
 

 

 

 

 

 

Misspecification and flexible random effect distributions in logistic mixed effects 

models applied to panel survey data 

Louise Marquart-Wilson 

BSc BEc BAppSc(Hons) 

 

 

 

 

 

 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy at 

The University of Queensland in 2016 

Institute for Social Science Research 



 

 

Abstract 

 

Logistic mixed models for binary longitudinal panel data typically assume normal distributed 

random effects, and appropriately account for correlated data, unobserved heterogeneity and 

missing data due to attrition. However, this normality assumption may be too restrictive to capture 

unobserved heterogeneity. The motivating case study is a longitudinal analysis of women's 

employment participation using data from the Household Income and Labour Force Dynamics in 

Australia (HILDA) survey. Multimodality of the random effects was identified, potentially due to 

an underlying mover-stayer scenario.  

 

This study focuses on logistic mixed models applied to the HILDA case study and simulation 

studies motivated by the case study, and aims to investigate: 

 

1. robustness of random intercept logistic models to the assumed normal random effects 

distribution when the true distribution is multimodal  

2. whether relaxing the parametric assumption of the random effects distribution can provide a 

practical solution to reduce the impact of distributional misspecification 

3. impact of misspecification and performance of logistic mixed models in the presence of 

missing data due to attrition. 

 

Random intercept logistic models applied to the case study demonstrate that the assumed normal 

distribution may not adequately capture the underlying heterogeneity due to a potential mover-

stayer scenario. An asymmetric three component mixture of normal distributions provided a more 

appropriate fit, potentially representing three sub-populations: those with an extremely low, 

moderate, or extremely high propensity to be constantly employed.  

 

Two simulation studies motivated by the HILDA study considered a three component mixture of 

normal distributions for the random intercept. The inferential impact of incorrectly assuming a 

normal distribution was dependent on the severity of departure of the true distribution from 

normality. In the first study, simulating a potential mover-stayer scenario, misspecification 

produced biased estimates of the intercept constant and random effect variance. More severely 

asymmetric and skewed multimodal distributions produced larger bias. The second study 

considered a range of true symmetric multimodal distributions, with increasing severity in 

departures from normality. The random intercept logistic model assuming normality was robust to 

minor deviations. However, for larger departures characterised by three distinct modes, 
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misspecification produced biased parameter estimates and poor coverage rates for the intercept 

constant, time-invariant explanatory variables and those time-varying explanatory variables 

exhibiting minimal within-individual variability. For both simulation studies, estimates of the 

random effect variance were extremely sensitive to distributional misspecification, resulting in 

biased parameter estimates, poor coverage rates and inaccurate standard errors. 

 

Non-parametric estimation techniques, which leave the distribution completely unspecified, reduced 

the risks associated with misspecification of the random effects distribution. A novel application of 

the Vertex Exchange Method (VEM) was used to non-parametrically estimate the random effects 

distribution in logistic mixed models. The VEM was computationally intensive yet performed well 

to capture the univariate and bivariate random effects distribution when applied to the HILDA case 

study. VEM was the only method to converge when applied to the random intercept and random 

slope logistic mixed model. Inferential conclusions for the fixed effects parameters differed 

depending on the approach utilised, highlighting the practical use of sensitivity analyses to identify 

potential distributional misspecification of the random effects. 

 

Distributional misspecification of the random intercept in the presence of missing data from 

attrition gave similar parameter estimates as for the complete case analysis, indicative of missing at 

random (MAR) missingness. The two simulation studies show that MAR attrition had minimal 

additional inferential impact on misspecifying the random intercept distribution, for a similar rate of 

29.5% attrition observed in HILDA. As the negligible impact may partly be explained by the 

consistency of logistic mixed models in the presence of MAR missingness and by the large sample 

size, consideration of other missingness mechanisms and rates could be valuable. Flexible and non-

parametric approaches applied to settings with attrition performed similarly as the complete case 

scenario. 

 

Appropriate statistical analysis of longitudinal panel data is fundamental for researchers and policy 

makers to formulate and evaluate policy initiatives in health and social sciences. Hence, the need 

for the appropriate use and understanding of statistical models is crucial. This study provides a 

novel insight into the impact of assuming normality for the random effects in logistic mixed models 

applied to panel data where an underlying sub-population structure is suspected. For substantial 

departures characterised by multimodality with distinct modes, inference for the fixed effect 

parameters, typically the parameters of interest, can be impacted. Misspecification in the presence 

of MAR attrition had negligible additional inferential impact. More flexible distributions for the 

random effects is a practical solution to help reduce the impact of violating distributional 
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assumptions, and identify potential misspecification when used within a sensitivity analysis 

framework. VEM induced sufficient flexibility to capture multimodality of random intercepts and 

the complexity of the bivariate random effects in panel survey settings, including attrition. The 

performance of the VEM to flexibly model random effects should encourage its implementation in 

applications in the health and social sciences. 
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1 Introduction

Appropriate statistical models for the analysis of longitudinal panel survey data enhance

the validity and reliability of research findings in the health and social sciences. Panel sur-

veys are an important source of data, providing an avenue to analyse pathways in individual

outcomes and their relationships with socio-demographic characteristics and other major life

events. Longitudinal panel data arises from collecting data repeatedly over time from the same

panel of individuals, typically from large, nationally representative surveys. Development and

use of appropriate statistical methodology for analysis of such data has not only become an

important part of research, but has been fundamental for policy makers to evaluate and for-

mulate policy initiatives. The complex sampling design of panel surveys and the correlated

nature of longitudinal data, present many challenges to be considered during statistical anal-

ysis. Furthermore, statistical methods need to adequately control for unobserved variability

among individuals and handle missing data due to permanent loss of respondents (attrition).

The generalised linear mixed model (GLMM) is a commonly used approach that can ac-

commodate the aforementioned challenges and features of longitudinal panel surveys. GLMMs

provide a flexible framework when applied to longitudinal data as they take into account the

within-individual variability associated with having collected multiple data points per person,

as well as the between-individual variability. The variability between individuals may be partly

explained by measured characteristics of an individual, which are subsequently included as

explanatory variables in the regression model (known as fixed effects). However, there may

be other sources of heterogeneity due to unobserved individual characteristics unable to be

collected by the survey. The GLMM captures the unobserved heterogeneity by incorporating

individual-specific random effects into the model.

Data are often collected in categorical form in panel surveys due to administration of self-

reported questionnaires. Logistic mixed effect models are a special case of GLMMs suitable

for analysing longitudinal binary data and are useful for modelling the probability of being in

one of two states over time, such as being in employment or non-employment. In the simplest

case, the random intercept logistic model consists of a single random effect for each individual,

where the random intercept represents the overall effect of all unmeasured individual-specific

effects that captures the variability associated with why some individuals are more likely to be

employed than others. Maximum likelihood techniques are often used to estimate the model pa-

rameters of GLMMs, which rely on statistical assumptions to obtain valid parameter estimates
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and standard errors, and hence, interpretation of results. In regards to the random effects, it

is typically assumed that the random effects follow a Gaussian (or normal) distribution.

In practice the routinely assumed Gaussian distribution may be too restrictive. One ex-

ample occurs when a key categorical variable is omitted from the model, which can result in

multimodality of the random effects distribution. Multimodality can also occur when an un-

derlying sub-population structure exists. For example, by the very nature of modelling binary

response data, a subset of individuals may be observed to never change states over the ob-

servational period (a constant response profile), while another subset transitions between the

two states. There are some instances whereby the constant response profile may consist of

a sub-population structure as a consequence of an underlying mover-stayer scenario (Blumen

et al., 1955). In this scenario, individuals with constant response profiles may consist of two

sub-populations, those with a high propensity to remain in the same state (latent stayers),

and those with a propensity to change states (latent movers). Thus, the random intercepts

capturing the unobserved heterogeneity may be dominated by three sub-populations: one with

a very low propensity of ever experiencing the outcome of interest, a more heterogeneous group

with a propensity to transition between states, and one with a very high propensity of always

experiencing the outcome of interest. Hence, the assumed normal distribution of the random

intercept may not capture the heterogeneity of the underlying mover-stayer scenario.

As the random effects are unmeasurable, the validity of assumptions relating to the random

effects distribution can be difficult to check. To help guard against the potential impact of mis-

specifying the random effects distribution, the parametric normality assumption can be relaxed

by inducing flexibility of the assumed distribution. Flexibility can be achieved by modelling the

random effects as non-Gaussian parametric distributions using computational methods (Nelson

et al., 2006; Liu and Yu, 2008), however they may not adequately capture underlying multi-

modality. Alternatively semi-non-parametric methods (Chen et al., 2002; Vock et al., 2014)

can be used to induce sufficient flexibility to capture multimodality. An approach that allows

considerable flexibility is to leave the random effects distribution unspecified through the use

of non-parametric methods (Laird, 1978; Heckman and Singer, 1984; Aitkin, 1999; Lesperance

et al., 2014). In the context of an underlying mover-stayer scenario, discrete masses at negative

and positive infinity can be incorporated into the random effects distribution to represent the

two latent stayer groups with extremely low and extremely high propensity of experiencing

the event (Davies et al., 1992; Berridge and Crouchley, 2011a). Alternatively, modelling the

random intercepts as a finite mixture of normal distributions (Verbeke and Lesaffre, 1996) is

plausible, where three components could capture the three latent sub-populations. Albeit the

development of methodology to induce flexibility of the random effects distribution, implemen-

tation in practice is limited, particularly within the social sciences.

Understanding the impact of violating the assumed random effects distribution will have
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important implications for researchers utilising GLMMs to analyse longitudinal panel data, and

additionally, for policy makers interpreting the results. Recent research has investigated the

impact of misspecifying the random effects distribution in logistic mixed models (e.g. Neuhaus

et al. 1992; Heagerty and Kurland 2001; Litiére et al. 2008; McCulloch and Neuhaus 2011a;

Neuhaus et al. 2013), generally reporting biased estimation of parameters associated with the

misspecified random effects, such as the intercept constant and variance estimates of the ran-

dom effects. However there has been no general consensus about the impact on estimating

fixed effects parameters, usually the parameters of primary interest. Previous literature pre-

dominately utilise simulation studies to investigate the impact of misspecifying the assumed

random effects distribution, considering alternative true and assumed distributions. Limited

research has considered the impact of incorrectly assuming normality when the underlying

random effects distribution is multimodal, in particular, a multimodal distribution with three

modes that may represent an underlying mover-stayer scenario.

The ambiguity about the impact of misspecifying the assumed random effects distribution

has been further exacerbated by the lack of investigation of complexities often experienced when

analysing longitudinal data, such as missing data due to attrition. This is an important area of

study as the issue of misspecifying the random effects distribution in the presence of attrition

can occur in practice. In the context of GLMMs, only one study has investigated the impact

of misspecifying the random effects distribution in the presence of missing data. Wang (2010b)

has shown that intermittent missingness and attrition can affect the power to detect variance

components when the true random effects distribution is skewed yet assumed to be normal.

This is an area requiring further research, as the loss of respondents due to non-response and

attrition are prevalent in panel survey settings.

This study will investigate the impact of misspecifying the random effects distribution on

inference for logistic mixed models in panel survey applications, focusing on multimodality of

the underlying random effects distribution and on the presence of missing data due to attrition.

This study will provide applications to the social sciences by modelling employment participa-

tion of working aged women using eleven years of data from the Household, Income and Labour

Dynamics in Australia (HILDA) panel survey, demonstrating multimodality of the random ef-

fects as a consequence of a potential mover-stayer scenario. Through two simulation studies

based on the HILDA case study, the first aim is to investigate the robustness of inference in

random intercept logistic models to the normality assumption when the true distribution is

multimodal, in the presence of complete and missing data following from attrition. Motivated

by the underlying distribution observed in the HILDA case study, the first simulation study

considers the specific departure from normality arising from a three component mixture of

Gaussians to represent the mover-stayer scenario. The second simulation study investigates

the robustness by simulating a range of multimodal distributions increasing in severity of de-

partures from the assumed normal distribution. Further aims of the thesis are to determine
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whether flexibly modelling the random effects distribution is practically viable in panel survey

settings, and to investigate the feasibility of applying a non-parametric technique, the Vertex

Exchange Method (Böhning, 1985), to induce sufficient flexibly to capture underlying hetero-

geneity of the random effects distribution.

This study aims to address the following three research questions:

1. How robust is the assumed Gaussian distribution to multimodality of the random intercept

distribution in panel survey settings due to a potential mover-stayer scenario?

2. Can the impact of multimodality of the random effects distribution be alleviated by

increasing the flexibility of the assumed random effects distribution?

3. What is the additional impact of misspecified random effect distributions in the presence

of missing data due to attrition?

The following chapter provides a background and overview of the current state of literature,

highlighting key gaps that will be addressed by this study as a contribution to the current

knowledge. The chapter begins by introducing longitudinal panel survey data and statisti-

cal methodologies commonly utilised within the social sciences to adequately account for the

features and complexities of longitudinal panel data. This is followed by a focused review on

GLMMs, introducing the statistical framework and the assumptions of the random effects struc-

ture. Specific focus is on the departure from the normality assumption of the random effects

distribution, reviewing literature investigating the impact of misspecification, and reviewing

methods used to address and detect misspecification.

Chapter 3 contains the statistical methodology that will be implemented and utilised within

the thesis. Chapter 3 first introduces the methodology of GLMMs and logistic mixed models,

and then describes four approaches developed to induce flexibility of the assumed random effects

distribution. This is followed by the methodology underlying two diagnostic tests to identify

misspecification of the random effects distribution in GLMMs. Finally, the chapter details the

methodology of the simulation study and the corresponding performance measures to evaluate

the impact of misspecification.

Chapter 4 will introduce a case study to investigate potential misspecification of the random

effect distribution in an application of a random intercept logistic model to panel survey data.

The case study investigates women’s employment participation using eleven waves of data from

the HILDA panel survey, and provides an example whereby the assumed normal distribution

may not adequately capture the heterogeneity of a potential underlying mover-stayer scenario.

By considering the missingness due to attrition, the case study will investigate the simultaneous

occurrence of misspecification of the random effects distribution and attrition in practice.
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Chapter 5 will investigate the impact of assuming normality of the random intercepts in a

potential mover-stayer scenario. The simulation study used to investigate the impact of mis-

specification in the random intercept logistic model is motivated by the multimodality of the

random intercept distribution characterised in the case study presented in Chapter 4. Further-

more, by replicating attrition as observed in the HILDA case study, Chapter 5 will investigate

the simultaneous impact of misspecification in the presence of attrition.

Chapter 6 will investigate the robustness of the assumed normality distribution to mul-

timodality of the true random effects distribution. By considering a variety of multimodal

random intercept distributions increasing in severity of departure from the assumed normality,

the simulation study will aim to identify scenarios whereby inference of random intercept lo-

gistic models is impacted by misspecified assumptions of the random effects distribution. The

simulation study will investigate the impact of misspecification in the presence of attrition.

Chapter 7 will investigate the performance of a novel application of the Vertex Exchange

Method (VEM) (Böhning, 1985) to non-parametrically estimate the random effects distribu-

tion in logistic mixed models. This approach to flexibly model the random effects distribution

will be compared to some of the leading methods available to induce flexibility of the random

effects distribution when applied to the HILDA case study. In addition to the random inter-

cept logistic model, the VEM approach will be demonstrated to perform well in comparison to

the other methods in an application to the random intercepts and random slopes logistic model.

Finally, Chapter 8 will present a discussion highlighting the relevance to panel survey ap-

plications within the social science discipline, and conclude with ideas and avenues for future

research.
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2 Background and Literature Review

This chapter provides a background and overview of the current state of literature, highlight-

ing key gaps that will be addressed by this study as a contribution to the current knowledge.

The chapter can be structurally divided into three parts. The first part begins by introduc-

ing longitudinal panel survey data, highlighting the features and complexities that need to be

considered to ensure accurate estimation and inference when statistically analysing this rich

source of data. A common issue inherent in the collection of longitudinal panel surveys is

missing data, and Section 2.2 highlights different types of missingness and the hierarchy of

underlying missingness mechanisms. Particular attention will focus on the type of missingness

when participants drop-out of the study, known as attrition. Section 2.3 introduces statistical

methodologies that are commonly utilised to model the change in response variables over time,

particularly focusing on models for categorical variables with two possible values, known as

binary response variables.

The second part focuses on generalised linear mixed models (GLMMs), specifically the lo-

gistic mixed model for binary response variables. Section 2.4 more formally introduces the

general framework and assumptions of GLMMs, focusing on the normality assumption of the

random effects distribution. However, as reviewed in Section 2.5, previous literature has iden-

tified scenarios where the normal distribution of the random effects may be too restrictive in

practice. Particular attention will focus on the specific departure from normality characterised

by multimodality due to an underlying sub-population structure, such as the mover-stayer sce-

nario. The impact of misspecifying the random effects distribution on model estimates and

inferential conclusions is reviewed in Section 2.6, focusing on incorrectly assuming normality

for the random effects distribution in logistic mixed models. Section 2.7 reviews methods to

address and detect misspecification of the random effects distribution, particularly focusing

on methodology suitable to address and formally detect multimodality of the random effects

distribution.

The third part begins in Section 2.8 with an overview of the current state of literature,

highlighting the relevance of the literature to this study. Finally, Section 2.9 concludes by

stating the research questions and how these will be addressed in this study.
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2.1 Longitudinal panel surveys

The use of longitudinal panel survey data is common within the health, economics and so-

cial science disciplines. Panel surveys are a research design used to collect data from a ‘panel’

of the same group of units surveyed repeatedly over time (Frees, 2004; Andress et al., 2013).

Typically the focus of panel surveys is to study individual changes over time. However this

design can also be applied to assess changes in other units of measurement including companies,

nations or other social entities (Andress et al., 2013).

Within the social sciences, panel surveys typically sample individuals within households

through large population based surveys to obtain nationally representative data. This rich

source of data captures time-series and cross-sectional data, providing an avenue to study char-

acteristics that influence individual pathways, in addition to household transitions and societal

trends as they evolve over time. Not only has this data become increasingly attractive in so-

cial science research, but it is often utilised to evaluate and formulate government initiatives.

Predominant panel survey studies within the social sciences include the National Longitudinal

Survey of Labour Market Experience (NLS, initiated in 1966) and the Panel Study of Income

Dynamics (PSID, initiated in 1968) conducted in the United States. More recently household

panel surveys from other countries have been initiated, including the German Socio-economic

Panel Study (SOEP, initiated in 1984) and the British Household Panel Survey (BHPS, initi-

ated in 1991).

One of the first and longest running national longitudinal panel surveys in Australia is the

Household, Income and Labour Dynamics in Australia (HILDA) Survey. The HILDA survey

was an initiative of the Australian government, explicitly designed to inform policy development

in the areas of economic and social participation, and family dynamics (Watson and Wooden,

2012). The design of the HILDA survey is largely similar to previous large scale, nationally

representative panel surveys, especially the BHPS and the SOEP (Watson and Wooden, 2012).

The HILDA survey has been conducted annually since 2001 with data collected from all mem-

bers aged over 15 years in each household, with the first panel consisting of 13,969 individuals

living in 7,682 households (Wooden and Watson, 2007). The reference population for HILDA

was, with minor exceptions, all persons residing in private dwellings in Australia (Wooden and

Watson, 2007).

As the collection of longitudinal panel survey data has become increasingly available, appro-

priate statistical analysis has become an important component of research in the social sciences.

Statistical considerations are required to take into account key features of the panel design, in-

cluding the sampling design and the correlated nature of longitudinal data. For example, in

an attempt to provide a representative sample of the reference population, complex sampling

designs are commonly used to select the initial panel (Vieira and Skinner, 2008). For instance,

the HILDA survey used a multi-stage approach involving stratification by geographical units,
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in conjunction with systematic and random sampling (Wooden and Watson, 2007) to select the

initial households. If interest is in population based inference, statistical weights to account for

the complex sampling design are constructed and are subsequently incorporated into statistical

models to obtain robust population estimates (Goldstein, 2011).

As panel data measures each individual repeatedly over time, observations from the same

individual tend to be more similar (correlated) than observations between different individuals1.

The between-individual differences are known as heterogeneity, and may be partly explained by

observed individual characteristics (observed heterogeneity) or unmeasurable individual char-

acteristics (unobserved heterogeneity). Appropriate statistical models to account for the cor-

related structure of longitudinal data and different types of heterogeneity are necessary as the

standard statistical analysis assumption of independence in the observations is violated. These

statistical models will be discussed in more detail in Section 2.3.

In addition to the design features of panel surveys, the collection of longitudinal panel sur-

vey data is prone to challenges that also need to be considered during statistical analysis. The

most common challenge is the issue of missing data. Missing data can arise when individuals do

not participate at every time-point (intermittent non-response) or leave the study permanently

(monotone missing or attrition). Furthermore, missing data can arise when individuals do not

respond to all questionnaire items (item non-response). This results in unbalanced data, and

may lead to selection bias where the individuals who choose to participate in the survey differ

to those who choose not to participate. This can adversely affect the representativeness of the

sample (Watson and Wooden, 2012) and can subsequently introduce bias into the model esti-

mates and impact the validity of statistical analysis (Fitzmaurice et al., 2011). The presence of

missing data and its treatment in statistical analysis adds more complexity to statistical models

(Hedeker and Gibbons, 2006), and needs to be considered carefully in order to minimise bias,

and the loss of information and precision.

Further complexities can have implications for statistical analyses, such as issues relating

to measurement errors of the survey tool, temporal ordering of the measurements within an

individual, and unbalanced data due to rotating panels and top-up samples. These issues are

beyond the scope of this study, however highlight that although there are numerous advantages

of panel data, there are complexities that need to be considered when analysing longitudinal

panel data. This review will focus on statistical models suitable to account for the correlated

structure of longitudinal data, heterogeneity and unbalanced data due to attrition. The next

section more formally introduces the issue of missingness, and the underlying mechanisms for

missing data.

1Likewise, observations from members of the same household tend to be more similar than observations from
members of different households. As detailed in Section 2.3.1.1 this additional level of clustering can be accounted
for, however in this study the level of clustering will be restricted to account for repeated measurements at the
individual level.

8



2.2 Missingness in panel surveys

Following sample members in the initial panel over a long period of time, potentially over

decades, is not a simple task (Andress et al., 2013). With each successive time-point, some

sample members may temporarily not participate in the survey (intermittent missing), or per-

manently drop-out (attrition). Intermittent missingness is less likely to be related to the out-

come(s) studied, hence leading to less bias in the results. However, attrition can be problematic

to the representativeness of sample2, particularly when a substantial proportion of the initial

panel are lost due to attrition. For instance, over 11 years of follow-up in the HILDA sur-

vey, 62.9% of the initial sample members remained in the study, with similar rates of attrition

reported for comparable time periods in other long-running nationally representative panel sur-

veys (Watson and Wooden, 2012).

There are various reasons for sample members to drop out of the study. Not only will

some sample members move away or stop participating due to health issues or death, but

sample members may withdraw their cooperation from participating in the survey. As alluded

to previously, the predominant concern when analysing longitudinal data with attrition, and

missingness in general, is the issue of selection bias (Alderman et al., 2001). Selection bias

occurs if there are non-random patterns of missingness, resulting in biased model estimates

(Alderman et al., 2001). Therefore, understanding the reason for sample members to drop-out

of the panel survey is crucial. However, often the reasons for missing data can not be collected,

and thus, are typically not known.

Drop-out by sample members can be distinguished by how the missingness is related to the

unobserved response variables and the observed data (including the observed variables and the

responses). Rubin (1976) and Little and Rubin (1987) described a hierarchy of missingness

consisting of three types of mechanisms: missing completely at random (MCAR), missing at

random (MAR) or missing not at random (MNAR). MCAR is the most restrictive and assumes

that, given the observed variables, missingness is independent of both the observed and unob-

served responses. MAR is less restrictive whereby, when given the observed data, missingness

is conditionally independent of the unobserved responses. Finally, MNAR occurs when miss-

ingness is not independent of unobserved response data, even after accounting for the observed

data. The hierarchy was originally developed in the context of missingness in general, and later

Diggle and Kenward (1994) applied the terminology in the context of attrition referring to the

three mechanisms as completely random drop-out, random drop-out and informative drop-out.

The notation and the methodology of the underlying missingness mechanisms is detailed in

Section 3.4.2.

This section has predominately focused on individual non-response due to attrition. How-

2Note that as the population itself changes over time, representing a population over time is more complex
than at a single time-point (Andress et al., 2013).
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ever, in practice the issue of missingness is complex and can consist of different types of non-

response such as item non-response and missingness due to late entry (i.e. from top-up samples).

Furthermore, changes in the household composition can also lead to different types of missing-

ness3. These issues are beyond the scope of this study. The issue of missingness and related

methodology to address missingness is itself a vast literature, and will not be reviewed here4.

For the remainder of this review, attention will be restricted to missingness due to attrition.

2.3 Statistical methods for analysis of longitudinal data

Longitudinal data is a special case of clustered data, where the clusters consist of repeated

measurements from a single individual over several occasions (Fitzmaurice et al., 2011). Often

the major focus of longitudinal data analysis is to estimate within-individual changes in the

response variable over time (response trajectories) and to examine whether a set of explanatory

variables (predictors)5 influences between-individual variability. The statistical methods used

to address these questions in longitudinal data are special cases of general regression methods

used to analyse clustered data (Fitzmaurice et al., 2011). An array of methodology exists for

analysing longitudinal data, with origins tracing back to the analysis of variance paradigm

(Fitzmaurice et al., 2009). Statistical methods were originally developed for continuous re-

sponses, however for binary and categorical responses, techniques based on extensions of the

generalised linear model (GLM) of Nelder and Wedderburn (1972) have been developed.

Analysis of longitudinal categorical responses is common in panel survey settings, pre-

dominately due to data collected through the administration of self-reported questionnaires.

Examples of categorical variables in the HILDA survey include employment status and marital

status, and ordinal categorical variables such as general health and job satisfaction measured on

the five-point Likert scale. Variables which consist of two categories, known as binary variables,

are often analysed within the social sciences. Not only can categorical or continuous variables

be dichotomised into binary variables (for example, general health into poor or good health),

but social phenomena of interest may consist of two categories, often representing yes/no or

present/absent (for example, home-ownership, long-term health condition, recipient of govern-

ment assistance, employed).

Three broad classes of regression to account for the clustering and heterogeneity in longi-

tudinal data are known as: (1) marginal or population-averaged models, (2) subject-specific

models, and (3) transition or response conditional models. These approaches will be briefly

3For example, missingness can occur when a temporary sample member is no longer living with a continuing
sample member, or late entry can occur when a new sample member starts to live with a continuing sample
member.

4For a detailed review of the issue of missingness in longitudinal data within the social sciences and more
general framework, the reader is referred to Graham (2012) and Molenberghs et al. (2015), respectively, and
the references within.

5Terminology in the literature also includes the term covariate for a set of explanatory variables. However,
in this study the term covariate will be restricted to continuous explanatory variables.
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introduced, however for a more thorough review the reader is referred to Fitzmaurice et al.

(2011) and the references within. Not only do these models differ in how the correlation among

the repeated measurements is accounted for, but also in the interpretation of the regression

parameters (Fitzmaurice et al., 2011).

Marginal models explicitly model the relationship between the mean of the response and a

set of predictors separately from the within-subject dependence (Hedeker and Gibbons, 2006).

The generalised estimation equation (GEE) model (Zeger and Liang, 1986) is a commonly

utilised marginal model. Marginal approaches are referred to as population-averaged models,

as the effect of the predictors are interpreted as being averaged over the population of the

subjects (Hedeker and Gibbons, 2006). In contrast, subject-specific models incorporate a pa-

rameter for each individual to capture the heterogeneity between individuals. By controlling for

the subject-specific parameter and keeping the other predictors fixed, the interpretation of the

effect of the predictor on the outcome is considered subject specific (Fitzmaurice et al., 2011).

Transition models are also known as autoregressive models or conditional response models,

as the mean response not only depends on a set of predictors but also on previous responses

(Fitzmaurice et al., 2011). For example, the first-order Markov model assumes the probability

of being in a given state at time j is dependent on the state occupied in the previous time point

(i.e j − 1).

As longitudinal panel surveys provide an opportunity to assess changes and trends at the

individual level, subject-specific models are often utilised to provide an individual-specific in-

terpretation by estimating individual trajectories and predictions. Here, attention is restricted

to subject-specific models, in particular, to random effects models whereby the subject-specific

parameter is treated as a random variable from a specified distribution. In the next section,

the general framework for subject-specific models and random effects models are introduced.

2.3.1 Subject-specific models

To set the notation, consider a longitudinal panel survey consisting of N individuals for

which data is collected up to n time-points (commonly referred to as waves). An individual i

has observations measured repeatedly ni times, such that yij denotes the response for individual

i (for i = 1, ..., N) at time j (for j = 1, ..., ni). For each individual and time-point, a set of

p explanatory variables denoted by xij
′ = (x1ij, ..., xpij) are collected. By the very nature of

longitudinal data, two types of explanatory variables can be collected: variables that do not

change over the study period (time-invariant), and variables that do change values over time

(time-varying). Both of these types of explanatory variables are included in xij .

For techniques based on extensions of the generalised linear model to analyse longitudinal

categorical response variables, a link function is required to relate the response variable to the

linear parameter vector. Specific link functions, known as canonical links, have convenient
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statistical properties (Skrondal and Rabe-Hesketh, 2004), and will be considered in this study.

For the employment participation example, consider the binary response variable where yij = 1

when individual i at time j is employed, and yij = 0 when unemployed or not in the labour

force. The logit link is the canonical link when modelling binary response data, and is the

most commonly used link for binary response data. In the case of modelling a binary response

variable over time, the following model with a logit link (known as the logistic model) takes

into account the unobserved heterogeneity by incorporating an individual specific effect, αi

logit(Pr(yij) = 1) = log(
Pr(yij = 1)

1− Pr(yij = 1)
) = αi + xij

′β (2.1)

where β = (β1, ..., βp)
′ are the coefficients of the p explanatory variables. The intercept terms,

αi are allowed to vary for each individual, and are known as subject-specific effects. The

coefficients β are common effects for all individuals, and are known as fixed effects.

2.3.1.1 Random effects models

A common approach used to account for the unmeasured heterogeneity is known as the

random effects model, whereby the subject-specific parameter αi is assumed to be a random

variable from a specified distribution. The model in Equation 2.1 can be re-written such that

αi = β0 + b0i, where β0 is the fixed intercept constant and b0i is the random intercept that

represents the unobserved time-invariant heterogeneity. Typically the random intercept is as-

sumed to be normally distributed (b0i ∼ N(0, σ2
b0

)).

Random effects models belong to the class of generalised linear mixed models (GLMMs)

that extend GLMs by incorporating random effects into the regression model. GLMMs consti-

tute a framework for a class of models for clustered response variables that follow a distribution

from the exponential family. Examples of GLMMs include the linear mixed model for continu-

ous response data, the logistic mixed models for binary response data, and the Poisson mixed

model for count response data. The term ‘mixed’ refers to the fact that the GLMM includes

both fixed effects6 (parameter effects that are common among all individuals, such as β and

β0) and random effects (set of parameters that vary for each individual, such as b0i).

The hierarchical structure of GLMMs can be described in the context of multilevel models

(Goldstein, 1979). For instance, longitudinal data can be represented as a two-level model,

where the repeated observations (level-1 unit) are nested within individuals (level-2 units)7. In

6Terminology regarding fixed effects can be confusing, as the definition can change across disciplines. For
instance, within the multilevel model literature the term fixed effects model refers to a model that does not have
any random components. As detailed in Section 2.3.2.1, within the social science and econometrics literature the
term fixed effects model refers to a model whereby the subject-specific terms are considered nuisance parameters
to be eliminated from the model.

7Higher order hierarchies could be considered. For example, consider the structure of household panel
surveys, where the repeated observations (level-1 unit) are nested within individuals (level-2 unit) that are
nested within households (level-3 unit).
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this context, GLMMs assume that observations from an individual share a set of latent, unob-

served random effects (Verbeke et al., 2010) that describe subject-specific deviations from the

overall effect, and account for the correlation structure inherent in longitudinal data. The vari-

ables that have corresponding random effects are a subset of the explanatory variables included

in the fixed effects. For instance, a random intercept logistic model consists of one random

effect corresponding to the intercept constant (for example, Equation 2.1). However, multiple

random effects can easily be incorporated. For instance, a logistic mixed model whereby both

the intercept and an explanatory variable (typically capturing the time effect) have a corre-

sponding random effect is commonly referred to as a random intercepts and random slopes

logistic model8.

2.3.2 Alternative statistical models

In addition to the aforementioned methods, alternative statistical methods are used within

the economic and social science disciplines to model longitudinal and clustered data. The fixed

effects regression model and the hybrid model, are two commonly implemented methods used

to model change in longitudinal responses and account for unobserved heterogeneity. These

two methods are briefly introduced in Sections 2.3.2.1 and 2.3.2.2, respectively. Furthermore,

alternative methods have been developed to investigate the timing of events. One such model

is the discrete time model and is briefly introduced in Section 2.3.2.3.

