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Abstract 25 

Ozonation is known to generate biodegradable organic matter, which is typically reduced by 26 

biological filtration to avoid bacterial regrowth in distribution systems. Post-chlorination generates 27 

halogenated disinfection byproducts (DBPs) but little is known about the biodegradability of their 28 

precursors. This study determined the effect of ozonation and biofiltration conditions, specifically 29 

ozone exposure and empty bed contact time (EBCT), on the control of DBP formation potentials in 30 

drinking water. Ozone exposure was varied through addition of H2O2 during ozonation at 1 31 

mgO3/mgDOC followed by biological filtration using either activated carbon (BAC) or anthracite. 32 

Ozonation led to a 10% decrease in dissolved organic carbon (DOC), without further improvement 33 

from  H2O2 addition.  Raising H2O2 concentrations from 0 to 2 mmol/mmolO3 resulted in increased 34 

DBP formation potentials during post-chlorination of the ozonated water (target Cl2 residual after 35 

24 h = 1 – 2 mg/L) as follows: 4 trihalomethanes (THM4, 37%), 8 haloacetic acids (HAA8, 44%), 36 

chloral hydrate (CH, 107%), 2 haloketones (HK2, 97%), 4 haloacetonitriles (HAN4, 33%), 37 

trichloroacetamide (TCAM, 43%), and adsorbable organic halogen (AOX, 27%), but a decrease in 38 

the concentrations of 2 trihalonitromethanes (THNM2, 43%). Coupling ozonation with biofiltration 39 

prior to chlorination effectively lowered the formation potentials of all DBPs including CH, HK2, 40 

and THNM2, all of which increased after ozonation. The dynamics of DBP formation potentials 41 

during BAC filtration at different EBCTs followed first-order reaction kinetics. Minimum steady-42 

state concentrations were attained at an EBCT of about 10 – 20 min, depending on the DBP species. 43 

The rate of reduction in DBP formation potentials varied among individual species before reaching 44 

their minimum concentrations. CH, HK2, and THNM2 had the highest rate constants of between 45 

0.5 and 0.6 min-1 followed by HAN4 (0.4 min-1), THM4 (0.3 min-1), HAA8 (0.2 min-1), and AOX 46 

(0.1 min-1). At an EBCT of 15 min, the reduction in formation potential for most DBPs was less 47 

than 50% but was higher than 70% for CH, HK2, and  THNM2. The formation of bromine-48 

containing DBPs increased with increasing EBCT, most likely due to an increase in Br-/DOC ratio. 49 
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Overall, this study demonstrated that the combination of ozonation and biofiltration is an effective 50 

approach to mitigate DBP formation during drinking water treatment.  51 

 52 

Keywords: biofiltration, disinfection byproducts, empty bed contact time, ozonation 53 

 54 

  55 
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1. Introduction 56 

Ozonation has been widely used as an intermediate process to reduce disinfection byproduct 57 

(DBP) formation associated with drinking water chlorination (Hua and Reckhow 2013, Sedlak and 58 

von Gunten 2011). Ozonation can significantly alter the structure and reactivity of natural organic 59 

matter (NOM) (Wenk et al. 2013) resulting in the formation of a mixture of compounds with lower 60 

molecular weight and aromaticity, and higher carboxylic acid functionality (Carlson and Amy 1998, 61 

Urfer et al. 1997). This oxidative treatment increases the assimilable organic carbon (AOC) content 62 

(Hammes et al. 2006, Ramseier et al. 2011) which is of great concern for water utilities because of 63 

increased bacterial regrowth potential in distribution systems. On the other hand, biofiltration can 64 

take advantage of this process as a means of removing additional DBP precursors from the water 65 

prior to final disinfection, while at the same time reducing AOC. 66 

Several studies have shown that biofiltration can remove some DBP precursors and the 67 

associated chlorine demand as well as biodegradable organic carbon which includes products 68 

formed by ozonation in water such as aldehydes and carboxylic acids, among others (Chu et al. 69 

2012, Gagnon et al. 1997, Krasner 2009, Speitel et al. 1993, Weinberg et al. 1993). This can be 70 

achieved because of the presence of biofilm (i.e., heterotrophic bacteria attached to a media) that 71 

utilizes biodegradable NOM as a carbon source for energy production (Urfer et al. 1997). The 72 

degree of NOM removal is affected by the characteristics of both the influent ozonated water and 73 

the biofilter. The ozonated water quality varies depending on whether ozonation conditions promote 74 

O3 over hydroxyl radical (•OH) reactions or vice versa. However, information about the effects of 75 

these conditions on biofiltration is currently missing in the literature. Moreover, filter media, 76 

biomass, and operational parameters such as empty bed contact time (EBCT) can impact the 77 

biofilter performance. For example, Melin and Odegaard (2000) evaluated the removal rate of 78 

influent ozonation byproducts aldehydes and aldo- and keto-acids as a function of EBCT. Several 79 

modelling studies attempted to gain a mechanistic understanding of the biodegradation kinetics of 80 
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NOM (Gagnon and Huck 2001, Huck and Sozanski 2008). Huck et al. (1994) reported a linear 81 

relationship between the removal rate and filter influent concentrations (i.e., a first-order process) of 82 

the following: biodegradable and assimilable organic carbon, chlorine demand, and precursors of 83 

trihalomethanes (THMs) and adsorbable organic halogen (AOX). There are, however, no published 84 

kinetic studies  in the literature describing the impact of combined ozone/biofiltration on the  85 

formation potentials of chloral hydrate (CH), haloketones (HKs) and the more toxic nitrogen-86 

containing DBPs (Plewa et al. 2008) such as halonitromethanes (HNM) which are the organic DBPs 87 

most commonly elevated when treating ozonated waters with chlorine. If a first-order kinetics 88 

would hold true for these DBPs as well, water utilities might be able to predict and set biofiltration 89 

conditions that could control DBP formation during drinking water treatment. 90 

This study, therefore, evaluated (1) the effect of O3 and •OH reactions on the biodegradability 91 

of ozonated waters and (2) the reduction in formation potentials of different families of DBPs 92 

including THMs, haloacetic acids (HAAs), CH, HKs, haloacetonitriles (HANs), HNMs, and 93 

trichloroacetamide (TCAM) by ozone-biofiltration treatment with varying EBCT. These objectives 94 

were achieved by conducting ozone dosing experiments followed by batch biodegradation and 95 

once-through column experiments using anthracite and biological activated carbon (BAC) as media 96 

and subsequent chlorination. As little is known about biodegradation of DBP precursors and most 97 

biofiltration studies have only focused on removal of biodegradable organic carbon and ozonation 98 

by-products, this study provides important novel insights on the impact of ozonation and 99 

biofiltration on DBP precursors  and subsequent byproduct formation in chlorinated drinking water. 100 

 101 

 102 

 103 

 104 

 105 
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2. Materials and methods 106 

2.1. Water sample and bioactive media 107 

The water and bioactive media used in this study were obtained from drinking water treatment 108 

plants in Southeast Queensland, Australia (SEQ). Two types of bioactive media were used: (i) 109 

anthracite (AN) with an effective size of 1.2-1.3 mm and apparent density of 650 kg/m3 taken from 110 

the top layer of a primary filter (i.e., after pre-ozonation, coagulation, and sedimentation) which had 111 

been used for more than 5 years and (ii) granular biological activated carbon (BAC) with an 112 

effective size of 0.7-0.9 mm and apparent density of 435 kg/m3  (ACTICARB GA1000N, Activated 113 

