
MNRAS 445, 4267–4286 (2014) doi:10.1093/mnras/stu1610

Are peculiar velocity surveys competitive as a cosmological probe?
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ABSTRACT
Peculiar velocity surveys, which measure galaxy velocities directly from standard candles in
addition to redshifts, can provide strong constraints on the growth rate of structure at low
redshift. The improvement originates from the physical relationship between galaxy density
and peculiar velocity, which substantially reduces cosmic variance. We use Fisher matrix
forecasts to show that peculiar velocity data can improve the growth rate constraints by
about a factor of 2 compared to density alone for surveys with galaxy number density of
10−2 (h−1 Mpc)−3, if we can use all the information for wavenumber k ≤ 0.2 h Mpc−1. In the
absence of accurate theoretical models at k = 0.2 h Mpc−1, the improvement over redshift-
only surveys is even larger – around a factor of 5 for k ≤ 0.1 h Mpc−1. Future peculiar velocity
surveys, Transforming Astronomical Imaging surveys through Polychromatic Analysis of
Nebulae (TAIPAN), and the all-sky H I surveys, Widefield ASKAP L-band Legacy All-sky
Blind Survey (WALLABY) and Westerbork Northern Sky H I Survey (WNSHS), can measure
the growth rate to 3 per cent at z ∼ 0.025. Although the velocity subsample is about an order
of magnitude smaller than the redshift sample from the same survey, it improves the constraint
by 40 per cent compared to the same survey without velocity measurements. Peculiar velocity
surveys can also measure the growth rate as a function of wavenumber with 15–30 per cent
uncertainties in bins with widths �k = 0.01 h Mpc−1 in the range k ≤ 0.1 h Mpc−1, which is
a large improvement over galaxy density only. Such measurements on very large scales can
detect signatures of modified gravity or non-Gaussianity through scale-dependent growth rate
or galaxy bias. We test our modelling in detail using N-body simulations.

Key words: methods: numerical – cosmological parameters – cosmology: theory – large-scale
structure of Universe.

1 IN T RO D U C T I O N

Whether the accelerated expansion of the Universe and the growth
of the large-scale structure can be fully explained by the standard
� cold dark matter (�CDM) model, especially by the cosmolog-
ical constant �, is one of the main questions of modern cosmol-
ogy. Dark energy, which can have an equation of state different
from the cosmological constant, or theories of gravity alternative to

� E-mail: junkoda@physics.utexas.edu

general relativity, might be a source of recent accelerated expansion.
Galaxy peculiar velocities provide powerful tests of the �CDM
model through measurements of the linear growth rate, which are
complementary to other cosmic probes. The linear growth rate,
f ≡ d ln D(a)/d ln a, is the logarithmic derivative of the linear growth
factor D with respect to the cosmic scale factor a. Different models
of dark energy or modified gravity give different growth rates as a
function of time or scale.

Observed redshift is a combined effect of cosmological expan-
sion which depends on the distance to the source, and the Doppler
shift which depends on the peculiar velocity of the light source.
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Direct measurements of line-of-sight peculiar velocities from red-
shifts and distances determined by the Tully–Fisher relation, Fun-
damental Plane, or supernovae have a long history (see Strauss
& Willick 1995, for a review). Latest peculiar velocity surveys
have increased their samples to about 5000 Tully–Fisher veloci-
ties (Springob et al. 2007), and 9000 Fundamental Plane velocities
(Magoulas et al. 2012). Supernovae samples are also competitive
because the smaller sample size is compensated by their better pre-
cision per measurement (Turnbull et al. 2012; Feindt et al. 2013).
Future surveys plan to expand peculiar velocity samples further, as
we present in this paper. All of these samples are limited to low red-
shift (z � 0.05), because the velocity error grows at least linearly
with distance, 8–25 per cent of the Hubble recession velocity, due
to intrinsic scatter in distance estimation.

A completely different path to measure peculiar velocity is the
kinetic Sunyaev–Zel’dovich effect (Sunyaev & Zeldovich 1980),
which measures line-of-sight velocities of galaxies or clusters of
galaxies with respect to the cosmic microwave background (CMB).
The bulk motion of electrons along the large-scale peculiar velocity
field make a tiny contribution to the CMB temperature via Thomson
scattering between CMB photons and free electrons in galaxies or
clusters. The kinetic Sunyaev–Zel’dovich effect has just started to be
measurable (Hand et al. 2012; Lavaux, Afshordi & Hudson 2013),
and has the potential to provide peculiar velocity measurements
with errors that do not diverge linearly with distance.

Alternatively, the information of line-of-sight peculiar velocity
is also encoded in the anisotropic pattern of large-scale galaxy
clustering, known as the redshift-space distortion (Kaiser 1987).
Many measurements of growth rates through redshift-space distor-
tion have been made across wide ranges of redshifts (e.g. Peacock
et al. 2001; Tegmark et al. 2004; Guzzo et al. 2008; Blake et al. 2011;
Beutler et al. 2012; de la Torre et al. 2013; Samushia et al. 2013).
These measurements are, so far, all consistent with the �CDM
Universe, and continue to improve in precision and redshift range
(e.g. White, Song & Percival 2009; Amendola et al. 2013a; de Put-
ter, Doré & Takada 2013; Weinberg et al. 2013). In this paper, we
refer to these measurements as those from ‘galaxy density only’,
‘redshift-space distortions only’, or ‘redshift only’, interchangeably,
to distinguish them from peculiar velocity surveys.

CMB measurements constrain cosmological parameters pre-
cisely within the �CDM cosmological model, but are not as sen-
sitive to low-redshift growth of structure. Peculiar velocity surveys
therefore allow a powerful consistency check of scenarios of dark
energy or modified theories of gravity. Low-redshift data are useful
as these correspond to the epoch when the ratio of dark energy den-
sity to critical density is the largest and where any deviation from
�CDM is likely to be the most significant (Hudson & Turnbull
2012).

The amplitude of velocity fluctuation measures fσ 8 where σ 8

is the amplitude of matter perturbation smoothed on spheres
of 8 h−1 Mpc, and h is the Hubble constant in units of
100 km s−1 Mpc−1. The velocity power spectrum (Jaffe & Kaiser
1995; Abate & Erdoǧdu 2009; Macaulay et al. 2011) measures
fσ 8 as a function of wavenumber, and the bulk flow (Kaiser 1988;
Watkins, Feldman & Hudson 2009) or low-order moments (Feld-
man, Watkins & Hudson 2010) of the velocity field are a cross-check
of the model at large scales. Many bulk flow measurements show
that the local velocity fluctuations at large scales are larger than
found at a typical location in the �CDM Universe, but whether the
large bulk flow is inconsistent with the �CDM Universe (Watkins
et al. 2009; Feldman et al. 2010) or consistent (Nusser & Davis
2011; Turnbull et al. 2012; Ma & Scott 2013) is still under debate.

Since we can only measure the large-scale bulk flow around us, it
is not decisive (from velocity data alone) whether the large-scale
velocities are a problem of the �CDM universe or a statistical out-
come that we are simply in a high-velocity region of the �CDM
Universe (cosmic variance).

One of the advantages of peculiar velocity surveys is that they
have multiple tracers, galaxy density, and peculiar velocity, which
can be used to measure growth rate beyond the cosmic variance
limit. In contrast, methods that use only one tracer of large-scale
structure are limited by the number of fluctuation modes in the
observed volume. In the case of peculiar velocity surveys, cosmic
variance can be reduced by first predicting the expected velocity
field from the galaxy distribution (Nusser & Davis 1994; Bran-
chini, Eldar & Nusser 2002; Erdoǧdu et al. 2006; Kitaura & Enßlin
2008; Lavaux et al. 2010; Kitaura et al. 2012), and then comparing
the model velocities with the observed velocities. The ratio of the
two gives the β ≡ f/b parameter, where b is the galaxy bias (Davis,
Nusser & Willick 1996; Branchini et al. 2001; Davis et al. 2011; Ma,
Branchini & Scott 2012). Throughout this study we assume linear
bias between galaxies and matter, although we note that for models
with significant non-Gaussianity, or at small scales, this relation
would break down. However, the signal-to-noise ratio of peculiar
velocity measurements peaks on large scales, where linear bias is
a common approximation. Because the reconstructed velocity and
the observed velocity share the same random perturbation, the mea-
surement of β is not limited by the cosmic variance, but continues to
improve as the statistical error of velocities is reduced by increasing
the number of velocity measurements. To obtain a more fundamen-
tal quantity, which does not depend on galaxy selection through
bias b, one can obtain fσ 8 by multiplying β by the amplitude of
the galaxy clustering, bσ 8. Similar techniques for going beyond the
cosmic variance limit have also been proposed by using multiple
populations of galaxy densities with different biases instead of den-
sity and velocity (McDonald & Seljak 2009; Gil-Marı́n et al. 2010;
Bernstein & Cai 2011).

The dependence of the growth rate on the wavenumber k is also
an important observable for distinguishing theories of gravity (e.g.
Song & Percival 2009; Jennings et al. 2012; Amendola et al. 2013b;
Asaba et al. 2013; Taruya et al. 2014). Although the overall nor-
malization of β depends on galaxy bias b, we can test whether β is
independent of k, as predicted by general relativity. Similarly, scale
dependence of β can also constrain primordial non-Gaussianity
which generates scale-dependent bias (Dalal et al. 2008; Matarrese
& Verde 2008; Slosar et al. 2008; Desjacques, Seljak & Iliev 2009;
Adshead et al. 2012; D’Aloisio et al. 2013). The advantage of mul-
tiple tracers over a single tracer become larger for testing the scale
dependence than for the case of assuming constant β, improving
the constraints especially at low k by evading the cosmic variance
(Seljak 2009; Hamaus, Seljak & Desjacques 2011; Ma, Taylor &
Scott 2013).

The purpose of this paper is to investigate whether future peculiar
velocity surveys are competitive with redshift surveys, and evaluate
how much the peculiar velocity data improve the constraints on
the growth rates fσ 8 and β. Burkey & Taylor (2004) introduced
the Fisher matrix analysis to peculiar velocity surveys, and forecast
the performance of the 6dF Galaxy Survey peculiar velocity survey
(6dFGSv; Jones et al. 2009; Magoulas et al. 2012). Since their paper
simply uses the linear velocity power spectrum without redshift-
space distortions, we first improve the model equations for auto-
and cross-power spectra of galaxy density and peculiar velocity by
comparing the equations with an N-body simulation in Section 2.
Using the model, we show how constraints from peculiar velocity
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surveys improve compared with those from redshift surveys, using
the Fisher matrix formalism in a general case in Section 3. We
present our new forecast for future peculiar velocity surveys in
Section 4, and summarize the results in Section 5. Throughout the
paper, we use a flat �CDM cosmology with �m = 0.273, �� =
0.727, �b = 0.0546, h = 0.705, σ 8 = 0.812, and ns = 0.961.

2 V ELOCITY POWER SPECTRU M IN
REDSHIFT SPAC E

In this section, we introduce simple model equations that describe
the auto- and cross-power spectra of galaxy number density and
line-of-sight velocity in redshift space. Although real-space dis-
tances to galaxies are in principle measurable in peculiar velocity
surveys, we assume that analyses are performed in redshift space.
This is because the velocity measurement errors are sufficiently
large that the real-space location has a significant error, complicat-
ing clustering measurements, whereas the redshift-space position
is accurately known. We use these model equations to calculate
the Fisher matrix in Section 3, assuming the density and velocities
are Gaussian random fields completely characterized by the power
spectra.

We denote the galaxy density contrast field by δg, the velocity
vector field by v, and the line-of-sight velocity by u, respectively.
We focus on the line-of-sight velocity, instead of the velocity vector
or the velocity divergence, because the line-of-sight velocity is the
observable in peculiar velocity surveys. Throughout the paper, we
assume the flat-sky approximation, such that the line of sight is
fixed to the third axis: u ≡ v3. Analysis of real data samples would
incorporate curved-sky effects, but the flat-sky approximation is
necessary for the forecasting approach outlined here and does not
affect the relative comparison of surveys.

