsum.  During reaction of E1043m an increase in Co and Ni ~ 550 h 571 
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coincides with the later increase in Fe and Cr indicating a contribution from oxidative dissolution 572 

of sulfides.  During reaction of E981m, Mn and Ca were correlated (R2 0.997), along with Mg 573 

and Ca (R2 0.99), Zn and Ca (R2 0.97), and Sr and Ca (R2 0.97).  Ca/Mn ratios were similar 574 

during reaction of E981m and during 0 to 384 h reaction of E1043m indicating similar Mn 575 

contents of dissolving calcite or ankerite.   576 

Compared to the pure CO2 reaction of E981m, with impure CO2 8 times more Fe and 15 times 577 

more Al was mobilized from silicates and available for mineral trapping.  On reaction of impure 578 

CO2, 20 times more Fe and 4 times more Al from E1043m was measured than with pure CO2.  579 

High concentrations of dissolved Fe and Al in both impure CO2 reactions subsequently 580 

decreased or stabilized through the precipitation of fine grained Fe-oxides and silicates observed 581 

on core samples along with traces of barite and gypsum.  Mineral precipitation was not observed 582 

in equivalent pure CO2 reactions.  Geochemical models predicted Fe and Al were mainly from 583 

dissolution of chlorite, with saturation of Fe-oxides (hematite) and smectite (nontronite), 584 

although gypsum/anhydrite was not saturated.  The high concentration of dissolved Fe may have 585 

encouraged a small amount of gypsum precipitation as has been reported elsewhere (Luquot et 586 

al., 2016).  Relatively high dissolved concentrations of Ni and Zn reflect the relatively high 587 

contents of Ni and Zn present in the rock cores.  Both Ni and Cr concentrations (Cr was highest 588 

from E1043m), however, decreased at the end of experiments, incorporated into precipitated 589 

oxide minerals with Ni and Cr signatures observed in EDS.  This is in agreement with a separate 590 

study that observed precipitated secondary Fe-oxides to incorporate minor metals on reaction of 591 

CO2 saturated brine with co-injected O2 with Eau Clair shale (Shao et al., 2014).  Carbonates can 592 

contain metals substituted into their structure such as Mn, Zn, Co, Ni that may be mobilized by 593 

dissolution.  These have been noted by several authors as a potential concern to drinking water 594 
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sources if CO2 migrates (Wunch et al., 2013,2014).  The release of metals to solution is 595 

dependent on the mineralogy of the rock.  We observe similar magnitudes of release of Mn from 596 

calcite with either pure or impure CO2 reaction.  Higher concentrations of Ni, Cr and Zn were 597 

initially released from clay rich cores containing carbonates with impure CO2 than with pure 598 

CO2, the concentrations however subsequently decreased.  The presence of O2 allows additional 599 

oxidative dissolution of sulphides but also the precipitation of Fe-oxides which incorporate 600 

metals.  Understanding the sources and sinks of metals in different redox conditions requires 601 

further work.         602 

The E1043m core sample also had the highest rock content of P, with phosphates (rimming 603 

zircon) observed in SEM.  The phosphates dissolved during the experiment, with increasing total 604 

concentrations of P measured in solution.  Clay-rich cores had larger changes in porosity with 605 

impure CO2 than pure CO2 as the lowered pH resulted in silicate dissolution.  Changes however 606 

appeared overall mainly in disconnected porosity or horizontal porosity unlikely to result in 607 

vertical migration of CO2.          608 

Geochemical models required increases to the reactive surface areas of chlorite and illite clays by 609 

a factor of 50 from 70 to 3500 cm2/g to agree with experimental water chemistry.  This reflects 610 

the fine-grained nature of the clays containing observable porosity (supporting material) and lack 611 

of coating by carbonate cements in the two clay-rich cap-rocks.  Increasing the input surface 612 

areas of reactive clays, especially Fe-rich clays in geochemical models is consistent with other 613 

work where surface areas were increased up to 7000, 15000 – 100000, or 17000 – 74000 cm2/g 614 

for core blocks or fragments respectively (Carroll et al., 2013; Farquhar et al., 2015; Kirste 615 

personal communication).                616 
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Further work is needed to understand the sources, mobilization and sinks of minor and trace 617 

metals and metalloids in CO2 storage environments.  Coal was present in several of the cores and 618 

has the potential to mobilize adsorbed elements or organic compounds (e.g. BTEX), this was not 619 

investigated and generally requires further work.  The dissolution of carbonate cements 620 

uncovering clays, and the precipitation of minerals armoring carbonates from dissolution or 621 

covering silicate surfaces cause dynamic changes to mineral reactive surface areas one of the 622 

parameters with the largest uncertainty in modelling.  Understanding these dynamic changes also 623 

warrants further work which would improve longer term geochemical modelling predictions.            624 