Carbon Technologies Pty Ltd, Australia) taken from the top layer of the post-O3 filter that had been 114 

in operation for more than two years. Adsorption would not, therefore, be expected to play a major 115 

role on NOM removal in either of these media. As described in Text S1, the bioactive media were 116 

from the advanced water treatment plant depicted in Fig. S1 (Supplementary Material). 117 

2.2. Batch ozonation 118 

Ozone stock solutions were prepared fresh daily in MilliQ water by sparging gaseous ozone 119 

generated from pure oxygen (99.995%; Coregas, Australia) using an Anseros COM-AD-04 ozone 120 

generator (Anseros, Germany). Concentrations of the stock solutions were determined 121 

spectrophotometrically using the absorbance at 258 nm (ε=3000 M-1cm-1) (Elovitz and von Gunten 122 

1999). Appropriate volumes of the ozone stock solution were spiked into water samples (pH = 7) to 123 

obtain the desired transferred ozone dose, assuming 100% transfer efficiency. Ozone was allowed 124 

to fully decay prior to biological treatment. 125 

2.3. Experiments carried out 126 

Three sets of experiments were performed to investigate the biodegradability of DBP precursors 127 

at different ozonation and biodegradation conditions. The first set involved water samples treated 128 

with different O3 doses and subsequently exposed to bioactive anthracite. Bioactivity in these batch 129 

tests was confirmed by measuring consumption of biodegradable organic carbon. A control 130 
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experiment with 0.3 mM sodium acetate (DOC = 7.2 mg/L; >99%, Ajax Finechem, Australia) 131 

showed an 84% DOC removal after 8 days of exposure with the bioactive anthracite (Fig. S2a). The 132 

second set involved column experiments using BAC and bioactive anthracite media fed with water 133 

ozonated with and without H2O2. These two sets of experiments evaluated optimization of the 134 

ozonation process for better NOM biodegradability. The third set of experiments focused on 135 

studying biofiltration performance by varying the EBCT of the BAC columns. For these column 136 

experiments, bioactivity was confirmed by constantly monitoring dissolved oxygen (DO) 137 

consumption by the bioactive media and removal of influent DOC. Similar to other studies (Evans 138 

et al. 2013, Liao et al. 2016, Persson et al. 2007, Pipe-Martin 2008, Rattier et al. 2014), DO 139 

measurements served as the indicator of oxygen consumed by microorganisms during respiration 140 

and an indirect proof of aerobic biological activity in the filters. 141 

2.3.1. Batch biodegradation and column filtration 142 

Prior to biodegradation, ozonation experiments (pH 7) were performed on the water sample by 143 

adding ozone to create ozone to DOC ratios (mg/mg) ranging from 0.4 to 1. These samples were not 144 

buffered since preliminary results revealed that 1 mM phosphate (NaH2PO4·2H2O, >99%, Ajax 145 

Finechem, Australia and Na2HPO4·2H2O, ≥99.5%, Merck, Germany) and 4-9 mM NaHCO3 146 

(>99.5%, Sigma-Aldrich, USA) inhibited biodegradation of NOM (Fig. S2a and S2b). Instead, the 147 

pH of the ozonated aqueous samples was readjusted to pH 7 using small quantities of 0.5 M HCl 148 

(Merck, Germany) prior to contact with the bioactive anthracite in order to mimic the actual influent 149 

pH during biofiltration in a full-scale plant. 500 mL of ozonated water sample was mixed with 170 150 

g of bioactive anthracite with contact time of 7 days at ambient temperature.  151 

Column experiments (Fig. S3) were also performed using bioactive anthracite and BAC. 152 

Filtration was carried out upflow to avoid bed compaction, clogging, and to obtain a more uniform 153 

distribution of organic matter through the filter media. The biofiltration system was comprised of 4 154 

glass columns (two each for columns for non-ozonated and ozonated feed lines; internal diameter: 1 155 
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cm; length: 12 cm; manufactured at University of Queensland Glassblowing Services) containing 156 

the bioactive media (bed volume = 6.5 mL), a multi-channel peristaltic pump (Sci-Q 323, Watson 157 

Marlow, USA), a dissolved oxygen (DO) probe (WTW, Germany), ozonated water as feed, and 158 

effluent collection bottles. The ozone dose employed for these experiments was 1.2 mgO3/mgDOC. 159 

Each biofiltration line was connected to the columns using Norprene tubing (Cole-Palmer, USA). 160 

Biofiltration experiments were performed at room temperature (22 ± 10C), influent water DO of 9.0 161 

± 0.8 mg/L and an EBCT of 11 minutes. To condition the media and equilibrate influent 162 

concentrations through the filter, 100 bed volumes of the ozonated water sample were pumped at a 163 

rate of 0.6 mL/min prior to sampling. The effluent for this conditioning step was discarded.  164 

2.3.2. Biofiltration of samples treated with O3/H2O2 165 

Ozone decomposition was varied by adding increasing H2O2 concentrations. Ozonation was 166 

conducted at a dose of 1 mgO3/mgDOC with H2O2 concentrations ranging from 0 to 2 mmol 167 

H2O2/mmol O3. Stock solutions of H2O2 (30%, Merck, Germany) were previously standardized 168 

spectrophotometrically at 240 nm (ε = 40 M-1cm-1) (Bader et al. 1988) while the H2O2 concentration 169 

in samples was determined using the method described by Nogueira et al. (2005). Prior to DBP 170 

formation potential tests and/or biofiltration, H2O2 was quenched by adding 1.4 g of MnO2 (≥ 99%, 171 

Sigma-Aldrich, Australia) to 1 L ozonated sample (Sarathy 2004). MnO2 was chosen as an adequate 172 

H2O2 quencher since it has been reported to not affect bacterial growth. For example, MnO2 173 

quenching of H2O2 did not interfere with AOC measurements, unlike other common quenchers such 174 

as catalase and sodium thiosulfate (Sarathy 2004). Fig. S4 illustrates the removal of H2O2 after 175 

addition of MnO2. Bioactive anthracite and BAC were used separately as biofiltration media each 176 

with a 7 mL bed volume and 11 min EBCT. 177 

2.3.3. Biofiltration at different EBCT values 178 

Each biofiltration line was connected to two BAC columns with a total bed volume of 12 mL. 179 

Three parallel lines were used for replicate measurements. Although the biomass concentration in 180 
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the biofilters was not measured, bioactivity was confirmed through measurements of DO 181 

consumption and NO3
- evolution (Fig. S5) due to the presence of nitrifiers as observed in a 182 

preliminary study. Effluent collection was performed at the lowest flow rate first (0.22 mL/min) and 183 

increased successively to the highest flow rate (4.0 mL/min) which corresponds to filtration at 184 

decreasing EBCT (ratio of bed volume to influent flow rate). Samples were collected before 185 

biological filtration and at the following EBCTs: 3, 5, 8, 11, 15, 19, 30, 39, and 55 min. In between 186 

sampling at the different EBCTs, mild backwashing was done using a sample-containing syringe 187 

connected online. After this step, at least 3 bed volumes of the ozonated sample were pumped 188 

through the columns and discarded. This volume was assumed sufficient to flush the sample used in 189 

a previous condition out of the columns.  190 

Biofiltered samples (250 mL) were collected in acid-washed amber-colored glass bottles and 191 

stored at 4 0C prior to subsequent analyses. Sample collection during column experiments was 192 

performed within a week to avoid possible changes in biomass and biofilm characteristics that may 193 

be a significant variable on NOM removal. A constant biological activity in the media was desired 194 

to be able to compare the reactivity of different precursors with changes in EBCT. 195 

2.4. DBP formation potential tests 196 

DBP formation potential tests were as described in previous studies (De Vera et al. 2015, 197 