The auto- and cross-power spectra of δ and u are ensemble aver-
ages of their products in Fourier space: Pgg(k) = V −1〈δg(k)δg(k)∗〉,
Pgu(k) = V −1〈δg(k)u(k)∗〉, and Puu(k) = V −1〈u(k)u(k)∗〉, where
V is a volume of a periodic box, and δg(k) and u(k) are the
Fourier transform of δg(x) and u(x), respectively, for a conven-
tion that the Fourier transformation of a function f (x) is f (k) =∫

V
f (x)e−ik·xd3x.
Although the cross-power spectrum is generally a complex-

valued function, the cross-power of δg and u has a purely
imaginary value by parity invariance. If you flip the Universe to
the mirror image, x 	→ −x and u	→ − u, the ensemble averaged
quantities, including the cross power, must be the same, because
the statistical property of the initial condition and the time
evolution by gravity are both indistinguishable under this parity
transformation. Fourier modes transform as δg(k) 	→ δg(−k) and
u(k) 	→ −u(−k), respectively, under the parity transformation. This
argument leads to, V Pgu(k) = 〈δg(k)u(k)∗〉 =
−〈δg(−k)u(−k)∗〉 = −〈δ∗

g (k)u(k)〉 = −V Pgu(k)∗, where the
reality condition f (−k) = f (k)∗, for any real function f (x), is
used. This shows that Pgu is pure imaginary. Note that this is true
for the ensemble average with infinite volume or infinite number
of random realizations; Pgu estimated from a finite number of
modes is consistent with pure imaginary only within statistical
uncertainty. This property of having either a real or a pure
imaginary off-diagonal element is not limited to linear perturbation
theory, but also applicable to non-linear power spectra.

Since the vorticity ∇ × v is negligible on large scales (Pueblas
& Scoccimarro 2009), the line-of-sight velocity field is directly
related to the velocity divergence field, θ (x) ≡ −∇ · v(x)/(aHf ),
to a good approximation on the scales we are interested in, where

H = H(z) is the Hubble parameter at redshift z. The corresponding
relation in Fourier space is

u(k) = −iaHf μθ(k)/k, (1)

where k ≡ |k|, and μ is the cosine of the angle between k and the
line of sight, μ ≡ k3/k. The continuity equation relates the velocity
divergence field to the time derivative of the density field. The θ

variable is defined such that it is equal to δ in the linear limit:
θ (k) = δm(k). We review the N-body simulation in Section 2.1, and
present the power spectra in real space in Section 2.2. In Section 2.3,
we introduce the model equations in redshift space, and test those
equations using the simulation.

2.1 The simulation

We use subhaloes in the GiggleZ simulation (Poole et al., in prepara-
tion) to calculate simulated galaxy and velocity power spectra. The
simulation has 21603 N-body particles of masses 7.5 × 109 h−1 M�,
in a periodic box of 1 h−1 Gpc on a side. The cosmological param-
eters used in this simulation are listed at the end of Section 1. Al-
though each forecast depends in detail on the fiducial cosmological
model, the relative performance of peculiar velocity and redshift-
space distortion surveys is much less sensitive to this and we expect
our conclusions to be robust. The simulation is performed with the
GADGET2 code (Springel 2005), and haloes and subhaloes are found
by the SUBFIND code (Springel et al. 2001). We mainly present the
results for subhaloes in the mass range 1011.5–1012 h−1 M�, which
roughly correspond to disc galaxies observed in H I surveys, but our
results are qualitatively the same for other subhaloes.

We compute the subhalo density field on a grid with the cloud-
in-cell (CIC) method. The computation of the velocity field has
technical difficulties that do not exist for the density field; for exam-
ple, using the CIC method for the velocity would cause a problem
of undefined velocities when the density of the cell is zero (see
e.g. Pueblas & Scoccimarro 2009; Jennings 2012). We assign the
line-of-sight velocity field on a 5123 grid using the nearest parti-
cle method, i.e. for each grid point, we assign the velocity of the
nearest particle to the grid. We fast Fourier transform the grids and
calculate their auto- and cross-power spectra. We subtract shot noise
from the galaxy auto-power spectrum, and correct for the smoothing
and aliasing caused by gridding. We explain the details of this pro-
cess in Appendix A, which enables us to construct reliable power
spectra and hence the model equations. Numerical errors caused
by gridding are less than 1 per cent for k ≤ 0.2 h Mpc−1 after the
corrections; our density and velocity power spectra are sufficiently
accurate for our purpose. Our code for calculating the velocity power
spectrum with the nearest particle method is publicly available at
https://github.com/junkoda/np_vpower.

2.2 The power spectra in real space

In this section, we present the angle-averaged auto- and cross-power
spectra in real space; we discuss the power spectra in redshift space
in Section 2.3. We angle average the power spectra in the upper-
half of Fourier space, which corresponds to an integral

∫ 1
0 dμ in

the continuous limit, V → ∞. We average the products of Fourier
modes in equally spaced bins with width �k = 0.01 h Mpc−1, and
plot the result against the averages of the magnitudes k in the bins
in Fig. 1. The redshift is z = 0, and the mass range of the subhaloes
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Figure 1. The angle-averaged auto- and cross-power spectra for galaxy density and line-of-sight peculiar velocity in real space. The three panels for Pgg,
Pgu, and Puu are for the galaxy auto-power spectrum, galaxy–velocity cross-power spectrum, and velocity auto-power spectrum, respectively. The points are
from subhaloes in the GiggleZ simulation, grey lines are linear theory, green lines are one-loop SPT, and orange lines are one-loop RPT. The blue line for
Pgg is the prediction of HALOFIT. The overall amplitudes of the theoretical curves are scaled by linear bias b and galaxy-matter cross-correlation coefficient,
rg (equations 3–5). The units of the power spectra Pgg, Pgu, and P are (h−1 Mpc)3, 100 km s−1 (h−1 Mpc)3, and (100 km s−1)2 (h−1 Mpc)3, respectively. In
the bottom panels, we plot the power spectra divided by the linear power spectra. The real-space power spectra are described by existing theoretical curves
reasonably well.

is (1011.5–1012) h−1 M�. Error bars indicate the uncertainty due to
cosmic variance and shot noise:

�Pgg = (Pgg + n̄−1)/
√

Nk, (2)

where Nk is the number of modes in the bin, and n̄ = 5.4 ×
10−3 (h−1 Mpc)−3 is the subhalo number density. We do not add
the shot noise to the error bars for the cross-power and the velocity
autopower spectrum: �P = P/

√
Nk .

We plot the power spectra calculated from perturbation theories
as the lines in Fig. 1 – the linear perturbation theory, the one-
loop standard perturbation theory (SPT; see Bernardeau et al. 2002,
for a review), and the one-loop renormalized perturbation theory
(RPT; Crocce & Scoccimarro 2006). We also plot the HALOFIT power
spectrum (Smith et al. 2003; Takahashi et al. 2012) for the galaxy–
galaxy autopower. We use publicly available codes CAMB1 (Lewis,
Challinor & Lasenby 2000) for the linear and the HALOFIT matter
power spectra. We calculate the matter-velocity divergence auto-
and cross-power spectra, Pmm, Pmθ , and Pθθ , using the Cosmology
Routine Library2 (Jeong & Komatsu 2006) for the SPT, and the
COPTER package by Carlson, White & Padmanabhan (2009) for the
one-loop RPT.3 All three power spectra are equal to each other in
the linear order: Pmm = Pmθ = Pθθ . We fit the N-body result with
two free parameters, the linear galaxy bias b and the galaxy–matter
cross-correlation coefficient rg:

Pgg(k) = b2Pmm(k), (3)

Pgu(k) = iaHf μbrgPmθ (k)/k, (4)

Puu(k) = (aHf μ/k)2Pθθ (k). (5)

These functional forms follow from the relation between u and θ in
equation (1). The galaxy correlation coefficient can be less than 1
if there is a stochastic bias (Dekel & Lahav 1999). We calculate the

1 http://camb.info
2 http://www.mpa-garching.mpg.de/komatsu/crl/
3 http://mwhite.berkeley.edu/Copter/

best-fitting bias value b = 0.92 by minimizing the χ2 between the
simulation and the HALOFIT power spectra, and find the best-fitting
correlation coefficient value rg = 0.98 by similarly fitting between
simulation and RPT cross-power Pgu for the fixed best-fitting b,
both in the range k ≤ 0.1 h Mpc−1. We assign equation (2) for the
statistical uncertainty in the power spectra. The figure shows that
the one-loop perturbation theories are in reasonable agreement with
the simulation result.

2.3 The power spectra in redshift space

2.3.1 The model in redshift space

We follow the prescription of modelling density and velocity power
spectra by Burkey & Taylor (2004, hereafter BT04), and im-
prove their model by introducing a new damping term Du for
the redshift-space distortion of the velocity field. Although BT04
use the velocity derivative instead of velocity, both quantities give
the same Fisher matrix forecast, as we see later. The galaxy clus-
tering is modelled by a linear galaxy bias b = √

Pgg/Pmm and
a galaxy–mass cross-correlation coefficient rg = Pgm/

√
PggPmm.

The redshift-space distortion introduces additional perturbation in
mass distribution, described by the Jacobian of the real-to-redshift-
space mapping, known as the Kaiser squashing effect (Kaiser 1987).
Unlike the density or the momentum, the velocity does not have the
squashing term. The same Jacobian term for the density and mo-
mentum cancels each other for the velocity, which is the momentum
divided by the density. We model the redshift-space distortion by
the Kaiser factor and a damping term (Peacock & Dodds 1994) with
the Lorentzian function (Ballinger, Peacock, & Heavens 1996):

Dg(k, μ)2 ≡ [1 + (kμσg)2/2]−1, (6)

where σg is a constant related to the pairwise velocity dispersion.
Previous literature does not include the redshift-space distortions in
the velocity field (i.e. sets Du = 1).

Our model equations for the auto- and cross-power spectra of
galaxy and line-of-sight velocity in redshift space, P s

gg, P s
gu, and
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Table 1. The best-fitting model parameters for subhaloes in var-
ious mass ranges, log10[M/(1 h−1 M�)] = 11.5–12.0, 12.0–12.5,
12.5–13.0, and 13.0–13.5, in addition to the subhalo number
density n̄ in (h−1 Mpc)−3. The damping parameters σ g and σ u

are in h−1 Mpc, and the random velocity parameter σ ∗ is in
km s−1, respectively. All of these parameters depend on the sub-
halo population.

Mass range n̄ b rg σ g σ u σ ∗
11.5–12.0 5.4 × 10−3 0.92 0.98 5.8 13.0 197
12.0–12.5 2.0 × 10−3 1.0 0.96 5.1 13.9 186
12.5–13.0 6.8 × 10−4 1.2 0.94 4.3 14.4 185
13.0–13.5 2.1 × 10−4 1.5 0.92 3.1 15.4 195

P s
uu, are the following:

P s
gg(k, μ) = (1 + 2rgβμ2 + β2μ4)D2

gb
2Pmm(k), (7)

P s
gu(k, μ) = iaHf μ(rg + βμ2)DgDubPmθ (k)/k, (8)

P s
uu(k, μ) = (aHf μ/k)2D2

uPθθ (k), (9)

where β ≡ f/b. We expect that these equations hold only on large
scales, k � 0.2 h Mpc−1; non-linearity and scale-dependent bias be-
come important for higher k. As we show below, we found strong
damping in the cross- and velocity autopower spectra. We empiri-
cally fit the simulation results by a sinc function:

Du(k) ≡ sin(kσu)/(kσu), (10)

where the constant σu is about 13 h−1 Mpc at z = 0 with a small
dependence on halo mass (see Table 1). The model of equation (10)
applies to scales k ≤ 0.2 h Mpc−1. In the following, we compare this
model with the simulation in redshift space.

2.3.2 Fitting the model parameters

We compute the redshift-space distortion in the simulation by shift-
ing the line-of-sight coordinates of subhaloes: x3 	→x3 + u/(aH),
and measure the power spectra in the same way as in real space.