2.3.2.1 Fixed effects models

Traditionally fixed effects models and random effects models were considered different in

how the individual-specific parameters capturing the time-constant unobserved variables (αi in

Equation 2.1) were treated. Fixed effects models treat αi as a fixed, yet unknown, parameter

to be estimated. In contrast, the random effects model assumes αi is a random variable from

a specified distribution. However, more recently the two approaches are considered to differ

in the structure of the associations between the unobserved individual specific terms and the

time-varying explanatory variables (Allison, 2009). The αi is represented as a random variable

for both approaches, however, the fixed effects model allows for correlations between αi and the

time-varying explanatory variables. This is in contrast to the random effects model, whereby

the unobserved individual specific terms are assumed to be uncorrelated with all explanatory

variables (due to assumptions imposing strict exogeneity and orthogonality between b0i and xij,

see Section 2.4 for further details).

The subject-specific parameter αi is traditionally treated as a fixed term to be estimated

using maximum likelihood. However, as the sample size increases, so does the number of pa-

rameters to be estimated. In this situation, model fitting can become difficult and estimates

8As detailed in Section 3.1, for models with multiple random effects the correlations between the random
effects are included by modelling the structure of the variance-covariance matrix.
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of the parameter coefficients β are no longer consistent (Agresti, 2013). An alternative esti-

mation approach is to use conditional maximum likelihood (ML). Conditional ML treats αi as

a nuisance parameter and conditions them away using sufficient statistics9 (McCulloch et al.,

2008). Conditional on the sufficient statistic, maximising the likelihood will result in consistent

estimators of the parameter coefficients β (Agresti, 2013). By allowing for correlations be-

tween αi and the time-varying explanatory variables, fixed effects models control for the effects

of time-invariant unobservable variables. However, the consistency of fixed effects models is

sacrificed at the cost of efficiency, as fixed effects models only use data from individuals with

non-constant response profiles. This can be an issue when modelling binary response data, as

a subset of individuals may remain in the same category over the study period. In addition to

the efficiency loss, fixed effects models do not provide estimates of the effects of time-invariant

explanatory variables and use of conditional ML is restricted to models with canonical link

functions (such as the logistic fixed effects model).

2.3.2.2 Hybrid models

Hybrid models (Allison, 2009) provide a framework that combines aspects of both fixed

effects and random effects models. The hybrid model is also known as the covariate decom-

position method (Neuhaus and Kalbfleisch, 1998; Neuhaus and McCulloch, 2006), as the time-

varying explanatory variables of random effects models are separated into within-individual and

between-individual components. These methods are considered as extensions of the GLMM

(Bell and Jones, 2015), whereby the time-varying explanatory variables are transformed into

deviations from their individual-specific means10, that are included in the model together with

the individual-specific means. However unlike in the fixed effects model, the response vari-

able is not transformed. By decomposing the time-varying explanatory variables into within-

and between-individual components, this model can provide unbiased estimates of explanatory

variables correlated with the subject-specific effects. Furthermore, hybrid models can provide

conditional likelihood-like inference for canonical and non-canonical link models (Neuhaus and

McCulloch, 2006, 2014). Another example of a hybrid model is the conditional linear mixed

model (Verbeke et al., 2001), where the random intercepts are conditioned away, but the other

random effects are treated as random parameters. In theory this approach can be extended to

GLMMs other than linear mixed models11, and has the advantage that all longitudinal effects

can be estimated without relying on correct model specification for modelling the cross-sectional

differences between individuals.

The choice between random effects models and fixed effects models is often debated within

the social sciences and economics discipline, and a detailed review is beyond the scope of this

9Often the sufficient statistic is the individual-specific sum of responses, i.e. Si =
∑ni

j=1 yij for i = 1, ..., N
10Typically individual-specific means of the time-varying explanatory variables are used, however other statis-

tics can be used (Neuhaus and McCulloch, 2014).
11However, the conditional distribution of the data given the sufficient statistic for the random intercepts in

the GLMM may be much more complex than the one obtained for linear mixed models.
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study. In regards to the issue of biased estimation of the random effects model when explanatory

variables are correlated with the random effects, Clark and Linzer (2015) suggest that non-zero

correlation does not necessarily imply that the fixed effects model is preferred12. Furthermore,

although the commonly implemented Hausman test (Hausman, 1978) may indicate possible

violation of the assumption that the explanatory variables are orthogonal to the random ef-

fects13, it may not be reliable (Clark and Linzer, 2015) and should not be viewed as a decision

tool to choose between fixed or random effects estimation (Bell and Jones, 2015). However,

recently it has been argued that the main advantage of GLMMs is their generalisability and

extendibility to handle complex data structures including multiple random effects, higher-order

clustering, multiple membership, and cross classification (Bell and Jones, 2015). By extending

the traditional GLMM to decompose time-varying explanatory variables within the within and

between effects, Bell and Jones (2015) argue that the GLMM framework provides sufficient

flexibility to analyse the longitudinal and clustered data.

2.3.2.3 Discrete time models

The above review has predominately focused on models for studying change in an outcome

over time. However the other main strand of longitudinal research includes statistical models to

investigate the occurrence of events (Steele, 2008). Such models include discrete time models

within the event history analysis framework, whereby interest is in modelling the timing of

events. In these models, the response variable is the length of time between being exposed to

being at risk of an event and the event occurring (Steele, 2011). For example, in the context

of employment participation, the event can be a change in employment status. As detailed in

Steele (2011), discrete time models are a general model for repeated events, that can include

more complex scenarios such as competing risks, multiple states and simultaneous processes.

This modelling approach will not be considered further in this review, and the reader is referred

to Steele (2011) for further details.

2.3.3 Assumptions regarding the underlying missingness mechanism

As alluded to in Section 2.2, statistical approaches for longitudinal data can vary in the as-

sumption of the underlying mechanism for missingness. Understanding the reason for missing

data is important as the performance and appropriateness of longitudinal models can depend on

the underlying missingness model (Hedeker and Gibbons, 2006). For example, the GEE model

has restrictive assumptions for missingness, assuming that underlying mechanism is MCAR.

In contrast, the GLMM assumes that missingness is ignorable (MCAR or MAR), provided

that the missing responses can be explained by the explanatory variables included in the mean

12Through simulation studies the authors show that the condition that the explanatory variables are uncorre-
lated with the random effects will hold only under exceptional circumstances, showing that the random effects
model can be preferred (or at least perform no worse than) the fixed effects model (Clark and Linzer, 2015).

13The Hausman test can be used to assess whether there are similarities between the within-subject and the
between-subject effects by testing if the coefficients of the time-varying explanatory variables from the random
effects model are identical to the coefficients from the fixed effects model.
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structure of the model14 or explained by the available responses from a specific individual (Gib-

bons et al., 2010). Statistical methods have been developed to handle non-ignorable missing

data (i.e. MNAR), including shared parameter models (Follmann and Wu, 1995) and pattern

mixture models (Little, 1993, 1995). However, as the models for MNAR missingness rely on

unverifiable assumptions15, the use of these models is generally confined within a sensitivity

analysis framework (Molenberghs et al., 2015). Sensitivity analyses considering different sta-

tistical models provides a practical way to assess the robustness of missingness assumptions, as

the missingness mechanism is not usually testable (Skrondal and Rabe-Hesketh, 2014).

Consistent estimation of the alternative subject-specific models is also dependent on the

underlying missingness mechanism. Recently, Neuhaus and McCulloch (2014) demonstrated

that although fixed effects models (estimated using conditional ML) and hybrid models can

provide consistent estimation in settings where the random effects are correlated with explana-

tory variables, both approaches can produce inconsistent estimation in the presence of MAR

attrition16. Inconsistency of the conditional ML approaches in the presence of MAR attrition

has also been reported previously by Rathouz (2004), however more recently, Skrondal and

Rabe-Hesketh (2014) show that conditional ML methods can provide consistent estimation in

settings where attrition is MNAR. Therefore, in general, conditional ML approaches requires

the missingness mechanism to be MCAR17.

As highlighted in this review, random effects models belong to the class of GLMMs which

constitute a flexible framework to model changes in longitudinal responses and obtain subject-

specific interpretation. GLMMs provide a powerful tool to handle the correlated nature of

longitudinal data and account for unobserved heterogeneity. Furthermore, these models can

provide consistent estimation in settings where the underlying missingness mechanism for at-

trition is MAR. The remainder of this review will focus on GLMMs, specifically the logistic

mixed model for longitudinal binary responses. In the following section, a more detailed review

of GLMMs and the corresponding statistical assumptions are presented. For more details re-

garding the statistical methodology of GLMMs the reader is referred to Section 3.1.

14This also assumes that specified model is correct.
15Similarly, the models assuming underlying MAR missingness also rely on an unverifiable assumption since

MAR can not be tested.
16Typically the hybrid model decomposes the time-varying explanatory variables by using the individual-

specific means, however as detailed in Neuhaus and McCulloch (2014) for analysis in the presence of MAR
attrition these models can produce inconsistent estimates. Neuhaus and McCulloch (2014) show that by de-
composing the time-varying explanatory variables using the baseline value, consistent estimates of the hybrid
model can be produced in the presence of MAR attrition.

17With some special exceptions as highlighted above.
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2.4 Assumptions and complexities of generalised linear mixed

models

Often GLMMs are estimated using maximum likelihood techniques, and rely on statisti-

cal assumptions in order to obtain valid parameter estimates and standard errors, and hence,

interpretation of results. In particular, GLMMs require the correct specification of both the

linear predictor and the random effects structure. The GLMM assumes that conditional on the

random effects, the response variables are assumed to be independent with density functions

belonging to the exponential family. Furthermore, for a known link function, the conditional

mean response is assumed to depend on a linear predictor containing fixed regression parame-

ters and random effects.

In regards to the random effects structure, it is assumed that the random effects follow a

specified distribution. In practice the random effects are typically assumed to follow a multi-

variate normal distribution. In addition to the distributional assumption of the random effects,

it is assumed that the random effects have zero mean (E(bi) = 0) and have a common variance-

covariance matrix. Furthermore, it is assumed that the random effects are independent of the

explanatory variables (Cov(bi,xij) = 0).

However, in practical applications of GLMMs, all assumptions are violated to some degree

(McCulloch and Neuhaus, 2011a) and can subsequently have implications on inferential conclu-

sions of the model parameters. For instance, misspecification of the conditional mean structure

can occur if the link function is incorrectly specified, or, if an important explanatory variable

is omitted from the linear predictor (McCulloch and Neuhaus, 2013). Research assessing the

impact of misspecifying the random effects structure has predominately focused on three areas:

incorrectly assuming independence to covariates (e.g. Heagerty and Kurland 2001; Neuhaus

and McCulloch 2006; Huang 2009; Neuhaus and McCulloch 2014), incorrectly assuming inde-

pendence to the cluster size (Neuhaus and McCulloch, 2011), and incorrectly specifying the

distribution (e.g. Heagerty and Kurland 2001; McCulloch and Neuhaus 2011a; Neuhaus et al.

2013).

These aspects of random effects specification are generally considered separately in the

literature. The impact of misspecifying the distributional assumption of the random effects

will be detailed in Section 2.6, however literature assessing the impact of misspecifying other

aspects of the random effects structure has reported biased inference of model parameters in

GLMMs. For instance, substantial bias of parameter estimates can be produced when ignoring

correlations between the explanatory variables and the random effects (Neuhaus and McCul-

loch, 2006) or characteristics of the random effects distribution (i.e. the mean (Neuhaus and

McCulloch, 2006) or variance (Heagerty and Kurland, 2001)). Furthermore, in situations with

missing data, ignoring any dependency between the number of observations and the random
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effects can produce biased parameter estimates for explanatory variables with corresponding

random effects18 (Neuhaus and McCulloch, 2011).

This study will primarily focus on investigating the impact of misspecifying the random

effects distribution in GLMMs, particularly in logistic mixed models. Therefore unless stated

otherwise, the term misspecification will be restricted to the distributional aspect of the random

effects structure.

2.5 Non-Gaussian random effects

In some practical applications, the routinely assumed Gaussian distribution for the random

effects in GLMMs may be too restrictive, particularly if heterogeneity of the random effects

exists. Heterogeneity of the random effects may occur when a key time-invariant categorical

variable is omitted from the model. For instance, omitting a binary time-invariant variable

from the mean structure of the GLMM can result in severe polarization of the random effects

distribution (Agresti et al., 2004). This can be extended to omitting a key categorical vari-

able of three or more categories from the mean structure, resulting in a possibly multimodal

random effects distribution following a finite mixture distribution (Verbeke and Molenberghs,

2009). Panel surveys can be prone to the omission of variables from the mean structure, as key

variables may not be collected due to the broad scope of the study. In these scenarios, assum-

ing a normal distribution for the random effects may not sufficiently capture the underlying

heterogeneity.

Another scenario whereby the normality assumption of the random effects may be too re-

strictive, is when there are subgroups in the population who behave differently. By the very

nature of binary outcomes, analysis of longitudinal binary responses can be complicated (Carlin

et al., 2001). For instance, if a subject never exhibits an outcome over the study period (or al-

ways exhibits an outcome), it is not possible to assess the within-subject effects of time-varying

variables, such as the effect of the time trend (Carlin et al., 2001). Not only do individuals

with constant response profiles complicate the interpretation and comparison of the effects of

time-varying variables, but the normality assumption of the random effects distribution may

not be the most appropriate if a sub-population structure exists. For example, an underlying

process known as the mover-stayer scenario may explain the constant response profiles. In

this scenario, the individuals observed to have constant response profiles could consist of two

subgroups: a subgroup of individuals known as latent stayers, who have a zero or extremely

low probability of transitioning from the initial state; and, a second subgroup consisting of in-

dividuals known as latent movers, who have the propensity to transition yet were not observed

to change states during the observational period. The latent movers also comprise of the group

of individuals that have been observed to transition at least once between the states. In this

18However, Neuhaus and McCulloch (2011) argue that this type of misspecification is a form of misspecifying
the random effects distribution.
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scenario, the random effects may not be Gaussian distributed as the latent movers and stayers

will have considerably different probabilities of exhibiting the outcome of interest.

Specifically, it is likely that three populations will dominate the distribution of the random

effects in a random intercept model for binary responses (Caffo et al., 2007): one with very

low probability of ever experiencing the outcome, a more homogeneous group that transition

between the states over time, and one with a very high probability of always experiencing the

outcome. Therefore, the two groups of latent stayers will have values for the random effects

that are inconsistent with the tail of the normal distribution (Barry et al., 1989). To accom-

modate the two subgroups of latent stayers, more flexible random effects distributions have

been proposed. Singer and Spilerman (1976) suggest the spiked distribution, whereby spikes

are incorporated into the parametric random effects distribution to represent the latent stayers.

For instance, to explicitly model the two groups of latent stayers in a random intercept logistic

model, finite probabilities at −∞ and ∞ can be incorporated into the assumed normal distri-

bution (Davies and Crouchley, 1986; Berridge and Crouchley, 2011a). Alternatively, modelling

the random effects as a three component mixture distribution could capture the heterogeneity

inherent in the underlying mover-stayer context. In this model, the spiked distribution could

be considered a special case where two components have zero variance and extreme means. As

detailed further in the following section, this issue has been a long recognised problem (Barry

et al., 1989) and has been encountered in various contexts including the mover-stayer model

(Goodman, 1961) and in the competing risk context.

2.5.1 Movers and stayers

Originally described by Blumen et al. (1955), the mover-stayer model extends the Markov

chain model to describe two types of individuals in the study population: the stayer who has

the propensity to remain in the same category during the study period; and the mover who

changes states over time as described by a Markov chain with a transition probability matrix

(Goodman, 1961). The concept has been adopted within the survival model framework to de-

scribe long-term survivors (e.g. Farewell, 1982) and also to the logistic random effects model

to describe individuals susceptible or not susceptible to experiencing the binary outcome of

interest (e.g. Davies et al., 1992; Carlin et al., 2001).

Within the competing risk context, multistate models are an extension to survival models

providing a useful tool to model processes that occupy a finite number of states with changes

over time, such as disease progression. Patients may experience disease progression over a pe-

riod of time (observed movers) and others may stay in the same disease state (observed stayers).

Multistate models assume that the movement within a state space of discrete states is governed

by an underlying stochastic process and the history of the process up to time immediately prior

to the current time. The transitions among the states are governed by a transition probability

matrix (O’Keeffe et al., 2013). Random effects can be incorporated into multistate models to
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account for the unexplained heterogeneity, though it can be hard to distinguish between the

unexplained heterogeneity and the effects of the process history (Cook and Lawless, 2014). The

random effects provide a measure for the propensity of a patient to progress through the disease

states, and often are assumed to have a finite mixture distribution to account for the latent

movers and latent stayers whereby the latent stayers have a probability mass at zero (O’Keeffe

et al., 2013). Often the choice of the random effects distribution can lead to different inferences

(O’Keeffe et al., 2013), and other random effect distributions such as the mover-stayer gamma,

mover-stayer inverse-gamma and the compound Poisson distribution have been proposed for

use in the disease progression scenario (O’Keeffe et al., 2013).

These examples identify situations where the routinely assumed Gaussian random effects

distribution may not be the most appropriate distribution to capture the underlying hetero-

geneity, particularly in scenarios whereby the true random effects distribution is multimodal

due to the existence of a sub-population structure. As random effects are latent, and hence

unmeasurable, the validity of assumptions relating to the random effects are difficult to check

(Alonso et al., 2010a). This has led to a growing body of research focusing on assessing the

validity of random effect assumptions. Areas of research have focused on: investigating the

impact of misspecification on inference and prediction, development of techniques to flexibly

model random effects distributions in order to relax the normality assumption, and development

of diagnostic tests to identify misspecification. These areas of research are discussed in more

detail in the following sections, where attention will focus on these issues within the context of

true multimodal distributed random effects.

2.6 Impact of misspecifying the random effects distribution

Often the normality assumption for the random effects is taken for granted (Verbeke and

Molenberghs, 2013), however as the random effects are latent, the distributional assumptions

can not be directly assessed. There is a growing literature investigating the impact of misspec-

ifying the shape of the random effects distribution in generalised linear mixed models. Earlier

literature predominately focused on misspecification of the random effects distribution in linear

mixed models. As the linear mixed model is a special case of the GLMM, this review will

initially focus on the linear mixed models before reviewing literature investigating the impact

of misspecifying the random effects distribution in GLMMs for longitudinal binary responses.

In the context of linear mixed models, both theoretical and simulation studies have con-

sistently shown negligible inferential impact of misspecifying the random effect distributions.

Maximum likelihood estimates for fixed effects and variance components obtained under the

assumption of Gaussian distributed random effects have been shown to be consistent and asymp-

totically normally distributed under broad regularity conditions, even when the random effects

distribution is misspecified (Verbeke and Lesaffre, 1996, 1997; Neuhaus et al., 2013). Although

the estimates are consistent, sandwich-type corrections are required to obtain the correct asymp-

20



totic standard errors (Butler and Louis, 1992; Verbeke and Lesaffre, 1997). However, the robust

standard errors for the random effects variance remain inaccurate (Verbeke and Lesaffre, 1997;

Maas and Hox, 2004). Furthermore, the best predicted values of the random effects are sensitive

to the shape of the assumed random effects distribution (Verbeke and Lesaffre, 1996; Zhang and

Davidian, 2001; McCulloch and Neuhaus, 2011b). For situations where the assumed distribu-

tion substantially deviated from the true random effects distribution, McCulloch and Neuhaus

(2011b) reported loss of performance and accuracy of predicting the random effects.19

Unlike the consistent estimation reported for linear mixed models when the random effects

distribution is misspecified, GLMMs for non-normal responses appear to be more sensitive to

distributional violations. Theoretical results for the impact on the inference of random intercept

logistic models (Neuhaus et al., 1992), and more generally for GLMMs with random intercepts

and random slopes (Neuhaus et al., 2013), suggests that misspecifying the random effects dis-

tribution can produce biased estimates of parameters associated with the misspecified random

effects (i.e. the intercept constant and the variance components). However, as the estimation

of GLMMs for non-normal responses is complicated by not having a closed form expression of

the joint density, theoretical results can only be derived for the restricted scenario when all

explanatory variables are unrelated to the response (i.e. β = 0).

To establish results in more general scenarios, researchers have predominately utilised sim-

ulation studies to investigate the impact of misspecification in GLMMs, with some focusing

on logistic mixed models. The effect of misspecifying the random effects distribution on es-

timation and inference can be assessed by two approaches. The first simulates a variety of

true distributions and examines the performance of GLMMs under the assumption of normal

distributed random effects (e.g. Litiére et al. 2008 and Neuhaus et al. 2013). Alternatively, the

second approach simulates a single true distribution and assesses the impact of misspecifying

the random effects distribution by considering a variety of assumed parametric distributions

(e.g. Neuhaus et al. 2011 and McCulloch and Neuhaus 2011a). Neuhaus et al. (2011) argue

that the first approach merely investigates the robustness of the normality assumption and not

misspecification. However, Litiére et al. (2011) later argued that both methods are comple-

mentary and assess the impact of misspecification. Due to the nature of simulation studies, not

only are there considerable differences between the studies in regards to the assumed and true

distributions considered, but also the simulation scenario (for example, number of individuals

and number of time-points) and the mean structure of the model (for example, number and

type of explanatory variables). A summary of the key settings considered in simulation studies

investigating misspecification in logistic mixed models is outlined in Table 2.1.

19For more details about the inferential impact of misspecifying the random intercept distribution in linear
mixed models the reader is referred to Butler and Louis (1992), Verbeke and Lesaffre (1997) and Verbeke and
Molenberghs (2009). For details regarding the impact of misspecifying the joint distribution of the random
intercepts and random slopes in linear mixed models, the reader is referred to Maas and Hox (2004) and the
analytic results presented by Neuhaus et al. (2013).
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Table 2.1: Summary of publications performing simulation studies to investigate the impact of misspecifying distributional assumptions of (i)
univariate and (ii) bivariate random effects in logistic mixed models. Details for the simulation study (Study) include the specification of the
logistic mixed model (Model Specification), number of individuals (N), the number of time-points (ni), the true distribution generated for the
random effects (True Distribution) and the assumed random effects distribution considered when fitting the logistic mixed model (Assumed
Distribution).

Study Model Specification N ni True Distribution Assumed Distribution

(i) Univariate random effects

Butler and

Louis (1992)

logit(Pr(yij = 1) = β0 + bi + β1x1ij

where β0 = −1, β1 = 2
3

, β2 = 1

x1ij = (0, 1, 2, 3)

100 4 bi ∼ N(0, 1) (i) Ordinary logistic model

(bi = 0)

(ii) Normal

(iii) Unspecified (NPML Esti-

mation)

Neuhaus et al.

(1992)

logit(Pr(yij = 1) = β0 + σbi + β1x1ij + β2x2i

where β0 = −2, β1 = 0.5, β2 = 1, σ = 2

x1ij ∼ N(0, 1), and x2i ∼ N(0, 1)

100 5 Standardised to have a E(bi) = 0 and V ar(bi) = 1:

bi ∼ Gamma(1, 0.5)

bi ∼ Gamma(1,16)

bi ∼ t-distribution with df=3

bi ∼ t-distribution with df=5

bi ∼ N(0, 1)

Normal

Heagerty and

Kurland (2001)

logit(Pr(yij = 1)) = β0+β1x1i+β2x2ij+β3x1ix2ij+bi

where β0 = −2, β1 = 1, β2 = 0.5, β3 = −0.25

x1i 50:50 binary indicator and

x2ij = (0, 0.25, 0.5, 0.75, 1)

200 5 bi = σ(ai − λ)/
√

(λ) for ai ∼ Gamma(λ, 1)

for λ = 0.5, 1, 2, 4 and σ = 0.5, 1, 2, 3

Normal

Chen et al.

(2002)

logit(Pr(yij = 1)) = β1x1i + β2x2ij + bi

where β1 = 0.5, β2 = 3

x1i 50:50 binary indicator and

x2ij = (−0.2,−0.1, 0, 0.1, 0.2).

250 5 bi ∼ 0.7N(−.1.5, 0.72) + 0.3N(2, 0.72)

E(bi) = 0.45 and V ar(bi) = 3.0625

Semi-non-parametric model

(K=0,1,2)

Agresti et al.

(2004)

logit(Pr(yij = 1)) = β0 + bi

where β0 = 0 or β0 = 1

10,30 10,30 Standardised to have E(bi) = 0 and V ar(bi) = 0, 0.25, 1:

bi ∼ N(0, σ2
b )

bi ∼ Uniform

bi ∼ Exponential

bi ∼ Discrete with two equal mass points.

(i) Normal

(ii) Unspecified (NPML Esti-

mation)

Table 2.1 continued on next page
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Table 2.1 – continued from previous page

Study Model Specification N ni True Distribution Assumed Distribution

Litiére et al.

(2008)

logit(Pr(yij = 1)) = β0 + β1x1i + β2x2ij + bi

where β0 = −8, β1 = 2 and β2 = 1

x1i 50:50 binary indicator and x2ij = (0, 1, 2, 4, 6, 8)

25, 50,

100,

200,

400,

800,

1600

6 Standardised to have E(bi) = 0 and V ar(bi) = 1, 4, 16, 32:

bi ∼ N(0, σ2
b )

bi ∼ Uniform

bi ∼ Exponential

bi ∼ Chi-squared distribution

bi ∼ log-normal

bi ∼ Power function

bi ∼ discrete with 2 mass points

bi ∼ 1
2
N(−µ, σ2

b ) + 1
2
N(µ, σ2

b )

bi ∼ 0.2×N(µ1, σ2
1) + 0.8×N(µ2, σ2

2)

Normal

McCulloch and

Neuhaus

(2011a)

logit(Pr(yij = 1)) = β0 + β1x1i + β2x2ij + bi

where β0 = −2.5, β1 = 2 and β2 = 1

x1i 25:75 binary indicator and x2ij = equally spaced

from 0 to 1

200 2, 4, 6,

10, 20,

40

Standardised to have V ar(bi) = 1:

bi ∼ Tukey (g = 0.5, h = 0.1)

(i) Tukey with unknown g and

h

(ii) Tukey with g = 0.5 and

h = 0.1

(iii) Normal

(ii) Bivariate random effects

Litiére et al.

(2008)

logit(Pr(yij = 1)) = β0+β1x1i+β2x2ij +b0i+b1ix2ij

where β0 = −6, β1 = 2, β2 = 1

x1i = 50:50 binary indicator and

x2ij = (0, 1, 2, 4, 6, 8)

50, 100 6 Standardised to have E(bi) = 0), and overall

variance-covariance structure V with variance va and

covariances vb

for V 1 with va = 5, vb = 4.5; V 2 with va = 5, vb = 4.9; V3

with va = 8, vb = 6; V4 with va = 5, vb = 4.5

bi = (b0i, b1i)
′ ∼N(0,V )

bi = (b0i, b1i)
′ ∼ 1

2
N(−µ,D) + 1

2
N(µ,D)

for µ = (2, 2)′ and D with variances d = 1, 4 and

covariances d12 chosen to have corr(b0i, b1i)= 0.5 and0.9

(i) Bivariate Normal

(ii) Two component mixture of

Bivariate Normals

Neuhaus et al.

(2013)

logit(Pr(yij = 1)) =

β0 + β1x1i + β2x2ij + β3x3ij + b0i + b1ix2ij

where β0 = −2.5, β1 = 1, β2 = 1, β3 = 1

x1i 50:50 binary indicator, x2ij = (−1,−0.5, 0, 0.5, 1)

and x3ij=(−0.5, 1, 0,−1, 0.5) and is orthogonal to

x2ij

100 5 Standardised to have E(bi) =

bi ∼ bivariate normal

bi ∼ bivariate t with df= 3

bi ∼ bivariate exponential(1)

bi ∼ bivariate Tukey(g = 0.446, h = 0.05)

bi ∼ bivariate log-normal

bi ∼ bivariate Tukey(g = 0, h = 0.109)

bi ∼ bivariate Tukey(g = 0, h = 0.159)

bi ∼ bivariate Tukey(g = 0.249, h = 0.05)

Bivariate Normal

23



The impact of misspecification has been suggested to be dependent on the inferential focus

(McCulloch and Neuhaus, 2011a). As detailed in the following sections, misspecification in

logistic mixed models can produce biased estimators of parameters directly related to the

random effects, such as the intercept constant and the random variance component. However,

the impact on estimated regression coefficients of the fixed effects is more ambiguous, with

differences depending on whether the explanatory variable is time-varying or time-invariant.

The following review will focus on the inferential impact of incorrectly assuming normality

in logistic mixed effects models, investigating each type of parameter and inferential target

separately. Previous literature has predominately focused on misspecifying random effects in

random intercept logistic models (e.g. Neuhaus et al. 1992; Heagerty and Kurland 2001; Chen

et al. 2002; Agresti et al. 2004). However, similar impact as for the random intercept model

has been reported for the more complex scenario of random intercepts and random slopes, with

biased estimation typically restricted to estimates directly corresponding to the misspecified

random effects (McCulloch and Neuhaus, 2011a; Neuhaus et al., 2013).

2.6.1 Estimation of coefficients for time-varying explanatory variables

The literature assessing the impact of misspecified random effects consistently reports min-

imal bias in estimating the effects of time-varying explanatory variables. The robustness to

the choice of the assumed distribution has been postulated to be due to the orthogonality of

the time-varying explanatory variables and the between-subject variability (Chen et al., 2002).

Theoretical results of Neuhaus et al. (1992) showed that maximum likelihood estimators of

coefficients for time-varying explanatory variables under distributional misspecification of the

random effects converge to values that minimise the Kullback-Leibler divergence (Kullback,

1959) between the correctly and incorrectly specified models. For logistic mixed models, theo-

retical results of Neuhaus et al. (1992) show consistent estimation of the effects of time-varying

explanatory variables when β = 0. These theoretical results were later extended by Neuhaus

et al. (2013) to the entire class of GLMMs, including multiple random effects.

For more general scenarios, results from the simulation studies concur with the theoretical

findings. The results consistently show minimal impact of misspecification on the asymptotic

bias of estimating the coefficients of time-varying explanatory variables (Heagerty and Kurland,

2001; Chen et al., 2002; Litiére et al., 2008; McCulloch and Neuhaus, 2011a). Simulation studies

have predominately focused on the impact of estimating effects of a continuous explanatory

variable (covariate)20 representing the time effect. For instance, Heagerty and Kurland (2001)

reported relative bias less than 15% for the covariate representing time and the corresponding

interaction term when assuming normality for gamma distributed random intercepts. Similarly,

McCulloch and Neuhaus (2011a) reported virtually no impact on the covariate representing the

time effect when assuming normality for Tukey distributed random intercepts, and Litiére et al.

20This term in the literature may not always be restricted to represent continuous explanatory variables, but
can also refer to any explanatory variable (either continuous or categorical).
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(2008) reported relative bias less than 5% for all scenarios considered, regardless of sample size

or variability of the true random effect. In addition to the minimal impact on bias, Chen

et al. (2002) and McCulloch and Neuhaus (2011a) report no loss in estimation efficiency under

misspecification of the random intercept distribution.

2.6.2 Estimation of coefficients for time-invariant explanatory variables

It has been previously conjectured that time-invariant explanatory variables are more sen-

sitive to distributional misspecification of the random effects than time-varying explanatory

variables, as both the time-invariant explanatory variables and the random effects capture vari-

ability between individuals (Chen et al., 2002). However, the theoretical results presented by

Neuhaus et al. (1992) and Neuhaus et al. (2013) imply consistent estimation for any explana-

tory variable not related to the response (β = 0), regardless of whether they are time-invariant

or time-varying.

In contrast to the theoretical studies, results from simulation studies demonstrate that bias

and loss of efficiency can occur when the true and assumed random effect distributions vary

substantially. For instance, Agresti et al. (2004) reported moderate loss of efficiency when

assuming normality and the true distribution was a two point discrete distribution. Both

Heagerty and Kurland (2001) and Litiére et al. (2008) suggest larger bias corresponding with

large true random effect variability. However, for less substantial departures from the true

distribution, minimal bias has been reported. For instance, relative bias of less than 5% was

reported by McCulloch and Neuhaus (2011a) when assuming normality for a random effects

arising from a Tukey distribution.

2.6.3 Estimation of the intercept constant

Estimation of the intercept constant can be sensitive to the assumed random intercept dis-

tribution. Results from theoretical and simulation studies demonstrate inconsistent estimation

of the intercept constant when the assumed distribution is far from the underlying true random

effects distribution (Neuhaus et al., 1992; Heagerty and Kurland, 2001; Chen et al., 2002; Litiére

et al., 2008; McCulloch and Neuhaus, 2011a; Neuhaus et al., 2013). Consistent with theory

(Neuhaus et al., 1992, 2013), relative asymptotic bias of up to 30% was reported for incorrectly

assuming normality in random intercept logistic models when the true random effects were

asymmetric (Neuhaus et al., 1992). Furthermore, relative bias of up to 20% has been reported

in situations assuming normality when the true random intercepts distribution was a gamma

distribution (Heagerty and Kurland, 2001), and up to 40% for true asymmetric two component

mixture of normal distributions (Chen et al., 2002). Not only does misspecification result in

biased estimates, Neuhaus et al. (2013) reported below nominal coverage rates of 92.5% for

confidence intervals of logistic mixed models with misspecified random intercepts and random

slopes. Typically inference of the intercept constant is not of direct interest. However if infer-
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ence is on mean estimation, McCulloch and Neuhaus (2011a) suggest that care is required, as

bias of the intercept constant can transfer over to mean estimation of the outcome value.