Doederer et al. 2014, Farré et al. 2013). Briefly, sodium hypochlorite (reagent grade, available 198 

chlorine 4 − 4.99%, Sigma-Aldrich, USA) was added to samples buffered at pH 7 with 10 mM 199 

phosphate. For every experiment, the concentration of sodium hypochlorite added was based on 200 

prior chlorine demand tests with the same water and aimed to have a residual of 1 – 2 mg/L as Cl2 201 

after a 24 h reaction. Chlorine residual in samples was measured using the N,N-diethyl-p-202 

phenylenediamine free chlorine colorimetric method (Hach, USA). After one day of contact time, 203 

residual chlorine was quenched with either L-ascorbic acid (≥99%, Sigma-Aldrich, China), 204 

ammonium chloride (99.5%, Sigma-Aldrich, Japan), or sodium sulfite (≥98%, Sigma-Aldrich, 205 
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Japan) depending on the subsequent extractions for neutral-extractable DBPs, HAAs, or AOX, 206 

respectively.  207 

2.5. Analytical methods 208 

2.5.1. Dissolved oxygen and inorganic nitrogen 209 

Influent and effluent DO concentrations were measured on-line in a gas tight flow through cell 210 

using a WTW Multi 3420 meter equipped with DO probe FDO 925 (DO measuring range specified 211 

by manufacturer = 0 – 20 mg/L, WTW, Germany). Ammonia, nitrite and total NOx (i.e., sum of 212 

NO2
- and NO3

-) were measured on samples collected before and after biofiltration by a Lachat 213 

QuikChem8500 Flow Injection Analyzer (Hach Company, USA) using Lachat methods 31-107-06-214 

1-B (NH4
+), 31-107-04-1-A (NOx), and 31-107-05-1-A (NO2

-).  The method reporting limits (MRL; 215 

3 × method detection limit (MDL) (NATA 2013); MDL = standard deviation of  at least 7 replicate 216 

analyses  of the lowest laboratory standard in reagent blank × Student’s t-statistic for a 99% 217 

confidence level and n-1 degrees of freedom (USEPA 2010)) were 4 µg/L for NH4
+-N (measuring 218 

range = 4 – 900 µg/L), 0.6 µg/L for NO2
--N  (measuring range = 0.6 – 72 µg/L), and 4 µg/L for 219 

NOx-N (measuring range = 4 – 900 µg/L).  220 

2.5.2. Dissolved organic carbon and UV absorbance 221 

The DOC of 1.2 µm GF/C filtered samples was measured with a Shimadzu TOC-L analyzer 222 

that was also equipped with a TNM-L total nitrogen analyzer unit and ASI-L autosampler 223 

(Shimadzu, Japan). The MRL for DOC was 0.3 mg/L (measuring range = 0.3 to 25 mg/L). UV 224 

absorbance at 254 nm (UV254) was measured with a Varian Cary 50 Bio UV-Visible 225 

spectrophotometer (Varian, Australia).  226 

2.5.3. Size exclusion chromatography (SEC) 227 

The molecular weight distribution of NOM in each water sample (untreated, ozonated, and 228 

biofiltered) was evaluated using a Shimadzu prominence LC-20AT high performance liquid 229 

chromatograph (HPLC, Shimadzu, Japan) equipped with a SIL-20A HT autosampler and a 230 
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Toyopearl HW-50S SEC column (250 mm x 20 mm packing material; Tosoh, Japan). The unit was 231 

connected to a SPD-M20A diode array detector (UVD) and a GE Sievers 900 portable online total 232 

organic carbon analyzer (OCD) with an inorganic carbon remover (GE, USA). The retention times 233 

of eluted volumes were calibrated against polyethylene glycol standards (Agilent, UK) in order to 234 

convert to molecular weight. The analyses used a 25 mM phosphate mobile phase (pH 6.85), 1 235 

mL/min flow rate, 1100 µL injection volume, 35 0C oven temperature, and 100 min analysis time. 236 

2.5.4. Volatile neutral extractable DBPs 237 

The following volatile DBPs were analyzed in aqueous samples at pH 7 after duplicate 238 

extractions with methyl tert-butyl ether (MtBE; 99.9%, Sigma-Aldrich, USA): (a) four 239 

trihalomethanes (THM4: trichloromethane (TCM), dibromochloromethane (DBCM), 240 

bromodichloromethane (BDCM), tribromomethane (TBM)), four haloacetonitriles (HAN4: 241 

trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN), bromochloroacetonitrile (BCAN), 242 

dibromoacetonitrile (DBAN)), two haloketones (HK2: 1,1-dichloropropanone (DCP), 1,1,1-243 

trichloropropanone (TCP)), two trihalonitromethanes (THNM2: trichloronitromethane (TCNM), 244 

tribromonitromethane (TBNM)), chloral hydrate (CH), and trichloroacetamide (TCAM). Iodinated 245 

DBPs (e.g., dichloroiodomethane, bromochloroiodomethane, dibromoiodomethane, 246 

chlorodiiodomethane, bromodiiodomethane, triiodomethane, chloroiodoacetamide, 247 

bromoiodoacetamide, and diiodoacetamide), and most other haloacetamides (e.g., 248 

dichloroacetamide, bromochloroacetamide, dibromoacetamide, bromodichloroacetamide, 249 

dibromochloroacetamide, and tribromoacetamide) were also measured but not detected in samples 250 

chlorinated after ozonation. Text S2 and Table S1 provide more details on the DBPs and standards 251 

used. MtBE extracts containing the volatile DBPs and the internal standard (1,2-dibromopropane) 252 

were injected into an Agilent 7890A gas chromatograph equipped with two independent electron-253 

capture detector (GC/ECD) (Agilent, China) connected to a separate DB-5 and a DB-1 Agilent 254 

column (30 m length x 0.25 mm inner diameter x 1.0 um film thickness each) and two injectors. 255 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 - 12 -

Pulsed splitless injection was used at 140 0C. The oven temperature program started at 35 0C for 25 256 

min, followed by three ramps to have a total analysis time of 81 min: (1) 100 0C at 2 0C/min (2 min 257 

holding time), (2) 200 0C at 5 0C/min, and (3) 280 0C at 50 0C/min. The ECD temperature was set at 258 

300 0C. The MRL for all volatile DBPs was 0.1 µg/L (measuring range = 0.1 – 200 µg/L) with 259 

recoveries normally ranging from 80% to 120%.  260 

2.5.5. Adsorbable organic halogen (AOX) 261 

The analysis of AOX was based on previously reported methodologies (De Vera et al. 2015, 262 

Farré et al. 2013, Stalter et al. 2016, Yeh et al. 2014). In this method, 10 mL of quenched aqueous 263 

sample was first acidified with 10 µL of concentrated HNO3 (70%, Sigma-Aldrich, Australia). The 264 

acidified sample was then passed through two consecutive activated carbon cartridges (50 mg C in 265 

3 mm ID Euroglass, CPI International, USA) using a 10 mL gas-tight Hamilton syringe. The 266 

cartridges were washed with 8.2 g/L potassium nitrate (≥99%, Sigma-Aldrich, Australia) at a rate of 267 

about 5 mL/min to remove inorganic halides. The activated carbon was next transferred to sample 268 

boats for pyrolysis at 1000 0C (in the presence of oxygen) using a Mitsubishi AQF-2100 Automated 269 

Quick Furnace unit connected to a Dionex ICS-2100 Dual Channel Ion Chromatograph (IC) system 270 

