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Abstract 

Identifying causal relations plays an indispensable role in science, economics, medicine 
and everyday life. Interventionist causation associates the discovery of such relations with 
the possibility of manipulation or intervention. A causes B, if manipulating A in the right 
way can bring about changes in B. The main technical tool, the causal model, can be seen 
as a device for telling us how and why certain actions are more effective than others. Such 
models have found application in almost every scientific discipline.  

However, despite several decades of sophisticated analysis and a wealth of technical 
results, interventionist causal methods are known to fail in the quantum case. The 
quantum domain, with its peculiar, counterintuitive features, is widely considered an 
inhospitable environment in which to apply our usual causal discovery tools.  

This causal skepticism presents us with a puzzle. Physicists are now able to manipulate 
and control quantum systems, and the design and construction of quantum technology 
relies on an ability to identify when one strategy will work and another will fail. From the 
perspective of interventionist causation, it seems that a formal account of quantum causal 
modelling ought to be possible.  

The main contribution of this thesis is to provide an extension of interventionist 
methodology to the quantum case. In Chapter 1, I introduce interventionist causation from 
the perspective of two giants of the field: Judea Pearl and James Woodward. The Causal 
Markov Condition (CMC) and Faithfulness assumptions are presented, and I draw 
particular attention to the discovery of casual structure. I touch on some of the well-known 
problems with interventionist causation per se.  

In Chapter 2, I put this methodology to work in a quantum mechanical context. Following 
tradition, we examine one of the Bell experiments in order to determine how the classical 
interventionist framework fails. Noting that the usual response is to demand that one drops 
either the CMC or Faithfulness, I suggest that neither approach is particularly satisfactory 
and argue for an alternative. I discuss some reasons why the interventionist is forced to 
pursue this different path.  

In Chapter 3, I motivate the possibility of an interventionist account of quantum causation. I 
first look at how physicists represent quantum technology in order to make interventionist 
and counterfactual inferences: via the use of quantum circuit diagrams. Using three 
examples I demonstrate the manner in which these diagrams can be used to facilitate 
causal inference.  

In Chapter 4, I examine some recent attempts at characterising quantum causal models 
due to work from the quantum foundations community. I present three such accounts and 
explain why I endorse a fourth, the focus of the next chapter.  
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In Chapter 5, I present a new framework that allows for the discovery of interventionist 
quantum causal structure. I finish the thesis with a summary and some suggestions for 
further work.  
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Introduction

The aim of this thesis is to present an interventionist account of causation that is valid for both

classical and quantum phenomena. Interventionist causation associates causal relations with

the possibility of manipulation or intervention. The main technical tool, the causal model, can

be seen as a guide to action, a device for telling us how and why certain strategies are better

than others. For example, knowing that the mercury level and the onset of snow are correlated

does not tell us whether turning the thermometer upside down will prevent snow. It is causal

information that allows us to determine the right action in this situation.

Interventionist causation comes with a well-defined technical toolbox. It is generally con-

sidered that these tools fail to identify causal relations in the quantum case and many believe

that interventionist techniques cannot be extended to the quantum domain (Glymour (2006),

Spirtes et al. (2000), Pearl (2009), Koller and Friedman (2009)).

This view, however, presents us with a puzzle. It seems that we are able to make distinctions

between effective and ineffective strategies in situations that involve quantum systems. Physi-

cist can now exploit quantum phenomena to achieve new ends. They use models, graphical

representations and explanations that describe new quantum technology and facilitate causal

inference. They help scientists predict, manipulate and explain. They help identify when one

strategy will be effective and when another will fail. For the interventionist, what can these

models be, if not causal?

Starting with this very simple question, it is surprising how far one can go. Insofar as

interventionist causation is about distinguishing between effective and ineffective strategies, it

is possible to present a theory that captures this aspect of the quantum domain. One advantage

of such an approach is that it is possible to remain metaphysically neutral and avoid the usual

difficulties that come with quantum causation. Non-locality, the measurement problem and

interpretational issues can be put on hold. Armed with a clear formalism, it is then possible

1



2 Introduction

to assess the metaphysical implications quantum phenomena present for our understanding of

causation.

The main contribution of this thesis is that it provides an extension of interventionist

methodology to the quantum case. The formalism presented is mathematically consistent and

recovers classical causal modelling structure in an appropriate limit. It represents an important

challenge to the orthodoxy that one cannot discover interventionist quantum causal relations.

Additionally, it provides an introduction to the very new field of quantum causal modelling,

considers rival accounts and provides several motivating reasons to believe such an account

ought to be possible.

There are, however, many philosophers who believe that physics in general is inhospitable

to the existence of causal relations. Problems include the fact that the variables of fundamental

physics are not coarse-grained (Woodward, 2007), that physical theories are time symmetric

(Farr and Reutlinger (2013), Russell (1912)) and that fundamental physics aims at universality.

The general picture for such “Russellians” is that physics gives us fundamental laws that tell

us how the state of the universe evolves from one moment to the next. Thus, whilst plausibly

relevant in certain applied situations (so the thinking goes), there is no need for causal notions

to feature in our most fundamental physical theories.

Whilst I believe interesting counterarguments to this position have recently been presented

(Frisch (2014a) and Ismael (forthcoming)), it is not my aim to mount a systematic attack on

the position. Insofar as the Russellian perspective is an ontological claim (there is no place

for causal relations in the ontology of fundamental physics), it is not my aim to deny such a

view. If, however, one is referring to an eliminativist position that claims casual reasoning to

be entirely absent, or somehow useless, in the actual practice of physics, then there is much in

this thesis to dispute this. Ultimately, I leave the metaphysics to the reader: one can regard

the quantum causal models I present in Chapter 5 simply as representational devices that

give us nothing more than a handle on the practical advantages of causal reasoning involving

quantum systems.1 Alternatively, one can take the view that the pragmatic value of such

characterisations should not be so easily dismissed.2

Additionally, I do not wish to suggest that interventionist causation is the only account of

1This is sometimes called the “Republican” view. “Causal republicanism is the view that although the notion
of causation is useful, perhaps indispensible, in our dealings with the world, it is a category provided by neither
God nor physics, but rather constructed by us.” (Price and Corry (2007)) [p2]

2I provide two small, speculative points in Section 1.3.7 to support this alternative view.



Introduction 3

causation with the potential to bear philosophical fruit. Rather, my chief aim is to assess to

what extent we can extend interventionism to the quantum case.

A brief outline of the thesis is as follows: in Chapter 1, I introduce interventionist causation

from the perspective of (Pearl, 2000) and (Woodward, 2003). The Causal Markov Condi-

tion (CMC) and Faithfulness assumptions are presented, and I draw particular attention to

the discovery of casual structure. Finally, I touch on some of the well known problems with

Interventionist causation.

In Chapter 2, I put this methodology to work in a quantum mechanical context. Following

tradition, we examine one of the Bell scenarios in order to determine how the classical inter-

ventionist framework fails. We first briefly review standard approaches from outside the causal

modelling literature, and adopt the view that Bell’s theorem presents one with a choice between

giving up on locality or on causal explanation. Using the interventionist causal formalism of

Chapter 1, we characterise the manner in which this account fails to explain the Bell correla-

tions. Noting the usual response is to advocate that one gives up either the Causal Markov

condition or Faithfulness, we see that neither avenue is particularly attractive.

In Chapter 3, I motivate the possibility of an interventionist account that can accommodate

quantum phenomena. I first look at how physicists represent quantum technology in order to

make interventionist and counterfactual inferences: via the use of quantum circuit diagrams.

Using three examples I demonstrate the manner in which these diagrams can be used to facilitate

causal inference.

In Chapter 4, I examine some recent attempts at characterising quantum causal models.

Due to the success of Pearl’s causal modelling methods, the quantum foundations community

has recently begun to examine the possibility of providing a quantum analogue. I introduce

three such accounts and explain why I endorse a fourth, the focus of the next chapter.

In Chapter 5, I present a new framework that allows for the discovery of interventionist

quantum causal structure, based on the process matrix formalism of Oreshkov et al. (2012). I

finish up the thesis with some conclusions and suggestions for further work.
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Chapter 1

Interventionist Causation

In this Chapter, we look at two different interventionist accounts (Pearl (2009) and Wood-

ward (2003)). The Causal Markov Condition and Faithfulness are presented, and particular

attention is drawn to the discovery of casual structure. The manner in which we use classical

interventionist methods to determine causal structure and the interpretational stance required

to accept the validity of these methods is discussed. This will lead the reader to a deeper under-

standing of the difficulties interventionist causal theorists face in light of quantum correlations

(the subject of Chapter 2), and also an appreciation of why the quantum models of Chapters

3, 4 and 5 are structured the way they are.

Finally, some of the well-known problems with Interventionist causation are reviewed. The

purpose of this section is to allow us to later see which problems go through unaltered in the

quantum case, and which take on a new character.

1.1 Introduction.

In virtue of what, exactly, is a causal model a representation of causal structure? For many

interventionists this is primarily a pragmatic matter. Causal models enable one to identify

effective strategies by distinguishing between probabilistic correlations that are due to causes

and those that are merely accidental. Nancy Cartwright (1979) was arguably the first to

clearly articulate the importance of this distinction in her paper “Causal Laws and Effective

Strategies”.1 She was responding to a version of causal eliminativism due to Russell, who had

1Although see Gasking (1955), Collingwood (1940) and von Wright (1971) for specifically agent-dependent
fore-runners to manipulability accounts of causation.

5
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argued that causal principles could not be derived from symmetric laws of association, and

thus ought to be eradicated from science.2 Cartwright argued against the eliminativist element

of Russell’s argument: for her, “causal laws cannot be done away with, for they are needed

to ground the distinction between effective strategies and ineffective ones” (p420). In the last

thirty years this basic idea has developed into a sophisticated account of causation known as

Interventionism. The representational tool of choice for the computer scientists, statisticians

and philosophers who utilise this theory is the causal model, a graphical structure that has

found application across a wide range of disciplines.

For the interventionist, causal models are vehicles for learning about the manipulable el-

ements of the world. It is therefore relevant to ask how one ought to think of the relations

and relata of these models. Are they to be considered merely as agent-dependent projections

(Price, 2013)), inherently perspectival (Price, 2007) and ontologically deflationary (Price and

Menzies, 1993)? Or is it possible to maintain an objective, agent-independent account (Wood-

ward (2003), (2007)) and suggest that causal models may have some (however thin) ontological

significance (Woodward, 2015)? While disparate positions have recently been brought some-

what closer (Ismael, 2015), these kinds of metaphysical questions are far from settled. As the

primary aim of this thesis is to produce a consistent formalism, one that differentiates between

effective and ineffective strategies involving quantum phenomena, I will refrain from engaging

in these kinds of questions. Apart from some brief speculation here and there, I will remain

agnostic with respect to the metaphysical implications of interventionist causation per se.

A number of authors have contributed in important ways to the technical development of

interventionism and causal modelling, notably Spirtes et al. (2000), Woodward (2003), and

Pearl (2000). We shall spend the remainder of this chapter considering the detail of the latter

two accounts. Pearl’s account is mathematically precise and provides a clear formalism to

explore: an understanding of this framework will help the reader appreciate the technical issues

when using this methodology to characterise quantum causal structure (Chapter 2). Moreover,

Pearl’s account is also the departure point for the recent physics literature on quantum causal

modelling. As such, it will be needed when we look at these alternative approaches in Chapter

4.

2For the unlucky few who have not heard it, Russells famous quote on the matter: “The law of causality, I
believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy,
only because it is erroneously supposed to do no harm.” (Russell, 1912).
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Woodward’s account, whilst arguably less mathematically rigorous, is sufficiently general

to motivate the alternative approach that I advocate in later chapters. Additionally, much

of the philosophical effort regarding Interventionist causation has focused on this work.3 Both

accounts of interventionist causation will pave the way for a deeper understanding of the frame-

work presented in Chapter 5: an interventionist account that allows for the discovery of quantum

causal structure.

The great appeal of interventionist methodology is that it closely mirrors the way in which

experimental evidence is obtained in many scientific contexts. An example of the technique is

seen in Galileo’s famous experiments with inclined planes. The model variables are identified

(the size, weight and initial velocity of the objects, and the length and inclination of the planes),

the values of some variables are held fixed and the consequences of varying the values of others

are observed.

This experimental methodology was also refined by the work of the statistician Ronald

Fisher. In the 1930s, Fisher identified the methodological advantages of using randomisa-

tion to eliminate the influence of latent common causes (Fisher, 1935).4 Fisher assumed that

randomisation of a variable value would render it independent of its normal causes. Using

randomisation to eliminate various kinds of sample bias has since become a key methodology

in experimental science. A well known use of this technique is in large, randomised, double

blind, placebo controlled, medical trials.5 As we shall see, the abstract idea of severing a model

variable from its usual antecedent causes is a pivotal component of interventionist methods

(section 1.2.2), and one we shall also use in the quantum case (section 5.5).

Our focus is on the advance which came simultaneously from computer science (Pearl, 2000)

and philosophy (Spirtes et al., 2000), via the development of Causal Bayesian Networks. These

networks represent causal relations among a set of variables via a graph and a probability

distribution that factorises over the graph. The graphs can then be used to facilitate various

kinds of causal reasoning: they permit the identification of effective and ineffective strategies.

3I leave out the work by Spirtes et al. (2000) primarily for reasons of space. For the interested reader, there
is much to commend engaging with the work of these authors in addition to Pearl and Woodward. Whilst the
initial discovery algorithms developed by this team are equivalent to Pearl’s Inductive Causation (IC) and IC*
algorithms (due to simultaneous and independent work), there have been important and distinctive extensions
in recent years. See, for example, Zhang and Spirtes (2015).

4Latent common causes are due to variables not included in the model. Their exclusion may be a result of
ignorance, or the fact that they are unmeasurable for some practical reason.

5Of course, there are well known limitations to this methodology. Specifically, sample bias is only eliminated
in the large sample limit.
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We start first with Pearl’s formalism, consider his interpretational stance, and then move on

to Woodward’s account. Woodward’s work followed on from the formal advances of Pearl and

Spirtes et al. and has strengthened and enriched the connection between these technical devices

and the traditional concerns aired in the philosophy of causation literature.

1.2 Pearl’s Causal Bayesian Networks

1.2.1 Formalism

Pearl developed his formalism whilst writing artificial intelligence programs. His aim was to

capture the manner in which we learn about the world with only limited actions in a noisy

environment. Even for a very simple toy environment, inputing and searching through relevant

probabilistic data can be extremely onerous. Imagine one has a table of statistical data per-

taining to a set containing n variables. If each variable has k possible values, then to exactly

specify a probability distribution over all possible combinations of values in the model, one

needs kn−1 parameters. Pearl showed that a Bayesian Network (BN) provides a possibility for

representing such a joint distribution in a more compact form, by identifying conditional inde-

pendencies and dependencies. Furthermore, by linking the notion of probabilistic dependence

to one of causal mechanism, he demonstrated that one can also utilise Bayesian Networks to

uncover explicitly causal structure. Structure that can be employed as both a guide to future

decision and action, and provide a picture of what might have been.

The relata of Bayesian Networks are classical random variables X1, .., Xn. It is assumed that

each variable can be associated with a range of ‘values’: properties that we can unambiguously

reveal by measurement or direct observation. Such variables can be binary and used to represent

the occurrence or otherwise of an event, can take on a finite range of values or have values that

are continuous.6 It is generally assumed that the properties that these values represent are

non-contextual (in the sense of quantum contextuality) and exist prior to, and independently

of the act of measurement or observation.7 Ultimately, these values represent the point of

contact between the model and the world.8

6As is the usual convention, capital letters (X1, X2...) will be associated with particular variables, and lower
case letters with particular variable values (xi, xj ...).

7Very roughly, contextuality means that the value of the observed property depends on the way it is observed,
or on which other properties are observed together with it. See Kochen and Specker (1967) for an intorduction
to quantum contextuality.

8We shall see in sections 2.3.5, and 5.2 that this very intuitive starting point is deeply problematic in the
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The BN is an ordered triple 〈V,G, Pr〉. Here V is the set of variables, G a directed graph

and Pr a joint probability distribution over the variables V . The graph captures the qualitative

relationships between the variables, with the nodes of the graph being the variables in V and

the arrows between them representing the probabilistic dependencies. Some basic terminology

will be useful: a variable A is a ‘parent’ of B when there is a single arrow from A to B. In such

a situation B is a ‘child’ of A. A is an ‘ancestor’ of B when there is a ‘directed path’ of one or

more linked arrows from A to B, in such a case B is a ‘descendant’ of A. The relation of parent

to child node, characterised by an arrow, is assumed to represent probabilistic dependence.

The probabilities of BN adhere to the axioms of Kolmogorov’s probability theory (1950):

positivity, normalisation and additivity. Intuitively, no event can have a negative probability

(positivity), the probability that some possibility or other will occur is 1 (normalisation) and,

if two events are independent, then the chances of one do not effect the other (additivity). BN

also require conditional probabilities, for example the conditional probability of X given Y,

denoted X|Y , is the probability of X given the assumption that Y occurs. One can either take

such conditionals as primitive (Hájek, 2003) or as a result of the ratio formulation P (X|Y ) =

P (X∩Y )
P (Y )

, which requires that the probability P (Y ) be well defined. Two variables X and Y

are conditionally independent given a third Z, if the joint conditional factorises: P (X, Y |Z) =

P (X|Z)P (Y |Z).

More carefully, a BN is a directed acyclic graph (DAG), G, where each node Xi has an

associated conditional probability distribution. This conditional distribution denotes the prob-

abilistic dependence of the values of Xi on its parents in the graph, P (Xi|PaG(Xi)). Parentless

nodes are simply conditioned on the empty set and thus associated with a marginal distribu-

tion. A BN represents a joint probability distribution, taken over the model variables, via the

product rule P (X1, ..Xn) =
∏

i P (Xi|PaG(Xi)). In words, the joint distribution (P ), taken over

all the variables in the model (V ), decomposes over the graph (G) into a collection of smaller

conditional probability distributions.9 This factorisation enables the formal manipulations of

the graph that make various causal and statistical inferences possible.

Pearl’s causal models are essentially such Bayesian Networks with some additional assump-

tions, known as Acyclicity, the Causal Markov Condition and Faithfulness.10 One requires these

quantum case.
9For Causal Bayesian Networks these conditional distributions are sometimes known as the Causal Param-

eters of the graph.
10Faithfulness in Pearl’s terminology is stability. I use “Faithfulness” as it is the predominant term in the
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assumptions because for probabilistic BNs, directed edges need not convey causal meaning. For

Pearl “behind every causal conclusion there must lie some causal assumption that is not dis-

cernible from the [joint probability] distribution.” (Pearl, 2000)[p332]. That is, without some

causal semantics, there is no reason to assume that the purely probabilistic information given

to us by Bayesian networks should support causal reasoning. Inferring causal dependence

from statistical dependence, and causal independence from statistical independence requires

the further assumption that statistical correlations are generated by local causal mechanisms.

Moreover, that we can validate causal structure via localised interventions.

For causal Bayesian networks, it is assumed that the joint probability distribution taken

over the variables of the system is generated by its ‘casual structure’, where this structure is

formed by deterministic causal mechanisms acting between variables, plus some added noise.

Such causal structure is represented via the DAG, which is assumed to be isomorphic to the

network of autonomous causal mechanisms. When one passively observes the system (collects

data samples without setting variables to particular values), one is given a window into certain

aspects of this structure; when one intervenes on the system (some of the data instances

correspond to cases where particular variables in the network are set to specific values) typically

one gains further information about the structure. It is the latter possibility of causal discovery

via local interventions that ties the causal modelling framework to Cartwright’s original insight.

The ultimate goal of such models is to give the user a handle on the manipulable elements of

the world: to provide a guide to future action. These ideas are made more precise via the

Causal Bayesian Networks (CBN) formalism.

What is an intervention?

Interventionist information is obtained when some of the data instances correspond to cases

where particular variables in the network are set to specific values, while others are allowed to

vary freely. The act of “fixing” variable values must be due to a parameter outside the variable

space of the model. The presumption is that the resulting values of the observed variables are

determined by the causal structure of the network.

The conceptual distinction between interventions and mere observations is crucial to Pearl’s

account. Whilst both can, in principle, be represented as variables, associated with a distri-

philosophical literature.
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bution over possible values, interventions must be outside the variable space of the model. Of

course, one can always expand the variable set and include these intervention variables explic-

itly in the model, but to make any causal inferences on this new structure, one needs a further

set of intervention variables to test the causal structure of the expanded model.11 Thus, the

distinction is relative to where one draws the boundaries of the model under consideration.

Although Pearl characterises the act of intervention as ‘clamping’ to a single variable value,

in many experimental situations the best one can do is characterise a distribution over values.

Generally speaking, the more sharply peaked this distribution is, the more valuable the act

of intervention will be for determining causal structure. Pearl discusses these more general

kinds of interventions in Chapter 3, section 3.2.2. In many experimental contexts, rather than

forcing a variable X to take on a specific value xi, the best one can do is induce the value of

X to respond in a specified manner to some set Z of other variables. For example, this may

be via a stochastic relationship where X is set to x with probability P (x|z), or via a functional

relationship x = f(z). We shall later see that these more generalised interventions are needed

in the quantum case (see section 5.5).

Acyclicity, The Causal Markov Condition and Faithfulness

Pearl’s chief aim was to identify situations in which one could answer intervention queries using

only observational data. For example, imagine one has gathered observational statistics relating

four binary variables: male/female, smoker/not, educated/not, wealthy/not. Consider the task

of characterising the causal relationships between these four variables, in the case where one

lacks the means to directly intervene and force members to adopt particular variable values.

An example of an interventional query in this context might be: would the distribution over the

wealth variable change if one were to intervene and force all the male members of the population

to smoke? Without assuming Acyclicity, Faithfulness and the Causal Markov Condition, it is

usually not possible to answer these kinds of questions from observational data alone.

As an easy example to illustrate this latter point, consider fig 1.1. The three graphs in

figure 1.1 all capture the probabilistic relationship ‘X is conditionally independent of Z, given

11Obviously, this has some implications for extension to the point where one encapsulates the entire universe.
For some, the fact that there is no-longer an“outside” implies that at this level causation disappears (Woodward
(2007), Hitchcock (2007)). For others, this is not considered a problem (Frisch, 2014b). The quantum version
of this dilemma is discussed briefly in section 5.9.1.
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X Y Z

X Y Z

X Y Z

Figure 1.1: Possibilities for a three node DAG assuming causal sufficiency (no latent nodes).

Y’ (X⊥Z|Y ).12

So, if we start with purely observational data, and identify the statistical relationship

X⊥Z|Y , we can only construct an equivalence set of graphs. Such graphs are said to be

“independence equivalent”, I-equivalent or “Markov equivalent”. To differentiate between such

graphs we need to feed in interventionist information.13 In the absence of such interventionist

information, for more complex graphs we can also reduce causal underdetermination via the

three assumptions of acyclicity, the CMC and Faithfulness. As I make clear below, in Pearl’s

view these distinct approaches are actually two sides of the same coin.

Acyclicity is relatively intuitive, simply demanding that no path through the graph is closed

to form a loop. That is, causes cannot be their own effects.14 The Causal Markov Condition

(CMC) is also fairly intuitive. The condition states that for a graph G, each variable Xi is

causally independent of all its non-descendants, given its parents Pa(Xi) in G. One can think

of it as a generalisation of Reichenbach’s screening off criteria (Reichenbach, 1956).15 That

is, it allows the inference from connectedness in the graph (statistical dependence) to causal

dependence. We shall consider the CMC and the relationship to interventions in more detail

in section 1.2.2 below.

Faithfulness (alternatively stability or no fine-tuning) states that the only conditional in-

dependencies in the distribution P are the independencies that hold for any set of causal

parameters D. Another way to put this is that all the independence relations in the probability

12Symbolically, I use ”⊥” to denote probabilistic independence (in this case, conditonal independence) for
the remainder of the thesis.

13Using temporal information alone will in general not enable one to distinguish cause from correlation: the
mercury falls before it snows, but the falling mercury does not cause the snow to fall. Hence, the focus is on
interventions rather than temporal infromation.

14Although typically acyclic, cyclic versions of Bayesian Networks exist (Koller and Friedman, 2009), and can
be put to work to determine causal relationships. We discuss these later in section 1.3.5.

15Figure 1.1 provides a simple example of probabilstic screening off. In each of the three graphs, Y screens
off the dependence between X and Z.
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distribution over the variables in V must be a consequence of the Markov condition. The idea

here is that one does not wish to allow for “accidental” independencies that are created when

causal paths cancel. Faithfulness therefore licences the inference from unconnectedness in the

graph to causal independence.

To some extent Faithfulness is reflective of model choice in normal scientific practice. For

Pearl, causal models should be “chosen by a criterion that challenges their stability against

changing conditions, as this is indeed what scientists attempt to accomplish through controlled

experimentation” (Pearl, 2009) [p61].

In terms of discovering causal structure from sets of empirical data there is another good

reason for disallowing unfaithful, or fine-tuned, models. Otherwise it becomes possible to

trivially associate any probability distribution with a Markovian graph by ensuring the graph

is complete, where each node in the graph is connected to all other nodes in the graph. In such

a situation, discovery of causal structure becomes impossible.

Recall, causal discovery was one of Pearl’s key motivations. In his framework, identification

of causal structure can proceed in two equivalent ways: one can either take observational

data and assume the CMC and faithfulness, or use data derived via local interventions. Both

methods provide the possibility of determining causal structure from empirical data.

1.2.2 Interpretation

Pearl suggests two physical facts underpin his claim that BNs that are Markovian and Faithful

can be interpreted to represent causal structure. Firstly, he assumes the local conditional prob-

ability distributions (between parent nodes and their respective child node) encode information

about local (in time and space) stochastic mechanisms, where the stochasticity is due to our

ignorance about other (background) variables that we do not include in the model.16 This

means that the relationships between the values of parent and child nodes can be expressed

as a function Xi = fi(paXi, Ui), where the Ui represent all the unmodelled influences on the

variable values (noise). Pearl assumes that if all causal influences are correctly represented,

then the Ui will be independent, thus both the Causal Markov Condition will hold and the

model will be causally sufficient.

The functional relationship corresponding to a mechanism is taken by Pearl to be determin-

16This will clearly be problematic in the quantum case.
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istic: Xi = f(paXi), where the unknown effect of background variables can be summarised as a

single variable associated to each node, Ui. This defines the conditional probability associated

with the variable Xi as:

P (xi|paxi) =
∑
ui

P (xi|paxi , ui)P (ui) (1.1)

On this interpretation the model is probabilistic by virtue of our ignorance about the values of

the Ui: the distribution over the Ui generates the probability distribution over the model.

Pearl is clear that the deterministic causal relations ought to be thought of as primitive,

with probabilities entering by virtue of our ignorance. In the preface to his book “Causality”,

he admits to previously taking probabilistic relations as primitive, with causal relations entering

simply as a useful way of organising such personal probabilistic information. Now, however:

I take causal relationships to be the fundamental building blocks both of physical

reality and of human understanding of that reality, and I regard probabilistic rela-

tionships as but the surface phenomena of the causal machinery that underlies and

propels our understanding of the world. (Pearl, 2000)[xvi]

This view relates to the intuition underlying the second physical fact that Pearl commits

to: the possibility of localised interventions. He assumes that the act of setting a variable

to a particular value (an intervention) can deterministically override the causal mechanisms

of the model. Thus, an intervention provides new information by disrupting only the local

mechanisms associated with that node. It is therefore an influence “that originates from outside

the probability space” of the model (Pearl, 2001)[36]. The intervention is assumed to replace the

original influencing causal mechanisms (incoming arrows) with a mechanism that determines

the child variable value X = x with probability 1. The graphical consequence is that arrows

into the intervened variable are broken, and a new probability distribution is associated with

the altered graph. Such an intervention is called an ‘arrow-breaking’ or surgical’ intervention.

Remember, the joint distribution of the undisturbed graph is:

P (X1, ..Xn) =
∏
i

P (Xi|PaG(Xi)) (1.2)

where the product on the right is over all the nodes in the graph. The joint distribution for an
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X Y Z

λ

Figure 1.2: Unmutilated graph depicting structure associated with observational information
only.

altered graph, for example when X3 is set to x, is:

P (X1, ..Xn|do(X3 = x)) =
p(X1, ...Xn)

p(X3|Pa(X3)
(1.3)

The term on the left is to be read as “the joint probability over all the variables X1 to Xn,

given that we set the value of X3 to x”. Note, it is the factorisation of the joint probability into

local conditional probabilities between parent and child nodes that ensures this manipulation

of the graph accurately represents the effect of a localised intervention. This licences Pearl’s

assumption that “the change is local and does not spread over to mechanisms other than those

specified” (p23).

Pearl represents a particular intervention by a variable I added to the graph G under

consideration. This variable connects with only one other variable Xi via a directed edge and

can take values in {idle, do(xi)}, where xi ranges across all the values of Xi. As a result of

setting the intervention variable to a particular value, any incoming casual arrows are removed,

resulting in a manipulated graph (see figures 1.2 and 1.3). Such graphs are, rather violently,

called mutilated DAGs.

I X Y Z

λ

Figure 1.3: Mutilated graph representing the effect of an intervention.

The resulting distribution over the mutilated graph (Figure 1.3) is calculated by assigning

the following values to the conditional distribution associated with the node receiving the

intervention:
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P (Xi = xi|pai, Ii) =


P (Xi = xi|pai) if Ii =idle

0 if Ii = do(x′i) and (xi 6= x′i)

1 if Ii = do(x′i) and (xi = x′i)

(1.4)

Pearl formulated the so-called “do-calculus” to formalise the effect various interventions of

this kind can have on the probability distribution over the graph. By using this calculus one

can make assessments regarding the identifiability of the causal graphs from probabilistic data.

Pearl claims his framework rests on a hierarchy of assumptions, statistical then interven-

tionist. The basic axioms of probability theory (positivity, normalisation and additivity) and

the causal assumptions of Markovianity and Faithfulness provide the connection to testing the

model via local interventions.17

The importance of localised interventions in characterising causal relations is usually left im-

plicit in characterisations of the CMC (see equation 1.2). In actual fact, the causal information

of a DAG is encoded in the conditional probability:

P (x1, . . . , xn|i1, . . . , iN) =
n∏
j=1

P (xj|paj, ij), (1.5)

which reduces to equation 1.2 when Ij = idle for all j.

It is important to realise that the interventions need not be under agent control. So called

“natural interventions” are events that are themselves due to causes from outside the variable

space of the model. What matters is that the effect of such a natural intervention is to sever

the target variable from its usual antecedent causes. In his own words:

Nature is a society of mechanisms that relentlessly sense the values of some variables

and determines the values of others, it does not wait for the human manipulator

before activating those mechanisms. (Pearl, 2009) [p361]

So, for Pearl, the causal structure of a DAG is related to the existence of deterministic causal

mechanisms, where the action of a local intervention is to choose between possible individual

17One can argue whether the ability to perform interventions neeeds to be in practice, rather than merely in
principle. Many authors would consider the latter to be enough.
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causal mechanisms.

1.2.3 Causal Mechanisms

Whilst Pearl’s commitment to causal mechanisms is clearly important to his overall interpre-

tational stance, the notion of mechanism is left relatively vague:

The world consists of a huge number of autonomous and invariant linkages or mech-

anisms, each corresponding to a physical process that constrains the behaviour of a

relatively small number of variables. Actions are local in the space of mechanisms.

(Pearl, 2009)[p223]

Formally, a mechanism is represented by a function relating child to parent nodes. The critical

feature however, is the relative autonomy of each individual mechanism with respect to others in

the network. Recall, mathematically, this is ensured by the factorisation of the joint probability

over all the nodes in the graph, into collections of conditional probabilities, one for each node.

Pearl does not try to tell us why the world should decompose in such a manner, but it is clear

that he thinks that this is a primitive ontological fact.

An appealing feature of the mathematical structure of Pearl’s algorithms is that they provide

a framework that is fairly flexible with respect to interpretation. For instance, the notion of

mechanism can be cashed out in variety of ways, all of which remain consistent with the

formalism.

Mechanism is a hot topic in contemporary philosophy of science. Andersen (2014) has

produced a useful taxonomy of various notions of mechanism. Of the five types, it is not

entirely clear which Pearl himself would subscribe to, although it is possible to show that all

five remain compatible with his formalism. Andersen initially distinguishes two distinct kinds

of mechanism, those that are explicitly anti-reductive (Mechanisms1 and Mechanisms2), and

those that are not (Mechanisms3,4,5). Anti-reductive mechanisms submit that one can divide the

world into different levels, and accept the connections between these levels, without needing

to reduce the higher levels or regard them as merely epiphenomenal. [p274]. The view for

Mechanisms1 is typically metaphysically agnostic, focused more on what science does than the
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way the world is. Mechanisms2, on the other hand, provide an ontological account of what

there is, where each mechanism involves causal interactions between entities within it. By

looking more closely at these causal relationships we can find generating sub-mechanisms: it’s

“...mechanisms all the way down.”[p280].