In Fig. 2, we show that our model equations for the redshift space
are in good agreement with the simulation. In the upper panels, we
show the angle-averaged auto- and cross-power spectra in redshift
space; points are calculated from subhaloes in the N-body simula-
tion, dashed lines are the model equations in real space (equations
3–5), and the red solid lines are our model equations in redshift
space (equations 7–9). The shot noise is subtracted from the galaxy
autopower spectrum. We use the HALOFIT model for Pmm, and RPT
for Pmθ and Pθθ , respectively. We find the best-fitting damping
constant σ g = 5.8 h−1 Mpc by fitting the model equation for the
angle-averaged P s

gg to the simulation data with minimum χ2 for k
≤ 0.2 h Mpc−1, with fixed values of b and rg which we have ob-
tained by fitting the real-space power spectra. Similarly, we find the
best-fitting damping constant for the velocity, σ u = 13.0 h−1 Mpc,
by fitting the angle-averaged cross-power P s

gu for fixed b, rg, and
σ g. The angle-average integrals of the model equations (7)–(9) can
be performed analytically with elementary functions.

2.3.3 The cross-power spectrum

The cross-power spectrum in redshift space becomes nega-
tive at k = 0.23 h Mpc−1, and returns to positive values at
k = 1.06 h Mpc−1. This damping in velocity is much larger than that
affecting the galaxy autopower spectrum; it is a 50 per cent effect
at k = 0.1 h Mpc−1, and damps to almost zero at k = 0.2 h Mpc−1.
The large damping cannot be explained by uncorrelated random
velocities, in contrast to the damping in the density field (Pea-
cock & Dodds 1994), because such random displacement would
give the same damping for all three auto- and cross-spectra. The
complete correlation between the velocity field and redshift-space
displacement might be the origin of this large damping. We leave
explanations of this strong damping to future studies. Our empir-
ical damping formula is a good fit for k ≤ 0.2 h Mpc−1, which is
sufficient for our Fisher matrix forecast, but does not capture the
shape of negative cross-power spectrum for k > 0.23 h Mpc−1. Be-
cause of this oscillating feature, a positive damping function, such
as a Gaussian or Lorentzian, cannot fit the velocity cross-power
spectrum well.

Figure 2. The angle-averaged auto- and cross-power spectra of density and peculiar velocity in redshift space. The superscript s denotes that the power spectra
are in redshift space. Our model equations (solid red lines) are in good agreement with the subhaloes in the GiggleZ simulation (points). The dashed lines are
theoretical power spectra in real space. Bottom panels show the ratio of power spectra in redshift space to those in real space. The dotted lines are the Kaiser
limit. The deviations from the horizontal lines show the redshift-space damping. The circles are the simulation data divided by the theoretical real-space curve,
while the green diamond points at low k are those divided by the simulation power spectra in real space. In the top right-hand panel, the random velocity
component is shown by the blue dash–dotted line, and the model including the random term P rand

uu is plotted by the purple solid curve. In the bottom right-hand
model, the random term is subtracted from the velocity power spectrum. We find strong damping in the density–velocity cross-power and velocity autopower
spectra.
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Figure 3. The dependence of power spectra on the angle μ to the line of sight in redshift space. The points are calculated from subhaloes averaged in bins with
widths �μ = 0.1 and �k = 0.01, at k = 0.025, 0.065, 0.105, 0.405, and 0.185 h Mpc−1. The red lines are the models with Kaiser effect and damping (equations
7–9). See Fig. 1 for the units of the power spectra.

2.3.4 The velocity autopower spectrum

We can explain the velocity autopower spectrum in redshift space
with the same damping function Du, and an additional random
velocity component P rand

uu , which is plotted with a blue dash–dotted
line in the top right-hand panel of Fig. 2. We compute P rand

uu by
assigning independent Gaussian random velocities with zero mean
and standard deviation σ ∗ to subhaloes in redshift space. We find
the best-fitting value σ∗ = 197 km s−1 by fitting the angle-averaged
P s

uu by the sum of equation (9) and P rand
uu , for fixed σ u. We fit for

k ≤ 0.4 h Mpc−1 because we can determine the value of σ ∗ well at
high k where the random component is dominant. We plot the sum
of two terms by the solid purple line, which shows a good fit to the
subhalo data. The random velocity component P rand

uu is analogous to
the shot noise in galaxy autopower spectrum, in the sense that they
are both inversely proportional to the galaxy number density, but
P rand

uu also depends on the virial velocities of the galaxies. We find
that the value of σ ∗ for haloes is smaller than that for the subhaloes,
which is consistent with our interpretation that σ ∗ is related to virial
motions.

In the bottom panels of Fig. 2, we plot the ratios of power spectra
in redshift space to those in real space. The black circles are N-body
data divided by the model equations in real space, while the green
diamond points for k ≤ 0.1 h Mpc−1 are the same N-body data but
divided by the real-space power spectra calculated from the N-body
simulation. The grey dotted lines show the Kaiser limits, which do
not have the damping factors. The data points from the simulation
are in good agreement with our model equations with damping,
plotted by the red lines.

2.3.5 The angular dependence

In Fig. 3, we plot the auto- and cross-power spectra as a function
of wave vector angle μ for fixed k. Although kμ is the natural
combination for redshift-space distortion, we do not see a clear
dependence of the velocity damping on μ. We therefore choose a
damping factor that only depends on k = |k|, which is a reasonably
good fit for the overall behaviour.

Figs 2 and 3 show that the simple models are consistent with the
N-body simulation. The best-fitting model parameters depend on
the subhalo sample. We summarize the parameters in Table 1. For
more precise comparisons between simulations and recent models
of galaxy or halo power spectrum in redshift space, see, for example,

Nishimichi & Taruya (2011), Kwan, Lewis & Linder (2012), de la
Torre & Guzzo (2012), Okumura, Seljak & Desjacques (2012),
Ishikawa et al. (2014). Although we do not need accurate models
for the Fisher matrix forecast, such accurate models are important to
extract unbiased parameters from data, and increase the information
by extending the range of k that can fit data without systematic error.
Similar work is necessary for the velocity power spectrum to analyse
future peculiar velocity data with high accuracy. For example, we do
not include velocity bias in our model (Desjacques & Sheth 2010;
Elia, Ludlow & Porciani 2012).

3 T H E F I S H E R M AT R I X F O R G A L A X Y
N U M B E R D E N S I T Y A N D V E L O C I T Y

The Fisher information matrix F provides the best possible confi-
dence intervals of unknown parameters, θ i, such as fσ 8, β, or �m,
under the assumption that the likelihood function can be approxi-
mated by a multivariate Gaussian about the maximum likelihood.
The inverse matrix F−1 gives the covariance matrix of the parame-
ters θ i, and �θ i = (F−1)ii gives the 1σ uncertainty in θ i, marginal-
ized over all the other parameters. In the context of large-scale struc-
ture, the Fisher matrix forecasts the uncertainties in cosmological
parameters that can be determined from given observational uncer-
tainties in the power spectrum, which consist of sample variance of
random density fluctuations, and shot noise from finite number of
galaxies (Tegmark 1997; Tegmark et al. 1998). Observational er-
ror in peculiar velocity propagates to uncertainties for the velocity
power spectrum (BT04).

We first review the Fisher matrix for the galaxy number density δg

and the line-of-sight velocity u in Section 3.1. As BT04 do not show
the detailed derivation of the Fisher matrix with spatially varying
noise term, and the nice derivation by Abramo (2012) only focuses
on the uncertainty of power spectra (not of parameters θ i in general),
we summarize the mathematical derivation of the Fisher matrix in
Appendix B1, following Abramo (2012). The Fisher matrix for
N multiple tracers (which can be a combination of density and
velocity, or multiple density fields with different galaxy bias) has
two formulae that are apparently different; one is written as a trace
of N × N covariance matrices of Gaussian density fields (McDonald
& Seljak 2009), and the other is written as a bilinear form with the
N(N + 1)/2-dimensional covariance matrix of power spectra (BT04;
White et al. 2009). We show in the appendix that these two formulae
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are algebraically equal to each other. As a result, the Fisher matrix
we use in this paper is exactly equal to that used by BT04.

We note that a Fisher matrix study only provides a statistical
comparison of forecast errors, ignoring systematics. Peculiar veloc-
ity surveys contain potential sources of systematic error not con-
sidered in our analysis, including calibration of the standard can-
dle distances and non-Gaussianity in the resulting distance errors,
selection-function effects from the distribution of objects on the
sky, and non-linear effects in the modelling of velocities in redshift
space. Whilst it is beyond the scope of this study to exhaustively
quantify systematic effects, we note that efforts are continuing to
address these effects in data and simulations, for example as pre-
sented by Davis et al. (2011), Magoulas et al. (2012), and Johnson
et al. (2014).

3.1 The basic equations

The Fisher matrix for a multivariate Gaussian random variable with
mean vector μ and covariance matrix C is

Fij = ∂μT

∂θi

C−1 ∂μ

∂θj

+ 1

2
tr

[
C−1 ∂C

∂θi

C−1 ∂C

∂θj

]
, (11)

where T represents the vector transpose (Vogeley & Szalay 1996;
Tegmark 1997; Tegmark, Taylor & Heavens 1997). In a simple
case, in which galaxy shot noise n−1

g is spatially homogeneous,
and velocity noise σu-noise is also constant, one can easily derive
the following expression for a Fisher matrix (McDonald & Seljak
2009) by applying the formula to real and imaginary parts of the
Fourier modes, δs

g(k) and us(k), in a periodic box of volume V:

Fij = 1

2
V

∫
d3k

(2π)3
tr

[
�̃(k)−1 ∂�̃(k)

∂θi

�̃(k)−1 ∂�̃(k)

∂θj

]
, (12)

where the summation over independent k modes is approximated by
an integral (1/2)V

∫
d3x/(2π)3, and �̃ is a matrix of power spectra

including noise terms of shot noise and velocity measurement error:

�̃ ≡
(

P s
gg(k) + n−1

g P s
gu(k)

P s
ug(k) P s

uu(k) + n−1
u σ 2

u-noise

)
. (13)

We allow the number density for shot noise ng to differ from the
number density of the velocity measurements nu, because galaxies
with peculiar velocity measurements are usually a subset of galaxies
with redshift measurements (nu < ng); measuring peculiar velocity
requires much higher signal-to-noise ratio in the observations.

In reality, the noise terms vary with distance as the observed
galaxy number density decreases with distance due to the flux
limit of observations, and the peculiar velocity error from stan-
dard candles increases linearly with distance. We assume that
the velocity noise comes from random non-linear motions of rms
σ∗ ∼ 300 km s−1, and observational errors of rms σ uobs, which orig-
inate from the intrinsic scatter in astrophysical relations used as
distance indicators:

σ 2
u-noise = σ 2

∗ + σ 2
uobs, σuobs(x) = εH−1

0 |x|, (14)

where the fractional error ε is typically about 8 per cent for super-
novae, and 20 per cent for the Tully–Fisher and the Fundamental
Plane distance indicators. We assume that these noise terms can
be determined directly from observations, and are therefore not a
function of uncertain cosmological parameters θ i.

It turns out that we can replace the volume V by a volume integral∫
d3x under the ‘classical approximation’ (Hamilton 1997; Abramo

2012):

Fij = 1

2

∫
d3xd3k

(2π)3
tr

[
�̃(k, x)−1 ∂�̃

∂θi

�̃(k, x)−1 ∂�̃

∂θj

]
, (15)

where �̃ now depends on x through noise terms, ng(x), nu(x), and
σuobs(x). This mixture of a wavenumber and a position seems odd
because Fourier transformations of δ(x) and u(x) do not leave x
as an independent variable. We can imagine, however, dividing the
volume V into subvolumes where noise terms are approximately
constant, Fourier transforming the fields in each of the subvolume,
and obtaining equation (12) in the subvolume. The sum of such
subvolume Fisher matrices gives equation (15). This process can
be justified only if the wavelength is much smaller than the size of
the subvolume, because (a) Fourier transform may not be possible
for wavelength larger than the size of the subvolume, and (b) the
simple summation of ‘sub-Fisher matrix’ is correct only if the fields
are uncorrelated between the subvolumes. Since long-wavelength
modes break these conditions, the classical approximation is valid
for wavelengths smaller than the scale of noise variation, which is
in the order of survey size. This original discussion of the classical
approximation by Hamilton (1997) for a single density field is gen-
eralized to multiple tracers by Abramo (2012). We summarize the
mathematical derivation for equation (15) in Appendix B1.