(Thermo Fisher Scientific, Australia). Using argon as a carrier gas, the halogens produced from 271 

pyrolysis were then reduced to halide ions in a 10 mL absorption solution (0.003% H2O2 with 1 272 

mg/L phosphate). Chloride, bromide, and iodide ions were then quantified by IC with MRLs of 12, 273 

6, and 15 µg/L, respectively. The commonly used linear range was up to 800 µg/L for bromide, 274 

2000 µg/L for chloride, and 400 µg/L for iodide.  AOX is reported as a Cl equivalent concentration 275 

(µM as Cl), which refers to the sum of the equivalent concentrations of adsorbable organic chlorine, 276 

bromine, and iodine multiplied by the atomic mass of Cl.  277 

2.5.6. Haloacetic acids (HAAs) 278 

Eight haloacetic acids (trichloroloacetic acid (TCAA), bromodichloroacetic acid (BDCAA), 279 

chlorodibromoacetic acid (CDBAA), dichloroacetic acid (DCAA), bromochloroacetic acid 280 
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(BCAA), dibromoacetic acid (DBAA), monochloroacetic acid (MCAA), and monobromoacetic acid 281 

(MBAA)) were measured at Queensland Health Forensic and Scientific Services (QHFSS) using an 282 

acidic, salted microextraction followed by derivatization with acidic methanol and GC/ECD 283 

analysis (US EPA Method 552.3 (Domino et al. 2003)). Tribromoacetic acid was not analyzed due 284 

to its low stability. The MRL for all HAA species was 5 µg/L. 285 

2.5.7. Bromide and bromate 286 

Bromide and bromate were measured at QHFSS with a Metrohm 861 Advanced Compact Ion 287 

Chromatograph (Metrohm, Switzerland) equipped with a CO2 suppressor, a Thermo AS23 column, 288 

Thermo AG23 guard column and a 50 µL sample loop. The eluent was a carbonate (4.5 mM 289 

Na2CO3)/bicarbonate (0.8 mM NaHCO3) mixture with a 1 mL/min flow rate. The MRLs for 290 

bromide and bromate of QHFSS were 5 and 10 µg/L, respectively.  291 

  292 
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3. Results and Discussions 293 

3.1. Effect of ozonation and biodegradation on formation potentials of halogenated DBPs 294 

produced by subsequent chlorination  295 

3.1.1. Ozonation 296 

Ozone is known to significantly alter NOM characteristics because of its reaction towards their 297 

electron-rich moieties which include activated aromatic systems, olefins, and non-protonated 298 

amines. These reactions favor the effectiveness of biofiltration if it follows ozone treatment and 299 

impact DBP formation by post-chlorination. The reactions of ozone with such moieties have been 300 

extensively studied in the literature (von Gunten 2003, von Sonntag and von Gunten 2012). Briefly, 301 

ozone reacts with phenolic compounds (Fig. 1a) via an ozone adduct which proceeds primarily to 302 

ring cleavage, formation of muconic-type compounds, and eventually resulting in aliphatic 303 

aldehydes and ketones (Hammes et al. 2006, Ramseier and von Gunten 2009). In our study, 304 

ozonation of the water sample (1 mgO3/mgDOC) caused an 11% decrease in DOC and a 56% 305 

decrease in SUVA (Fig. S6). These results were consistent with the typical degree of mineralization 306 

of NOM (~10% at 1 mgO3/mgDOC) (Nothe et al. 2009) resulting from decarboxylation reactions 307 

that occur during further oxidation of substantially oxidized NOM (von Sonntag and von Gunten 308 

2012). The high decrease in SUVA supports the likelihood that the ring-opening mechanism shown 309 

in Fig. 1a for phenolic compounds occurred in our reactions. These observations were in agreement 310 

with the SEC images that show significant removal of NOM (humics and building block region) by 311 

ozone with the UV254 detector (Fig. S7a) but barely any with the organic carbon detector (Fig. S7b; 312 

OCD). The results indicate that certain UV absorbing units of NOM were partially oxidized and 313 

transformed to lower molecular weight compounds rather than being mineralized since the overall 314 

DOC was mostly unchanged. Minor pathways could generate products such as catechol, 315 

hydroquinone, and quinones (Ramseier and von Gunten 2009) especially at lower O3 doses (Chon 316 

et al. 2015). For olefins (Fig. 1b), the ozone reaction occurs via a Criegee mechanism that involves 317 
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cleavage of the C=C double bond and formation of carbonyl compounds (Criegee 1975). For 318 

amines (Fig. 1c), an ozone adduct on the nitrogen atom leads to formation of N-oxide for tertiary 319 

amines and hydroxylamine for primary and secondary amines (von Gunten 2003). A recent study 320 

also reported formation of nitromethane from ozonation of methylamine (McCurry et al. 2016). 321 

Amine radical cations can also be formed leading to dealkylated amines and ketones or aldehydes 322 

(von Sonntag and von Gunten 2012). These ozonation transformation products could be formed 323 

along with products from •OH reactions since ozonation conditions at treatment plants do not 324 

scavenge for these radicals. Addition reactions are very common for •OH since the radicals readily 325 

add to C-C and C-N bonds (von Sonntag and von Gunten 2012).  326 

These transformation products can affect the subsequent DBP formation potentials during post-327 

chlorination, as shown in this study. Consistent trends were observed for all the DBPs presented in 328 

Figs. 2-5. Results are presented as relative residual concentrations (C/C0) to show the extent of the 329 

change in concentrations with respect to C0 or the concentration resulting from chlorination alone 330 

(i.e., without prior ozonation and biodegradation). Analyte concentrations are summarized in Tables 331 

S2-S6.  332 

The mechanisms of Figs. 1a and 1b show example precursors for aliphatic aldehydes and 333 

ketones formed from ozone. In this study CH and HK2 were found to more than double in 334 

concentration at 1 mgO3/mgDOC that could have resulted from ring-opening of phenolic groups in 335 

NOM (see decrease in SUVA in Fig. S6). THM4 and HAA8 decreased by about 30% and 10%, 336 

respectively, after ozonation at the same O3 dose (Table S6) because reaction sites for chlorine such 337 

as those in activated aromatic systems, β-diketones and β-diketoacids will have already been 338 

oxidized by O3. HAN4 and TCAM (Table S2, 1 mgO3/mgDOC) also decreased in concentration 339 

(HAN4 = 0.13 to 0.11 µM; TCAM = 0.014 to 0.006 µM) most likely because of the oxidation of the 340 

precursor amino groups (Fig. 1c), leading to pronounced formation of THNM2 especially with 341 

increasing O3 dose (0.007 to 0.068 µM). Lower AOX (19.7 to 15.7 µM Cl-, Table S3) was also 342 
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observed which suggests the benefit of ozonation in decreasing formation potentials of other non-343 

volatile DBPs that were not measured. After O3/HOCl treatment, bromine-containing DBPs namely 344 

tribromomethane (TBM), dibromochloromethane (DBCM), dibromoacetic acid (DBAA), 345 

dibromoacetonitrile (DBAN), and tribromonitromethane (TBNM) also increased (Tables S2 and 346 

S3) because of the production of more hydrophilic NOM during ozonation which are more 347 

amenable to HOBr than HOCl reactions (Hua and Reckhow 2013, Westerhoff et al. 2004). HOBr, 348 

produced from oxidation of bromide during chlorination and ozonation, can react with NOM to 349 

form the previously mentioned bromo-organic DBPs (Gruchlik et al. 2014). Under the conditions 350 

used, no bromate was observed above the MRL (10 µg/L) probably because of the high reactivity of 351 