The anti-reductionist picture of Mechanisms1 is perhaps implied by Pearl’s assumption of

the Causal Markov Condition. Pearl suggests the ubiquity of the Causal Markov Assumption

in scientific discourse is “reflective of the granularity of the models we deem useful for under-

standing Nature” [p44]. Causal models are relative to a level of detail. The Markov condition

picks out a particular level at which robust causal relations can be found, in particular, a level

at which one can average over unmodelled causes. The mechanisms that define them, likewise,

are relative to a specific level of granularity. Woodward also recognises this ‘grain specific’

feature of interventionist models, and we shall revisit it again in subsections 1.2.7 and 1.3.1

below.

Mechanisms3,4,5 are not committed to such an anti-reductionist picture. Mechanisms3 is

defined in Andersen’s taxonomy as corresponding directly to Pearl’s (and Woodward’s) view.

The defining feature is modularity of mathematical representation and manipulability indepen-

dent from other mechanisms3 in the system. Although Andersen specifically associates Pearl’s

view with this category, we have noted that it seems plausible that the mechanisms of Pearl’s

account could also fall into the first, and possibly the second category.

Mechanisms4 differs from Mechanisms3 by virtue of the metaphysical picture of causation

with which it is typically associated. For Mechanisms3 causation is difference-making (a cause

makes a difference to whether the effect obtains) and for Mechanisms4 it is productive or phys-

ical.18 As such, the latter view aligns with Dowe’s account of causation, where causal processes

involve the transmission of conserved quantities such as energy or charge, and causal interac-

tions are exchanges of conserved quantities between two or more causal processes. Mechanisms4

are simply the conjunction of causal processes and causal interactions [p 288].

Pearl’s quote on page 22 above, where he suggests mechanisms correspond to a physical

18See Ney (2009) and Glynn (2013): for good reviews of both difference-making and process causation, and
also possible relationships between these account.
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process, implies that he may well view Mechanisms3 and Mechanisms4 as equally plausible

characterisations. Typically, philosophers see these two accounts of causation as competing

rather than complimentary. It is clear, though, that Pearl’s account of causation can, to some

extent, fit with both.

We shall see in later chapters that the quantum causal modelling framework presented

provides a similarly metaphysically flexible notion of mechanism.

1.2.4 Type vs Token causation

Should one view Pearl’s theory as pertaining to token or type causation? Tokens are particular,

unrepeatable events. To take a well-known example, the event of Socrates death by drinking

hemlock. Types are events that are repeatable: death by drinking hemlock. Token-causal

claims relate event tokens and type-causal claims relate event types. Typically, philosophers

take these two kind of causation (also known as general and singular causation) as belonging

to distinct species. Pearl however, sees the distinction as a matter of degree (Pearl, 2009)[p301-

311]. For example, if one has full knowledge of the environment (the values of each of the Ui

relative to the instance of the singular causal claim under consideration) then one can make

statements pertaining to singular causation in full confidence. Given partial knowledge of such

background factors, one is consigned to probabilistic statements, and the associated causal

claims become generalised. The degree is therefore relative to how much relevant background

knowledge we possess for the given example case.

1.2.5 Discovery Algorithms

Recall, Pearl’s aim was to identify situations in which one could answer intervention queries

using only observational data. That is, he wished to identify causal structures that could act

as guides to action, and could enable the user to distinguish between effective and ineffective

strategies. He developed two well known algorithms that take as input a list of conditional

independencies (found in a joint distribution over a given set of variables) and return a set

of DAG’s as output. The Inductive Causation algorithm (IC) will return a DAG, under the
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assumptions of Causal Markovianity, Faithfulness and Causal Sufficiency (no unmeasured com-

mon causes). The IC* algorithm does not require the assumption of causal sufficiency, but will

in general only return a partial ancestral graph (PAG): a DAG with any number of undirected

edges. These algorithms use observational data only, so any remaining underdetermination of

the causal structure can be further reduced if one has access to interventionist data.19

The greater level of casual underdetermination resulting from the IC* algorithm is due to

the possibility of unmeasured common causes, or latent variables. Latent variables considerably

complicate the task of discovering causal structure. As a simple illustrative example, consider

allowing for a single latent variable. Further possible Markov equivalent graph structures that

capture X⊥Z|Y are depicted in figure 1.4.20

The increased number of graphs highlights the complexity cost of using conditional inde-

pendence relations found in observational data to recover causal structure when one allows

for latent variables. Typically one does not recover a unique DAG when allowing for such a

possibility.

1.2.6 Dependence separation

There is one final aspect of Pearl’s formalism to review: so-called d-separation. We shall need

this in Chapter 4, when we look at some proposals for quantum causal models that have recently

appeared in the physics literature. D-separation (d for directional) provides a useful tool for

checking which variables are independent and dependent (both marginally and conditionally)

for complex graphs.

As stated above, Pearl’s algorithms are able to construct causal graphs from statistical data

sets via searching for probabilistic dependencies and independencies between various sets of

variables. The algorithms proceed in a recursive manner, and search first for variables that

are probabilistically dependent, conditioned on the null set. This allows the generation of a

graphical skeleton; a graph with undirected edges. Next, the algorithms search for v-structures,

triples of the form x→ y ← z. Such structures are also sometimes known as unshielded colliders

19Although see Eberhardt (2013) for some interesting problem cases.
20Eberhardt (2007) p19
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(i)
X Y Z

λ

(ii)
X Y Z
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(iii)
X Y Z

λ

(iv)
X Y Z
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(v)
X Y Z

λ

(vi)
X Y Z

λ

Figure 1.4: Possible three node DAGs when one allows for latent nodes

to emphasise the importance of the missing arrow from x to z. The reason why the algorithm

proceeds in this manner is intimately related to the criterion of d-separation.

It is possible to get an intuitive feel for how d-separation works by considering possible

probabilistic relationships between the three node graphs in Figure 1.5. The goal of d-separation

is to determine when two sets of variables are independent, given a third set. Searching for such

sets forms an important step in constructing causal DAGs from probabilistic data. Consider

the four possible arrangements of three variables (figure 1.5).

For the first three, X and Z are marginally dependent, but independent given Y. For the

fourth, a structure called a collider, X and Z are marginally independent, but conditionally

dependent given Y. D-separation exploits this asymmetry and searches for such so-called col-
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(i)
X Y Z

(ii)
X Y Z

(iii)
X Y Z

(iv)
X Y Z

Figure 1.5: Possible DAGs using three nodes. The first three DAGs reflect marginal dependence
between X and Z, but independence conditional on Y . The third DAG depicts marginal
independence between X and Z, with dependence given Y .

lider structures; if the conditioning set contains such collider variables then d-separation fails.

This criterion can be extended to apply to sets of variables. In this manner one can discover

independencies further to those that may appear initially obvious for any given graph structure.

The value of this criterion is two-fold, if a probability distribution P decomposes over a graph

structure G in accordance with this criterion, then the graph will obey the Causal Markov

Condition. Additionally, it provides a tractable method for checking causal independencies

in complex graph structures, and for verifying when two causal DAGs are observationally

equivalent.

1.2.7 The Bigger Picture

Let us take a step back, and look at two general features of Pearl’s formalism. Firstly, what are

the points of contact between such causal models and the world? Roughly speaking there are

two: the data that underlies the variable ‘values’, and the data that we use to characterise the

local interventions. It is worth noting here that neither kinds of data are explicitly included in

the final model: it is the axioms of probability theory that get us from the data to the final

model.

Secondly, and more importantly (for our purposes at least), is the fact that Pearl has in

effect given us an iterative account of scientific modelling. One does not arrive at a causal model

in a conceptual vacuum: typically one does not either just “start with the data”, so to speak,
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and produce a fully fledged causal model. Nor does one start with a plausible causal structure,

according to domain knowledge and theory, and expect it to perfectly match an empirically

derived joint distribution. Rather, the process is one of mutual refinement, where model and

theory are developed in a co-evolutionary manner. Pearl’s techniques capture this feature of

causal modelling in a mathematically consistent manner:21

The Markov condition guides us in deciding when a set of parents Pa(Xi) is consid-

ered complete, in the sense that it includes ALL the relevant immediate causes of

Xi. It permits us to leave some of the causes out of Pa(Xi) (to be summarised as

probabilities), but not if they also influence other variables modelled in the system.

If a set Pa(Xi) is too narrow, there will be disturbance terms that influence several

variables simultaneously, and the Markov property will be lost. Such disturbances

will be represented as latent variables. Once we acknowledge the existence of latent

variables and represent their existence explicitly as nodes in a graph, the Markov

property will be restored. (Pearl, 2009)[p44]

There are several avenues for restoring the Markov property to an otherwise recalcitrant

causal model: one can fine-grain variable values, increase the scope of the model or look for

correlated noise. If our empirically derived data sets are not giving us Markovian graphs, or are

giving us graphs that do not correctly support interventions, then we have a variety of avenues

to explore in order to achieve a more representational causal model.

The fact that the Pearl’s formalism reflects the iterative manner in which scientific models

develop can also shed light on a well-known philosophical worry with interventionist causation.

Many have argued against Faithfulness, claiming it is too strong. There are many cases of

models of physical systems that appear fine-tuned, despite the fact that intuitively we still

wish to call them causal (Cartwright and Jones (1991), Eberhardt (2013), Andersen (2014)).

There is a subtlety that somewhat mitigates this concern however. As we have seen, causal

models are relative to a number of pragmatic choices: the model scope, the range of invariants

21This is also the case for the modelling strategies utilised by Scheines, Glymore and Spirtes (2000).
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(background variables we exclude from the model) and the level of detail.22 For any fine-tuned

model it will in general be possible to recover a faithful (stable) model by either changing scope,

increasing the level of detail or altering the range of background invariance (assuming Pearl’s

interpretation is correct). Thus, in classical modelling situations, the Markov condition and

Faithfulness guide us toward the most efficacious level to express the causal structure of a given

system and play an indispensable part in the discovery of causal structure.

Recall, a fine-tuned, or non-Markovian model does not imply that we have settled on the only

representational strategy for the phenomena in question. Rather than signal a lack of causation,

such failures can instead be seen as an indication that more work needs to be done. Searching

for hidden variables, fine-graining measurement values, analysing noise models and improving

intervention control are all viable options for arriving at an improved model. When the set

of causal variables is expanded, due to the inclusion of previously hidden (latent) variables,

new causal relations can become apparent. Similarly, fine-graining measurement values will

change the sensitivity of the model: weaker causal relations will play a more significant role

and again new causal relations can appear. Furthermore, when the scope and level of detail

of a causal model are altered, error variables may become correlated and more specific noise

models are needed to uncover hitherto unnoticed spurious causes. Under such circumstances,

once again, the causal relations of the model can change. Finally, by improving the sensitivity

of the intervention control, one can sometimes discriminate between alternative models. Fine-

graining variable values gives rise to plausible alternative models, but we can only verify such

structures when we possess the appropriate level of intervention control. Ideally, one needs to

be able to intervene to set the variable values precisely enough for such fine-graining to count.

In each case, in the face of such refinements, the discovery of alternative causal structures

gives more resources to examine the phenomena in question. This process enriches both our

knowledge of the relevant domain, and also our knowledge of how best to probe it. It gives us

the ability to distinguish between effective and ineffective strategies for a variety of different

situations, where the differences are simply due to scope, precision or detail, and reflect our

22Invariants is Ismael’s term (2015). The range of invariants is simply the range of values that the background
variables U can assume such that the causal relations of the model still hold. Woodward uses the term stability
for this concept (see section 1.3.1).
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particular concerns or technological capabilities. Valuable work is being done in the field of

causal modelling to improve and extend the reach of such techniques.23

To understand the strength of Pearl’s formalism, it is important to recognise that the

alternative models produced by changes in scope or detail need not be in conflict with one

another. Despite the superficial appearances of changing causal relations, these models can be

seen as reflecting complementary representations of the same objective reality. The justification

of this claim rests in the fact that each model is determined by a movable boundary, a boundary

defined along two dimensions by (i) those variables that are included in the model and those

that are left out, and (ii) the level of detail. Typically, this choice is made on pragmatic

grounds. Whether or not this necessarily renders the objectivity of causal models hostage to

agential concerns is a difficult issue, and although intriguing, not one I shall engage with in this

thesis.24

1.2.8 Summary

In this section I have attempted to capture the key components of a very rich and complex

body of work. Pearl has published hundreds of papers and 3 books on the topic of causation

and causal modelling. As such, I have really only presented the briefest of overviews. The

details I have presented here are simply those that I feel link most closely with the issues

associated with producing quantum causal models. The use of the CMC and faithfulness to

uncover causal relations from observational data is a key feature of Pearl’s methods. The link

to local interventions is made via postulating the existence of autonomous causal mechanisms.

Such mechanisms are assumed to be deterministic, with probabilities entering by virtue of our

ignorance of all the facts.

We now turn to an alternative approach to interventionist causation: that of the philosopher

James Woodward.

23See, for example, Zhang and Spirtes (2015).
24Although, see (Ismael, 2015) for an interesting perspective on this debate.
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1.3 Woodward’s causal models

1.3.1 Methodology

Woodward’s approach to causation is closely aligned with that of Pearl. His highly influential

book “Making Things Happen” was motivated by a perceived lack of clarity and consensus

within the philosophical field of causation and causal-explanation (Woodward, 2003).

What Woodward saw was an opportunity to bring the philosophy of causation into closer

contact with important work that was being done in other fields, whilst simultaneously solving

some of the problems that had beleaguered traditional approaches. The downside of having

such broad goals, of course, is that one typically ends up presenting many avenues for attack.

Despite over a decade of critical review, however, Woodward’s account still finds favour with

many philosophers of science as the preferred approach to causal enquiry.

Very roughly, his theory trades on the intuition that we typically associate causal relations

with an ability to manipulate or control the value of a particular variable. In Woodward’s view,

causal structure captures information about hypothetical interventions. As such, there is also a

very natural fit between almost all experimental contexts and Woodward’s theory. To identify

a causal relation between two variables A and B, given some particular background conditions

Z, he claims we typically wish to both isolate A and also vary its value. Furthermore, we wish

to hold the background conditions Z as fixed as possible to eliminate confounding factors, such

that we can observe and measure the direct effect A has on B. In this way, one is able to deduce

the causal relation by seeing how B changes when we vary A in some way. Following Pearl,

Woodward realised that it is the potential for such manipulations that allows us to differentiate

between relationships that merely express correlation and those that involve causation.

Woodward’s definition of a direct cause, is tied to the definition of intervention:

A necessary and sufficient condition for X to be a direct cause of Y with respect to

some variable set V is that there be a possible intervention on X that will change

Y (or the probability distribution of Y ) when all the other variables in V besides

X and Y are held fixed at some value by interventions.(Woodward, 2003)[55]
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Clearly, it is critical to his theory that one has a formal account of what constitutes an

ideal, hypothetical intervention.

The ideal intervention (I) must meet the following requirements (Woodward, 2007)[75]:

1. I must be the only cause of A - the intervention must completely disrupt the causal rela-

tionship between A and its previous causes, so that the value of A is set entirely by I.

2. I must not directly cause B via another route

3. I should not itself be caused by any cause that affects B via a route that does not go through

A

4. I leaves the values taken by any causes of B unchanged, except those that are on the directed

path from I to A to B, (should this exist).

Requirement 1 ensures the value of A is not effected by any other causal variable Z, but

entirely set by I. Requirements 2 and 3 remove any other ways A and B may be correlated

other than A’s causing B. The causal effect here is relativised to a background context Z

(which will incorporate information about other causes of B). Thus this account attempts to

answer the question “in a given context, what is the difference made to B by varying A?”.

The relata in Woodward’s causal claims are called ‘variables’, where a variable is simply

a property or quantity capable of taking two or more ‘values’. When pressed to clarify the

philosophical nature of the variables, Woodward falls back on his characteristically pragmatic

stance:

The problem of variable choice should be approached within a means/ends frame-

work: cognitive enquiries can have various goals or ends and one can justify or

rationalise candidate criteria for variable choice by showing that they are effective

means to these ends. (Woodward, 2015a)[5]

This kind of “means/ends” approach is iterated by Woodward in a number of contexts, and

has become a popular approach to various problems in the philosophy of causation.25 Broadly

25See, for example, Hitchcock (2012) and Woodward (2015).
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speaking, this is also how we identify quantum causal variables and values in the formalism of

chapter 5: by virtue of their pragmatic value.

Woodward quite rightly points out that typically we wish to know more about our causal

models. We don’t only wish to know which variables are causally related, but “.... we wish

to know which kind of interventions on X have an effect on Y , how they effect Y and under

what background circumstances.” (Woodward, 2007)[p76]. This information is captured by two

further requirements: invariance and stability. A causal model is invariant if it holds under

at least some range of values of the intervention. A model is stable if it holds for at least

some range of changes in background variables, where these variables are typically not included

in the model. These requirements capture the grain-sensitivity of causal models that we saw

present in Pearl’s causal models. The range and level of precision of the interventions, plus the

range and level of detail of the background variables (“error variables”) ultimately determine

the casual relations between variables in the model.

So what of the Causal Markov Condition and Faithfulness? We saw earlier that Pearl’s

methods rely on these assumptions. In earlier papers, Woodward (along with co-author Daniel

Hausman) claimed to be able to derive the Causal Markov Condition from the definition of an

ideal intervention, a modularity condition (MOD*), plus some other assumptions (Hausman

and Woodward (1999). Hausman and Woodward (2004b)). Simply defining causal relations

with respect to the possibility of an intervention was recognised as not providing an analysis of

causation: although sufficient, one lacks the requisite necessary condition. It is the possibility of

fine-tuning (although not identified as such) that prevents the contrapositive: “the correspond-

ing necessary condition is false, because the causal influence of Xi on Xj along different paths

may cancel out”. As an alternative means of ensuring Faithfulness, Hausman and Woodward

defined a new condition, MOD*.

[MOD*] says that when Xi does not cause Xj, then the probability distribution

of Xj is unchanged when there is an intervention with respect to Xi. We shall

show that MOD*, some strong assumptions concerning the unrepresented causes,

and two widely accepted assumptions concerning probabilistic causation imply [the
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Causal Markov Condition]. (Hausman and Woodward, 2004b)[149]

The “strong assumptions ” here essentially refer to the same condition Pearl uses: any

error variables (omitted causes, Ui) must be uncorrelated. Such error variables are direct

causes of exactly one of the variables in the model and are causally connected with exclusively

that variable and its effects. The “two widely accepted assumptions concerning probabilistic

causation” are (i) the determination of probabilities assumption: the distribution over each

variable is determined by its parents and any causes not included the model (for deterministic

causal relations Xi = fi(pa(Xi), Ui)) and for indeterministic relations P (Xi) = gi(pa(Xi), U
′
i)),

and (ii) no accidental correlations: there is always a causal explanation of correlations. This

final assumption is, by their own admission, strictly not necessary as it is already implicit in

the assumption of MOD* (Hausman and Woodward, 2004a, p. 852).

The similarity to Pearl’s perspective ought to be fairly clear by now. Both Pearl and

Woodward justify the Causal Markov Condition by assuming the existence of local functional

relationships (Pearl’s “mechanisms”) with probabilities entering by virtue of the effect of un-

known environmental variables. As Jenann Ismael notes , where there are differences, they are

due primarily to a difference in focus:

.... for Pearl, once you know what the causal mechanisms are, you can say which

interactions constitute interventions. Woodward ... wants to characterise the no-

tion of an intervention independently so that it can be used as a probe for causal

structure. To some extent this in-house dispute reflects a difference in focus. From

a metaphysical perspective, it is natural to take the underlying causal structure as

basic. It is what explains the surface regularities and patterns of counterfactual

dependence. But Woodward is interested in using interventions as a route in, so to

speak. He wants to be able to identify interventions (perhaps provisionally) before

we have a detailed understanding of the causal structure and use them to probe.

(Ismael, 2015)[252]
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1.3.2 Philosophical Worries

Philosophers have had a number of concerns about Woodward’s Interventionist theory. To

address them all in depth would leave no room to discuss quantum mechanics, so I shall just

provide an overview. I provide this not in order to defend Woodward’s particular brand of

interventionism in any detail, but rather in order to show later which concerns simply carry

over to the quantum case, and which take on a new character.

1.3.3 Circularity

The most obvious criticism of Woodward’s approach is that it is circular. Interventions are

themselves causes. Thus the theory defines interventions in terms of causes and causes in

terms of interventions. Woodward and Hitchcock both defend this charge, claiming that whilst

circular, the account is not viciously so. Woodward is clear that his aim is not to produce a

reductive account of causation, where causal terms are reduced to acausal ones, but rather to

provide an illuminating account of the relationship between scientific practice and causation.

In a sense, it seems he is content to utilise both causes and interventions, without the need for

any further reduction. He claims there are clear methodological motivations for adopting this

view, and in more recent work illustrates nicely (in my opinion) the fact that in the context

of causation, metaphysical and methodological philosophical concerns are perhaps not so far

apart as one might think (Woodward, 2015).

1.3.4 Causal Markov Assumption

Several philosophers have had worries related to Woodward’s derivation of the Causal Markov

Assumption. Steel (2006) concludes that Woodward and Hausman’s derivation of the CMC

secures only pairwise independence. That is, variables are only pairwise independent of their

non-descendants, conditional on their parents [p221]. Steel argues that this weaker form of the

CMC does not, in fact entail the CMC as it is usually written, and the consequences are serious.

If one only demands pairwise independence then the joint distribution will not necessarily

factorise into the product of local distributions over each variable conditional on its parents. In
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Hausman and Woodward’s derivation, they suggest that the independent error idealisation can

be derived from their modularity condition, but as Steel points out, this only secures pairwise

independence of the error terms. He concludes that the Causal Markov condition thus

... rests on two assumptions: acyclic causal structure and probabilistically indepen-

dent error terms. Thus, any deeper justification of the CMC than that currently

available must either devise a generalised version of the CMC that can be shown

to hold for cyclic causal structures, or provide an account of why exogenous error

terms should be independent. [229].

I am not too worried by the former point; it is not my aim to discuss situations involving

closed time-like curves or other exotica. The fact that causes can not be their own effects is an

assumption I am happy to make. The second worry, however, is more interesting. Why should

error terms be independent? And will this reasoning transfer through to the quantum case?

Recall, for Pearl, uncorrelated error variables are an interpretational requirement needed to

secure the Causal Markov Condition. For Pearl, without Markovianity one loses the advantages

of manipulability. On non-Markovian models Pearl comments:

... such models - even if any exist - would have limited utility as guides to decisions.

For example, it is not clear how one would predict the effects of interventions, save

for explicitly listing the effect of every conceivable intervention in advance. [p61]

On this perspective, uncorrelated error variables are an epistemic requirement, an assump-

tion that is needed in order to reflect our ability to discover causal structure via interventions.26

1.3.5 Faithfulness

Andersen (2013) presents a different worry. She points out that many biological situations in-

volve feedback loops, and such loops create stable equilibrium states that violate Faithfulness.

26There are, of course, useful non-Markovian models in science. Pearl’s comments reflect the fact that such
models carry less causally useful information than their Markovian counterparts.
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Moreover, such violations are typically stable in the face of external perturbation, and conse-

quently immune to the measure-theoretic proof of Spirtes et al. (2000).27 The models she is

referring to, however, violate the assumption of acyclicity, and so the violation of Faithfulness is

easy to explain. For small enough time slices, one can produce a Markovian, Faithful model of

the phenomena in question. Of course, this kind of fine-graining will likely obscure much of the

interesting behaviour occurring at the coarse-grained level. Andersen highlights an important

point, however: in order to ‘catch’ such apparent violations of Faithfulness via either interven-

tions or more fine-grained measurement, the timescale of the intervention/measurement must

match (or be shorter than) the timescales required for re-establishing equilibrium.

The value of capturing such feedback causal loops has not gone unnoticed by the scientific

community. Dynamic causal nets capture the possibility of such stable relations and are rea-

sonably popular among biologists (see, for example Rajapakse and Zhou (2007) and Needham

and Westhead (2007)). Such models have a version of d-separation, are Markovian, and cap-

ture the temporal characteristics of network connectivity (Koller and Friedman, 2009). They

specify a prior Bayesian Network that expresses initial conditions, and a transitional Bayesian

Network that captures how the variable values change at each successive time-step. The causal

relationships for the so-called template models that represent each time step, however, are both

Markovian and Faithful.

1.3.6 General objections

Various philosophers have also objected to Woodward’s presentation of causation in more gen-

eral terms. It has been said that the interventionist account is metaphysically bankrupt and

objectionably operationalist (Baumgartner and Drouet (2013), Strevens (2008), Cartwright

(2006)). Process causal theorists, who take causation to be essentially about physical processes

and interactions, are uneasy about the lack of “biff” quality in Interventionism (Dowe, 1999).

Others (Price (2007) Price (2013)) believe it is better to reduce interventionism to a primitive

notion of agency: for these authors causes are more about us than Woodward cares to admit.

27This proof shows that the set of unfaithful models are Lebesgue measure 0 with respect to the space of
possible causal models.
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There is a large and complex literature addressing these various bones of contention. Rather

than engage in them here, I shall adopt Woodward’s own perspective on the matter: one ought

to think of the interventionist account as providing what he chooses to call a ‘functional ap-

proach’ to the philosophy of causation (Woodward, 2012). In a number of places, Woodward

shows that understanding the practical advantages of using causal reasoning, identifying causal

relations and producing causal models according to Interventionist methodology can shed light

on a variety of traditional philosophical concerns about causation (Woodward (2012), Wood-

ward (2015), Woodward (2015b)). I see the methodology provided by interventionist causal

theory as contributing to the overall observation Nancy Cartwright made in the 1970’s: such

methods enable us to distinguish between effective and ineffective strategies.

1.3.7 A cautionary note

This thesis should not to be read as presenting a knock-down argument against the Russellian

perspective. Recall, Russellians believe that characterisation of initial states, plus laws of

dynamical evolution give us a full account of fundamental physics. From this perspective, there

is no ontological space for such things as causal relations and relata: they should simply be

eliminated. For the most part, what I have to say leaves room for both Russellian and anti-

Russellian views. Russellians can regard the quantum causal models I present in Chapter 5

simply as representational devices that give us nothing more than a handle on the practical

advantages of causal reasoning involving quantum systems. Anti-Russellians can take the view

that the pragmatic value of such characterisations should not be so easily dismissed, and follow

the line of Nancy Cartwright’s original objection.

I do, however have two small, and rather speculative, points to make regarding a possible

methodological advantage that the interventionist causal approach may have over a straight-

forward Russellian view. Firstly, regarding fundamentality : it is clear that our current best

physics does not involve anything like a single, unified, fundamental theory, with an unprob-

lematic ontology to match. The difficulties inherent in producing a theory of quantum gravity

are well-known. One obvious problem is that general relativity implies the existence of a de-
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terministic, dynamical background causal structure, leaving no obvious way to incorporate

quantum indeterminism or indeed other quantum properties such as superposition. In part,

the recent research into characterising quantum causal models has been driven by the thought

that perhaps background causal structure is not “fixed” in the manner described by GR, but

rather allows for causal structures that are in some sense indefinite (Oreshkov et al., 2012). If

indeed it turns out that this is the right way to forge a new, unifying, physical theory, there is

a clear role for quantum causal models. As it currently stands, quantum theory does not, by

itself, give us a method to determine causal order between arbitrary quantum events. For any

new fundamental theory, we would like to verify that in the appropriate limit the theory gives

back ordinary quantum physics. That is, a theory with the usual determinate causal order and

time evolution of quantum states. A quantum causal modelling formalism provides a way to

meaningfully ask what the causal relations between quantum events are.

By contrast, ordinary quantum mechanics (under the Russellian picture of states evolving

according to global laws) gives us no handle to approach this problem. Indeed some of the

conceptual issues in formulating theories of quantum gravity can be traced back to the diffi-

culty of understanding the empirical content of theories that do not have an external time, nor

an absolute causal structure. Given such concerns, it becomes difficult to understand how the

Russellian approach of “fixing initial states and then evolving them forward” remains mean-

ingful as providing a picture of fundamental physics. The characterisation of quantum causal

models, by contrast, provides a useful starting point from which to consider such questions.

The second point of note is simply pragmatic. As engineered quantum networks become

increasingly complex, the task of characterising the order in which quantum events take place

will become increasingly important (and difficult).28 Current tomographic methods do not

provide a method for determining such an order (see Chapter 5) and it is not clear, at least to

me, how the Russellian perspective provides any purchase on tackling this kind of problem.

28Classical distributed computing currently uses specific protocols to keep track of the order between local
operations (e.g. Lamport time-stamps and vector clock methods). We currently have no analagous methods for
characterising the order of quantum operations.
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1.4 Summary

We have considered interventionist causation from the perspectives of two theories and noted

a number of similarities. Both commit to the idea that localised interventions are the best way

to confirm causal structure. It is hard to ignore the success of causal modelling according to

the above methods. There is hardly a discipline that has escaped its reach. One can find causal

models in philosophy, statistics, computer science, the physical sciences, medicine, economics

and psychology (Korb and Nicholson (2010), pp 142-143). And this list is far from exhaustive.

There is however, an important problem. In their current form they do not work for systems

involving quantum phenomena.

Given what we now know about classical causal models, we can suggest some desiderata we

might wish a quantum causal modelling formalism to satisfy :

(i) The formalism should allow for the discovery of causal structure from empirical data. At

a minimum, such discovery should be possible using interventionist data (data instances

where local events are under external control. It would be an advantage if causal structure

could also be discovered in situations where interventionist information was incomplete.

(ii) All correlations between empirically derived data should be accounted for via notions

of direct, indirect or common cause relations, i.e. there should be no “unexplained”

correlations. In situations where all correlations between empirically derived data can

not be accounted for via direct, indirect or common cause relations, there should exist a

method for extending the model to include possible unobserved nodes in order to account

for the correlations.

(iii) Classical causal models should be recovered as a limiting case of quantum ones.
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Chapter 2

Interventionist Causation and

Quantum Mechanics

In the last chapter we saw that causal structure is intimately linked to the possibility of localised

intervention. DAGs are thought to represent causal structure just in case they are able to

support intervention queries in the right way. In the classical case, if one only has access to

observational data, this requirement can be captured via two key assumptions: the Causal

Markov Condition and Faithfulness. In this chapter we put this methodology to work in a

quantum mechanical context. Following tradition, we shall examine one of the Bell scenarios

in order to determine how classical interventionism fails. Noting that the usual response is

to demand that one drops either the CMC or Faithfulness, I shall suggest neither approach

is particularly satisfactory and argue for an alternative. We also briefly situate the discussion

within the context of alternative approaches to understanding Bell’s theorem from outside the

causal modelling literature.

2.1 Introduction

There is a large literature discussing the various problems quantum phenomena create for

theories of causation. As Richard Healey (2009) puts it: “There is widespread agreement that

quantum mechanics has something radical to teach us about causation. But opinions differ on

37
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what this is.” [p673]

The many philosophers who have engaged with this question have done so almost exclusively

via analysis of the Bell experiments. Such work has shown it is exceedingly difficult to apply

classical causal techniques to quantum systems. Space-like separated entanglement correlations

seem to defy causal explanation, and it seems near impossible to produce an account that avoids

the difficulties posed by non-locality, contextuality, and the measurement problem. In the last

thirty years or so, philosophers have advocated a number of fixes, arguing for non-local common

causes (Suárez and San Pedro (2011), Egg and Esfeld (2014)), non-screening off common causes

(Butterfield, 1992) and “uncommon” common causes (Hofer-Szabó et al. (2013), Näger (2015)).

Others have argued for more exotic solutions such as retro-causation (Evans et al. (2013), Evans

(2014) and super-determinism (’t Hooft, 2009).

In this chapter, we shall specifically engage with the difficulties quantum phenomena pose

for interventionist accounts of causation. We first revise the detail of the Bell experiments and

present some standard responses from the relevant literature. We then consider two interven-

tionist responses: those of Glymour (2006) and Wood and Spekkens (2014). We ask whether

these responses, namely that one must choose between the CMC or Faithfulness, get to the

heart of the issue and suggest that they do not. Finally, we consider a different perspective and

advocate a new direction of research (section 2.3.3). We shall follow this line in the remaining

chapters.

2.2 The Bell experiments.

Although the physical setup of the Bell experiments are relatively easy to understand, a great

deal of controversy surrounds the appropriate way to interpret the empirical results. These

experiments were inspired by Bell’s theorem, originally presented in his 1964 paper (Bell, 1964),

and written in response to Einstein’s 1935 thought experiment (Einstein et al., 1935). It is worth

a brief detour back to this early work in order to better situate Bell’s results.

The Einstein, Podolsky and Rosen paper (EPR) considers measurements performed on

space-like separated, entangled quantum particles. They show that for certain sets of measure-
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ments, quantum mechanics predicts that the outcomes at each wing will be perfectly correlated

for each run of the experiment. That is, knowing the outcome on one wing allows one to

accurately predict the outcome for a certain measurement on the other wing.

The EPR argument is then presented as a reductio. The following three assumptions,

coupled with the results of quantum experiments, lead to a contradiction.