  625 

5. CONCLUSIONS 626 

 627 

The interaction of O2-SO2-CO2-brine with six sandstone and shale core samples of variable 628 

lithology resulted in a mainly mineralogical control on porosity and major water chemistry 629 

changes.  Conceptually the reactivity of the cores showed three types of behavior.  Previous 630 

geochemical modelling has shown for example very extreme acidification with impure CO2 631 

which could corrode the wellbore, however the presence of carbonate minerals can buffer the 632 

pH.  Here we have shown a range of resulting pH’s 1-2, 3-4, and 6-8 depending on core 633 

lithology.  Mineralogically relatively clean quartzose reservoir rock core samples had the least 634 

change in porosity, with minimal mineral dissolution indicating a good reservoir rock.  The lack 635 

of reactive minerals resulted in the lowest solution pH and high concentrations of dissolved 636 

sulphate during experiments.  Movement of pore-filling kaolin was observed which could 637 

potentially block pores and affect permeability, although the content of pore-filling minerals 638 

(predominantly kaolinite) is generally quite low in the Precipice Sandstone.  In contrast, 639 
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carbonate-cemented core samples showed the largest increases in porosity through calcite 640 

dissolution over experimental timescales, with pH buffered to the highest values.  Silicate 641 

mineral dissolution was therefore minimal with water chemistry dominated by ions from calcite 642 

dissolution.  Subsequent precipitation of sulphate minerals and kaolinite decreased dissolved ion 643 

concentrations and has the potential to decrease or re-seal porosity over time.  Reactive clay-rich 644 

cap-rock cores with small quantities of carbonates and plagioclase had small increases in what 645 

appeared to be disconnected porosity. for the interlaminated shale also showed some increased 646 

horizontal porosity in sandy sections.  Reaction of the Fe-rich clays, plagioclase and carbonates 647 

buffered pH to relatively intermediate values.  Water chemistry was dominated by ions from Fe-648 

rich clays, plagioclase and carboante dissolution.  For shales, sub-micron porosity can be 649 

significant and the use of techniques such as small angle neutron scattering (SANS) would be 650 

useful to estimate nanoscale porosity in future.  The reaction of trace amounts of minerals 651 

including carbonates and sulphides (or potentially organic matter) contributed to dissolved 652 

metals and metalloids in solution.  Several of these metals subsequently were sequestered or 653 

adsorbed with the precipitation of oxide, sulphate or silicate minerals especially on more reactive 654 

cap-rock core samples.  However several dissolved metals continued to increase in concentration 655 

especially when pH was not significantly buffered.  The sources, mobilization, and fate of metals 656 

which have the potential to affect fresh-water aquifers require further understanding.   657 

Conceptually the injection of a CO2 stream into a quartzose reservoir sandstone under layers of 658 

rock of variable relatively low porosity and permeability represents an optimized storage 659 

complex.  The high porosity Precipice Sandstone has a low reactivity indicating a good injection 660 

target with a low likelihood of porosity clogging by mineral precipitation.  Acidic fluids 661 

interacting with the base of reactive rock containing carbonates would likely be pH buffered with 662 
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dissolution of plagioclase and Fe-rich clays resulting in subsequent long term mineral trapping, 663 

mainly as siderite or ankerite.  Calcite cemented sections at the reservoir-seal interface represent 664 

higher potential for initial porosity increases through calcite dissolution and horizontal 665 

movement of fluids.  In the presence of SO2 and O2, however fast precipitation of sulphates such 666 

as gypsum and oxide minerals at reservoir - reactive seal rock interfaces have the potential to 667 

seal porosity and sequester mobilised metals.  Fluids could be expected to move horizontally 668 

under low permeability clay-rich sections of the Evergreen Formation encouraging residual 669 

trapping.  Interbedded sandstones and shales can be expected to act as baffles to fluids, 670 

decreasing the likelihood of vertical migration of CO2 or CO2 charged fluids.      671 