NOM that competes with bromide in reactions with O3 and •OH.  352 

3.1.2. Biodegradation 353 

The impact of ozonation on biodegradability of the water samples was evaluated using (1) 354 

batch experiments with bioactive anthracite and (2) biofiltration columns containing either 355 

anthracite or BAC. The results of batch biodegradation experiments using bioactive anthracite 356 

(contact time = 7 days) are shown in Fig. 2 while biofiltration experiments (EBCT = 11 min) are 357 

shown in Fig. 3.  358 

3.1.2.1. Biodegradation before ozonation  359 

Biodegradation experiments without pre-ozonation (“No O3” in Figs. 2 and 3) yielded notably 360 

different results for anthracite batch and column filtration experiments, likely due to differences in 361 

contact time (i.e., 7 day exposure with anthracite for batch biodegradation and 11 min for column 362 

experiment). This longer contact time may explain the higher DOC removals (38%) and better 363 

reduction of formation potentials of THM4 (51%), CH (52%), and HK2 (76%) in Figs. 2b – 2d 364 

(batch biodegradation) compared to their equivalents using the biofilter columns (Figs. 3a – 3d; % 365 

removal: DOC = 12%, THM4 = 30%, CH = 34%, HK2 = 32%). After batch biodegradation, higher 366 

HAN4 formation potentials were observed which could have been caused by release of soluble 367 
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microbial products  (SMPs) (e.g., nucleic acids, proteins, amino acids) (Rittman et al. 1987) during 368 

long contact times.  THNM2 precursors (Figs. 2f and 3f), which were present at very low 369 

concentrations (~0.01 µM) before ozonation, had low removals of less than 6% which suggests that 370 

non-ozonated THNM precursors were not readily biodegradable. This result was in agreement with 371 

the observations by Wadhawan et al. (2014) who demonstrated the importance of ozonation in 372 

increasing the concentrations of biodegradable DON. Biofiltration of non-ozonated samples did not 373 

change the resultant TCAM levels (Fig. 3g) whereas at the longer contact times in batch 374 

biodegradation tests (Fig. 2g), removals of 50% were achieved indicating the presence of TCAM 375 

precursors that may biodegrade slowly. The relatively high error bars for TCAM are a result of its  376 

concentrations near the MRL. Because of the contrasting effects of TCAM and HAN4 in Figs. 2e 377 

and 2g, it is likely that TCAM precursors are independent from HAN4 precursors in the 378 

biodegraded water sample. The SMP released during batch biodegradation could be a major 379 

contributor to HAN4 formation, while TCAM could predominantly come from humic substances of 380 

the water sample (Huang et al. 2012). For AOX, biofiltration of non-ozonated precursors only 381 

resulted in a 2 – 13% decrease in formation potentials. 382 

3.1.2.2. Biodegradation after ozonation 383 

Combining ozonation (1 mgO3/mgDOC) with batch anthracite biodegradation resulted in an 384 

overall reduction of 54% of DOC (Fig. 2a, Table S2: No O3 = 9.8 mg/L DOC; No O3 + AN = 6.0 385 

mg/L DOC; O3 only = 8.7 mg/L DOC; combined O3 + AN = 4.5 mg/L DOC). The observed better 386 

DOC removal (O3 + AN versus O3 only) is most likely due to the formation of smaller, more 387 

hydrophilic, and readily biodegradable compounds following ozonation such as aldehydes, ketones, 388 

and carboxylic acids (Fig. 1) (Hammes et al. 2006, Weinberg et al. 1993). For aromatic compounds, 389 

ring cleavage products have been estimated to be more biodegradable compared to their parent 390 

compounds (Hubner et al. 2015). These products are reported to be biodegraded via a pathway that 391 

leads to carboxylate as shown in the University of Minnesota biocatalysis/biodegradation database 392 
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(Gao et al. 2010) (refer to Table S7 for a list of different biotransformation (bt) rules relevant to this 393 

study). No significant change in biodegradability was associated for possible aromatic 394 

hydroxylation products such as catechols (Hubner et al. 2015). These observations support the 395 

increase in SUVA after biodegradation (Fig. S6) since compounds with low UV absorbance are 396 

consumed, decreasing the DOC and leaving behind other UV absorbing aromatic compounds (Fig. 397 

S7b). The improved biodegradability of NOM also translated to a decrease in THM4, CH, and HK2 398 

formation during post chlorination (shown in Figs. 2b, 2c, and 2d respectively) with the most 399 

notable effects on CH and HK2 because of the readily biodegradable aldehyde and ketone 400 

precursors.  401 

Aerobic biodegradation of amine compounds is expected to form aldehydes and ketones 402 

through oxidative removal of an alkyl substituent from an amine using dehydrogenase enzymes 403 

(Gao et al. 2010). In this biodegradation pathway (biotransformation rule bt0063 of the 404 

biodegradation database shown in Table S7), aldehydes and ketones are produced if the leaving 405 

substituent is attached to a primary or secondary carbon, respectively. Other N-DBP precursors, 406 

formed by ozone, containing N-oxide, hydroxylamine, and nitromethane moieties can also be 407 

biodegraded accordingly (biotransformation rules bt0408, bt0035, bt0086). These transformations 408 

resulted in decreased HAN4, THNM2, and TCAM concentrations as shown in Figs. 2e, 2f, and 2g, 409 

respectively. Precursors of THNM2 were observed to be very biodegradable with a decrease in 410 

formation potentials of up to 98%. This decrease was mostly caused by the removal of 411 

trichloronitromethane precursors. Although formed at low concentrations, tribromonitromethane 412 

was found to increase because of higher bromine substitution with subsequent chlorination of 413 

biodegraded water samples. This was also observed for other brominated THMs and HANs 414 

confirming the known influence of the bromide to carbon ratio in DBP speciation (Fig. S8). Since 415 

bromide was not consumed as DOC decreased during biodegradation, the bromide to carbon ratio 416 

increased leading to the formation of more available HOBr in relation to the reduced NOM 417 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 - 19 -

concentration. Due to the higher electrophilicity of HOBr compared to HOCl (Heeb et al. 2014, 418 

Symons et al. 1993, Westerhoff et al. 2004), halogenation by HOBr is favored resulting in 419 

formation of more brominated DBPs. The apparent rate constants of bromine reactions (pH 7) were 420 

reported to be up to 3 orders of magnitude higher than those of chlorine reactions (Heeb et al. 421 

2014). In addition, better bromine substitution occurs especially for ozonated waters since 422 

hydrophilic organic materials (e.g., aliphatic products of ozone) were found to be more reactive to 423 

HOBr compared to hydrophobic fractions (Hua and Reckhow 2007a, Liang and Singer 2003). 424 

To simulate conditions commonly encountered in actual water treatment conditions, the results 425 

of the batch biodegradation experiments were confirmed using bench-scale columns with anthracite 426 

and BAC (Fig. 3, Table S3). The extent of DOC removal using both biofilters was similar (33-34 427 

%) after an EBCT of 11 min. The results of SEC with either a UV or organic carbon detector (Fig. 428 

S7) showed that this DOC decrease was a result of removal of low molecular weight compounds 429 

(ca. 103 g/mol) consistent with their transport across cell membranes and attack by metabolic 430 

enzymes during biodegradation (Nishijima and Speitel 2004). Similar trends were observed for the 431 

DBP formation potentials suggesting that comparable enzymatic functions were responsible for 432 

biodegradation in both media. All DBPs, including those that increased after ozonation (e.g., CH, 433 

HK2, and THNM2), decreased compared to their initial DBP formation potential after biofiltration. 434 

For AOX, a reduction of about 45% compared to non-ozonated and non-biofiltered conditions was 435 

observed for samples treated with combined ozonation and biofiltration (Fig. 3h).  436 