(i) Locality: space-like separated systems cannot influence each other (“...no real change can

take place in the second system in consequence of anything that may be done to the first

system.” [779]),

(ii) Completeness: quantum mechanics is descriptively complete, and

(iii) Reality: “If, without in any way disturbing a system, we can predict with certainty (i.e.

with probability equal to unity) the value of a physical quantity, then there exists an

element of physical reality corresponding to this physical quantity.” [77]

For Einstein et. al., quantum mechanics refers to such elements of reality via the eigenvalue-

eigenvector link: an eigenvalue of a quantum system prepared in the relevant eigenstate will

result in an outcome that can be predicted with probability one. In the face of the contra-

diction, in order to save locality and reality EPR advocate we give up the second assumption:

completeness.

Bell’s theorem (in its various forms, see Bell (1964), Bell (1971) and Bell (1976)) can be

understood as refuting incompleteness as a way out of the contradiction. The standard inter-

pretation of Bell’s various writings then (in the philosophical literature, at least) is that any

theory that can account for (i.e. explain) the empirical predictions of quantum mechanics must

be non-local. So, broadly speaking, one faces a choice between giving up locality or giving up

explanation.

Bell wrote many papers regarding the philosophical consequences of quantum theory, and

much ink has been spilled over the various philosophical assumptions and implications of his

work.1 The recent fifty year celebration of his famous 1964 paper have inspired another burst

1For a comprehensive collection of Bell’s papers, see “Speakable and Unspeakable in Quantum mechanics”,
Bell (1990).
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of academic activity, and this work suggests that it is not entirely straightforward to gauge

exactly what Bell meant by his various characterisations of locality and local causality. Indeed,

intelligent and careful analysis has resulted in (sometimes alarmingly) disparate positions (see,

for example, Werner (2014a), Werner (2014b), Maudlin (2014b), Maudlin (2014a), Wiseman

(2014), Wiseman and Rieffel (2015), Norsen (2015)). I suspect this reflects, to some extent, that

Bell recognised the philosophical difficulties that confound a precise characterisation of both

causation and causal explanation, and was honest about his various qualms. Broadly speaking,

his work shows that the connections between the various concepts involved (e.g. instantaneous

action-at-a-distance, locality, local causality and agency) are far from obvious.

For our purposes, it is relevant to consider some of Bell’s comments in light of our charac-

terisation of interventionist causation in Chapter 1. Most pertinent are two of his later papers:

“The theory of local beables” and “La Nouvelle Cuisine” (Bell (1976) and Bell (1990)). I take

the view that these papers nicely capture the elements of interventionist thinking that often

underly our intuitive notion of causation and causal explanation.

Bell’s notion of “local causality” (and, indirectly, causal explanation) is first introduced

in “The theory of local beables.” This paper is also where he generalises his approach to

include stochastic theories, which is the setting on which we shall focus here.2 In part, the

aim of this paper was to make explicit some notions that Bell felt were already implicit in

ordinary quantum mechanics. The job of his “beables” was to recast quantum mechanics in

terms of physical properties with which we are already familiar, rather than the more abstract

Hermitian operators associated with quantum observables. Bell suggests such beables should

satisfy a number of desiderata, but most importantly beables should correspond to something

“physical”, in order to distinguish variables that can be associated with “real physical” values

from those that pertain to abstracta. For Bell, the latter ought to be excluded tout court from

any causal considerations. [p57]

As an example:

2See Brown and Timpson (2014) and Wiseman and Cavalcanti (2015) for a discussion on the relationship
between the deterministic background assumptions of Einstein et al. (1935), Bell (1964) and this later work of
Bell’s.
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The beables must include the setting of switches and knobs on experimental equip-

ment, the currents in coils and the reading of instruments. [p57]

Of particular concern are local beables: variables that can be assigned to a particular space-

time region. Local causality is then defined with respect to such local beables. Prima facie,

the idea of beables aligns fairly nicely with Pearl’s causal relata: classical random variables.

Bell goes on to define local causality in terms of these beables by introducing his famous

factorisability condition. Consider two space-like separated beables, A and B associated with

space-like separated regions 1 and 2. Let N denote a complete specification of all the beables

belonging to the overlap of the backward light cone of 1 and 2. Let λ and M refer to the

beables in the remainder of the two light cones for A and B respectively. Then, if one assumes

that the joint probability (A,B|λ,M,N) factorises into (A|λ,M,N)(B|λ,M,N), one can use

expectation values to derive an inequality (a version of the CHSH inequality), which is violated

by quantum mechanics.3 For Bell, this factorisation property “says simply that correlations

between A and B can only arise because of common causes N”. For many, factorisation here

just is Bell’s notion of local causality.

The overall idea then, is that even by adding in putative hidden beables that may exist in

the joint past of beables A and B, one still cannot explain their correlation in locally causal

terms. Thus the ‘incompleteness’ escape from non-locality suggested by EPR is blocked.

In the final section of ‘The theory of local beables’, Bell considers that despite the suggestion

that nature is causally non-local, we nonetheless cannot use such non-locality to signal faster

than light. By separating beables into two classes, those apt for human manipulation (e.g.

settings) and those that are not manipulable (e.g. the outcomes), he shows that in “this human

sense relativistic quantum mechanics is locally causal” [p64]. That is, according to quantum

theory we are forbidden from manipulating one variable to induce changes in a different, space-

like separated variable. Of course, this “human sense” of causation is pretty close to what

interventionists use to characterise causal relations. Although, as we saw in Chapter 1, it is not

simply a matter of changing one variable here, and seeing if another variable changes there, but

3An example of this is considered below.
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rather causal relations are thought to be relative to a number of other specific assumptions.

In the closing paragraphs of “The theory of local beables” Bell reminds us of one further

assumption required to derive the inequality: marginal independence of the settings.

It has been assumed here that the settings of instruments are in some sense free

variables - say at the whim of the experimenters – or in any case not determined in

the overlap of the backward light cones. Indeed, without such freedom I would not

know how to formulate any idea of local causality, even the modest human one.

For the interventionist, such “free variables” correspond to intervention variables. The key

point is not that they are somehow uncorrelated with anything, but rather that they are not

directly correlated with any variables in the model other than their causal target. Woodward’s

four criteria for an ideal intervention and Pearl’s “surgical interventions” neatly capture this

requirement.

It should, by now, be fairly obvious that several of Bell’s 1976 assumptions fit nicely with

the interventionist framework of Chapter 1. Interestingly, his concerns regarding the the a

priori distinction between “controllable” and “uncontrollable” variables and also his worry

that causation may require a notion of “agency” are still live debates in the interventionist

literature per se (for example, see (Price, 2013), (Woodward, 2015), (Ismael, 2015)). It is

intriguing that such concerns, at least in the context of interventionist causation, seem to be

pertinent to characterisations of causation, rather than due to the peculiarities of quantum

mechanics.

Also relevant for our current purposes, is the final caveat Bell adds regarding his own

particular characterisation of causal explanation:

Of course, the assumptions leading to [the inequality] can be challenged. Equation

22 [factorisation] may not embody your idea of local causality. You may feel that

only the ‘human’ version of the last section is sensible and may see some way to

make it more precise.

The causal modelling formalism of Chapter 5 is an attempt to pursue this route. The more

precise ‘human’ version of causation is a generalisation of interventionist causation, that allows
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for the use of representative devices that go beyond the more familiar classical random variables.

Whether this requires one to abandon the notion of “beables” will be addressed in Chapter 5.

We next look at a specific example of the CHSH inequality below to bring the association

between Bell’s characterisation of local causality and modern interventionist causal methods

into sharper focus.

2.2.1 The CHSH inequality

In Bell’s 1990 paper “La nouvelle cuisine” he reiterates many of the points of his earlier work.

He expresses his belief that causality should not be reduced to merely “no superluminal sig-

nalling”, and also his worry that factorisability is, by itself, an inadequate representation of our

causal intuitions. In this final paper, Bell uses an example of the Clauser-Horne-Shimony-Holt

inequality to illustrate his views. We now consider an example of this experiment from the

perspective of interventionist causal theory.

Two parties, Alice and Bob, are able to perform local measurements on a physical system

received from a distant source. The same source is used for the systems received by both

parties, and the two systems are emitted simultaneously. The parties randomly choose from

one out of two possible measurements (the “settings”).4 These measurements display one out

of two possible outcomes, labelled x and y. A first pass at a plausible DAG structure might be

that of Figure 2.1.

4In the discussion in the follwing section, Glymour considers the three setting case, Wood and Spekkens
consider the two setting CHSH inequality. The differences are irrelevant for what I say here.
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Figure 2.1: A possible DAG for the Bell experiment. a and b are random variables representing
the settings at each wing, and x and y are the random variables representing the corresponding
outcomes. λ captures the physical conditions occurring in the joint past of the two systems
(initiated from the source).

The aim is to produce a causal DAG that can explain the correlation between x and y,

where correlation implies P (x, y) 6= P (x)P (y). Let us start by assuming the DAG in figure 2.1

depicts the correct causal interpretation of the experiment. According to the assumptions of

Chapter 1, the following probabilistic relationships are implied by the graph:

Pr(x|a, λ, y) = Pr(x|a, λ) (2.1)

P (y|b, λ, x) = P (y|b, λ) (2.2)

Pr(x|a, b, y, λ) = Pr(x|a, y, λ) (2.3)

P (y|b, a, x, λ) = P (y|b, x, λ) (2.4)

P (x, y|a, b, λ) = P (x|a, λ)P (y|b, λ) (2.5)

P (x, y, a, b, λ) = P (x|a, λ)P (y|b, λ)P (a)P (b)P (λ) (2.6)

Factorising the joint distribution over all five variables according to the CMC leads to equa-

tion 2.6. The parentless variables (a, b, and λ) are associated with marginal distributions:

P (a), P (b) and P (λ). The two child nodes (x and y) are associated with conditional distribu-

tions: P (x|a, λ) and P (y|b, λ). The product of all five probabilities should result in the joint

distribution. Recall, it is the CMC that permits the inference from connectedness in the graph

(causal dependence, characterised by the directed edges) to statistical dependence (and vice

versa). Faithfulness, on the other hand, licences the inference from unconnectedness in the
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graph (causal independence) to statistical independence (and vice versa). Thus, the lack of

edge between (i) the two outcomes, (ii) between each outcome and its opposite setting, and

(iii) between the setting and the hidden variable λ are all implied by Faithfulness.

Equation 2.5 is often referred to in the philosophical literature as the ‘factorisation condi-

tion’. In the interventionist framework, this condition can be seen as due to the conjunction

of (i) equations 2.1 and 2.2, with (ii) equations 2.3 and 2.4. Typically, in the philosoph-

ical literature, factorisation is expressed as the conjunction of so-called ‘outcome indepen-

dence’ (equations 2.3 and 2.4) and ‘parameter independence’ (P (x|a, b, λ) = P (x|a, λ) and

P (y|a, b, λ) = P (y|a, λ)). This presentation and the alternative I presented above are logically

equivalent ways of representing factorisation ((Maudlin, 2011)). Assuming the graph is Faith-

ful, condition (i) is justified by the lack of edge between x and y, and condition (ii) is justified

by the lack of edge between x and b, or between y and a.

The CHSH inequality is a good example of a Bell inequality that challenges these assump-

tions. It is the simplest Bell inequality violated by a two qubit system. The experimental

setup is identical to the one depicted in the graph above. Consider, now, that the measuring

devices for both Alice and Bob are equipped with an indicator that registers either 1 or -1 each

time a measurement is performed.5 Alice and Bob run the experiment many times, keeping

careful track of the choices of measurement setting on each run, and the respective outcomes.

At the end of this they are able to tabulate their results and find averages for the product

of the outcomes for each of the four combinations of measurement settings (a0, b0), (a0, b1),

(a1, b0), (a1, b1). We denote these averages 〈aibj〉.

Based on the experimental setup, we can define a computable value, S:

S = 〈a0, b0〉+ 〈a0, b1〉+ 〈a1, b0〉 − 〈a1, b1〉 (2.7)

5One can generalise this to the continuous case, where the outcomes fall anywhere in the continuous interval
-1 to 1. To keep things simple and relatively intuitive, I will stick to the discrete case here.
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Where for N repetitions:

〈aibj〉 = limN→∞
1

N

∞∑
n=1

xn(ai)yn(bj) (2.8)

where i ∈ {0, 1}, j ∈ {0, 1}.

Let us consider a model that will make a prediction for S, based on the interventionist

assumptions of chapter 1. We assume that there exist physical properties, denoted by λ ∈ Λ.

In any given repetition, we also assume the source, along with any hidden variables in the

shared past, fixes the physical properties λ for the pair of systems. We allow that λ can change

between repetitions, and so assign a probability density to describe this set of possibilities.

〈aibj〉 =

∫
dλp(λ)

∑
xy

(xy)Pr(x, y|ai, bj, λ) (2.9)

Recall, x and y are the outcome possibilities at each wing. This formulation is in line with

Bell’s later formulation of local causality (Bell (1976), Bell (1990)) as the outcomes only need

to be probabilistically determined by the setting choices ai and bj. This is captured by the

final conditional probability term in equation 2.9. Note also that this model is very general: λ

is assumed to capture any combination of physical conditions that could result in correlations

between x and y. Thus λ is representative of any hidden variable in the shared past of Alice

and Bob that may account for the correlations. Equation 2.9 is implied by the Causal Markov

Condition: we assume the correlations between x and y can be explained by averaging over

their common causes (in this case, λ).

Assuming factorisation:

〈aibj〉λ =
∑
xy

(xy)Pr(x, |ai, λ)Pr(y|bj, λ) (2.10)

= 〈ai〉λ〈bj〉λ (2.11)
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where

〈ai〉λ =
∑
x

xPr(x|ai, λ) (2.12)

We can define S(λ):

S(λ) =
∑

i,j={0,1}

〈aibj〉λ(−1)i,j (2.13)

S is generated from S(λ) by averaging over the hidden variables λ:

S =

∫
dλp(λ)S(λ) (2.14)

Now, we have:

S(λ) = 〈a0〉〈b0〉+ 〈a0〉〈b1〉+ 〈a1〉〈b0〉 − 〈a1〉〈b1〉 (2.15)

S(λ) = 〈a0〉
[
〈b0〉+ 〈b1〉

]
+ 〈a1〉

[
〈b0〉 − 〈b1〉

]
(2.16)

Recall, 〈b0〉 and 〈b1〉 are either +1 or −1, so either
(
〈b0〉 + 〈b1〉

)
or
(
〈b0〉 − 〈b1〉

)
is 0, and

the other is ±2.

So, now we can write S as an inequality

S(λ) = 〈a0〉
[
〈b0〉+ 〈b1〉

]
+ 〈a1〉

[
〈b0〉 − 〈b1〉

]
≤ 2 (2.17)

Averaging over λ, we see S is bounded by 2 and -2.

The statistics generated by a quantum version of this experiment violate this bound and

generate the result S = 2
√

2 (the Tsirelson bound). Accordingly, one of the assumptions

underlying the model is incorrect. For the Interventionist, it is generally considered that the

responsibility falls to either the Causal Markov Condition or Faithfulness.

2.3 What gives? Causal Markov vs Faithfulness

Glymour (2006) and Wood and Spekkens (2014) both apply interventionist causal modelling



48 Interventionist Causation and Quantum Mechanics

methods to the Bell experiments. Both conclude that to explain the statistics produced in this

experiment one is forced into giving up either the Causal Markov Condition or Faithfulness.

Glymour starts with a plausible graph according to the experimental set up, and shows that the

statistics do not produce a joint distribution that is Markov and Faithful to this graph. Wood

and Spekkens start with the list of marginal and conditional independencies and dependencies

found in the data, and show that one cannot discover a Markovian, Faithful DAG that can

generate these statistical results.

2.3.1 Relinquishing the Causal Markov Condition

Glymour initially considers that the causal structure of the experiment may be represented

via the same graph as depicted in Figure 2.1. He notes that the statistics of the experiments

reveal an independence between the setting on one wing and the outcome on the other (the

‘no-signalling’ independence). Thus, according to the graph, the correlations seen between out-

comes must be due to the common cause λ, and ought to be rendered independent conditional

on this common cause. Recall, this is equivalent to Bell’s condition of local causality charac-

terised in Bell (1976). Glymour follows Mermin in his characterisation of λ: it is a variable in

the shared past of the two particles sent to each wing, that determines their properties prior

to measurement.

According to the CMC one can decompose the joint probability distribution, taken over

all five variables in the graph P (a, b, x, y, λ) into a product of local conditional probability

distributions as per equation 2.6. However, the statistics of the experiments do not conform to

such a factorisation. Glymour then takes the reader through each of the possible ways one can

attempt to alter the graph in order to account for the empirical results.

First, he considers adding an edge between λ and each of the settings (see figure 2.2).

He rules out this option, sometimes known as superdeterminism, by reminding us that we

can locally intervene and set the values of the variables a and b independently of any other

variable in the model. From an interventionist perspective, this choice of setting (made by

ourselves, or by a randomising machine) is parametrised by a variable outside the model, and
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Figure 2.2: Allowing for Superdeterminism

this variable is considered to be uncorrelated with the hidden variable λ (recall, Woodward’s

characterisation of an ideal intervention, section 1.3.1). In this way, any existing correlation

between the measurement apparatus and λ would be broken by our intervention (recall, the

effect of an intervention is to sever a variable from its incoming causal influences).

Glymour next considers the possibility of a direct causal link between the two outcomes (see

figure 2.3). He notes that one can set up the experiment such that allowing for such a causal

link is in direct conflict with relativity. Any causal influence between the two outcomes must

propogate at superluminal speed.

The result of this analysis, according to Glymour, is that:

...real experiments...create associations that have no causal explanation consistent

with the Markov assumption, and the Markov assumption must be applied to obtain

that conclusion. You can say there is no causal explanation of the phenomenon,

or that there is a causal explanation but it doesn’t satisfy the Markov assump-

tion.(Glymour, 2006)[124]

His choice to consider the CMC as the target, rather than Faithfulness, is due to a proof

found in Spirtes et al. (2000)[41]. For Glymour, this proof shows that the CMC implies that

Faithfulness holds almost always. As we saw in the previous chapter, however, there are

countless unfaithful models of natural phenomena. The point is not that such models don’t

exist, nor that they cannot be used to represent the phenomena in question, rather the point is

that typically one has the option of fine-graining and recovering a Faithful model at a new level

of description. For quantum systems, it is generally considered that this option is not open to

us. We come back to this point in 2.3.2.
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Figure 2.3: Allowing for Superluminal causes

Glymour does not offer a solution to the problems Bell experiments present for interven-

tionist causation. Although he does offer the possibility that perhaps all causal relations do not

have to satisfy the CMC, he reminds the reader that accepting this option results in another

puzzle:

...why, then, does the Markov Assumption work with our experiments on middle

sized dry and wet goods, with climate, and rats and drugs, and so much else?

(Glymour, 2006)[125]

We return to consider this question in Chapter 5, section 5.8.

Many other authors have also advocated relinquishing the Causal Markov Condition in order

to explain the Bell correlations, although the move is not necessarily advertised as such. The

‘robustness criteria’ introduced by Redhead (1987) and debated by various philosophers in the

1980’s and 90’s, can be recast in terms of the Causal Markov Condition (Suárez and San Pedro,

2011). Roughly speaking, robustness corresponds to Pearl’s uncorrelated error variables: there

may well be unmodelled causal effects, but they must remain uncorrelated for the CMC to

hold. Thus, failure of robustness in the case of EPR correlations, can be recast as failure of the

CMC.

Relinquishing the CMC is also often presented in the guise of modifying Reichenbach’s

Common Cause Principle (RCCP): various authors have argued that weakened versions of this

principle can allow for a causal explanation of quantum correlations (Hofer-Szabó et al. (2013),

Leifer and Spekkens (2013), Pienaar and Brukner (2015)). Recall, the Causal Markov Condition

is a generalised version of RCCP, thus to weaken RCCP to produce a causal explanation for

quantum correlations implies a weakened CMC. Leifer and Spekkens (2013) suggest a modified
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RCCP that implies a factorisation not of probabilities but of conditional quantum states. Their

aim is to try and find generalised discovery algorithms that respect this altered property. Whilst

this approach is promising, it remains a work in progress. We shall also see in Chapter 4 other

examples of quantum causal modelling methods that advocate a weakened RCCP (for example

section 4.2).

Hofer-Szabo and Vecsernyes (2012b) (hereafter HSV) suggest giving up the Law of Total

Probability6 and define “non-commutative common causes” that also do not obey RCCP but

nonetheless can be used to give a causal explanation of the Bell results. However, as Cavalcanti

and Lal (2014) have shown, HSV fail to show how a common cause can act causally to provide

an explanation of Bell correlations. In the HSV formalism any quantum product state can

count as a common cause for any quantum correlation whatsoever, thus there is no causal

inferential connection between common causes and their effects.

2.3.2 Relinquishing Faithfulness

Wood and Spekkens (2014) take aim at the alternative assumption. They argue that the

problems of quantum causal modelling are due to the assumption of Faithfulness rather than

the CMC. For these authors, the take home message is that the failure of Pearl’s methods can

be explained by showing that any causal model that reproduces the observed statistics of the

Bell correlations must be fine-tuned.

Using only marginal independence of the settings7 and no-signalling8 as input to Pearl’s dis-

covery algorithms, Wood and Spekkens (2014) (henceforth WS) show that even if one allows for

the existence of latent variables, one must permit fine-tuning of the causal parameters to both

explain Bell inequality violations and still observe the no-signalling conditional independencies.

They characterise this result as the conjunction of three independent theses:

1. QCORR: the observed distribution P (a, b, x, y) produced by the experiment is consistent

6The Law of Total Probability states that for a set of mutually exclusive, exhaustive events (i.e. the individual
probabilities sum to one), {x}, the probability of a distinct event y can be written in terms of the conditional
P (y|x), summed over the distribution for {x}: P (y) =

∑
x P (x)P (y|x).

7P (a, b) = P (a)P (b).
8P (x|a, b) = P (x|a) and P (y|a, b) = P (y|b).
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with:

(i) marginal independence of the settings, and

(ii) conditional independence of the settings and opposite outcomes (no-signalling), and

(iii) a Bell inequality is violated.

2. CAUSAL: a causal explanation of the joint distribution over the variables can be given an

explanation according to Pearl’s methods.

3. NOFT: the observed conditional independencies are a consequence of the Markov condition

alone, and not due to fine-tuning of the causal parameters. (Wood and Spekkens, 2014)[p24]

The main result of the WS paper is that the conjunction of these three theses produces a

contradiction. The proof is relatively simple: in order to explain the correlations between the

observed variables (a, b, x, y) one must utilise latent variables. Adding latent variables as drains

(nodes with no outgoing edges) or intermediate nodes to the graph depicted in figure 2.1 will not

change the possibilities for correlations. Thus one needs only consider adding latent variables

that can act as common causes. From the observed conditional independencies, (a⊥b), (x⊥b|a)

and (y⊥a|b) further independencies ((a⊥y) and (b⊥x)) can be deduced via the semi-graphoid

axioms.9

Disallowing fine-tuning means that latent common causes can not act between a and b,

or a and y, or b and x; this would render the observed independencies (a⊥b), (a⊥y), (a⊥x)

unfaithful. So for WS, if one wishes to use causal modelling to explain Bell correlations,

under the assumption of no-signalling, one must be prepared to accept fine-tuned models. No-

signalling is considered not so much as an a priori assumption in this paper, but rather simply

as a reflection of the empirical data. As we saw in Chapter 1, allowing for fine-tuned models

in general will remove the possibility of causal discovery.

Recall, the standard position is that Bell showed if one wishes to retain causal explanation

then quantum statistics forces one to accept non-locality. What Wood and Spekkens have

shown is that in fact even if one accepts non-locality the respective causal explanation is still

9The semi-graphoid axioms produce the same list of independencies as using the d-separation criterion.
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flawed (via the need for fine-tuning of the causal parameters). It seems we cannot save causal

explanation (characterised in interventionist terms) via simply accepting non-locality.

2.3.3 Must we choose?

Of course, according to the paradigm of causal discovery that underpins interventionist thinking,

we do not actually face a choice between giving up either the Causal Markov condition or

Faithfulness. In Pearl’s formalism, Faithfulness only carries weight as a restriction on Markovian

models: if we give up Markovianity we lose the value of Faithfulness into the bargain. If we

give up Faithfulness wholesale, we lose the possibility of causal discovery and the accompanying

interventionist causal explanation (recall section 1.2.1). It seems neither approach affords us

an interventionist causal explanation worthy of the title.

Of additional interest is the fact that none of the above authors discuss the relationship

between causal structure and localised interventions. Nowhere could I find any significant

discussion of the fact that the reason the CMC and Faithfulness can be considered as causal

assumptions is because they produce structures that support interventionist queries. That is,

structures that allow us to differentiate between effective and ineffective strategies. Keeping

our eye on this broader perspective will help motivate the alternative approach I advocate in

Chapter 5.

2.3.4 Pearl and Woodward on Bell’s violations

Pearl and Woodward themselves note that their accounts cannot provide a causal explanation

for quantum entanglement correlations. Woodward is content to accept that his theory suggests

that there is no direct causal link between the outcomes x and y:

. . . there is no well defined notion of intervention on the spin state of one of the

separated particle pairs with respect to the other in EPR type experiments. This

would represent a limitation on the application of an interventionist account of

causation only if there was reason to suppose that there is direct causal connection

between these states. Hausman and Woodward argue there is no such reason, hence
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that it is a virtue...that the interventionist account does not commit us to such a

connection. (Woodward, 2007)[70]

Hausman and Woodward argue that the reason there is no well-defined notion of intervention

is because one cannot regard the measurement results x and y as distinct events, or as resulting

from distinct mechanisms. Quoting from Skyrms (1984) [255], they claim that the two results

comprise a ‘single, indivisible non-local event’ (Hausman, 1999)[566].

There are two difficulties with this view. Firstly, it leaves the correlations between x and y

causally unexplained, and secondly, as we shall see in Chapter 5, it is possible to intervene and

break the correlation between the two measurement outcomes. Such a possibility undermines

the view that the two measurement outcomes are to be thought of as a single, indivisible event.

Pearl prefers to hold fast to Laplacian determinism in order to take advantage of the intu-

itions that support his framework:

. . . the Laplacian conception is more in tune with human intuitions. The few

esoteric quantum experiments that conflict with the predictions of the Laplacian

conception evoke surprise and disbelief, and they demand scientists give up deeply

entrenched intuitions about locality and causality. Our objective is to preserve,

explicate and satisfy - not destroy - those intuitions. (Pearl, 2009)[26]

It is evident that Pearl considers the well-known irreducible randomness associated with quan-

tum phenomena as a reason to consider that quantum causal mechanisms could not be de-

terministic. However, if causal mechanisms are characterised in the quantum case by unitary

evolution, then such mechanisms will be as deterministic as those of Pearl’s more familiar clas-

sical causal mechanisms. Of course, there are key differences that emerge when one takes such

evolution as representing the basic kind of causal mechanisms: we revisit this in Chapter 5.

Pearl also defends his account against various quantum qualms by claiming his causal struc-

tures apply only to macroscopic relata:

Only quantum mechanical phenomena exhibit associations that cannot be attributed

to latent variables, and it would be considered a scientific miracle if anyone were
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able to discover such peculiar associations in the macroscopic world (Pearl, 2009),

[62]

Whilst one can quibble over what ought to count as “macroscopic”, experimentalists have

pushed hard against the claim that there is some fundamental upper limit at which quantum

mechanics simply ceases to apply (see, for example, Eibenberger and Tu xen (2013)). One can

no longer sensibly claim that quantum mechanics applies just to the microscopic world. Nor can

one sensibly hold, at least at the pragmatic level, that descriptions, explanations and models

involving quantum systems are simply bereft of causal content. This perspective is defended

at length in the next chapter.

2.3.5 Using interventions to discover causal relations

So why does quantum mechanics present the causal modellist with such difficulties? Perhaps

the answer lies in the definition of intervention. It is certainly not trivial to state clearly what

ought to count as an intervention in the quantum case. As we see in Chapter 4, none of

the recent attempts at characterising quantum causal models have successfully addressed this

worry.

Let us briefly revisit the idea of a classical intervention. One could loosely define an in-

tervention as the fixing of a variable value, or set of values, that occurs due to a parameter

outside the variable space of the model. Clearly, this definition is going to turn on what we

take as a variable and value for the quantum case, ultimately a problem related to the notion

of measurement.

An often overlooked feature of Pearl’s methods is that they abstract away from the act of

measurement. An unwritten assumption of the causal modelling framework is that variable

values, at least in the case of classical mechanical systems, can be considered isomorphic to

physical states. Furthermore, one assumes direct access to these physical states via measure-

ment. There are two consequences of this assumption that are worth teasing out. The first is

that this grounds the distinction Pearl makes between interventionist data and observational

data. Accessing observational data is assumed to be a passive endeavour: such data acquisition
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(by assumption) does not interrupt the usual flow of causal information through the system

being modelled. The second consequence is that the system being measured must possess

non-contextual properties.

These two key assumptions presuppose the possibility of value definiteness, a luxury which

quantum systems do not seem to possess. In its simplest form, value definiteness presupposes

that physical systems posses properties that have definite values at all times. We assume that

we can reveal these values by measuring the system at particular times and, furthermore, that

these values exist independently of what we choose to measure on the system.10

So we are left with a problem. What should the interventionist take as variables and values

in the case of quantum phenomena? And how can we relate these to a notion of localised

intervention? Once we have answers to these questions, we can start to think more clearly about

what should count as a quantum causal model. Ideally, we would have a consistent formalism

that allows us to differentiate between effective and ineffective strategies involving manipulation

of quantum phenomena, that also reduces to the familiar classical modelling formalism in a

suitable limit. The classical version of the Causal Markov Condition and Faithfulness would

then be seen as approximations of deeper quantum analogues.

This challenge is taken up in chapter 5 and represents the alternative research direction I

have alluded to. By defining quantum interventions according to the possible ways in which

physicists currently manipulate quantum systems, it should be possible to produce an inter-

ventionist formalism that accurately uncovers quantum causal structure. This causal structure

will not necessarily conform to the intuitions of certain hidden variable theorists, who believe

quantum mechanics may be an approximation of a deeper, as yet undiscovered theory. It will,

however, respect current empirical evidence, and as such is still deserving of the title quantum

causal structure.

That is not to say, however, that the quantum causal models produced in this thesis may

not be approximations of an as yet, undiscovered, deeper, interventionist causal story. In the

10Interestingly, much has been said in the philosophy of measurement theory to dispute this claim, even for
classical systems, despite its apparent simplicity (Tal, 2013). Rather than engage in this topic in any depth,
however, I simply draw the readers attention to the fact that it is well known that for quantum systems, value
definiteness is considered at best problematic, and at worst patently false.
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light of new experimental evidence, one can simply play the game over again by producing an

alternative causal theory that recovers the quantum version presented here in a suitable limit.

The point is that when following this line of research one does not expect to recover “classical”

interventionist models, where the mathematical objects of choice are random variables, and

probabilities factorise according to the Markov condition (unless, of course, the new evidence

is that we can signal at superluminal speeds!).

2.4 Alternative explanations

There is, of course, an alternative course of action. One can abandon the de novo search for

an interventionist-style explanation of quantum correlations and instead focus on some of the

existing explanations for quantum correlations we currently have on the table. I am thinking

here of de Broglie-Bohm theory, Many Worlds theory and various Collapse theories. Whilst

not typically characterised explicitly as causal explanations (perhaps with the exception of de

Broglie-Bohm) there may nonetheless be the possibility for proponents of these approaches to

consider how their theory may answer particular quantum interventional queries.

I have no problem with this approach (indeed I think it would be interesting to pursue this

path), however, in one sense I see the metaphysical agnosticism of the quantum causal models of

Chapter 5 as a virtue. If there is no known intervention that enables one to distinguish between

the respective “casual models” of the more familiar interpretations, then from the perspective

of interventionist causation, at least as things currently stand, they are all identical.

Furthermore, abandoning the interventionist approach to causation and causal explanation

altogether comes at the cost of losing an established and successful theory of causation, a

theory that prima facie seems surprisingly close to Bell’s own intuitions regarding causation.

It seems, at least to me, that it would be preferable to have an interventionist account that can

(i) preserve the key ingredients of the classical causal account, can (ii) provide a methodology

for discovering quantum causal relations and (iii) can recover classical causal structure in an

appropriate limit.
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2.5 Summary

We have seen in this chapter that many authors have grappled with the fact that quantum

casual relations cannot be shoe-horned into classical ones. Interventionist methodology fails to

accurately predict the empirical results of experiments involving quantum systems. We have

seen that the problem appears to lie with finding an appropriate definition of an intervention,

one that can be used to determine when certain strategies will be effective and when other will

not for situations where one has quantum resources. In the following chapter we take a step

back and consider some motivating reasons to pursue this alternative path.