2.6.4 Estimation of the random effects variance

Little research has investigated the impact of distributional misspecification of the random

effects on estimating the variance components. Although estimation of the random effect

variance may not be considered a primary inferential interest (McCulloch and Neuhaus, 2011a),

it is the only measurement of the underlying variability of the random effects (Litiére et al.,

2008) and can be important when considering the variability attributable to various levels of

multilevel data (McCulloch and Neuhaus, 2013)21. Minimal impact of misspecification in the

random intercept logistic model has been reported (Heagerty and Kurland, 2001; McCulloch

and Neuhaus, 2011a), with Heagerty and Kurland (2001) reporting relative bias of 15% or less.

However, substantial bias has been demonstrated for scenarios with large discrepancies between

the assumed and true random effects distribution (Neuhaus et al., 1992; Litiére et al., 2008;

McCulloch and Neuhaus, 2011a). For instance, Litiére et al. (2008) reported absolute relative

bias of up to 85% when incorrectly assuming normality for highly skewed true distributions22.

Furthermore, larger magnitudes of bias and efficiency loss were associated with larger random

effects variances (Agresti et al., 2004; Litiére et al., 2008) and larger cluster size (Agresti et al.,

2004).

2.6.5 Prediction of the random effects

Not only can inference of the variance component be directly impacted by misspecification,

McCulloch and Neuhaus (2011b) showed that biased estimation of the variance component can

subsequently impact the accuracy of the best predicted random effect values. By theory and

simulations, McCulloch and Neuhaus (2011b) demonstrated modest impact of misspecification

on the prediction accuracy as measured by the mean square error of prediction. However, for

large discrepancies between the assumed and true distributions, severe reduction in the effi-

ciency of predicting the random effects has been reported (Agresti et al., 2004; McCulloch and

Neuhaus, 2011b). For instance, McCulloch and Neuhaus (2011b) reported a reduction in the

mean square error of prediction for logistic mixed models when the assumed distribution had

limited support but the true distribution had a wide range of support. Furthermore, loss of

efficiency has been reported when the true distribution had large variances and for situations

with large cluster sizes (McCulloch and Neuhaus, 2011b).

Although the best predicted values are relatively accurate for minor to moderate deviations

21For example, in a three-level GLMM of modelling an outcome measured repeatedly over time for a group
of students in different schools. The variance estimates of the random effects can be important to partition the
variability attributable to schools rather than students.

22For true random intercepts distributed as an exponential (range: 21% to 77%), chi-squared (range: 14% to
85%), log-normal (range: -56% to 39%), power-function (range: -66% to 3%) or an asymmetric mixture of two
normals (range: -75% to 14%).
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between the true and assumed distribution, the distribution of the best predicted values is

highly sensitive to misspecification of the assumed random effects distribution (McCulloch and

Neuhaus, 2011b). As identified in the context of linear mixed models (Verbeke and Lesaffre,

1996), the distribution of the predicted random effects in GLMMs reflects the assumed, rather

than the true underlying shape of the random effects (Agresti et al., 2004; McCulloch and

Neuhaus, 2011a,b). Thus, the distribution of the best predicted values should not be considered

a reliable indicator of the true underlying distribution (McCulloch and Neuhaus, 2011b).

2.6.6 Misspecification of the random effects distribution in the presence of

missingness

The ambiguity about the impact of misspecification has been further exacerbated by the

lack of investigation of complexities prevalent in longitudinal data, such as missing data due to

attrition. Under the assumption of MCAR or MAR attrition, maximum likelihood estimation

of GLMMs can provide consistent estimation. However, this assumes that other aspects of the

model are correctly specified, including the random effects distribution. This is an important

area of study as bias has been reported when missing data results in informative cluster sizes

(Neuhaus and McCulloch, 2011). Recently, Wang (2010b) investigated the impact of incorrectly

assuming bivariate normally distributed random effects for logistic mixed models in the pres-

ence of missing data23. Four missingness scenarios were considered, consisting of a combination

of either a MCAR or MAR underlying mechanism, for either intermittent missingness or attri-

tion. Missingness did not have any additional impact on estimation or inference of the logistic

mixed model when the random effects distribution was misspecified (Wang, 2010b). However,

missingness did affect the power to detect variance components when the true random effects

were positively skewed or positively skewed and leptokurtic, though not for symmetric random

effects (Wang, 2010b). More research considering random effect distribution misspecification in

the presence of attrition is required, particularly within applications of panel surveys whereby

the loss of respondents due attrition is an inherent problem.

2.6.7 Summary

This literature review has shown that misspecification of the random effects distribution in

logistic mixed models can impact estimation and inference of parameters relating to fixed and

random effects. Previous literature considering the impact of distributional misspecification of

the random effects in GLMMs has predominately focused on biomedical settings, particularly

considering simulation studies based on clinical trial studies (e.g. Chen et al. 2002; Litiére

et al. 2008; McCulloch and Neuhaus 2011a; Neuhaus et al. 2013). Previous studies have not

considered misspecification within panel survey settings. The challenges of longitudinal data

23Wang (2010b) considered four different types of misspecification in the presence of missing data, including:
incorrectly assuming normality for non-normal bivariate random effects, omitting a fixed effect from the mean
structure, omitting a quadratic time effect, and ignoring a higher level of nesting.
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are expected to be similar between the two settings, however there are potentially some dif-

ferences that lead to gaps in the literature regarding the impact of misspecifying the random

effects distribution.

Firstly, as household panel data are often collected using questionnaires, the type of vari-

ables collected are predominately categorical. However, limited research has considered the

impact of misspecification on estimating categorical explanatory variables, particularly time-

varying categorical variables. Furthermore, analysis of panel surveys typically includes a larger

number of explanatory variables, however previous simulation studies within the biomedical

setting often consider a limited number of explanatory variables (Table 2.1).

Secondly, as data from panel surveys is typically collected annually, the time between sam-

pling is usually longer than in clinical trial settings and can result in potentially different

underlying missingness patterns. As mentioned in Section 2.6.6, although longitudinal studies

are typically challenged by the issue of missing data, only limited research has investigated the

impact of misspecified random effect distributions in the presence of missing data, particularly

attrition.

Thirdly, by the nature of collecting data from a panel of subjects, often the process under

investigation has already initiated. In this situation, the initial observed response is typi-

cally dependent upon unobserved previous responses and unobserved variables (Crouchley and

Davies, 2001). Not only will there be substantial heterogeneity in the underlying random ef-

fects, but sub-populations may exist. However substantial heterogeneity is not only confined

to the panel survey setting, as clinical trials may have different response patterns depending on

the treatment24. As mentioned in Section 2.5, multimodality of the random effects may occur

in situations that are dominated by constant response profiles. However, no studies have con-

sidered the impact of misspecification in scenarios whereby the true distribution is multimodal

with three or more modes.

2.7 Addressing misspecification of the random effects distribution

in generalised linear mixed models

Two strands of research have emerged to address misspecification of the random effects

distribution: extensions of GLMMs to flexibly model the random effects distribution, and

diagnostic tests to detect distributional misspecification. A brief literature review of these two

strands of research are detailed in Sections 2.7.1 and 2.7.2, respectively.

24As identified by Litiére et al. (2008), little variability in the responses may occur for a placebo control group,
while more variability in the response may be expected in the treatment group.
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2.7.1 Flexibly modelling the assumed random effects distribution

By allowing for increased flexibility of the assumed random effects distribution, the risks

associated with misspecification can be reduced (Verbeke and Molenberghs, 2013). A suite

of methodology has been developed to relax the normality assumption of the random effects

distribution. Computational methods such as the probability integral transformation (PIT)

(Nelson et al., 2006) and the likelihood reformulation (LR) (Liu and Yu, 2008) have been de-

veloped to obtain maximum likelihood estimates for GLMMs with non-Gaussian random effect

distributions. Both of these approaches are based on transforming normally distributed random

effects to non-normal distributions, and provide an easily implementable method to not only

model random effects as standard parametric distributions, but as described below, as mixtures

of parametric distributions. Furthermore, methods to fit parametric classes of densities for the

random effects distribution have been developed including the class of t-distributions (Lee and

Thompson, 2008) and skew extensions of the t-distribution or normal distributions (Ho and

Lin, 2010). However, as standard parametric distributions and parametric classes are generally

not sufficiently flexible to capture multimodal distributions, the following literature review will

focus on approaches that may be suitable to capture heterogeneity inherent in the mover-stayer

scenario.

One approach to induce flexibility of the assumed distribution and capture multimodality

is to assume the random effects arise from a mixture of parametric distributions, such as a

finite mixture of normal distributions (Verbeke and Lesaffre, 1996; Magder and Zeger, 1996;

Molenberghs and Verbeke, 2005). The heterogeneity model developed by Verbeke and Lesaffre

(1996) assumes that the random effects population consists of g sub-populations, such that the

random effects are modelled as a mixture of g normal distributions to capture the heterogeneity.

Furthermore, the model can be used to classify subjects into different components based on

longitudinal profiles (Verbeke and Molenberghs, 2009). Estimation of the heterogeneity model

is based on the maximization of the likelihood using the Expectation-Maximization (EM) al-

gorithm (Dempster et al., 1977), or by the aforementioned LR or PIT computational methods.

Details regarding the methodology and estimation of the heterogeneity model are provided in

Section 3.2.1.

Extensions of the heterogeneity model have been developed, predominately within the

Bayesian framework. One approach is a penalized Gaussian mixture distribution where the

weights of the mixture components are estimated using a penalized approach and parameters

of the model are estimated using Markov Chain Monte Carlo (MCMC) techniques (Komarek

and Lesaffre, 2008). Another approach fits an infinite mixture model within the Bayesian

framework by incorporating a Dirichlet process mixture of a normal prior as the random effects

distribution (Jara et al., 2007). These approaches will not be considered further, but highlight

the feasibility of Bayesian techniques to estimate the heterogeneity model.
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Alternatively, flexibility may be achieved by assuming that the random effects belong to a

smooth class of densities represented by the semi-non-parametric (SNP) formulation (Gallant

and Nychka, 1987). Chen et al. (2002) and Vock et al. (2014) have developed approaches that

utilise the SNP class of densities to fit random effects in GLMMs, and these have been shown

to be sufficiently flexible to capture a range of densities including skewed, multimodal, and

thick- or thin-tailed densities (Vock et al., 2014). Furthermore, by assuming a smooth density,

the SNP representation of the random effects distribution can also provide an estimate of the

underlying distribution (Vock et al., 2014). Details regarding the methodology of approaches

utilising the SNP formulation are provided in Section 3.2.2.

An approach to allow an immense degree of flexibility is to leave the random effects distribu-

tion completely unspecified, and estimate the random effects distribution using non-parametric

techniques25. These approaches are referred to as semi-parametric models, as the mean struc-

ture of the GLMM is parametric and is estimated using maximum likelihood, whilst the random

effects distribution is estimated non-parametrically. Computational approaches to obtain the

non-parametric maximum likelihood (NPML) estimator of the random effects distribution have

been proposed (Laird, 1978; Heckman and Singer, 1984; Follmann and Lambert, 1989; Lesper-

ance and Kalbfleisch, 1992; Aitkin, 1999; Rabe-Hesketh et al., 2003; Wang, 2010a; Lesperance

et al., 2014), and result in a discrete distribution on a finite number of support points26 (Lind-

say, 1983). However, the NPML estimated locations and probability weights of the support

points do not represent an underlying sub-population structure (Davies, 1993). Rather, the

empirically determined support points provide adequate flexibility to capture the underlying

random effects distribution and consistent estimation of the parameters in the mean structure

of the GLMM (Davies, 1993).

Methods to obtain the NPML estimator in GLMMs vary in the underlying approach, and

are detailed in Section 3.2.3 and Section 7.1. The majority of approaches to determine the

NPML estimator have been restricted to GLMMs with a single random effect, with few meth-

ods developed for GLMMs with multiple random effects (e.g. Lesperance et al. 2014). In a

similar context to GLMMs, Tsonaka et al. (2009) applied the Vertex Exchange Method (VEM)

of Böhning (1985) to estimate the unspecified distribution of the multivariate random effects

in shared parameter models. For linear mixed effects models, Baghfalaki and Ganjali (2014)

proposed a computationally fast algorithm to provide an approximation to the VEM approach.

The simplicity and statistical properties of VEM make it an appealing non-parametric method

to estimate the random effects distribution. However, application of the VEM to flexibly model

25Latent class models can also be seen as a non-parametric approach, as the distribution of the random effects
is assumed to be discrete with unknown probability masses and locations. In the latent class model individuals
are grouped into clusters, known as latent classes, where each cluster has the same value for the random effects.
Additionally, the latent class model can be considered as an extension of the heterogeneity model by allowing
the components to have zero variance. For more details the reader is referred to Muthén (2004).

26In order to achieve the NPML estimator, the optimal number of finite support points needs to be determined.
Alternatively, if the number of support points is considered to be known apriori, then it is referred to as a discrete
random effects distribution estimated non-parametrically. This is discussed further in Sections 3.2.3 and 7.1.
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the random effects in GLMMs has yet to be utilised.

Often the discrete nature of the non-parametric technique is considered a key limitation,

particularly if interest is in estimating the random effects distribution (Butler and Louis, 1992;

Vock et al., 2014). To overcome the discreteness of NPMLE, smooth non-parametric max-

imum likelihood estimators resulting in a continuous density have been proposed, whereby

the smoothing is obtained using finite mixtures of Gaussian distributions (Magder and Zeger,

1996)27, kernel methods (Knott and Tzamourani, 2007) or methods using a predictive recursive

algorithm (Tao et al., 1999), however the degree of smoothness is often arbitrary.

As mentioned in Section 2.5, inducing flexibility to the random effects distribution has been

previously considered in the context of the latent mover-stayer scenario. For instance, Barry

et al. (1989) incorporated spikes at negative and positive infinity to the normal distribution for

the random effects to account for the two groups of latent stayers. Previously Davies (1993)

reported the similarities between the traditional mover-stayer models and non-parametric esti-

mation of random effects. Following from the question raised by Davies and Crouchley (1986),

Davies (1993) argued that the perceived goodness-of-fit of the mover-stayer model could be due

to it sufficiently approximating the non-parametric estimation of the random effects distribu-

tion28. However, the performance of estimating the random effects in logistic mixed models

with a set of explanatory variables using non-parametric techniques has not been investigated

as an appropriate modelling strategy to account for potential mover-stayer scenarios.

This literature review has shown that a variety of methods is available to flexibly model the

random effects distribution in GLMMs, potentially reducing the impact of misspecifying the

assumed distribution on model based inference and predictions. Although a suite of methodol-

ogy has been developed, implementation in practical applications is limited and the choice of

approach may be dependent on the inferential focus of the random effects distribution (Vock

et al., 2014). Often the price one pays for inducing flexibility of the random effects distribution

is heavy computation (Huang, 2011), however with the ever increasing gains in computational

power the issue of computation burden continually declines. Recently, Ghidey et al. (2010) re-

viewed four approaches to flexibly model the random effects distribution in linear mixed models.

However, the practicality of implementing approaches to flexibly model the random effects in

GLMMs has not been demonstrated, particularly in applications of longitudinal panel surveys,

including settings in the presence of attrition.

27The smooth non-parametric maximum likelihood estimator for linear mixed models as proposed by Magder
and Zeger (1996) resulted in a finite mixture of normal densities as the random effects distribution. How-
ever, unlike the heterogeneity model, the number of components is considered an unknown parameter and is
subsequently estimated.

28In the context of GLMMs for binary responses, Davies (1993) restricts attention to a random intercept
logistic model with no explanatory variables.
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2.7.2 Diagnosing misspecification of the assumed random effects distribution

Detecting misspecification of the distributional assumptions of the random effects is far from

straightforward (Efendi et al., 2014). This is an area of research that has recently attracted

considerable attention in the literature, with several informal and formal diagnostic tools de-

veloped to assess the validity of the assumed random effects distribution in GLMMs. Generally

the diagnostic tools do not have any restrictions on the type of GLMM, thus the following

review focuses on the entire class of GLMMs, however all are directly implementable for the

logistic mixed model. A brief review of informal and formal diagnostic tools is presented in

Sections 2.7.2.1 and 2.7.2.2, respectively.

2.7.2.1 Informal diagnostic tests

Informal diagnostic tools to assess the validity of the assumed random effects distribution

have been proposed, including graphical based tools based on the predicted random effects (e.g.

Lange and Ryan, 1989). However, as the predicted random effects are highly sensitive to the as-

sumed form of the distribution29 (Verbeke and Lesaffre, 1996; Molenberghs and Verbeke, 2005;

McCulloch and Neuhaus, 2011a), visual inspection of the predicted values (normal probability

plots and histograms) should not be used to assess the adequacy of the normality assumption

of the random effects distribution (Molenberghs and Verbeke, 2005; Verbeke and Molenberghs,

2009; McCulloch and Neuhaus, 2011a).

Recently Verbeke and Molenberghs (2013) proposed a simple graphical exploratory diag-

nostic tool utilising the gradient function to investigate the adequacy of the assumed random

effects distribution in terms of the marginal likelihood. Not only does the tool provide evidence

of misspecification of the random effects distribution, the shape of the gradient function can

provide an insight into how the assumed random effects distribution can be improved to provide

a better fit to the observed data (Verbeke and Molenberghs, 2013). However as the gradient

function graphical tool only uses information from people with non-constant response profiles,

this can provide limited evidence for binary and categorical response data with constant re-

sponse profiles. Details about the methodology are presented in Section 3.3.1.

Alternatively, sensitivity analyses can provide a practical tool to informally assess the ro-

bustness of the assumed random effects distribution (Litiére et al., 2008). For instance, Agresti

et al. (2004) suggested comparing the parameter estimates from a GLMM assuming normally

distributed random effects and a GLMM with an unspecified distribution estimated using non-

parametric techniques. Substantial differences between the parameter estimates from the two

approaches would indicate a specification issue of the parametric model (McCulloch et al.,

2008). Similarly, a more general sensitivity analysis framework would consider different choices

29In the context of linear mixed models, Verbeke and Lesaffre (1996) demonstrate that due to shrinkage the
empirical Bayes predictions appear to take on the form of the assumed random effects distribution.
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for the random effects distribution, such as alternative parametric distributions (McCulloch

and Neuhaus, 2013) in addition to flexible approaches (Litiére et al., 2008). If the parameter

estimates and standard errors differ considerably, indicative of sensitivity to the distributional

assumptions of the random effects distribution, then inference of the model results should be

interpreted with caution (Litiére et al., 2008). In a similar context to sensitivity analyses, Chen

et al. (2002) informally test the normality of random effects in GLMMs by using information

criteria to determine the optimal order of the semi-non-parametric density. A non-zero value of

the optimal order would suggest non-normality in the underlying random effects distribution.

Similarly, model selection techniques can be used to determine the optimal number of mixture

components in the heterogeneity model (Verbeke and Lesaffre, 1996; Molenberghs and Verbeke,

2005). An optimal number of more than one component suggests potential non-normality of

the random effects distribution. However, due to the complex nature of model comparisons in

GLMMs, particularly when comparing models with flexible distributions for the random effects,

model selection30 may not be straightforward (Agresti et al., 2004).

2.7.2.2 Formal diagnostic tests

Implementation of formal diagnostic tests to detect violations from normality of the pre-

dicted random effects, such as the Kolmogorov-Smirnov, Anderson-Darling and Cramer-von

Mises normality tests, have been advocated (e.g Hosmer et al. 2013)31. However, as mentioned

previously, the predicted values of the random effects are sensitive to the assumed distribution.

Therefore the performance of the aforementioned normality tests to diagnose departures from

the normal distribution are invalid (McCulloch and Neuhaus, 2011a).

A range of diagnostic tests generally focusing on detecting misspecification of the random

effects structure has been proposed and they are briefly reviewed here32. To examine the

adequacy of the assumed random effects distribution in GLMMs with canonical links, Tch-

etgen and Coull (2006) proposed a diagnostic test based on the difference between marginal

and conditional ML estimation of time-varying explanatory variables. In a similar context,

diagnostic tests have been proposed that compare estimates between two approaches. For in-

stance, Waagepetersen (2006) proposed a simulation-based test by generating random effects

conditional on the observations. Similarly, Huang (2009) proposed a two-step parametric di-

agnostic test based on comparing the parameter estimates based on the observed data and

reconstructed data to detect misspecification of the random effects structure in GLMMs for

30The choice of the most appropriate random effects distribution is one element of selecting a model (Agresti
et al., 2004). Other aspects of model selection, such as variable selection for the fixed and random effects and
number of random effects, is beyond the scope of this review. For further details regarding model selection for
multilevel models the reader is referred to Steele (2013), and for a review about model selection in the simpler
(yet related) case of linear mixed models the reader referred to Müller et al. (2013).

31Hosmer et al. (2013) (page 367-368) state that “(t)he best method for assessing the normality assumption
of a random effect is based on the best predicted values of the random effects. One can then use standard tests
and plots for normality such as the normal probaility (PP) or normal quantile (QQ) plots.”

32For a more detailed review, the reader is referred to Verbeke and Molenberghs (2013) and the references
within.
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binary responses. This diagnostic test was later extended by Huang (2011) to be applied to

GLMMs and non-linear mixed models, and by Lin and Chen (2015) to cumulative logit mixed

models for ordinal responses. Additionally, diagnostic tests based on information equivalence

under a correct model have been proposed. Alonso et al. (2008) proposed three diagnostic

tests based on eigenvalues of the variance-covariance matrix to detect misspecification of the

random effects structure in GLMMs. Similarly, Alonso et al. (2010b) proposed two diagnostic

tests based on the information matrix test (White, 1982) to detect misspecification33 in GLMMs.

More recently, tests based on the gradient function have been proposed by Efendi et al.

(2014) and Drikvandi et al. (2016) to diagnose misspecification of the parametric assumption

of the random effects distribution. Both methods have been proposed to complement the in-

formal graphical approach developed by Verbeke and Molenberghs (2013) (Section 2.7.2.1),

and test whether the fluctuations observed in the gradient function graphical tool are due to

distributional misspecification of the random effects and not just random variability. Efendi

et al. (2014) propose a bootstrap test based on the gradient function, however it is restricted to

evaluating the gradient within an interval. Therefore, for binary response data, the diagnostic

test of Efendi et al. (2014) is restricted to those subjects with non-constant response profiles.

To provide a formal diagnostic test based on the gradient function across the whole support

of the random effects distribution, Drikvandi et al. (2016) propose and derive the asymptotic

properties of a test statistic that utilises the Cramer-von Mises measure. Further details about

the diagnostic test of Drikvandi et al. (2016) are presented in Section 3.3.2.

This literature review has shown a range of informal and formal diagnostic tests that have

been developed to identify potential misspecification of the random effects distribution. Albeit

continual developments of formal diagnostic tools, utilisation in practice is limited, particularly

within social science applications. The practicality of diagnostic tools has not been reviewed for

applications to longitudinal panel data. Furthermore, the aforementioned diagnostic methods

generally assume only one type of misspecification is present. As highlighted by Huang (2011),

future work is required to develop diagnostic methods that can disentangle multiple sources of

misspecification in GLMMs such as the structure of the mean model, link function or variance-

covariance structure.

2.8 Overview

This literature review has introduced longitudinal panel surveys, highlighting some of the

complexities that need to be considered when analysing longitudinal panel data (Section 2.1),

including the loss of respondents due to attrition (Section 2.2). As highlighted in Section 2.3,

although there are numerous approaches to estimate changes in longitudinal binary response

data, logistic mixed models provide a flexible framework to obtain subject specific interpre-

33The diagnostic tests can detect misspecification of the random effects structure, and other types of model
misspecification, such as a misspecified link function or mean structure.
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tation. These models not only handle the correlated nature of longitudinal data and account

for unobserved heterogeneity, but can provide consistent estimation in settings with attrition

following the MAR missingness mechanism. Furthermore, consistent estimation requires the

correct specification of the model, including the mean structure and the random effects struc-

ture (Section 2.4).

However, as highlighted in Section 2.5, the commonly assumed Gaussian distribution for the

random effects distribution can be too restrictive in practice. This is particularly true if there

exists a sub-population structure. In the context of longitudinal binary responses, individuals

with constant response profiles may exhibit heterogeneity in the random effects distribution

due to an underlying mover-stayer scenario. In this setting, the assumed normal distribution

may not sufficiently capture the multimodality of the true distribution.

Previous literature has demonstrated that misspecifying the random effects distribution can

impact inferential conclusions in logistic mixed models, and that the impact may be depen-

dent on the inferential focus of the researcher (Section 2.6). However, no study has considered

specific departure from the assumed normal distribution characterised by a trimodal distribu-

tion, and settings with substantial heterogeneity due to an underlying sub-population structure.

Furthermore, no literature has considered this type of distributional misspecification in the lon-

gitudinal panel settings, including in the presence of attrition. The literature has predominately

focused on biomedical settings, with limited research considering the impact of misspecification

on estimating the effects of time-varying categorical explanatory variables.

A body of research has investigated potential ways to address misspecification of the random

effects distribution, including methods to relax the parametric assumption of the random effects

distribution (Section 2.7.1) and diagnostic tools to identify potential distributional misspecifi-

cation (Section 2.7.2). These proposed methods provide a promising framework to determine

the sensitivity of model based conclusions to distributional assumptions for the random effects.

However, the implementation of flexible modelling techniques and diagnostic tests in practical

applications of longitudinal panel survey data is limited. No review has explored the perfor-

mance of these approaches, including the practicality when utilised in settings with missing

data due to attrition.

2.9 Research questions

This study will contribute to the statistical and social sciences literature by focusing on

evaluating assumptions and extensions of logistic mixed models to analyse longitudinal panel

survey data. In particular, this study focuses on the specific departure from normality of

the random effects distribution characterised by multimodality, reflecting an underlying sub-

population structure such as the mover-stayer scenario.
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The gaps in the literature have led to the following three research questions that this study

aims to address:

1. How robust is the assumed Gaussian distribution to multimodality of the random intercept

distribution in panel survey settings due to potential mover-stayer scenario?

2. Can the impact of multimodality of the random effects distribution be alleviated by

increasing the flexibility of the assumed random effects distribution?

3. What is the additional impact of misspecified random effect distributions in the presence

of missing data due to attrition?

The first research question will investigate the impact of misspecifying the assumed random

intercept distribution in random intercept logistic models through two simulation studies pre-

sented in Chapters 5 and 6. Motivated by the underlying distribution observed in the HILDA

case study (Chapter 4), the first simulation study in Chapter 5 considers the specific departure

from normality arising from a three component mixture of Gaussians to represent the mover-

stayer scenario. Chapter 6 presents the second simulation study to investigate the robustness

of model based inference to misspecification of the random intercept distribution by simulating

a range of trimodal distributions increasing in severity of departure from the assumed normal

distribution.

The second research question will be explored by assessing the performance and feasibil-

ity of implementing approaches to induce sufficient flexibility of the assumed random effects

distribution in logistic mixed models with univariate and bivariate random effects. Chapter

4 induces more flexibility to the random intercepts distribution by considering random inter-

cepts that arise from a three component mixture of normal distributions. In addition to this

heterogeneity model, Chapter 7 considers the end-point model, semi-non-parametric approach

and two non-parametric approaches. Furthermore, Chapter 7 considers the performance of

these approaches to the more complex scenario of flexibly modelling bivariate random effects

distribution in a random intercept and random slope logistic model.

Finally, the third research question will be explored through the simulation studies pre-

sented in Chapters 5 and 6, and by assessing the performance of the logistic mixed models

applied to settings with missing data due to attrition. The simulation studies investigate the

robustness of the normality assumption in two data scenarios: the first considers misspecifica-

tion in the presence of complete data, and the second considers misspecification in the presence

of missing data following from MAR attrition. Chapters 4 and 7 assess the performance of

logistic mixed models in the presence of missing data when assuming a normal distribution or

using approaches to flexibly model the random effects distribution.
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3 Statistical Methodology

The focus of this study is on investigating the impact of departures from distributional

normality in the random effects of generalised linear mixed models (GLMMs). The statistical

methodology relevant to the study is described in this Chapter. First, the statistical framework

of GLMMs is introduced (Section 3.1), with focus on the special case of logistic mixed models

for binary response variables (Section 3.1.1). The distribution of the random effects in a GLMM

is typically assumed to be normal, but this can be restrictive in some applications. In Chapters

4 and 7, four alternative methods are investigated to relax the normality assumption and

flexibly model the random effects of a logistic mixed model. These four methods are described

in Section 3.2 and include the heterogeneity model (Section 3.2.1), the semi-non-parametric

model (Section 3.2.2), non-parametric estimation (Section 3.2.3) and GLMM with endpoints

(Section 3.2.4). As inference for parameters of GLMMs can be sensitive to the assumed random

effects distribution, diagnostic tests to detect distributional misspecification of the random

effects have recently been developed. In Chapter 4, two diagnostic tests are utilised to identify

potential misspecification of the random effects distribution when applied to a random intercept

logistic model. These two diagnostic tests are described in Section 3.3, and include the gradient

function exploratory diagnostic tool (Section 3.3.1) and the asymptotic diagnostic test based

on the gradient function (Section 3.3.2). Typically, simulation studies are utilised to assess the

robustness of inference in applications of GLMMs with potentially incorrect assumptions for the

random effects distribution. Chapters 5 and 6 use simulation studies to investigate the impact

of incorrectly assuming normality for the random intercept distribution in panel survey settings

when the true distribution is multimodal. The simulation study design utilised in Chapters 5

and 6 is described in Section 3.4, and the details of the performance measures used to assess

and summarise the results from the simulation studies are described in Section 3.5.

3.1 Generalised linear mixed models

In this section the framework for generalised linear mixed models is described. Throughout

the thesis discussion is restricted to two-level models focusing on longitudinal designs, where

time varying observations (level one) are clustered by a higher level unit (level two). However

the framework can easily be extended to higher order clustered designs.

In a longitudinal panel survey consisting of N individuals, an individual i has observa-

tions measured repeatedly ni times, such that yij denotes the response for individual i (for i =
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1, ..., N) at time j (for j = 1, ..., ni). For each individual and time-point, data for a set of p

explanatory variables denoted by xij
′ = (x1ij, ..., xpij) are recorded. Often time is expressed as

wave number in panel surveys, and the time interval between waves can vary.

For normal and non-normal responses, generalised linear mixed models extend the gener-

alised linear model (Nelder and Wedderburn, 1972) to incorporate random effects. It is assumed

that, conditionally on the q-dimensional random effects, bi, the responses yij are independent

with densities of the form:

fY (yij|bi,β, φ) = exp
[
φ−1 {yijθij − c(θij)}+ d(yij, φ)

]
(3.1)

where c is a specific function depending on the type of exponential family, d is the log-

normalisation constant, φ is a dispersion parameter and θij models the mean response, µij,

through a linear predictor containing fixed regression coefficients, β and individual-specific

random effects, bi:

η(µij) = η[E(yij|bi)] = x′ijβ + z′ijbi (3.2)

where η(· ) is a known link function, and xij and zij are p− and q-dimensional vectors of ex-

planatory variables of the fixed and random effects, respectively. These models are conditional

on the explanatory variables, and for ease of readability the dependence on xij will be sup-

pressed from notation. It is assumed that the random effects are sampled from a population

of individual-specific parameters with distribution function G, parameterised by the vector ξ.

Typically the random effects are assumed to be sampled from a q-dimensional multivariate

normal distribution with zero mean and variance-covariance matrix Σ, bi ∼ Nq(0,Σ)1. Fur-

thermore, it is assumed that the random effects are uncorrelated with the covariates, such that

bi and xij are exogenous.

The maximum likelihood estimation of GLMMs is obtained by maximising the marginal

likelihood, which requires integrating over the distribution of the random effects, such that the

likelihood contribution for individual i is

fi(yi|β,Σ, φ) =

∫ ni∏
j=1

fij(yij|bi,β, φ)f(bi|Σ)dbi. (3.3)

The likelihood is derived as

L(β,Σ, φ) =
N∏
i=1

fi(yi|β,Σ, φ). (3.4)

1The assumption of normality for the random effects distribution has been carried over from linear mixed
models, where it is mathematically convenient to analytically calculate the marginal likelihood (Molenberghs
and Verbeke, 2005). Furthermore, a continuous distribution for the random effects is often considered more
realistic than a discrete distribution, thus, the normal distribution is a common choice. Additionally, assuming
a normal distribution for the random effects is typically the default in standard software packages.
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However, the integral in the likelihood function typically does not have a closed form2, mak-

ing estimation more difficult (Skrondal and Rabe-Hesketh, 2008). Therefore, numerical ap-

proximation techniques for the integral are required to estimate GLMMs, such as adaptive or

non-adaptive Gaussian quadrature. Optimization routines to maximise the likelihood function

use optimization techniques such as the Newton-Raphson algorithm, Fisher-scoring algorithm,

iterative generalized least squares or restrictive generalized least squares.

3.1.1 Logistic mixed models

Binary outcomes are common in the social sciences. For a clustered binary response, let

yij be the value of the dichotomous variable, coded 0 or 1, for individual i at time j. The

logistic mixed model is a widely accepted method for describing the relationship between a

clustered binary response variable and explanatory variables. The logistic mixed model is writ-

ten in terms of the log odds of the probability of response, denoted pij = Pr(yij = 1|bi) and

is equivalent to the GLMM with a logit link function, such that η(µij) = logit(pij) = log
(

pij
1−pij

)
.