 672 
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7. APPENDIX A 686 

 687 

 688 

8. SUPPLEMENTARY MATERIAL 689 

 Supporting material includes micro-CT tomograms E1043m, H800m, and P1165m, high 690 

resolution SEM images, select post-reaction QEMSCAN, a table of core permeabilities, table of 691 

total metals in solution during reaction, geochemical modelling input and results, post reaction 692 

XRD, and a table of E1056mR core elemental content. 693 
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Figure 1. Experimental Schematic, where V = reaction vessel, DA = data acquisition box, ISCO 839 

= injection pump.  840 

 841 

 842 

Figure 2. QEMSCAN images from sub-plug polished sections before reaction of a) Precipice 843 

Sandstone P1217m, b) Evergreen Formation E1056m, c) E1043m - note the purple areas 844 

correspond to barite in this sub-plug, d) E981m, e) Hutton Sandstone H800m, f) mineral color 845 

key. 846 

 847 

Figure 3.  SEM images of Precipice Sandstone a) – d) P1217m, e) – f) P1065m. a) surface view 848 

pre-reaction, inset K-sulphates and Na-carbonates (image width 500 μm), b) surface view post 849 

reaction, c) kaolin with bright traces of calcite pre-reaction and inset Na-carbonate (image width 850 

100 μm), d) kaolin post reaction with calcite dissolved, e) kaolin pre reaction, inset Ti-oxide 851 

(image width 50µm) f) kaolin post-reaction with some removal of booklets.  Qu = quartz, Su = 852 

sulphate, Ka = kaolinite, Ca = calcite, Ru = rutile. 853 

 854 

Figure 4. Vertical planes from 3D micro-CT tomograms of sub-plugs of a) E1056m pre-reaction, 855 

b) E1056mR post-reaction, c) E1056m difference image where dark areas show loss of material 856 

or density, d) E981m pre-reaction, b) E981mR post-reaction, c) E981m difference image where 857 

dark areas show loss of material or density.  858 

 859 

Figure 5. SEM images of Evergreen Formation sample E1056m.  a) Surface pre-reaction with 860 

quartz (Qu), rutile (Ru), and calcite (Ca), b) view in a post-reaction with calcite dissolved 861 
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revealing pore filling clay (C), c) K-feldspar (KF) grain surrounded by calcite, d) view in c post-862 

reaction with residual pore filling clay (c) and bright barite (Ba) crystals inset magnified view of 863 

barite (image width 30 μm), e) lithic grain pre-reaction, f) lithic grain post-reaction and inset Ca-864 

sulphate precipitated in the reactor (image width 200 μm). 865 

 866 

Figure 6.  SEM images of Evergreen Formation sample E1043m.  a) Fe-rich Chlorite (Ch), 867 

kaolinite (Ka), sphalerite (Sp) and albite (Al) pre-reaction, b) view in a post-reaction with 868 

corrosion and coating by fine-grained precipitates, c) albite surface pre-reaction, d) albite surface 869 

post reaction with precipitated booklets on surface and inset K-feldspar (image width 40 μm), e) 870 

barite (Ba) and monazite (M) with a phosphate (P) rim (containing U and Th), and f) post 871 

reaction with the phosphate rim corroded. 872 

 873 

Figure 7.  SEM images of Evergreen Formation sample E981m. a) surface view pre-reaction 874 

with sandy layer above and fine-grained siltstone layer below, lighter areas are mixed fine-875 

grained ankerite (An) and chlorite (Ch), dark areas are organic matter (Co), bright grain is zircon 876 

(Zr) b) surface view post reaction with ankerite corroded and fine layer of precipitates, c) 877 

labradorite (La) grain pre-reaction, d) labradorite grain corroded post-reaction with inset fluffy 878 

clay precipitates and bright barite (Ba) (image width 40 μm). 879 

 880 

Figure 8.  SEM images of Hutton Sandstone sample H800m.  a) surface view pre-reaction with 881 

calcite (Ca) cemented quartz (Qu) grains and coal lamination (Co), b) surface view post reaction 882 

with calcite cement corroded and precipitated gypsum (Gy) crystals, c) bright phosphate (P) pre-883 

reaction with La and Ce signatures, d) view in c post-reaction with small cubic precipitates (CP), 884 
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e) EDS of precipitated gypsum, f) photograph of core block post-reaction with yellow coloration 885 

and covered in gypsum needles. 886 

 887 

Figure 9. Selected water chemistry during gas-brine-rock reactions. a) solution pH, b) dissolved 888 