Chapter 3

Motivating Quantum Causal Models

One of the major claims of this thesis is that scientists can differentiate between effective and

ineffective strategies for systems that involve quantum phenomena. Once this claim is accepted,

what remains is the development of a clear formalism to help facilitate this task. In this Chapter

I provide evidence for the former point.

We shall look first at how physicists represent quantum technology in order to make in-

terventionist and counterfactual inferences: via the use of quantum circuit diagrams. Using

three examples I demonstrate the manner in which these diagrams can be used to facilitate

causal inferences. Two of the examples are of quantum engineered devices, and the third is a

representation of a naturally occurring phenomena.1

3.1 Introduction

As we have seen in the previous chapter, it is notoriously difficult to apply classical causal

modelling techniques to systems involving quantum phenomena when we are considering cer-

tain correlations between space-like separated events. Perhaps the interventionist ought to

accept that the quantum world is simply acausal. Such skepticism, however, presents us with

a puzzle. There has been an explosion in the last decade of models, graphical representations

and explanations that describe new quantum technology. These models and graphs contain

counterfactual and interventionist information that facilitate a variety of seemingly causal in-

1Part of this chapter consists of sections of my research paper (Shrapnel, 2014).

59



60 Motivating Quantum Causal Models

ferences. They help scientists predict, manipulate and explain. They enable physicists to know

when one action will be effective and another will not. For the interventionist, what can these

models be, if not causal?

The starting point for this new perspective is not the classical causal modelling formalism

of chapters 1 and 2. Rather, the starting point is simply the formalism of quantum mechanics,

defined in a suitably operational manner. Whilst it is clear that the formalism of interventionist

causation will need to change in order to encompass these new examples, it is still possible

to preserve the spirit of the account. Recall, interventionism connects with the pragmatic

requirements of situated agents. In order to identify causal relationships then, what one needs

to know is how to differentiate between effective and ineffective strategies. That is, to know

when one course of action will lead to a particular outcome and when another will not.

3.2 Engineered quantum systems

Unlike traditional accounts of causation, the interventionist account of causation was largely

inspired by casual modelling in engineering and the special sciences. As Jenann Ismael puts it,

in her usual succinct manner:

Intuitions play almost no role in this [interventionist] literature. The emphasis

there is on providing a framework for representing causal relations in science, i.e. a

formal apparatus for rendering the deep causal structure of situations...and provides

normative solutions to causal inference and judgement problems. (Ismael, 2015)[2]

For the interventionist then, the existence of quantum engineered systems should immedi-

ately alert one to the possibility of causal structure. To design such systems it must be possible

to distinguish between effective and ineffective strategies.

Consider, for example, the representational resources physicists use in order to design quan-

tum engineered systems. Physicists have been producing technologies that harness quantum

effects for decades now. Control and manipulation of quantum systems is commonplace in the

laboratory, and physicists often express the relata and relations that comprise each specific de-

sign via the use of quantum circuit diagrams. I think it entirely reasonable to suggest that these
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diagrams may represent a form of interventionist causal structure. They are acyclic and align

with temporal direction. They allow physicists to predict the effect of possible interventions

and also to differentiate between effective and ineffective strategies. Of course, the strategies

will not involve bringing about particular, single-case outcomes, but rather involve bringing

about certain probability distributions over such outcomes. However, the long tradition of

probabilistic causation suggests that, in and of itself, this feature poses no immediate threat

to a causal account. On balance then, there is much to suggest that if one were looking for a

notion of quantum causation, quantum circuit diagrams of engineered systems would be a good

place to start.

A number of physicists have recently taken this approach towards causation and produced

a generalised notion of quantum circuits.2 Such “circuit models” now pervade the physics

literature on quantum causation. The starting point for these accounts is not the classical causal

modelling formalism we are used to from the philosophical literature. Rather, the starting point

is simply the formalism of quantum mechanics, defined in a suitably operational manner. We

will take a general look at quantum circuit models in this section, and then examine three

specific examples.

For the Russellian, an obvious question arises. Surely any circuit model can be equivalently

described via initial states and global Hamiltonian evolution? What forces the need for a causal

interpretation? While this is true, the pragmatic value of representation via quantum circuits

can not be underestimated. The modular form of quantum circuits, where a limited number

of elements can be composed in a variety of ways, facilitates high level interventionist and

counterfactual reasoning. That is, quantum circuits facilitate causal reasoning. The equivalent

Hamiltonian representation obscures the ease with which such hypothetical manipulations are

possible, and in many circumstances adds an unnecessary layer of complication.3 Of course

2See, for example, Gutoski and Watrous (2007), Chiribella et al. (2009), Chaves et al. (2015).
3A small point can be made regarding the utility of circuit diagrams, particularly in facilitating causal

reasoning. IBM have recently given the general public access to a five qubit quantum computer (via a cloud based
GUI - The Quantum Experience http://research.ibm.com/quantum). One can simply drag and drop various
logic gates (including those that result in entanglement) and drag and drop projective and/or tomographic
measurement elements, in order to configure a particular circuit. The circuit is then run on a real quantum
register (sitting in millikelvin temperatures at IBM), and the results provided to the user: either as probabilities
over outcomes (represented graphically) or as a ray on a Bloch sphere (one for each qubit). Indeed, several
theoretical groups are now utilising this platform to remotely test experiments that have never been performed
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there is nothing in this argument that says that Russellians cannot just choose to ignore this

pragmatic advantage, and hold on to causal eliminativism.

3.2.1 Quantum Circuits

The use of quantum circuit diagrams as a representational tool developed during the 1980’s and

‘90’s. Pioneered by Deutsch (1989) these diagrams enable one to engage in high level reasoning

about quantum systems using intuitive graphical objects, rather than needing to resort to

complex and abstract mathematics. The utility of these methods is in part evidenced by

their wide application. Circuit representations can be found in quantum information settings,

in quantum biology, in quantum metrology and in condensed matter physics.4 They enable

physicists to predict, manipulate and explain.

Broadly speaking, circuit diagrams provide an abstract representation of a complex physical

process, assumed to unfold linearly in time. The entire physical process is assumed to be

composed of modular subsystems, interacting with each other in a predictable manner. The

modular structure allows the subsystems to be manipulated in a variety of ways, enabling a

variety of counterfactual and interventionist inferences. It is the final element, the control

component of these diagrams, that renders them useful for causal reasoning. In direct analogy

to the causal models of Chapter 1, this control is linked to one or more parameters outside the

model.

There are two distinct varieties of diagram we need to distinguish here. The first is the most

ubiquitous, depicted throughout Nielsen and Chuang’s famous textbook (Nielsen and Chuang,

2000). This is the version we will be referring to in this chapter. The second is the more general

version utilised in the following Chapters. But first, some preliminary terminology.

previously - an example is Berta et al. (2016). One of the motivations for this project was pedagogical: given
the ability to intervene locally, change individual elements and then observe the consequences, one is able to
build up an intuition for the causal structure of the circuits. I say causal because one learns to make inferences
about how changing the values of gate variables results in changes in (probabilities of) outcomes. It is thus
possible to get a good feel for how quantum systems interact and influence each other without even having
heard of Hamiltonians or Schrodinger evolution. Whilst once again, there is nothing in this argument to force
the Russellian to drop the eliminativist style approach here, it is hard to ignore the pragmatic appeal of the
interventionist causal story.

4That is not to say that circuit diagrams are the only representational device used in quantum physics, just
that they are useful in a variety of explanatory contexts.
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Recall, a qubit is simply any two state (i.e. has at least two distinguishable measurement

outcomes) quantum system over which we have sufficient control. Where a system has multiple

measurable outcomes the qubit can be defined by labelling any two of them.5 If we can accu-

rately control this qubit then we can create and verify superposition states. Whilst classical

bits can assume only one of two distinct states (1 or 0), realised by mutually exclusive physical

properties, a qubit has additional states, or superpositions. For example, whilst a qubit can

represent an electron spin in the ground state or excited state, the electron can also be ma-

nipulated to form a superposition state, represented by a linear combination of these two basis

states. Experimental techniques have improved in recent years so that for many systems this

manipulation can now proceed in a controlled and quantitative manner.

The superposition states are represented in a two-dimensional complex vector space. The

state of a qubit in general is represented by a complex vector |ψ〉 = α|0〉 + β|1〉. The states

|ψ〉 = |0〉 and |ψ〉 = |1〉 form an orthonormal basis for the vector space, and are known as the

computational basis states. These basis states describe definite measurement outcomes for the

particular physical quantity we have decided we will use to define our qubit. For example, let

the |0〉 state denote an electron in its ground state and |1〉 the electron in its excited state; in

this case the physical quantity that defines the computational basis is the electronic energy.

The coefficients (α, β), known as probability amplitudes , determine (via the Born rule) the

probability with which we will return a given measurement result for a measurement of the

electronic energy. That is, |α|2 is the probability to return the 0 outcome (the electron is in its

ground state, labelled |0〉), and |β|2 is the probability to return the 1 outcome (the electron is

in an excited state, labeled |1〉). If we prepare the electron in the ground state with certainty,

then α = 1 and β = 0, so |ψ〉 = |0〉. If we then manipulate this state into the superposition

state |ψ〉 = 1√
2
(|0〉+ |1〉), we know upon measurement that we have equal likelihood of reading

a 1 or 0 outcome. In the case of the electron spin qubit such manipulation is possible through

the application of timed, tuned electromagnetic pulses.

Given values for the probability amplitudes at any time and the Hamiltonian of the entire

5It is, of course, possible to provide circuits for systems with muliple levels, so-called qudits. To keep things
clear, I will stick to the two dimensional case.
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|ψ〉 X
Uφ

|0〉 H

Figure 3.1: Quantum circuit. Single qubit gates X and H act on the qubits |ψ〉 and |0〉
individually. The unitary gate Uφ acts on both qubits and can be used to create entanglement
between them. Measurements of the individual qubits are represented by the symbol on the
far right of the circuit.

system, the Schrödinger equation determines the future (and past) values for the probability

amplitudes. Circuit diagrams that relate qubits and gate elements inherently assume this

possibility of perfect coherence.6

In such diagrams wires are associated with quantum systems whose states can be manip-

ulated into superposition states: logic gates represent a physical interaction that changes the

state of the quantum system in a predictable manner. As the system passes between the gates,

along the wires, it is assumed that the quantum state does not change. Thus the wires in these

diagrams represent the identity map, 1. The gates are assumed to effect a unitary evolution

of the state, and can be switched on and off at various times (in figure 3.1, the boxes marked

X, H and U). H and X here are just examples of particularly useful unitary gates: X swaps

the state of the input (e.g. |0〉 → |1〉), H induces an equal superposition (e.g. |0〉 → |0 + 1〉

and |1〉 → |0− 1〉) and U is just an example of an arbitrary unitary. The fact that such gates

are unitary means that they preserve the norm of the input states. This in turn means that

under the action of such gates quantum states will remain genuine, normalised quantum states.

Measurements are typically pushed to the far right of the circuit, and represent the possible

outcomes of the entire process.

These structures are acyclic and directed, and reflect possible operational choices faced by

an experimenter. A specific example of such a quantum circuit is presented in Figure 3.1.

The gates in circuit diagrams are associated with matrices that transform the input states

in a predictable manner. Such circuits afford a variety of counterfactual and interventionist

inferences. For example, assuming one knows the input state |ψ〉 in figure 3.1, and also the

6This idealisation is relaxed in the more general circuits of Chapter 5.
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particular value of U , it is possible to predict the distribution over the outcomes for both

final measurements.7 Alternatively, if the unitary U is under the control of the experimenter,

parametrised for example by a variable φ, one can make various interventionist inferences.

For example, if one holds fixed the gates X and H, it is possible to manipulate the outcome

probabilities in a predictable manner by altering the value of φ. Similarly, one can hold fixed the

choice of both the unitary U and the gate X and choose to alter the gate H to an alternative,

say the Z gate8 . Again it is possible to predict the effect such a move will have on the outcome

probabilities. Counterfactual reasoning follows by simple corollary: for example, one can state

“had I changed the value of φ to x, the distribution over outcomes would have been....”.

So far, the discussion has remained rather abstract. In the next section, however, we shall

see some examples of concrete implementations of such quantum circuits. It is helpful to see a

few examples in order to get an intuition for the kind of causal reasoning that is possible.

3.3 Quantum Circuit Examples

There has been an interesting development in scientific explanation involving quantum mechan-

ics over the last decade. Control and manipulation of quantum coherence in single quantum

systems has become a reality in the lab environment (Dowling and Milburn (2003), Milburn

(2005)). This has led to the development of many new devices capable of performing hith-

erto unheard of tasks. Many physicists (not least, those who develop such technology) would

consider it possible to provide interventionist causal explanations for the functioning of these

devices. That is, they are able to explain how these devices work and how things would be

different should various parameters change. By utilising circuit diagrams, they are able to de-

termine when certain actions will improve the functioning of the devices and when others will

not.9

7In this case, knowing the input state is analagous to knowing the prior probability distribution of the
exogenous (parentless) variables in a classical DAG.

8The Z gate adds phase with θ = π. The |0〉 state remains unchanged and |1〉 maps to − |1〉 .
9Russellians will no doubt look at such toy models and claim that given Hamiltonians and the Schrodinger

equation they are able to evaluate exactly the same kinds of interventionist and counterfactual claims. In many
circumstances however, quantum circuits are very complex. The difficulty inherent in both finding and applying
Hamiltonian dynamics in these cases, makes such high level causal reasoning extremely onerous without such
modular and schematic representation.
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In this section we look at three examples from the scientific literature that place quantum

mechanisms within complex explanatory stories. The first is an explanation for one of the novel

metrological tasks now being attempted via explicit control and manipulation of a quantum

system: the gravitational wave observatory, LIGO. The second is an engineered quantum system

that can sense the spin state of single atoms (among other tasks): the NV diamond (Kost et al.,

2014). Finally, we look at an example from ‘quantum biology’, an emerging field that identifies

examples where quantum effects seem to play a functional role in biological systems. The

first two examples will be used to illuminate the basics of an important technological advance,

quantum metrology, and the last as an example of a naturally occurring quantum phenomenon

that can be understood in interventionist terms. We will provide a rough sketch of plausible

causal structures for all three, using the quantum circuit diagrams of the previous section.

At this point it is perhaps worth pausing to consider what has changed in the quantum

physics community to allow quantum phenomena to now enter into such complex, prima facie

causal, explanations. It is likely that there are many contributing factors, but possibly the most

relevant breakthrough of the last few decades is physicists’ ability to isolate and probe single

quantum systems. The experimental advances afforded by the work of David Wineland, Serge

Haroche and colleagues have enabled the precise control and manipulation of single quantum

systems, and recently earned them the 2012 Nobel Prize for Physics.

By improving our ability to isolate quantum systems, coherent quantum states in the lab

can now be maintained for longer time periods, and this means that the mathematical models

predicting quantum interactions and coherence times for particular set ups can be made more

precise. Thus for a number of situations we can now give quantitative and relatively precise time

estimates for the maintenance or loss of quantum effects such as coherence or entanglement. For

such systems a close match between theoretical prediction and experimental outcome validates

that the circuit model is successfully taking into account all the degrees of freedom, and the

details of their interactions, that are relevant for our target explanandum (Dowling and Milburn

(2003), Milburn (2005)).
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Figure 3.2: Mach-Zender Interferometer

3.3.1 Quantum optical interferometry

Optical interferometry has been used to measure length at least since the time of the famous

Michelson-Morley experiment in 1887. What was not known at this time, however, is that the

sensitivity of such devices would ultimately be determined by quantum effects. We first consider

a simple quantum optical interferometer and characterise the functioning of this device via a

quantum circuit. We then relate this description to the Laser Interferometer Gravitational-wave

Observatory (LIGO) and its newer cousin Advanced LIGO.

The classical explanation for optical interferometry is fairly easy to understand. A laser

beam is passed through a beam-splitter that divides the light into two separate beams. The two

beams are then sent down the two arms of an interferometer, and reflected by mirrors at the

end of each arm. Finally, the beams are recombined via a second beam splitter and measured

at a photodetector. If the path lengths are exactly the same, constructive interference ensures

the output light will have the same intensity as the original input laser. If the path length

of one arm varies with respect to the other then the beams will be out of phase when they

recombine. The consequent destructive interference results in reduced intensity of the output

light. Working backwards, one can map this change in intensity to the difference in optical path

length. In fig. 3.2 one can see that any event that moves the position of the upmost mirror will

alter the length of the upper arm of the interferometer. Such a disturbance can be measured

by monitoring the concomitant reduction in output intensity.
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LIGO is actually an enormous optical interferometer that has been designed to measure

the effects of gravitational waves by monitoring the relative displacement of two mirrors in

the manner described above. Gravitational waves are ripples in the fabric of space–time that

are created by cosmological events such as the merging of two black holes. The measurement

sensitivity of LIGO is such that we can now use it to measure displacements of around 1

part in 1018: an astounding feat of modern engineering. With arms spanning around 4 km,

a tiny repeated wobble is introduced into the length of each arm as gravitational waves pass

perpendicularly through the device. This wobble periodically alters the relative positions of

the two perfectly reflecting mirrors and thus coherently changes the intensity of the output

detection events.

All optical interferometers can be given a quantum description or a classical description, and

when they are operated with coherent light from a laser, the classical and quantum description

of the average intensity of the light in the device are the same. Whilst this is true in LIGO as it

is currently operated, the correct description of the noise properties (and thus the sensitivity)

of LIGO requires a quantum description, even though it uses coherent states. There are two

complementary sources of noise that can degrade the sensitivity of the device. The first is

radiation pressure: the mirrors get a tiny momentum“kick” during the reflection of the incoming

photons. As the intensity of the laser increases, so does the noise due to such radiation pressure.

The second is photon counting noise (or shot noise): random variations in the departure/arrival

time of the photons. These two sources of noise are not independent but linked by the quantum

uncertainty principle. Thus, although one can reduce the shot noise by using high power, at

sufficiently high powers, the radiation pressure noise begins to increase and limits any gain in

sensitivity resulting from a decrease in shot noise. This leads to an optimum point of operation

called the standard quantum limit. LIGO as it is currently run uses high power to minimise

the photo detection noise and has not quite reached the standard quantum limit (SQL). In

the next version of LIGO (Advanced LIGO) squeezed states will enable it to reach the SQL at

lower input power. Insofar as LIGO needs to optimise its sensitivity by taking into account the

Heisenberg uncertainty principle it can be considered as an example of quantum control as the
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|α〉
Uθ

φ
Uκ

|β〉

Figure 3.3: Quantum circuit for LIGO. Here Uθ represents the action of the first beamsplitter.
φ represents the unknown phase shift introduced by the gravitational waves. Uκ represents the
action of the final beamsplitter. The two measurements at the far right represent the upper
and lower photodetectors. When there is no displacement of the mirror, one would expect all
detection events to be in the upper port. One can use the distributions over these detection
events to estimate the value of φ. In LIGO the input states are coherent states (photon number
is poisson distributed) for the upper input, and vacuum states (no photons) for the lower input.
The action of the beam-splitters for this setup will not be entangling. For Advanced LIGO, the
inputs will be squeezed coherents states which are entangled by the beamsplitters, Uθ and Uκ

complete description requires the quantum theory of light.

Is it possible to produce a quantum circuit that represents this system? In the physics

literature, there are multiple examples of optical interferometers depicted via circuit diagrams

(see, for example, Caves and Shaji (2010)). For LIGO a possible quantum circuit is depicted

in Figure 3.3.

We can use this very simple (and rather idealised) circuit to facilitate causal reasoning. For

example, typically the values of θ and κ are fixed and associated with beamsplitters that have

50% reflectance. It is possible, however, to alter the reflectance of these mirrors and predict

the accompanying change in output distributions. One can see from the diagram that altering

the unitaries Uθ or Uκ will alter the distribution over outcomes for both sets of measurements.

One can also model an external intervention via control of the parameter φ. This is, co-

incidentally enough, in fact a topical issue of some import. A week after the new, updated ver-

sion of LIGO opened, rumours began circulating that LIGO had detected a signal (Castelvecchi,

2015). The question was, of course, whether this represented the genuine signal of a gravita-

tional wave. If following analysis, the signal turned out to be the kind of clean, sinusoidal wave

expected to coincide with a gravitational wave detection (a ‘chirp’) then there would be two

possibilities. One is that a wave had in fact been detected, the other that it was a test signal.

To test the data analysis team at LIGO, the scientists will sometimes perform an elaborate

drill, introducing a false signal that mirrors the kind expected to correspond to genuine wave

detection. Only three members of the vast team of researchers are aware when this occurs: it
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serves as an exercise to hone the analytic skills of the large research team. We now know that

that the real culprit was most likely in fact two colliding black holes.

The hypothetical injection of the fake pulse can be modelled via the circuit above as a change

in the value of φ: in the absence of any genuine waves, the experimenters have control over the

value of this parameter and can intervene and introduce a false signal. Such an intervention is

local, insofar as is does not change the values of the two unitaries Uθ and Uκ, and is controlled

by a parameter outside the space of the model.

From this simple toy circuit it is possible to see, in principle, how one can intervene and

make predictable changes to distributions over future outcomes. Counterfactual assessments

are also possible: what would the distribution over outcomes have been had (for example) the

reflectance of the first beamsplitter actually been different?

We now consider another quantum metrological device, and illustrate that it affords a similar

representation.

3.3.2 The Nitrogen-Vacancy Diamond

Our second model describes a solid-state multi-qubit system formed by impurities in diamond,

referred to as the nitrogen vacancy centre. Such systems are being used as building blocks

to create more sophisticated quantum devices capable of such non-classical feats as quantum

teleportation (Pfaff et al., 2014) and atomic spin sensing (Kost et al., 2014). Very recently the

first ever loophole free Bell experiment was performed using this kind of device (Hensen et al.,

2015).

The centre is formed by a substitutional nitrogen atom next to a missing carbon atom, with

a group of electrons that cluster around the vacancy. One can represent this system as three

individual qubits, associated with (i) the spin states of the electron system, (ii) the spin states

of the Nitrogen nucleus, and (iii) the spin states of a nearby isotopic Carbon nucleus (see Figure

3.4).

In the ground state, the electronic system has a net spin of 1. It is a triplet system with an

energy difference between the spin-0 component (the ground state) and the spin ±1 components



§3.3 Quantum Circuit Examples 71

(the excited states). A static magnetic field can be used to separate the spin ±1 components,

and we need only consider the −1 component. We can designate the electronic system in the

ground state as |0〉e and in the −1 state as |1〉e. These are the spin qubit states.

In addition, it is possible to drive the electronic system out of the ground state into an

optically excited state by shining a green laser light onto the vacancy. As the electron relaxes

back to the ground level it fluoresces at longer wavelengths, in the red part of the spectrum.

Such fluorescence is in fact responsible for the pinkness of pink diamonds. It is this optical

transition that ultimately gives us access to the spin qubit; there is more fluorescence from the

|0〉e spin state than from the |1〉e, and this provides a means for reading out the electronic qubit

state. It is also possible to prepare (initialise) this qubit in the state |0〉e using a technique

called optical spin pumping10.

The probability amplitudes α, β for this spin qubit can be set to specific values, i.e. the

spin states of the electron can be coherently moved between the |0〉e state and the |1〉e state

into specific superposition states. This is achieved by applying microwave pulses of a particular

duration, carefully tuned to the frequency of the transition between the |0〉e and |1〉e state.

Recall, coherence here means that the effect of the external pulse on the amplitudes is a

deterministic rotation of the two dimensional complex vector (a unitary transformation).

To accurately control the spin state of the electron it is important to have precise information

about the energy gap for the |0〉e and |1〉e transition. It turns out that this energy gap is

extremely sensitive to local magnetic fields; its magnitude is determined both by the applied

static magnetic field and by the configuration of nearby nuclei. In the NV centre the presence

of a nearby nitrogen-14 and isotopic carbon-13 nucleus are the dominant nuclei that determine

the finer detail of the transition frequency of the electron spin.

Because of the hyperfine interaction with these nuclear spins, the electronic excited spin

state |1〉e is further split into sub-levels. The determination of these finer grained levels is

based on the hyperfine coupling between the nuclear and electron spins; the Hamiltonian that

characterises this coupling describes the magnetic dipole interaction between the electron spins

10For single shot detection, the system must operate at cryogenic temperatures to limit phonon noise (Robledo
et al., 2011)
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and the dominant nuclear spins. The two nuclei (carbon and nitrogen) are sufficiently far apart

such that their direct magnetic dipole interaction can be neglected (approximated to zero) and

we do not include this particular term explicitly in the interaction Hamiltonian, nor depict it in

the circuit. The very small dipole-dipole interaction between the nuclei can simply be modelled

as part of the background noise.

For most uses of the NV diamond, we can neglect the small direct coupling between the two

nuclei; the interaction can be considered causally too weak to disrupt the relations of our model.

However, for applications that require very long coherence times such nuclear interactions may

well prove relevant. In such instances, one might be required to include the relevant term in

the interaction Hamiltonian, and we then could no longer relegate this aspect of the model

to background noise. For such situations, one would include a unitary gate acting between

the two nuclear qubits on the circuit diagram. Note, this is directly analogous to the classical

case: recall that when one changed the scope, or level of detail of the model certain latent,

background influences could become causally relevant.11

By applying microwaves that are scanned in frequency, and observing when we see fluores-

cence, it is possible to map the nuclear spins states onto the possible spin states of the electronic

system, subsequently measured in a single-shot scheme. This means we also have a scheme for

reading out the values of the nuclear spin states. Additionally, tuned radio-frequency pulses

can individually manipulate the nitrogen and carbon spins, in a similar manner to the electron

spin manipulations.

Let us review the elements of our model. We have (i) an electronic spin qubit, (ii) a nitrogen

nuclear spin qubit, and (iii) a carbon nuclear spin qubit. The carbon and nitrogen nuclear spins

couple to each other only very weakly. The electron spin qubit couples strongly to both nuclear

spin qubits and this interaction can mediate a controllable interaction between the nuclear

spins. We can intervene to alter each of the qubits via tuned, EM pulses. For the precise

details of how these requirements are met for specific applications of the NV diamond see Pfaff

et al. (2014), Kost et al. (2014) and Hensen et al. (2015).

A plausible simple circuit to represent the qubits and their interactions can be seen in Figure

11See also section 5.10 for more on this feature of quantum causal models.
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|C〉 Uφ
Uc

|C〉

|e〉 Uθ
Un

|N〉 Uζ |N〉

Figure 3.4: Quantum circuit for NV diamond. Here C, e and N represent the carbon, electron
and nitrogen spin qubits. Uc represents the hyperfine coupling between the carbon and electron
spin states, Un represents the coupling between the nitrogen and electron spin states. The three
unitaries, Uφ, Uθ, Uζ , represent the individual unitary control an experimenter has over each
qubit, via tuned RF and microwave pulses.

4.12

In order to determine the spin state of a test atom, brought into close contact with the

NV centre, one can imagine the presence of a third unitary acting on the electron state. By

considering how the distribution over electron spin measurements changes in this modified

situation, one can calculate the spin state of the test atom. One can see in the diagram above

that, once again, it is possible to make various interventionist and counterfactual inferences.

One can intervene from outside the space of the model and alter the various unitaries in order

to test predictions relating to various hypothetical situations.

Interestingly, the kind of models and explanations we have seen in the last two examples

do not just involve engineered quantum systems. They have recently been taken out of the

lab, so-to-speak, and into the natural world of ‘Quantum biology’. An emerging scientific field,

quantum biology also supplies models and explanations that can be given an interventionist

causal interpretation. Our next example presents an illustration from this new field.

3.3.3 The European Robin

Some intriguing discoveries in biology have prompted claims that perhaps nature has already

managed to do some quantum control engineering of her own (Lambert, 2012). Perhaps the

two most thorough accounts are those of the avian magneto-compass (Rodgers, 2009) and the

photosynthetic light-harvesting complex (Fleming, 2011). In both cases the dynamics of quan-

tum states are thought to provide mechanisms for explaining effects that cannot be explained

12For the very short timescales relevant to this model, the order between the gates Un and Uc is arbitrary.
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in classical terms alone.

The current favoured explanation for the remarkable navigational abilities of the European

Robin relies on the same notion of coherent quantum control that we have seen in the previous

two examples. Many birds are able to navigate accurately for thousands of miles each year as

they head south for the winter. Current science tells us they do so by detecting the extremely

weak Earth’s magnetic field lines, and the mechanism responsible is thought to rely crucially

on the maintenance of quantum coherence.

The proposed mechanism is known as the radical pair mechanism, and is believed to take

place in the retina of the bird. Within a molecule known as cryptochrome, the quantum spins

of two electrons are initially entangled in a spin singlet state. One electron is then excited from

the ground state by the absorption of an incoming photon, inducing a conformational change

in the surrounding molecule and allowing the electrons to spatially separate. This separation

then results in inter-conversion of the quantum state of the electron pair between a triplet

and singlet state.13 This interconversion is considered a fully coherent, reversible quantum

dynamical process, occurring due to coupling of the electron spins with separate individual

nuclear environments. The dynamics of the inter-conversion are then further modulated by the

earth’s magnetic field.

The final step involves the electron pair encountering another reactant molecule. Depending

on the joint quantum spin state of the electron pair at the time they encounter the reactant

molecules, different chemical products result, and at different rates. These resultant chemicals

are assumed to provide a neural signal that piggybacks onto the visual system of the bird. The

speculation being that as the bird changes the orientation of its head with respect to the earth’s

field lines, the consequent modulation of the chemical signalling may result in a change in the

distribution of light and dark patches in the bird’s field of view.

The most recent behavioural experiments to support the model involve the application of

weak, oscillating radio-frequency pulses to disrupt the radical pair mechanism, and consequently

the birds’ sense direction. These pulses are tuned to the transition frequency between triplet

13The singlet state = 1√
2
(|10〉 − |01〉). Initially, there are three triplet states, but hyperfine splitting due to

the presence of magnetic field means that we need only consider the T0 state = 1√
2
(|10〉+ |01〉).
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and singlet states and thus disrupt the usual relationship between the joint spin state of the

electron pair and the direction of the bird’s head. More details can be found in (Rodgers (2009),

Cai, J. (2010), Tiersch (2012), Bandyopadhyay et al. (2012), Cai, J. (2013)).

It is worth commenting that there are alternative possible explanations for the birds’ re-

markable navigational abilities, most notably magnetite based mechanisms. These mechanisms,

however, are unable to account for the fact that (i) the compass appears to be an inclination,

rather than polarity compass, (ii) the mechanism appears to be light triggered, and (iii) the

birds direction sense is able to be disrupted by weak, oscillating radio-frequency pulses. For

these reasons the radical pair mechanism has gained support as the favoured current expla-

nation Lambert (2012). This means that at the very minimum, this suggests that a causal

understanding is possible if the radical pair model is ultimately shown to be the correct one.

As Cai, J. (2013) recently pointed out, the explanation for the magneto- compass can be

considered analogous to an optical interferometer. For the magneto-compass it is the hyper-

fine coupling between the nuclear environment and electron spins that provides the process

equivalent to passage through the beam splitters; formally, it is this coupling that sets up a

superposition of singlet and triplet states. In the optical interferometers, interference occurs

between the two paths through the interferometer, whereas in the magneto-compass it occurs

in the energy eigenbasis of the electron-nuclear coupling Hamiltonian. The input and output

states of the optical interferometer are the mutually exclusive photon paths; the photon is fired

with certainty from either the upper or lower source, and is detected with certainty at either

the upper or lower detector. In the case of the magneto-compass, the input state is a singlet

state, and the detection states can be either one of the mutually exclusive states: triplet or

singlet.

The final measurement step in the interferometer occurs when a photon is detected at

the output; analogously, the measurement step in the avian magneto-compass occurs when

the reactant molecules randomly encounter the radical pair. The changes in the probability

distribution for output photons over many trials in the optical interferometer allow calculation

of the minute changes of the mirror position due to passage of gravitational waves; the relative
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|e1〉
UHF

φB,θ S-T basis
|e2〉
|n〉 |n〉

Figure 3.5: Quantum circuit for avian magnetoreception. Here |e1〉and |e2〉 represent the qubits
associated with the electron pair. |n〉 is associated with the spin state of the nearby nuclei.
UHF represents the action of the hyperfine coupling between electrons and nearby nuclei. φB,θ
represents the phase shift introduced by the Earth’s magnetic field B, parametrised by the
angle with the direction of the birds head θ. Measurement is in the singlet-triplet basis.

ratios of singlet and triplet products, averaged over many molecules in the bird’s retina allows

detection of the direction of the Earth’s extremely weak magnetic field. Thus the bird is able

to control the relative ratio of singlet to triplet product, and thus the associated visual pattern,

by altering the direction of its head with respect to the Earth’s magnetic field lines.