First consider a random intercept logistic model, that is, a logistic mixed model with a

single random effect,

log

[
pij

1− pij

]
= x′ijβ + b0i (3.5)

where b0i is the random intercept for individual i and is assumed to be distributed in the

population as N(0, σ2
b0

). The random intercept captures each individual’s deviation from the

overall intercept constant (β0). Often it is of interest to express the random intercept variability

in terms of the intraclass correlation (ICC). The ICC is a measurement indicating the proportion

of unexplained variance at the individual level. For a random intercept logistic model assuming

normally distributed random effects, the ICC can be estimated as

ρ̂ =
σ̂2
b0

σ̂2
b0

+ π2

3

(3.6)

where the latter term in the denominator is the variance of the underlying latent response

tendency, and in a logistic model is equal to π2

3
(Page 241 of Andress et al. 2013).

The random intercept logistic model is easily extended to include multiple random effects

(q ≥ 2), however we restrict our attention to random intercepts and random slopes (q = 2).

Within the panel survey context, the random slopes are often the random coefficient for the time

variable, measuring each individual’s deviation from the overall wave trend. The corresponding

logistic mixed model with bivariate random effects, also known as a random intercept and

2Closed form likelihoods can be achieved for specific cases, such as, the linear mixed model, random intercept
Poisson model with a conjugate random effects distribution, and GLMMs with discrete random effects.
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random slope logistic model, is given by:

logit[Pr(yij = 1|bi)] = log

[
pij

1− pij

]
= x′ijβ + z′ijbi (3.7)

where bi is a two dimensional vector consisting of the random intercepts (b0i) and the random

slopes (b1i), and is assumed to follow a bivariate normal distribution N2(0,Σb). The vector zij

will consist of a term for the intercept and the corresponding wave term for individual i at the

jth wave.

3.2 Generalised linear mixed models with flexible random effects

distributions

The random effects in GLMMs are typically assumed to be normally distributed. However,

in some practical applications, the normality assumption may be too restrictive to adequately

capture the distribution of the underlying heterogeneity. It is possible for the normality as-

sumption of the random effects distribution to be relaxed, and alternative specifications in-

clude non-normal parametric or non-parametric distributions. In this section four alternative

methodologies that flexibly capture departures from the normality assumption are described.

Flexibility can be achieved by either modelling the random effects as a finite mixture of normal

distributions (Section 3.2.1), or utilising semi-non-parametric (Section 3.2.2) or non-parametric

(Section 3.2.3) estimation, or by incorporating endpoints at the distributional extremes to cap-

ture a potential mover-stayer scenario (Section 3.2.4).

3.2.1 Heterogeneity model

In the context of linear mixed models, Verbeke and Lesaffre (1996) and Magder and Zeger

(1996) proposed to relax the normality assumption by specifying a finite mixture of multivariate

normals for the random effects distribution. As shown by Molenberghs and Verbeke (2005)

this specification can easily be extended to the GLMM context. The so called heterogeneity

model (Verbeke and Lesaffre, 1996) assumes that the population under study consists of g sub-

populations. To model the heterogeneity, the random effects are modelled as a mixture of g

q−dimensional normal distributions, with mean vectors µγ and covariance matrices Σγ , where

γ = 1, ..., g. Therefore, the random effects are given by

bi ∼
g∑

γ=1

πγN(µγ ,Σγ) (3.8)

where πγ are the mixing proportions, representing the proportion of the individuals in the total

population belonging to the γth sub-population (
∑g

γ=1 πγ=1). Thus, the density of the random
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effects is given by

f(bi) =

g∑
γ=1

πγfγ(bi)

=

g∑
γ=1

πγ(2π)−
q
2 |Σγ |−

1
2 × exp

{
−1

2
(bi − µγ)′Σγ

−1(bi − µγ)

} (3.9)

where fγ(bi) represents the density of the γth mixture component.

Let δiγ = 1 if the random effects bi are sampled from the γth mixture component and 0

otherwise, such that πγ = Pr(δiγ = 1) = E(δiγ). The overall mean of the random effects is

given by

E(bi) = E (E(bi|δi1, ..., δiγ))

= E

(
g∑

γ=1

µγδiγ

)

=

g∑
γ=1

πγµγ .

(3.10)

Furthermore, the overall covariance matrix of the random effects is given by

Σ∗ = Var[E(bi|δi1, ..., δiγ)] + E[Var(bi|δi1, ..., δiγ)]

= Var

(
g∑

γ=1

µγδiγ

)
+ E

(
g∑

γ=1

Σγδiγ

)

=

g∑
γ=1

πγµγµ
′
γ +

g∑
γ=1

πγΣγ .

(3.11)

The resulting marginal density of the response measurements yi is a g component mixture

of marginal mixed effect models with mixing proportions πγ:

fi(yi|β,Σ, µ, φ) =

∫
fi(yi|bi,β, φ)f(bi)dbi

=

g∑
γ=1

πγ

∫
fi(yi|bi,β, φ)fγ(bi)dbi

=

g∑
γ=1

πγfiγ(yi|β,Σγ ,µγ , φ)

(3.12)

where fiγ(yi|β,Σγ , µγ, φ) is the marginal density corresponding to a generalised linear mixed

model with random effects distributed as a q−dimensional normal distribution from the γth mix-

ture component with mean µγ and covariance matrix Σγ . Furthermore, let Σ = (Σ1, ...,Σg)
′

and µ = (µ1, ..., µg)
′.
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The heterogeneity model assumes that the number of components, g, is known. In practice

several models of increasing g values can be fit, and model selection for nested models, such

as the likelihood ratio test (Molenberghs and Verbeke, 2005), can be used to determine the

optimal number of components3.

3.2.1.1 Estimation

The parameters of the heterogeneity model can be estimated using maximum likelihood

methods. As shown in Liu and Yu (2008), and implemented by Verbeke and Molenberghs

(2013), the heterogeneity model can be estimated using the likelihood reformulation (LR)

method (Liu and Yu, 2008). The LR method is based on a simple transformation to replace

the conditional density on a non-normal random effects distribution by another one that can

be integrated over a normal random effects distribution. The transformation used in the LR

method reformulates the conditional likelihood on non-normal random effects by multiplying

and dividing the conditional likelihood by a standard normal density and then reformulating

the resulting likelihood for integration over normal distributed random effects using adaptive

Gaussian quadrature. The LR method can be used to estimate GLMMs with non-normal

q−dimensional random effects (q ≥ 1), and requires that the density function of the non-

normal random effects have a closed form.

To demonstrate the LR method to estimate the heterogeneity model, consider a random

intercept logistic model with the random intercept assumed to follow a g component mixture of

univariate normal distributions. Consider the same random intercept logistic model presented

in Equation 3.5 where b0i has a finite mixture density,

f(b0i) =

g∑
γ=1

πγ√
2πσγ

exp

(
−(b0i − µγ)2

2σ2
γ

)
(3.13)

where µγ and σ2
γ are the mean and variance of the γth mixture component, with mixing pro-

portions πγ (
∑g

γ=1 πγ = 1, for γ = 1, ..., g). The observed data likelihood contribution for

individual i is given by:

Li =

∫ [ ni∏
j=1

f(yij|b0i,β, φ)

]
f(b0i)db0i. (3.14)

where f(yij|b0i,β, φ) = p
yij
ij × (1− pij)(1−yij) is the logit function, with

3However, determination of the number of components in a finite mixture is not a standard problem. The
likelihood ratio test statistic does not necessarily follow a chi-squared distribution, as the null hypothesis is
on the boundary of the parameter space. In practice it is often sufficient to select the optimal number of
components by exploring how different values of g affect the inference of model parameters within the context
of a sensitivity analysis (Molenberghs and Verbeke, 2005).
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pij =
(

1 + exp(−(x′ijβ + b0i))
)−1

. The corresponding observed data likelihood is thus,

Li =

∫ [ ni∏
j=1

exp {yij log(pij) + (1− yij) log(1− pij)}

]
× f(b0i)db0i (3.15)

Using the LR method of Liu and Yu (2008), the likelihood can be reformulated such that

the integration is over a standard normal distribution rather than over a mixture of normal

distributions. The reformulation can be done by multiplying and dividing the integrand in

Equation 3.15 by a standard normal density, φ(ai), (i.e. ai ∼ N(0, 1)),

Li =

∫ [ ni∏
j=1

f(yij|ai,β, φ)

]
f(ai|θ)
φ(ai)

φ(ai)dai (3.16)

where it is noted that the non-normal random intercept in Equation 3.15, b0i, has been re-

placed by ai in Equation 3.16 to distinguish between the true non-normal random effects from

the standard normal φ(ai).

Algebraically the derivation of the likelihood can be shown to be expressed as a function of

the conditional likelihood of the observed data (`Ai ), the density of the non-normal distributed

random effects (`Bi ) and the standard normal density `Ci ,

Li =

∫ [ ni∏
j=1

f(yij|ai,β, φ)

]
f(ai|θ)
φ(ai)

φ(ai)dai

=

∫ ∞
−∞

exp

(
log

(
ni∏
j=1

f(yij|ai,β, φ)

)
+ log (f(ai|θ))− log (φ(ai))

)
φ(ai)dai

=

∫ ∞
−∞

exp(`Ai + `Bi − `Ci )φ(ai)dai. (3.17)

For the heterogeneity model, the likelihood contribution for the ith individual can be ex-

pressed using Equation 3.17, where `Ai is the conditional log-likelihood of the observed data, `Bi

is the log finite mixture density and `Ci is the log standard normal density. Given by,

`Ai =

ni∑
j=1

{yij log(pij) + (1− yij) log(1− pij)}

`Bi = log

(
π1

σ1

exp

(
−(ai − µ1)2

2σ2
1

)
+ ...+

πg
σg

exp

(
−(ai − µg)2

2σ2
g

))
+ constant

`Ci = log

(
1√
(2π)

exp

(
−(ai − 0)2

2

))
= −1

2
a2
i + constant

(3.18)

where pij =
(

1 + exp(−(x′ijβ + ai))
)−1

.
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The reformulated likelihood can be estimated using adaptive Gaussian quadrature and im-

plemented in SAS using the NLMIXED procedure. The intercept is omitted to avoid non-

identifiability (Liu and Yu, 2008), and is estimated using the assumption that E(b0i) = 0

as imposed by the restriction
∑g

γ=1 π̂γµ̂γ = β̂0. Furthermore, to impose the restriction that

the mixing proportions sum to one (
∑g

γ=1 πγ = 1), the gth mixing proportion is estimated as

π̂g = 1 − π̂1 − π̂2 − ... − π̂g−1. The LR method implemented for the random intercept logistic

model can easily be extended to estimate a random intercepts and random slopes logistic mixed

model assuming random effects are sampled from a finite mixture of bivariate normals. For

further information and example SAS syntax, the reader is referred to Liu and Yu (2008).

3.2.2 Semi-non-parametric flexible random effects model

Another approach relaxing the assumption of Gaussian random effects in a GLMM is to

specify the random effects density to follow a smooth class of densities as represented by the

semi-non-parametric (SNP) approach of Gallant and Nychka (1987). The SNP density is a

flexible class of continuous densities that includes skewed, multimodal and thick- or thin-tailed

densities. Thus, assuming the random effects follow a SNP density can induce an immense

amount of flexibility. Furthermore, by assuming a smooth density without jumps or oscilla-

tions, the SNP representation also provides an estimate of the random effects density.

Recently, Vock et al. (2014) developed a SAS macro, SNP NLMM, to easily implement

generalised linear mixed models and non-linear mixed models (NLMMs) with random effects

assumed to follow the SNP density. The SAS macro of Vock et al. (2014) overcomes computa-

tional challenges of previously implementing SNP densities in standard software, by proposing

a fast computational approach to approximate the integral required to obtain maximum like-

lihood estimates. The estimation technique proposed by Vock et al. (2014) fits the random

effects of a GLMM or NLMM, however for the remainder of this description we will restrict our

focus to GLMMs.

Following the same notation as Section 3.1, the likelihood for a GLMM with q random

effects is given by,

L(θ,y) =
N∏
i=1

∫ ∞
−∞

...

∫ ∞
−∞

ni∏
j=1

f(yij|bi,β)f(bi, ξ)db1i...dbqi (3.19)

where it is assumed the random effects bi ∼ f(bi, ξ) may depend on a vector of parameters ξ.

For brevity, the q-dimensional integral will be represented as a single integral for the remainder

of this description.

Assume the random effects are centered such that bi = µ+Rvi where µ is a q-dimensional

vector, R is a q × q lower triangular matrix, and vi is a q-dimensional random effects matrix.

44



It is assumed that vi follows a q-dimensional standard normal density, such that E(bi) = µ

and Var(bi) = RR′. The likelihood can be rewritten in terms of vi such that

L(θ,y) =
N∏
i=1

∫ ni∏
j=1

f(yij|vi,β,µ, r)fvi(vi, ξ)dvi (3.20)

where r is the half-vectorisation of matrix R (i.e. vech(R)).

As detailed in Vock et al. (2014), the SNP representation assumes that instead of vi dis-

tributed as a q-dimensional standard normal, the vi belong to the smooth class of densities

as proposed by Gallant and Nychka (1987). The smooth class of densities, fvi ∈ G, can be

expressed as an infinite Hermite series, fvi(v) = P 2
∞(v)φ(v) with a lower bound on the tails,

where P 2
∞(v) is an infinite dimensional polynomial and φ(v) is a q-dimensional standard nor-

mal density. For modelling purposes the lower bound is ignored and the polynomial term is

truncated, and as such, is referred to as a SNP density. Therefore, the random effects vi are

assumed to follow a SNP density with degree of truncation K, as given by:

fKvi (v; ξ) = P 2
K(v)φq(v)

=

 ∑
(h1+...+hq)≤K

ah1,...,hq(v
h1
1 ...v

hq
q )


2

φq(v)
(3.21)

where φq(v) is the q-dimensional standard normal density, a are the coefficients with hl ≥ 0

for l = 1, ..., q and K is the order of the polynomial PK(v). For example, a random intercept

density (i.e. q = 1) with K = 2,

PK(v) = a0v1
0 + a1v1

1 + a2v1
2

= a0 + a1v1 + a2v1
2.

(3.22)

Similarly, for a random intercept and random slope density (i.e. q = 2) with K = 2,

PK(v) = a00v1
0v2

0 + a01v1
0v2

1 + a10v1
1v2

0 + a11v1
1v2

1 + a02v1
0v2

2 + a20v1
2v2

0

= a00 + a01v2 + a10v1 + a11v1v2 + a02v2
2 + a20v1

2
(3.23)

where v1 and v2 are the vectors of centered random intercepts and random slopes respectively.

The above description of fitting random effects assuming a SNP density assumes that the

truncation factor, K, is fixed. When K = 0 the SNP density simplifies to a q-dimensional stan-

dard normal distribution, and for K > 0 the value controls the departure from the standard

normal, and therefore influences the flexibility for approximating the true underlying random

effects density (Vock et al., 2014). Thus, K should be used as a tuning parameter, and Vock

et al. (2014) suggest fitting models for several values of K and choosing the optimal model

based on information criteria and/or visual inspection of the resulting densities. As the class of
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possible densities increases monotonically as K is increased, Vock et al. (2014) suggest values

of K ≤ 2 will be sufficient to capture most complicated densities.

Estimation of the parameter vector θ = (β′, ξ′)′ is obtained using the maximum likelihood

estimator (Vock et al., 2014). For a given K, the optimisation is the same as in standard

finite dimensional maximum likelihood estimation, after approximating the integral in the

likelihood (Equation 3.20). The mean and variance of the random effects are estimated as

E(bi) = µ+R×E(vi) and Var(bi) = RVar(vi)R
′. For computational details of the numeri-

cal integration method proposed and utilised by Vock et al. (2014), the reader is referred to Sec-

tion 4 of Vock et al. (2014). Briefly, the SNP NLMM method uses Gaussian quadrature to ap-

proximate the integral over the random effects, with the quadrature points centered and scaled

at the empirical Bayes estimates and estimated variance from assuming q−dimensional multi-

variate normally distributed random effects. The SAS macro that implements this methodol-

ogy is provided as supplementary material in Vock et al. (2014), and utilises the NLMIXED

procedure in SAS to numerically integrate and optimise the likelihood, using the likelihood re-

formulation method proposed by Liu and Yu (2008) to center the quadrature points and allow

non-Gaussian random effects.

As the SNP NLMM approach can be sensitive to the choice of starting values, Vock et al.

(2014) suggest using starting values for β, E(bi) and Var(bi) as the estimated values of the

corresponding GLMM assuming random effects are a q-dimensional multivariate normal distri-

bution. Specifically, µ and r are set to the values that correspond to E(bi) and Var(bi) when

assuming a non-mean-zero Gaussian distribution. For example, for the univariate random ef-

fects GLMM, the initial starting value for E(b0i) would be set to β̂0 and Var(b0i) would be set to

σ̂2
b0i

from the model assuming normal random intercepts (i.e. b0i ∼ N(β̂0, σ̂
2
b0i

)). The likelihood

over a grid of values of ξ is evaluated, and the SNP NLMM macro uses a small number of

the parameter sets as starting values to maximise the likelihood and ensure convergence at the

global maxima.

The SNP NLMM macro is currently available to fit GLMMs with one or two dimensional

random effects. As described previously, the value of K is used as a tuning parameter, and

the optimal value of K is chosen based on the Akaike Information Criterion or the Bayesian

Information Criterion (BIC is default). The maximum number of K, denoted Kmax must be

less than or equal to four for q = 1 and less than or equal to three for q = 2. The macro also

requires the user to specify the number of grid points in each dimension of ξ (with at least 9

recommended in each of the q dimensions (Vock et al., 2014)). The SNP NLMM approach may

be sensitive to the choice of quadrature points, and re-running the optimisation with increasing

quadrature points may be necessary to ensure the maximum likelihood estimate is not sensitive

to the number of quadrature points (Vock et al., 2014). The default choice of the macro is for

the procedure to adaptively select the number of quadrature points, however it is recommended
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to assess the sensitivity by considering alternative numbers of quadrature points. For further

details in regards to implementation and estimation the reader is referred to Vock et al. (2014).

3.2.3 Non-parametric maximum likelihood estimation of the random effects

distribution

Instead of making any assumptions about the distribution of the random effects, non-

parametric maximum likelihood estimation allows immense flexibility of the random effects

distribution by leaving the distribution completely unspecified. In the context of random inter-

cept mixed models, it has been shown that the non-parametric maximum likelihood estimator

(NPMLE) of the unspecified distribution is a discrete distribution with a finite number of M

support points located at νm (m = 1, ...,M) with probability weights πm (
∑M

m=1 πm = 1)

(Simar, 1976; Laird, 1978; Lindsay, 1983). For a GLMM with multiple random effects (i.e.

q > 1), the location of the support points νm = (ν1, ..., νq)
′ is in a q-dimensional space (Aitkin,

1999). Despite the discreteness of the resulting random effects estimate, non-parametric max-

imum likelihood estimation does not assume the random effects are discrete. The resulting

estimate is an approximation of the true underlying distribution, regardless of it being contin-

uous (normal or non-normal), discrete, or both continuous with discrete components (Skrondal

and Rabe-Hesketh, 2004). The likelihood corresponding to the NPML estimate of the GLMM

with the random effects estimated on M support points is given by,

L(θM ,πM ,νM) =
N∏
i=1

M∑
m=1

πm

ni∏
j=1

f(yij|bi = νm,β, φ) (3.24)

In order to achieve the NPMLE, the optimal number of support points M needs to be

determined. Many approaches utilised to achieve the NPMLE are based on the concept of

the directional derivative that has been used and discussed in many contexts (e.g. Wynn

1970; Fedorov 1972; Wu 1978; Lindsay 1983; Follmann and Lambert 1989; Lesperance and

Kalbfleisch 1992, among others). One approach, as utilised by Rabe-Hesketh et al. (2003), is

to introduce support points one at a time until the likelihood is maximised as determined by

the directional derivative, also known as the Gateaux derivative (Heckman and Singer, 1984).

Another approach, as utilised by Tsonaka et al. (2009) in the context of shared parameter

models, is to start with a large grid of support points and remove or merge support points

using the directional derivative-based Vertex Exchange Method (Böhning, 1985) until the log-

likelihood is maximised with respect to the random effects distribution. These two methods

are described in further detail in Sections 3.2.3.1 and 3.2.3.2, respectively.
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3.2.3.1 Non-parametric maximum likelihood estimation of the random effects

distribution utilising the Gateaux derivative

The approach proposed by Rabe-Hesketh et al. (2003) is similar to the algorithm proposed

by Simar (1976) and adapted by Heckman and Singer (1984) (among others). The approach

starts with a single support point, and estimates the model parameters jointly with both the

location and probability weight of the support point using maximum likelihood estimation. Ad-

ditional support points are introduced one at a time using an implementation of the directional

derivative-based algorithm, the Vertex Direction Method (VDM) (Wynn, 1970; Fedorov, 1972;

Wu, 1978; Lindsay, 1983). Keeping the model parameters fixed at the current estimate, the

Gateaux derivative calculates the log-likelihood when an additional support point of small prob-

ability weight is moved across a fine grid of values for the random effects. If the log-likelihood

increases at any of the considered locations, a new support point is introduced. The estimation

of the model with an additional support point is based on maximum likelihood with the starting

values set at the previous model estimates (parameter coefficients and support point estimates)

with the starting value of the additional support point set at the location corresponding to the

greatest increase in the log-likelihood.

More formally, consider the maximised likelihood for a random intercept model with M

support points, L(θ̂
M
, π̂M , ν̂M) (Equation 3.24). To determine whether L(θ̂

M
, π̂M , ν̂M) is the

NPMLE, assess whether the inclusion of an additional support point will result in a larger max-

imum likelihood. For a fine grid of support points consider changing the discrete distribution

along the path ((1−λ)π̂M , λ)′ with support points located at (ν̂M , νM+1)′. Therefore, if λ = 0,

then the current solution consisting of M support points is the NPMLE, however if λ = 1 then

an additional support point at location νM+1 is included. This can be formally assessed by

considering the directional derivative, given by

∆(νM+1) = lim
λ→0

lnL(θ̂
M
, ((1− λ)π̂M , λ)′, (ν̂M , νM+1)′)− lnL(θ̂

M
, π̂M , ν̂M)

λ
. (3.25)

As defined by the general mixture maximum likelihood theorem (Lindsay, 1983), the model

with M support points is considered the NPMLE if and only if ∆(νM+1) ≤ 0 for all νM+1. If

a location can be found (i.e. if ∆(νM+1) > 0), the directional derivative implies that including

an additional support point will improve the maximum likelihood. This procedure of assessing

whether an additional support point can be included, and estimating the model with M + 1

support points is repeated until no additional location can be found to increase the likelihood

(i.e. when ∆(νM+1) ≤ 0).

As detailed by Rabe-Hesketh et al. (2003), the model parameters θ are estimated using the

Newton-Raphson algorithm. To ensure correct parametrisation of the model, the assumption

of zero mean random effects (i.e. E(bi) = 0) is imposed by estimating the location for M − 1

support point locations. Furthermore, to ensure that the probability weights sum to one, the

48



restriction is imposed by estimating M − 1 probability weights (i.e. πM = 1−
∑M−1

m=1 πm). The

variance-covariance matrix is not estimated directly but is based on the estimated locations and

probability weights of the support points. Therefore, the variances and covariances are based

on the q-dimensional discrete probability distribution, estimated as
∑M

m=1 νmνm
′πm. The ap-

proximate standard errors are estimated by inverting the observed information matrix. As the

information matrix includes terms for the mass-point parameters, the standard errors for the

coefficients take into account the uncertainty of the locations and masses (Rabe-Hesketh et al.,

2003). However the standard errors do not take into account the uncertainty of the number of

support points, and thus, are conditional on the number of support points.

Non-parametric maximum likelihood estimation using the Gateaux derivative to obtain the

NPMLE is implemented in STATA using the GLLAMM package. The default stopping rule

of the Gateaux derivative implemented in GLLAMM is if ∆(νM+1) ≤ 10−5 for all locations

of νM+1 along a user-specified fine grid of locations spanning across a wide range of values.

For further details regarding implementation in GLLAMM and interpretation of the resulting

output, the reader is referred to Rabe-Hesketh et al. (2003), Skrondal and Rabe-Hesketh (2004)

and the GLLAMM website (http://www.gllamm.org).

3.2.3.2 Non-parametric maximum likelihood estimation of the random effects

distribution utilising the Vertex Exchange Method

Böhning (1999) has shown that a two phase procedure can be utilised to obtain the NPMLE.

The first phase is to use the VEM algorithm to estimate the probability masses π in a fixed

grid of support points, µ. In the second phase, the locations of µ are refined by using the EM

algorithm with the estimated distribution from the first phase as the initial starting values.

However, the EM step is computationally slow and has been shown to have minimal additional

improvement on the model fit if the original gird is sufficiently dense (in terms of maximising

the log-likelihood) (Böhning, 1999). Therefore, Tsonaka et al. (2009) proposed that the random

effects distribution can be estimated using only the VEM algorithm. The resulting estimate

derived by VEM will provide an approximate NPMLE of the random effects distribution, G

(Tsonaka et al., 2009). The VEM algorithm is described in more detail below.

The VEM was proposed by (Böhning, 1985) as an alternative to the VDM (Wynn, 1970;

Fedorov, 1972; Wu, 1978; Lindsay, 1983). The VEM algorithm starts with a very dense grid

of support points and within an iterative procedure either merges or omits support points as

determined by the directional derivative. To illustrate the VEM algorithm, consider a fixed, pre-

specified grid of equally spaced and equally weighted C support points in the one-dimensional

case, µ1, ..., µC (such as a random intercept distribution in a random intercept logistic model).

Therefore, the VEM algorithm starts by assuming each of the C support points have a prob-

ability weight, πc = 1
C

for c = 1, ..., C. In each iteration, the VEM algorithm maximises the

log-likelihood l(G|θ) by moving weight from a ‘bad’ support point to a ‘good’ support point.
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The ‘good’ and ‘bad’ support points correspond to the locations that maximise and minimise

the directional derivative, D(G0, Gµc), over the grid of C support points, denoted respectively

µ+ and µ− with corresponding weights πµ+ and πµ− (Böhning, 1985, 1999; Tsonaka et al., 2009) .

More formally, at the tth iteration of the estimation procedure, for each grid point µc (c =

1, ..., C) the directional derivative is given by

D(Ĝ(t), Gµc) = lim
s→0

`
(

(1− s)Ĝ(t) + sGµc

)
− `(G(t))

s
(3.26)

=
N∑
i=1

f(yi|µc; θ̂(t))∑C
c=1 π̂

(t)
c f(yi|µc; θ̂(t))

−N

where Ĝ(t) is the current estimate of G at iteration t as estimated by the weights π̂
(t)
c . Of

the C evaluations of the directional derivative, define µ− = arg minµc D(Ĝ(t), Gµc) and µ+ =

arg maxµc D(Ĝ(t), Gµc), corresponding to the support points that minimise and maximise the di-

rectional derivative. Once these two support points have been identified, weight of the support

points are exchanged by moving weight from µ− in the direction of µ+. The weights of µ− and

µ+, are updated by π̂
(t+1)
µ− = (1− s∗)π̂(t)

µ− and π̂
(t+1)
µ+ = s∗π̂

(t)
µ− + π̂

(t)
µ+, with step length s∗ ∈ [0, 1].

In order to determine the optimal step length, as defined by s∗ = arg maxs[l(Ĝ
(t+1)(s)|θ̂(it)) −

l(Ĝ(t)|θ̂(t))] for s ∈ [0, 1], the line search method is utilised (Tsonaka et al., 2009). If the optimal

step length is 1 (s∗ = 1) such that π̂
(t+1)
µ− = 0, then the updated grid will be reduced by one

support point (i.e. µ− will be removed from the fixed grid µ1, ..., µC). The VEM algorithm

continues the iterative process until convergence.

Convergence is reached when the following two conditions are met: (i) the change in the log-

likelihood from the current estimate of G and the previous estimate at t− 1, `(Ĝ(t))− `(Ĝ(t−1))

is less than the stopping criteria defined by ε′
∣∣∣l(Ĝ(t))

∣∣∣ + ε′ where ε′ is small (i.e. ε′ = 10−7);

and (ii) the maximum directional derivative over the grid of C support points is small, such

as maxµc D(Ĝ(t), Gµc) < 10−3 which guarantees that l(Ĝ(t))− l(Ĝ(t−1)) < 10−3 (Tsonaka et al.,

2009). This reflects that the estimate of G that maximises the log-likelihood can equivalently

be characterised by the three conditions: (1) Ĝ maximised L(G), (2) Ĝ minimises supθD(θ;G),

and (3) supθD(θ, Ĝ) = 0 (Theorem 4.1 in Lindsay, 1983).

As the aim of non-parametric maximum likelihood estimation in GLMMs is to simultane-

ously find maximum likelihood estimates of the parameter coefficients (θ) and estimate the

random effects distribution, Tsonaka et al. (2009) proposed a two step optimisation proce-

dure that utilises the Vertex Exchange Method to estimate the random effects distribution. In

the first step, the random effects distribution G is estimated using the VEM, for θ fixed at

its current estimate (θ̂). In the second step, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

quasi-Newton algorithm (Nocedal and Wright, 2006) is used to update θ̂ by maximising the

likelihood at the estimated random effects distribution from the first step (Ĝ). These two steps
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are repeated in an iterative process until convergence, as defined above, is reached. Due to

an alternative reparameterisation of the logistic mixed model (detailed in Section 7.2.1) the

random effects are not restricted to have zero mean, and are estimated as ˆ̄bi =
∑C

c=1 πcµc.

Furthermore, the variance-covariance matrix is based on the estimated locations and proba-

bility weights of the support points. Therefore, the variances and covariances are based on

the q-dimensional discrete probability distribution, estimated as
∑C

c=1(µc − ˆ̄bi)(µc − ˆ̄bi)
′πc.

The approximate standard errors for the parameter coefficients are estimated by inverting the

Hessian of the log-likelihood evaluated at the estimates θ̂ and Ĝ.

Non-parametric maximum likelihood estimation using VEM to obtain an approximation

to the NPMLE can be implemented in R using code adapted from Tsonaka et al. (2009).

The code was originally developed for estimating the random effects distribution in shared

parameter models, and Dr. Tsonaka provided the R code to estimate the random effects in a

random intercept logistic model. The R code has been extended by the candidate to estimate

logistic mixed models with bivariate random effects. The relevant R code is available upon

request.

3.2.4 Random intercept logistic model with endpoints

As detailed in Section 2.5, if a latent mover-stayer scenario is suspected, the goodness-of-

fit of GLMMs can be improved by incorporating spikes into the parametric random effects

distribution to represent the stayers (Singer and Spilerman, 1976). The so-called “spiked” dis-

tribution is a combination of the mover-stayer model (Goodman, 1961) and mixture models.

It is often considered a more parsimonious approach to account for latent stayers than non-

parametric maximum likelihood estimation (particularly in regards to the number of estimable

parameters) (Davies and Crouchley, 1986; Berridge and Crouchley, 2011a).

To allow for latent stayers in a two-level random intercept logistic model, the assumed

normal distribution for the random intercepts is supplemented with endpoints at positive and/or

negative infinity. By considering endpoints at negative and positive infinity, two types of stayers

can be accounted for. The stayers susceptible to remain in state yij = 0 are represented by a

spike at negative infinity (denoted S−∞) and the stayers susceptible to remain in state yij = 1

are represented by a spike at positive infinity (denoted S+∞). The probabilities of these two

subgroups of stayers are denoted Pr[S−∞] and Pr[S+∞], respectively. Therefore, the random

intercept distribution consists of a homogeneous group of ‘movers’ represented by a normal

distribution, and one or two spikes to represent the latent stayers. Let yi1, ..., yini
denote the

sequence of binary response measurements for the ith individual. The likelihood of the random
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intercept logistic model with two endpoints at positive and negative infinity is given by,

L(β, σ2
b0i
|y) =

N∏
i=1

{
Pr[S−∞]

[
ni∏
j=1

(1− yij)

]
+ Pr[S+∞]

[
ni∏
j=1

(yij)

]

+
Li

(1− Pr[S−∞]− Pr[S+∞])

} (3.27)

where Li is the likelihood contribution for individual i, as given by

Li(β, σ
2
b0i
|y) =

∫ ∞
−∞

ni∏
j=1

f(yij|u0i,β, φ)f(u0i)du0i

=

∫ ∞
−∞

ni∏
j=1

[
exp(x′ijβ + u0i)

]yij
1 + exp(x′ijβ + u0i)

f(u0i)du0i

(3.28)

where u0i is the random intercept and is assumed to be normally distributed (u0i ∼ N(0, σ2
u0i

)).

The probabilities Pr[S−∞] and Pr[S+∞], are parameterised as

Pr[S−∞] =
ζ0

1 + ζ0 + ζ1

(3.29)

and

Pr[S+∞] =
ζ1

1 + ζ0 + ζ1

(3.30)

where ζ0 > 0 and ζ1 > 0 are end-point parameters to be estimated.