3.2. Process optimization 437 

3.2.1. Ozonation: Use of O3/H2O2 before biofiltration 438 

Since DBP formation potentials can be affected differently by ozone and •OH reactions (De 439 

Vera et al. 2015), the effect of ozone exposure on the biodegradability of DBP precursors was 440 

investigated. This was achieved through batch experiments involving ozone with and without 441 

addition of H2O2 to the water samples. Although no •OH concentration measurements were made in 442 
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this study, it has been well-established that the presence of H2O2 accelerates O3 decay through 443 

formation of •OH and superoxide radical (O2
•-) which further reacts with O3 (von Gunten 2003, von 444 

Sonntag and von Gunten 2012). Thus, at conditions with higher H2O2 concentrations, O3 would 445 

decay faster and be transformed more quickly to •OH.  446 

Fig. 4 shows the changes in DOC resulting from O3/H2O2 and biofiltration treatment and the 447 

impact of these treatments on DBPs formed by subsequent chlorination. At all H2O2 doses, source 448 

DOC decreased by no more than 10% after ozonation, similar to the values obtained in Figs. 2 and 449 

3.  After biofiltration of the ozonated waters using both anthracite and BAC, a ~30% DOC removal 450 

was achieved. The remaining ~6 mg/L DOC (Tables S4 and S5) represents the non-biodegradable 451 

fraction of NOM as classified by Yavich et al. (2004). While the DOC remained relatively 452 

unchanged at all H2O2 concentrations, a different behaviour was observed for DBPs (Figs. 4b – 4i; 453 

Tables S4 and S5). Addition of H2O2 during ozonation confirmed our previously published work 454 

showing that •OH reactions increased the DBP formation potentials of THM4, HAA8, CH, HK2, 455 

HAN4, TCAM, and AOX (De Vera et al. 2015). For THNM2, an  opposite trend (i.e., lower 456 

formation potentials at higher H2O2 concentrations) was observed which shows that THNM2 457 

precursors are predominantly formed through O3 reactions (McCurry et al. 2016). When 458 

biofiltration was employed after the oxidation process, a dramatic drop in DBP formation potentials 459 

was observed in the column effluent especially for CH, HK2, and THNM2 suggesting the high 460 

biodegradability of their precursors. The slightly better removal of formation potentials of DBPs 461 

with BAC over AN may be attributed possibly to the different surface area and biological activity of 462 

each filter media.  463 

3.2.2. Biofiltration: Variation of empty bed contact time (EBCT) 464 

To optimize biofiltration, column experiments using BAC were performed at different EBCTs 465 

(3 – 55 min). Bioactivity of the columns was confirmed from the increase in oxygen consumption 466 

and nitrate concentration with increasing EBCT (Fig. S5). BAC filtration resulted in about 30% 467 
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decrease in DOC as shown in Fig. 5a, which is within the range of removal efficiencies reported in 468 

the literature (Juhna and Melin 2006). This decrease mostly happened within the first 20 min, with 469 

the largest decrease happening within the first three minutes.  Such observation supports previous 470 

studies (Black and Berube 2014, Carlson and Amy 1998, Yavich et al. 2004) where a characteristic 471 

initial period of fast DOC decrease followed by a period of slow decrease was observed. The 472 

remaining DOC corresponds to the slowly biodegradable to non-biodegradable DOC. A similar 473 

trend was also observed for the formation potentials of all the DBPs studied (Figs. 5b – 5i). These 474 

results followed first-order reaction kinetics (Black and Berube 2014, Huck et al. 1994, Melin and 475 

Odegaard 2000) and can be modelled using equation (1),  476 

�� = ������	

��� + ��  (1) 477 

where t is the EBCT (min), k is the specific first-order rate constant (min-1), Pt is the concentration 478 

at time t (µM), Pbiodeg is the biodegradable concentration (µM), and Pf is the minimum contaminant 479 

concentration or DBP formation potential (µM) after a certain EBCT. The model fit for DOC and 480 

DBP formation potentials was carried out using the software SigmaPlot, version 13.0 (Systat 481 

Software, Inc.) and resulted in the kinetic parameters summarized in Table 1. Residuals from the 482 

model fit show a normal distribution (P values > 0.05, Shapiro-Wilk test). All measured formation 483 

potentials at different EBCTs are presented in Table S6. Further discussion on the first-order 484 

dependence of pollutant removal on EBCT is provided in Text S3 and Fig. S9. 485 

Following ozonation, THM4 formation potential was reduced by 46% after a BAC EBCT of 15 486 

min (i.e., 2.70 µM down to 1.47 µM) and remained at almost the same level up to 55 min. This 487 

indicates that THM precursors, mostly for TCM and BDCM, were not completely degraded even at 488 

extended EBCTs. In terms of speciation, the decrease in TCM and BDCM was also accompanied 489 

by an increase in the more brominated THM species, namely DBCM and TBM. TBM formation 490 

potentials increased from 0.003 ± 0.001 to 0.022 ± 0.002 µM in 15 min and continued to increase to 491 

0.031 ± 0.001 µM in 55 min, while DBCM started to slightly increase at 15 min (i.e., 0.20 ± 0.02 492 
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µM to 0.24 ± 0.01 µM in 55 min). These observations can be understood as a result of increased 493 

HOBr availability relative to DOC during chlorination since the bromide to DOC ratio increases 494 

with increasing EBCT (Fig. S10a). The increase in brominated DBPs (between 0 to 55 min EBCT) 495 

was also observed with other DBP groups such as DBAN (0.010 to 0.018 µM), TBNM (0.010 to 496 

0.016 µM) and CDBAA (0.028 to 0.050 µM). Hence, an increase in the levels of bromine-497 

containing DBPs with O3/BAC treatment may occur, especially in source waters containing high 498 

bromide concentrations.  499 

The concentrations of other non-bromine-containing DBPs such as HK2 and CH were reduced 500 

significantly after biofiltration at 10 min EBCT. While their formation potentials increased after 501 

O3/HOCl treatment (i.e., by 73% for HK2 and 111% for CH), their BAC effluent formation 502 

potentials of about 0.06 µM for both CH and HK2 appeared to be the lowest attainable during 503 

biofiltration. These concentrations were lower than those obtained without ozonation (i.e., HK2 = 504 

0.14 µM and CH = 0.17 µM) which confirms the benefit of combined O3/BAC in reducing 505 

formation potentials of these DBPs. The calculated rate constants for these C-DBPs (after 506 

ozone/BAC treatment) were 0.50 ± 0.07 min-1 for HK2 and 0.58 ± 0.07 min-1 for CH, which were 507 

highest among the rate constants determined for other DBP groups suggesting the high 508 

biodegradability of CH and HK2 precursors.  509 

In terms of the HAA species, dihaloacetic acid (DHAA) precursors were removed faster (k = 510 

0.18 ± 0.05 min-1) than those of trihaloacetic acids (THAA) (k = 0.06 ± 0.02 min-1) (Fig. S11). At 511 

the highest EBCT (55 min) there was a reduction of 58% in DHAA and 47% in THAA in the 512 

chlorinated column effluent.  The slightly better removal of DHAA than THAA may suggest having 513 

more biodegradable precursors (i.e., hydrophilic, low molecular weight) consistent with the findings 514 

of Hua and Reckhow (2007a).   515 

Similar features to those presented for other DBPs were observed for HAN4, with DCAN being 516 

the most dominant HAN produced during chlorination. Low TCAN concentrations were observed 517 
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due to this compound’s low stability (Glezer et al. 1999). Despite HAN4 having the lowest 518 

reduction in formation potential (24%, compared to formation potentials after ozonation) after 519 

biofiltration at 55 min EBCT, they had a higher k value (0.40 ± 0.14 min-1) than THM4 which had a 520 

higher removal (47%) at the same EBCT. This suggests that the biodegradable HAN4 precursors 521 