The dynamics of the avian model are expressed using quantum Hamiltonian dynamics, to

keep track of the coherences within the system. As discussed above, detailed knowledge of co-

herent states can be maintained when we have sufficient knowledge and control of any degrees

of freedom that influence the system of interest. In general, biological systems are compli-

cated, wet and warm environments and were originally thought to provide too many sources

of decoherence for quantum effects, such as interference, to play any functional role. However,

recent improvements in the sensitivity of experimental tools means we can now detect changes

at extremely short length and time scales. Recent experiments have verified that functional

quantum effects (such as coherence and entanglement) can occur at very fast timescales, and

are sufficiently well localised such that their effects can make a difference before slower thermal

environmental effects can interfere. Furthermore, there is increasing evidence that there is often

constructive interplay between thermal noise in stationary non- equilibrium systems, such that

quantum correlations are not suppressed but rather enhanced or regenerated by interaction

with the environment (Huelga and Plenio, 2013).

A possible circuit representation of the radical pair mechanism is depicted in figure 3.5.

Support for the avian model has come from performing various interventions, and as the

interventions have become more sophisticated the model has gained strength and support from

the scientific community. Scientists have considered changes in (i) the nuclei surrounding the
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separated electron pair (spin state and spatial configuration): i.e changes in the value of UHF

(ii) the strength or direction of the external magnetic field: φB,θ, and (iii) the joint spin state

of the electron pair. In the case of changes to the nuclear configurations, such interventions

are modelled numerically, in the case of the magnetic field strength and directions, such inter-

ventions can be carried out in vivo. Thus, once again, the qualitative causal structure of the

model is determined via intervening on various components and noting consequent changes.

3.3.4 Conclusions

In this section I have presented three examples of scientific explanations that appeal to uniquely

quantum effects. I have shown that the structure of these explanations can be depicted using

circuit diagrams. Such circuit models facilitate interventionist and counterfactual reasoning,

allow the user to answer Woodward’s so-called ‘W- questions’, and share many features with

the causal models of Chapter 1.14 They are acyclic and align with temporal direction, are

modular and possess a clear compositional structure. They also depict an element of external

control that makes precise the manner in which an experimenter can intervene on an individual

element of the total system, and thus interrupt its normal evolution. Quantum circuits can

provide qualitative and quantitative information regarding effective and ineffective strategies

for a variety of situations involving quantum phenomena. Prima Facie, such explanations signal

the possibility of quantum interventionist causation.15

14Recall, Woodward’s W-questions are of the kind ‘what if things had been different?’
15The mathematical objects associated with these structures are clearly going to be very different from those

of the classical causal modelling framework. In the following chapters we shall look more closely at this feature
of quantum circuits.
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Chapter 4

Quantum Causal Models: the state of

play

It is clear from Chapter 2 that it is very difficult to characterise a quantum causal model.

The relata of quantum causal models are not going to be variables in the usual classical sense.

In general, one can not associate measurement outcomes with properties that exist prior to,

and independently of the act of measurement or observation. The Kochen-Spekker and Bell

theorems both confirm the difficulties inherent in ascribing the usual local, non-contextual,

classical hidden variables to represent quantum causal structure. This means one can not

simply enlarge the variable set, or fine-grain the values, and recover a Markovian, Faithful

causal DAG.

Having said this, we saw in Chapter 3 that there is significant motivation to consider that an

interventionist account of quantum causal modelling ought to be possible. In this section I will

examine some recent attempts to characterise quantum causal models. Due to the success of

Pearl’s causal modelling methods, the quantum foundations community has recently begun to

examine the possibility of providing a quantum analogue. I will introduce three such accounts

here. Whilst this list is not comprehensive, I believe it provides a good cross-section of the

available options1. I will follow up by comparing the three accounts and explaining why I

1Other examples include, for instance, Tucci (1995); Chaves et al. (2015); Oreshkov and Giarmatzi (2015)
and Fritz (2015).

79



80 Quantum Causal Models: the state of play

endorse a fourth, the focus of the next chapter.

Introduction

4.1 Quantum Causal Networks

Kathryn Laskey’s 2007 paper, “Quantum Causal Networks” characterises a causal network that

allows for quantum correlations. The goal is to produce an accurate representational structure

for quantum correlations, rather than to uncover particular foundational or philosophical im-

plications per se. Laskey identifies the key role interventions play in identifying classical causal

structure and shows that local projective measurements can provide a similar function for quan-

tum causal models. Her Quantum Causal Networks are graphical structures that can accurately

represent quantum correlations.

A distinctive feature of Laskey’s approach is the use of an explicitly dualist framework.

This is a consequence of her identifying entanglement correlations as non-causal. In order to

connect nodes characterised by this kind of relation, in addition to edges that capture signalling

(‘causal’) correlations, she is forced to have two different kinds of edges in her graphs.2 In her

formalism, graph nodes are associated with finite dimensional Hilbert spaces, and collections of

such nodes can combine via the tensor product to be associated with larger dimensional Hilbert

spaces. The graph structures are defined by considering possible operations on the local Hilbert

spaces. This picture will become clearer as we get into the detail of the account.

Laskey assumes that quantum evolution obeys temporal ordering and consequently defines

causal influence as occurring between time-like separated events, but not space-like separated

events. As such, causal relations here are synonymous with signalling relations. Her graphs,

called Sequence Associated Graphs (SAGs), capture this distinction by allowing for two kinds

of edge: directed arcs for time-like separated events and undirected arcs for “contemporaneous

correlations between entangled systems” [p 5]. To ensure this feature, she requires that any two

pairs of nodes are related either via a directed arc, or an undirected arc, but never both. In this

way, the directed arcs establish a partial order on the full set of nodes and the contemporaneous

2The more general framework I argue for in Chapter 5 avoids this kind of dichotomy.
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edges partition the nodes of the graph into equivalence sets (whose elements are called CN-sets).

X4 X5

X8

X3X2

X6 X7

X1

Figure 4.1: Quantum causal network. Root CN-sets are in green, the two child CN-sets are in
blue and red, nodes in each CN-set are joined by undirected edges.

The CN-sets are further subdivided into two categories, in a similar manner to Pearl’s

endogenous and exogenous variables. Root CN-sets are those whose nodes have no incoming

directed edges (i.e. no parents), and child CN-sets are those who do have such connections.

Nodes that have directed edges into a member of the CN-set are known as influencing parents

relative to that CN-set, and nodes that are contemporaneous with such influencing parents are

known as non-influencing parents. In figure 4.1, non-influencing parents in the network are, for

example, the nodes X1 and X7

Laskey connects the nodes of her graph with the formalism of quantum mechanics via her

definition 6:

Definition 6: Let G be a SAG, let {X1, ..., Xk} be a CN-set for G, and let Hi denote the
Hilbert space associated with Xi. Let {W1, ...,Wr} denote the set of influencing and
non-influencing parents for {Xi, ..., Xk}, and let Fi denote the Hilbert space associated
with Wi. A local distribution ∆(.) for {Xi, ..., Xk} is defined as:

1. If {Xi, ..., Xk} is a root CN-set, then ∆(Xi, ..., Xk) consists of finite or a countably
infinite set {∆i(Xi, ..., Xk)} of density operators on H1 ⊗ .... ⊗ Hk such that∑

i ∆i(Xi, ..., Xk) is equal to the identity;

2. If {Xi, ..., Xk} is a child CN-set, then ∆(Xi, ..., Xk|W1, ...,Wr) consists of finite or
a countably infinite set {∆i(Xi, ..., Xk|W1, ...,Wr)} of quantum operators mapping
F1⊗ ...⊗Fr to H1⊗ ....⊗Hk, such that

∑
i(∆i(Xi, ..., Xk|W1, ...,Wr)) is trace

preserving.
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(Laskey, 2007)[6]

Unpacking this a little, each node (Xi) in the graph has an associated Hilbert space (Hi).

W is the set of all parent nodes for the particular CN-set {Xi, .., Xn} under consideration. As

an example, for the blue CN-set above, W = {X1, X2}. The local distribution over this set

is defined by the two conditions above. Condition 1. states that if the set has no influencing

parents, then the distribution simply consists of a set of density operators on the tensor product

of the associated Hilbert spaces, Hi, where these operators must sum to identity. Condition

2. states that if the CN-set does have influencing parents (as in this case), then the local

distribution over the CN-set is given by a conditional distribution, consisting of a set of quantum

operations. The operations here map the tensor product Hilbert space associated with all the

parent nodes, to the tensor product Hilbert space associated with the nodes in the CN-set. The

sum of the elements of this set of quantum operations must be trace-preserving.

Laskey then introduces the concept of a fiducial reduction. This is necessary to explicate

her version of an intervention. The idea is based on Hardy’s 2001 proof that shows one can

characterise the behaviour of a quantum system using a finite, or countably infinite set of

random variables. The proof associates fiducial states with fiducial measurements : fiducial

states correspond to a set of mutually orthogonal projectors that span the state space of the

system under consideration. For each fiducial state we can associate a fiducial measurement: a

measurement that when applied to the appropriate fiducial state, will leave the original state

unchanged. Hardy’s proof showed that it is possible to characterise a quantum state accurately

by specifying the outcome probabilities given each of the fiducial measurements. For Laskey, a

fiducial reduction is a set of projectors in which each projector in the set is a product F1⊗...⊗Fn

of fiducial projectors (definition 7).

The SAG, G, is then defined with respect to root and child CN-sets. The local probability

distribution over a root CN-set is said to respect G if for any fiducial reduction applied to this

local distribution and any i, the conditional probability of Xi given X1, ..., Xi−1, Xi+1..., Xn

depends only on the neighbours of Xi in G. This means the local probability distribution of an

n-dimensional root node, can be characterised as a density matrix by specifying at most n2− 1
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real numbers. The conditional probability distribution for a given child node, is characterised

by a trace preserving quantum operation relating the output Hilbert space of the conditioning

nodes to the input Hilbert space of the child node. The quantum operation for a child CN-set

will require at most n2(m2 − 1) real numbers, where m is the product of the dimensions of

the nodes in the child CN-set. In general there will be various independencies in the graph,

generated by the signalling structure, that reduce the number of parameters needed to specify

these local distributions.

To associate the SAG with a causal structure then, Laskey defines a quantum causal network

which is a triple Q = (G, {Hi}, {Pr(.)}), where {Hi} is a collection of Hilbert spaces, one for

each node, and {Pr(.)} is a set of distributions, one for each CN-set of G. The idea is that such

a graph encodes not just a model for the undisturbed evolution of a quantum system, where

causal influence propagates via the directed arcs, but also a model that can accurately capture

changes due to interventions.

4.1.1 Intervention

Interventions are defined in this framework as projection-valued measures, and as such have

an irreducibly stochastic component. This limits interventions to “instantaneous’” projectors

rather than the more general class of conditional operations used in the other methods described

in this chapter. Laskey states:

Although almost all treatments of interventions in the quantum theory literature

are heuristic and informal, the ability to control the behaviour of quantum systems

by means of interventions is an essential aspect of how quantum theory is applied in

practice. The lack of a mathematically rigorous theoretical framework for analysing

the effects of interventions has sowed confusion and hindered advances in practical

applications of quantum theory. (Laskey, 2007)[6]

This is not quite right. In the last fifteen years there has been significant developments in

formulating more rigorous notions of what ought to count as quantum control via intervention

(see, for example, Peres (2000) and Wiseman and Milburn (2014)). It is possible to move
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away from the use of projection-valued measured to more general kinds of measurements and

operations. We shall see this in action in the next chapter (section 5.5).

4.1.2 Causal Discovery

In summary, Laskey’s models provide a correct characterisation of the correlative patterns one

expects for quantum systems that contain entanglement relations. There are a number of unsat-

isfactory elements to this presentation, however. Firstly, the use of two different edges, causal

and ‘merely correlational’ illustrates that this version of causal modelling does not provide an

understanding of causal relationships beyond signalling relations. For the interventionist, per-

haps this is enough, but it leaves causal discovery a little complicated. If one is not given a

promise that the entire network is quantum, discovery in this context would prove exceedingly

cumbersome. For each CN-set one would have to search for Bell inequality violations to ensure

that the entanglement correlations in question were not simply the result of an unmeasured

classical common cause. And even this would not be enough: one can have entanglement

without violation of a Bell inequality (Nielsen and Chuang, 2000).

This idea of accepting entanglement correlations as a brute fact, exempt from the usual

requirements of causal explanation, is not new. Hausman (1999) also believed that the lesson

of quantum mechanics was that we must accept the possibility of correlations that can not be

explained by causal relations. He used the term n-connected to signify the kind of relation

connecting such correlated systems: n is for non-accidental correlation. For Hausman, such

connections represent a modal primitive, justified by nomological necessity. On his account

(as with Laskey) correlation is due to three possibilities (i) direct cause (ii) common cause or

(iii) ‘mutual dependence’. The difficulty with this view, of course, is it leaves causal discovery

rather unclear. How is one to know when one ought to stop looking for latent common causes

and just accept a correlation as a brute fact?
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4.1.3 Classicality

Classical causal structures would be represented in this formalism as a graph with no CN-

sets. Thus the formalism affords no natural interpretation of the relation between classical and

quantum causal structure, beyond the fact that for classical structure one does not need to

depict the possibility of entanglement correlations.

A final possible short-coming of Laskey’s methodology is that it does not provide a natural

arena for reproducing quantum circuits. Whilst it is possible to translate the quantum circuit

formalism into SAG’s, such a move would be rather convoluted. The next framework we

consider takes quantum circuits as a paradigm representation of quantum causal structure, and

we turn to this formalism now.

4.2 A Graph Separation theorem for Quantum Causal Models

Pienaar and Brukner (2015) (hence-forth PB) take as their point of departure the findings

of the Wood and Spekkens (2014) paper: causal models of quantum systems require fine-

tuning. They accept that classical causal modelling techniques fail for quantum systems, and set

about producing an alternative framework. The aim is to find a formalism that can determine

when two quantum events are causally related. The model is based on the quantum circuit

representation, and used to define a graphical separation rule analogous to d-separation.

There is little mention of interventions in this framework and the overall perspective is

closely aligned with Pearl: one defines causal assumptions (such as the CMC) that permit one

to make causal inferences using observational data. Measurement outcomes in their framework

are taken to represent observational data, and there is no characterisation of intervention.

PB take the crucial distinction between classical models and quantum models to be that

intermediate variables in quantum models do not screen off. That is, whilst for classical models

knowledge of a common cause renders joint effects probabilistically independent (recall figure

1.1), this is not so in the quantum case. Similarly, for a causal chain of classical variables, cause

and effect variables are independent conditional on an intermediate variable, whilst this is not

so in the quantum case.
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In general, the approach here is very intuitive if one is familiar with the structure of quantum

circuits. It is typically fairly easy to read off dependence relations from a simple circuit, as we

saw in the previous chapter. PB’s framework is an attempt to systematise finding probabilistic

dependencies and independencies, in order to facilitate this process for larger and more complex

circuits.

PB motivate their particular approach by making the fairly natural assumption that causally

separated, correlated variables must share a common cause. This reflects the well known fact

that independent quantum systems can only become correlated via an interaction in their

common past (e.g. a common source). As such, the failure of Reichenbach’s Common Cause

Principle (in its probabilistic form) is here assumed to be due to a failure of factorisation:

quantum common causes do not screen off. PB define Reichenbach’s Common Cause principle

(RCCP) as the conjunction of two distinct assumptions:

RCCP: if two variables are correlated, conditioned on the empty set, AND causally

separated (neither variable is an ancestor of the other), then they are independent

conditional on the set of their common causes (parents shared by both variables).

[p6]

The first assumption is that causally separated, correlated variables must share a common

cause: the principle of common cause (PCC). The second assumption is that variables must be

screened-off from each other by their common causes: the factorisation principle (FP). Thus

it is the authors wish to retain the first assumption (PCC), which forces them to relinquish the

second (FP).

Recall, classical causal models can be generated from a list of probabilistic dependencies

and independencies, found in observational sample data, and associated with a graph via d-

separation. In an analogous move, PB provide a list of expected probabilistic dependencies and

independencies for quantum data, and provide a criterion, q-separation, that links this list to

a graphical structure. Before getting to q-separation, though, we need to define the nodes and

edges.

There are three distinct kinds of node in this framework, defined in terms of their incoming
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and outgoing edges: (i) exogenous nodes, (ii) intermediate nodes, and (iii) drains. See figure

below.

V W Z

U

S

T

X Y

Figure 4.2: Quantum circuit DAG. Exogenous nodes are green and correspond to possible
choices of state preparation. Intermediate nodes are black and correspond to possible choices
of CPTP maps (in this case, unitaries). Outcome nodes are red and correspond to possible
measurment outcomes. Setting nodes are circles and outcome nodes are squares.

(i) Exogenous nodes have no incoming edges, just as in the classical case. They are associated

with a random variable whose value corresponds to the preparation of a normalised quantum

state; formally, a density matrix. These states are restricted to exist in a Hilbert space whose

dimensions equal the space formed by the tensor product of the Hilbert spaces associated with

all the outgoing edges.

(ii) Intermediate nodes, as the name suggests, have both incoming and outgoing edges.

The random variable associated with these nodes represents possible completely positive trace

preserving maps (CPTP maps). Such maps can be though of as encoding possible transfor-

mations to the state of a quantum system as it passes through the node. The fact that these

maps are trace preserving, means that there are no measurement outcomes associated with the

transformations taking place at these intermediate nodes. This is likely motivated by quantum

circuits, where all measurements can be pushed to the far right of the circuit. We shall see

some examples of this below.

(iii) Drains are nodes with only incoming edges. They can be used to represent either

measurement outcomes, where the value is then associated with one out of a set of possible

generalised measurements (POVMs) on the incoming systems, or settings where the value is

associated with a CPT map, with a discarded outgoing system.
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Edges are associated with a finite dimensional Hilbert space, to represent the passage of

quantum systems between nodes. In circuits, these edges are wires, formally taken to represent

the identity map.

Armed with these three possible kinds of node, it is possible to construct a directed acyclic

graph that matches the structure of a quantum circuit. One can choose to represent the graphs

by restricting the operations to pure states, unitaries and projective measurements, and consider

more general operations as epistemic mixtures of these. The nice thing about the framework

is it affords a very natural expression of quantum circuits in DAG form.

Recall, for quantum circuits measurements can be pushed to the far right of the circuit. Such

measurement outcomes are depicted in the Quantum DAG as squares, in order to distinguish

the two kinds of nodes more readily.3

The kind of probabilistic relations implied by this particular choice of nodes can be made

intuitively clear by considering the physical principles we would expect for such circuits. The

first observation is that settings ought to be distributed independently of one another, just like

exogenous nodes in a classical network. In the quantum network however, these settings include

intermediate nodes, and this fact places some significant restrictions on screening off relations.

As these intermediate setting nodes will not screen off an outcome from its other ancestors,

the usual Markov condition will not hold for these networks. PB show, however, that a weaker

property holds: the Quantum Causality Condition (QCC).

The QCC states that an outcome is independent of all settings that are not causes (where

the cause can be either direct or indirect), and all outcomes that do not share a common

cause, conditioned on the empty set. Sets of outcomes are not necessarily independent of

each other, conditional on their common causes. They can still be dependent, even once their

common causes are taken into consideration, thus violating the FP principle discussed earlier.

As Butterfield (1992) noted: for quantum systems common causes do not screen off. As a

result, parents do not have the same special status in this framework as they do in classical

networks: causes of a variable are to be associated with any of its ancestors, and the usual

distinction between direct and indirect causation doesn’t apply.

3I use squares for outcome nodes, rather than the filled-in nodes of PB.
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PB also assume an absolute ordering to the nodes (directedness) and no causal loops (acyclic-

ity) in accordance with our usual intuitions about temporal directedness and no backwards in

time causation. One can of course, relax these constraints and explore the consequences, but

for this paper, the authors assume both these features.

Given these definitions of nodes, one can partition the variables into two sets: (i) outcomes

and (ii) settings. Having made this distinction, it is then possible to define a quantum input

list, Qo, as a pair {PAO, Q}, containing:

(i) An ordered list of parents, where each set of parents, pa(Xi), is a subset of the set of

predecessors of Xi that are settings.

(ii) A set of conditional independence relations (Q) formed from two distinct kinds of inde-

pendence:

(a) settings are independent, except when one conditions on their common outcomes.

(b) outcomes are independent of all settings that are not causes (where causes here equals

graphical ancestors), and independent of all outcomes that do not share a common cause. [p16]

These constraints determine the independence relations in the graph, but a definition of the

model parameters is needed to relate these structures to joint probability distributions. For a

set of variables Xi, with value space EXi
, the quantum model parameters, Fq consist of :

(i) each edge is associated with a Hilbert space of finite dimension.

(ii) each outcome drain node Xi, is associated with a POVM, with an outcome for every

value in EXi
.

(iii) each exogenous node is associated with a normalised quantum state for every value in

EXi
.

(iv) For every intermediate node (and every setting drain node) Xi, a CPT map C : Hin →

Hout for every value in EXi
.

(vi) A marginal probability distribution on the value space EXi
of every variable that is

not an outcome drain node. These marginal distributions are all mutually independent (these

distributions can represent the experimenters choice of settings or the environmental conditions,

or both).
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Having laid the foundations, we are now in a position to define a Quantum Causal Network

(QCN):

A QCN on a set of variables X is a pair {QO, Fq} consisting of a quantum input list

for the set X, and a set of quantum model parameters Fq for the DAG GQ generated

by the input list. [p16]

So, just as a list of conditional independence relations and marginal dependencies can gen-

erate a classical DAG, the quantum input list can generate a quantum DAG GQ. Recall, in

the classical case the condition of d-separation ensures this relationship between the statistical

independencies and the graph structure. PB next provide an analogous graph separation rule:

q-separation. Following a similar form to the Verma and Pearl (1988) proof for d-separation,

PB then prove q-separation to be sound and complete for quantum input lists.

4.2.1 Interventions

The authors do not discuss interventions in their framework and it is difficult to recast their

formalism in terms of our usual intuitions about interventions. It is clear that one can intervene

locally to set possible value of intermediate nodes, but such an action will not be arrow breaking

in the usual sense. Partly this is due to the requirement that intermediate nodes represent

choices of CPTP maps. Similarly, it is not clear what could count as an intervention on a

measurement outcome. Having said that, from the broad perspective of interventionism, where

one considers the aim is to identify the difference between actions that will bring about changes,

and those that won’t, the graphs do capture useful information. As far as circuits capture such

information (see Chapter 3), so do the DAGs depicted here.

4.2.2 Classical Limit

PB discuss the relationship of their graphs to classical DAGs by considering if it is possible to

recover a DAG by suitably modifying their QCM’s to respect the Causal Markov Condition.

They achieve this essentially by making all the indirect causes of outcomes direct causes. They

define the classical limit for a QCM as follows:
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Given a DAG G interpreted as a quantum network, the classical limit of G is a new

DAG GC obtained by

(i) drawing a directed edge from every setting Si to every outcome Oi that is de-

scended from Si in GC , unless an edge already exists, and

(ii) remove all edges that connect pairs of settings to each other. [p21]

Whilst it is clear that this procedure will recover a classical DAG that respects the CMC, it

does not really illuminate in any interesting way the relationship between quantum and classical

causal structure. One simply limits the quantum model parameters to a classical subspace and

obtains a classical circuit, defined by a set of functions relating the values of outcomes given

the values of their ancestors. Ancestors will become parents in the new graph Gc, and there

will no longer be the possibility of intermediate nodes in the graph, thus the usual screening

off properties of classical graphs will be observed.

4.3 Generalised Bayesian Networks

Henson et al. (2014)’s aim is to produce a generalised version of classical Bayesian network

theory that can also accomodate non-classical resources. The non-classical resources are not

restricted to just those of quantum systems. Rather, the authors wish to extend the BN

framework to encompass future possible physical resources (such as, for example, so-called

“PR-boxes”). In order to encompass these more generalised resources, they utilise previous

work in generalised operational-probabilistic theories (OPTs)4. We next review some basics of

this approach.

4.3.1 Generalised operational probabilistic theories

The development of OPTs was in large part inspired by the successes of quantum informa-

tion theory. The development of quantum cryptography, teleportation, superdense coding and

quantum metrology suggested to many physicists that there could be valuable operational con-

sequences of taking an information-theoretic approach to quantum foundations. This led some

4See Chiribella et al. (2015) for a good introduction to the field of OPTs.



92 Quantum Causal Models: the state of play

to consider that perhaps one could reconstruct quantum theory from some relatively intuitive,

operationally motivated axioms, and in the process shed new light on various foundational

issues.

More recently, Chiribella and co-workers have focussed on a specific variant: operational

probabilistic theories (OPTs). OPTs are an extension of classical probability theory, formed by

combining (i) the operational and compositional commitments of circuit models with (ii) the

axioms of classical probability theory. Primitive elements are combined according to composi-

tional features of circuits: roughly speaking, composed either ‘in series’ or ‘in parallel’. These

compositional features are reflected in a graphical structure, with the mathematical validity of

the approach underwritten by the category theory framework of Abramsky and Coecke (2009).5

An advantage of using such a general framework is that it enables the comparison of different

kinds of possible physical theories. One can compare the implications of classical theory, quan-

tum theory, stabiliser theory, gaussian quantum theory, PR boxes and more. In this manner,

it is possible to tease out which features of a phenomena are specifically captured by quantum

theory alone and which are due to other physical assumptions.

Operational and Compositional features of OPTs

The circuits are closely related to the circuits described in Chapter 3 (see section 3.2.1). They

are defined as collections of operations (preparations, transformations and observations), con-

nected by spatiotemporally propagating systems. The primitives in this theory are physically

identifiable systems (A, B, C,...) and localisable tests ({Ci}i∈X), which represent a single use of

some physical device. The systems are considered as the inputs and outputs to such tests. The

elements of the tests are associated with distinguishable outcomes, labelled Ci and referred to

as events, indexed by the outcomes i ∈ X.

In cases where one wishes to denote the specific incoming and outgoing systems associated

with a given test, one uses the notation CBiA. If the output of one test is the same as the input

system of another test, then the two tests compose in series. Alternatively, they are composed

5Category theory is a branch of mathematics particularly suited to structural analysis of physical systems. It
is very general, and thus provides a good candidate for exploring the consequences of arbitrary physical theories.
See Abramsky and Coecke (2009) for a good introduction.
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in parallel. These two options are depicted graphically as:

Ci
A

B

Dj

E

F

JiL Kj M

Figure 4.3: A test Ci, with input system A and output system B, composed in parallel with a
test Dj, with input system E and output system F . Two tests, Ji and Kj composed in series,
with input system L and output system M .

In each case, the composition yields another well-defined test, whose outcomes (i, j) are

ordered pairs created by the outcomes i and j of each circuit element. For parallel compositions,

the inputs and outputs also are considered together to form composite systems (AE and BF in

the diagram above), and the tests also compose to form another test (Ci⊗Dj in the diagram).6

Two further primitives are required: the trivial input and the trivial output. The trivial

input system corresponds to a preparation test, i.e it doesn’t matter what the state of the

input system is prior to the preparation. The trivial output sytem corresponds to a demolition

measurement, i.e. it doesn’t matter what the outcome state is, following the test. Tests on

such systems are called preparation-tests and observation-tests respectively.

Probabilistic features of OPTs

To attach probabilities to these primitive operational elements, an OPT is defined as one in

which every test from the trivial system to itself, is a probability distribution over the outcome

set, and where the composition of such tests is given by the corresponding product distribution.

This is depicted as a graph with no input or output wires.

ρi

ej

Figure 4.4: Test from trivial input to itself, associated with a preparation and then observation
pair. The associated probability distribution is the joint formed by the product p(j, i).

6The possibility of such parallel composition turns the category of events into a strict monoidal category
(Chiribella et al., 2015).
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An experiment is defined in this formalism as a sequence of tests that begins with a

preparation-test and ends with an observation-test, and leaves no open wires. A simple ex-

periment would be:

ρi

Tk

ej

Figure 4.5: A preparation-test, transformation and then observation-test. The associated prob-
ability distribution is the joint formed by a distribution over p(j, k, i) according to the proba-
bility rules of the OPT.

The Causality Criterion

The Causality Criterion is a further primitive assumption of the OPT. This criterion is stated

by Chiribella et al. (2015) as the assumption that signals cannot be sent from the future to the

past [p21]. One does not need explicitly to invoke this notion of temporal directedness, however,

as the condition can be defined equivalently as follows. For each system A there exists a unique

deterministic effect, TA, where the unique deterministic effect is equivalent to the fact that

summing over all possible outcomes of a test doesn’t depend in any way on the input of the test.

For example, in the case of quantum systems, the unique deterministic effect is characterised by

the fact that POVM elements sum to the identity. The difference between preparation-tests and

observation tests characterised by the causality criterion generates asymmetry in the graphs,

and ultimately the directedness of the wires.

Quantum example

For quantum resources, the above elements translate in the following manner: systems are

associated with complex Hilbert spaces and composite systems combine via the vector space

tensor product. Tests are quantum instruments (completely positive maps that sum to a trace
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preserving map: CPTP maps).7. One can think of a quantum instrument as representing

a possible way in which one can interact with a quantum system, for example a choice of

measurement basis, preparation, transformation etc. Preparation-tests are density matrices

(unit trace positive operators) and observation-tests are Tr(Ei) where {Ei} is a POVM. The

unique deterministic effect is the trace operation.

Comparing to the classical case: systems are associated with sets and composite systems

are given by the cartesian product. Tests with outcome i with incoming system A and outgoing

system B are given by the positive probability P (i, λB|λA), where λA and λB are the possible set

elements of A and B respectively. Summing over the possible outcomes i and output elements

λB, given the input elements λA, equals unity. Tests compose in sequence by multiplying and

summing over the λ for the intermediate system, and in parallel by multiplying. The unique

deterministic effect is P (∅|λ).

The distinction between this formulation of a classical theory as an OPT and a Bayesian

network lies in the fact that there are two distinct kinds of information in OPT’s: systems that

travel along the wires, and the classical outputs (i). This fact captures the possibility that the

outcome of a test need not capture everything about the state of the outgoing system.

4.3.2 The Generalised Bayesian Network

The Generalised Bayesian Network is a marriage of two structures: OPTs and Bayesian Net-

works. Unlike traditional Bayesian networks, these networks are partitioned into two kinds of

nodes, observed and unobserved. The observed nodes are associated with measurement out-

comes (classical data), and can be associated with a classical probability distribution. In the

OPT framework, observed nodes correspond to outcome-tests which output the trivial system.

In the case where such observed nodes have an outgoing edge, this is taken to mean that there

is a choice of test at the child node. The choice is conditioned on the classical outcome of

the test at the parent node. The unobserved nodes are associated with ‘general resources’, for

example the quantum source in a Bell experiment or a PR box. These unobserved nodes are

not associated with measurement outcomes. As such, they are simply associated to a random

7See Davies and Lewis (1970) for an introduction to quantum instruments
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variable that takes a single value with probability 1. They output systems but not outcomes.

Thus it is important to remember the distinction between output systems and outcomes in this

formalism. The output systems can take a variety of forms, depending on the theory under

consideration (for example quantum, PR box etc) whereas the outcomes will always be clas-

sical random variables. Note, “unobserved” here doesn’t necessarily imply unknown, in the

sense that one can construct a plausible graph structure, matching a particular experimental

situation, by placing unobserved nodes where one would expect quantum resources.

In a similar fashion to Laskey and PB, the dual node structure of these networks demands

two kinds of edges. The outgoing edges of observed nodes are associated with a choice of

test, where this test is conditioned on the value of the classical value of the (observed) parent.

The outgoing edges of unobserved nodes output only systems, with no associated non-trivial

outcome. This is somewhat similar to the PB framework, where intermediate nodes are not

associated with outcomes, although in the PB scheme, one was allowed a choice over possible

intermediate node values. In the networks here, the intermediate nodes are associated with

a single value that occurs with probability 1. Thus, the probability distribution associated

with these generalised DAGs is generated by the distribution over the observed nodes only.

Therefore, the details of the network connections between unobserved and observed nodes

generate constraints on these distributions, and it is this feature that is the primary focus of

the paper. For the purposes of this thesis, we will just look at the structure of these generalised

Bayesian networks and ask how they fare in the context of causal discovery and in the classical

limit.

The definition of the Generalised Bayesian network is the conjunction of three sub-definitions:

Definition 1. Let G be a DAG with nodes V = {X(1), X(2), ...X(m)}. G is a
generalised DAG (GDAG) if V can be partitioned into two sets of nodes:

(i) the observed nodes {X(1), X(2), ...X(n)} (drawn as triangles), and

(ii) the unobserved nodes {X(n+1), ...X(m)} (drawn as circles) [12]
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Definition 2. Let G be a generalised DAG. Call an edge of G observed if it begins
on an observed node, and unobserved if it begins on an unobserved node.

Definition 3. Let G be a GDAG with m nodes, of which the first n are observed.
A probability distribution P over the observed nodes is generalised Markov with
respect to G if there exists:

(i) a causal operational-probabilistic theory;

(ii) for every unobserved edge, a distinct system in the theory; and

(iii) for every node, X(i), and every value of its observed parents (Paox
(i)), a test

denoted Tx(i)(Paox(i))outU
X(i)

incUX(i) .

This test is from the composite system formed by the incoming unobserved
edges (incUX(i)), to the composite system formed by the systems on the out-
going unobserved edges (outUX(i)).