Random intercept logistic models with endpoints can be estimated when implemented us-

ing SABRE (Barry et al., 1989), which is currently available as a stand-alone package, as a

library in R, or as a plug-in for STATA. The likelihood in Equation 3.27 is maximised using

a Newton-Raphson algorithm and using Gaussian quadrature to numerically evaluate the inte-

gral in Equation 3.28 (Barry et al., 1989). Implementation of spiked distributions in SABRE is

restricted to random intercept logistic models and random intercept Poisson models. For the

random intercept Poisson model, the end-point is restricted to the negative infinity value to

account for latent stayers in the null state (yij = 0) (Berridge and Crouchley, 2011a).

The reader is referred to the SABRE website (http://sabre.lancs.ac.uk/) for further details

about the implementation of SABRE in each of the three software platforms.

3.3 Misspecification diagnostic tools

As outlined in Section 3.1, inference for GLMMs is typically based on the marginal model

of yi, obtained by integrating over the distribution of the random effects, G (Fitzmaurice et al.,

2009). Therefore, as the assumed distribution of the random effects is crucial in the calcula-

tion of the marginal model, it is important to assess the adequacy of the fit of the resulting
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log-likelihood `(Ĝ) =
∑N

i=1 ln[fi(yi|G)] to the data (Verbeke and Molenberghs, 2013).

Two diagnostic tools are implemented in Chapter 4 to assess for distributional misspecifi-

cation of the random effects and these are detailed below. Section 3.3.1 describes the gradient

function exploratory diagnostic tool of Verbeke and Molenberghs (2013), a graphical tool to

assess whether the assumed random effects, G, adequately fits the data, or if there exists any

other random effects distribution that improves the fit. However, as the exploratory tool is an

informal diagnostic tool, Drikvandi et al. (2016) have recently proposed a powerful diagnostic

test to supplement the graphical diagnostic function tool. The diagnostic test of Drikvandi

et al. (2016) is also based on the gradient function, and formally tests for misspecification of

the random effects distribution, as described in Section 3.3.2.

3.3.1 Gradient function exploratory diagnostic tool

The gradient function exploratory tool proposed by Verbeke and Molenberghs (2013) uses

the directional derivative to check whether `(Ĝ) adequately fits the data or whether there

exists any other random effects distribution, denoted H, that yields a larger log-likelihood than

`(Ĝ) (i.e. `(H) > `(Ĝ)). Consider two random effects distributions, G and H, the directional

derivative of the log-likelihood evaluated at G into the direction of H is defined as:

Φ(G,H) = lim
α→0

`[(1− α)G+ αH]− `(G)

α

=
∂`[(1− α)G+ αH]

∂α
|α=0

(3.31)

where α is an infinitesimal weight assigned to the distribution H. Equation 3.31 represents the

infinitesimal change in the log-likelihood when the random effects distribution G is replaced

by the mixture (1 − α)G + αH. If Φ(G,H) ≤ 0 for all H then there exists no better random

effects distribution than G. Furthermore, it can be shown that,

1

N
Φ(G,H) =

1

N

N∑
i=1

fi(yi|H)− fi(yi|G)

fi(yi|G)

=
1

N

N∑
i=1

fi(yi|H)

fi(yi|G)
− 1

=

∫
∆(G, b)dH(b)− 1

(3.32)

where the gradient function,∆(G, b), is the average of likelihood ratios given by:

∆(G, b) =
1

N

N∑
i=1

fi(yi|b)
fi(yi|G)

. (3.33)

For each value b ∈ Rq, the gradient function is interpreted as an average of likelihood ratios.

The likelihood ratios in the gradient function measure how much more likely yi is observed for
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individual i to have the random effects bi correspond to b than to be sampled from G.

There are three properties of the gradient function and the directional derivative that im-

ply that, if there is no random effects distribution H that provides a better fit than Ĝ, then

∆(Ĝ, b) will not exceed 1 and will equal 1 for all support points of Ĝ within the region I.

The supportive region, I, is located in the interval [b∗min, b
∗
max] where b∗min and b∗max are the

minimum and maximum b∗i values for individuals i = 1, ..., N . The b∗i corresponds to the value

of b that maximises the log-likelihood value for individual i (i.e. the unique mode). Therefore,

the supportive region will cover the whole real line if there exists any individuals with con-

stant response profiles (i.e. for binary or categorical response data, those individuals who do

not change outcomes over the observation period). For example, in a random effects logistic

regression some individuals may have all binary response equal to zero or all equal to one. In

this situation, in order to avoid the extremes of ±∞, the supportive region [b∗min, b
∗
max] will be

based on only those individuals with non-constant response profiles. Verbeke and Molenberghs

(2013) propose that a graph of the gradient function ∆(Ĝ, b) can be used to assess the fit of an

assumed random effects distribution Ĝ. If the plot of ∆(Ĝ, b) over a fine grid of b values does

not exceed 1, and is equal to 1 within the supportive region I, then it suggests no other random

effects distribution H can provide a better fit to the data. To identify true deviations from a

gradient function of 1, pointwise confidence interval limits can be obtained about ∆(Ĝ, b). As

the asymptotic distribution of the gradient function is normal, the confidence interval limits

of ∆(Ĝ, b) are obtained based on the central limit theorem with the variance estimated as the

sample variance of likelihood ratio contributions of fi(yi|b)/fi(yi|G).

The graphical representation of the gradient function and corresponding pointwise confi-

dence limits are used to identify potential distribution misspecification of the random effects.

In the case of severe distributional misspecification, the gradient function and confidence bands

will clearly exceed 1 within the support region I. Furthermore, the shape of the gradient func-

tion gives some indication of how the shape of the random effects distribution can be adapted

to provide a better fit. For example, an increase in the likelihood can be achieved by replacing

the random effects distribution with H for areas where the ∆(Ĝ, b) > 1. Therefore, the model

can be improved, in terms of log-likelihood, by moving probability mass from areas with small

gradient function (∆(Ĝ, b) < 1) to areas with large gradient function (∆(Ĝ, b) > 1). The

graphical representation of the gradient function to assess for distributional misspecification

can be produced using SAS, implemented by using the syntax presented in Supplementary

material of Verbeke and Molenberghs (2013).

3.3.2 Asymptotic diagnostic test based on the gradient function

A powerful diagnostic test based on the gradient function has been developed by Drikvandi

et al. (2016) to formally test for misspecification of the random effects distribution for a general

class of mixed models. The diagnostic test of Drikvandi et al. (2016) supplements the graphical
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diagnostic gradient function tool proposed by Verbeke and Molenberghs (2013), providing a

formal way to determine whether the fluctuations observed in the gradient plot (detailed in

Section 3.3.1) are due to distributional misspecification of the random effects, not just random

variability (Drikvandi et al., 2016).

The test statistic is constructed by utilising the theoretical properties of the gradient func-

tion and using the Cramér-von Mises measure. For a general mixed model (including linear,

generalised linear and non-linear mixed models), using similar notation as in Section 3.1 and

3.3.1, it is assumed that the response vector yi has density fi(yi|bi, θ) where θ = (β′, ξ′)′

represents all B unknown parameters in the model (i.e. the parameters corresponding to the

covariates and the random effects as parametrised through the vectors β and ξ, respectively).

Assuming the conditional distribution fi(yi|bi, θ) is correctly specified, the test uses the

gradient function to assess the specification of random effects distribution. The null hypothesis

of the test is that the assumed random effects distribution, G, is correctly specified. Following

the derivation of the gradient function by Verbeke and Molenberghs (2013), the test statistic is

constructed based on the Cramér-von Mises measure of distance between the gradient function

∆(G, b) (as defined in Equation 3.33) and the value of one. The test statistic is defined by

T (θ) =
∫
Rq(∆(G, b)−1)2dG(b), evaluated for all possible values of b in the support of G. Under

the null hypothesis it can be shown that T (θ) = 0. As θ is unknown, the maximum likelihood

estimator θ̂ obtained under the null hypothesis can be used to derive the test statistic, thus,

T (θ̂) =

∫
Rq

(∆̂(Ĝ, b)− 1)2dĜ(b) (3.34)

where Ĝ and ∆̂(Ĝ, b) are the estimated random effects distribution and gradient function, re-

spectively, obtained by replacing θ with the suitable estimator, θ̂.

Let θ0 = (θ01, ..., θ0B)′ denote the vector containing the true values for the B parameters.

Drikvandi et al. (2016) derive the asymptotic distribution of T (θ̂) under the null hypothesis,

and show that

T (θ̂) =
r∑

k=1

λkχ
2
k + op(1) (3.35)

where op(1) = ∆̂(Ĝ, b)− 1, χ2
k (for k = 1, ..., r) are independent chi-squared random variables

with one degrees of freedom, and λ1 ≥ ... ≥ λr are the r non-zero eigenvalues of A′Q(θ0)A,

where A is the square root of the inverse Fisher Information matrix of the model parameters
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and Q(θ0) is the B ×B matrix with the (l, l′)-th element

Qll′(θ0) =

∫
Rq

(
lim
N→∞

1

N

N∑
i=1

E

(
∂

∂θ0l

fi(yi|b)
fi(yi|G)

))
×(

lim
N→∞

1

N

N∑
i=1

E

(
∂

∂θ0l′

fi(yi|b)
fi(yi|G)

))
dG(b).

(3.36)

The critical values of T (θ̂) can be computed analytically and are based on the exact dis-

tribution of a weighted sum of independent chi-squared random variables (as derived by Imhof

(1961)) (See Appendix B of Drikvandi et al. (2016)). As asymptotic results are often less ad-

equate for data with small to moderate sample sizes (i.e. N = 100 to 300), Drikvandi et al.

(2016) also derived a parametric bootstrap procedure to approximate T (θ̂). However, as the

sample sizes in panel surveys are typically large, the focus in this study will be restricted to

the asymptotic test.

The test statistic is calculated using a quasi-Monte Carlo (QMC) integration method,

T (θ̂) =

∫
Rq

(∆̂(Ĝ, b)− 1)2dĜ(b)

=
1

K

K∑
k=1

(∆̂(Ĝ, bk)− 1)2

(3.37)

where bk = Ĝ−1(ck) where ck (k = 1, ..., K) are the quasi-Monte Carlo integration nodes over

the q-dimensional unit cube Cq = [0, 1)q. The QMC approach is also used to approximate

Q̂ll′(θ̂) in order to calculate the eigenvalues, such that

Q̂ll′(θ̂) =
1

KN2

K∑
k=1

N∑
i=1

N∑
i′=1

(
∂

∂θl

fi(yi|bk)
fi(yi|G)

|θl=θ̂l

)(
∂

∂θl′

fi′(yi′ |bk)
fi′(yi′|G)

|θl′=θ̂l′

)
(3.38)

where the derivatives of the ratio of the conditional and marginal distributions are calculated

by
∂

∂θl

fi(yi|bk)
fi(yi|G)

=

(
∂

∂θl
log fi(yi|bk)−

∂

∂θl
log fi(yi|G)

)
fi(yi|bk)
fi(yi|G)

. (3.39)

The asymptotic test statistic can be estimated in SAS using NLMIXED and IML procedures,

as implemented using the SAS syntax presented in Drikvandi et al. (2016).

Unlike the graphical diagnostic tool of Verbeke and Molenberghs (2013) that provides in-

formation about potential misspecification within a supportive region I, the test statistic T (θ̂)

appropriately evaluates the gradient function at all possible values of b in the whole support

region of G. This is particularly advantageous in the case of logistic mixed models, where the

graphical diagnostic tool could only be evaluated for people with non-constant response profiles.
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3.4 Simulation study design

Simulation studies are commonly utilised to explore the robustness of GLMMs to misspec-

ification of the random effects distribution. These techniques allow researchers to empirically

estimate the sampling distribution of the parameters of interest, providing an avenue to assess

the performance and accuracy of model estimates under different model assumptions and vi-

olations. Typically, simulation studies are designed to reflect the complex scenarios observed

in practice. In Chapters 5 and 6, the impact of incorrectly assuming normality of a multi-

modal random intercept distribution in panel survey settings is assessed via simulation. In the

simulation study, data are generated based on the HILDA case study presented in Chapter 4,

and reflect similar characteristics as the HILDA panel survey, including missing data due to

attrition. The simulation study generates a large number of datasets using the same random

intercept logistic model considered in the HILDA case study, with the random effects generated

from various three component mixture distributions of normals to represent different types of

multimodal distributions. To each of these simulated datasets, the impact of misspecifying the

random effects distribution on the parameter estimates and standard errors are assessed by

fitting a random intercept logistic model assuming normal distributed random intercepts. The

design of the simulation studies considered in Chapters 5 and 6 is described in more detail be-

low. As detailed in Section 3.4.1, simulating longitudinal data requires a data generating model

to simulate the responses for each individual and time-point. Furthermore, as the simulation

studies presented in Chapters 5 and 6 aim to assess the impact of misspecified distributional

assumptions of the random effects in the presence of missing data, attrition can be simulated

by utilising a drop-out generating model as described in Section 3.4.2.

3.4.1 Data generating model

The data generating model is used to create S simulated datasets that will subsequently be

analysed to assess the performance of statistical procedures. The aim is to create simulated

datasets that have similar properties to the original data. Let Ns denote the number of individ-

uals in the sth simulated dataset (s = 1, ..., S), and assume that each individual has complete

data and is observed at all n time-points. The aim of the data-generating model is to simulate

n responses for each individual. In this study, the focus is on generating binary responses, and

as such, the response vector is generated from the logistic mixed model,

logit (Pr(yij = 1)) = xij
′β0 + zij

′bi (3.40)

where xij is a matrix of p covariates for individual i at time j, β0 is a vector of true parame-

ters corresponding to the fixed effects, zij is the design matrix of the random effects and bi is

a vector of random effects for the i individual. For a random intercept logistic model, the zi

will be a vector of ones and the corresponding bi would be the vector of random intercepts (b0i).
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There are numerous ways to simulate longitudinal data, and the method utilised in this study

adapts the general framework detailed in Chapter 12 of Wicklin (2013) to simulate longitudinal

binary data. The framework consists of the following steps:

1. Create design matrices for the fixed and random effects

2. Construct a diagonal matrix containing the variance and covariance components for the

q random effects

3. Simulate the response vector as determined by a logistic mixed effects model.

The first step requires generating the matrices containing the variables of the fixed and

random components in the mixed effects model. The design matrix for the fixed effects can

either be generated from a multivariate normal distribution with data motivated mean and

variance-covariance matrix, or by utilising the structure of the original data. To maintain the

correlation structure of the explanatory variables across individuals and across time, the design

matrix used for simulation studies in this study is obtained by utilising resampling techniques.

For each iteration of the simulation, a random sample of Ns individuals was selected without

replacement from the N individuals in the original data with complete case data. The explana-

tory variables of the selected Ns individuals were then used in the design matrix, xij . Similarly,

the design matrix of the random effects zij can either be manually created or could be obtained

as the corresponding variables of the selected Ns individuals.

The second step is to generate the individual-specific random effects. The diagonal matrix

containing the components of variance-covariance matrix allows correlation between the q ran-

dom effects. Creating the diagonal matrix can either be manually specified or generated using

estimated parameters from a fitted mixed effects model. The true random effects bi are assumed

to be distributed as either a continuous or discrete distribution, with the variance-covariance

matrix inducing the variability and correlation.

Once the steps of creating the design matrices, xij and zij , and the random effects (bi)

have been constructed, the response vector can be simulated according to the logistic mixed

model. For each of the Ns individuals, the linear predictor of that individual at time j is the

sum of the linear predictor of the fixed effects (xij
′β0), and the random effects. (zij

′bi). The

linear predictor ηij is given by:

ηij = xij
′β0 + zij

′bi (3.41)

where true parameter vector β0 used to generate the linear predictor of the fixed effects is

either manually specified or set as the parameter estimates from a previous model fit. The

linear predictor ηij is used to generate the response yij as a Bernoulli random variable with

expected value µij, such that yij ∼ Bernoulli(µij) where µij = exp(ηij)/(1 + exp(ηij)) is the

inverse logit transformation of ηij.
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3.4.2 Drop-out generating model

The drop-out generating model is used to simulate missing observations in the datasets gen-

erated in Section 3.4.1. After creating a simulated dataset consisting of response data for Ns

individuals at n time-points, the drop-out generating model is applied to simulate missingness

by setting responses yij to missing. The missing data mechanism characterises the reasons for

missing data. We will restrict discussion to generating monotone missingness assuming the

missing at random mechanism.

To describe the drop-out generating model, we first need to introduce the notation for

missing data. Let Rij be an indicator variable for whether individual i is observed at time j

(j = 1, ..., n):

Rij =

{
1 if yij is observed for individual i at time j

0 if yij is not observed for individual i at time j
(3.42)

Therefore Rij = 1 if individual i is observed at time j, and Rij = 0 if individual i is

missing at time j. The n × 1 missing pattern indicator vector for individual i is given by,

R′i = (Ri1, Ri2, ..., Rin).

If missing data are only due to monotone missingness, then the time that individual i drops

out of the study is the smallest index j for which Rij = 0, denoted m. The drop-out indicator

dij follows on from the definition of Rij, where dij = 1−Rij for j ≤ m. For all time-points after

individual i has dropped out at time m, the drop-out indicator is set to missing (i.e. dij = . for

time-points m+ 1, ..., n). For individuals observed at all time-points, dij = 0 for j = 1, ..., n.

Let pij(α) denote the conditional probability of drop-out at time j for individual i, given

the available data observed up to time j − 1, such that:

pij(α) = Pr(dij = 1|di(j−1) = 0, y11, ..., yi(j−1),xij ;α) (3.43)

where yi1, ..., yi(j−1) is the history of the responses up to time j − 1, and xij and α are the co-

variates and corresponding regression coefficients. We assume that all individuals are observed

at the first time-point, such that di1 = 0 and pi1(α) = 1. The probability of drop-out, (pij(α)),

is estimated from observed data by fitting an ordinary logistic model,

logit(pij(α)) = α′wij (3.44)

where wij is a vector of covariates which may contain values of xij and current or previous

response values yi1, ..., yi(j−1), yij. According to the dependence of the missingness mechanism

on the response pattern, yi, the missingness mechanism can be classed as either MCAR, MAR

or MNAR. For example, if drop-out is assumed to be MCAR, then the conditional probability
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of drop-out is not related to the response process and only dependent on the covariates. A MAR

drop-out process is dependent on the observed response components (yOi = (yi1, ..., yi(j−1))
′) and

covariates. In the scenario of MNAR drop-out, the probability of drop-out not only depends on

the previous response value but also on the current or future response values and the covariates.

The conditional probability of drop-out for individual i at time j is given by:

pij(α) =
exp(W ′

ijα)

1 + exp(W ′
ijα)

. (3.45)

To simulate drop-out, for each individual i at each time-point j with complete data, the condi-

tional probability of drop-out is calculated based on Equation 3.45 using coefficients α̂ estimated

from the observed data. The conditional probability of drop-out pij(α) is compared to a ran-

dom draw from a uniform distribution, uij ∼ U [0, 1] (Bonate, 2011). If uij < pij(α) then the

individual is dropped for that time point and subsequent time-points, such that the response

for individual i at time j and subsequent time-points (j + 1, ..., n) is set to missing.

3.5 Simulation study performance measures

After the simulations have been generated and analysed, performance measures are used to

evaluate the adequacy of the model by comparing the simulated results with the true results.

For each of the S simulations generated using the methods described in Section 3.4, a coefficient

estimate of interest β̂s (for s = 1, ..., S) from the logistic random intercept model is produced.

Performance criteria are used to compare summary measures of β̂s with the true value β0, and

give an assessment of bias, coverage and accuracy. For example, the average estimate of interest

(
¯̂
β =

∑S
s β̂s/S) is commonly used as a summary measure of the S simulations. The performance

criteria that were used are the percentage bias, coverage of the confidence intervals and the

standard error ratio. These performance criteria and limits indicating acceptable performance

are described in more detail below.

3.5.1 Percentage bias of parameter estimates

Percentage bias is defined as the bias as a percentage of the true parameter value, where

bias is the difference between the mean of the simulation estimates and the true parameter

value. The percentage bias is calculated as:

((
¯̂
β − β0)/β0)× 100. (3.46)

Criteria for acceptable performance is a percentage bias within −10% and 10% (Marshall et al.,

2010).
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3.5.2 Coverage rates of confidence intervals

The coverage rate is defined as the proportion of 95% confidence intervals that contain the

true parameter value for converged models. Of the S Monte Carlo simulations, the coverage

rate is the proportion of times the interval β̂s ± 1.96 × SE(β̂s) includes β0, where SE(β̂s)

is the standard error of the estimate of interest (for s = 1, ..., S). Criteria for acceptable

performance is that the coverage should be within 2× SE of the nominal coverage probability

(P ) (Burton et al., 2006), where SE(P ) =
√

(P (1− P )/S). Therefore, for 1000 Monte Carlo

simulations, coverage rates of the 95% confidence intervals should be within 93.6% and 96.4%

to be considered appropriate.

3.5.3 Standard error ratio

The standard error ratio is defined as the ratio of the mean of the standard error estimates to

the standard deviation of the parameter estimates over the S Monte Carlo simulation iterations,

1
S

∑S
s=1 SE(β̂s)√

1
S−1

∑S
s=1(β̂s − ¯̂

β)2

. (3.47)

The criteria for acceptable accuracy is defined as standard error ratios within 0.9 and 1.1,

indicating that the model-based standard error estimates accurately describe the variability of

the coefficient estimators (Neuhaus et al., 2013).
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4 Case Study of Women’s Employment Participation

using the HILDA survey

4.1 Introduction

Raising women’s employment participation rate has become an important policy priority in

many developed economies (Jenkins, 2006). In Australia, there have been a number of policy

and regulatory changes to further support women’s participation in the workforce, including

initiatives and reforms regarding parental leave to facilitate women returning to paid work after

child-birth (Tannous and Smith, 2013). The reforms may have been successful in increasing the

levels of participation in the labour force for working aged women of child-bearing potential.

In the last 50 years the employment participation rate for females aged 25-44 years increased

from 36.6 percent in August 1966 to 71.4 percent in December 2014 (ABS, 2007, 2014). How-

ever, gender differences between the workforce engagement are apparent (Tannous and Smith,

2013). For example, in December 2014 women aged 25-44 years accounted for over 30% of the

population aged 25-64 years that were not in paid work, with the comparable figure for men

being 14% (ABS, 2014). The differing patterns of employment for women have been attributed

to caring for children, other care roles and household responsibilities (House of Representatives

Standing Committee on Employment and Workplace Relations, 2009).

Given the changes in Australian employment trends over the past 50 years, understanding

women’s labour force participation patterns is paramount for policy makers. Apart from mod-

elling trends, research is required to understand the determinants of labour force participation

over time. These areas of research have recently attracted increasing interest because of con-

cerns that an ageing population will put downward pressure on labour supply, subsequently

impacting material living standards and public finances (Jaumotte, 2003). An increase in fe-

male participation has been suggested to partially resolve this problem (Burniaux et al., 2003).

Longitudinal studies can provide a rich source of data to address these research questions, pro-

viding an opportunity to trace employment patterns and investigate inter-relationships among

employment outcomes and events over the life-course. One panel survey increasingly used to

assess relationships between employment trends and life course events in Australia is the annual

Household Income and Labour Force Dynamics in Australia (HILDA) survey. The HILDA sur-

vey started in 2001 and collects annual and monthly employment data for individuals aged over

15 years of age in over 7000 households across Australia. Researchers have utilised the HILDA
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survey to examine, for example, the effect of health (Cai and Kalb, 2006; Austen and Ong,

2010; Honey et al., 2014; Frijters et al., 2014), children (Tannous and Smith, 2013; Parr, 2012)

and family dynamics (Baxter and Renda, 2011) on employment participation and employment

transitions of working aged Australians.

A challenge when analysing panel data is to control for the impact of unobserved hetero-

geneity among individuals in order to obtain valid inferences of model parameters (Hsiao, 2007).

One approach is to use fixed effects models, where the time-constant heterogeneity is allowed

to be correlated with the explanatory variables. Fixed effect models rely on differencing out

the time-constant explanatory variables as well as the unobserved heterogeneity, removing the

issue of endogeneity. This approach is useful when the effects of covariates on within-individual

change over time are of interest. For example, Tannous and Smith (2013) used fixed effects

logistic models to assess the association between child-birth and working part-time using 10

years of HILDA data, and Frijters et al. (2014) used fixed effect logistic models to assess the

effect of mental health on employment using waves 2 to 11 of the HILDA data.

However, if the unobserved between-individual effects of time-invariant variables are also

of interest, then generalised linear mixed models (GLMMs) are a commonly used approach to

the analysis of longitudinal panel data. Furthermore, GLMMs can provide consistent estima-

tion in settings where the underlying mechanism for missing data is MAR1. In GLMMs, the

unobserved heterogeneity is assumed to be captured by a random variable, known as a random

effect. These models are useful as they accommodate the dependence of repeated observations

within individuals and also the between individual variability through the inclusion of fixed and

individual-specific random effects, respectively. For example, using monthly calendar HILDA

data over a seven year period, Baxter and Renda (2011) used random effect logistic models

to assess differences between lone and couple mothers leaving or entering employment, whilst

Feeny et al. (2012) used a random intercept logistic model to examine whether employment out-

comes of Australian labour market programme participants vary according to receiving housing

assistance over six waves of the HILDA survey. The parameters of interest for GLMMs are often

estimated using maximum likelihood, typically under the assumption of Gaussian distributed

random effects with mean zero and fixed variance-covariance matrix.

However, this assumption of normality may not be appropriate in practice. For example,

multimodality of the random effects may occur if a key categorical variable is omitted from

the model or latent sub-populations exist. In this chapter we demonstrate the potential multi-

modality of the random intercept distribution in an application of a random intercept logistic

model to assess employment participation of working aged women using data from HILDA.

For this case study, and to illustrate the methods developed in this study, employment par-

ticipation is considered as a dichotomous variable representing employed (full or part-time)

1See Section 2.3.3 for further details.
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and non-employed (including unemployed and not in labour force). Over 11 waves of HILDA,

10% of women were observed to always be non-employed, 45% of women were observed to

transition at least once between the two employment states, and the remaining 45% were ob-

served to always be employed. In this case the extreme response pattern may be influenced

by an underlying mover-stayer scenario, whereby over the study period some women have a

high propensity to remain in the same employment state (stayers), whilst others are susceptible

to change employment states (movers). In a mover-stayer scenario (Blumen et al., 1955), the

people that have been observed to transition states are movers, and the people that have been

observed to stay in the same state will consist of both the latent stayers and any movers that

did not change states over the study period (Lindsey, 1997). Therefore, the random intercepts

capturing the unobserved heterogeneity may be dominated by three sub-populations: one with

an extremely low propensity of ever experiencing the outcome, a more heterogeneous group

transitioning between states over time, and one with an extremely high propensity of always

experiencing the outcome. Hence, the assumed normal distribution of the random intercept

may not appropriately capture the heterogeneity of the latent mover-stayer scenario.

To guard against the impact of misspecifying the random effect distribution, the parametric

normality assumption can be relaxed by using semi-parametric (Chen et al., 2002; Vock et al.,

2014) or non-parametric methods (Laird, 1978; Heckman and Singer, 1984; Aitkin, 1999; Les-

perance et al., 2014). Alternatively, flexibility can be achieved by modelling the random effects

as non-Gaussian distributions using computational methods such as the probability integral

transformation (Nelson et al., 2006) and the likelihood reformulation (Liu and Yu, 2008). In

the case of an underlying mover-stayer scenario, statistical methodology has been developed

to identify and quantify the latent movers and stayers. One such methodology incorporates

discrete masses at negative and positive infinity in the random effects distribution to represent

the two stayer subgroups (Davies et al., 1992; Berridge and Crouchley, 2011a). In the specific

case where the mover-stayer is dominated by stayers in the null state, Carlin et al. (2001)

proposed a Bayesian discrete mixture to allow the subgroup of individuals immune to a binary

outcome to be modelled by a discrete mass at negative infinity, while random variability within

the susceptible subgroup is modelled by a logistic mixed model. Alternatively, modelling the

random intercepts as a finite mixture of normal distributions (Magder and Zeger, 1996; Verbeke

and Lesaffre, 1996) may be plausible, where three components potentially capture the three

latent sub-populations.

In this chapter we undertake a longitudinal analysis of women’s employment participation

using eleven waves of the HILDA survey. To investigate potential misspecification of the random

intercept distribution, we fit two random intercept logistic models assuming different random

effect distributions and assess the fit using diagnostic tests. The first model assumes the random

intercept is normally distributed, whilst the second model assumes a three component mixture

of normal distributions. By considering two different assumed random effect distributions,
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this chapter demonstrates potential multimodality of the random intercept distribution and

investigates the practicality of implementing flexible random effects in panel survey applications.

The aim of this case study is not to quantify or address the potential latent mover-stayer

scenario, nor to comprehensively analyse determinants of women’s employment participation.

The focus of this chapter is to demonstrate potential misspecification of the random effect

distribution in an application of a random intercept logistic model to panel survey data.

4.2 Data and variables

The case study models employment participation of women from 2001 to 2011 using 11 waves

of data from the HILDA survey. The HILDA survey is a nationally representative household

panel survey conducted annually, with the first wave of data collection starting in 2001. The

primary focus of HILDA is to collect information about economic and subjective well-being,

and labour market and family dynamics in Australia. The details of the survey are given in

Watson and Wooden (2012), and are briefly described here. In the first wave, 7,682 households

of all in-scope households were interviewed, resulting in a sample of 15,127 eligible persons aged

15 years or older. Of those, data for 13,969 sample members were collected through the suc-

cessful completion of personal interviews. In addition to the personal interviews, respondents

were required to return a self-completion questionnaire.

Women of child-bearing age between 30 and 44 years at June 2001 from the HILDA survey

were selected to represent working aged women in Australia and to avoid women in their early

careers. As commonly experienced in longitudinal surveys, the HILDA survey was subject to

the problem where some sample members are lost at each successive wave, either at one time-

point (intermittent missing) or lost permanently (attrition). Of the total 2340 women aged 30

to 44 with valid employment data at the first wave, 1359 (58.1%) had complete employment

history for all 11 waves, 413 (17.6%) had intermittent missing and 568 (24.3%) dropped out of

the survey (attrition). Investigation to explore potential reasons for the observed missingness

and relationship to the response variable, employment status, is beyond the scope of this study.

However, there is evidence suggesting employment status is related to likelihood of responding

(conditional on making contact) to the HILDA survey (Watson and Wooden, 2009). Using the

first four waves of the HILDA survey, Watson and Wooden (2009) identified that even though

employed people were easier to contact, they were less likely to respond if they worked full-

time hours (35 or more hours per week). If missingness is not related to the response variable,

and thus ignorable, maximum likelihood estimation will produce consistent estimates as the

missing data generating mechanism is missing at random (MAR) (Molenberghs and Verbeke,

2005; Skrondal and Rabe-Hesketh, 2008). Therefore, if the missingness is ignorable, it would

be expected that analysis restricted to the complete cases, or analysis of unbalanced data due

to missingness will produce similar results. To explore whether missingness is related to the

response variable, the following analysis will focus on two sub-samples: the 1359 women with

complete cases (those with complete employment history); and the 1927 women with monotone
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Table 4.1: Number of respondents (n) and cumulative attrition rate as percentage of original
HILDA sample (%) of 1927 women aged between 30 and 44 years at Wave 1

Wave Respondents (n) Cumulative Attrition (%)
1 1927 0
2 1759 8.7
3 1647 14.5
4 1580 18.0
5 1540 20.1
6 1508 21.7
7 1474 23.5
8 1450 24.8
9 1421 26.3
10 1391 27.8
11 1359 29.5

missingness (those who experienced attrition or had complete case data). Of the 1927 women

at the first wave with monotone missingness, the number of women observed at each wave

and cumulative attrition rate are shown in Table 4.1, whereby 29.5% had dropped-out by the

eleventh wave.

The HILDA survey contains detailed information about labour force participation and his-

tory. Labour force participation details were collected for every wave of the HILDA survey

using both personal interviews and self-completion questionnaires. In this case study, the bi-

nary response variable (yij) represents employment status for individual i at wave j which

equals 1 for women in part-time or full-time employment (employed), and 0 for women who

are unemployed or not in the labour force (not employed). The employment status was based

on the derived detailed current labour force status variable, whereby women not in the labour

force includes those who are or are not marginally attached. Marginal attachment to the labour

force is defined as a person who is not in the labour force, who wants to work and either (i) is

actively seeking work but are not available to start work; or (ii) is not actively seeking work but

is available to start work within four weeks (ABS, 2001). A person is not marginally attached

to the labour force if they are not in the labour force and either (i) is not wanting work; or (ii)

is wanting work though not actively seeking work and is not available to start working within

four weeks (ABS, 2001).

The analysis is restricted to a small number of key explanatory variables, including the

woman’s age, current marital status, highest level of education achieved and the presence of

young and dependent children. These variables are similar to standard predictors used in

analyses of women’s employment participation (e.g. Jenkins 2006; Parr 2012; Tannous and

Smith 2013). The respondent’s age is a continuous variable and is included as a linear term

in the model (x1ij). Marital status for individual i at wave j is a three category variable

with categories for married or de-facto (reference); separated, divorced or widowed (x2ij); and
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single (x3ij). The highest educational qualification attained at the first wave for individual i is

categorised as Bachelor degree or higher (reference); Year 12 or Diploma and Certificate (x4i);

or Year 11 and less (x5i). Dependent children for individual i at wave j is categorized as no

dependent children (reference); youngest dependent child aged 4 years old or younger (x6ij);

and youngest dependent child aged 5 to 24 years old (x7ij). The respondent’s age captures

cohort differences in employment among women, wave effects and also potential employment

experience. Family commitments that may potentially impact the capacity of a woman to enter

paid employment are captured by marital status and age of youngest dependent child. The

highest level of education attained is used as an index of human capital.