Ca concentration (mg/kg), c) dissolved Fe concentration, d) dissolved Al concentration. 889 

 890 

 891 

 892 

Table 1.  Mineral contents (area %) as determined by QEMSCAN of a polished sub-plug slice pre and post 893 
(R) reaction. 894 

 P121

7m 

P1217

mR 

P11

65

m
1
 

P11

65m

R 

E10

56

m 

E10

56m

R 

E10

43

m 

E10

43m

R 

E98

1m 

E981

mR 

H80

0m 

H800

mR 

Depth / m 1217

.48 

1217.

48 

116

5.4

4 

116

5.44 

105

6.1 

105

6.1 

104

3.7 

104

3.7 

981

.24 

981.2

4 

800.

83 

800.

83 

Quartz 97.1 97.9 na 95.1 25.

0 

28.1 61.

0 

53.5 34.

4 

38.5 41.4 45.8 

Alkali 

feldspar 

0.0 0.0 na 0.0 13.

0 

10.6 3.4 4.4 3.7 3.3 6.2 8.3 

Plagioclase 0.0 0.0 na 0.0 17.

7 

20.3 22.

3 

32.7 9.9 8.7 6.2 8.9 

Muscovite/

Illite 

0.2 0.3 na 0.4 0.4 6.0 2.3 1.1 1.2 4.7 2.1 2.5 

Biotite 0.0 0.0 na 0.0 0.0 2.2 1.2 0.6 6.5 1.0 0.3 0.0 

Illite-

Smectite 

0.0 0.0 na 0.0 11.

9 

8.7 0.0 0.0 22.

5 

17.0 0.0 0.0 

Kaolinite 2.4 1.7 na 4.2 0.9 1.9 2.8 3.5 2.4 6.9 3.9 12.3 

Chlorite 0.0 0.0 na 0.0 0.9 1.5 3.8 1.5 7.6 2.0 0.6 1.8 

Calcite 0.0 0.0 na 0.0 25.

2 

16.0 0.5 0.0 0.0 0.0 36.7 18.5 

Apatite   na    0.1 0.1 0.1 0.0 0.1 0.0 

Barite       0.2 0.2     
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Gypsum/a

nhydrite 

  na        0.0 0.0
2
 

Rutile 0.1   0.1         

Unclassifie

d and 

traces 

0.2 0.1 na 0.2 4.9 4.7 2.2 2.3 11.

8 

17.8 2.4 1.8 

Total 100.

0 

100.0 na 99.9 99.

9 

100.

0 

100

.0 

100.

0 

99.

8 

99.9 99.9 100.

0 

Total 

Clay/Mica 

2.4 2.0 na 4.6 14.

1 

18.1 10.

1 

3.7 40.

2 

31.6 6.9 16.6 

1 
No result for P1165m sample lost in transit, 

2 
Trace gypsum quantified ~ 0.02 895 

 896 

Table 2.  Properties derived from segmentation of sub-plug images as 3D vol % a) pre-reaction, and b) 897 
post-reaction (R) change calculated from the pre and post reaction images. 898 

Table 2a  899 

Sample Depth / m Total 

porosity  

Grain 

matrix 

Clay 

content 

Framework 

grain content 

Heavy 

mineral 

content 

P1217m 1217.48 20.9  5.7 73.3 0.1 

P1165m 1165.44 19.4  6.6 73.8 0.1 

E1056m 1056.10 4.4 23.2  75.7 0.6 

E1043m 1043.70 6.3 67.4  27.2 2.7 

E981m 981.24 8.3 89.2  7.3 2.3(chlorite) 