For a single field of galaxy density, the Fisher matrix reduces to
the well-known form (Tegmark 1997):

F
gg-only
ij = 1

2

∫
d3xd3k

(2π)3

∂P s
gg

∂θi

∂P s
gg

∂θj

[
P s

gg(k) + n−1
g (x)

]−1
. (16)

The Fisher matrix of the peculiar velocity power spectrum has a
similar form

F
uu-only
ij = 1

2

∫
d3xd3k

(2π)3

∂P s
uu

∂θi

∂P s
uu

∂θj

[
P s

uu + n−1
u σ 2

uobs

]−1
. (17)

We also show results of the Fisher matrix of density–velocity cross-
power only:

F
cross-only
ij =

∫
d3xd3k

(2π)3

∂P s
gu

∂θi

∂P s∗
gu

∂θj

×
[
(P s

gg + n−1
g )(P s

uu + n−1
u σ 2

uobs) + P s2
gu

]−1
. (18)

See Appendix B3.2 for the covariance of the cross-power spectrum.

3.2 General results

Before we forecast cosmological constraints for specific surveys,
we show general results for constant number density ng = nu = n̄.
We consider how the two-field Fisher matrix for galaxy density and
peculiar velocity (equation 15) improves cosmological constraints
compared to those from galaxy redshift only (equation 16), peculiar
velocity only (equation 17), or cross-power only (equation 18).

The six-dimensional integral in the Fisher matrix reduces to a
three-dimensional integral by symmetry. We numerically integrate
the Fisher matrix up to wavenumber kmax and radius rmax = cH0zmax,
which corresponds to redshift zmax, where c = 3.0 × 105 km s−1 is
the speed of light:∫

d3xd3k = 4π�sky

∫ kmax

0
dk

∫ rmax

0
dr

∫ 1

0
dμ, (19)

where �sky is the steradian of the field of view; we use �sky = 4π

in this section, but all results simply scale as �θ ∝ �
−1/2
sky . We
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Table 2. 1σ constraints on parameters for constant galaxy number density n̄ = 0.01 (h−1 Mpc)−3 from two-field, galaxy density
only (RSD only), and velocity power spectrum only.

Free parameters Fractional uncertainties �θ i/θ i (per cent)
kmax = 0.1 h Mpc−1 kmax = 0.2 h Mpc−1

θ i fσ 8 β rg σ g σ u fσ 8 β rg σ g σ u

Two field f σ8, β(linear) 2.4 2.1 1.8 1.9
fσ 8, β 2.5 2.2 1.8 2.0
fσ 8, β, rg 2.5 2.2 0.30 1.8 2.0 0.30
f σ8, β, �bh

2, �ch
2, h, ns 8.0 2.2 2.2 2.0

fσ 8, β, σ g, σ u 3.3 2.9 65 14 2.4 2.4 9.6 4.6
All 8.5 2.9 0.30 67 14 2.8 2.4 0.30 11 4.7
All +Planck prior 3.4 2.9 0.30 65 14 2.4 2.4 0.30 9.9 4.6

RSD only fσ 8, β 13.8 15.8 4.9 5.6
fσ 8, β, σ g 18.7 20.2 85.2 10.1 10.5 17.0
fσ 8, β, rg 136 134 189 48.4 47.7 67.3

Velocity only fσ 8 4.0 3.7

integrate up to kmax = 0.2 h Mpc−1 and zmax = 0.1 unless otherwise
mentioned.

We use equations (7)–(9) for the power spectra in redshift space,
with Pmm, Pmθ , and Pθθ from the one-loop RPT. In this sec-
tion, we set fiducial values, b = 1, rg = 1, σg/

√
2 = 3 h−1 Mpc,

σ u = 13 h−1 Mpc for the model power spectrum, and set noise terms
using galaxy number density n̄ = 0.01 (h−1 Mpc)−3, 20 per cent
observational velocity error, ε = 0.2, and non-linear random ve-
locity rms σ∗ = 300 km s−1. We use the �CDM cosmology for
the fiducial value of the growth rate parameter f = �0.55

m (Linder
2005), but we do not assume this relation between f and �m in
the derivatives in the Fisher matrix, because we constrain possi-
ble deviation of fσ 8 from the �CDM cosmology. In the following
subsections, we present the results of the Fisher matrix analysis for
different subsets of cosmological parameters. We summarize the
results in Table 2.

3.2.1 Two free parameters: fσ 8 and β

We first show results for two parameters θ = (f σ8, β), assuming
other parameters are exactly known. Because f, σ 8, and b are com-
pletely degenerate, giving an uninvertible Fisher matrix, we have to
select two combinations of three variables. For the fiducial set-up,
the constraint on the growth rate fσ 8 from the two-field Fisher matrix
is 1.8 per cent, while the constraint from redshift-space distortion
only (P s

gg only) is 4.9 per cent. Adding peculiar velocity therefore
improves the constraint by more than a factor of 2.

In Fig. 4, we show the 1σ constraints on fσ 8 and β as a function
of kmax. The figure shows that most of the constraints from velocity
come from low k ≤ 0.1 h Mpc−1, while constraints from redshift-
space distortion improves at large k. The velocity power spectrum
damps by a factor k−2 faster than the galaxy power spectrum, and
the measurement error is significant; these two factors make the
signal-to-noise ratio of velocity decline very rapidly as k increases.
In Fig. 5, we plot the same constraints as a function of zmax, for
kmax = 0.2 h Mpc−1. The constraint from two fields for zmax = 0.1
are comparable to the constraint from redshift-space distortion for
zmax = 0.2, which has a volume of 1 (h−1 Gpc)3.

In Fig. 6, we plot the constraints as a function of galaxy number
density n̄, for kmax = 0.2 h Mpc−1 and zmax = 0.1. While constraints
from redshift-space distortion alone reach the cosmic variance limit
at n̄ ∼ 10−4 (h−1 Mpc)3, the constraints from two fields improve
further with galaxy number density. Although the constraint on β

Figure 4. Constraints on fσ 8 (upper panel) and β (lower panel) as a func-
tion of kmax from galaxy density power spectrum only (‘P s

gg only’, red
dashed lines), velocity power spectrum only (‘P s

uu only’, green dotted lines),
density–velocity cross-power only (‘P s

gu only’, purple dash–dotted lines),
and from both density and velocity field (‘two field’, blue solid lines). The
galaxy number density is fixed to n̄ = 10−2 (h−1 Mpc)−3. Parameters other
than fσ 8 or β are fixed to their fiducial values, including zmax = 0.1. The
velocity power spectrum alone (P s

uu) does not constrain β because it does
not depend on galaxy bias.

is not limited by cosmic variance (at linear order with rg = 1), the
constraint on fσ 8 is limited by the cosmic variance on the cluster-
ing amplitude of galaxies, bσ 8. The cosmic variance limit of fσ 8,
however, is at the sub-per cent level because bσ 8 can be measured
very precisely. The bottom panel illustrates that the constraint on β

using both density and velocity is not limited by cosmic variance;
the constraint continues to improve as number density increases,
as the large number reduces the measurement error of velocity
on average. The cancellation of cosmic variance is not perfect for
non-linear power spectra because Pmm, Pmθ , and Pθθ are not ex-
actly equal to each other. However, the difference between linear
and non-linear power spectra affects the Fisher matrix results only
at very high number density, n̄ � 0.1 (h−1 Mpc)−3, probably be-
cause signal-to-noise ratio is otherwise not good enough anyway
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Figure 5. Same as Fig. 4, but as a function of zmax instead of kmax. kmax is
fixed to 0.2 h Mpc−1.

Figure 6. Constraints on fσ 8 (upper panel) and β (lower panel) as a function
of galaxy number density (n̄ = ng = nu). See Fig. 4 for the description of
lines. The short-dashed lines are results from two fields using linear theory;
the one-loop RPT is used for other lines. Constraints on β from two fields
continue to decrease, while the constraint from RSD only is limited by
cosmic variance.

for k � 0.1 h Mpc−1, where the non-linearity makes the difference.
In the figure, we plot the constraints using the linear power spectrum
with the blue short dashed lines.

3.2.2 Three free parameters: fσ 8, β, and rg

From galaxy density alone, the growth rate fσ 8 and galaxy corre-
lation coefficient rg are highly degenerate. BT04 pointed out that
peculiar velocity breaks this degeneracy and constrains rg extremely
well. Our result confirms this; the constraint on fσ 8 from the red-

shift survey weakens from 5 to 48 per cent, compared to the two-
parameter case (Section 3.2.1), while two-field data constrains rg

to 0.3 per cent, and fσ 8 to the same precision as the two-parameter
case. Peculiar velocity surveys can constrain growth rates, fσ 8 and
β, equally well even if we add rg as a free parameter.

3.2.3 Four free parameters: fσ 8, β, σ g, and σ u

Because the damping factor of the galaxy power spectrum, σ g, is
affected by complicated non-linear pairwise velocity (e.g. Scocci-
marro 2004), which depends on the galaxy population, σ g is often
treated as a nuisance parameter fitted against data. For the velocity
damping factor, σ u, we do not yet have a theoretical model. Without
knowing how it depends on cosmological parameters, we have to
treat it as a free parameter as well. We investigate the effects of
treating these damping factors as free parameters in this section.
Because we know the order of magnitude of these parameters and
know that they are positive, we add 100 per cent priors to the Fisher
matrix:

Fσ prior
σgσg

= σ−2
g , F σ prior

σuσu
= σ−2

u . (20)

The constraints on fσ 8 and β weaken by about 20–30 per cent,
from 1.8 to 2.4 per cent on fσ 8, and from 2.0 to 2.4 per cent on
β, respectively. The constraint from redshift-distortion alone also
weakens from 5 to 10 per cent. We conclude that uncertainty in the
damping parameter has a moderate, but not severe, effect on the
forecast constraints.

3.2.4 Free cosmological parameters

Finally, we vary cosmological parameters, cold dark matter density
�ch

2, baryon density �bh
2, Hubble constant h, and spectral index

ns in addition to fσ 8 and β. We take the derivative with respect to
cosmological parameters numerically by generating power spectra
with cosmological parameters changed by ±1 per cent:

∂P

∂θi

≈ P (θi + �θi) − P (θi − �θi)

2�θi

, (21)

where �θ i = 0.01θ i. The constraint on β is unaffected, because
the relation between δg and u only depends on β, not on other
cosmological parameters in the linear order. The constraint on fσ 8

weakens from 1.8 to 2.2 per cent.
Since cosmological parameters are well constrained by the CMB,

we add the prior expected from the Planck observation (Planck Col-
laboration 2013). We use the forecast for the full Planck mission by
Perotto et al. (2006); we calculate the covariance matrix of �ch

2,
�bh

2, h, and ns, marginalized over the other parameters, using their
publicly available Markov chain Monte Carlo data.4 We add the
inverse of the covariance matrix to the Fisher matrix as an indepen-
dent prior from Planck. We do not add a prior on f or σ 8 from the
CMB, because model-dependent extrapolation to z = 0 is necessary
for such constraints. The Planck priors marginalized for each pa-
rameter are ��bh

2 = 0.00022, ��ch
2 = 0.0024, �h = 0.017, and

�ns = 0.0074.
After adding the Planck prior, the constraints on fσ 8 and β recover

the two-parameter constraint. We also vary all nine parameters,
θ = (f σ8, β, rg, σg, σu, �ch

2,�bh
2, h, ns), with the Planck prior.

The result is same as the four-parameter constraint with fσ 8, β, σ g,
and σ u. With the precise measurement from the CMB, the shape

4 lesgourg.web.cern.ch/lesgourg/codes/chains_0606227.html
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Figure 7. Number density (upper panel) and cumulative number (lower
panel) of galaxies for the 6dF Galaxy Survey velocity subsample (6dFGSv,
grey line), TAIPAN survey (red lines), and WALLABY+WNSHS survey
(blue lines). Dashed lines are for the redshift (density only) samples, and
solid lines are for the peculiar velocity subsamples.

of the power spectrum is no longer a source of uncertainty in the
growth rate.