4.3 Statistical models and estimation

As discussed previously in Section 2.3, a challenge when analysing panel data is to control

for the impact of unobserved heterogeneity among individuals in order to obtain valid inferences

of model parameters (Hsiao, 2007). The analysis of the employment participation data also re-

quires a model to take into account the dependency of repeated observations within individuals

over time. One approach that accounts for unobserved heterogeneity and correlation within

individuals, is the generalised linear mixed model detailed in Chapter 2 and Section 3.1. For

the analysis of binary employment data, a logistic random effects model can be used to explore

sources of individual-to-individual variability in the propensity to be employed. The following

random intercept logistic model is used to model employment participation of working aged

women over the 11 waves of HILDA:

logit[Pr(yij = 1|bi)] = β0 + β1x1ij + β2x2ij + β3x3ij +

β4x4i + β5x5i + β6x6ij + β7x7ij + bi (4.1)

where bi is the random intercept, β0 denotes the intercept coefficient and β1 to β7 are the

corresponding fixed effect parameter coefficients of the explanatory variables x1ij to x7ij (as

defined in Section 4.2). The random intercept in Equation 4.1 captures the unobserved het-

erogeneity that is unable to be captured by the fixed effects. The model in Equation 4.1 is

analysed assuming the random intercept is normally distributed with zero mean and variance

σ2
b (bi ∼ N(0, σ2

b )).

However, the assumed normal distribution for the random intercept may not appropriately

capture the heterogeneity if there exists an underlying mover-stayer scenario. To further inves-

tigate potential misspecification of the random effect distribution, the normality assumption is

relaxed by estimating the model assuming random intercepts are distributed as a finite mixture

of normal distributions (Verbeke and Lesaffre, 1996; Verbeke and Molenberghs, 2009). Finite

mixtures of normals are very flexible and can capture a range of distributions, including multi-

modal distributions (Verbeke and Molenberghs, 2013). Hence, the potential multimodality of

the latent mover-stayer scenario could be captured by the three component mixture of normal
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distributions. Therefore, the logistic random intercept model in Equation 4.1 is also fitted

assuming the random effects are distributed as

bi ∼ π1N(µ1, σ
2
1) + π2N(µ2, σ

2
2) + π3N(µ3, σ

2
3) (4.2)

where πk, µk and σ2
k are the mixing proportions, component means and component variances

for the k = 1, 2, 3 components, respectively. The likelihood reformulation method (Liu and Yu,

2008) can be used to obtain maximum likelihood estimates for mixed models assuming non-

Gaussian random effect distributions. As detailed in Section 3.2.1, the likelihood reformulation

method is based on transforming the conditional density on non-normal random effects to one

that can be integrated over a normal random effects distribution. To ensure correct parametri-

sation of the three component mixture of normals, the assumption E(bi) = 0 was imposed by

the restriction E(bi) = π1µ1 +π2µ2 +π3µ3 = 0, such that the β̂0 was estimated as the expected

value of the random intercepts. The restriction of the mixing proportions summing to one was

imposed by π1 + π2 + π3 = 1, such that the π̂3 was estimated as 1− π̂1− π̂2. The total random

effect variance, denoted σ2
b , was estimated based on the variance of a finite mixture, such that

σ̂2
b =

∑3
k=1 π̂k(σ̂

2
k + µ̂2

k)− (
∑3

k=1 π̂kµ̂k)
2.

To assess the model fit of the assumed random effect distribution, either normal or a mix-

ture, the gradient function exploratory diagnostic tool (Verbeke and Molenberghs, 2013) was

used to identify potential random effect distributional misspecification. As detailed in Section

3.3.1, the gradient function diagnostic tool is a graph of the gradient function (∆(G, b)) as

a function over the random effect (b). The graphical representation of the gradient function

and corresponding pointwise confidence limits are used to assess the fit of the assumed random

effect distribution, giving an indication of how the distribution can be adapted to improve the

model fit. The gradient function diagnostic tool only provides information about the shape

of the random effect distribution within a supportive region, located in the interval of b∗min

and b∗max. However, as there are extreme response profiles when modelling a binary response,

the region for which the gradient function can provide information about the random effect

distribution covers the whole real line, from −∞ to ∞. Therefore, to avoid the extremes of

±∞, the supportive region with limits b∗min and b∗max used to assess the fit for the logistic model

in Equation 4.1 is estimated based on women with non-constant response profiles (i.e. the

observed movers) as detailed in Section 3.3.1.

The graphical diagnostic tool of Verbeke and Molenberghs (2013) is an exploratory tool to

identify potential misspecification. To formally diagnose misspecification of the random effects

distribution, the asymptotic diagnostic test (Drikvandi et al., 2016) was utilised. As detailed in

Section 3.3.2, the diagnostic test of Drikvandi et al. (2016) is also based on the gradient func-

tion, and supplements the graphical diagnostic tool to formally test whether any fluctuations

identified by the graphical tool is due to distributional misspecification of the random effect

and not just due to random variability. The test statistic T (θ̂) appropriately evaluates the
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gradient function at all possible values of b, within the whole support region. Therefore, in the

case of the random intercept logistic model, the diagnostic tool will be evaluated on the whole

real line, utilising information for people with non-constant and constant response profiles.

All analyses were undertaken using SAS (Version 9.4, SAS Institute, Cary NC). The logis-

tic models assuming normal random intercepts were fit using the SAS procedure NLMIXED

with adaptive Gaussian quadrature and 20 quadrature points. The logistic models assuming

random intercepts distributed as a three component mixture of normals were estimated using

the likelihood reformulation method implemented using SAS procedure NLMIXED (Appendix

A contains the relevant SAS syntax). The graphical gradient function diagnostic tool and the

asymptotic diagnostic test to assess the goodness of fit of the assumed random intercept distri-

bution were both implemented in SAS. All analyses were performed for the two sub-samples:

the 1359 women with complete case data (Complete Case) and the 1927 women with monotone

missingness (Monotone Missing).

4.4 Results

Descriptive statistics of the response and the explanatory variables at the first wave for

the two data analysis sub-groups are presented in Table 4.2, where continuous variables are

summarised by means and standard deviations, whilst categorical explanatory variables are

summarised as frequency and percentage. At the first wave the employment rates were similar

for the two data analysis sub-groups, with 69.7% and 68.0% of women employed in the complete

case and monotone missing data sub-groups. The demographic characteristics for the two data

analysis sub-groups are similar, with a slightly larger proportion of women with complete case

data having Bachelor degrees or higher (28.4%) than the monotone missing sub-group (25.4%).

The average age of the women in the sample was 37 years of age (SD=4.2), with the majority

of women married or in a defacto relationship (77%), completed Year 12 or tertiary diplomas

and certificates (40%) and having the youngest dependent child aged 5 to 24 years (43%).

The model estimates assuming random intercepts as a normal and finite mixture of normal

distributions, respectively, for the complete cases and monotone missing data, are presented

in Table 4.3. Due to boundary issues, a formal comparison of the log-likelihood using a likeli-

hood ratio test will not follow standard rules. Therefore, comparison of the residual deviance

(−2ll) will be used as an indication of model fit. The residual deviance of the random intercept

logistic model applied to the complete cases decreased from 9697 for the assumed normal to

9691 for the assumed mixture. Similarly, the deviance decreased from 11543 to 11526 for the

monotone missing data. This suggests that the fit of the model improved marginally when

random intercepts were fitted as a three component mixture of normals. Although the assumed

random effects distributions were very different, the inference for the fixed parameters for each

of the assumed distributions in the two missing data scenarios were similar. The estimated

random effect variance (σ2
b ) was larger for the assumed normal random effects distribution
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Table 4.2: Employment status and demographic characteristics at wave 1 for the 1359 women
with complete case data (Complete Case) and the 1927 women with monotone missing data
(Monotone Missing)

Demographic Complete Case Monotone Missing
(N=1359) (N=1927)

Employment Status - n(%)
Not Employed 412 (30.3%) 616 (32.0%)
Employed 947 (69.7%) 1311 (68.0%)

Age- mean (SD) 37.3 (4.2) 37.2 (4.2)
Marital Status - n(%)

Married/defacto 1049 (77.3%) 1487 (77.3%)
Separated/Divorced/Widowed 167 (12.3%) 238 (12.4%)
Single 141 (10.4%) 199 (10.3%)

Highest Education - n(%)
Bachelor or higher 386 (28.4%) 489 (25.4%)
Year 12/Diploma/Certificate 546 (40.2%) 779 (40.4%)
Year 11 or less 427 (31.4%) 658 (34.2%)

Dependent Children - n(%)
None 330 (24.3%) 481 (25.0%)
Youngest aged < 5 446 (32.8%) 607 (31.5%)
Youngest aged 5-24 583 (42.9%) 839 (43.5%)

than for the mixture distribution for both missing data scenarios. However, larger standard

errors for σ2
b were estimated for the mixture random intercept for both missing data scenarios.

The estimated coefficients and standard errors for the parameters in the linear predictor and

the random component were similar for the complete case data and monotone missing data

scenarios, for both the assumed random intercept distributions.

The estimated random intercept distributions for the two assumed distributions for women

with complete cases and monotone missing data are shown in Figure 4.1 (a) and (b), respec-

tively. The estimated random intercept variance (σ2
b ) is large for both analysis subgroups and

both assumed random effect distributions. The substantial heterogeneity may be explained by

the extreme response pattern influenced by the potential underlying mover-stayer scenario. Of

the 1359 women with complete employment data for all 11 waves, 103 (7.6%) were continuously

non-employed, 625 (46%) transitioned between the two employment states, and the remaining

631 (46.4%) were continuously employed. Including the 568 women who dropped out of the

HILDA survey, the proportion of women always employed (48.5%) was similar, however the

proportion never employed (12.6%) or transitioning (38.9%) differed.

Assuming the random effects are a finite mixture of normal distributions also supports the

extreme response patterns, where the components in the mixture correspond to three sub-

populations (Table 4.3). For the women with complete case data, the first component with the

predicted proportion of 12.4% and fitted average intercept µ̂1 = −5.44 represents the women
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Table 4.3: Parameter estimates (standard errors) for random intercept logistic model
assuming normal or three component mixture of normal random effects applied to the HILDA
case study for women with complete case data and monotone missing data

Parameter Complete Case Monotone Missing
(Coefficient) (N = 1359) (N = 1926)

Normal Mixture Normal Mixture
Constant (β0) 1.20 (0.50) 1.07 (0.46) 1.35 (0.46) 0.61 (0.43)
Age (β1) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 0.10 (0.01)
Marital Status
Married/defacto ref ref ref ref
Sep/Div/Wid (β2) -0.28 (0.14) -0.31 (0.14) -0.25 (0.13) -0.31 (0.14)
Single (β3) -0.12 (0.28) -0.12 (0.26) -0.19 (0.25) -0.07 (0.25)

Highest Education
Bachelor or higher ref ref ref ref
Year 12/Dip/Cert (β4) -1.53 (0.28) -1.52 (0.25) -1.64 (0.25) -1.56 (0.25)
Year 11 or less (β5) -2.77 (0.29) -2.82 (0.27) -2.92 (0.26) -2.81 (0.26)

Dependent Children
None ref ref ref ref
Youngest < 5 (β6) -2.33 (0.16) -2.33 (0.15) -2.35 (0.15) -2.28 (0.14)
Youngest 5-24 (β7) -0.39 (0.12) -0.40 (0.12) -0.44 (0.12) -0.40 (0.12)

Random Effect
Variance (σ2

b ) 11.82 (0.86) 9.07 (1.29) 11.81 (0.79) 9.27 (0.90)
µ1 -5.44 (0.66) -4.79 (1.31)
σ1 1.12 (0.42) 2.10 (0.67)
π1 0.12 (0.04) 0.17 (0.10)
µ2 -0.70 (0.34) -0.28 (0.46)
σ2 1.50 (0.51) 1.53 (0.87)
π2 0.55 (0.14) 0.53 (0.25)
µ3 3.29 (0.64) 3.26 (0.54)
σ3 0.84 (0.66) 0.62 (0.54)
π3 0.32 (0.11) 0.30 (0.16)
−2ll 9697 9691 11543 11526

with the propensity to be continuously non-employed. The second component with predicted

proportion of 55.3% and fitted average intercept µ̂2 = −0.70, represents the women transition-

ing between the two employment states. The third component with predicted proportion of

32.3% and fitted average µ̂3 = 3.29 represents the women with the propensity to be continu-

ously employed. A similar random effects distribution was estimated for the monotone missing

subgroup (Table 4.3), with 17.2% in the first component with fitted average µ̂1 = −4.79. The

second component with predicted proportion of 53% and fitted average of µ̂2 = −0.28, and the

third component with predicted proportion of 29.9% and fitted average µ̂3 = 3.26. In both

missing data scenarios, the estimated proportions for the first component were larger than the

observed proportion of women continuously non-employed, whilst the estimated proportions for

the third component were lower than the observed proportion of women continuously employed.
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Figure 4.1: Estimated random intercept distribution for the random intercept logistic model
assuming normal and three component mixture of normal distributions when applied to (a)
women with complete case data and (b) women with monotone missing data.
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To assess the model fit of the assumed random effects distribution, the gradient function

relating to the fitted random intercept logistic model for both data scenarios (Complete Case

and Monotone Missing) and the assumed distributions (Normal and Mixture) are shown in

Figure 4.2. Figure 4.2 shows a plot of the gradient function (∆(G, b)) over the values of the

random intercept (b) (solid blue line) and its corresponding 95% pointwise confidence interval

band (dashed black lines). The gradient function provides information about the shape of the

random effect distribution within the range of b∗min and b∗max (dashed red vertical lines). The

shape of the gradient function gives an indication of how the random effects distribution can

be adapted, with gradient function of 1 indicating optimal fit (solid red horizontal line).

To identify potential random effect distribution misspecification, Figure 4.2(a) shows a plot

of the gradient function for the random intercept logistic model applied to the complete case

data assuming normally distributed random intercepts. Within the supportive region of [-7.1,

2.9] (dashed red vertical lines), the gradient function deviates from 1 with the confidence bands

not including the value of 1 in two regions. This suggests that the assumed random intercept

distribution might be misspecified, and that fit of the model can be improved by moving proba-

bility from the region [-4, -2] to the region [-2, 0]. To formally test whether the assumed normal

distribution is misspecified, the asymptotic diagnostic tool is used to determine whether the

fluctuations observed in the gradient function is due to misspecification and not just random

variability. The asymptotic test produces a test statistic of T = 0.005, which results in a p-

value of 0.025 (U = 443302). The significant asymptotic test suggests that the assumed normal

distribution for the random intercept is inadequate. Fitting the random intercept logistic model

to the complete data assuming a three component mixture of normal distributions appeared to

improve the model fit (Figure 4.2(b)). The gradient function shows some fluctuation around

1, yet the confidence bands contain 1 within the supportive range of [-6.9, 3.1]. To investigate

this formally, the asymptotic test produces a test statistic of T = 0.0006 which corresponds

to a p-value of 0.95 (U = 248030). Therefore, the gradient function graphical tool and the

insignificant asymptotic test concludes there is no evidence that a substantial improvement can

be achieved by further refinement of the random effect distribution when assuming the random

intercepts are distributed as a three component mixture of normals. Thus, the three component

mixture of normals is adequate for the random intercept.

As for the complete case data scenario, the gradient function diagnostic tool for the mono-

tone missing data suggested similar potential misspecification for the assumed normal distribu-

tion (Figure 4.2(c) and (d)). Figure 4.2(c) shows the gradient function for fitting the random

intercept logistic model assuming normal distributed random effects. The gradient function

within the supportive region of [-7.1, 3.1] deviates substantially from 1 with the confidence

bands not including 1 in two regions. The gradient function suggests that the random in-

tercept logistic model for the monotone missing data can be improved by moving probability

from the region [-4, -2] to the region [-2, 0]. The inadequacy of assuming normally distributed
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Figure 4.2: Gradient function (solid blue line) and 95% pointwise confidence interval bands (dashed black lines) for fitting a random intercept
logistic model to (a) Complete cases assuming a normal distribution for the random intercept, (b) Complete cases assuming a three component
mixture of normal distribution for the random intercept, (c) Monotone missing data assuming a normal distribution for the random intercept,
and (d) Monotone missing assuming a three component mixture of normal distribution for the random intercept. Red solid horizontal line at
gradient function=1 represents the optimal fit. Dashed red vertical lines represent the intervals [b∗min, b

∗
max] where the data provides information

about the support for the random effects distribution.
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random intercepts is confirmed by the asymptotic diagnostic test, producing a test statistic of

T = 0.003 corresponding to a p-value of 0.030 (U = 1041759). Fitting the random intercept

logistic model to the monotone missing data assuming random intercepts distributed as a three

component mixture of normals appeared to improve the model fit (Figure 4.2(d)). The gradi-

ent function shows some fluctuation around 1, yet the confidence bands contain 1 within the

supportive range of [-6.6, 3.4]. The asymptotic diagnostic test confirms the adequacy of the

three component mixture of normals as the distribution of the random intercepts, with a test

statistic of T = 0.0002 corresponding to a p-value of 0.99 (U = 430026). For the monotone

missing data, the gradient function exploratory diagnostic tool suggests that is no evidence

that further refinement of the random effect distribution can achieve substantial improvement.

This is confirmed by the insignificant asymptotic diagnostic test, advocating that the model

assuming a three component mixture of normals for the random intercept distribution provides

an adequate fit to the data.

4.5 Discussion

The lower residual deviance, optimal gradient function and non-significant asymptotic diag-

nostic test associated with the models assuming random intercepts as three component mixture

of normals, suggest that multimodality of the random intercept is plausible. Assuming a three

component mixture distribution also resulted in smaller standard errors of the predicted random

intercepts than assuming normality, providing further support for multimodality (Appendix C).

Regardless of the missing data scenario, the estimated random intercept distributions as a three

component mixture of normal distributions were similar. As the random intercept gives an

indication of the underlying propensity for women to be in employment, assuming a three com-

ponent mixture distribution may represent the underlying mover-stayer scenario. For example,

the component corresponding to a large negative random intercept represents those women

with very low propensity to be employed; the component with almost mean zero represents

women who have a propensity to transition between employment states; and the component

corresponding to a large positive random intercept represents women with very high propensity

to be employed. This application highlights one example in a panel survey setting where the

Gaussian random effects assumption may not be the most appropriate in practice.

There were differences between the observed proportions of movers and stayers in the HILDA

dataset and the mixing proportions estimated by assuming the random intercepts were a three

component mixture of normals. These differences may be due to the latent mover-stayer sce-

nario, whereby the observed stayers may comprise of individuals who are latent stayers and

also comprise of individuals who are latent movers that have not transitioned during the ob-

servational period (Lindsey, 1997). Furthermore, the observed and fitted proportions differ as

they are, respectively, unconditional and conditional on the explanatory variables included in

the random intercept logistic model. Additionally, increased variability in the random effects

distribution can be introduced if variability associated with unobserved explanatory variables
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omitted from the model have subsequently been incorporated into the random effects struc-

ture (Verbeke and Molenberghs, 2013). However, quantification of latent stayers was not the

primary focus of this analysis. This application demonstrates that the assumption of a three

component mixture of normals for the random intercept distribution may adequately capture

the heterogeneity of a potential underlying mover-stayer scenario.

The random intercept logistic model considered in this application is too simple to address

questions about employment transitions in Australian working aged women. More appropriate

analyses would consider more than two employment states by distinguishing between part-time

and full-time employment, and also distinguishing between unemployed and not in the labour

force. Furthermore, additional explanatory variables could be considered, such as a lagged em-

ployment status term to account for state dependence. We have also only focused on two-level

GLMMs, however in panel survey settings, three-level models may be necessary to take into

account higher order clustering at the household level. The models considered in this chapter

have focused on the commonly used logit link, though the models could also be formulated in

terms of the probit or the complementary log-log link. However, marginal differences are ex-

pected for the alternative link functions, as Neuhaus et al. (2013) reported negligible differences

for the impact of misspecification of logistic mixed models with either the logit or the comple-

mentary log-log link. Future work should consider more complex models such as additionally

including individual-specific slopes, or multi-process models whereby random effects are shared

between multiple processes. However, this application serves as an example to demonstrate the

underlying mover-stayer scenario and potential multimodal random effects in simple logistic

mixed models applied to panel data.

The likelihood reformulation method (Liu and Yu, 2008) used to estimate parameters in the

logistic mixed model assuming mixture of normal distributed random intercepts was sensitive

to the starting values and number of adaptive quadrature points used in the estimation. As

a sensitivity analysis the likelihood reformulation method applied to the motivating example

was re-fitted with the number of quadrature points varying from 10 to 80 for both missing

data scenarios (Appendix B). The estimates and standard errors for the complete case data

appeared to stabilise when the adaptive quadrature points exceeded 54, therefore the results

in Table 4.3 for the complete cases are based on 54 adaptive quadrature points. Conversely,

for the monotone missing data, the estimates and the standard errors were more variable. The

estimates appeared to stabilise when the quadrature points exceeded 51, though the standard

errors still exhibited variability. The results in Table 4.3 for monotone missing data was based

on 61 adaptive quadrature points as the standard errors for all parameters were consistently

small and parameter estimates were similar to neighbouring models (i.e. quadrature points

57, 59, 64, 69). The practical use of the likelihood reformulation method in the literature is

not well documented. As such, there is limited information regarding the selection of starting

values for the random effects distribution, number of adaptive quadrature points, model choice
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selection or restrictions necessary to obtain optimal model fitting. The models in this chapter

used estimated fixed effect coefficients from a logistic model assuming normality as starting

values for the fixed effect parameters. The starting values for the parameters corresponding

to the random intercept distribution were based on the estimated three component mixture of

normals fitted to the predicted random intercepts from the logistic model assuming normality.

The analyses used the same restrictions implemented by Verbeke and Molenberghs (2013) to

model random intercepts as a three component mixture of normals. Further work investigating

the practical use of the likelihood reformulation method is required, including suggestions or

guidelines for selection of starting values, number of quadrature points and model selection.

The gradient function diagnostic tool has been used as an exploratory tool to identify po-

tential misspecification of the random effects distribution. The limitation of the graphical tool

is that the confidence bands used to identify potential random effect misspecification are based

on pointwise estimates, and are simply an informal tool to quantify the strength of departure

from a gradient function of one (Verbeke and Molenberghs, 2013). Further, the graphical tool

only provides information within a supportive region based on individuals with non-constant

response profiles, and hence potentially only provides information about random effect mis-

specification for the latent movers. The asymptotic diagnostic test of Drikvandi et al. (2016)

addresses these issues. The formal diagnostic tool appropriately tests for misspecification along

the whole real line, by testing whether the departure of the gradient function from one is due

to distributional misspecification of the random effects and not random variability. Thus, the

diagnostic test can provide evidence of misspecification for all individuals within the mover-

stayer context. However, as both of the diagnostic tools are based on the idea of the gradient

function, they explicitly assume that the conditional distribution of the GLMM is correctly

specified. This assumption may be restrictive, and as such, development of approaches to relax

this assumption is an area of ongoing research (Drikvandi et al., 2016).

Comparing the adequacy of the model fits for models with alternative random effect distri-

butions is not-straight forward, as standard asymptotic theory does not apply (Litiére et al.,

2008). Furthermore, model comparisons of different numbers of components in the hetero-

geneity model are complicated by boundary problems, such that formal comparison of the

log-likelihood using a likelihood ratio test will not follow standard rules (Molenberghs and

Verbeke, 2005). Therefore, the residual deviance, calculated as the negative of twice the log-

likelihood, has been used as a measure of the model fit and for model comparisons. Although

comparison based on the estimated log-likelihood can be limited by reflecting the quality of

the technique to obtain an approximation of the model likelihood (Molenberghs and Verbeke,

2005), model comparisons based on information criteria are not easily derived for generalised

linear mixed models (Steele, 2013) and comparisons are not straight forward (Molenberghs and

Verbeke, 2005). Therefore, as utilised by Molenberghs and Verbeke (2005), McCulloch and

Neuhaus (2011a) and Neuhaus et al. (2013) among others, the residual deviance has been used
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as an indicative measure of the model fit.

This case study highlights that potential random effect distributional misspecification and

attrition can often occur simultaneously in panel survey settings. Maximum likelihood estima-

tion is known to be valid under the assumption of MAR, however it is unknown if estimates

are robust to missingness when the random effects distribution is misspecified. This naturally

leads to the following questions. In such a mover-stayer scenario, what additional impact does

attrition have on violations of the assumed random effects distribution in panel survey settings?

Furthermore, how extreme does the random effect distribution have to be from normality before

violating the normality assumption impacts inference? To address these questions, Chapters

5 and 6 consider simulation studies based on this HILDA case study to assess the impact of

attrition and misspecified random intercept distribution within potential mover-stayer scenar-

ios. Using the results from the case study considered in this chapter, Chapter 5 considers

the specific departure from normality arising from an asymmetrical three component mixture

of Gaussians. The asymmetric mixture distributions are simulated to represent the potential

mover-stayer scenario observed in this chapter, and considers a range of random intercept vari-

ances motivated by the HILDA case study. Following on from the initial simulation study,

Chapter 6 assesses the robustness of inferences in random intercept logistic models to viola-

tions of the normality assumption by considering a range of true symmetric three component

mixture of normal distributions. The simulated random intercept distributions vary in severity

of departures from normality, identifying scenarios whereby random effect misspecification can

impact maximum likelihood inference.

This case study also highlights that flexibly modelling the random effect distribution can

help guard against the impact of distributional misspecification. By modelling the random

intercepts as a three component mixture of normal distributions, increasing the flexibility of

the assumed random effects provided a better model fit than the conventional normal distribu-

tion. To further explore the benefits of flexibly modelling the random effect distribution within

a potential mover-stayer scenario and to determine an optimal modelling strategy, Chapter 7

proposes the use of the Vertex Exchange Method (VEM) to non-parametrically estimate the

random effects distribution in logistic mixed models. Within a sensitivity analysis framework,

Chapter 7 compares the performance and practicality of implementing VEM and a selection of

existing flexible random effect methods implementable in standard software. In practice, the

application of GLMMs is often not restricted to random intercept models. Therefore, Chapter

7 considers the practicality of implementing flexible random effect distributions in GLMMs

with univariate and bivariate random effects (i.e. random intercepts and random slopes) when

applied to the HILDA case study.
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5 Investigating the impact of incorrectly assuming

normality in an underlying mover-stayer scenario:

Applications to panel surveys

5.1 Introduction

In applications of random intercept logistic models it is standard practice to assume the

random effects are normally distributed1. However, as demonstrated in the HILDA case study

in Chapter 4, the assumed normal distribution may not be adequate to capture underlying

heterogeneity of the random effects in a mover-stayer scenario. In this scenario, inducing a

more flexible distribution for the random effects may be required to accommodate the latent

stayers in the social process under investigation (see Section 2.5 for more details). In a random

intercept logistic model, it may be more appropriate to supplement the assumed normal distri-

bution with endpoints at positive and negative infinity as considered by Davies et al. (1992),

or by modelling the random intercepts as a three component mixture of normal distributions

as demonstrated in the HILDA case study (Chapter 4). Albeit the development and availabil-

ity of methods to flexibly model the random effects distribution, the normality assumption is

typically taken for granted in practice (Verbeke and Molenberghs, 2013).

Incorrect assumptions of the underlying random effects distribution can impact the param-

eter estimates and standard errors of the model parameters in a GLMM, and thus, result in

incorrect interpretation and inference. Theoretical results for the random intercept logistic

model show that misspecifying the random effects distribution can produce biased estimates of

parameters directly related to the random intercept (Neuhaus et al., 1992), such as the intercept

constant and the random intercept variance estimate. Similar theoretical results were reported

by Neuhaus et al. (2013) for the more general class of GLMMs with random intercepts and

random slopes, with bias typically restricted to parameters directly related to the misspecified

random effects. However, estimation of the joint density in GLMMs is typically not of closed

form expression2, thus limiting the derivation of theoretical properties to the restricted scenario

when explanatory variables are unrelated to the response.

1As highlighted by McCulloch and Neuhaus (2011b), most statistical software packages only allow the as-
sumed distribution for the random effects to be normal.

2See Section 3.1 for cases of GLMMs with closed-form likelihoods.
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To establish results in more general settings, simulation studies have been utilised to explore

the robustness of inferences in GLMMs to misspecification of the random effects distribution

(e.g. Heagerty and Kurland 2001; Litiére et al. 2011; Neuhaus et al. 2013). Studies investigat-

ing the impact of misspecification on inference for the model parameters in random intercept

logistic models generally report biased estimates of the intercept constant and the variance

component (Neuhaus et al., 1992; Heagerty and Kurland, 2001; Agresti et al., 2004; Litiére

et al., 2008; McCulloch and Neuhaus, 2011a). However, there is no general consensus about

the impact on estimating the fixed effects parameters, particularly parameters capturing the

effects of time-invariant explanatory variables. McCulloch and Neuhaus (2011a) suggest that

most aspects of statistical inference are generally robust to distributional violations from the

normality assumption, including the time-varying explanatory variables. Negligible bias in the

point estimators of the time-invariant fixed effects parameters has been reported (Neuhaus

et al., 1992; McCulloch and Neuhaus, 2011a), with some bias and loss of efficiency reported

for true distributions far from normality. However, another body of research has suggested

sensitivity to the assumed random intercept distribution, reporting severely biased estimates

of time-invariant parameters (Heagerty and Kurland, 2001; Agresti et al., 2004; Litiére et al.,

2008). Particularly for true skewed random effects distributions that are incorrectly assumed

to be normally distributed (Litiére et al., 2008), and for true random effects that differ from the

shape of the assumed normal distribution with large variability of the random effects (Heagerty

and Kurland, 2001).

The ambiguity about the impact of misspecifying the random effects distribution has been

further exacerbated by the lack of investigation of issues common in panel survey settings. For

instance, previous literature has not considered the impact of misspecification on estimating the

effects of categorical explanatory variables. Further research is required as data in panel surveys

are typically collected from self-reported questionnaires, and thus, analysis of categorical vari-

ables is prominent. Furthermore, limited research has considered the impact of misspecifying

the random effects distribution on estimating model parameters in the presence of missing data

due to attrition. Hartford and Davidian (2000) showed that intermittent missingness is more

susceptible to the impact of misspecified random effects in non-linear mixed effects models. In

the context of GLMMs, only one study has shown that intermittent missingness and attrition

can affect the power to detect variance components when the true random effects distribution

is positively skewed, or positively skewed and leptokurtic yet assumed to be normal (Wang,

2010b). Under the assumption of MCAR or MAR missingness, maximum likelihood estimation

of GLMMs can provide consistent estimation. However, this implicitly assumes that the other

aspects of the model are correctly specified, including distributional assumptions for the ran-

dom effects. As demonstrated in the HILDA case study in Chapter 4, this is an area requiring

further research as misspecification of the random effects distribution and missing data can

simultaneously occur in practice.
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Simulation studies investigating the impact of distributional misspecification on the in-

ference of parameter estimates in GLMMs can be assessed by simulating a variety of true

distributions for the random effects and examining the performance under the assumption of

normality (e.g. Litiére et al. 2008; Neuhaus et al. 2013). As highlighted in Table 2.1, no re-

search has investigated the impact of assuming normality when the true random intercepts are

multimodal with three modes (trimodal). This is an area requiring research, as the random in-

tercepts distribution may be better represented as an asymmetric multimodal distribution if an

underlying sub-population structure exists (as demonstrated in Chapter 4). However, limited

studies have considered simulating true asymmetric multimodal distributions. Litiére et al.

(2008) simulated random intercepts as an asymmetric two component mixture distribution,

reporting inconsistent and biased estimates when incorrectly assuming normality for the ran-

dom intercepts3. In addition to the biased estimation produced for the intercept constant and

the variance component estimate, biased estimation of the time-invariant explanatory variable

was reported with relative bias ranging between -15 to -9% for the larger true random effect

variances (σ2
b = 16, 32). Furthermore, literature investigating the mover-stayer scenario has

not considered simulation studies to examine the robustness of inferences in random intercept

logistic models to the normality assumption of the random effects in potential mover-stayer

scenarios. Typically researchers attempting to accommodate and quantify the mover-stayer

scenario in a social process of interest will compare the performance of fitting a random in-

tercept logistic model assuming a more flexible random effects distribution with the fit of the

model assuming normality (e.g. Davies et al. 1992). To my knowledge, no research has aimed

to quantify the impact of assuming normality when the random intercepts are multimodal with

three modes due to an underlying mover-stayer scenario.

These gaps in the literature naturally lead to the following questions. How robust is the

random intercept logistic model to violations of the normality assumption characterised by

trimodal distributions due to an underlying mover-stayer scenario? Furthermore, does missing

data due to attrition have an additional impact on violations of the assumed random effects

distribution in panel survey applications?