H800m 800.83 3.8 24.3 11.8 63.5 0.2 

 900 

Table 2b 901 

Sample Depth / m Change after 

reaction 

P1217mR 1217.48 0 
1
 

P1165mR 1165.44 0 
1
 

E1056mR 1056.10 9.1 

E1043mR 1043.70 3.5 

E981mR 981.24 3.0 

H800mR 800.83 3.7 
1 

Little discernible change, very small changes are likely clay movement, and for P1165mR some minor 902 
loss of high density material possibly siderite. 903 

 904 
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Table 3a Rock core composition by fusion and ICPOES as % oxide, loss on ignition (LOI), and 3b minor 905 
and trace elemental content (mg/kg) by digestion and ICPMS (note Detection limit DL reported in 906 
μg/kg). 907 

 SiO2 TiO2 AL2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total 

P1165m 98.30 0.11 1.54 0.03 0.00 0.00 0.03 0.12 0.07 0.03 0.82 101.04 

P1217m 97.42 0.06 1.11 0.04 0.00 0.00 0.00 0.21 0.57 0.03 1.25 100.64 

E1056m 57.56 0.50 12.82 2.33 0.61 0.44 12.01 2.00 2.32 0.14 11.03 101.76 

E1043m 73.15 1.24 12.25 3.03 0.05 0.54 1.97 2.41 1.85 0.21 2.75 99.45 

E981m 68.91 0.78 16.25 4.43 0.03 0.83 0.69 1.40 2.00 0.14 4.83 100.30 

H800m 51.69 0.30 6.52 1.01 0.42 0.14 20.95 0.82 1.25 0.07 18.28 101.44 

 908 

Table 3b 909 

Sample Li Be B P Sc Ti V Cr Co Ni Cu Zn 

P1217m 2.3 0.1 21.1 35.2 0.4 305.6 3.4 4.3 2.9 1.1 16.0 4.9 

P1165m 2.2 0.1 30.1 36.8 0.7 563.4 3.8 2.7 1.0 2.1 12.8 7.5 

E1056m 36.4 1.6 51.2 679.4 4.6 3062.9 60.5 22.2 9.6 8.5 16.4 52.3 

E1043m 21.7 1.2 22.1 808.4 8.8 7459.1 61.3 37.9 13.7 13.5 20.9 77.7 

E981m 45.7 2.7 43.0 493.2 10.4 3903.4 68.9 34.8 6.7 10.6 18.7 72.0 

H800m 8.6 0.8 20.9 231.0 4.1 1793.4 20.3 14.1 4.5 5.8 4.8 32.5 

DL 

(μg/kg) 

3.5E-

02 

1.9E-

03 

5.9E-

01 

1.4E+00 3.9E-

03 

7.9E-

02 

7.0E-

02 

2.4E-

01 

9.6E-

04 

4.3E-

03 

2.4E-

02 

2.4E-

02 

 910 

 911 

Sample As Se Rb Sr Zr Nb Mo Cd Sn Ba Pb U 

P1217m 0.6 0.1 1.8 8.7 18.2 109.9 0.1 0.0 2.2 25.6 3.3 0.3 

P1165m 1.0 0.1 3.1 8.4 32.0 233.6 0.1 0.0 2.4 24.3 5.2 0.4 

E1056m 3.5 0.4 99.3 282.3 117.0 761.6 0.4 0.1 1.4 535.7 14.0 1.5 

E1043m 12.4 0.5 60.6 319.9 219.6 1545.0 1.1 0.2 1.7 1140.4 15.5 2.1 

E981m 4.6 0.8 93.7 203.1 204.3 1275.9 0.9 0.3 3.0 479.5 17.6 2.6 

H800m 1.7 0.3 54.4 191.5 104.1 600.0 0.2 0.1 0.9 375.4 9.9 0.9 

DL(ppb) 4.2E-

02 

3.4E-

02 

6.5E-

03 

7.3E-

03 

2.6E-

03 

1.2E-

01 

4.9E-

03 

6.8E-

04 

6.1E-

03 

7.1E-

03 

5.7E-

04 

6.7E-

04 

 912 

Table 4a: Major and minor dissolved elements, pH and conductivity (cond.) during reactions (mg/kg).  DL 913 
is detection limit, and ND is no data. 914 

 Time 

(h) 

pH Cond. 