The test has:

(a) an outcome set matching X(I) in the case of an observed node, but

(b) a 1-element outcome set in the case of an unobserved node such that

P
(
x(1), x(2), ...x(n)

)
=

m∏
i=1

Tx(i)
(
PAox

(i)
)outUX(i)

incUX(i) (4.1)

Note that for equation (1) the joint distribution is over the observed nodes only, and gen-

erated by the product of conditionals relating inputs to outputs. The way in which these

conditional themselves are generated, depends to an extent on the theory under consideration.

This is because for each particular physical theory, there will be a different mathematical op-

eration representing the compositional element: for the quantum case it is the tensor product

operation. It is, once again, easier to understand the intuition behind these definitions by

examining a specific example: the Bell scenario.
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Figure 4.6: GDAG for Bell experiment. a and b are the settings at each wing and x and y are
the corresponding outcomes. S is the source. a, b, x, y are all observed nodes, associated with
classical probability distributions, S is an unobserved node.

In the example above, the probability that is Markov for this GDAG is

P (a, b, x, y) = Tr
[
(Ex

a ⊗ E
y
b )ρ
]
papb (4.2)

where Ex
a and Ey

b are POVMs of each a, b and ρ is a bipartite state.

4.3.3 D-separation

There is a definition of d-separation that holds for these graphs. As one has potential common

causes in these graphs that are not classical, but rather taken from arbitrary physical resources,

such unobserved nodes will again not screen off. Hence d-separation can only be defined relative

to the observed nodes. Despite the apparent weakness of this criterion for independence, the

final sections of the paper reveal some very interesting results. One of the primary consequences

of this framework is that the causal structure defined via the GDAG formalism implies stronger

constraints on the correlations than just those implied by conditional independence (in the

quantum context, non-signalling) relations. Such constraints can be viewed as a generalisation

of the kind implied by Bell inequalities. This proof takes us too far from our original concern:

the possibility of an interventionist quantum causal model, so we will not examine this further

here.
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4.3.4 Causal Discovery

The possibility of discovery of causal structure from correlations alone is complicated by the

explicit inclusion of latent variables that do not screen off. In the case where one knows

the location of such latent resources, it seems likely that one can confirm causal structure from

empirical data. However, there is no mention of interventions in this framework, and no natural

method for causal discovery from statistical data alone.

4.3.5 Classical limit

One can recover classical causal DAGs fairly easily in this formalism by insisting that all nodes

in the network are observed. Knowing when one has unobserved nodes, (quantum, classical or

beyond) is of course not possible a priori. As such, the networks do not give us any natural

intuition for the relationship between classical and quantum causal structure.

4.4 Summary

In this chapter I have presented three formal accounts of quantum causal models. All three

provide useful insights into the possibility of quantum causal structure. None explicitly charac-

terise what should count as a quantum intervention, or provide a formalism that allows for the

discovery of causal structure. Nor do they illuminate a possible connection between classical

and quantum causal structure. In the next chapter I will present a new formalism that attempts

to address these two problems.
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Chapter 5

Markovian Quantum Causal Modelling

We have seen that classical interventionist techniques fail to identify causal relations for quan-

tum systems. We have also identified several motivating reasons to consider that an inter-

ventionist account of quantum causation ought to be possible. After examining some recent

attempts at formalising quantum causal models, we saw they were deficient in one way or an-

other. In this chapter I present an interventionist framework that can account for quantum

causal structure (Costa and Shrapnel (2016), Shrapnel (2015)). We consider some desider-

ata that we would wish given the methods of classical causal modelling, and ask whether the

quantum causal modelling framework presented here indeed fulfils these criteria.1

5.1 Introduction

We saw in the last chapter that starting with quantum correlations and using classical methods

to identify causal structure is problematic. It is very difficult to produce a formalism that allows

for the discovery of quantum causal structure and also recovers classical causal structure in a

suitable limit. In the framework presented here, we take a different approach. Starting with

a plausible notion of quantum intervention, we consider what should count as a variable and

value for the purposes of discovering quantum causal structure. It is important to remember

that these structures are defined according to their ability to identify effective and ineffective

1Part of this chapter consists of sections from my submitted paper (Shrapnel, 2015), and also parts of the
collaborative research paper (Costa and Shrapnel, 2016). Any other material included here from these papers is
referenced accordingly. I thank my co-author, Fabio Costa, for the opportunity to reproduce some of this work.
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strategies, as presented in Chapter 3 (section 3.3.4).

At this point it is worth reminding ourselves of the desiderata we might wish the quantum

causal modelling formalism should satisfy:

(i) The formalism should allow for the discovery of causal structure from empirical data. At

a minimum, such discovery should be possible using interventionist data (data instances

where local events are under external control). It would be an advantage if causal structure

could also be discovered in situations where interventionist information was incomplete.

(ii) All correlations between empirically derived data should be accounted for via notions

of direct, indirect or common cause relations, i.e. there should be no “unexplained”

correlations. That is, in situations where all correlations between empirically derived

data can not be accounted for via direct, indirect or common cause relations, there should

exist a method for extending the model to include possible unobserved nodes in order to

account for the correlations.

(iii) Classical causal models should be recovered as a limiting case of quantum ones.

We shall see in this chapter that Quantum Causal Models (QCMs) are defined by sets of

possible spatio-temporally local quantum operations (graphically represented as nodes) and sets

of quantum channels that represent the causal influences acting between the nodes (graphically

represented as edges). Causal structure can be discovered using a general notion of intervention

which is defined as a choice of a quantum instrument (a particular set of quantum operations).

Using these objects one can define direct, indirect and common cause relations. One can also

show that by defining a quantum Markov condition, it is possible to identify when a causal

graph is incomplete, in the sense that there is an unmodelled (latent) common cause. Extending

the model to include such a node restores the Markov property to the causal graph. Finally,

it is possible to recover classical causal structures when all local operations are diagonal in a

fixed basis.
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5.2 Quantum variables and values

One of the difficult tasks of developing a formalism for quantum causal modelling lies in choosing

an appropriate causal variable. Recall that for classical causal models, a variable is defined

by a collection of possible values, where the values often correspond to physical properties

or quantities. One can think of a variable therefore as capturing a possibility space for a

collection of mutually exclusive, labelled events. In the classical case, the term “events” is

used in a statistical sense: an event can be spatiotemporally spread out or well localised,

and in fact need not come with any particular metaphysical baggage. What is important is

the relationship between possible events and (hypothetical) interventions (see section 1.2.1).

That is, local interventions can choose between a range of variable values and bring about the

instantiation of a particular event. Recall also, that generalised interventions are also possible

and are associated with a probability distribution over events.

Recall Woodward’s pragmatic approach to identification of variables:

The problem of variable choice should be approached within a means/ends frame-

work: cognitive enquiries can have various goals or ends and one can justify or

rationalise candidate criteria for variable choice by showing that they are effective

means to these ends. (Woodward, 2015a)[5]

We shall follow this advice, and ask ourselves how those physicists who routinely use quan-

tum systems describe quantum events. Although there are a large variety of ways to describe

quantum events, we shall choose a very general method and associate possible quantum events

with local processes. Thus the variable space of our quantum causal models is characterised

by possible quantum operations (or, less anthropocentrically, processes) that can occur inside

a particular space-time region. This choice reflects our definition of a quantum intervention: a

local choice of a set of quantum processes, where process is defined with maximal generality. Ex-

amples include the processes that can occur during measurement, preparation, transformation

or even coupling to an ancilla followed by measurement. This degree of generality is needed

to reflect the many possible ways in which we learn about quantum systems by performing
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localised interventions.2

The mathematical object physicists associate with such general quantum operations is the

trace-non-increasing completely positive map (CP map). Although a purely mathematical

object, typically when a physicist uses such an object there is an associated operational meaning

(at least in the experimental context we are considering, we see later that this restriction can

be relaxed). For example, if one chooses to set a dial, change a current, tweak a mirror, in

order to prepare a state or effect a transformation, then, more abstractly, such an action can be

represented as choosing (probabilistically) from a range of possible CP maps. This “probabilistic

choosing” is analogous to the classical, “generalised” interventions of Pearl (recall Section 1.2.1)

and the “imperfect” interventions of Korb and Nicholson (2010).

So, exactly what is a CP map? Typically, when one thinks of the evolution of a pure

quantum state one uses unitaries. Whilst unitary operators are needed to map pure states

linearly to pure states, CP maps map the more general density operators to density operators.3

More carefully, a map M is positive if it maps positive operators to positive operators, and

completely positive if adding an ancilla system and extending the map to act on the combined

Hilbert space (M⊗ I) still maps positive operators to positive operators. This means a CP

map can represent evolution of a quantum state, even in the presence of entanglement.4 We

shall look at these objects in more detail below.

It is an assumption of the framework that such quantum events can always be associated

to localised spatio-temporal regions: such regions will form the nodes of our model. We also

assume the particular spatio-temporally localised regions associated to the nodes have space-

like boundaries. Following Oeckl (2003), we identify the past and future space-like boundaries

of the region with input and output Hilbert spaces respectively (see figure 5.1)5. This division

of the total Hilbert space into input and output spaces is crucial to the structure of the model.

2Note this is the feature missing from the three quantum causal modelling accounts of the previous chapter:
the ‘intermediate’ nodes of the PB framework are not associated with measurment outcomes, and the unobserved
nodes of the GDAGs formalism are likewise not associated with outcomes.

3Recall, a density operator is a positive operator with trace =1. Positvity implies the operator has non-
negative eigenvalues. See Timpson (2013) Appendix A for a good review of the quantum formalism that includes
such objects.

4See Nielsen and Chuang (2000), box 8.2 [p369] for a good illustration of the requirement of complete
positvity for entangled states.

5Figure 5.1 has been reproduced with permission from Costa and Shrapnel (2016) and was created by Costa.
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The nodes of the quantum causal model are associated to sets of CP maps, defined on the

tensor product of the input and output Hilbert spaces, that tell us how the state of a quantum

system can be transformed by various local actions.6

Figure 5.1: A node in a quantum causal model represents a quantum system in a region of
space-time with space-like boundaries. Past and future boundaries are identified with an input
and an output state space, AI and AO, respectively. The node is identified with the product
space AI⊗AO. A quantum event is a quantum operation that takes place in the local space-time
region and is represented as a completely positive map from input to output space.

Recall, for classical causal models, the functional relationships between nodes are repre-

sented via directed edges. Such edges correspond to the causal mechanisms that are responsible

for determining the statistical correlations that exist between events at different nodes. In the

quantum causal models, we assume the functional relationships between the nodes are deter-

mined by quantum systems passing between different spatio-temporal regions (nodes), possibly

interacting with an unknown environment. In accordance with classical models, we call such

functional relationships quantum causal mechanisms and depict them graphically via edges.

Such connecting mechanisms can also be represented via quantum operations, or CP maps,

though they are considered to be determined by nature, in contrast to the maps defined at the

nodes, which can be controlled. This, again, is in direct analogy with the classical case. We

look at the formal details of the CP maps associated with quantum events (nodes) and the CP

maps associated with causal mechanisms (edges) more carefully below.

Intuitively, one can think of a Quantum Causal Model (QCM) as a structure built from

sets of CP maps that permit the representation of difference-making information. That is,

6 In Costa and Shrapnel (2016) the nodes are called ‘local laboratories’ in order to remain consistent with
previous work on process matrices. Whilst the name implies some anthropocentric element, the term ‘local
laboratory’ is taken to represent an observer independent spatio-temporal region where quantum events can
take place. In direct analogy to the classical case (Price, 2013), one can argue whether it is possible to entirely
remove the concept of observer, though I do not enter into such discussions here. For neutrality, I shall henceforth
refer to the nodes as event-spaces, or simply ‘nodes’.
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QCMs tell us how what can happen in one event space (i.e. which CP maps can be realised

at a particular node) depends on what can happen in another. More carefully, the QCM can

tell us when the probability of what can happen in one region depends on what can happen

in another. Such difference-making information is accessed by considering the possibility of (i)

interventions (local choices of sets of CP maps), and (ii) causal mechanisms that connect the

nodes.

Recall, the quantum circuit diagrams of Chapter 3 are a representation of roughly this kind

of structure, with gates as nodes and wires as edges. The analogy is better matched, however,

to a more general kind of of circuit: wires are no longer just the identity but associated with

more general quantum channels, to include the possibility that the state can change between

the gates. The gates no longer represent the action of a single possible unitary, but rather are

place holders for a variety of possible interactions, including non-deterministic ones (to allow for

the possibility of measurements). Thus the gates can also be associated with sets of completely

positive maps, and it is this latter, more general, kind of circuit that will form the basis for the

quantum causal modelling formalism.

How does one go about attaching probabilities to such a structure? The assignment of

probabilities to quantum data is usually via the familiar Born Rule: P (j) = Tr(Ojρ), where Oj

here is the relevant measurement operator and ρ the density matrix. Thus for a single quantum

system, we know how to attach probabilities to accurately reflect (and predict) empirically

derived data. What this rule does not tell us, however, is how to attach probabilities to

multiple, interacting quantum systems. It is clear we shall need to generalise.

5.3 Process matrices and the generalised Born rule

The process matrix framework was originally developed by Oreshkov et al. (2012), building on

the earlier work on ordered quantum networks (Gutoski and Watrous (2007) and Chiribella

et al. (2009)). Oreshkov et al. (2012) were interested in developing a formalism that could

describe the possibility of indefinite causal structure, where there is no assumption of either a

fixed background space-time, nor a definite causal order. That is, the process matrix formalism
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allows for the discovery of a partial ordering between the nodes of a network, by making an

assumption of one-way signalling, but cannot be used to distinguish between direct, indirect

or common cause structures (without added constraints). By contrast, we are interested in

developing a framework that allows one to not only fully characterise a causal DAG, but also

recognise when the model is incomplete, in the sense that there are unmeasured common causes.

Typically, philosophers are familiar with associating the probability of a particular mea-

surement outcome to a particular POVM element.7 However, in this case we wish to encode

not just the outcome of a measurement, but also the transformation to the state that occurs

during the measurement process. So rather than use POVMs, we will associate probabilities

with the more general CP maps introduced earlier.

First consider that we can impose some more structure on the CP maps associated with

each node: a particular set of CP maps together can characterise a quantum instrument.

Formally, an instrument is a set of CP maps ({Mx}mx=1) that sums to a completely positive

trace preserving (CPTP) map, where x labels the possible outcome events. Recall from Chapter

4, section 4.3.1, an instrument represents one out of a number of ways we can interact with

the system. For example it may represent a choice of measurement setting, basis, preparation

etc. Thus, for a single use of a given instrument, there will in general be a number of possible

quantum events (represented as CP maps) that may occur. If such a set of CP maps is complete

(i.e. one for every possible eventuality) then we know with certainty that at least one of them

will occur. In such a circumstance the collection of CP maps will sum to a CPTP map. Such

instruments define the possible interventions we can perform to test the causal structure of the

model, and thus CP maps are the appropriate objects to use to characterise the event space of

the node.8

The mathematical arena of the CP maps we associate to each node is a complex Hilbert

7Recall a POVM is a Positive Operator Valued Measure: a set of positive, semi-definite matrices that sum
to the identity. For the usual Von Neuman projective measurements, the number of operators that compose to
form the identity is equal to the dimension of the Hilbert space of the system being measured. This is not the
case for POVMs. In fact, the number of available preparations and the number of available measurements on
the system can be different, and also different to the Hilbert space dimension.

8Whilst the definition of a quantum instrument is relatively intuitive in the case of finite, discrete systems,
it can become more complicated for the continuous case. See (Davies and Lewis, 1970) for a more formal
definition of a quantum instrument that captures both situations. The generalisation to the continuous case
does not threaten any of the arguments made here.
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A

j k

HAO HBI

B
HAI HBO

Figure 5.2: Generalised Circuit diagram. The nodes A and B represent distinct spatio-temporal
regions. The Hilbert space associated with these regions is defined by the tensor product of
the spaces associated with the incoming and outgoing systems, for example, HAI ⊗ HAo for
region A. The event of the operation occurring at A is represented as j, and the event at B
is represented as k. One can generalise to cases that include multiple incoming and outgoing
edges, as we shall see in the examples below.

space. As stated, one can decompose this Hilbert space into the tensor product of two state

spaces: one associated with the incoming system, HAI
, and one with the outgoing system,

HAO
.9 The relevant CP map, denotedM, is a linear map that sends states in the input Hilbert

space HAI
to states in the output Hilbert space HAO

(one can imagine this map as representing

a single quantum event, or process, occurring inside the box labelled A in Fig 5.2.). The

occurrence of a particular CP map in a given space time region can be labelled according to

the associated outcome j = 1, ...., n. For example, for region A and outcome event j we denote

the associated CP map as MA
j : L(HAI )→ L(HAO).

There are a variety of ways to represent CP maps corresponding to such quantum processes.

Broadly speaking, they are differentiated by their pragmatic value: different communities make

use of different representations to suit their individual purposes.10 Here, we will briefly consider

three alternative representations: the system-environment representation, the operator-sum

(Kraus) representation and the Choi-Jamiolkowski representation.11 It is the last of the three

that we will utilise in our quantum causal models, but it may help readers familiar with other

representations to see how the three are related.

(i) The system-environment representation.

9For now, we consider the case of single input and output systems. We later generalise to multiple incoming
and outgoing systems.

10See (Wood et al., 2015) for a good reference that presents the relationships between the different represen-
tations in pictorial form.

11Thanks to Martin Ringbauer for assistance with these definitions.
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The Stinespring dilation theorem (Stinespring, 1955) states that non-unitary evolution of

a local system can always be described as unitary evolution of a larger composite system

(the local system plus its environment) when one ignores (traces out) the environment.

So for a system S in state ρ, coupled to an environment E, the evolution E of S is

characterised:

E(ρ) = trE
[
USE(ρ⊗ ρE)U †SE

]
(5.1)

Surprisingly, Schumacher (1996) showed that to accurately simulate the effect of an ar-

bitrarily large environment for a local system of d dimensions one does not (thankfully)

need to include the whole environment but rather only an environment of d2.

(ii) The operator-sum representation.

An alternative representation considers a non-unitary evolution to be a unitary one, but

with added noise. This Kraus representation is typically used in phenomenological models

of noise in quantum systems. The relevant theorem states that a linear map E is CPTP

if and only if it may be written in the form:

E(ρ) =
d2∑
a=1

KαρK
†
α (5.2)

where
d2∑
a=1

K†aKa = 1 (5.3)

Thus, the channel E is decomposed as a sum of linear operators Ka (the Kraus operators)

(if E is unitary there is only one Kraus operator).

(iii) The Choi-Jamiolkowski representation.12

This final representation is perhaps the most obscure, but it is the one we will utilise

to form the quantum causal models. It makes use of an isomorphism that connects

12This is also known as the process matrix representation, but we reserve this term for a slightly different
use.
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linear maps and linear operators (thus quantum channels and quantum states): the Choi-

Jamiolkowski isomorphism (Jamio lkowski (1972), Choi (1975)).

This isomorphism utilises a procedure known as vectorisation: it is possible to turn an

operator U into a vector |U〉〉 by stacking the columns of U on top of one another.

Formally, to represent an operator U of d dimensions one can use an elementary basis set

|i〉〈j|, consisting of all d x d matrices with single element 1, and all other elements zero

(we assume a computational basis here of {|i〉}d−1i=0 ). This vectorisation is represented:

U =
d−1∑
i,j=0

Uij|i〉〈j| ⇒ |U〉〉 =
d−1∑
i,j=0

Uij|j〉 ⊗ |i〉 (5.4)

and the corresponding density matrix is:

|U〉〉〈〈U | =
d−1∑
i,j=0

|i〉〈j| ⊗ U |i〉〈j|U † (5.5)

Thus one can construct a matrix Λ, which is the unnormalised quantum state with (trace

d rather than trace 1) by vectorising a CPTP map E .

Λ =
d−1∑
i,j=0

|i〉〈j| ⊗ E(|i〉〈j|) (5.6)

The evolution of a state ρ under the channel E is completely described by this matrix Λ

E(ρ) = trI [(ρ
T ⊗ 1)Λ] (5.7)

Confusingly, different notational choices for representing processes as CJ matrices (amount-

ing to a transposition or partial transposition) exist in the literature (e.g. Leifer and Spekkens

(2013)). In what follows, I shall use the convention defined in Oreshkov et al. (2012) and utilised

in Costa and Shrapnel (2016). For a CP map M : AI → AO, where input and output spaces

are the spaces of linear operators over input and output Hilbert spaces, AI ≡ L(H)AI , AO ≡
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L(HAO) respectively (identified with the corresponding matrix spaces):13

MAIAO =
∑

i j |j〉〈i|AI ⊗
[
M(|i〉〈j〉)AO

]T
, (5.8)

M(ρ)AO =
[
trAI

(
ρAI ⊗ 1AO) ·MAIAO

)]T
, (5.9)

where {|i〉}dAI
i=1 is an orthonormal basis in HAI and T denotes transposition in that basis14. At

this stage, the choice of basis here is arbitrary, but we shall later see that to enable causal

discovery, it is convenient to use the Pauli basis to represent the maps and channels. According

to Choi’s theorem, M is CP if and only if MAIAO ≥ 0. Henceforth CP maps will be identified

with their Choi-Jamio lkowski representation unless otherwise stated.

To define valid instruments (in our context - interventions) at each node, the CJ matrices

representing possible CP maps must satisfy positivity:

MAIAO
a ≥ 0 (5.10)

and normalisation:

trAO

[∑
a

MAIAO
a

]
= 1AI (5.11)

A common example of a useful instrument is a measurement on an incoming system, followed

by the re-preparation of a known state ρ. If the measurement corresponds to a POVM ({Ex}mx=1)

where all the POVM elements sum to the identity (1AI ) then this instrument (intervention) is

denoted:

Ins =
{
EAI
x ⊗ (ρAO)T

}m
x=1

. (5.12)

For a single node (where one is not interested in the outgoing system), one can use the

13Recall that complete positivity means that, for arbitrary dimensions of an ancillary system A′, the map
IA′⊗M transforms positive operators into positive operators, where IA′ is the identity map on A′. Thus, input
and output spaces can have different dimensions dAI

, dAO
, as ancillas can be added or discarded.

14The convention here follows that of (Costa and Shrapnel, 2016): the superscript denotes the space in which
a matrix is defined—hence MX symbolises M ∈ X (and JX for J ⊂ X, if J is a set of matrices), but not the
matrix itself: TAB = MA⊗MB means that T is the tensor product of two equal matrices M . Identity matrices
are sometimes omitted: e.g. MA ⊗ 1B ≡MA.
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Born rule to attach probabilities to the event space of the node
(
P (EAI

x ) = tr(Exρ
AI )
)
. The

next step is to consider how to extend this to provide a valid distribution over multiple nodes

in a causally connected network, using CP maps. We then need to consider more general

instruments, not only defined by POVM elements but also those that characterise the list of

possibilities associated with re-preparation of the outgoing state. To understand how to attach

probabilities in such situations, we first need to provide a definition for causal mechanisms.

Such mechanisms are assumed to be responsible for generating the statistics across various

nodes.

Causal mechanisms in the QCM formalism are defined as completely positive, trace-preserving

(CPTP) maps from the output space of one node to the input space of another. Formally, we

can also represent these maps using the CJ representation, although we distinguish them from

the CJ representation associated to the local CP maps at each node, via the transpose oper-

ation.15 For the simple case of the causal mechanism depicted in fig 5.2, that maps outgoing

states at A to incoming states at B, we represent the map T :

TAOBI =
∑
j l

|j〉〈l|AO ⊗ T (|j〉〈l|)BI (5.13)

T (ρ)BI = trAO

[
ρAO · TAT

OBI

]
(5.14)

T ≥ 0, trBI
TAOBI = 1AO (5.15)

where TAO
TBI denotes partial transposition on subsystem AO.

Recall, in the classical case, autonomous causal mechanisms are considered to be responsible

for the probabilistic correlations of a causal network, and it is the autonomy of the mechanisms

that allows for the possibility of so-called ‘surgical’ interventions. This leads us to consider

the relationship between interventions and mechanisms in the quantum case. A deterministic

quantum mechanism in this formalism would correspond to a unitary map, relating the output

space of one node to the input space of another. Recall in the classical case any unmodelled

noise (the Ui’s) is assumed to be uncorrelated, thus ensuring the autonomy of the mechanisms

15This representation is in accordance with the description given in equation 5.7.
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and underpinning the relevance of the Causal Markov condition. In the quantum case, external

noise leads to the use of a CPTP map, rather than a unitary map to represent the mechanism.16

Now we have some preliminary formal definitions for quantum events and quantum causal

mechanisms we can see how probabilities are associated to a quantum causal network. First let

us consider the simple case of two nodes, labelled A and B, as in the diagram above. We assume

that the joint probability, P (MA
j ,MB

k ), for a pair of particular maps to be realised must reflect

a kind of non-contextuality of the CP maps: the joint probability should be independent of

any variable associated with the choice of local instrument. That is, the joint probability that

a particular pair of maps MA
i ,MB

j is realised should not be determined by the particular set

of possible CP maps (MA
1 ,MA

2 , ...MA
n ) associated to A’s operation.

The details of why we represent the CP maps in the particular CJ form used here relates

primarily to mathematical convenience: it means we can represent the probabilities for two

measurement outcomes in different space-time regions A and B as a bilinear function of the

corresponding CJ operators:

P (MA
j ,MB

k ) = Tr[WAIAOBIBO(MAIAO
j ⊗MBIBO

k )] (5.16)

where WAIAOBIBO is a matrix in L(HAI ⊗ HAO ⊗ HBI ⊗ HBO), known as the process matrix.

Comparing the usual Born rule to equation 5.16, one can see the process matrix W is analogous

to the state ρ, and the tensor product of local CP maps (in CJ form - (MAIAO
j ⊗MBIBO

k )) is

analogous to the measurement operator. This particular choice of CJ representation ensures

that this more generalised Born rule (5.16) reduces to the familiar one for states and POVMs

(although keep in mind that for QCMs we use the more general CP maps rather than just

states and POVMs).

The process matrix W thus provides a list of probabilities for all possible local outcomes,

across all the nodes in the network (in this case, just two -A and B), where the local probabilities

satisfy the rules of quantum mechanics. This imposes some constraints on possible valid process

16One can also use CPTP maps to describe irreducible noise such as that arising in dynamical collapse models.
We do not commit to that particular interpretation here.
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matrices:

(i) positivity

W ≥ 0 (5.17)

and (ii) the trace is equal to the dimension of the space associated to the outgoing systems:

trW = do (5.18)

However, there is a more useful way to think of the process matrix: it can also encode the

possible connections between the nodes in the model. If we think of all the possible correlations

between nodes as being solely determined by causal mechanisms acting between the nodes, then

if the process matrix provides a full list of probabilities for local events it also captures such

information.

That is, a Markovian W can be generated by taking the tensor product of all the CPTP

maps representing connections between the nodes, written in their CJ form. Or, alternatively,

it can be discovered by performing particular instruments at each node and observing the

statistics of particular outcomes: these statistics tell us how the nodes are connected. The

analogy to the classical case is relatively straightforward. In the classical case one can generate

the causal structure by taking the product of local conditional probability distributions, or one

can discover the causal structure by using local interventions to gather statistics that reveal

the correct factorisation.

An important difference to keep in mind is that in the classical case, one can consider causal

discovery for the purely observational case (where such interventionist data is not available):

it is not possible to determine quantum causal structure in a similar manner. One way to see

this is to imagine a quantum system, in an unknown state, entering a lab: if one is allowed

to interact with it in any way (i.e. perform a measurement/intervention) then unless the state

just happens to be in an eigenstate of the measurement performed, the observation will result

in a transformation to the state and cannot be deemed “passive”. Thus in the QCM formalism,

we do not make the distinction between interventional and observational data, although this
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property of causal models is restored in the classical limit (where all operations are diagonal in

a fixed basis: see Section 5.8).17 We can nonetheless, still ask questions about causal discovery

in situations where interventionist data is incomplete (see Section 5.7).

The generalised Born Rule, Equation 5.16, says that the probability for a pair of maps,

associated with events j and k at distinct locations A and B, depends on (i) the way the

locations are connected (captured by the process matrix, W ), and (ii) the maps themselves

(captured by the CJ matrices MAIAO
j and MBIBO

k ). Requiring that the probabilities for CP

maps are positive, and sum to 1 for any choice of instrument (CPTP map) defines a space of

valid process matrices.

One of the nice features of process matrices is that they rule out causal loops, c.f. the

acyclicity requirement for classical causal models. Causal mechanisms (channels) from an out-

put space AO to the input space of that same node AI , will result in non-unit probabilities for

some CPTP maps (Oreshkov et al., 2012).

To make these ideas a little more concrete, we look now to a simple example, involving three

nodes and two wires. This example allows for the introduction of multiple outgoing system and

the manner in which we represent such spaces.

5.4 Three node quantum causal models

Imagine one is given three boxes, labelled A,B and S, connected by wires, labelled (i) and

(ii). Each box comes equipped with a set of levers to represent possible instruments, and a

readout associated with possible outcomes. By gathering statistics that relate outcome results

with respective instrument settings, one can produce a W matrix. The aim is to use this

information to differentiate between the two possible situations depicted in figure 5.3 and 5.4.

17Several recent works have considered causal models that consider measurement of quantum systems to
reveal “purely observational” data (Ried et al., 2015). The formalism used is in fact a special case (for bipartite
sytems) of the more general formalism produced here.
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A B

S

(i) (ii)

Figure 5.3: Bipartite entangled state: common cause.

HAO

A B

S

HSI

Figure 5.5: Quantum common cause structurewith labelled input and output Hilbert spaces.

A B

S

(i) (ii)

Figure 5.4: Direct cause structure.

Figure 5.3 depicts the familiar Bell scenario: the production of an entangled bipartite state.

We shall refer to this as the common cause structure. Figure 5.4 depicts the direct transfer

of a quantum physical system between three distinct locations: a direct causal structure. The

process matrix ought to be able to tell us which of the two circuits has been implemented.

In order to depict these two structures as quantum causal models, we first need to associate

an input and output space for all three nodes. In this simple case we need an input and output

space for each of A and B (labelled HAI ,HAO ,HBI ,HBO). For S we need one input space (HSI )

and two output spaces (HSO1 ,HSO2 ).
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A B

S

HAI

HsO2

Figure 5.6: Quantum direct cause structure with labelled input and output spaces.

Each node therefore has an output space formed by the tensor product of the Hilbert

spaces associated to the outgoing systems (Se, where e labels each outgoing edge), and a parent

space PS associated to the incoming systems. For example, the output space for node S in

the common cause structure, figure 5.5, is defined by the tensor product of a tensor factor

associated to each outgoing system, Os = SO1⊗SO2. The parent space for S in the direct cause

structure, figure 5.6, is PSS = AO. If one were to include a third node, C providing control

over the input at A, then A would have a non-trivial parent space CO.

First let us use these example networks to compose a process matrix for each case from

the terms in each example. For a known causal structure, one can compose the process matrix

from the tensor product of terms corresponding to the various components of the network. For

example, the process matrix for the common cause structure will compose as:

Wc = ρSI ⊗ T SO1AI
1 ⊗ T SO2BI

2 ⊗ 1AOBO (5.19)

Where ρSI is the input state at S, T SO1AI
1 is the CJ matrix representing the channel from S

to A, T SO2BI
2 is the CJ matrix representing the channel from S to B, and 1AOBO is the identity

map on the output states at A and B. The T are analogous to the conditional distributions

that describe classical causal mechanisms, and the ρSI analogous to the prior distribution over

parentless (exogenous) classical nodes. In a similar manner, one can compose the process matrix

for the direct cause structure as:

Wd = ρAI ⊗ TAOSI
1 ⊗ T SO1BI

2 ⊗ 1SO2 ⊗ 1BO (5.20)
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Here ρAI represents the input state at A, T SO1AI
1 represents the connection from A to S,

T SOIBI
2 represents the connection between S and B, 1SO2 represents that component of the

output space of S that in this case we trace out, and 1BO is the identity on the output of BO.

These examples show that, generally speaking, it is easy enough to decompose the process

matrix into tensor products of various circuit components if we already know the structure

being described. The crucial question, of course, is whether one can go in the other direction.

Can one reconstruct the correct W matrix from the observed statistics of outcomes at A, B

and S? Furthermore, is it possible to differentiate between the two cases depicted and thus

discover the causal structure of the network from that data alone?

Interestingly, if one has enough statistical data one can construct a unique circuit from

a given process matrix W . As with the classical case, if one doesn’t have enough data, an

equivalence class of models can be recovered. So how much data is enough? This is related

to the notion of “informationally complete” sets of measurements (POVMS): a single quantum

state can be discovered correctly given such a set of measurements (Prugovecki, 1977). One can

generalise the notion of informational completeness to extend to sets of CP maps (instruments)

and situations that model multiple systems.18 As with the classical case, causal discovery in this

more general setting is intimately related to the characterisation of an ideal intervention. Given

enough interventions, we can fully characterise the process matrix, W and uniquely determine

the causal structure of the model.