(e.g., aliphatic dissolved organic nitrogen) can be removed faster than their THM4 counterparts. 522 

TCNM formation potentials were found to decrease after BAC filtration confirming results 523 

from previous studies (Krasner 2009, Lyon et al. 2014). Lowest total concentrations were already 524 

achieved at 12 min EBCT and were almost equal to the levels before ozonation. At this EBCT, 525 

about 90% of the TCNM formation potential present after ozonation was removed. While good 526 

TCNM removals were observed, an increase in TBNM formation potentials became apparent after 5 527 

min EBCT. A similar increase in TBNM formation potentials was observed by Lyon et al. (2014) in 528 

full-scale plants in SEQ that utilized O3/BAC. At the highest EBCT tested in the current study, 529 

TBNM increased by 52% (Fig. S10b) relative to its formation potential before biofiltration. Despite 530 

the contrasting trends of TCNM and TBNM, the sum of their concentrations (THNM2) could still 531 

be modelled with a k = 0.48 ± 0.01 min-1, where TBNM accounted for 77% of the remaining Pf.  532 

TCAM formation potentials also decreased with first-order kinetics (k = 0.16 ± 0.03 min-1) 533 

although at a rate that was lower than for HAN4 and THNM2, suggesting differences in 534 

biodegradability of their precursors. Based on the calculated rate constant, THNM2 precursors were 535 

more readily biodegradable than those of HAN4 and TCAM. This supports the results of Mitch et 536 

al. (2009) who showed a higher removal of TCNM compared to DHANs after sequential ozonation, 537 

biofiltration, and chlorination. In their study, the median reduction of TCNM formation potentials 538 

was 48% while for DHAN it was only 3%.   539 

The change in effluent AOX formation potential and chlorine demand followed the trends 540 

discussed above. Their first-order reaction kinetics were relatively close (between 0.11 and 0.13 541 

min-1 (Table 1)). This similarity confirms the intuitive direct relationship of AOX and chlorine 542 
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demand (slope = 0.17 mg AOX/mg Cl2 demand, R = 0.99, P=1.2x10-9) as shown in Fig. S12a. AOX 543 

formation was also found to correlate well with DOC (Fig. S12a, slope = 0.15 mg AOX/mg DOC, 544 

R = 0.98, P=3.7x10-7) which was in agreement with previous studies (Farré et al. 2016). The x-545 

intercept of the AOX versus DOC plot gives a DOC (6.4 mg/L) which is equivalent to 42% of the 546 

DOC before ozonation and represents the non-reactive NOM fraction of the water sample. 547 

Following biofiltration, AOX in the chlorinated water decreased from 21.7 µM (3 min EBCT) 548 

to 12.5 µM (55 min EBCT). At all conditions (i.e., before and after O3 addition, and after 549 

biofiltration from 3 – 55 min EBCTs), the percentage of known and unknown AOX remained 550 

relatively constant as depicted in Fig. S13a. Unknown AOX was calculated by subtracting AOX 551 

equivalents accounted for by the individually measured DBPs from the measured AOX. In this 552 

study, while AOX formation potentials decreased with ozonation and increasing biofiltration 553 

EBCTs, the percentage of known AOX remained at 48 ± 4% and the unknown AOX at 52 ± 4 %. 554 

These results were comparable to many other studies that reported unknown AOX concentrations of 555 

about 50% during chlorination (Reckhow and Singer 1984, Richardson 2003, Singer et al. 1995). 556 

As shown in Fig. S13b, the measured AOX in the current study was largely attributed to THM4 (30 557 

± 3%) and HAA8 (13 ± 0.8%) at all applied experimental conditions. These findings are similar to 558 

those in a study by Hua and Reckhow (2007b) where they found 25.2% of the total AOX attributed 559 

to THMs and 14.4% attributed to HAAs after ozonation (1mgO3/mgDOC) and subsequent 560 

chlorination of a raw water sample. Other DBP groups only had minor contribution. In the current 561 

study, THNM2, HAN4, HK2, CH, and TCAM could only explain 0.4%, 0.9%, 1.5%, 2.1%, and 562 

0.1%, respectively, of the measured AOX. As the AOX attributed to both THM4 and HAA8 563 

remained relatively constant despite differences in the measured AOX concentrations, formation 564 

potentials of these two DBP groups were in a linear relationship (i.e., R = 0.98, P <1.5x10-4) with 565 

AOX formation potentials (Fig. S12b). In addition to THM4 and HAA8, the AOX values were also 566 

strongly correlated with HAN4 (R=0.92, P=6.2x10-5) and TCAM (R=0.98, P=3.7x10-7). The 567 
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relation of CH and HK2 with AOX was not markedly significant (R=0.65-0.71, P = 0.01 – 0.03) 568 

since their formation potentials increased after ozonation. THNM2 had no significant relationship 569 

(R=0.21, P = 0.541) with AOX which is also a result of its increase after ozonation. Such 570 

correlations might be useful predictors of AOX formation in chlorinated biofilter effluents of water 571 

treatment plants.    572 

 573 

3. Conclusions 574 

Coupling ozonation with biological treatment was found to be beneficial for DBP control. In 575 

this study, we investigated the biodegradability of DBP precursors using batch biodegradation 576 

experiments with bioactive anthracite and column experiments with bioactive anthracite and BAC. 577 

The following conclusions from this study confirm previously published literature: 578 

• Ozonation decreased the formation potentials of THM4, HAA8, HAN4, TCAM and 579 

increased formation potentials of THNM2, CH, and HK2 with subsequent chlorination. 580 

• Compared to conditions that favor •OH reactions (i.e., high H2O2 concentrations), direct O3 581 

reactions resulting from the lowest H2O2 concentrations led to lower formation potentials of 582 

the following DBPs: THM4, HAA8, CH, HK2, HAN4, TCAM, and AOX. The opposite was 583 

observed for THNM2. 584 

The following novel conclusions can be drawn from this study: 585 

• For the water sample tested, the increase in formation potentials of CH, HK2, and THNM2 586 

after ozonation was effectively offset by biodegradation at typical contact times regardless 587 

of the initial concentration of precursors in the influent. 588 

• The dynamics of removal of DOC and DBP formation potentials by biofiltration at different 589 

EBCTs followed first-order reaction kinetics with a plateau of residual biorecalcitrant 590 

concentration attained after approximately 10-20 min of EBCT. This study highlighted the 591 

importance of EBCT as a key design parameter for biofiltration. The experimentally 592 
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determined rate constants may be useful in prediction of DBP formation potential reductions 593 

and determine the EBCT required to attain a target DBP concentration in the treated 594 

drinking water.  595 

• The reduction in DBP formation potentials varied with respect to species, indicating the 596 

influence of DBP precursor structure and reactivity on biodegradability. The measured rate 597 

constants of DBP formation potential before reaching the steady-state concentration 598 

followed this order: CH > HK2 ≈ THNM2 > HAN4 > THM4> TCAM > HAA8. 599 

• Due to the increase in bromide to DOC ratio after ozonation and biofiltration, the 600 

concentrations of bromine-containing DBPs (e.g., TBM, DBAN, TBNM) increased after 601 

these sequential treatments followed by chlorination. Thus, conditions promoting strong 602 

DOC removal such as longer EBCTs (e.g., > 20 min) can promote the formation of 603 

bromine-containing DBPs in bromide-containing waters. Treatment engineers should take 604 

this risk into account on a case-by-case basis. 605 
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Figure Captions: 

Fig. 1. Impact of chlorination, ozonation, and biodegradation on DBP precursors: (a) phenolates, 

(b) olefins, and (c) amines. Biotransformation rules were taken from the University of Minnesota 

Biocatalysis/Biodegradation Database (https://umbbd.ethz.ch/) (Gao et al. 2010). THMs = 

trihalomethanes, HAAs = haloacetic acids, CH = chloral hydrate, HK = haloketones, HANs = 

haloacetonitriles, TCAM = trichloroacetamide, THNM = trihalonitromethanes. Reactions were 

based on the following references: Deborde and von Gunten (2008), Hubner et al. (2015), McCurry 

et al. (2016), Wenk et al. (2013), Ramseier and von Gunten (2009), von Sonntag and von Gunten 

(2012). 