(mS/cm) 

Al B Ba Ca Co Cr Cu Fe 

P1217m 0 5.11 3.03 0.49 1.24 0.07 4.80 0.32 0.00 3.86 1.22 

 72 1.75 11.14 2.38 1.42 0.16 6.33 0.40 3.81 7.45 21.97 

 216 1.69 10.75 4.05 1.31 0.08 3.44 0.46 4.25 7.48 24.76 
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 384 1.70 10.15 1.98 1.18 0.06 2.91 0.45 2.74 7.31 21.43 

 552 1.65 10.47 2.67 1.23 0.07 3.43 0.43 1.38 7.40 16.59 

 696 1.81 10.61 2.83 1.27 0.07 3.09 0.43 1.19 7.45 16.17 

            

P1165m 0 4.29 2.79 0.07 0.10 0.04 1.11 0.03 0.33 2.32 2.03 

 144 1.24 12.82 1.31 0.14 0.07 3.54 0.07 0.77 4.18 8.30 

 240 1.05 13.06 5.29 0.32 0.18 5.10 0.34 15.68 10.50 74.54 

 408 1.16 14.37 2.98 0.24 0.08 2.06 0.19 3.28 4.74 22.30 

 576 1.24 33.90 5.26 0.36 0.09 2.50 0.35 9.94 5.27 44.24 

 672 1.17 13.06 5.55 0.28 0.08 2.37 0.31 6.16 4.52 38.74 

            

E1056m 0 7.55 6.46 0.81 ND 2.54 249.15 0.02 <DL 0.11 <DL 

 72 5.66 8.02 1.11 ND 0.43 891.53 0.15 0.05 0.15 7.21 

 168 5.46 5.17 1.31 ND 0.33 944.48 0.16 0.02 0.11 <DL 

 408 7.52 18.23 2.82 ND 0.24 964.33 0.23 <DL 0.11 <DL 

 576 7.65 ND 2.31 ND 0.25 1053.30 0.65 <DL 0.12 <DL 

 624 6.25 44.40 1.10 ND 0.27 1155.85 0.69 0.07 0.08 5.43 

            

E1043m 0 5.49 2.92 <DL 0.08 0.06 6.23 0.01 0.11 0.03 0.66 

 120 1.80 6.33 22.07 0.04 0.06 103.09 0.46 21.42 0.47 155.18 

 216 2.03 5.27 34.89 0.11 0.06 251.14 0.85 22.95 0.67 195.42 

 288 2.18 5.07 32.42 0.14 0.04 300.82 1.07 21.56 0.68 164.32 

 384 2.25 5.50 32.75 0.18 0.04 358.41 1.31 15.04 0.81 135.06 

 456 2.45 5.19 28.00 0.17 0.04 345.45 1.82 11.20 0.68 140.08 

 552 2.37 7.84 23.27 0.14 0.03 309.55 2.56 18.84 1.09 243.32 

 648 2.33 5.27 25.26 0.17 0.04 366.83 1.91 7.58 1.22 108.90 

            

E981m 0 6.25 15.60 <DL <DL <DL 4.27 0.03 0.07 <DL 2.77 

 120 1.92 7.85 19.04 <DL 0.06 103.10 0.17 1.73 0.23 93.88 

 216 2.20 6.28 39.08 <DL 0.02 188.84 0.33 2.89 0.34 164.21 

 288 2.14 6.66 44.89 <DL <DL 217.60 0.37 2.22 0.35 151.08 

 384 2.32 6.42 45.19 <DL <DL 239.21 0.41 1.83 0.44 130.55 

 624 2.30 3.29 46.91 <DL <DL 262.44 0.46 1.41 0.60 91.84 

            

H800m 0 6.42 3.65 1.14 0.34 0.37 301.94 0.21 0.02 0.01 0.05 

 72 5.61 4.84 0.70 0.41 0.18 832.23 0.68 0.04 0.26 39.23 

 216 5.68 5.03 0.47 0.13 0.11 921.88 0.43 0.00 <DL 4.15 

 384 5.95 5.31 0.34 0.18 0.11 1039.00 0.40 0.03 0.02 0.34 

 552 5.76 5.52 0.37 0.21 0.12 1024.73 0.27 0.02 0.02 0.08 

 696 5.86 5.40 0.66 0.35 0.11 965.08 0.42 <DL 0.06 0.12 

            