We have presented the results of the two-field Fisher matrix anal-
ysis for galaxy density and peculiar velocity, comparing with those
for a single field with density or velocity only. Peculiar velocity mea-
surements improve the measurements for more than a factor of 2
compared to density alone for n̄ = 10−2 (h−1 Mpc)−3, and improve
even more as we increase the number density, without the cosmic
variance limit. The non-linear power spectrum with RPT does not
alter the Fisher matrix results significantly compared to the linear
power spectrum. The uncertainty in the redshift-space damping pa-
rameters, σ g and σ u, degrade the constraints by 20–30 per cent,
which can be improved by future theoretical work.

4 FO R E C A S T I N G F U T U R E P E C U L I A R
V E L O C I T Y S U RV E Y S

We apply our Fisher matrix of galaxy density and peculiar velocity
to existing and future peculiar velocity surveys. In Section 4.1,
we first review the measurements from the existing 6dF Galaxy
Survey (6dFGS), and the Fisher matrix forecast by BT04 for the 6dF
survey, and compare them with our calculations. We then present
the forecasts for the future surveys in Sections 4.2 and 4.3. We
use distance-dependent galaxy numbers, galaxy bias b, and sky
coverage �sky expected for each of the surveys, which we describe
in the following sections. Other parameters in the Fisher matrix are
the same as those in Section 3.2. In Fig. 7, we plot the expected
galaxy number densities with redshift measurement, ng, and with
additional peculiar velocity measurement, nu. We summarize the
results in Table 3.

4.1 6dF Galaxy Survey

The 6dFGS is a low-redshift survey of early-type galaxies out to
z � 0.15, covering 17 046 deg2 in the southern sky, and containing

136 304 redshifts (Jones et al. 2004, 2009). The velocity subsample
(6dFGSv) contains 8885 galaxies in the redshift range z ≤ 0.05,
with peculiar velocities measured through the Fundamental Plane
relation (Magoulas et al. 2012). The redshift survey measured the
growth rate through the redshift-space distortions with 13 per cent
precision at effective redshift of 0.067 (fσ 8 = 0.423 ± 0.053; Beutler
et al. 2012). Their Fisher matrix calculation gives constraints on
fσ 8 of 23 per cent for kmax = 0.1 h Mpc−1, and 8.3 per cent for
kmax = 0.2 h Mpc−1, consistent with their actual analysis (all values
for wavenumbers k are in units of h Mpc−1, hereafter). The velocity
subsample combined with the reconstructed velocity field from a
full-sky density field measures β with about 25 per cent precision
(Magoulas et al., in preparation).

In order to determine the redshift distribution of galaxies, we use
125 random mocks of the 6dFGS velocity subsample, each of which
contains 8986 galaxies (We recently removed 90 objects from the
subsample, which have problems with photometry or spectroscopy.
The number we use here is that before the removal.) We require the
J-band luminosity J ≤ 13.65, and velocity dispersion to be larger
than 116 km s−1 (see Magoulas et al. 2012, for the details about
the mock sample). Velocity subsample is limited to zmax = 0.055
because the velocity dispersion measurements for the Fundamental
Plane relation become dominated by systematics beyond that red-
shift with the 6dF spectrograph. Because the Fisher matrix analysis
for the redshift sample is already discussed in Beutler et al. (2012),
we only consider the velocity subsample in this paper, ng = nu. The
field of view is the southern half of the sky, excluding the Galactic
plane (Galactic latitude |b| < 10◦), which is �sky = 1.65π sr. We set
galaxy bias to b = 1.4 (Beutler et al. 2012), and fractional velocity
measurement error to ε = 0.25.

Our Fisher matrix calculation with two free parameters (fσ 8 and
β) gives 16 per cent for kmax = 0.1, and 13 per cent for kmax = 0.2,
respectively, on the uncertainty of β. This is in the same order
as the peculiar velocity analysis by Magoulas et al. (in prepara-
tion), but we cannot compare our Fisher matrix results directly with
their analysis, because our Fisher matrix results are the combined
constraints from redshift-space distortions and the velocity mea-
surements, while the velocity–velocity analysis uses the density to
construct the model velocity, but is not combined with the redshift-
space distortion analysis for the density.

BT04, on the other hand, predicted a precision of 5 per cent
for the 6dFGS from redshift-space distortion alone, and 2 per cent
from the two-field Fisher matrix for density and velocity. Both of
these forecasts are much smaller than the results of the 6dF survey,
including the Fisher matrix calculation in Beutler et al. (2012).
Details, such as cosmological parameters or power spectrum model,
cannot explain the difference. One possibility is that they might have
used an order of magnitude larger number density, even though their
estimates of the total galaxy number, about 105 redshifts and about
15 000 velocity measurements, are roughly correct; their equation
(29) relates total number for galaxies Ng to number density (number
of galaxies per unit volume), but the actual integral of the equation
gives 4πNg in total, which means that the number density could be
4π larger than it should be. If this were true, it would explain why
their forecast is closer to our forecast for Widefield ASKAP L-band
Legacy All-sky Blind Survey (WALLABY) rather than for 6dFGS.

4.2 TAIPAN survey

Transforming Astronomical Imaging surveys through Polychro-
matic Analysis of Nebulae (TAIPAN) survey is a planned future
successor of the 6dFGS using the UK Schmidt Telescope with
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Table 3. A Fisher matrix forecast for fractional uncertainties of parameters �θ i/θ i, including constraints on growth
factors fσ 8 and β from the two-field Fisher matrix of galaxy density and peculiar velocity, galaxy density only (‘RSD
only’), and velocity only (‘Puu‘). The upper block of numbers are for kmax = 0.1 h Mpc−1, and the lower block is for
kmax = 0.2 h Mpc−1.

Survey Free parameters Fractional uncertainties �θ i/θ i (per cent)
Two fields RSD only Puu

θ i fσ 8 β rg σ g σ u fσ 8 β rg σ g fσ 8

6dFGSv fσ 8, β 15 16 25
fσ 8, β, rg 15 16 4.2
fσ 8, β, σ g, σ u 18 19 96 66

TAIPAN fσ 8, β 7.1 7.4 28 31 14
fσ 8, β, rg 7.1 7.4 0.87 370 360 47
fσ 8, β, σ g, σ u 8.9 9.1 33 36 92

WALLABY+WNSHS fσ 8, β (linear) 3.5 3.8 11 13 13
fσ 8, β 4.3 4.8 11 13 13
fσ 8, β, rg 4.4 4.8 0.29 80 78 120
fσ 8, β, σ g, σ u 6.0 6.4 70 23 14 16 85 79
All +Planck prior 6.1 6.4 0.29 70 23 81 80 120

(kmax = 0.1 h Mpc−1)
6dFGSv fσ 8, β 12 13 24

fσ 8, β, rg 12 13 4.2
fσ 8, β, σ g, σ u 15 16 43 66

TAIPAN fσ 8, β 5.6 6.2 10 11 14
fσ 8, β, rg 5.6 6.1 0.87 130 130 170
fσ 8, β, σ g, σ u, 7.5 7.6 16 17 33 37 93

WALLABY+WNSHS fσ 8, β (linear) 2.6 3.0 4.3 5.2 11
fσ 8, β 3.0 3.6 4.3 5.2 11
fσ 8, β, rg 3.0 3.6 0.29 32 31 50
fσ 8, β, σ g, σ u, 4.5 4.7 13 7.0 8.3 8.9 18
All +Planck prior 4.6 4.8 0.29 14 7.0 34 33 50 20

(kmax = 0.2 h Mpc−1)

upgraded fibres. The new spectrograph improves the velocity dis-
persion measurements, which allows us to extend the upper limit
of the velocity subsample from 0.055 for 6dFGSv to 0.1, and to
increase the number density by decreasing the lower bound of the
velocity dispersion from 116 km s−1 for 6dFGSv to 70 km s−1.

We generated 125 mock Fundamental Plane galaxies for
TAIPAN, similar to those for the 6dFGSv, to estimate the number
of observed galaxies. We assume peculiar velocity measurements
are available for J-band magnitude brighter than 15.15, and veloc-
ity dispersion larger than 70 km s−1 up to z = 0.1. We estimate the
total number of velocity sample to be about 45 000. The number of
redshifts in the sample increases by about a factor of 4 compared
to 6dFGS, out to z ∼ 0.2, assuming an r-band magnitude limit of
17. We assume a galaxy bias b = 1.4, same as for 6dFGS, and a
fractional velocity error ε = 0.2.

The TAIPAN survey can constrain fσ 8 to 7.1 per cent (kmax = 0.1)
or 5.6 per cent (kmax = 0.2) if the damping constants, σ g and σ u,
are known, or 8.9 per cent (kmax = 0.1) to 7.5 per cent (kmax = 0.2)
if they are unknown nuisance parameters. Therefore the constraints
from the TAIPAN survey are expected to be a factor of 2 better
than those from the 6dFGSv. We will also show in Section 4.4 that
TAIPAN will be able to put interesting constraints on k-dependent
growth rates.

4.3 The WALLABY and the WNSHS surveys

WALLABY5 is a planned H I survey with the Australian SKA
Pathfinder (ASKAP), covering 3π sr of sky (Johnston et al. 2008;

5 http://www.atnf.csiro.au/research/WALLABY

Duffy et al. 2012, and references therein). A similar survey, The
Westerbork Northern Sky H I Survey (WNSHS),6 is planned in the
other π sr in the Northern hemisphere using Aperture Tile in Fo-
cus (APERTIF) on the Westerbork Synthesis Radio Telescope. For
simplicity, we assume that both surveys will have the predicted
WALLABY rms of 1.6 mJy in a channel of width 3.9 km s−1.
WNSHS may be somewhat deeper in practice. This results in a
5σ (velocity integrated) redshift catalogue of ∼0.8 million objects
(Duffy et al. 2012). For Tully–Fisher velocities, additional con-
straints of width >80 km s−1, inclination >30◦, and 3σ per channel
result in a reduced mock catalogue of ∼32 000 galaxies.

We assume galaxy bias b = 0.7 following Beutler et al. (2012),
which is based on measurements from the H I Parkes All-Sky Survey
(Basilakos et al. 2007). The fractional velocity error is set to ε = 0.2.
Our Fisher matrix forecast for this all-sky H I is 3.0 per cent for
fσ 8, and 3.6 per cent for β, for kmax = 0.2, if we know the values
of damping constants σ g and σ u. The non-linear effect slightly
weakens the constraint; the forecasts using the linear power spectra
are 2.6 per cent for fσ 8 and 3.0 per cent for β, respectively. If
we marginalize over damping constants, the constraints degrade by
30–50 per cent. Compared to redshift measurements alone, adding
peculiar velocity data reduces the uncertainties by about 40 per cent.
The galaxy correlation coefficient rg can be constrained to 0.3 per
cent.

Beutler et al. (2012) have forecast constraints on the growth
rate fσ 8 from redshift-space distortion alone: 10.5 per cent for
k = 0.1, and 3.9 per cent for k = 0.2, respectively. Our forecasts are

6 http://www.astron.nl/jozsa/wnshs
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Figure 8. Constraints on fσ 8 and β as a function of wavenumber k, in bins
of widths �k = 0.01 h Mpc−1. See Fig. 7 for line types and colours. Peculiar
velocity surveys improve the constraints in k bins for k ≤ 0.1 h Mpc−1,
because they are not limited by the cosmic variance. k-dependence constrains
modified theories of gravity that have scale-dependent growth rates.

consistent with these results, although slightly larger for k = 0.2.
They also reported that the multiple-tracer method (McDonald &
Seljak 2009) between early-type galaxies from TAIPAN survey and
gas-rich galaxies from the WALLABY survey in the overlap volume
does not improve the constraints, giving almost the same constraint
as WALLABY+WNSHS only. This is because the number density
for TAIPAN is not large enough to make the multiple biased-tracer
method effective. The method works best when both of the galaxy
populations have high number densities, and simultaneously have
a large difference in their bias, which is a difficult condition to
satisfy. The advantage of the peculiar velocity survey is that two
tracers (density and velocity) are available with high densities, only
limited by the condition that the Tully–Fisher relation holds.