Fig. 2. Effect of batch biodegradation (O3+AN) on water samples ozonated (O3) at different doses 

on (a) dissolved organic carbon (DOC) and formation potentials  of (b) trihalomethanes (THM4), 

(c) chloral hydrate (CH), (d) haloketones (HK2), (e) haloacetonitriles (HAN4), (f) 

trihalonitromethanes (THNM2), and (g) trichloroacetamide (TCAM). Conditions: Sample/bioactive 

anthracite (volume/mass) = 500 mL/170g; contact time = 7 days; pH = 7; temperature = 22 ± 1 0C, 

chlorine residual = 3.4 ± 0.9 mg/L as Cl2. “No O3” represents formation potentials of non-ozonated 

samples. Error bars depict mean absolute deviation obtained from experiment (n=1) with 2 DBP 

extractions per sample. C0 = contaminant concentration before ozonation and biodegradation, C = 

contaminant concentration after treatment. 

Fig. 3. Effect of ozonation and biofiltration with anthracite (AN) and activated carbon (BAC) media 

on (a) dissolved organic carbon (DOC) and formation potentials of (b) trihalomethanes (THM4), (c) 

chloral hydrate (CH), (d) haloketones (HK2), (e) haloacetonitriles (HAN4), (f) trihalonitromethanes 

(THNM2), (g) trichloroacetamide (TCAM), and (h) adsorbable organic halogen (AOX). 

Conditions: transferred O3 dose = 1.2 mgO3/mgDOC; bed volume = 7 mL; empty bed contact time 
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= 11 min, pH = 7; temperature = 22 ± 1 0C; chlorine residual = 1.5 ± 0.6 mg/L as Cl2. Error bars 

depict mean absolute deviation of experiments (n=2, with 2 DBP extractions per sample; for AOX, 

n=1). C0 = contaminant concentration before ozonation and biodegradation, C = contaminant 

concentration after treatment. 

Fig. 4. Changes in (a) dissolved organic carbon (DOC) and formation potentials post-chlorination 

of (b) trihalomethanes (THM4), (c) haloacetic acids (HAA8), (d) chloral hydrate (CH), (e) 

haloketones (HK2), (f) haloacetonitriles (HAN4), (g) trihalonitromethanes (THNM), (h) 

trichloroacetamide (TCAM), and (i) adsorbable organic halogen (AOX) as a result of O3/H2O2 

treatment and subsequent column biofiltration with anthracite (AN), and biological activated carbon 

(BAC). Conditions: transferred ozone dose = 1 mg/mg DOC mg/L; bed volume = 7 mL; empty bed 

contact time = 11 min, pH = 7; influent DO = 11.5 ± 0.7 mg/L; effluent DO = 6.6 ± 0.2 mg/L; 

temperature = 22 ± 1 0C; chlorine residual = 1 – 2.7 mg/L as Cl2. “No O3” at x-axis are formation 

potentials of non-ozonated samples. Error bars depict mean absolute deviation of experiments 

(BAC: n=2, AN: n=1, with 2 DBP extractions per sample; for HAA, n=1). n.a. = no test done at the 

specific experimental condition. 

Fig. 5. Effect of biofiltration EBCT on changes in (a) DOC and formation potentials of (b) 

trihalomethanes (THM4), (c) haloacetic acids (HAA8), (d) chloral hydrate (CH), (e) haloketones 

(HK2), (f) haloacetonitriles (HAN4), (g) trihalonitromethanes (THNM2), (h) trichloroacetamide 

(TCAM), and (i) adsorbable organic halogen (AOX) of ozonated water sample. Conditions: 

transferred ozone dose = 1 mg/mg DOC, DOC = 15 mg/L, bromide = 300 µg/L, bed volume = 12 

mL, media = BAC, pH = 6.9, temperature = 22 ± 1 0C, chlorine residual = 3.1 ± 0.8 mg/L as Cl2. 

The symbols are the experimental data, broken lines correspond to formation potentials measured 

without ozonation, and solid lines present model fits (single exponential decay to Pf). Residuals 

from the model fit shows a normal distribution (P values > 0.05, Shapiro-Wilk test, last point for 
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THNM2 and HAN4 not included). Error bars depict standard deviation of 3 replicate experiments 

(with 2 DBP extractions per sample). 
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Table 1. Model parameters for reduction in DBP formation potentials after BAC filtration of ozonated 
water samplesa 

DBP Pf
b, µM  Pbiodeg

c, µM  kd, min-1 R2e Syǀx
f ng 

THM4 1.45 ± 0.04 1.22 ± 0.09 0.28 ± 0.05 0.9657 0.0840 10 

HAA8 0.69 ± 0.06 0.93 ± 0.10 0.15 ± 0.04 0.9688 0.0860 6 

CH 0.074 ± 0.004 0.284 ± 0.012 0.58 ± 0.07 0.9877 0.0113 10 

HK2 0.068 ± 0.003 0.176 ± 0.009 0.50 ± 0.07 0.9808 0.0087 10 

HAN4 0.068 ± 0.001 0.037 ± 0.002 0.33 ± 0.04 0.9844 0.0018 9 

THNM2 0.0171 ± 0.0002 0.0597 ± 0.0006 0.48 ± 0.01 0.9993 0.0006 9 

TCAM 0.0050 ± 0.0002 0.0046 ± 0.0004 0.16 ± 0.03 0.9561 0.0004 10 

AOX 12.86 ± 0.34 13.03 ± 0.46 0.11 ± 0.01 0.9904 0.5113 11 

DOC 10.14 ± 0.17h 3.57 ± 0.38h 0.26 ± 0.06 0.9268 0.3646 10 

Cl2 demand 3.77 ± 0.13h 3.03 ± 0.23h 0.13 ± 0.02 0.9621 0.2272 10 
aobtained from non-linear regression (SigmaPlot 13.0); bPf = final steady state concentration (EBCT > 
20 min); cPbiodeg= DBP formation potential from influent - Pf; 

dk = specific first-order rate constant; eR2 
= coefficient of determination; fSyǀx (standard error of the estimate) = (SS/df)1/2 where SS is the sum-
of-squares of the distance of the linear regression from the data points and df is the degrees of freedom 
(i.e. n-2); gn = number of data points (each data point is the average of 3 replicate experiments); hunits 
= mg/L as C for DOC and as Cl2 for chlorine demand. 
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Highlights 
 

• Biofiltration reduces DBP FP with 1st-order dependence on filter contact time. 
• NOM removal by biofiltration increases Br substitution in subsequent disinfection. 
• Combined O3 + biofiltration (EBCT: 10-20 min) effectively controlled DBP formation. 
• DBP precursor removal by BAC was highest for CH, THNM2, and HK2. 
• Biofiltration attenuates effects of varying O3 exposures on DBP formation. 

 