Blank 672 1.46 14.93 2.21 <DL <DL <DL 0.03 1.74 0.01 17.30 

DL    1.0E-

02 

6.9E-

03 

1.1E-

04 

5.1E-03 6.7E-

04 

3.4E-

03 

1.6E-

03 

8.8E-

04 

 915 
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Table 4b: Major and minor dissolved elements during reactions (mg/kg). 916 

 Tim

e (h) 

K Li Mg Mn Na Ni S Si Sr Ti Zn 

P1217

m 

0 154.39 0.00 0.65 0.28 554.89 2.22 71.74 6.22 0.04 0.00 4.20 

 72 170.28 0.00 1.27 0.40 596.05 3.32 605.4

7 

11.15 0.05 0.07 4.36 

 216 171.72 0.00 1.29 0.52 566.26 4.22 555.1

1 

6.86 0.04 0.04 0.52 

 384 195.15 0.01 1.14 0.48 590.95 4.14 549.6

4 

7.39 0.04 0.02 0.54 

 552 175.42 0.01 1.32 0.36 560.72 2.91 547.1

5 

8.04 0.04 0.02 0.51 

 696 173.14 0.00 1.18 0.33 561.83 2.64 544.6

2 

8.57 0.04 0.03 0.63 

             

P1165

m 

0 22.26 0.00 0.17 0.08 694.59 0.52 10.10 0.85 0.01 <DL 0.18 

 144 22.65 0.00 0.40 0.20 748.97 0.96 793.7

9 

2.40 0.06 0.01 0.30 

 240 ND 0.01 0.81 1.02 ND 7.15 ND 8.95 0.05 0.07 1.24 

 408 23.05 0.00 0.30 0.23 548.93 2.08 749.2

0 

5.40 0.02 0.02 0.40 

 576 28.38 0.00 0.37 0.62 761.71 5.54 836.9

3 

9.22 0.03 0.02 0.51 

 672 21.69 0.00 0.34 0.49 516.28 4.46 746.4

7 

9.23 0.03 0.02 0.52 

             

E1056

m 

0 6844.5

8 

ND 2.56 9.50 126.44 0.14 5.18 2.50 3.27 ND 0.06 

 72 6111.3

6 

ND 5.33 40.1

5 

119.44 1.55 403.2

1 

5.36 4.11 ND 0.25 

 168 6143.3

5 

ND 6.42 41.8

7 

117.61 1.65 384.7

1 

9.61 4.02 ND 0.26 

 408 4517.2

2 

ND 6.64 44.4

3 

117.64 5.38 351.0

3 

7.95 3.72 ND 0.37 

 576 5475.6

4 

ND 7.63 51.8

1 

137.37 28.1

4 

350.4

1 

9.87 4.11 ND 0.43 

 624 7309.1

0 

ND 9.43 57.6

9 

116.29 29.1

9 

386.7

9 

12.35 4.78 ND 0.52 

             

E1043

m 

0 8.22 0.01 0.31 0.25 444.46 0.39 1.02 1.60 0.26 0.00 0.03 

 120 13.22 0.09 11.2

0 

4.61 473.02 8.54 306.0

1 

28.64 2.50 0.01 0.70 

 216 24.80 0.18 22.8 9.19 826.23 9.02 727.8 59.35 5.70 0.83 1.51 
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7 9 

 288 28.71 0.19 25.2

5 

11.3

0 

894.87 12.4

6 

682.3

1 

65.27 6.37 0.01 1.55 

 384 30.62 0.22 30.3

1 

14.5

5 

936.17 16.9

3 

766.7

7 

72.10 7.37 0.02 1.94 

 456 27.18 0.19 28.7

7 

17.2

9 

870.14 35.0

3 

708.0

3 

69.79 6.93 0.01 1.80 

 552 22.97 0.18 25.8

0 

20.6

6 

765.12 63.8

9 

613.2

3 

62.36 6.04 0.02 1.67 

 648 29.64 0.21 30.6

8 

18.9

1 

856.75 37.7

3 

606.0

9 

68.65 6.88 0.02 3.03 

             