To address these questions, the research presented in this chapter utilised a simulation study

to evaluate the robustness of inferences in random intercept logistic models applied to panel

survey settings, focusing on misspecifying the random effects distribution and the presence of

missing data. The simulation study considers the specific departure from normality charac-

terised by an asymmetric three-component Gaussian mixture model, motivated by the HILDA

case study presented in Chapter 4 to represent the mover-stayer scenario. The simulation study

investigates the impact of incorrectly assuming normally distributed random intercepts when

the true distribution is multimodal due to a potential underlying mover-stayer scenario, for

random intercept logistic models applied to complete data and missing data due to attrition.

3Inconsistency and bias were also reported for other skewed true random effects distributions, including the
exponential, log-normal and power function.
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5.2 Simulation study design

In this study data is simulated from a random intercept logistic model with a range of prob-

ability distributions specified for the random intercepts. The random intercepts are generated

from six asymmetric mixture distributions with random intercept variance motivated by the

HILDA case study, and two missing data scenarios. The process used to simulate data from

the random intercept logistic model and to simulate the missingness due to drop-out is detailed

in Section 5.2.1 and 5.2.2, respectively.

5.2.1 Data generating model

The parameters and design matrix for this simulation study are derived from the analy-

sis of the women with complete employment histories from 2001 in the HILDA case study

(Chapter 4). To maintain the correlation structure of the explanatory variables in the HILDA

survey at baseline and over time, resampling techniques were utilised to generate the explana-

tory variables. For each iteration of the simulation, 1000 women were randomly selected

without replacement from the 1359 women with complete employment history data (com-

plete cases). The explanatory variables of the 1000 randomly resampled women were used

to generate clustered binary responses to represent employment status using the random in-

tercept logistic model in Equation 4.1. Further details of the data generating model used in

this simulation study are outlined in Section 3.4.1. The fixed effect parameter values for the

simulations were selected to be similar to the estimates for the complete case in Table 4.3:

β0 = 1.2, β1 = 0.1, β2 = −0.3, β3 = −0.1, β4 = −1.5, β5 = −2.8, β6 = −2.3 and β7 = −0.4.

The random intercept (bi) was simulated from an asymmetric three component mixture of

normal distributions to represent the mover-stayer scenario,

bi ∼ π1N(µ1, σ
2
1) + π2N(µ2, σ

2
2) + π3N(µ3, σ

2
3) (5.1)

where πk, µk and σ2
k are the mixing proportions, component means and component variances for

the k = 1, 2, 3 components, respectively. The parameter values for the mixture distribution were

inspired by the component estimates assuming the random effects were distributed as a three

component normal mixture for the complete case analysis sub-group in the HILDA case study

(Table 4.3). To ensure the expected value of the simulated random intercept was zero, the values

for the mixing proportions were fixed at π1 = 0.12, π2 = 0.55 and π3 = 0.33, and the component

means were fixed at µ1 = −5.5, µ2 = −0.75 and µ3 = 3.25. Six different combinations for the

component variances (σ2
1, σ

2
2, σ

2
3) were considered, such that the overall random effect variability

was similar to the range of estimated variances in the motivating example (range ±1). The true

total random effect variances considered were σ2
b = 8, 9, 10, 11, 12, 13. The values of component

variances were selected in an iterative process such that the ratio between component standard

deviations were similar to the estimated mixture distribution for the complete case analysis
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Table 5.1: Component standard deviations (σ1, σ2, σ3) used to generate the random intercepts
in the simulation study for true random effect variances ranging from 8 to 13.

True Variance σ1 σ2 σ3

σ2
b = 8 0.675 0.9 0.495
σ2
b = 9 1.11 1.48 0.814

σ2
b = 10 1.425 1.9 1.045
σ2
b = 11 1.6725 2.23 1.2265
σ2
b = 12 1.8938 2.525 1.3888
σ2
b = 13 2.0925 2.79 1.5345

(Table 4.3), and were fixed at σ1 = 0.75 × σ2 and σ3 = 0.55 × σ2. For the six true random

variance scenarios considered in the simulation, the selected component standard deviations

are shown in Table 5.1 and the density distributions of the simulated random intercepts are

shown in Figure 5.1.

Simulations were performed under two missing data scenarios, complete data (the full

dataset with no missing data) and incomplete data due to attrition. Attrition was imposed

using a missing at random (MAR) mechanism, where the probability of drop-out was a Markov

process depending on employment status of the previous wave (yi,j−1) (Bonate, 2011). The

MAR drop-out was simulated using a probabilistic approach (Bonate, 2011) as detailed in Sec-

tion 5.2.2. The simulated wave-to-wave attrition rates were similar to the 29.5% rate observed

in the HILDA case study (Table 4.1).

For each of the six random effects and two missing data scenarios, 1000 datasets were gen-

erated. A random intercept logistic model assuming Gaussian random effects was fitted to

each simulated dataset. To assess the sensitivity of the normality assumption on estimating

model parameters under misspecification of the random effects distribution, the performance

measures of percentage bias, coverage of the 95% confidence intervals and ratio of the mean

standard error to the empirical standard error were used as described in Section 3.5. Criteria

for acceptable performance were percentage bias within −10% and 10% (Marshall et al., 2010),

coverage rates within 93.6% and 96.4% (Burton et al., 2006) and standard error ratios within

0.9 and 1.1 (Neuhaus et al., 2013). For the performance measures relating to the random inter-

cept distribution, the variance estimate of the random intercept was compared to the overall

variance of the three component mixture distribution (σ̂2
b =

∑3
k=1 π̂k(σ̂

2
k + µ̂2

k)− (
∑3

k=1 π̂kµ̂k)
2,

for k = 1, 2, 3.)

Simulations and analyses were conducted in SAS (Version 9.4, SAS Institute, Cary NC). All

random intercept logistic models were fitted using the SAS procedure NLMIXED with adaptive

Gaussian Quadrature using 20 quadrature points.
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Figure 5.1: Density of the six true random intercept distributions considered in the simulation
study: σ2

b = 8, 9, 10, 11, 12 and 13.
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5.2.2 Drop-out generating model

For each of the 1000 simulated complete datasets generated for the six random effect vari-

ance scenarios (σ2
b = 8, 9, 10, 11, 12, 13), the following drop-out model was used to generate

missingness to represent attrition. The missingness was generated according to a MAR miss-

ingness mechanism, in which the missingness is dependent on explanatory variables and the

response at the previous wave (yi,j−1). In order to simulate MAR drop-out similar to the attri-

tion rates observed in the HILDA case study, the coefficients used in the drop-out generating

model was derived by the HILDA case study. As described in Section 3.4.2 a logistic model,

termed the drop-out model, can be used to model the conditional probability of drop-out,

pij(α) = Pr(Rij = 0|Ri(j−1) = 1, yi(j−1),xij ;α) (5.2)

where Rij is an indicator variable for whether individual i is observed at time j.

The drop-out model captured wave-specific effects by including linear and quadratic wave

terms (w1j and w2
1j), and included the following explanatory variables: employment status

at the previous wave yi,j−1, age at first wave w2i, highest level of education attained at first

wave (w3i, w4i, w5i), and dependent children at the previous wave (w6i,j−1 and w7i,j−1). The

coefficients of the drop-out model to simulate MAR attrition were based on fitting a logistic

regression model (Equation 5.3) to the 1927 women with monotone missing data in the HILDA

case study (results presented in Appendix D). The coefficients used in the drop-out generating

model were: α0 = 0.28, α1 = −0.69, α2 = 0.04, α3 = −0.03, α4 = 0.33, α5 = 0.45, α6 = 0.55,

α7 = −0.59, α8 = −0.15 and α9 = −0.33.

logit(pij(α)) = α0 + α1w1j + α2w
2
1j + α3w2i + α4w3i + α5w4i +

α6w5i + α7w6i,j−1 + α8w7i,j−1 + α9yi,j−1 (5.3)

The conditional probability of individual i (i = 1, ..., 1000) missing at wave j (j = 2, ..., 11)

was estimated based on Equation 5.3. As detailed in Section 3.4.2, for each individual at each

wave, if the random draw (uij ∼ U [0, 1]) was less than the conditional probability of drop-out

(i.e. uij < pij(α)) the individual was dropped for that wave and subsequent waves, otherwise

the individual remained in the study. Further details are given in Appendix D.

5.3 Simulation study results

Figure 5.2 presents the percentage bias of the parameter estimates from the random inter-

cept logistic model simulations across the true random effect variance (σ2
b ) for the two missing

data scenarios. With increasing true random effect variance, Figure 5.2 shows that misspecifica-

tion produced larger biased estimators of the intercept constant (β0) and the random intercept

standard deviation (σb). Assuming normality produced biased estimates of the parameter, β3,

capturing the effect of women never married or single, with larger true random effect variances
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Figure 5.2: Percentage bias for parameter coefficients of random intercept logistic model for
increasing true random effect variance (σ2

b ) under two data scenarios, complete data and MAR
attrition. Grey horizontal solid line at percentage bias=0 and grey horizontal dashed lines at
percentage bias -10% and 10%.
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Table 5.2: Average rate (Average Attrition) and range (Range) of attrition in 1000 simulated
datasets for each of the six true random effect scenarios for variances ranging from 8 to 13.

True Variance Average Attrition (%) Range (min% - max%)
σ2
b = 8 32.0 (27.1 - 36.9)
σ2
b = 9 32.1 (27.2 - 37.0)
σ2
b = 10 32.1 (27.1 - 37.2)
σ2
b = 11 32.2 (27.1 - 37.1)
σ2
b = 12 32.3 (27.3 - 36.9)
σ2
b = 13 32.3 (27.5 - 36.8)

resulting in less biased estimates, yet still outside the allowable ±10% threshold. Misspecifica-

tion produced little and relatively consistent bias in the effects of the remaining explanatory

variables, β1, β2, β4, β5, β6 and β7, with percentage bias within -10% and 10%. Misspecification

in the presence of MAR attrition produced similar magnitudes and trends in percentage bias

when compared to the complete data, with marginal differences in the trend for β2 and β4.

Figure 5.3 presents the coverage rates of 95% confidence intervals for the logistic model

simulations across the true random effect variance for the two missing data scenarios. The cov-

erage rates were typically close to the nominal rate of 95% for all parameter estimates with the

exception of the estimate for the random effect standard deviation. Extremely poor coverage

rates were experienced for σb, with nominal coverage rates less than 30% for all true random

effect variances and both missing data scenarios. Misspecification of the random effects in the

presence of attrition resulted in similar coverage rates and trends to the complete data scenario,

with generally less extreme deviations from the nominal rate than for the complete data. There

were larger differences in the coverage rate for σb between the missing data scenarios, with the

differences decreasing as the true random effect variance increased.

Figure 5.4 presents the ratio of the mean of model-based standard errors to the empirical

standard error of the parameter estimates across the true random effect variance for the two

missing data scenarios. With the exception of the random effect standard deviation estimate,

the ratio was within 0.9 to 1.1 for all model parameters. This indicates that even in the pres-

ence of random effect misspecification, the model based standard errors accurately describe

the variability of the fixed effect coefficients. The standard error ratio for σb exceeded 1.1 for

true random effect variances of 12 and 13. Misspecification of the random effects in the pres-

ence of attrition resulted in similar magnitudes and trends as for the complete data scenario.

In comparison to the complete data, the MAR attrition had smaller standard error ratios for σb.

The average attrition rate and range of the 1000 simulated datasets for each of the random

effect scenarios are shown in Table 5.2. The actual rate of attrition in the simulated datasets

for all scenarios averaged 32.1% (ranging from 27% to 37.2%) and was similar to observed rate

of 29.5% in the HILDA subgroup of working aged women (Table 4.1).
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Figure 5.3: Coverage rates for model based 95% confidence intervals for parameter coefficients
of random intercept logistic model for increasing true random effect variance (σ2

b ) under two data
scenarios, complete data and MAR attrition. Grey horizontal solid line at nominal coverage
rate 0.95 and grey horizontal dashed lines at coverage rate 0.936 and 0.964.
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Figure 5.4: Ratio of mean model-based standard error to the empirical standard error for
increasing true random effect variance (σ2

b ) under two data scenarios, complete data and MAR
attrition. Grey horizontal solid line at ratio=1 and grey horizontal dashed lines at ratio of 0.9
and 1.1.
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Table 5.3 presents the average percentage (range) of women within the mover-stayer scenario

in the 1000 simulated datasets for the six random intercept scenarios and two data scenarios.

The percentage of stayers in the unemployed group was influenced by the true random effect

distribution, with a higher proportion continuously unemployed with increasing true random

effect variance (Table 5.3). The rate of individuals staying consistently unemployed for the com-

plete data and in the presence of MAR attrition averaged 5.5% (ranging from 2.2% to 10%)

and 10% (ranging from 5.8% to 15.4%), respectively. Similarly, the rate of individuals staying

consistently employed averaged 53.9% (ranging from 48.8% to 58.7%) and 57.1% (ranging from

52.2% to 62.4%) for the complete data and MAR attrition scenarios respectively (Table 5.3).

Fitting the assumed normal distribution using NLMIXED had excellent convergence rates

of 100% for all scenarios.

5.4 Discussion

In practice the random effects of generalised linear mixed models are commonly assumed to

be Gaussian distributed. However random effects may be multimodal when categorical fixed ef-

fects are omitted or, as shown in Chapter 4, dominated by the latent mover-stayer scenario. By

considering the additional impact of attrition within a panel survey application, this simulation

study provides a novel insight into the impact of misspecified random intercept distributions

on logistic mixed models. This simulation study provides evidence that misspecification due

to multimodal random intercepts can impact inference of maximum likelihood estimation of

random intercept logistic models within panel survey applications. When the true random

intercept distribution is an asymmetric three component mixture of Gaussians, assuming nor-

mality generally has minimal impact on the estimation of the fixed effects. However, inferences

for parameters associated with the misspecified random intercept distribution were impacted.

Misspecification induced large bias estimates of the intercept constant and variance component,

and resulted in poor coverage rates and inaccurate model standard errors for the variance com-

ponent estimate. Misspecification in the presence of MAR attrition resulted in similar bias,

coverage and model based standard errors as for the complete data scenario.

The impact of misspecification on estimation of the fixed effect parameters unrelated to

the random effect was generally minimal. Consistent with previous literature (Neuhaus et al.,

1992, 1994; Heagerty and Kurland, 2001), misspecification of the random intercept distribu-

tion generally had minimal impact on estimating time-varying explanatory variables. With

the exception of the negative bias observed for β3, negligible bias was observed for parameters

capturing the effects of the time-varying explanatory variables (β1, β2, β6 and β7). Furthermore,

misspecification resulted in nominal coverage rates and accurate model based standard errors

for the parameters related to the time-varying explanatory variables. The parameter β3 captur-

ing the effect of being single and never married was consistently underestimated and negatively
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Table 5.3: Average percentage and range (in parentheses) of women in the 1000 simulated datasets observed to always be unemployed,
transiting between employment states (Mover) and always be employed for the two simulated data scenarios (Complete Data and MAR
Attrition) and six random intercept scenarios (True Variance).

True
Variance

Complete Data MAR Attrition
Always

Unemployed
Mover

Always
Employed

Always
Unemployed

Mover
Always

Employed

σ2
b = 8

4.2 42.5 53.3 8.4 34.5 57.2
(2.2 - 6.3) (37.6 - 46.3) (59.9 - 57.8) (5.8 - 11.5) (30.7 - 39.0) (52.5 - 61.5)

σ2
b = 9

4.6 41.8 53.6 9.0 33.9 57.1
(2.6 - 6.9) (37.2 - 46.0) (49.0 - 58.0) (6.2 - 11.6) (29.9 - 38.6) (52.5 - 61.7)

σ2
b = 10

5.2 41.0 53.9 9.7 33.2 57.1
(3.1 - 7.6) (36.6 - 45.1) (49.5 - 58.4) (6.7 - 12.7) (28.3 - 38.1) (52.4 - 61.9)

σ2
b = 11

5.8 40.2 54.0 10.4 32.5 57.1
(3.7 - 8.3) (36.0 - 44.5) (49.8 - 58.7) (7.1 - 14.2) (27.3 - 36.5) (52.2 - 62.1)

σ2
b = 12

6.4 39.5 54.1 11.0 31.9 57.1
(4.3 - 9.3) (34.4 - 43.6) (49.7 - 58.6) (7.7 - 14.8) (27.3 - 36.5) (52.4 - 61.9)

σ2
b = 13

7.1 38.8 54.2 11.7 31.3 57.0
(4.6 - 10.0) (33.9 - 43.5) (49.7 - 58.7) (8.2 - 15.4) (26.5 - 36.4) (52.7 - 62.4)
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biased. This bias may partly be explained by the large standard error, and hence variability,

of the coefficient and the small number of individuals in this marital state. Furthermore, the

bias may be partly explained by the relatively stable nature of this time-varying explanatory,

exhibiting minimal within-individual variability over time. Estimation of the parameter effects

of highest level of education (β4 and β5), appeared to be unaffected by the random intercept

distributional misspecification. The minimal bias observed for β4 and β5 are consistent with pre-

vious results of time-invariant covariates for non-extreme departures from normality (Neuhaus

et al., 1992; Heagerty and Kurland, 2001). However, biased estimators of time-invariant ex-

planatory variables have previously been reported when the true random effect distribution is

highly skewed and has substantial variability (Heagerty and Kurland, 2001; Litiére et al., 2008).

However, inferences about parameters associated with the misspecified random intercept

were severely impacted. Misspecification of the random intercept distribution induced large

bias in estimation of the intercept constant, with percentage bias exceeding 10% for both miss-

ing data scenarios and all six true random effect variances considered (ranging from 11.6% to

19.7%). These results are consistent with theoretical and simulation studies showing bias in the

estimate of the intercept constant when the true random effect distribution differs substantially

from assumed normality (Neuhaus et al., 1992; Heagerty and Kurland, 2001). Not only is care

required when interpreting the intercept constant, biased estimation of the intercept constant

may carry over to other aspects of the GLMM and possibly impact the mean estimation of the

outcome (McCulloch and Neuhaus, 2011a).

Furthermore, the estimates of the variance component (σb) were always severely impacted.

Misspecified random intercept distributions resulted in seriously biased estimates of the ran-

dom effect standard deviation, substantially low corresponding coverage rates and inaccurate

model based standard errors. Consistent with the findings of Litiére et al. (2008), larger true

random intercept variances resulted in larger bias in the estimation of the variance component.

However, unlike the underestimation4 observed for the asymmetric mixture of two normals con-

sidered by Litiére et al. (2008), the asymmetric three component mixture of normals considered

in this study resulted in positive bias in the estimation of the variance component. The impact

of misspecified random effects on estimating the variance component has received little atten-

tion in the literature (McCulloch and Neuhaus, 2011a), and may not be considered of primary

inferential interest. However, the variance components are the only available estimate of the

true random effect variability (Litiére et al., 2008). Bias can subsequently impact interpreta-

tion of the intra-class correlation (ICC)5, a measure indicating the proportion of unexplained

4Perhaps the observed underestimation may be due to the median value of the standard deviation of the
random effects being reported in Table II of Litiére et al. (2008), rather than the variance estimate. The thesis
reports substantial inconsistency of the parameter estimates for the asymmetric mixture distribution (relative
bias for all parameters jointly), reporting that the variance component is the most affected (Litiére, 2007).

5As the ICC for the random intercept logistic model has a fixed residual error of π2/3, large differences in
the ICC may be restricted to scenarios when the magnitude of the random effect variance estimate is not large
when compared to residual error
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variation at the individual level, often used to express the random intercept variance (Hedeker

and Gibbons, 2006). Furthermore, biased estimates of the variance component can make it

difficult to evaluate problems in the mean structure (Litiére et al., 2008) and can additionally

have an impact on individual-specific interpretations or predictions. McCulloch and Neuhaus

(2011b) suggest that severe distributional violations of the assumed random effect distribution

can impact the prediction and accuracy of best predicted random effect values. This is an area

requiring further research, particularly when the true random effect distribution is multimodal

with three or more modes.

In the presence of a misspecified random intercept distribution, MAR attrition has little

additional impact on the estimation of parameters in the fixed and random components. In

comparison to misspecification in the complete data scenario, there were minimal differences in

the bias, coverage rates and accuracy of the model standard errors. These results are consistent

with the simulation study by Wang (2010b), whereby ignorable missingness had little impact

on bias or coverage when the true random effects distribution was misspecified. As GLMMs

are expected to be robust to MAR and MCAR missingness, further research investigating the

simultaneous impact of random effect misspecification and missingness will need to consider

the MNAR mechanism in addition to other attrition rates.

This simulation study has considered multimodal random intercepts to represent the latent

mover-stayer scenario, with total random intercept variances ranging from 8 to 13. The dis-

tributions considered in this simulation study were based on the estimated components from

the assumed three-component mixture of normal distributions in the case-study presented in

Chapter 4. However, predicted random effects have previously been shown to reflect the as-

sumed random effect distribution instead of the true distribution (Verbeke and Lesaffre, 1996;

McCulloch and Neuhaus, 2011b). Furthermore, the extreme response patterns of the latent

stayers have previously been modelled by incorporating spikes in the random effects at neg-

ative and positive infinity (Davies et al., 1992). Therefore, the true random effect variability

within a latent mover-stayer scenario may be more extreme than the distributions considered

here. However, the true random intercept distributions considered in this simulation study have

provided a novel insight into incorrectly assuming normality within a potential mover-stayer

scenario.

This simulation study suggests that maximum likelihood estimates of random intercept lo-

gistic models can be impacted by random effect distributional misspecification in panel survey

applications. Assuming normal random intercepts when the true random intercept is dis-

tributed as an asymmetric three component mixture of Gaussians generally results in minimal

impact on the estimation of the fixed effects, the parameters often of interest in practice. How-

ever, misspecification may produce bias in the estimates of parameters capturing the effects of

time-invariant categorical variables with minimal within-subject variability and small cell sizes.
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Furthermore, misspecification can induce large bias in the estimates of the intercept constant

and variance component. Arguably, these parameters may often not be of primary interest, yet

biased estimates may subsequently impact subject-specific interpretation and inferences of the

random effect variability, such as the ICC. Therefore, users of random intercept logistic models

in panel survey applications should exercise caution when interpreting the intercept constant

or variance components when multimodal random effects are suspected. If attrition is assumed

to be MAR, there is minimal additional impact on the maximum likelihood estimation in the

presence of random effect distribution misspecification.

The asymmetrical random intercept distributions considered in this chapter are motivated

by the multimodality identified in the case study in Chapter 4. The random effect variability in

this simulation study has been restricted to variances ranging from 8 to 13, however in practice,

the variance of the random intercepts may be larger. If the true asymmetric multimodal ran-

dom intercepts considered in this simulation study can impact inference of maximum likelihood

estimates, how robust is the assumed normal distribution to other multimodal distributions?

More specifically, when does random intercept misspecification first start to impact interpreta-

tion? To address this question, Chapter 6 considers a range of true symmetric three component

mixture of normal distributions varying in severity of departures from normality.
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6 Investigating the robustness of random intercept

logistic models for departures to the normality

assumption characterised by symmetric three

component normal mixture distributions

6.1 Introduction

Multimodality of the underlying random effects distribution can be a consequence of a la-

tent population substructure, such as a potential mover-stayer scenario as identified in the

HILDA case study (Chapter 4). However, multimodality of the random effects distribution

can also arise when key time-invariant categorical explanatory variables are omitted from the

mean structure of the model (Ghidey et al., 2010). For instance, in an application of a ran-

dom intercept logistic model to compare the efficiency of a drug in a longitudinal clinical trial,

Komarek and Lesaffre (2008) and Verbeke and Molenberghs (2013) demonstrated random inter-

cepts following a multimodal distribution with three modes. The underlying multimodality of

the random intercept distribution was postulated to be indicative of an important explanatory

variable being omitted from the model (Komarek and Lesaffre, 2008).

Although multimodality of the random effects can occur in practice, limited research has

considered the impact of misspecifying the random effects distribution when the true distri-

bution is multimodal. Of the simulation studies that have considered true multimodal distri-

butions, the focus has been on bimodal distributions (e.g. Chen et al. 2002; Komarek and

Lesaffre 2008; Litiére et al. 2008; McCulloch and Neuhaus 2011a). Previously Litiére et al.

(2008) reported biased estimation of the fixed and random effect parameters in logistic mixed

models when true skewed and multimodal (symmetric and asymmetric) distributions were in-

correctly assumed to be normally distributed, particularly for random effects with larger vari-

ability. However, no studies have considered investigating the impact of incorrectly assuming

normality for true trimodal distributions. The results from the simulation study in Chapter

5 highlight a scenario motivated by the potential mover-stayer scenario, whereby incorrectly

assuming normality for an underlying asymmetric trimodal random intercept distribution can

impact inferences for the intercept constant and the random effects variance component.

However, the impact of multimodality on estimating model parameters in the presence of
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distributional misspecification of the random effects can differ depending on whether the true

distribution is symmetric or asymmetric (Litiére et al., 2008). In comparison to a true asym-

metric bimodal distribution for the random intercepts, smaller magnitudes of bias were reported

by Litiére et al. (2008) when a true symmetric bimodal distribution was incorrectly assumed to

be normal. The sensitivity to skewness has been reported in the context of biased estimation of

the random intercept, with larger bias expected to occur when a true asymmetric distribution

is incorrectly assumed to be symmetric (Neuhaus et al., 1992). Therefore to remove potential

confounding effects of skewness, investigation of the impact of multimodal true random effects

may require the consideration of symmetric multimodal distributions.

For true bimodal symmetric random intercept distributions, incorrectly assuming normality

can result in modest bias for estimates of the time-invariant explanatory variables (relative

bias of up to -14%) and estimates of the random effect variability (relative bias of up to 31%)

(Litiére et al., 2008). Similarly, in the context of a random intercept and random slope logis-

tic model, incorrectly assuming normality for a true bimodal symmetric bivariate distribution

can produce bias in estimating the effects of both time-invariant and time-varying explanatory

variables (Litiére et al., 2008; McCulloch and Neuhaus, 2011a)1. Previous research suggests

that the impact of misspecification on estimating model parameters can be dependent on how

different the true distribution for the random effects is from the assumed distribution, and the

variability of the true random effects (Heagerty and Kurland, 2001; Litiére et al., 2008; Vock

et al., 2014). Therefore, to further investigate the robustness of random intercept logistic mod-

els to multimodality of the random intercept distribution, studies in this chapter consider the

impact of incorrectly assuming normality for various symmetric trimodal distributions differing

in the severity of departure from a normal distribution.

The primary research objective is to identify scenarios within panel survey settings when

random intercept misspecification may first start to impact inferential conclusions. To address

this question, the random intercepts are generated from a symmetric three component mixture

of normal distributions, initially considering a true normal distribution and increasing in depar-

tures from normality. By focusing on the specific case of symmetric multimodal distributions,

the component variances and the component mixing proportions can be fixed, allowing the

impact of increasing component mean distances to be assessed. Thus, for larger increases in

the component mean distances, the more extreme is the departure from the assumed normality

distribution, resulting in a distribution with three distinct modes. Additionally, the impact of

more extreme multimodality is assessed by considering increasing values for the fixed component

variances, as smaller values of the component variance will result in a distribution with more

distinct modes. The secondary research objective is to investigate whether missingness due to

1McCulloch and Neuhaus (2011a) consider the same simulation scenario as presented in Litiére et al. (2008),
however report different magnitudes of bias for the time-varying coefficient. Litiére et al. (2008) (in the correc-
tion, Table 1) reported relative bias of -56% however, McCulloch and Neuhaus (2011a) reported bias of -14%.
Furthermore, the simulation studies of Litiére et al. (2008) had low convergence rates with up to 30% of analyses
failing to converge.
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attrition additionally influences the impact of misspecifying the random effect distribution. As

in Chapter 5, by considering a simulation based on the HILDA case study in Chapter 4, the

impact of misspecification in the presence of complete data and missing data following from

MAR attrition is assessed. These studies thoroughly examine the consequences of misspecifying

the random effects distribution by assessing estimation bias, confidence interval coverage and

the accuracy of model based standard errors.

6.2 Simulation study design

This study simulates data from a random intercept logistic model with random intercepts

generated from twenty-one different symmetric mixture distributions increasing in departure

from unimodality of the normal distribution, three different component variances and two

missing data scenarios. The processes used to simulate data from the random intercept logistic

model and to simulate the missingness scenario are detailed below.

The parameters and design matrix of this simulation study are derived from the analysis

of women with complete employment data over 11 waves of the HILDA survey as described

in the motivating example (Chapter 4). Using the techniques described in Section 3.4.1 and

similar to the data generating techniques described in Section 5.2.1, resampling techniques were

used to generate the values for the explanatory variables. For each iteration of the simulation,

1000 women were randomly selected without replacement from the 1359 women with com-

plete cases. The explanatory variables of those 1000 women were used to generate clustered

binary responses using the random intercept logistic model presented in Equation 4.1. The

same fixed effect parameter values utilised in Section 5.2.1 were used to generate the responses

(β0 = 1.2, β1 = 0.1, β2 = −0.3, β3 = −0.1, β4 = −1.5, β5 = −2.8, β6 = −2.3 and β7 = −0.4).

In this simulation study, the random intercept bi is generated from a symmetric three

component mixture of normal distributions. The symmetric random intercept distribution has

equal component proportions (i.e. π1 = π2 = π3 = 1
3
) and equal component variances (i.e.

σ2
1 = σ2

2 = σ2
3 = σ2),

bi ∼
1

3
N(µ1, σ

2) +
1

3
N(µ2, σ

2) +
1

3
N(µ3, σ

2) (6.1)

where µ1, µ2 and µ3 are the component means. To identify scenarios where misspecifying the

random effect distribution impacts model interpretation, a range of random intercept distri-

butions are generated by considering twenty-one combinations of the component means (with

increasing departures from normality characterised by distributions with three modes). The

random intercept distributions are of increasing component mean distances, with fixed com-

ponent variances of either σ2 = 1, 2 or 4. The different mean combinations for µ1, µ2 and µ3

are selected to have a symmetric distribution with mean zero. The specific case considered

here is where µ1 = −µ3 and µ2 = 0, with µ3 ranging from 0 to 10, increasing in increments

of 0.5. Density plots for selected simulated random intercept distributions of increasing mean
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component distances (defined as µ3−µ1) for the three component variance scenarios are shown

in Figure 6.1. For the twenty-one mean scenarios and three fixed component variances, Table

6.1 presents the overall true random effect variance for each simulated scenario (defined as

σ2
b =

∑3
k=1 πk (σ2 + (µk)

2)− (
∑3

k=1 πkµk)
2 = σ2 + 2

3
µ2

3, for k = 1, 2, 3) .

Table 6.1: True total random intercept variance σ2
b of the simulated symmetrical three

component mixture of normal distributions for component mean distances (µ3 − µ1) ranging
from 0 to 20, and component variances fixed at either σ2 = 1, 2 or 4. The total random intercept
variance is defined by σ2

b = σ2 + 2
3
µ2

1.

Component Mean Component Variances
Distance σ2 = 1 σ2 = 2 σ2 = 4
µ3 − µ1=0 1.00 2.00 4.00
µ3 − µ1=1 1.17 2.17 4.17
µ3 − µ1=2 1.67 2.67 4.67
µ3 − µ1=3 2.50 3.50 5.50
µ3 − µ1=4 3.67 4.67 6.67
µ3 − µ1=5 5.17 6.17 8.17
µ3 − µ1=6 7.00 8.00 10.00
µ3 − µ1=7 9.17 10.17 12.17
µ3 − µ1=8 11.67 12.67 14.67
µ3 − µ1=9 14.50 15.50 17.50
µ3 − µ1=10 17.67 18.67 20.67
µ3 − µ1=11 21.17 22.17 24.17
µ3 − µ1=12 25.00 26.00 28.00
µ3 − µ1=13 29.17 30.17 32.17
µ3 − µ1=14 33.67 34.67 36.67
µ3 − µ1=15 38.50 39.50 41.50
µ3 − µ1=16 43.67 44.67 46.67
µ3 − µ1=17 49.17 50.17 52.17
µ3 − µ1=18 55.00 56.00 58.00
µ3 − µ1=19 61.17 62.17 64.17
µ3 − µ1=20 67.67 68.67 70.67

Simulations were performed under two missing data scenarios: complete data (i.e. no miss-

ingness imposed) and incomplete data due to attrition. Attrition was assumed to be generated

by the missing at random (MAR) mechanism. The same methodology used to impose MAR

attrition in Chapter 5 as described in Sections 3.4.2 and 5.2.2 was implemented in this simula-

tion study, resulting in similar wave-to-wave attrition rates observed in the HILDA case study

(Table 4.1) and overall attrition rate of 29.5%.

For each of the 21 mean component distances, three variance component settings and two

missingness scenarios (126 combinations in total), 1000 datasets consisting of 1000 subjects

were generated. A random intercept logistic model assuming Gaussian random effects was fit-

ted to each simulated dataset. When µ1 = µ2 = µ3 = 0 the normality assumption is true,

however the departure from normality increases as µ3−µ1 > 0 increases. The simulation study
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Figure 6.1: Density of the true random intercept distributions for selected component mean
distances µ3 − µ1 = 0, 5, 10, 15 and 20 for the three component variance scenarios: σ2 = 1, 2
and 4.
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examines the robustness of the normality assumption of the random intercept distribution by

considering estimation bias, confidence interval coverage and accuracy of model-based stan-

dard errors for the estimated model parameters. The performance measures and criteria for

acceptable performance are discussed in Section 3.5, and respectively were, percentage bias

within -10% and 10%, coverage rates of the 95% confidence intervals within 93.6% and 96.4%,

and standard error ratios within 0.9 and 1.1. For the performance measures relating to the

random intercept distribution, the variance estimate of the random intercept was compared to

the overall variance of the true three component mixture distribution.