4.4 Constraining k dependence

Measuring growth rates, fσ 8 or β on different scales, as a function
of wavenumber k for example, is an independent test of general
relativity on cosmological scales. General relativity predicts that
these growth rates are functions of time only, independent of the
wavenumber, but other theories of gravity can have k-dependent
growth rates. The growth rate β can also be scale dependent at large
scales if non-Gaussian initial conditions introduce scale-dependent
bias. In Fig. 8, we show constraints on the growth rates in bins
of width �k = 0.01 h Mpc−1. We integrate the Fisher matrix with
two free parameters, fσ 8 and β, in wavenumber ranges n�k to
(n + 1)�k for n = 0, 1, 2, . . . . The multi-tracer approach with
density and velocity improves the constraints on β at large scales.
The TAIPAN survey can measure growth rates, β and fσ 8, to 20–
30 per cent in each bin, and the WALLABY+WNSHS surveys
produce measurements with about 15 per cent precision in each bin.
One caveat is that the classical approximation in the Fisher matrix
could break down, giving inaccurate forecasts, at low k comparable
to the size of the surveys; we leave the work beyond classical

approximation to future studies. The two-field constraints on growth
rates predict large improvements for k ≤ 0.1 h Mpc−1 by evading the
cosmic variance limit. These are the ranges where we can recognize
possible deviations from the �CDM model, distinguishing them
from non-linear dynamics, non-linear redshift-space distortions, or
scale-dependent galaxy bias.

5 SU M M A RY A N D D I S C U S S I O N

We summarize our conclusions as follows.

(i) We have improved the model for the auto- and cross-power
spectra of galaxy density contrast and line-of-sight peculiar velocity
fields. We show that the density–velocity cross-power spectrum and
the velocity autopower spectrum contain strong redshift-space dis-
tortions. We introduce a new damping term to the model equations,
which needs to be considered in future velocity analyses to avoid
biased results.

(ii) We compare the model equations for the power spectra with
the GiggleZ simulation using the subhaloes. We calibrate the near-
est particle method to compute reliable velocity power spectra
(Appendix A). The comparison shows that our model agrees well
with the simulation for k � 0.2 h Mpc−1.

(iii) We derive the Fisher matrix formula for multiple correlated
fields when the noise terms vary with distance, including a pair
of galaxy density and velocity fields whose shot noise and ve-
locity measurement error increase with distance (Appendix B1).
The derivation reminds us that the Fisher matrix uses the classical
approximation which breaks down at low k. Since much of the con-
straint from peculiar velocity comes from low k, it is worthwhile
to re-examine the validity of the classical approximation for pe-
culiar velocities in the future. We also derive an equivalent Fisher
matrix formula written in terms of the covariance of power spectra
estimators (Appendix B3).

(iv) When the number density of the peculiar velocity sample
is the same as the redshift sample, nu = ng, the peculiar velocity
survey improves the constraints on growth rates, fσ 8 and β by
more than a factor of 2 at kmax = 0.2 h Mpc−1 and about a factor of
5 for kmax = 0.1 h Mpc−1 for redshifts less than 0.1 (Section 3.2).
Peculiar velocity surveys can also measure the galaxy–matter cross-
correlation coefficient rg very precisely. With redshift-space distor-
tions alone, in contrast, fσ 8 and rg are highly degenerate, weakening
the constraint by an order of magnitude if rg is a free parameter.

(v) Lack of knowledge of the damping constants of redshift-
space distortions, σ g and σ u, degrade the constraint on fσ 8 by about
50 per cent, e.g. from 3 to 4.5 per cent for the forecast for the
WALLABY survey. Further development of the theory of velocity
power spectrum in redshift space is necessary to extract accurate
parameters from future peculiar velocity surveys. Uncertainties in
the other cosmological parameters do not affect the constraints on
the growth rates when the Planck CMB data are added.

(vi) Future peculiar velocity surveys, TAIPAN, WALLABY, and
WNSHS, will constrain the growth rate fσ 8 with 3 per cent precision
at low redshift z ≤ 0.05. The growth rate can also be measured
at different scales. In wavenumber bins with width
�k = 0.01 h Mpc−1, fσ 8 and β can be measured to 20–
30 per cent by the TAIPAN survey, and about 15 per cent
by the WALLABY+WNSHS surveys in the range 0.01 ≤ k ≤
0.1 h Mpc−1. These constraints on very large scales are largely
improved, compared to redshift measurements alone, by the
strength of peculiar velocity surveys that cosmic variance is not
a fundamental limit. We can use the physical relation between
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the measured density and velocity to measure the growth rate β.
These strong constraints contribute to constraining dark energy and
modified gravity, which can have various growth rate functions of
time and scale.

We show that peculiar velocity surveys provide competitive
growth rate measurements at low redshift, z � 0.1. Future peculiar
velocity surveys measure both redshifts and velocities with high
number densities. Their biggest strength is in measuring the growth
rate as a function of scale, which provides independent constraints
on dark energy and modified theories of gravity. These features
of low redshift and scale dependence are complimentary to large
high-redshift surveys which measure growth rates as a function of
time.
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APPENDIX A : N EAREST PA RTICLE METH OD
FOR V ELOCITY POWER SPECTRU M

We calculate the auto- and cross-power spectra of subhalo den-
sity and peculiar velocity by Fourier transforming the density and
velocity fields assigned on regular grid points. In this appendix,
we explain how we calculate the discrete fields and correct for the
smoothing and aliasing due to finite grid points. The goal is to min-
imize the numerical effect that depends on the grid resolution. We
first review the procedure for the density field by Jing (2005) in Sec-
tion A1, and then explain an analogous procedure for the velocity
field in Section A2.

Let us consider N particles in a periodic box of length L on a side,
at positions xp , with line-of-sight velocity up for p = 1, . . . , N. We
sample discrete densities and velocities on N3

grid regular grid points
at xI for I = 1, . . . , N3

grid.

A1 Density power spectrum

We use the standard CIC method to calculate the density field (Hock-
ney & Eastwood 1988). The power spectrum calculated from this
discrete density grid is well understood. We summarize the proce-
dure by Jing (2005). The number density field before sampling is a
sum of Dirac delta functions δD,

n(x) =
N∑

p=1

δD(x − xp). (A1)

This is the density field independent of gridding. The density field
sampled on a grid point xI becomes

ñ(xI ) =
∫

d3y Wg(xI − y)n(y), (A2)

where the window function Wg for CIC is

Wg(r) =
3∏

i=1

(1 − |ri |/�x), (A3)

if |ri| ≤ �x ≡ L/Ngrid for all i = 1, 2, 3, and zero otherwise. The
galaxy (subhalo) autopower spectrum calculated from the grid P̃gg

is related to the true power spectrum Pgg in the following way:

P̃gg(k) =
∑

n

|Ŵg(k + kP n)|2Pgg(k + kP n) + n̄−1C1(k), (A4)

where the sum is over three-dimensional integer lattice n =
(n1, n2, n3), Ŵg is the Fourier transform of Wg:

Ŵg(k) =
3∏

i=1

[
sin(πki/kP )

πki/kP

]2

, (A5)

where kP ≡ 2πNgrid/L is the period of Fourier modes, n̄ ≡ N/L3

is the mean number density, and the smoothed shot noise term is

C1(k) ≡
∑

n

∣∣Ŵg(k + kP n)
∣∣2

(A6)

=
3∏

i=1

[
1 − 2

3
sin2(πki/kP )

]
. (A7)

Discrete sampling introduces a periodicity in Fourier space with
a period of kP, and all modes higher than the Nyquist frequency
kNq ≡ πNgrid/L = kP /2 are added to the modes in |ki| ≤ kNq. This is
known as aliasing. Because the power spectrum beyond the Nyquist
frequency is not known a priori, the power spectrum is extrapolated
by a power law beyond kNq:

Pgg(k + kP n) ≈ Pgg(k)(|k + kP n|/k)neff . (A8)

This neff can be determined iteratively, but we obtained sufficient
accuracy by setting neff = −1.6. This extrapolation makes it possible
to calculate the smoothing factor C2:

P̃gg(k) ≈ C2gg(k)Pgg(k) + n̄−1C1(k), (A9)

where

C2gg(k) ≡
∑

n

|Ŵg(k + kP n)|2 (|k + kP n|/kP )neff . (A10)

The corrected power spectrum Pgg(k) is calculated from the grid
power spectrum P̃gg(k) by first subtracting the shot noise, n̄−1C1(k),
and then divided by C2gg(k). We spherically averaged the power
spectrum after the correction.

In the left-hand panel of Fig. A1, we plot the spherically aver-
aged subhalo power spectrum before corrections, P̃gg, for different
grid resolutions Ngrid = 64, 128, 256, and 512. The power spectra
are plotted up to the Nyquist frequencies kNq = 0.20 (Ngrid/64) for
L = 1 h−1 Gpc. The grid power spectrum is smoothed near kNq. In
the left-hand panel of Fig. A2, we plot the ratio of grid power spec-
tra after shot noise subtraction to the true power spectra, which
is the C2gg function in equation (A9). We first subtract the shot
noise C1(k) from P̃gg(k), take its spherical average, and then di-
vide that by the true spherically averaged power spectrum Pgg(k),
which is the corrected power spectrum for Ngrid = 512 here. The
black curve on top of those simulation data is the spherically aver-
aged theoretical curve (equation A10); we calculated the equation
on a three-dimensional grid with Ngrid = 256, with finite sums for
ni = −2, − 1, 0, and 1, and then took the spherical average. Because
the function is rapidly decreasing with k, most of the aliases are
negligible. Only the ni = −1 aliases have comparable magnitude.
This curve matches perfectly with the data points computed from
simulation subhaloes. Finally, in the left-hand panel of Fig. A3, we
plot the power spectrum after the correction. The power spectra
with different grid resolution are consistent within 1 per cent for all
k ≤ kNq.
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Figure A1. Power spectra before corrections. The auto- and cross-power spectra of subhalo density and line-of-sight peculiar velocity are calculated on grids
with different resolutions Ngrid = 64, 128, 256, and 512. Left-hand panel is the subhalo–subhalo auto-power spectrum P̃gg, middle panel is the subhalo–velocity
cross power P̃gu, and right-hand panel is the velocity–velocity autopower spectrum P̃uu. See the caption of Fig. 1 for the units of the power spectra.

Figure A2. The ratio of power spectrum calculated on a grid to the true power spectrum (the shot noise C1 is first subtracted from the subhalo autopower).
The black curves are the C2 functions we use to correct the gridding effect (equations A10, A13, and A16).

Figure A3. Power spectra after corrections (top panels), and relative difference compared with Ngrid = 512 power spectra at 10 per cent level (middle row)
and 1 per cent level for Ngrid = 256 (bottom row). Ngrid = 256 converge within 1 per cent for k ≤ 0.3.
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A2 Field of nearest particle velocity

We use the nearest particle velocity to calculate the grid velocity
field. For each grid point xI, we find the particle nearest to the grid
point, and set the grid velocity field ũ(xI ) equal to the line-of-sight
velocity of that particle. We apply this method for subhaloes whose
number density is much lower than the number of grid points. Other
methods could be suitable in the other limit of many particles per
grid point; see also Section A3. We use the KD-TREE algorithm to find
the nearest neighbour computationally efficient. The smooth field
before gridding, for this method, is the piecewise constant velocity
field which is equal to the particle velocity in each Voronoi cell
(Bernardeau & van de Weygaert 1996):

u(x) =
∑

a

uaχa(x), (A11)

where χa(x) = 1 if the particle a is the nearest particle of point
x, and χa(x) = 0 otherwise. The window function of this nearest
particle method is the Dirac delta function Wu(r) = δD(r):

ũ(xI ) =
∫

d3y Wu(xI − y)u( y). (A12)

The Fourier transform of the window function is Ŵu(k) = 1.
The advantages of our method are that (a) the velocity field on

the grid converges to a meaningful velocity field u(x) as Ngrid →
∞, and (b) the assignment to grid points is done by a convolution
(equation A12). Since nearest neighbour exists at any grid point, we
do not have the problem of empty cells that the velocity field be-
comes undefined. Another common difficulty is that the smoothing
kernel becomes spatially varying, not in the form of a convolution.
Typically, the normalization factor depends on xI, which makes the
kernel in equation (A12) a function of xI as well, Wu(xI − y, xI ).
This would make the correction complicated, because the smoothed
power P̃ (k) at wavenumber k, would then depend on the power at all
wavenumbers P (k′), not only on the power at the same wavenumber
P (k).