E981m 0 23.40 <DL 0.44 0.04 620.76 0.22 17.55 3.68 0.24 <DL <DL 

 120 49.44 0.23 13.1

5 

3.47 848.66 1.68 594.1

2 

56.66 5.38 <DL 1.10 

 216 73.02 0.23 25.9

1 

6.87 1009.6

9 

3.03 640.0

4 

91.34 8.86 <DL 2.45 

 288 74.79 0.32 30.2

2 

7.68 1032.6

0 

2.73 668.6

2 

101.7

3 

9.97 <DL 2.86 

 384 72.73 0.33 34.8

1 

8.81 1005.6

3 

2.43 633.6

5 

101.5

3 

10.1

6 

<DL 3.56 

 624 70.86 0.37 39.7

1 

9.90 1038.8

8 

2.33 647.0

6 

102.5

9 

10.2

5 

<DL 4.13 

             

H800m 0 4.52 0.01 2.04 8.13 570.19 11.7

1 

21.08 5.92 0.60 0.02 5.72 

 72 5.61 0.01 3.59 30.1

5 

561.39 30.7

1 

421.1

6 

11.44 1.25 0.03 4.22 

 216 8.14 0.02 2.85 29.4

7 

565.58 15.2

0 

306.5

1 

4.14 1.46 <DL 0.18 

 384 8.27 0.03 3.12 32.0

7 

643.49 12.3

7 

311.0

9 

5.56 1.68 <DL 0.45 

 552 9.67 0.03 3.28 30.4

4 

614.57 5.13 288.2

6 

6.37 1.70 <DL 0.22 

 696 7.64 0.07 3.43 30.7

0 

586.43 12.3

5 

284.5

0 

6.56 1.64 0.03 0.31 

             

Blank 672 2.79 0.01 <DL 0.12 575.03 1.10 722.3

2 

0.94 0.01 0.01 <DL 

DL  2.7E-01 7.1E

-05 

2.1E-

02 

1.5E-

04 

2.7E-01 1.9E-

03 

1.8E-

03 

3.0E-

02 

4.3E-

05 

9.4E

-04 

1.0E

-03 

 917 

 918 

Table 5: Dissolved trace P during reactions (µg/kg).  DL is detection limit and ND is no data. 919 
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 920 

 Time 

(h) 

P   

P1217m 0 ND 

 72 ND 

 552 <DL 

 696 <DL 

   

P1165m 0 73.79 

 144 608.54 

 672 ND 

   

E1043m 0 970.18 

 120 ND 

 384 37.74 

 648 ND 

   

H800m 0 ND 

 72 ND 

 552 <DL 

 696 <DL 

   

Blank 672 11.72 

   

DL  3.8E+00 

 921 

Table A1:  Analytical methods applied to the core samples and experimental waters reported in this 922 
manuscript and supplementary information. R indicates where a method was also applied to the core 923 
after reaction. Perm = permeability.  Whole rock = rock fusion, digestion and LOI.  T = analysis without 924 
filtering, for total metals.  

1
 Sub-plug was lost in transit. 

2
 ICPMS was not performed owing to the higher 925 

salinity, a whole rock digestion and XRD of only this core post reaction was performed instead.  GWB = 926 
geochemical modelling.   Additionally porosimetry, XRD and petrography of adjacent core sections 927 
referred to in this manuscript are in Dawson et al., 2015.  928 

 P1217m P1165m E1056m E1043m E981m H800m 

Micro-CT X X X X X X 

Micro-CT R X X X X X X 

QEMSCAN X 
1 

X X X X 

QEMSCAN R X X X X X X 

SEM-EDS X X X X X X 

SEM-EDS R X X X X X X 

N2 Perm X     X 

N2 Perm R X     X 

Brine perm X X X X X X 
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Brine perm R X X  X  X 

Whole rock X X X X X X 

ICPOES X X X X X X 

ICPOES T   X X X  

IC, pH, Cond X X X X X X 

ICPMS X X 
2 

X X X 

GWB X X X X X X 

 929 

 930 

  931 

 932 
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Highlights 

• O2-SO2-CO2 experiments on CO2 sequestration site reservoir and cap-rock cores.  

• Coupled micro CT and geochemical characterisation before and after reactions. 

• Strong acidification with reservoir core, no change in porosity. 

• Formation of open porosity in calcite cemented core, with buffered pH.  

• Dissolved Mn, Mg, Co, Zn correlated with Ca from carbonates in cap-rocks. 

 