5.5 Quantum Interventions

Recall, for classical causal models, generalised interventions that select from sets of events are

possible (section 1.2.1). Such interventions characterise distributions over possible events that

can occur in a given run of an experiment. While such generalised interventions are relevant

in both classical and quantum settings, the interpretation is quite different in each. In the

classical case, we consider such probabilistic interventions as being due to either ignorance, or

coarse-grained control: there is always the in principle possibility of reducing such probabilistic

18This is due to the possibility of process and state tomography (Nielsen and Chuang, 2000), and can be
formally extended to the case of process matrices (Costa and Shrapnel, 2016).
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interventions to ones that choose a particular event with certainty. In the quantum case, we

accept that interventions of this sort will not lead to a meaningful representation of a causal

model. Just as it is not possible to model all measurements of an arbitrary quantum state such

that they yield unique results, interventions are generalised in the same way. As a result, the

usual clean distinction between observational data and interventionist data can not be made:

to obtain the full set of data available for quantum systems one needs to include the possibility

of measurements that transform the state (recall, section 2.3.5).

It is possible to model a particular quantum instrument as an arrow-breaking intervention

by performing a measurement on an incoming system, followed by the re-preparation of a known

state ρ. If the measurement corresponds to a POVM ({Ex}mx=1) where all the POVM elements

sum to the identity (1AI ) then this instrument (intervention) is denoted:

Ins =
{
EAI
x ⊗ (ρAO)T

}m
x=1

. (5.21)

If one chooses equally among different state preparations, then one can remove the influence

of the incoming system: an act analogous to Pearl’s do-operator. In this sense, a quantum

intervention can also be arrow-breaking in a similar manner to its classical counterpart and

used to discover direct, indirect and common cause structures.

5.5.1 Quantum Direct Causation

For a simple two node example, it is possible to produce a definition for a direct cause. We can

then generalise this to a definition that will apply to more complex situations.

Definition 4. A is a direct cause of B iff there exists

(i) at least two instruments (CPTP maps) IAi and IAj associated with node A, where i and

j label different instruments

(ii) a CP map MB associated with node B, such that

Tr
[
IAi ⊗MB ·WAB

]
6= Tr

[
IAj ⊗MB ·WAB

]
(5.22)
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This is clearly a ‘difference-making’ definition. Practically speaking, this equation says

that if there exists a possible instrument at A that can make a difference to the probability

distribution over at least one of the outcomes at B, then A and B are related as cause to effect.

In a similar manner to Woodward’s definition of causation, this is an existentially quantified

definition. All it takes for A to be a cause of B, is for there to exist an appropriate means

for intervening on A to produce a change at B, under the assumption that the intervention is

suitably local. The assumption of locality here is relative to the other nodes in the model: we

assume that an intervention (quantum instrument) directly effects only the node with which

it is directly associated (recall Woodward’s four criteria for an intervention, we ask that the

quantum interventions satisfy the same constraints).

The generalisation to multipartite nodes is relatively straightforward. Additionally, a dis-

tinction between direct and indirect cause can also be made in a fairly intuitive manner by

considering possible interventions on all nodes of a network. Thus an instrument can identify

a direct causal relation between two nodes, if it remains a difference-maker in the above sense

(equation. 5.22), for all possible choices of instruments at all other nodes in the network. If

there is a choice of instrument at another node that breaks the correlation, then the relation is

one of indirect causation.

This means that “screening off” in this formalism is also an existentially quantified notion.

As long as there exists an instrument that can break the correlation between two other nodes,

then this node has the potential to act as a screening off node. This is an important feature

of this framework as it means that intermediate nodes can screen off two adjacent nodes from

one another, as distinct from the QDAGs and GDAGs of Chapter 4.

5.6 Quantum Causal Model

We are now in a position to give a more formal definition of a quantum causal model (QCM).

First, recall multiple outgoing edges from a single node represent different physical systems.

Each system is associated with a tensor factor: the output space of a node factorises as AO =⊗
e∈outA

Se, where outA is the set of edges departing from A and Se is associated with an
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A B
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HSI

T1

T2

T4

T3

(a) The causal structure of a Quantum Causal Model is represented by a DAG, where the
nodes S,A,B,C represent local spatio-temporal regions. (b) Edges connect input and output

spaces for both parent and child nodes. The model is represented by a process matrix that
satisfies the causal quantum Markov condition, Eq. (5.24). For the example in the picture,

W = T S1
1 ⊗ T

SO1
AI

2 ⊗ T SO2
BI

3 ⊗ T (AOBO)CI

4 , where CI is formed by the tensor product of the
two input systems

Figure 5.7: Markov quantum causal model.

outgoing edge e. A quantum causal model is then a set of unitaries connecting the output

spaces of parents of a node, plus some unobserved noise, to the input space of the child node.

Essentially the QCM is a list of quantum channels (CPTP maps), that combine to form a DAG

(see figure 5.6).

Definition 5. For a given set of local space-time regions L = {Lj = Ij ⊗Oj}nj=1, a Markov

Quantum Causal Model (MQCM) is a pair 〈G,W 〉, where

(i) G = 〈L, E〉 is a DAG that has the local space-time regions as vertices;

(ii) to each edge e ∈ E is associated a space Se such that Oj =
⊗

e∈outj
Se, j = 1, . . . , n,

where

outj := {e ∈ E|e = (Lj, Lk)} (5.23)

is the set of edges departing from the vertex Lj;
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(iii) W is a process matrix of the form

WL1...Ln =
n⊗
j=1

T
PSjIj
j ⊗ 1OD , (5.24)

where OD :=
⊗

k∈D Ok is the output space of the nodes with no outgoing edges, D :=

{k|outk = ∅}; PSj :=
⊗

e∈inj
Se is the parent space associated with node Lj, with

inj := {e ∈ E|e = (Lk, Lj)} (5.25)

the set of incoming edges to Lj; and

T
PSjIj
j ≥ 0, trIj T

PSjIj
j = 1PSj , j = 1, . . . , n. (5.26)

5.6.1 Quantum Causal Markov Condition

The possibility of causal discovery via intervention is linked, as in the classical case, to a Markov

condition. A process matrix that has the same structure as equation 5.24. will factorise over

a DAG G. This is analogous to the requirement that classical joint probability distributions

factorise over a classical DAG according to the Causal Markov condition. In the quantum

case, we can test the causal structure via interventions (using instruments) and ensure we have

the correct factorisation of the process matrix. In a similar manner to the classical case, one

can also consider the possibility of latent nodes, unobserved regions where quantum events

can take place. A model may not be Markovian according to the above condition if there are

such unobserved nodes, but as with the classical case Markovianity is restored by including

them in the model. It is in fact always possible, given a causally ordered process matrix, to

reconstruct a Markovian graph by introducing latent nodes. This is verified by some previous

work on quantum networks (Chiribella et al. (2009)) where the authors showed that any causally

ordered process matrix can be represented by combining a sequence of quantum channels with

some unobserved/uncontrolled quantum memory. In the language of causal modelling, this is
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equivalent to the claim that any set of quantum causal mechanisms (channels), coupled to a

set of unknown latent nodes, can be represented as an ordered set of causal mechanisms.

5.7 Causal Discovery using Hilbert-Schmidt basis

Discovering causal structure from scientific data is the primary feature that connects the clas-

sical causal modelling formalism to empirical evidence. The quantum causal formalism also

affords a similar connection. It is possible to expand CJ matrices and process matrices in a

particular choice of basis, known as the Hilbert-Schmidt bases. The advantage of using this

representation is that it provides an easy way to check if a given (empirically derived) process

matrix contains terms corresponding to particular causal connections. This feature of the pro-

cess matrix formalism is presented in Costa and Shrapnel (2016) [p 13]. To explain how this

works, first consider that one can always re-write a density matrix of n qubits as a set of Pauli

matrices:

ρ =
1

2n

3∑
i1,i2,...in

ki1,i2,...inσi1 ⊗ σi2 ⊗ ...⊗ σin (5.27)

where ki1,i2...in are real numbers.

A Hilbert-Schmidt (HS) basis is a set of self-adjoint matrices, where

(i) σ0 is associated with the identity, trσ0 = 1

(ii) for all other σn, trσn = 0, and

(iii) the product of any two σασβ = dXδαβ.19 One can expand local maps and process matrices

in such HS bases, a move that ultimately serves to simplify causal discovery.

For example, an arbitrary CP map for a node A can be expanded as follows:

MAIAO =
d2−1∑
µν=0

vµνσ
AI
µ ⊗ σAO

ν , (5.28)

where vµν is a real number.

19Pauli matrices are an example for d = 2.
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Some basic terminology is convenient to use when trying to distinguish among different

kinds of possible graphical connections using this HS decomposition method. Connections are

dubbed to be of a particular type20:

(i) The term proportional to identity, v001, is called of type 1.

(ii) Terms equal to the identity on all subsystems except subsystem X are called of type X.

For example, the terms v0j1
AI ⊗ σAO

j , for j > 0, are of type AO.

(iii) Terms equal to the identity on all subsystems except X1 ⊗ · · · ⊗ Xk are called of type

X1 · · ·Xk. For example, the terms vjlσ
AI
j ⊗ σ

AO
l , for j, l > 0, are of type AIAO.

(iv) The sum of terms of different types X1, . . . , Xr is called of type (
∑r

j=1Xj). For example,

a CP map associated with node A = AI⊗AO, which decomposes into HS bases according

to equation 5.28 above will have terms of type (1 + AI + AO + AIAO).

As we assume that the channels representing causal mechanisms are trace-preserving (recall

equation 5.15), this means that if a plausible graph G contains, for example, a channel from

AO to BI , then terms of type AO are excluded as possible terms from the respective process

matrix. If the process matrix does in fact contain such terms, one can rule out G as the correct

graph.

The basic idea here is that a process matrix can be decomposed using HS bases in order

to provide an easy way to check for possible causal connections. For example, if the HS

decomposition contains terms of type AIBI , but a possible graph G does not contain such a

common cause connection between nodes A and B, it can be ruled out as a plausible causal

structure. The quantum causal discovery methods of Giarmatzi and Costa (2016) utilise such

comparative methods.

5.7.1 Quantum fine-tuning

Interestingly, for these quantum causal structures there is also an intuitive notion of fine-

tuning. Consider a paradigm example of a classical unfaithful model: a binary variable C

20The following itemised list is from (Costa and Shrapnel, 2016)[11], see also Oreshkov et al. (2012) for more
examples of such decompositons
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that takes the value 1 whenever the outcomes of two fair coins A and B are equal, and is 0

otherwise(Pearl, 2000)[48]. The distribution this arrangement generates is consistent with three

causal structures: the three possibilities where each pair of variables is marginally independent

but dependent conditioned on the third variable. However, only the correct structure (A →

C ← B) will be maintained under conditions where we alter the parametrisation of the model

- for example by biasing one of the coins.

It is possible to produce a quantum analogue of this kind of unfaithful model. Imagine a

collider structure consisting of three nodes A → C ← B, where |φ+〉|φ−〉 casually determines

|0〉C , and |ψ+〉|ψ−〉 determines |1〉C .21 As with the classical case, if one alters the parametrisa-

tion (state) for one of the nodes, it is possible to uncover the fine-tuning and recover the correct

causal structure.

There is a more technical definition of Faithfulness that one can demand of these Quan-

tum Causal Models, see Costa and Shrapnel (2016)[11]. Using this definition one can show

that under the assumption of Faithfulness, a unique causal structure can be discovered for an

empirically derived process matrix. Furthermore, the set of unfaithful quantum causal models

is of measure zero (the proof essentially follows the same reasoning as the classical analogue).

As is the case with classical models, this is no longer necessarily the case if one allows for the

existence of latent common causes.

5.7.2 Effective and ineffective quantum strategies

The ability to discover the structure of QCM via localised interventions is the key feature link-

ing the methods described in this chapter to interventionist causation. In actual fact, this is

to some extent a generalisation of what goes on in quantum laboratories all the time. Physi-

cists frequently use quantum state and process tomographic methods to validate the physical

implementation of particular circuit structures: a glance through the supplementary methods

of most quantum informational experimental protocols will confirm this fact. Typically, single

components of the experimental setup are isolated and tested before combining them together

in order to make inferences about the functioning of the whole. Ultimately, this is how they

21φ± = |00〉 ± |11〉, ψ± = |10〉 ± |01〉.
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can be confident that certain strategies will be effective in achieving the desired ends.

What can not be found in the supplemental methods of quantum physics papers, however, is

a general strategy for recovering causal structures from experimentally derived statistics, when

the order of events is unknown. Whilst the examples in this thesis are relatively easy to follow,

for the more complex circuit structures utilised today, identification of correct causal structure

will be less transparent. Having a method for causal discovery in such a setting will likely be

a useful addition to the usual computational tools.

It is important to distinguish the methods provided by the quantum causal modelling frame-

work from state and process tomography. Quite simply, tomographic protocols require prior

knowledge of the causal structure. In a causal discovery scenario such knowledge is not avail-

able. For example, one may be given two sets of measurement results and not know whether

they represent two parts of a bipartite state (and thus one should apply state tomography) or

two measurements on the same system at different times (and thus one should apply process

tomography), or various combinations thereof. The aim of causal discovery is precisely to find

out the causal structure from data only, without such a priori assumptions.

Now at this point, one might argue that quite obviously in practical quantum physics one

is not given black boxes with lights and levers, and expected to deduce the causal structure

from these elements alone. There is typically a large amount of background theoretical under-

standing of the structure available. However, perfectly isolated experiments where one knows

(and can control) all the causally relevant degrees of freedom (i.e. one does not have to con-

tend with potentially causally relevant noise) is simply a myth. Initial correlations between a

quantum system and its environment (resulting in a latent common cause scenario) are often

difficult to detect. Whatever the background theoretical assumptions may be, the reality is

often quite different. The methodology of QCM provides a foundation from which to consider

“causal tomography” using informationally complete instruments (rather than just informa-

tionally complete POVMs) to detect such instances.22

22The methods of (Ried et al., 2015) consider such “causal tomography” for two level quantum systems.
They do not generalise to other dimensions, nor do they produce a complete frameowrk for quantum causal
modelling. This is in part due to the different definitions of “observational” vs “interventionist” data: they
consider measurement outcomes to be passive oservations, rather than interventions.
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Furthermore, the blossoming field of quantum machine learning will likely also benefit from

having a clear formalism for recovering quantum causal structure. Probabilistic graphical meth-

ods form one of two key approaches in classical machine learning (the other being neural net-

works), as such the quantum version presented here opens up the possibility for the development

of an analogous field.

5.8 The emergence of classical causal structure.

One of the key requirements of the quantum causal modelling framework, as discussed earlier,

is that one must be able to recover classical causal models in a suitable limit. Recall, we are not

in the business of simply throwing away the classical causal modelling framework and replacing

causal explanation with our own quantum version. Rather, we wish to ensure that we can still

recover the classical formalism as a limiting case.

The process formalism of QCMs affords two complementary ways of viewing the relationship

between classical and quantum causal structure. All quantum causal models can be shown to

reduce to classical ones as a limiting case, and conversely, all classical models can be given

quantum causal representation with the same structure. One can define “effective” classical

causal models: quantum models where it is only possible to access and manipulate states in a

fixed basis. That is, the allowed interventions correspond to classical interventions. As long as

this basis factorises over separated systems it will be possible to recover the statistics of the

respective classical causal model.

Alternatively, one can view classical causal models as a kind of limiting case of quantum

causal models, where the choice of instruments are restricted to be diagonal in a particular

‘pointer’ basis. If one is restricted to such a subset of instruments, then the statistics generated

will also match those of a classical causal model.

First we consider the situation where we are only able to access states in a fixed basis. We can

represent this case by restricting the CP maps realised at each node to be of a particular form.

Recall, for quantum causal models we make a distinction between incoming states, outgoing

states and measurement outcomes. Maintaining this conceptual distinction, first consider a
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quantum causal model with incoming states (labelled zj), outgoing states (labelled oj), and

measurement outcomes (labelled xj) (see figure 5.8).

A A′

xj

ij

oj

se2

se1zj zj

Figure 5.8: For a given basis, zj labels the possible state of the incoming system, oj labels the
outgoing state of the system, xj labels the possible measurement outcome and ij labels the
possible instruments. The figure on the left has a single outgoing system, the figure on the
right has two outgoing systems.

In the case where there are multiple outgoing systems (the right hand figure), we assume

that the output space associated to the node factorises over the outgoing edges, Se:

Oj =
⊗

e∈outj

Se, (5.29)

denoting ~oj as the set of all outgoing edges associated to the node:23.

~oj := {se}e∈outj
(5.30)

with

[~oj]
Oj :=

⊗
e∈outj

[se]
Se (5.31)

For classical situations, the incoming (zj) and outgoing (~oj) states are effectively hidden

from us: we only have access to the distribution of measurement outcomes, conditioned on the

choice of instrument. If we define CP maps of the form:

23For the remainder of this section, we utilise the notation [zj ] := |zj〉〈zj | (Cohen, 2011)
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M
IjOj

xj |ij =
∑
zj~o

j

P (~oj, xj|zj, ij) [zj]
Ij ⊗ [~oj]

Oj , (5.32)

then for a fixed basis we can interpret the CP maps as capturing an incoming classical system

in state zj, undergoing a measurement determined by choice ij and resulting in an outcome xj.

For each outgoing edge e there is also an outgoing system in state se (see figure 5.8). Equation

5.32 reflects the fact that the conditional probability for the measurement outcome and the

state of the outgoing system, given the state of the incoming system, is determined by the

parameter ij.

In order to remain consistent with the fact that the incoming and outgoing states (zj and

oj) are hidden in classical situations, we place a further restriction on the possible CP maps:

the conditional probability must factorise according to:

P (~oj, xj|zj, ij) = P (~oj|xj)P (xj|zj, ij). (5.33)

We justify the fact that the output state ~oj is independent of the incoming state zj by the

observation that in the usual construction of classical causal models one can ignore the hidden

variable zj. The output state is thus only indirectly dependent on the incoming state, via the

measurement event.

The statistics generated by a QCM (Gq) subject to these two constraints (equations 5.32

and 5.33) are equivalent to those generated by a classical causal model (Gc) with isomorphic

causal structure. That is, for a QCM 〈Gq,W 〉 consisting of nodes Lj, obtained from CP maps

of the form in equation 5.32, with probabilities obeying equation 5.33,

P (x1, . . . , xn|i1, . . . , in) = tr

[
n⊗
j=1

M
Lj

xj |ij ·W
L1...Ln

]
, (5.34)

with this conditional probability obeying the Causal Markov Condition for a DAG Gc iso-
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morphic to Gq.
24.

Recall we identified the fact that the distinction between passive observational data and in-

terventionist data can not be made in the quantum case. We can however, give an understanding

of classical non-invasive measurements: such measurements correspond, in the quantum for-

malism, to projective measurements in a fixed basis. Repeating these kind of measurements

confirms previously obtained outcomes, they can thus be interpreted as revealing pre-existing

properties of the system without disturbing it. Although this is an interesting approach, it does

not, of course, tell us why the maps and probabilities should be restricted in such a manner.

Other approaches that attempt to explain the link between the quantum and classical worlds

may be of use here, for example, decoherence theory (Schlosshauer, 2010) or collapse models

(Ghirardi et al., 1985).

An alternative approach is to start with a classical model (Gc) and replace the random

variables (Xj) with quantum nodes (Lj = Ij ⊗ Oj), where the input space Ij has a basis

element |xj〉 for each classical value of Xj. The output space (Oj) is the tensor product of a

copy of Ij for each outgoing edge, resulting in a process matrix:

W =
n⊗
j=1

T
PSjIj
j ,

T
PSjIj
j =

∑
zjpsj

P (zj|psj)[psj]PSj ⊗ [zj]
Ij ,

(5.35)

The coefficient P (zj|psj) is given by the classical model, i.e. (Xj = zj|PAj = psj, Ij = idle). If

only projective measurements in the pointer basis are performed at each node, then the proba-

bility distribution will match the expected classical distribution for undisturbed ‘observational’

data:

MLj
xj

= [xj]
Ij
⊗

e∈outj

[xj]
Se . (5.36)

Interventions in this scenario are thus operations of the form (5.32). An arrow-breaking

intervention is realised by ignoring the input (zj) and preparing the chosen value (xj) on the

24For the proof, see (Costa and Shrapnel, 2016) page 14.
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output space:

M
Lj

do(xj)
= 1Ij

⊗
e∈outj

[do(xj)]
Sj (5.37)

.

Separating classical nodes into input and output in this manner is not entirely new. The

single node intervention graphs (SWIGs) of (Richardson and Robins, 2013) follow a similar

procedure, although not with this express purpose of characterising a possible relationship

between classical and quantum causal models.25

Thus the picture emerging from this framework is that classical causal structure is a special

subset of more general quantum causal structures. One can choose whether to regard classicality

as due to a restriction on the possible local processes or on the possible local interventions. The

feature of nature that enforces these restrictions will not be decided by this formalism alone, and

more work is needed to consider this framework in the light of other, more familiar interpretive

stances.

5.9 Bell’s objections

Now we have an understanding of the formal structure of the quantum causal models, we can

review some philosophical implications. For many, the key question is whether the models do

in fact provide a causal explanation for the Bell correlations. Recall the historical trajectory:

(i) EPR suggest that quantum correlations force a choice between non-locality (causal influ-

ence between space-like separated events) and completeness,

(ii) Bell shows that if causal influence is defined along classical interventionist lines, adding

further hidden variables does not circumvent the need for non-locality: that is, one cannot

save locality by assuming incompleteness,

(iii) Wood and Spekkens show that even if one allows for non-local influences, the resulting

causal explanation is flawed (due to the presence of fine-tuning): that is, one cannot save

causal explanation by allowing for non-local causal influences.

25This is also noted in (Ried et al., 2015).
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The quantum causal modelling framework presented here assumes it is the characterisation

of causation and causal explanation that is at fault, and seeks to provide an alternative. The

alternative presented is complete, in the sense that all correlations can be explained by common

cause, direct cause or indirect cause relations. If such an explanation is not possible, then this

signals the existence of hidden causes and an extended model that does correctly characterise

the empirical statistics can be formed. The formalism recovers the classical modelling formalism

as a limiting case, thus we do not need to entirely give up on the interventionist account, with

all its intuitive appeal. Rather, it is seen as an approximation of something deeper.

Regarding locality, direct causal influence in these models is consistent with relativistic

constraints by virtue of its consistency with quantum mechanics. Thus, empirically derived

statistics can always be explained using such models without postulating non-local causal in-

fluence (direct causal mechanisms acting between space-like separated regions).

From the perspective of the Bell literature, there are some obvious objections. Recall, Bell

was uncomfortable with including a “human” element within an account of causation: correctly

capturing possible signalling relations did not seem, for Bell, to be an apt characterisation of

causation. We saw in Chapter 1 that this charge has also been levelled at interventionist

accounts of causation: whether interventionist causation reduces to agency is a hotly debated

question. The interesting point however, is that this problem does not seem to be peculiar to

the quantum characterisation. It seems to me that one could argue against the need for agency

along exactly the same lines as the standard interventionist response (Woodward, 2003). That

is, we observe certain regularities in experimental situations (where we have an element of

control) that allow us to infer particular causal relations between naturally occurring events

(which we do not control). For example, we saw in section 3.3.3 that the explanation for avian

magneto-reception characterises the act of measurement as a random encounter between two

molecules: there is no requirement of agency in this part of the explanation. The details are

inferred from causal knowledge we have gained through controlled experiments. Similarly, one

could envisage the measurement outcomes that define the choices of interventions (CPTP maps)

for quantum causal models as likewise naturally occurring events. What matters is that they
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are determined by parameters outside the scope of the model.

The question of how the QCM’s relate to Bell’s notion of beables is less clear. Certainly, the

models are connected to empirical evidence gathered from “the setting of switches and knobs

on experimental equipment, the currents in coils and the reading of instruments.” However, if

Bell’s aim was to use beables in order to expunge the use of any mathematical representational

devices that move beyond classical random variables, then clearly the QCM’s fail in this respect.

As I see it, if one believes that interventionism is the correct way to think about causation,

then the empirical results of quantum experiments force one of three choices: (i) dub the quan-

tum world as mysteriously acausal, (ii) abandon the interventionist account as the preferred

account of causation and look for an alternative causal theory that can explain quantum cor-

relations, or (iii) generalise the interventionist account so that it can account for both classical

and quantum causal relations. The QCM’s of this thesis represent an attempt at the third

path.

5.9.1 Universality

One of the criticisms of interventionist causation is that one cannot give an account of universal

causation. The problem being if one includes the entire universe there is no longer an ‘outside’

from which to intervene. This issue is equally relevant to the quantum case. If one expands the

process matrix to include everything in the universe, then one loses the possibility of outside

intervention. Philosophically, this kind of problem is well known: ‘going global’ often has

serious consequences for locally consistent theories that rely on a notion of externality.26 Frisch

has presented some counter-arguments to this worry (Frisch, 2014a)[93-100], and it would be

interesting to consider whether these arguments would apply equally well for the quantum

models presented here.

26The measurement problem is another paradigm example of this.
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5.10 Conclusions

It is clear that there is a great deal more that can be said about the quantum causal modelling

formalism than I have presented here. What I have shown is that it is possible to have a well

defined notion of intervention that can correctly identify quantum causal structure. We also

saw that this structure can be used to distinguish between effective and ineffective strategies.

As such, this framework ought to be considered as providing an interventionist account of

quantum causal structure. A number of parallels between the classical and quantum case were

identified (see table 5.1).

There are, of course, some important differences:

(i) Whilst classical interventions can be associated with clamping a variable to a single value,

to take full advantage of a quantum system one needs to utilise more general interventions

that determine distributions over sets of events.

(ii) The mathematical objects used to describe edges and nodes are different. One can, how-

ever, represent a classical causal model using the set of quantum mathematical objects,

with some added constraints.

(iii) For the classical case, the fact that unmodelled variables must remained uncorrelated

(the independent noise assumption) can be used to justify the use of the Causal Markov

Condition. In the quantum case, however, we assume two sources of ‘noise’. The first kind

is similar to the classical case: we assume ignorance about the exact state of environmental

variables we neglect to include in the model (recall section 3.4). The second kind is

different: this is the fundamental randomness that enters via the Heisenberg Uncertainty

relations.

(iv) The quantum causal models presented here are also perspectival in a similar way to their

classical counterparts. What we choose to include and what we choose to exclude from our

models determines, to some extent, the causal structure of our graphs. In both quantum

and classical cases, the consistency across different perspectives is captured by the overall

consistency of the modelling formalism. The manner in which different perspectives are
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characterised is somewhat different between the two cases however. In the quantum case,

the choice of which background variables to include is in general determined by the length

of time we require various components of the overall system to remain coherent. It is not

clear if there exists a classical counterpart to this requirement.
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Classical vs Quantum Causal Models

Classical Models Quantum Models

Nodes = collections of classical values Nodes = collections of CP maps

Surgical Intervention = fixing local value Surgical Intervention = fixing local CPTP

map (e.g. preparing a random state)

Edges = causal mechanisms defining func-

tional relationship of node to parents

Edges = causal mechanisms defining func-

tional relationship of node to parents

Factorisation according to the cartesian

product defines causal Markov Condition

Factorisation according to the tensor product

defines Quantum Causal Markov Condition

Markovianity recovered by addition of latent

nodes

Markovianity recovered by addition of latent

nodes

Structures support interventionist inferences Structures support interventionist inferences

Agent-dependent and independent perspec-

tives equally plausible

Agent-dependent and independent perspec-

tives equally plausible

Table 5.1: Similarities between Classical and Quantum Causal Models.
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I have argued in the preceding chapters that an interventionist account of quantum causation

is possible.

In the first chapter I argued that interventionist causation is primarily about identifying

structures (causal models) that support interventionist queries. That is, the broad aim of causal

modelling is to produce models that allow us to determine when one strategy will be effective

and another will not. The distinction between the two lies in the definition of an intervention:

an action that is determined by a parameter outside the space of the model. It is by virtue

of interventions that we are able to identify the manner in which two variables have become

correlated, a fact echoed by the slogan correlation is not causation.

I also highlighted in Chapter 1 that for Pearl and Woodward localised interventions are

possible when systems have a Markovian representation. We saw that for Pearl, the relationship

between Markovianity and the possibility of localised intervention was underpinned by his

particular interpretational stance. Pearl believes that deterministic mechanisms are responsible

for causal effects, with probabilities entering solely by virtue of our ignorance of all the facts.

Each node in a model is associated with a conditional probability distribution, characterising

the effects of incoming causal mechanisms, plus some unobserved noise. A model is Markovian

when such noise terms are uncorrelated: correlation can result in latent common causes and

alter the structure of the model. For Woodward, we saw that his assumptions are very similar,

although the focus is on the notion of intervention, rather than the mathematical details of a

particular formalism.

I argued also in Chapter 1 that the assumption of Faithfulness is particularly relevant in

the context of causal discovery. This occurs when one is presented with empirical data, and
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attempts to reconstruct a plausible representative causal model. Without Faithfulness, one can

trivially satisfy the requirement of Markovianity by ensuring the proposed graph is complete.

Additionally, I showed that Faithfulness is also needed to rule out structures that are fine-tuned :

when a model is fine-tuned the probabilistic independencies are generated for only a subset of

possible causal parameters.

In the second chapter I argued that the current perspective on interventionism and QM is

missing an important point: namely, that one is not faced with giving up either Faithfulness

or the Markov condition. To do so would negate the value of these assumptions in linking

causal structure to interventionist data. Rather, the alternative perspective I advocate starts

with a definition of a quantum intervention, and develops an appropriate causal account from

there. Insofar as it is possible to develop fine-tuned causal models that account for quantum

correlations (using retrocausal, superdeterministic and Bohmian models), such models do not

respect a basic requirement of interventionist causation: that one can perform interventions to

confirm the correct causal structure.

In Chapter 3, I provided motivation for the main task of the thesis. I illustrated that physi-

cists frequently do use models that facilitate interventionist inferences. I introduced quantum

circuit diagrams and presented three examples from the scientific literature that put such mod-

els to work. Lest someone complain that quantum interventionism only applies to a certain

quantum technologies, I provided a model for a naturally occurring quantum phenomena: the

avian magneto-reception model.

In Chapter 4, I considered some alternative quantum causal models. It was shown that

none of these frameworks facilitated discovery of causal structure in the interventionist sense

presented in this thesis. Whilst Laskey’s model included a notion of intervention, discovery was

thwarted by her use of two distinct edges (causal and merely correlational). Whilst Pienaar

and Brukner’s model included a version of d-separation and Markovianity, intervention on in-

termediate nodes was not possible. As a result, the relationship between classical and quantum

causal structure was rendered somewhat ad hoc. For the GDAGs of (Henson et al., 2014), the

hybridised structure of the model (consisting of quantum and classical nodes) circumvented the
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possibility of a unified notion of intervention and thus a clear method for causal discovery.

In Chapter 5, I presented an account of interventionist causation that could be applied to

both quantum and classical phenomena. The mathematical objects required to characterise

variables and values in this formalism were different to the usual classical versions: sets of CP

maps replace values, spatio-temporal regions replace variables, and quantum instruments re-

place interventions. Using these objects, a new formalism for quantum interventionist causation

was presented. We saw that it is possible to use empirical data to build quantum causal struc-

tures via this framework, and that these structures reflect possible interventions that physicists

can make in order to facilitate a variety of causal inferences. Finally, I presented a number

of similarities and differences between the traditional methods of classical interventionism and

this newer quantum counterpart.

There are, of course, still many open questions. I have not explored in any depth the

perspective that classical causal structure is emergent in some sense from quantum causal

structure. I do, however, believe that the work of this thesis presents a valuable starting point

from which to consider such a claim. Similarly, I have not examined in detail the relationship

between quantum causal models and other traditional interpretations of quantum mechanics.

Again, I think the quantum modelling formalism presented here may well prove a useful lens

through which to consider various causal aspects of such alternatives. This, however, is work

for the future.
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Appendices

Appendix A: Quantum Causal Explanation: or, why birds fly south

The following publication reports work completed during the first year of PhD candidature.

This work demonstrates that certain quantum explanations can be given an interventionist in-

terpretation. It is therefore consistent with the exposition of this thesis. However, it is included

here as an appendix because the primary aim of this paper was to show that causal explanation

was possible, rather than to explicitly characterise an interventionist quantum causal modelling

formalism. The paper has been reproduced below for convenience, and in accordance with the

University of Queensland requirements, in the same format as the thesis. The original published

article can be found here: http://link.springer.com/article/10.1007/s13194-014-0094-5
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Quantum causal explanation: or, why birds fly south

Sally Shrapnel (received: 27 December 2013 / Accepted: 11 June 2014).

Abstract

It is widely held that it is difficult, if not impossible, to apply causal theory to the domain

of quantum mechanics. However, there are several recent scientific explanations that appeal

crucially to quantum processes, and which are most naturally construed as causal explanations.