In the middle and right-hand panels of Fig. A1, we plot the sub-
halo density–velocity cross-power P̃gu and the velocity–velocity
autopower P̃uu, respectively, calculated from CIC density and near-
est particle velocity fields before any corrections. The cross-power
has a smoothing, and the velocity autopower has an increase in
power due to aliasing.

A2.1 Cross-power correction

In the middle panel of Fig. A2, we plot the angle-averaged cross-
power calculated for Ngrid = 64, 128, and 256 divided by the angle-
averaged Ngrid = 512 cross-power after the correction we will de-
scribe here. (The angle average is only performed in the upper-half
of k space, i.e.

∫ 1
0 dμ.) Although we naively expect this ratio to be

ŴgŴu = Ŵg, because the density is smoothed by a factor of Ŵg and
the velocity field is smoothed by Ŵu, we find a smoothing closer to
Ŵ 2.5

g . We fit the points by an empirical formula

C2gu(k) ≡
[

sin(πk/kP )

πk/kP

]5 [
1 − 0.27(k/kNq)5

]
, (A13)

where kP = 2πNgrid/L and kNq = kP /2 are the same as those in the
previous section. This fitting formula is plotted by a black curve in
the figure. We use this function to correct the cross-power:

Pgu(k) = P̃gu(k)/C2gu(k). (A14)

In the middle panel of Fig. A3, we plot the corrected cross-power.
Although there are some scatter at high k, the Ngrid = 256 cross-
power converge within 1 per cent for k ≤ 0.3 h Mpc−1.

A2.2 Velocity autopower correction

In the right-hand panel of Fig. A2, we plot the ratio of the angle-
averaged velocity autopower spectra calculated on a grid to that
calculated with Ngrid = 512 with corrections. We do not subtract a
component analogous to the shot noise C1. This could be the reason
that the Ngrid = 64 points do not match with other points. The C2

function analogous to equation (A10) for velocity–velocity power
spectrum with Wu = 1 is

C2uu =
∑

n

(|k + kP n|/kP )neff−2

= 1 + (k/kNq)neff−2
∑
n �=0

(
k

2k
+ n

)neff−2

. (A15)

The exponent is neff − 2, because velocity power spectra has an extra
k−2 factor compared to matter power spectra in linear theory. This
sum over integers converges very slowly, which makes it impractical
to calculate C2uu(k) for all k. We approximate the sum by a constant
by fitting the points from the simulation for N = 128 and 256,

C2uu ≈ 1 + 3.7(k/kNq)nneff−2. (A16)

The constant pre-factor is consistent with equation (A15) for k near
the Nyquist frequency. We correct the power spectrum with this
formula

Puu(k) = P̃uu(k)/C2uu(k). (A17)

The corrected power spectra is plotted in the right-hand panel of
Fig. A3. The velocity autopower with Ngrid also converges within
1 per cent for k ≤ 0.3 h Mpc−1.

A3 Discussion on computing the velocity power spectrum

We presented our relatively simple method of using nearest particle
velocity to calculate velocity power spectrum. Zheng et al. (2013)
independently used a similar method to calculate the velocity power
spectrum; see also their paper for various numerical convergence
tests. A drawback of this method is that all high k aliases add to
low k modes without smoothing, because the sampling function in
Fourier space is a constant, not a rapidly declining function of k.

Calculating velocity power spectrum has technical difficulties
that do not exist for density power spectrum. Calculating velocity by
first assigning momentum on grids and then dividing them by den-
sity using a fixed kernel (e.g. CIC) has two problems. One is that the
velocity becomes undefined if the density is zero. In the limit of in-
finite grids, velocity becomes undefined almost everywhere, which
means there is no proper convergence as we increases the number
of grids. Using adaptive kernel, in which the kernel length increases
at low-density regions, can avoid the problem of undefined velocity
(e.g. Mao et al. 2012), but the resulting velocity field is smoothed in
a complicated way, for which it is difficult (not necessarily impossi-
ble, but at least computationally expensive) to deconvolve the kernel
smoothing. The other problem is that, since the Fourier transforma-
tion is a volume integral, mixing mass-weighted average within grid
cells make the convergence, as the number of grids increase, ineffi-
cient. Pueblas & Scoccimarro (2009) use volume-weighted average
by calculating the volume from local Delaunay tessellation using
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volumes that are entirely inside a grid cell. This improves the accu-
racy and convergence, but Delaunay tessellations spanning several
cells are not treated accurately for simplicity, which is sufficient
for a large number of particles, but becomes problematic for sparse
samples, such as galaxies or haloes. Integration of velocity field to
a grid cell is necessary (Bernardeau & van de Weygaert 1996).

The Delaunay Tessellation Field Estimator (DTFE) software7

(Schaap & van de Weygaert 2000; Cautun & van de Weygaert 2011)
is a publicly available code that calculates velocity field interpolated
by the Delaunay tessellation, and integrating the field numerically
on grids with the Monte Carlo approach. The DTFE software works
well for velocity power spectrum, too (Jennings 2012). This Monte
Carlo integration is a reasonable method to suppress the high k
aliases, which can be added to improve our nearest particle method
in the future if necessary.

APPENDIX B: THE FISHER MATRIX FOR
MULTIPLE TRAC ERS

In this appendix, we first derive the Fisher matrix with the classical
approximation in Section B1, and then drive other forms of the
Fisher matrix in Sections B2 and B3.

B1 Derivation

We summarize the derivation of Fisher matrix using the ‘classi-
cal approximation’ (Hamilton 1997; Abramo 2012). This approxi-
mation simplifies the Fisher Matrix with spatially inhomogeneous
noise to a form similar to that with constant noise.

Let φa(x) (a = 1, . . . , N) be N real Gaussian fields in configuration
space which have zero mean, 〈φa(x)〉 = 0. They can be a pair of
galaxy density field and line-of-sight peculiar velocity, N galaxy
density fields with different biases, or any multiple tracers of a
random Gaussian field. We apply equation (11) to this continuously
infinite number of Gaussian variables labelled by the position x. The
mean vector is zero, μ = 0, and the covariance matrix C is labelled
by two positions Cmn → �ab(x, y) ≡ 〈φa(x)φb( y)〉, which are the
auto- or cross-two-point correlation functions. In this continuous
limit, sums over matrix indexes are replaced by integrals; equation
(11) becomes

Fij = 1

2

∫
d3x d3x ′ d3y d3y ′

×tr

[
�−1(x, x′)

∂�(x′, y)

∂θi

�−1( y, y′)
∂�( y′, x)

∂θj

]
. (B1)

The inverse function is defined as∫
d3y �−1(x, y)�( y, z) = INδD(x − z) (B2)

and∫
d3y �(x, y)�−1( y, z) = INδD(x − z), (B3)

where IN is the N × N unit matrix.
The covariance function �(x, y) contains translationally invari-

ant correlation functions ξ ab, and spatially uncorrelated noise terms
Nab:

�ab(x, y) = ξab(x − y) + Nab(x)δD(x − y), (B4)

where δD is the Dirac delta function.

7 http://www.astro.rug.nl/\∼voronoi/DTFE/dtfe.html

For a pair of galaxy density contrast field, φ1 = δg, and line-of-
sight velocity φ2 = u, the matrix of correlation functions is

�(x, y) =
(

ξgg(x − y) + Ng ξgu(x − y)
ξug(x − y) ξuu(x − y) + Nu

)
. (B5)

The noise term for the density contrast, Ng, is the shot noise:

Ng(x, y) = n−1
g (x)δD(x − y), (B6)

where ng(x) is the smooth ensemble mean number density of galax-
ies. Similarly, Ng is the noise in peculiar velocity measurement:

Nu(x, y) = n−1
u (x)σ 2

u-noise(x)δD(x − y), (B7)

where nu(x) is the mean number density of galaxies with pecu-
liar velocity measurements, and σ vobs is the observational error in
peculiar velocity per galaxy.

Using the fact that a two-point correlation function ξ ab is the
Fourier transform of the corresponding power spectrum Pab, we
can write �(x, y) with power spectra:

�(x, y) =
∫

d3k

(2π)3
�̃(k, x)eik·(x− y), (B8)

where

�̃(k, x)ab ≡ Pab(k) + Nab(x). (B9)

Equation (B5), for a case of density and velocity, transforms to

�̃(k, x) =
(

Pgg(k) + n−1
g (x) Pgu(k)

Pug(k) Puu(k) + n−1
u σ 2

u-noise

)
. (B10)

[Pug(k) = 〈u(k)δg(k)∗〉 is the complex conjugate of Pgu(k).] For N
biased galaxy tracers with biases bi and mean number density ni(x),
�̃ matrix is, e.g.

�̃ab(k, x) = bibj (1 + βiμ
2)(1 + βjμ

2)Pm(k) + n−1
i (x)δab, (B11)

where β i ≡ f/bi, for the simplest case of the linear theory.
The delta functions in the noise terms enable us to replace x by

y, if necessary,

�(x, y) =
∫

d3k

(2π)3
�̃(k, y)eik·(x− y). (B12)

A symmetry in correlation function, �ab(x, y) = �ba( y, x), by def-
inition, propagates to a property that �̃ is a Hermitian matrix:
�̃ab(k, x) = �̃ba(k, x)∗. The matrix �̃ is a real symmetric matrix
for density contrasts of multitracers, but for density and peculiar
velocity, the off-diagonal term Pgu is pure imaginary as a result of
parity invariance, as we discussed in Section 2.

The ‘classical approximation’ (Hamilton 1997) allows us to ap-
proximate the inverse function by the inverse matrix in Fourier
space:

�−1(x, y) ≈
∫

d3k

(2π)3
�̃(k, x)−1eik·(x− y), (B13)

where �̃(k, x)−1 is the inverse matrix of �̃(k, x) for fixed x and k.
To check that is approximately an inverse function, equations (B12)
and (B13) substituted to the left-hand side of equation (B2) give∫

d3k

(2π)3
�̃(k, x)−1�̃(k, z)eik·(x−z). (B14)

If (a) x ≈ z, such that the noise terms N (x) and N (z) are approx-
imately equal to each other, then �̃(k, x)−1�̃(k, z) ≈ IN makes
equation (B14) equal the right-hand side of equation (B2). If (b) x
and z are far enough from each other, then eik·(x−z) is a rapidly os-
cillating function of k, which makes the integral in equation (B14)
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approximately zero – again the equation (B2) is satisfied. Because
the integrand depends on k through Pab(k), the approximation that
the rapid oscillation makes the integral vanishing is reasonable if∫

d3k
(2π)3 Pab(k)eik·(x−z) = ξab(x − z) ≈ 0. In summary, the approxi-

mation used here, called the classical approximation, is valid if
either (a) or (b) is satisfied for all values of x − z. This means that
the noise terms are approximately constant within the coherence
length, where the two-point correlation functions are not negligi-
ble. Equation (B3) can be shown in the same way. Although this
approximation is usually satisfied for redshift surveys, it requires
more caution for peculiar velocity surveys due to larger coherence
length, and distant-dependent observational noise term σ vobs.

Substituting the inverse function (equation B13) into the Fisher
matrix equation (B1) gives

Fij = 1

2

∫
d3x d3y

d3k

(2π)3

d3q

(2π)3
ei(k−q) · (x− y)

× tr

[
�̃−1(k, x)

∂�̃

∂θi

(k)�̃−1(q, y)
∂�̃

∂θj

(q)

]
, (B15)

where we use the assumption that the noise terms are determined
from observations, not directly related to cosmological parameters,
i.e.

∂�̃(k, x)

∂θi

= ∂P (k)

∂θi

(B16)

is a function of k only. Using the same argument of the classi-
cal approximation, the k and q integrals are negligible for large
x − y due to rapid oscillation of the exponential term. Therefore,
the dominant contribution comes from x ≈ y, which allows us to
replace, �̃(q, y)−1 ≈ �̃(q, x)−1. We can then rearrange the integral∫

d3x d3y = ∫
d3x d3(x − y) and perform the d3(x − y) integral. This

gives our final result for the Fisher Matrix:

Fij = 1

2

∫
d3x d3k

(2π)3
tr

[
�̃(k, x)−1 ∂�̃

∂θi

�̃(k, x)−1 ∂�̃

∂θj

]
, (B17)

where all �̃ are evaluated at k and x. For a single field, this reduces
to the Fisher matrix by Tegmark (1997) with Feldman, Kaiser &
Peacock (1994) minimum variance. The virtue of this derivation,
starting from the Gaussian fields in configuration space, is that this
minimum variance appears automatically, and the generalization to
multiple fields is straightforward.

B2 Isomorphic transformation

The Fisher matrix is invariant under any invertible linear transfor-
mation (isomorphism) φ′ = Aφ between statistically translational
invariant fields if that transformation does not include any uncertain
parameters θ i. For example, BT04 use line-of-sight velocity gradi-
ent φ′ ≡ (δg,∂u/∂r), instead of velocity, φ = (δg, u); we show that
the Fisher matrix for φ′ is exactly equal to that for φ. This is one
of the two steps that their Fisher matrix is exactly equal to what we
use in this paper.

Since our formalism is based on an assumption that the field is
translationally invariant (e.g. equation B4), we require that the linear
transformation conserves translational invariance. Such transforma-
tion is a convolution in configuration space, which is a multiplication
in Fourier space:

φ′(k) = A(k)φ(k). (B18)

We require that A is a N × N matrix that has an inverse A−1, and it
does not depend on parameters θ i. The matrix of power spectra �̃′

(equation B8) for φ′ is related to the original matrix by

�̃′(k, x) = A(k)�̃(k, x)A†(k), (B19)

where A† is the Hermitian conjugate of A. Such transformation
does not change the trace:

tr

[
�′−1 ∂�′

∂θi

�′−1 ∂�′

∂θj

]
= tr

[
�−1 ∂�

∂θi

�−1 ∂�

∂θj

]
(B20)

for each value of k and x because all A matrices cancels their inverse
matrices in the trace. This proves what we stated at the beginning
of this section.

B2.1 Lemma

The Fisher matrix (equation B17) is invariant under any isomor-
phism, φ′ = Aφ (equation B18), if it does not contain any of the
parameters θ i. The Fisher matrix formula with φ′ is exactly equal
to that with φ.

B2.2 Examples of isomorphism

The aforementioned example of using velocity gradient (BT04) is
a transformation:

φ′(k) = Aφ =
(

1 0
0 ikμ

) (
δg(k)
u(k)

)
, (B21)

with flat-sky approximation, where μ is the cosine of the angle
between k and the fixed line-of-sight direction. (This matrix is
invertible for k �= 0, and k = 0 mode of velocity is zero, not carrying
any cosmological information.) The covariance matrix transforms
as

�̃′ = A�̃A† =
(

�̃11 −ikμ�̃11

ikμ�̃22 k2μ2�̃22

)
. (B22)

Although the covariance matrices �̃ and �̃′ look different, the Fisher
matrices calculated from those are exactly equal to each other.

We can also remove the imaginary number i from cross-power
spectra without changing the Fisher matrix. Applying a matrix,

φ̃(k) ≡
(

δg(k)
ũ(k)

)
≡ Aφ =

(
1 0
0 i

) (
δg(k)
u(k)

)
, (B23)

transforms the cross power to a real function. Our lemma guarantees
that the Fisher matrix remains exactly the same.

B3 Fisher matrix with power spectra covariance matrix

We derive an equivalent form of the Fisher matrix that is written
with a covariance matrix of power spectra. Such Fisher matrices
appear in BT04 and White, Song & Percival (2009). White et al.
(2009) checked that two forms of Fisher matrix give the same nu-
merical result. Here we show that the two formulae are algebraically
equivalent.

Let us introduce N complex Gaussian variables with zero mean,
δa(k, x), for each pair of k and x that is uniquely characterized by
the covariance matrix:

Cov(δa, δb) ≡ 〈δaδ
∗
b〉 = �̃ab(k, x), (B24)

Cov(δa, δ
∗
b ) = 〈δaδb〉 = 0, (B25)
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where �̃(k, x) is the Hermitian matrix defined in equation (B8).
These δ variables can be regarded as φa(k) in Fourier space when
the noise terms are spatially homogeneous. When the noise terms
were position dependent, it much clearer to define δa as a pure
mathematical tool that assists the derivation, than to make this ex-
act derivation inexact by going though the classical approximation
again. We have shown that cross-power spectra are either real or
pure imaginary, and when they are pure imaginary they can be con-
verted to real cross-power without changing the Fisher matrix. We
can therefore assume, without loss of generality, that �̃ is a real
symmetric matrix.

The trace term in the Fisher Matrix (equation B17), with equation
(B16), can be rewritten as

tr

[
�̃−1 ∂P

∂θi

�̃−1 ∂P

∂θj

]
= ∂P ∗

ab

∂θi

�abcd

∂Pcd

∂θj

, (B26)

where

�abcd ≡ �̃−1
ac �̃−1

db . (B27)

All repeated indices are summed over 1, . . . , N. Consider P as a N2

dimensional vector whose elements are Pab, and �abcd as N2 × N2

matrix; equation (B26) is (∂P†/∂θi)�(∂P/∂θj ) with this notation.
The inverse matrix of � is the � matrix, defined as

�abcd ≡ �̃ac�̃db. (B28)

This can be checked by a calculation �abcd�cdef = δaeδbf (δab is
the Kronecker’s delta), which means �� = IN2 in matrix notation.
This � matrix turns out to be a covariance matrix of P̂ab random
variables,

P̂ab ≡ δaδ
∗
b , (B29)

because

Cov(P̂ab, P̂cd ) ≡ 〈δaδ
∗
b (δcδ

∗
d )∗〉 − 〈δaδ

∗
b 〉〈(δcδ

∗
d )∗〉

= 〈δaδ
∗
c 〉〈δdδ

∗
b 〉 + 〈δaδd〉〈δ∗

bδ
∗
d 〉

= �̃ac�̃db = �abcd , (B30)

or Cov( P̂, P̂) = � in matrix notation, where the Isserlis’ theorem
or the Wick’s theorem for Gaussian variables is used. We therefore
got the other expression equivalent to the equation (B17):

Fij = 1

2

∫
d3x d3k

(2π)3

∂P†

∂θi

Cov( P̂, P̂)−1 ∂P
∂θj

. (B31)

This is a multiplication of N2-dimensional vectors of power spectra
with the covariance matrix of their N4 pairs.

We now reduce the N2-dimensional vector to N(N + 1)/2-
dimensional vector using the assumption that �̃ab is a real sym-
metric matrix. Let R be a N2 × N2 invertible matrix with 1 and
±1/2, such that P ′ ≡ (P sym, Pasym) = RP become the symmetric
and asymmetric combinations of P:

P
sym
ab = 1

2
(Pab + Pba) for a ≤ b, (B32)

P
asym
ab = 1

2
(Pab − Pba) for a > b. (B33)

The N(N + 1)/2-dimensional vector P sym contains N autopower
spectra and N(N − 1)/2 symmetrized cross-power spectra. Pasym

contains N(N − 1)/2 antisymmetrized cross-power spectra, which
vanish by our assumption of symmetric power spectra: Pasym = 0.

The vector of rearranged power spectra estimator, ( P̂ sym, P̂asym) ≡
P̂

′ ≡ R P̂ , has a covariance matrix

�′ ≡ Cov( P̂
′
, P̂

′
) = R�R†. (B34)

The integrand of the Fisher matrix equation (B31) maintains the
same form under this rearrangement:

∂P ′†

∂θi

�′−1 ∂P ′

∂θj

= ∂P†

∂θi

�−1 ∂P
∂θj

. (B35)

Finally, this �′ matrix is block diagonal

�′ =
(

�′
sym 0
0 �′

asym

)
, (B36)

where �′
sym ≡ Cov( P̂ sym, P̂ sym) and �′

asym ≡ Cov( P̂asym, P̂asym),
respectively, because the off-diagonal block vanishes,

Cov(δaδ
∗
b + δbδ

∗
a , δcδ

∗
d + δdδ

∗
c ) = 0, (B37)

by straightforward calculation using the Wick theorem and the as-
sumption �̃ab = �̃ba . Therefore the inverse matrix of � is also
block diagonal �−1 = diag(�−1

sym, �−1
asym). Note that the random

vector P̂asym is not zero – only its mean is zero. The matrix �asym

is not a zero matrix either. Finally, we can reduce equation (B35)
to N(N + 1)/2-dimensional subspace using the inverse matrix and
Pasym = 0:

∂P ′†

∂θi

�′−1 ∂P ′

∂θj

= ∂P†
sym

∂θi

�−1
sym

∂P sym

∂θj

. (B38)

We complete the proof of the theorem summarized as follows.

B3.1 Theorem

The Fisher matrix of N Gaussian random fields with classical ap-
proximation (equation B17) is equal to the following Fisher matrix,
when the matrix �̃ is a real symmetric matrix (which is always
possible by transforming the field variables if necessary):

Fij = 1

2

∫
d3x d3k

(2π)3

∂P
∂θi

Cov( P̂ sym, P̂ sym)−1 ∂P
∂θj

, (B39)

where P(k) is a N(N + 1)/2-dimensional vector of auto- and cross-
power spectra Pab(a ≤ b), and the covariance matrix can be calcu-
lated from a vector of random variables P̂ sym,8

P̂
sym
ab = 1

2
(δaδ

∗
b + δbδ

∗
a ) − Nab, (B40)

defined by N random Gaussian variables δa(k, x) (equations B24–
B25). The covariance matrix can be written in terms of 〈δaδ

∗
b〉 =

�̃ab(k, x) = Pab(k) + Nab(x), using the Wick theorem. Note that
δaδ

∗
b and δbδ

∗
a have the same expectation value, 〈δaδ

∗
b〉 = 〈δbδ

∗
a〉 =

Pab, but are different random variables; symmetrization in equation
(B40) is necessary.

B3.2 An example of power spectra covariance matrix

This is an example of the covariance matrix Cov( P̂, P̂) for two
fields:

Cov(P̂11, P̂11) = �̃2
11, (B41)

8 Subtraction of the noise term is not necessary but the power spectra es-
timator is often written this way; covariance matrix does not change by
subtracting constant values.
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Cov(P̂11, P̂12) = �̃11�̃12, (B42)

Cov(P̂11, P̂22) = �̃2
12, (B43)

Cov(P̂12, P̂12) = (
�̃11�̃22 + �̃2

12

)
/2, (B44)

Cov(P̂12, P̂22) = �̃12�̃22, (B45)

Cov(P̂22, P̂22) = �̃2
22. (B46)

Similar examples are in BT04 and White et al. (2009). They
have factor of 2 larger covariance matrix instead of a factor of 1/2
in equation (B39), which results in the same Fisher matrix. The
location of the factor of 2 only reflects the definition of ‘one Fourier
mode’, which does not change the overall equation.

For galaxy density contrast δs
g and transformed line-of-sight ve-

locity ũs = ius (equation B23), which give real-number power spec-
tra, the �̃ matrix elements are

�̃11 = P s
gg(k) + n−1

g (x), (B47)

�̃12 = P s
gu(k), (B48)

�̃22 = P s
uu(k) + n−1

u (x)σu-noise(x). (B49)

The same equation holds for galaxy density δg and velocity gra-
dient u′, using the conversion of power spectra in Section B2.2. As a
corollary of Appendices B2 and B3, we show that our Fisher matrix
formula equation (15) is exactly the same Fisher matrix formula
used in BT04, which is written with a covariance matrix of density
and velocity gradient power spectra.
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