They come from two relatively new fields: quantum biology and quantum technology. We focus

on two examples, the explanation for the optical interferometer LIGO and the explanation for

the avian magneto-compass. We analyse the explanation for the avian magneto-compass from

the perspective of Woodward’s interventionist theory and provide a causal model. Furthermore,

we show how worries expressed by Woodward about quantum causation are circumvented in

these cases, concluding that these kinds of explanations are most naturally construed as causal.

1 Introduction

There are several recent scientific explanations that appeal crucially to quantum processes.

These explanations come from two relatively new fields, from so-called quantum biology, and

from quantum technology (also known as Quantum Engineering). The explanations from these

fields involve a concept known as “coherent quantum control” and have a distinctly mechanistic

feel. Prima facie, these explanations are causal.

Many philosophers believe that scientific explanations display an asymmetry derived from

underlying causal structure (Craver 2009; Salmon 1971; Strevens 2008). From this perspec-

tive, the explication of the phenomena listed above provides clear support for the existence

of quantum causation. The philosophical literature, however, contains considerable skepticism

concerning objective quantum causal structure (Hausman and Woodward 1999; Van Fraassen

1982; Woodward 2007). Typically, those who eschew quantum causation derive their arguments

from analysis of the correlations that appear in EPR type experiments, the problem being that
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whilst the measurement results in such experiments are clearly strongly correlated, they are

thought not to be so in virtue of underlying causal structure. Suarez has been a minority voice

challenging this orthodoxy (Suarez 2007; 2013) see also (Wood and Spekkens 2012). Other

philosophers have an even larger target in their sights, and insist that physics itself is not a do-

main that admits our causal intuitions with any clarity (Norton 2007; Woodward 2007). Frisch

has recently provided some convincing counterarguments to this “neo-Russellian” perspective

(Frisch 2012), and the arguments of this paper provide further support for his position.

There are several features of quantum theory that conspire to make the quantum domain

a particularly difficult one to analyse in terms of causal structure. The non-local correlative

properties of entanglement, the so-called “measurement problem”, and the dispute concerning

the ontic or epistemic status of the wave-function all make quantum causation a tricky topic

to approach. In this paper we will not address these well-known problems directly. Rather, we

show that current scientific explanatory practice suggests that quantum causation is possible.

Furthermore, analysis of these explanations in the framework of a standard philosophical ap-

proach to causal-explanation, Woodward’s Interventionist approach, supports the possibility of

quantum causation.1 Since Woodward himself feels there are problems for quantum causation,

this paper will also go some way towards addressing his concerns.

It is worth noting here that we will not be attempting to give a metaphysical story about

wave-functions, superposition states or entanglement. Woodward’s causal theory is not a meta-

physically motivated theory and as such we can use the framework to identify causal relata and

relations without needing to commit to a particular meta- physical interpretation. Consider-

ing the variety of metaphysical interpretations of quantum mechanics currently on offer, we

consider this feature of the interventionist approach a virtue.

In Section 1 we discuss some recent examples from the scientific literature that place quan-

tum mechanisms within complex explanatory stories. We will first look at the explanation for

one of the novel metrological tasks that is now being attempted through the explicit control and

manipulation of a quantum system, and then at an example from the field of ‘quantum biology’.

The first example will be used to illuminate an important concept, coherent quantum control,
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and the second to ground our discussion of quantum causal explanatory models. In Section

2 we will give a brief overview of a contemporary causal-explanatory approach, Woodward’s

Interventionist Theory, and discuss some of Woodward’s concerns with respect to quantum cau-

sation. In Section 3 we will provide causal models for the second example of Section 1. They

are represented using the directed acyclic graph format formulated by Pearl, with structural

equations based on Hamiltonian quantum mechanics.27

2 Quantum causal explanations

There has been an interesting development in scientific explanation involving quantum me-

chanics over the last few years. Control and manipulation of quantum coherence in single

quantum systems has become a reality in the lab environment (Dowling and Milburn 2003;

Milburn 2005) and some intriguing discoveries in biology have prompted claims that perhaps

nature has already managed to do some quantum control engineering of her own (Lambert et

al. 2012). The claims from quantum biology are not above controversy, but are increasingly

being accepted by many scientists across a wide range of fields, and have also inspired some

serious attempts at reverse engineering new technology (Cai, Guerreschi, and Briegel 2010). It

is consequently not our aim to discuss the validity of the claims made in this new field, but

rather to examine the fact that these theories seem to claim quantum states are capable of

assuming various difference making roles in multi-level explanations and are hence playing an

indispensable part in complex scientific explanation.

Quantum biology is an emerging field that investigates the dynamic quantum mechanisms

that have been implicated in several explanatory stories involving natural systems. Perhaps

the two most thorough accounts are those of the avian magneto- compass (Rodgers and Hore

2009) and the photosynthetic light-harvesting complex (Fleming, Scholes, and Cheng 2011). In

both cases the dynamics of quantum states are thought to provide mechanisms for explaining

27Whilst we use Woodward’s interventionist theory to support the conclusion that these explanations are
causal, we are not committed to this being the only applicable causal theory. As an example, it is likely
that Dowe’s Conserved Quantity theory will also be applicable in this context; the details of energetic transfer
suggested by the Hamiltonian mechanical description of the system dynamics will likely pick out similar causal
relata and relations.
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effects that cannot be explained in classical terms alone. The relatively new field of quantum

technology also provides us with an opportunity to examine scientific quantum explanations

that seem to appeal explicitly to causal structure. This field explores new kinds of technology

that we can now develop by harnessing quantum effects to achieve new ends.

In the examples from both quantum biology and quantum technology, the quantum effects

referred to are postulated to play a functional and dynamical role, and this can be articulated

in terms of manipulation and control of quantum coherence. It is this new development that

provides opportunities for applying our usual philosophical tools for causal identification, such

as Woodward’s manipulationist approach. We do not dispute that there can be other kinds

of quantum explanations that do not involve causation, rather that our particular examples

appear to demand quantum causal explanation.

It is possible that the explanations selected here are particularly amenable to being cast

in a causal framework (specifically the interventionist framework) due to their multi-level na-

ture. However, it is beyond the scope of this paper to address the specific issues surrounding

multi-level explanation. Whilst the avian magneto-compass in particular provides a remarkable

example of such an explanation, spanning many orders of magnitude and utilising the theories

of multiple scientific domains, we will not have anything distinctive to say on the matter here.

It will also become clear that the causal structures discussed in this paper involve what

could be considered both “downwards” and “upwards” causation. We later see that our causal

structural models include both classical causes that are related to quantum effects, and quantum

causes that are related to classical effects. The well known difficulties of inter-level causation and

the causal exclusion argument will also not be addressed in this paper, though see (Campbell

and Bickhard 2011; Kim 1999; Woodward 2008) for further discussion.

At this point it is perhaps worth pausing to consider what has changed in the quantum

physics community to allow quantum states to now enter into such complex, multi-level expla-

nations. It is likely that there are many contributing factors, but possibly the most relevant

breakthrough of the last few decades is physicists’ ability to isolate and probe single quantum

systems. The experimental advances afforded by the work of David Wineland, Serge Haroche
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and colleagues have enabled the precise control and manipulation of single quantum systems,

and recently earned them the 2012 Nobel Prize for Physics.

By improving our ability to isolate quantum systems, coherent quantum states in the lab

can now be maintained for longer time periods, and this means that the mathematical models

predicting quantum interactions and coherence times for particular set ups can be made more

precise. Thus for a number of situations we can now give quantitative and relatively precise

time estimates for the maintenance or loss of quantum effects such as coherence or entangle-

ment. For such systems we can consider that a close match between theoretical prediction and

experimental outcome validates that our explanatory model is successfully taking into account

all the degrees of freedom, and the details of their interactions, that are relevant for our target

explanadum (Dowling and Milburn 2003; Milburn 2005).

An intuitive feel for quantum coherence can be given by appealing to our first example, the

explanation for the operation of the gravitational wave detector, LIGO. LIGO is an enormous

optical interferometer that has been designed to measure the effects of gravitational waves by

monitoring the relative displacement of two mirrors. The measurement sensitivity of this device

is such that we can now use it to measure displacements of around 1 part in 1018, an astounding

feat that relies crucially on maintenance of quantum coherence (B. Abbott, Abbott, Adhikari,

and Ajith 2009).

The explanation can be built up by first considering a single beam splitter device. Photons

from an upper source are fired at a semi-silvered mirror (beam splitter) and subsequently

detected at both upper and lower photon detectors. For each input photon there is only ever

a single detection event; we never detect two photons simultaneously arriving at the output

detectors. Multiple trials will result in a probability distribution of 0.5 at either detector; half

of the time a photon arrives at the upper detector and half the time a photon arrives at the

lower detector. Our usual classical thinking leads us to infer that each individual photon is

either being reflected or transmitted at the beam splitter, with random probability for each

single trial.

Consider the original setup extended to contain two successive beam splitters, forming a
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Figure 5.9: Mach-Zender Interferometer

device known as a Mach-Zender interferometer (see Fig. 5.9 below). The addition of the

two perfectly reflecting mirrors acts to redirect the photons back to the next beam splitter.

Given the inferences from the setup with the single beam splitter (single photons are either

reflected or transmitted at each beam splitter), our classical intuition leads us to expect that

the outcome probability distribution, for a series of trials, will again be 0.5 for both upper and

lower detection events. However, this is not in fact what we see. The outcome of the final

detection event is rendered certain by the addition of the second beam splitter; all detection

events now occur at the upper detector. The relationship between the input and output values

in this system allows us to claim that the system is displaying quantum coherence. Validation

of this claim can be made by varying the probability distribution of the input events (firing

photons from a range of both upper and lower sources, say 40 % of the time from the upper

and 60 % of the time from the lower), and showing that this results in a corresponding change

in the probability distribution of the output events.

Formally, this relationship between input and output distributions is captured by both

the linearity of Hilbert space (allowing for superposition states) and the Born rule (allowing

calculation of the output probabilities). Thus, the ‘machinery’ of what occurs in between input

and output events is captured at the level of probability amplitudes. An essential difficulty

with quantum mechanics concerns what probability amplitudes actually represent, at least in

terms of our usual notion of the kind of variables we meet in the classical world. Again, for the
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purposes of this paper, we leave these metaphysical issues aside. We will later see that they do

not preclude us from identifying causal relata and relations in the usual way.

By introducing one more element into the picture, we can give both a description of the

interferometer LIGO, and also get an intuitive feel for quantum coherence. Consider now that

there is an external source of random noise that effects the position of the top- most perfectly

reflecting mirror. This random noise can degrade the correlation between the probability distri-

butions of input and output events. Remember we were previously able to track the coherence

of the system by varying the probability distribution of the input events and seeing the corre-

lation with the variation in the probability distribution of output events. This correlation can

be predicted accurately by numerically tracing the changes in probability amplitudes for the

quantum state of a photon as it passes through the device. It is this loss of ability to track

coherences, in this case due to the random wobble of the mirror, that is known as decoherence.

Now consider an alternative scenario. Instead of introducing a random wobble in the position

of the uppermost mirror, let us now change its position to a fixed new position by moving it

northwards (i.e. up the page). If the mirror remains fixed in this new position, there will no

longer be detection at the upper detector with certainty, but a proportion of detection events

will occur at the lower detector. The important difference this time comes when we vary the

probability distribution of input events. Once again we will have perfect correlation between the

variation in probability distribution of input events with the distribution of output events, and

the system is back to displaying quantum coherence. The “control” part of the term coherent

quantum control comes from this ability to accurately determine the probability distribution

of output events, for a range of vales of both input variables and mirror positions. LIGO is

actually a huge folded optical interferometer that takes advantage of this very phenomenon.

With arms spanning around 4 km, a tiny repeated wobble is introduced into the length of each

arm as gravitational waves pass perpendicularly through the device. This wobble periodically

alters the relative positions of the two perfectly reflecting mirrors and thus coherently changes

the probability distribution of the output detection events with respect to the probability

distribution of the input events. Coherence of the system is maintained by the fact that the



161

period of the gravitational wave is constant. Maintenance of the system coherence is crucial to

the sensitivity of the device. Any additional sources of disturbance, be they unknown or simply

uncontrollable, can potentially result in decoherence that will quickly degrade the sensitivity

of the device.

We have not listed all the potential sources of decoherence that must be accounted for such

that LIGO can achieve maximum sensitivity, and as such, the explanation is somewhat idealised.

Additionally, we have not discussed other features that ultimately limit the maximum sensitivity

of the device, such as shot noise and radiation pressure, and the techniques for minimising these

effects. For the purposes of this paper however, they do not present any complications that

threaten the main arguments of the paper, but see (B. Abbott, Abbott, Adhikari, and Ajith

2009) for further details.

The current favoured explanation for the remarkable navigational abilities of the European

Robin similarly relies on this notion of coherent quantum control. Many birds are able to

navigate accurately for thousands of miles each year as they head south for the winter. Current

science tells us they do so by detecting the extremely weak Earth’s magnetic field lines, and the

mechanism responsible is thought to rely crucially on the maintenance of quantum coherence.

The proposed mechanism is known as the radical pair mechanism, and is believed to take

place in the retina of the bird. Within a molecule known as cryptochrome, the quantum spins

of two electrons are initially entangled in a spin singlet state. One electron is then excited from

the ground state by the absorption of an incoming photon, inducing a conformational change

in the surrounding molecule and allowing the electrons to spatially separate. This separation

then results in inter-conversion of the quantum state of the electron pair between a triplet

(spins aligned) and singlet state (spins anti-aligned). This interconversion is considered a fully

coherent, reversible quantum dynamical process, occurring due to coupling of the electron spins

with separate individual nuclear environments. The dynamics of the inter-conversion are then

further modulated by the earth’s magnetic field.

The final step involves the electron pair encountering another reactant molecule. Depending

on the joint quantum spin state of the electron pair at the time they encounter the reactant
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molecules, different chemical products result, and at different rates. These resultant chemicals

are assumed to provide a neural signal that piggybacks onto the visual system of the bird. The

speculation being that as the bird changes the orientation of its head with respect to the earth’s

field lines, the consequent modulation of the chemical signalling may result in a change in the

distribution of light and dark patches in the bird’s field of view.

The most recent behavioural experiments to support the model involve the application of

weak, oscillating radio-frequency pulses to disrupt the radical pair mechanism, and consequently

the birds’ sense direction. These pulses are tuned to the transition frequency between triplet

and singlet states and thus disrupt the usual relationship between the joint spin state of the

electron pair and the direction of the bird’s head. Further studies of this nature are planned for

the coming migratory season, with the ultimate aim being explicit quantum control of the birds’

direction sense, via control of the spin states of the electron pair. More details can be found in

(Bandyopadhyay, Paterek, and Kaszlikowski 2012; Rodgers and Hore 2009); Cai et al. 2010; Cai

and Plenio 2013; Tiersch and Briegel 2012). It is worth commenting that there are alternative

possible explanations for the birds’ remarkable navigational abilities, most notably magnetite

based mechanisms. These mechanisms, however, are unable to account for the fact that (i)

the compass appears to be an inclination, rather than polarity compass, (ii) the mechanism

appears to be light triggered, and (iii) the birds direction sense is able to be disrupted by weak,

oscillating radio-frequency pulses. For these reasons the radical pair mechanism has gained

support as the favoured current explanation (Lambert et al. 2012). This means that at the

very minimum, this paper shows that a causal understanding is possible if the radical pair

model is ultimately shown to be the correct one.

As Cai and Plenio (2013) recently pointed out, the explanation for the magneto- compass

can be considered analogous to an interferometer (such as LIGO). For the magneto-compass

it is the hyperfine coupling between the nuclear environment and electron spins that provides

the process equivalent to passage through the beam splitters; formally, it is this coupling that

sets up a superposition of states. In the interferometer LIGO, interference occurs between the

two paths through the interferometer, whereas in the magneto-compass it occurs in the energy
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eigenbasis of the electron-nuclear coupling Hamiltonian. The input and output states of the

interferometer LIGO are the mutually exclusive photon paths; the photon is fired with certainty

from either the upper or lower source, and is detected with certainty at either the upper or

lower detector. In the case of the magneto-compass, the input state is a singlet state, and the

detection states can be either one of the mutually exclusive states: triplet or singlet.

The final measurement step in the interferometer occurs when a photon is detected at

the output; analogously, the measurement step in the avian magneto-compass occurs when

the reactant molecules randomly encounter the radical pair. The changes in the probability

distribution for output photons over many trials in the LIGO interferometer allow calculation

of the minute changes of the mirror position due to passage of gravitational waves; the relative

ratios of singlet and triplet products, averaged over many molecules in the bird’s retina allows

detection of the direction of the Earth’s extremely weak magnetic field. Thus the bird is able

to control the relative ratio of singlet to triplet product, and thus the associated visual pattern,

by altering the direction of its head with respect to the Earth’s magnetic field lines. During

orientation, the birds are observed to perform scanning behaviour, repeatedly move their heads

before fixing on a direction.

The dynamics of the avian model are expressed using quantum Hamiltonian dynamics, to

keep track of the coherences within the system. As discussed above, detailed knowledge of co-

herent states can be maintained when we have sufficient knowledge and control of any degrees

of freedom that influence the system of interest. In general, biological systems are compli-

cated, wet and warm environments and were originally thought to provide too many sources

of decoherence for quantum effects, such as interference, to play any functional role. However,

recent improvements in the sensitivity of experimental tools means we can now detect changes

at extremely short length and time scales. Recent experiments have verified that functional

quantum effects (such as coherence and entanglement) can occur at very fast timescales, and

are sufficiently well localised such that their effects can make a difference before slower thermal

environmental effects can interfere. Furthermore, there is increasing evidence that there is often

constructive interplay between thermal noise in stationary non- equilibrium systems, such that
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quantum correlations are not suppressed but rather enhanced or regenerated by interaction

with the environment (Huelga and Plenio 2013).

It is critical to realise that support for the avian model has come from performing various

interventions, and as the interventions have become more sophisticated the model has gained

strength and support from the scientific community. There are many kinds of explanations

to be found in science, but it is those that support interventions that are often considered

most validated. Following the experimental verification by Alain Aspect, the violation of Bell’s

theorem allowed by quantum theory achieved greater acceptance as really telling us some-

thing about the nature of the world. Intervening on the radical pair mechanism of the avian

magneto-compass has similarly validated the causal structure of this explanation. Scientists

have considered changes in (i) the nuclei surrounding the separated electron pair (spin state

and spatial configuration), (ii) the strength or direction of the external magnetic field, and (iii)

the joint spin state of the electron pair.

Whether these interventions can be considered as Woodwardian is considered in section 4

below, but first a brief recap of Woodward’s interventionist theory of causal explanation.

3 Interventionist causation

Woodward’s interventionist theory is motivated by the intuition that we typically associate

causal relations with an ability to manipulate or control the value of a particular variable. To

identify a causal relation between A and B, given some particular background conditions Z, we

wish to both isolate A and also vary its value. Furthermore, we wish to hold the background

conditions Z as fixed as possible to eliminate confounding factors, such that we can observe

and measure the direct effect A has on B. In this way, we are able to deduce the causal

relation by seeing how B changes when we vary A in some way. This intuition is used in

the design of randomised, double-blind, placebo controlled medical trials, that in effect allow

us to hold as many background factors as possible fixed, whilst assessing a treatment effect.

In fact, scientific experiments are often designed to establish causal relationships by holding

various factors fixed, whilst varying others and then analysing the consequences, and the fact
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that this causal theory closely mirrors the scientific method has meant it has found favour with

philosophers of science from many different disciplines. The potential for such manipulations

allows us to differentiate between relationships that merely express correlation and those that

identify causation (Woodward 2005).

The interventionist account draws on previous work done in causal modelling by (Pearl

2009; Spirtes, Glymour, and Scheines 2000), who discuss causation from the perspective of

various causal discovery algorithms. These accounts all require the careful explication of an

ideal intervention. Formally, a causal relation between a variable (A) and a variable (B) holds

if and only if there exists an ideal intervention (I) on A, such that the value of B changes.

The ideal intervention (I) must meet the following requirements (Woodward 2007):

(i) I must be the only cause of A - the intervention must completely disrupt the causal

relationship between A and its previous causes, so that the value of A is set entirely by

I.

(ii) I must not directly cause B via another route

(iii) I should not itself be caused by any cause that affects B via a route that does not go

through A

(iv) I leaves the values taken by any causes of B unchanged, except those that are on the

directed path from I to A to B, (should this exist).

Requirement 1 ensures the value of A is not effected by any other causal variable Z, but

entirely set by I. Requirements 2 and 3 remove any other ways A and B may be correlated

other than A’s causing B.

The causal effect here is relativised to a background context Z (which will incorporate

information about other causes of B). Thus this account attempts to answer the question “in

a given context, what is the difference made to B by varying A?”. In deterministic contexts

we need to hold Z steady, in indeterministic contexts we can define causal effects in terms of

expectations with respect to probability distributions. The relata in Woodward’s causal claims
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are called “variables”, where a variable is simply a property, quantity etc., which is capable of

taking two or more “values”.

The structural equations framework of Pearl (2009) relativises the causal structure of a

system to a causal model, defined as an ordered pair < V,E >, where V is a set of variables and

E a set of structural equations. The structural equations state the relations among variables

(deterministically or probabilistically) in the system of interest. The possible states of the

system are described by the variables in V, and the structural equations model the dynamical

evolution of the system. Each variable in the model has a corresponding structural equation,

for exogenous variables the form is Y = y (set at the actual value) and for endogenous variables

the form is Y = f(X1, X2, X3...Xn). Such equations are read from right to left, so X is a

“parent” of Y . The structural equations are frequently represented as directed acyclic graphs,

with the nodes of the graph being the variables in V and the arrows between them representing

the causal dependencies between variables.

Woodward quite rightly points out that typically in explanations we wish to know more

about our causal models. We don’t only wish to know which variables are causally related, but

“.... we wish to know which kind of interventions on X have an effect on Y , how they effect Y

and under what background circumstances.” (Woodward 2007). This information is captured

by two further requirements: invariance and stability. A causal model is invariant if it holds

under at least some range of values of the intervention. A model is stable if it holds for at least

some range of changes in background variables, where these variables are typically not included

in the model.

Woodward has written surprisingly little about applications of his theory to the domain of

quantum mechanics. Essentially, he regards the correlations between EPR pairs as providing

evidence that the relationship between them is not causal in nature. The defence for this

position rests on the assumption that it makes no sense to make an intervention on the joint

state of an entangled system, mainly by virtue of the fact that it is not a factorisable state

(Hausman and Woodward 1999). Suarez has some counter- arguments to this position, and

both views will be discussed further below.
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Woodward also has concerns about application of his theory to quantum mechanics consid-

ered as a fundamental, universal theory. If the state of the universe can be assigned a quantum

state, then it makes no sense to envision an intervention on this. Woodward wishes his theory

to apply to what Pearl calls “small worlds” (Woodward 2007). As is discussed below, it is clear

that the model for the magneto-compass clearly encapsulates such an isolated system, which

can support a notion of external intervention.

4 Causal model for avian magneto-reception

The inclusive causal model will contain many relata. For the purposes of this paper we include

only that part of the overall explanation that requires the inclusion of quantum states. For

simplicity, we will assume that it is the singlet reaction product that provides the neural signal

that ultimately determines the direction sensing ability of the bird. By considering various

experiments that have been performed to better understand the radical pair mechanism, it is

possible to suggest a simple causal model for the magneto-compass.

There are five variables to consider (see Fig. 5.10), with two of the variables being quantum

states. The immediate question that arises in this context is how one can assign a “value”

to a quantum state. Although abstract, one can think of the value of a quantum state as

being the corresponding ray in Hilbert space, with any changes in value being reflected by

various transformations on this ray. Thus the structural equations that relate the variables in

this model need to tell us how transformations on one quantum state variable are related to

transformations on other quantum state variables in the model. In general, it is possible to

predict how various quantum states change by considering the possible energy configurations

of the total system, in this case determined by the Hamiltonian for the hyperfine couplings of

the system (see Cai and Plenio 2013 for more details).

Variables:

(i) B: the strength and direction of the external magnetic field. This includes the angle

between the direction of the bird’s head and the local magnetic field (Earth or applied)

and the strength of the local field. This variable could be further divided into two parent
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Figure 5.10: Causal diagram for radical pair mechanism.
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variables, one variable for the field strength and one for direction, and in general the

experiments reflect this separation. For simplicity here we have subsumed this information

into one variable, with the possible values of B thus being a function of two parent

variables: field strength and direction.

(ii) N : the nuclear spin state. The nuclei are assumed to be in a thermalised spin state; that

is, we consider the spins will flip randomly at a certain frequency. As the electron-nuclear

hyperfine dynamics occur on a much faster time scale than these nuclear dynamics, we can

consider the spins as fixed and thus the value of the nuclear spin state as an exogenous

variable. In principle, it is possible to intervene on the nuclear spin state by cooling

the system to its ground state and applying tuned frequency pulses set to the transition

frequencies of the nuclei. These kinds of pulses will alter the nuclear spin state but not

the electron pair spin state (S) or the applied magnetic field (B), and as such can act

as an intervention in Woodward’s sense. For the bird causal model however, at ambient

temperatures, the nuclear spin state is considered an exogenous variable with a fixed

value.

(iii) T : the spatial configuration of the surrounding dominant nuclei. In developing the radical

pair model, scientists have considered various molecules as potential candidates for the

donor and acceptor molecule. The geometrical arrangement of the nuclei will determine

details of the how the nuclear spins couple to the electron pair. The nuclear features of

cryptochrome fulfil the spatial requirements to ensure the correct anisotropic coupling

required for the model to hold (see Rodgers and Hore 2009).

(iv) S: the electron pair spin state (considered in the singlet/triplet basis). The value of

this variable (again given as a ray in Hilbert space) essentially allows us to calculate

the probability that a measurement will return either a singlet or triplet readout at any

random time.

(v) Y s: the final product yield after contact between the reactant molecules. This variable

can be considered a binary variable, taking two different values, one for the singlet yield
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and one for the triplet yield.

We can intervene on N , B and S, and this is supported by current scientific literature (see

previous references, and references therein).

(i) For reverse engineered analogues of this model, we have the further option of cooling the

system, and applying tuned radiofrequency pulses such that we can control the polarity

of individual nuclear spins (and thus change the value of N) without directly disturbing

either the electron pair spin state or external magnetic field (Robledo et al. 2011). For

the bird model, the value of N (the nuclear spin state) is considered fixed. Whilst in

principle B has a very small effect on N , in addition to the larger effect on S, this effect

is so small it can be approximated to zero, thus there is no causal arrow between B and

N . See below for further discussion.

(ii) Intervention at the level of the electron spin state S, whilst holding N and B fixed,

is achieved by the application of tuned, weak, oscillating radiofrequency pulses. These

pulses can be tuned to the frequency of the electron pair spin state transi- tions, and will

not disturb the nuclear spin state.

(iii) And finally, we can intervene on either the direction or the strength of B (treated as a

classical variable) whilst holding N fixed, and observe any change in S and Ys.

What immediately strikes one as surprising about this explanation is that one of the vari-

ables (S) is an entangled quantum state of two electron spins. The fact that forces this variable

assignment is the final measurement step; the reactant molecules result in different outcomes

depending on whether they encounter the radical pair in a singlet or triplet state. It is the

difference in total energy that these states possess that determines the different reaction path-

ways, so in a sense, the reactants are blind to the spin states of each individual electron. This

feature circumvents Woodward’s worry that we cannot intervene on a joint state of an entangled

system. The causal model is not sensitive to the fact that each electron spin state, if measured

individually, is randomly distributed. It is the joint state (triplet or singlet) that acts as the

difference-maker in this model.
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On the basis of these experiments we can derive a simple version of the structural equations

relating the variables in this model:

P (Y s) = f(S) (5.38)

S = f(N, T,B) (5.39)

N = n (5.40)

T = t (5.41)

B = b (5.42)

Where the first equation represents a probabilistic dependence and the second equation a

deterministic dependence. Typically, causal modelling involves creating either a completely

deterministic or probabilistic structure; in this explanation however, the model appears hy-

bridised.

Does this model display the invariance and stability Woodward typically requires of his

models? Clearly, yes. There is invariance in so far as the relationships in the model hold for a

range of values of B, N and S. If we increase B to extremely high values of field strength we will

eventually start flipping nuclear spins and the independence of B and N will no longer hold,

so the invariance in this case is limited to a finite range. The model is stable insofar as we can

make various changes to background variables, such as atmospheric pressure and temperature,

without invalidating the causal entailment of the model.

These dependencies follow the explanation as it is given in much of the literature and are

derived from the Hamiltonian dynamics of the system (Cai and Plenio 2013). There are two

crucial features of the dynamics that enable the relationships of the causal model to hold. The

first is that although, strictly speaking, the Earth’s magnetic field exerts an influence on both

the nuclear and electron spins, the field is so weak that we can approximate the effect on the

nuclear spins to be zero. The Earth’s magnetic field has a different effect on electron spin

to nuclear spin, essentially because the magneton for nuclear spin and electron spin is very

different (by many orders of magnitude). Thus the value for the nuclear spin state remains
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approximately fixed for changes in the value of B. This enables an intervention on B to have

an effect on S, but not N , thus respecting Woodward’s four requirements for an intervention.

This kind of idealisation is commonplace in scientific models and has been the focus of much

philosophical discussion (see Strevens 2008). Indeed there are many other idealisations that

are assumed for this model. For example, the dipole-dipole coupling between the separated

electrons is also approximated to zero as the electrons are considered to be sufficiently far apart

(see Tiersch and Briegel 2012 for others).

The second feature of the dynamics is best illustrated by considering the standard way

to calculate quantum dynamics: expand the initial state (of both subsystems) in the total

eigenstates of energy, and the dynamics appears as a phase factor rotating in time for each

of the energy eigenstates. The changes in the joint electron spin state that are due to these

system dynamics are subsequently witnessed by the chemical reactions that serve to measure

the electron joint state in the singlet/triplet basis.

The final causal relation, between the variables S and Ys, is inherently a probabilistic

relation. By varying the joint spin state of the electron pair, we can only change the likelihood

that when a reactant molecule encounters the pair it will find it in a singlet state. It is well

known that such a measurement step is irreducibly indeterministic and as Woodward endorses

probabilistic causal relations, this step should not pose as a problem for his account.

Consider again the main problem Woodward has for quantum causal relations; that it makes

no sense to intervene on only one of a pair of entangled states. This worry comes in part from

the fact that Woodward uses a notion called modularity (M) to ground the causal Markov

condition (CMC) that is necessary for his account (Hausman and Woodward 1999). The

modularity constraint requires that the equations that relate the values of different variables in

a causal set V are invariant under a range of changes of values of the variables, and is captured

by requirements 1–4 in Section 2 above. The concern is that for EPR pairs, modularity fails

because the entangled state is inseparable. As Woodward puts it, “...there is no well defined

notion of an intervention on the spin state of one of the separated pairs with respect to the other

in EPR type experiments.” (Woodward 2007, p70). This view hinges to some extent, as Suarez
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puts it, “... on an interpretation of the quantum state as non-separable in some rather strong

and mysterious ontological sense” (Suarez 2013). We can see that from the explanation of the

avian magneto-compass that whilst the nuclear and joint electron spin states are entangled in

the hyperfine coupling energy eigenbasis, we are not precluded from intervening on either one

or the other variable, and both the experimental verification of the model and the dynamic

equations reflect this modularity. The hyperfine coupling Hamiltonian tells us how the nuclear

spins affect the electron pair spin dynamics, but not that we must consider both entities as a

single variable for the purposes of intervention.

The metaphysical mysteries of coherence, interference and entanglement in this explanation

are captured by the dependencies expressed in the structural equations. From an interventionist

perspective, of course, we can still identify causal relations and relate without making any

metaphysical commitments as to the nature of this causal connection. Quantum engineers

who design technology based on this kind of causal identification similarly eschew metaphysical

worries and are still able to create devices that exploit such phenomena as entanglement and

interference to achieve new ends.

Conclusion

In this paper we do not directly address the traditional problems associated with providing

causal explanation for the statistics observed in Bell inequality violating experiments. Rather,

we take a different approach to discussing quantum causal explanation. There are recent

scientific explanations that appeal crucially to quantum phenomena. The dynamics of these

phenomena can be treated in a quantitative manner and used to form causal models. Structural

equations can be given based on Hamiltonian dynamics, and interventions performed at each

node in the relevant causal diagram. The interventions can be ideal, in the sense that their

effects are modelled by numerical simulation, or actualised by experiment. Quantum biology

and quantum technology supply many explanations of this kind that could be further explored

using this framework. We have given an example from quantum technology, the explanation

for LIGO, to illustrate the concept of coherent quantum control, and to provide a qualitative
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example of how quantum effects such as interference can play a difference- making role in a

macroscopic system. An example from quantum biology, the avian magneto-compass, is also

described as a system that utilises difference-making quantum effects. It is presented as a

causal-explanatory model using the directed acyclic graph and structural equations method.

From a Woodwardian perspective, such explanations are causal. They are stable, invariant

and constitute a “small world”. They form an isolated system that can host the external

interventions required to test the causal structure of the model.
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