Simulations and analyses were conducted in SAS (Version 9.4, SAS Institute, Cary NC). All

random intercept logistic models were fitted using the SAS procedure NLMIXED with adaptive

Gaussian Quadrature using 20 quadrature points.

6.3 Simulation study results

Due to the large number of scenarios considered in this simulation study (21 mean compo-

nent distances, 3 component variances and two missingness scenarios) the results are presented

over the following four sections. The first two sections correspond to the two research objec-

tives. The results regarding the impact of misspecifying the random intercept distribution with

increasing departures from normality are presented in Section 6.3.1 and in Section 6.3.2 the

impact of misspecification of the random effects distribution in the presence of MAR attrition

is explored. Additionally, Section 6.3.3 presents the results when correctly assuming normality

and Section 6.3.4 summarises the attrition rates and the underlying extreme response patterns

generated in the simulated datasets.

6.3.1 Severity of departure from normality of the random intercepts

Figure 6.2 presents the percentage bias of the parameter estimates when applying the ran-

dom intercept logistic model assuming normality to the simulated data for the three component

variances scenarios (σ2 = 1, 2, 4) in the complete data scenario. With increasing distance be-

tween the three component means, defined as µ3 − µ1, Figure 6.2 shows that misspecification

generally produced unbiased estimates for all parameters for small to moderate deviations from

the assumed normal distribution (µ3− µ1 < 13). For severe departures from normality charac-

terised by distinct multimodality (µ3−µ1 ≥ 13), misspecification produces biased estimators for

parameters associated with the random intercept distribution, the intercept constant (β0) and

random intercept standard deviation (σb), and for parameters of the time-invariant explana-

tory variables capturing education at the first wave, β4 and β5. Estimation of the explanatory

variable capturing the effect of single women (compared to married or defacto women), β3, was

underestimated for the majority of the scenarios, producing large negatively biased estimates.

Estimation of the intercept constant β0 was consistently below the threshold of −10 (range:
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Figure 6.2: Percentage bias for parameter coefficients of the random intercept logistic model
applied to the complete data scenario for increasing distances of random intercept component
means (µ3 − µ1) under three component variance scenarios (σ2 = 1, 2 and 4). Grey horizontal
solid line at 0 percentage bias and grey horizontal dashed lines at percentage bias of -10% and
10%.
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-10.5 to -23.9) for minor departures from normality (µ3 − µ1 < 11), before increasing non-

linearly as component mean distances exceeded 13, reaching percentage bias in excess of 200.

A similar trend as for β0 was observed for the random intercept standard deviation σb. Minor

distributional misspecification (µ3 − µ1 < 11) produced unbiased estimates for σb (range: -0.6

to 11.5), before increasing non-linearly as component mean distances exceeded 10, reaching

percentage bias in excess of 100. Similarly, as the departure from normality becomes more

severe (µ3 − µ1 ≥ 14), misspecifying the random intercept distribution resulted in large biased

estimates for the time-invariant explanatory variables relating to the highest education attained

at baseline, β4 and β5, reaching percentage bias exceeding 60. Negative bias was experienced

for the covariate relating to single women, β3, generally underestimating the true coefficient for

majority of scenarios. As the departure from normality became more extreme (µ3 − µ1 ≥ 16),

the percentage bias for β3 exceeded −40%. Misspecification produced little and relatively con-

sistent bias for the remaining time-varying explanatory variables, with percentage bias within

the ±10% threshold for β1, β2, β6 and β7 for all component mean distances.

As the variance components of the true random effects distribution increased, misspecifica-

tion generally produced similar trends as for σ2 = 1. For minor deviations from the assumed

normality, the three variance components resulted in similar magnitudes of percentage bias.

However, for moderate to large deviations from normality, differences in the magnitude of the

percentage bias became more apparent. As the component mean distances exceeded 12, the

magnitude of the percentage bias for the three component variances started to diverge, par-

ticularly when estimating β0, β4, β5 and σb. Generally as the component variances increased,

the magnitude of bias decreased. Thus, the smallest component variance σ2 = 1, resulting in

the most extreme multimodal distribution, generally resulted in the largest magnitude of bias.

One exception was the coefficient capturing the effect of single women (β3), whereby a similar

trend and order of magnitude was observed for all component variance scenarios, with σ2 = 4

scenario generally producing the largest negative values of percentage bias.

Figure 6.3 presents the coverage rates of 95% confidence intervals for the parameter esti-

mates when applying the random intercept logistic model assuming normality to the simulated

data for the three component variances scenarios (σ2 = 1, 2, 4) in the complete data scenario.

Figure 6.3 indicates that the coverage rates for β1, β2, β3, β6 and β7 were typically close to the

nominal rate of 95% for all component mean distances. As the distance between component

means exceeded 14, severe misspecification of the random effects resulted in poor coverage rates

for the intercept constant, β0, and the two coefficients of the time-invariant education explana-

tory variable, β4 and β5. For these parameters, coverage rates were close to the nominal rate for

minor and moderate deviations from normality (µ3 − µ1 < 14), before declining and reaching

coverage rates of approximately 50%, 80% and 70%, respectively. Extremely poor coverage

rates were experienced for estimates of the variance component, with nominal coverage rates

for σb less than the acceptable 93.6% threshold for component mean distances of 7 or more.
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Figure 6.3: Coverage rates for model based 95% confidence intervals for parameter coefficients
of the random intercept logistic model applied to the complete data scenario for increasing
distances of random intercept component means (µ3 − µ1) under three component variance
scenarios (σ2 = 1, 2 and 4). Grey horizontal solid line at nominal coverage rate 0.95 and grey
horizontal dashed lines at coverage rate 0.936 and 0.964.

103



The coverage rates declined rapidly before reaching coverage rates of 0% for severe departures

from normality (µ3 − µ1 ≥ 14).

Larger component variances generally corresponded with higher coverage rates, with similar

trends observed for all three variance scenarios. Generally the three component variance scenar-

ios resulted in similar magnitude of coverage rates, however as the component mean distances

increased, divergence in the magnitude of coverage rates was observed. This was particularly

true for terms related to the random effects, β0 and σb, and the coefficients capturing the ef-

fects of the time-invariant baseline education variable β4 and β5. For severe departures from

normality (µ3−µ1 > 14) the coverage rates of β0, β4 and β5 for the three component variances

started to decline at differing rates. Coverage rates for σb started to diverge and decline rapidly

for moderate departures from normality (µ3 − µ1 > 8), before reaching 0% coverage for all

variance component scenarios for component mean distances exceeding 14. The coverage rates

for the coefficients capturing the effects of the time-varying explanatory variables (β1, β2, β3, β6

and β7) were typically close to the nominal coverage rate, with similar trends and magnitudes

observed for the three variance scenarios.

Figure 6.4 presents the ratio of the mean of model-based standard errors to the empir-

ical standard error of the parameter estimates when applying the random intercept logistic

model assuming normality to the simulated data for the three component variances scenarios

(σ2 = 1, 2, 4) in the complete data scenario. With the exception of the random effect standard

deviation, the ratio was within the acceptable range of 0.9 and 1.1 for all model parameters.

This indicates that even in the presence of random effect misspecification, the model based

standard errors accurately describe the variability of the fixed effect coefficients. The ratio for

σb increased as the distance between the component means increased, with the standard error

ratio exceeding 1.1 when the component mean distances ranged between 7 and 11. For compo-

nent mean distances between 11 and 15, the ratio declined to values below the 0.9 threshold,

before increasing again for component mean distances between 15 and 20, reaching ratio values

above the 1.1 threshold.

The fluctuations observed for σb can potentially be explained by the non-linear increase in

empirical standard error as opposed to the linear increase experienced by the other parame-

ter coefficients (results not shown). For instance, the empirical standard error for component

variance σ2 = 1 increased linearly from 0.06 to 0.25 for component mean distances 0 and 11,

respectively, until increasing exponentially from 0.52, 0.94 and 0.96 for distances of 12, 13 and

14. For distances of 15 to 20, the empirical standard error stabilised and slightly decreased

from 0.96 to 0.88.

Similar magnitudes and trends of the standard error ratio were observed for all three compo-

nent variances. As the component variance increased, generally the deviations from the neutral
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Figure 6.4: Ratio of mean model-based standard error to the empirical standard error for
parameter coefficients of the random intercept logistic model applied to the complete data
scenario for increasing distances of random intercept component means (µ3 − µ1) under three
component variance scenarios (σ2 = 1, 2 and 4). Grey horizontal solid line at ratio=1 and grey
horizontal dashed lines at ratio of 0.9 and 1.1.
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standard error ratio value of 1 decreased. For increasing component mean distances, the mag-

nitudes of the standard error ratio only deviated marginally for β4, and for increasing trends

of σb. With the exception of σb, for all component mean distances and component variance

scenarios, the mean model-based standard errors were generally equivalent to the empirical

standard errors.

6.3.2 Additional impact of attrition

In the presence of MAR attrition, incorrectly assuming normality for random intercepts

when the true random effects were distributed as a symmetric three component mixture of

normals generally resulted in similar magnitudes and trends as observed in the complete data

scenario. The percentage bias, coverage rates and standard error ratio for Complete data (C)

and MAR attrition (MAR), in Tables 6.2, 6.3 and 6.4 respectively, present the performance

measures for the component variance scenario σ2 = 1 and selected component mean distances

(µ3 − µ1 = 0, 5, 10, 15, 20).

Random effect distributional misspecification in the presence of MAR attrition generally

produced similar trends in the percentage bias as for the complete data (Table 6.2). With

the exception of β3, the magnitude of percentage bias for time-varying parameters was similar

yet marginally larger than the complete data scenario (mean difference (SD) between MAR

attrition and complete data (MAR - C) of 0.7 (0.6), 0.3 (1.1), 0.6 (0.9) and 0.7 (1.2), for

β1, β2, β6 and β7). The trend in percentage bias for β3 over the component mean distance was

similar for the two data scenarios, however differences in magnitude between MAR attrition

and complete data varied and fluctuated between -8.8 and 18.2. Increasing distance between

component means generally resulted in larger differences in the magnitude of bias between the

two data scenarios (overall mean difference (SD) of -0.4 (1.8) and -5.3 (13.5) for component

mean distance of 0 and 20, Table 6.2). This was particularly true for coefficient estimates of

the time-invariant fixed effect parameters and parameters related to the random effect. In the

presence of MAR attrition, estimation of the time-invariant parameters, β4 and β5, resulted in

similar magnitude of bias as the complete data scenario for minor deviations from normality

(µ3 − µ1 ≤ 10). However, for larger deviations (µ3 − µ1 > 10), misspecification in the presence

of MAR attrition resulted in smaller magnitude of percentage bias for β4 and β5 than the com-

plete data, with larger differences between the two data scenarios observed with the increasing

component mean distances. For parameters related to the random intercept distribution, β0

and σb, the difference in the means between the two data scenarios was negligible for minor

deviations from normality (µ3 − µ1 ≤ 10). However, differences became larger in magnitude

for distances 12 to 15 reaching differences of 15.4 and 13.4 for β0 and σb respectively, before

declining to differences of 3.6 and 1.7 at the most extreme mean distance of 20. As highlighted

by the bold text in Table 6.2, when the complete data resulted in bias outside the acceptable

performance range of ±10%, the corresponding bias in the presence of MAR attrition would
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Table 6.2: Percentage bias for parameter estimates of the random intercept logistic model with random effects simulated as a symmetric
three component mixture distribution with σ2 = 1 and selected component mean distances (µ3 − µ1 = 0, 5, 10, 15, 20) for the two missing data
scenarios: complete data (C) and MAR attrition (MAR). The values in bold indicate the percentage bias not within the acceptable performance
range of -10% and 10%.

Parameter

Distance between component means

0 5 10 15 20

C MAR C MAR C MAR C MAR C MAR

β0 -12.4 -14.1 -18.4 -19.6 -19.4 -23.9 161.5 176.9 296.6 300.2

β1 5.8 6.3 4.5 5.0 2.7 3.4 6.6 8.2 8.0 7.5

β2 6.4 7.6 3.6 3.4 1.8 1.5 4.1 6.8 0.8 0.1

β3 4.8 0.2 -31.5 -37.2 -11.3 -17.5 -57.5 -39.2 -58.5 -60.7

β4 0.6 0.6 1.4 1.9 1.4 2.0 49.4 35.0 90.5 53.3

β5 0.9 0.9 0.3 0.5 2.3 1.0 59.7 52.8 96.7 79.7

β6 2.1 2.2 0.4 0.5 -1.8 -2.0 5.9 7.8 9.7 11.4

β7 4.2 5.2 2.5 2.7 1.5 0.8 -2.0 0.0 -9.5 -6.6

σb 1.5 1.4 -0.4 -0.1 11.5 12.2 80.0 93.4 107.1 108.8

Mean Difference (SD) -0.4 (1.8) -0.6 (2.0) -1.2 (2.5) 3.8 (10.6) -5.3 (13.5)

Minimum Difference -4.6 -5.7 -6.2 -14.4 -37.2

Maximum Difference 1.2 0.5 0.8 18.2 3.6
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also be deemed unacceptable.

Misspecification of the random effects in the presence of MAR attrition generally resulted

in similar trends and magnitude of coverage rates to those for complete data (Table 6.3). For

all the component mean distances, the mean difference of the coverage rates between the two

data scenarios (MAR - C) for all parameters were within 0 and 0.04 (results not shown). The

coverage rate observed for the two data scenarios was similar for component mean distances

less than 10, with mean difference (SD) of 0 (0.01) for µ3 − µ1 = 0, 5 and 10 (Table 6.3). As

the component mean distances increased, differences between the coverage rates became larger

(mean difference (SD) of 0.02 (0.04) and 0.03 (0.05) for component mean distances of 15 and

20). Coverage rates for coefficients relating to the time-varying parameter differences were

similar across all component mean distances (mean differences (SD) of 0 (0.01) for β1, β2, β3, β6

and β7, results not shown), however, for coefficients capturing the time-invariant parameters, β4

and β5, increasing distance between component means resulted in larger differences in coverage

rates between the two data scenarios. For larger departures from normality (µ3−µ1 > 14), the

difference in the coverage rates increased from 0 to reach 0.09 for β4 and from 0.02 to reach

0.13 for β5. Similarly, the difference in coverage rates for β0 marginally increased from 0.03 for

component mean distance of 15 to 0.05 for component mean distance of 20. Coverage rates

for the variance component estimate, σb differed between the two data scenarios for component

mean distances ranging from 10 to 14, before converging to coverage rates of 0 for component

mean distances exceeding 15. With some minor exceptions, unacceptable coverage rates iden-

tified for the complete data were also outside the acceptable limits for the MAR attrition data

scenario (Table 6.3).

The impact of misspecification in the presence of attrition produced similar accuracy of

model based standard errors as for the complete data (Table 6.4). In comparison to complete

data scenario, standard error ratios of the fixed effect parameters were of similar magnitudes

for the MAR missing data scenario. With the exception of σb, all parameters had negligible

difference of the standard error ratio between the MAR missing and complete data scenarios for

component mean distances less than 10 (range of differences:-0.02 to 0.04, results not shown).

For component mean distances of 15 and 20, the mean difference (SD) of the standard error

ratio between the MAR missing and complete data scenarios increased from 0.009 (0.019) to

0.032 (0.017). As the component mean distances increased, larger differences in the standard

error ratios between the data scenarios were noticed for β0, β3 and β4, reaching respective dif-

ferences between MAR missing and complete data scenarios of 0.05, 0.04 and 0.04 at the most

extreme component mean distance (µ3 − µ1 = 20). In the presence of attrition, the standard

error ratio for σb was smaller than the complete data analysis for component mean distances

less than 15 (range of differences: -0.16 to -0.03). However, for mean distances exceeding 15

the MAR missing data scenario produced more extreme standard error ratio for σb than the

complete data (range of differences: 0.01 to 0.07). Albeit some differences in the magnitude
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Table 6.3: Coverage rates for model based 95% confidence intervals for parameter coefficients of random intercept logistic model with random
effects simulated as a symmetric three component mixture distribution with σ2 = 1 and selected component mean distances (µ3 − µ1 =
0, 5, 10, 15, 20) for the two missing data scenarios: complete data (C) and MAR attrition (MAR). The values in bold indicate the coverage rate
is not within the acceptable performance range of 0.936 and 0.964.

Parameter

Distance between component means

0 5 10 15 20

C MAR C MAR C MAR C MAR C MAR

β̂0 0.942 0.933 0.943 0.945 0.934 0.927 0.599 0.625 0.382 0.429

β̂1 0.927 0.928 0.943 0.954 0.944 0.943 0.937 0.929 0.939 0.955

β̂2 0.947 0.949 0.959 0.955 0.958 0.954 0.960 0.956 0.957 0.966

β̂3 0.952 0.951 0.950 0.941 0.955 0.947 0.950 0.949 0.957 0.962

β̂4 0.952 0.956 0.955 0.953 0.962 0.960 0.881 0.932 0.782 0.882

β̂5 0.968 0.968 0.951 0.955 0.945 0.948 0.650 0.763 0.592 0.711

β̂6 0.943 0.940 0.947 0.944 0.938 0.949 0.938 0.925 0.909 0.920

β̂7 0.946 0.943 0.957 0.961 0.940 0.944 0.949 0.953 0.935 0.951

σ̂b 0.967 0.953 0.973 0.972 0.284 0.352 0 0 0 0

Mean Difference (SD) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.02 (0.04) 0.03 (0.05)

Minimum Difference -0.014 -0.009 -0.008 -0.013 0

Maximum Difference 0.004 0.011 0.068 0.113 0.119
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Table 6.4: Ratio of the mean model-based standard error to the empirical standard error of the random intercept logistic model with
random effects simulated as a symmetric three component mixture distribution with σ2 = 1 and selected component mean distances (µ3−µ1 =
0, 5, 10, 15, 20) for the two missing data scenarios: complete data (C) and MAR attrition (MAR). The values in bold indicate the standard error
ratio is not within the acceptable performance range of 0.9 and 1.1.

Parameter

Distance between component means

0 5 10 15 20

C MAR C MAR C MAR C MAR C MAR

β0 1.021 1.012 1.029 1.041 0.979 0.989 0.938 0.959 0.935 0.990

β1 1.056 1.046 1.057 1.060 0.986 0.990 0.990 1.005 1.002 1.009

β2 1.006 1.019 1.034 1.029 1.017 1.012 1.043 1.035 1.033 1.045

β3 0.968 0.984 0.990 0.992 1.009 1.001 1.002 1.015 1.004 1.046

β4 1.003 1.004 1.016 1.021 1.018 1.013 1.030 1.070 0.855 0.900

β5 1.050 1.052 1.002 0.988 0.997 0.989 0.985 0.990 0.923 0.937

β6 1.005 0.992 0.996 1.006 0.984 1.001 0.966 0.986 0.955 0.987

β7 0.968 0.970 1.014 1.034 0.957 0.966 0.961 0.970 0.970 1.002

σb 1.069 1.018 1.185 1.129 1.277 1.234 0.850 0.823 1.173 1.219

Mean Difference (SD) -0.005 (0.020) -0.003 (0.023) -0.003 (0.017) 0.009 (0.019) 0.032 (0.017)

Minimum Difference -0.016 -0.020 -0.017 -0.040 -0.055

Maximum Difference 0.051 0.057 0.042 0.027 0.007
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of the standard error ratio, similar conclusions about the accuracy of the standard errors were

made for the two data scenarios.

Similar small differences in the performance measures estimated under the two data scenar-

ios were noted for the other component mean distances and component variances σ2 = 2 and

σ2 = 4 (results not shown).

6.3.3 Correctly assuming normality

Assessing the performance of the random intercept logistic model when the assumed and

true random intercepts are normally distributed, not only provides evidence to gauge the per-

formance of the simulation study but assesses inferential impact of correctly assuming normality

in a panel data setting. For component mean distances of zero, correctly assuming normally

distributed random intercepts generally produced consistent estimates, with minimal bias, close

to nominal coverage rates and accurate model based standard errors.

Some minor exceptions include bias in the estimation of β0, with percentage bias ranging

from -11.5% to -14.1% for the three variance components and both data scenarios. This ob-

served bias in β0 may be due to variability of the mean for the simulated true random effect

distribution, that has subsequently been captured by the intercept constant. For the variance

components σ2 = 2 and 4, estimation of β3 resulted in biased estimates of -15.7% (-20.7%)

and -37.1% (-36%) for the complete (MAR missing) data scenario (results not shown). The

observed variability in the coefficient estimates may be a consequence of the small magnitude

of the true coefficient value (-0.1) and the relatively large standard error estimated for the ex-

planatory variable in the HILDA case study as shown in Table 4.32. In terms of coverage rates,

there were marginal deviations from the acceptable performance limits of 93.6% and 96.4% for

two parameters, β1 and σb. For variance components σ2 = 1, 2 and 4, coverage rates for β1

were 92.7% (92.8%), 92.3% (92.8%) and 93.4% (94%) for the complete (MAR missing) data

scenario. Coverage rates for estimating σb were larger than the acceptable upper limit in the

complete data scenario for variance component scenario σ2 = 1 and 2, however were within the

acceptable limits for all variance component scenarios for MAR missing data scenario. Cov-

erage rates of β5 were marginally above the nominal rate for the σ2 = 1 variance component,

however were within acceptable limits for σ2 = 2 and 4 (results not shown). The standard error

ratio was within the acceptable limits of 1± 0.1 for all parameters for both data scenarios and

the three variance scenarios.

2These two contributing factors may indicate high bias in regards to percentage bias, however in absolute
terms the bias for β3 for σ2 = 2 and 4 is only 0.016 (0.021) and 0.037 (0.036) for the complete (MAR missing)
data scenario.
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6.3.4 Simulated attrition rates and mover-stayer scenario

The actual rate of attrition in the 1000 simulated datasets for the 126 scenarios averaged

32.6% (range: 26.4% to 38.3%) and was similar to the observed rate of 29.5% for the HILDA

subgroup of working aged women (Table 4.1). The simulated attrition rates were influenced

by the distance between the component means, with attrition rates averaging 31.4% (range:

26.4% to 36.2%) for component mean distances of zero and increasing to an average of 33.4%

(range: 28.5% to 38.3%) as component mean distance increased to twenty. The attrition rates

for the three variance component scenarios were similar (results not shown).

In the simulation study, the rate of subjects observed to remain unemployed during the 11

waves for the complete and MAR missing data scenarios averaged 13.3% (ranging from 0% to

36.8%) and 16.7% (ranging from 1.1% to 38.2%), respectively. The number of observed stayers

in the unemployed group was influenced by the true random effect distribution, with a higher

proportion continuously unemployed for more extreme distributions. For the complete data

scenario there was a proportion of simulated datasets with no subjects observed to experience

continuous unemployment for component mean distances of 5 or smaller (32%, 28%, 17%, 6%,

0.5%, 0.03% of the 1000 simulated datasets for component mean distances 0, 1, 2, 3, 4 and

5). The rate of subjects staying employed during the 11 waves averaged 51.6% (ranging from

46.2% to 58.1%) for the complete data scenario and 54.5% (ranging from 47.8% to 63.4%) for

the MAR scenario.

Fitting the assumed normal distribution using NLMIXED had excellent convergence rates

of 100% with the exception of one scenario (µ3 − µ1=12, σb=4 and missingness=MAR) with

99.9% convergence.

6.4 Additional simulation studies

Simulation studies may be restricted by the parameters and design of a particular dataset,

or by specific conditions imposed. To assess the reproducibility of the results presented in

the simulation study described above, two additional simulation studies were undertaken to

assess sensitivity to the imposed conditions and the specified random intercept distributions.

The first additional study assesses the impact of misspecified random effects distribution in

a random intercept logistic model applied to simulated data from a randomised clinical trial.

Longitudinal data arising from a clinical trial may differ to longitudinal data arising from panel

surveys in numerous ways, including the number and type of explanatory variables, number

of participants and time-points, and spacing between time-points. By considering the same

true symmetric random intercept distributions, component variance scenarios and missing data

scenarios as in the primary simulation study, the first additional study assesses whether the

results observed in the primary simulation study motivated by the HILDA case study are also
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observed within a clinical trial setting. A second additional study is based on the same HILDA

motivating case study as presented in this chapter, however, instead of fixing the component

variances used to generate the random intercept mixture distribution, the total random effect

variance is fixed at σ2
b = 20, 25, 30 and 35. Thus, the second simulation study aims to assess

whether the fixed component variances used to generate the random intercepts in the primary

study, that consequently varies the total random effect variance, potentially impacts the results

presented in the primary study. More details and the results of the two additional simulation

studies and are presented in Appendix E and Appendix F, and are briefly described in Sections

6.4.1 and 6.4.2.

6.4.1 Simulation study within clinical trial setting

This secondary simulation study generates the same random intercepts as detailed in the

primary study, however data for the random intercept logistic model were generated to rep-

resent repeated binary response data and a treatment effect in a randomised clinical trial.

The simulation study design is similar to the simulation considered previously by Litiére et al.

(2008), and is based on a case study comprising of patient data from a randomised clinical trial

comparing two treatments for chronic schizophrenia over an eight week period.

Details regarding the simulation design are presented in Appendix E.1, and are briefly de-

scribed here. Using a similar simulation study set-up as detailed by Litiére et al. (2008) repeated

binary response data for a total of 1000 patients over six time-points were generated following

initial administration of treatment. The binary data represents the severity of schizophrenia

assessed at six fixed time-points at 0, 1, 2, 4, 6 and 8 weeks, and was generated using a random

intercept logistic model with two explanatory variables: a time-invariant binary variable repre-

senting treatment (randomly allocated with equal probability) and a covariate capturing time

as a continuous variable. The random intercepts were simulated from the same symmetric three

component mixture of normal distributions considered in the primary simulation study, with

mean components ranging from µ3 = 0 to 10 increasing in increments of 0.5, and three variance

component scenarios σ2
1 = σ2

2 = σ2
3 = 1, 2 or 4. As considered in the primary simulation study,

the additional impact of attrition within a misspecified random intercept logistic model was

assessed by considering two missingness scenarios: complete data and attrition following the

missing at random mechanism (assuming a 30% overall attrition rate).

The results are presented in Appendix E.2, though briefly, similar conclusions as in the pri-

mary study are described. The impact of incorrectly assuming normal random intercepts when

the true distribution was a symmetric three component mixture of normals was predominately

restricted to parameters associated with the random effect. The assumed normal distribu-

tion was robust to minor departures from normality, however moderate to severe departures

(µ3 − µ1 > 10) resulted in biased estimates and poor coverage rates for the parameters esti-

mating the intercept constant and random effect standard deviation. Severe misspecification
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(distances > 15) also resulted in biased estimates of the treatment effect and poor coverage

rates of the time effect. The impact of misspecification in regards to bias, coverage rates and

accuracy of model based standard errors were similar in terms of magnitude and trend for the

three variance component scenarios. Similarly, misspecification in the presence of missing data

due to MAR attrition was similar to that reported for the complete data. The results from this

secondary simulation study are consistent with the results identified in the primary simulation

study. This suggests that the impact of misspecification within a clinical trial context is similar

to the results within a panel survey setting.

6.4.2 Simulation study within panel survey setting: considering fixed total

random effect variance

One potential limitation of the primary simulation study is that the trends observed for

the increasing variance components may be confounded by the consequential increasing total

random effect variance. To investigate the potential impact, an additional simulation study

considered the same panel survey setting motivated by the HILDA case study and the same

random intercept distribution as considered by the primary study. However, by altering the

component variances, this secondary simulation study fixes the total random effect variance at

σ2
b = 20, 25, 30 and 35. Details regarding the simulation design are presented in Appendix F,

though briefly, by using the same methodology described in this chapter, random intercepts

were simulated as a symmetric three component mixture of normal distributions. However, the

mean components were restricted to range from µ3 = 0 to 5 increasing in increments of 0.5.

This restriction was imposed as higher values of µ3 would generate higher σ2
b values than the 20

to 35 considered in this study. Simulations were performed under two missing data scenarios:

complete data and incomplete data due to attrition. As in the primary simulation, attrition

was assumed to be generated by the MAR mechanism with similar wave-to-wave attrition rates

observed in the HILDA case study.

The results are described in further detail in Appendix F, though briefly, the results of the

secondary simulation complement the results presented in the primary study (for comparable

mean component distances). The simulated random intercepts considered in the secondary

simulation were not as extreme as the multimodal distributions considered in the primary sim-

ulation (as shown in Figure F.1). Consequently, assuming normality had a minimal impact

on the interpretation of the fitted model for small departures from normality. Generally the

impact of misspecification was restricted to the terms associated with the misspecified random

intercept distribution (i.e. β0 and σb). With the exception of the intercept constant and the

covariate relating to single women (β3), misspecification resulted in unbiased estimation of the

fixed effect parameters and σb. Excellent coverage rates and accurate model based standard

errors were produced for all parameters, with the exception of σb. The magnitude and trends

in the performance measures were similar for the four total random effect variances, with some

deviations in the trend for coverage and standard error ratio for smaller total random effect
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variances, corresponding to the largest departures from normality. The impact of misspecifica-

tion in the presence of missing data due to MAR attrition was similar to that in the complete

data. Therefore, the negligible impact of incorrectly assuming normality identified in this addi-

tional simulation study is similar to minor to moderate deviations from the assumed normality

considered in the primary simulation study. Thus, these results suggest that the varying to-

tal random intercept variance does not subsequently interact with the impact of misspecified

random intercept distributions.

6.5 Discussion

The primary simulation study investigates the impact of incorrectly assuming normally dis-

tributed random effects in random intercept logistic models applied to panel data, when the true

distribution is a symmetric three component mixture of normals. In practice the random effects

of generalised linear mixed models are commonly assumed to be Gaussian distributed, however

as identified in the HILDA case study (Chapter 4) multimodality may exist. By considering a

range of finite mixture distributions with increasing component mean distances, this simulation

study provides a novel insight into the impact of misspecifying symmetric multimodal distribu-

tions and identifying scenarios when misspecification impacts maximum likelihood estimation.

This simulation study also investigates the additional impact of attrition within a panel survey

application, by considering a similar attrition rate of 29.5% observed in the HILDA case study

(Chapter 4).

The assumed normal distribution was robust to minor and moderate deviations of the true

distribution from normality. However, as the true random intercept distribution departed sub-

stantially from normality (i.e. small component variances and larger mean distances), misspeci-

fication impacted maximum likelihood estimation of fixed and random effects. Misspecification

resulted in biased estimates and poor coverage rates for parameters relating to the random

effect distribution and time-invariant fixed effects, and produced inaccurate standard errors

when estimating the random effect variability. Misspecification in the presence of MAR attri-

tion resulted in similar magnitude and trends of bias, coverage and standard errors as for the

complete data scenario.

The impact of incorrectly assuming normal random intercepts when the true random in-

tercept is a symmetric three component mixture of normal distributions generally resulted in

minimal impact on the fixed effect coefficients. For larger departures from the assumed normal

distribution (component mean distances exceeding 12), misspecifying the random intercept

distribution resulted in biased estimates and poor coverage rates for the intercept constant

(β0) and for parameters of the time-invariant explanatory variables β4 and β5. These results

are consistent with previous literature, whereby estimation of the intercept constant and time-

invariant covariate effects is vulnerable to distributional misspecification of the random intercept

(Neuhaus et al., 1992; McCulloch and Neuhaus, 2011a). Modest bias and loss of efficiency of
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time-invariant covariates have been reported for true distributions far from the assumed dis-

tribution (Agresti et al., 2004; Litiére et al., 2007, 2008) and large random effect variability

(Litiére et al., 2008). With the exception of β3, estimation of the time-varying explanatory

variables (β1, β2, β3, β6 and β7) was generally robust to random effect misspecification, as re-

ported elsewhere (Neuhaus et al., 1992; Heagerty and Kurland, 2001; McCulloch and Neuhaus,

2011a). The parameter β3 was consistently underestimated and negatively biased, however the

bias may partly be explained by the large standard error of the true coefficient and the small

magnitude of the true coefficient. Additionally, the bias may partly be explained by the stable

nature of the explanatory variable, such that it is almost time-invariant. Of the 1396 women

with Complete Case data, only 71 (5.1%) of women transitioned at least once from being sin-

gle into a different marital status category (of whom 52 only transition once). Thus, even if

the explanatory variable capturing women being single or never married is time-varying, the

within-subject variability in the explanatory variable may influence the impact of incorrectly

assuming normality.

Estimation and inference of the variability of the random intercept (σb) were severely im-

pacted by misspecifying the assumed random effect distribution. For moderate to severe de-

partures from normality characterised by distinct multimodality (component mean distances

exceeding 8), assuming normal random intercepts resulted in seriously biased estimates of the

variance component σb with extremely poor coverage rates and inaccurate model based stan-

dard errors. These findings are consistent with previous literature, suggesting that estimation

of the variance component is sensitive to misspecification (i.e. Litiére et al. 2008; McCulloch

and Neuhaus 2011a). Furthermore, as reported by Litiére et al. (2008), larger true random

intercept variances (corresponding to the larger component mean distances) resulted in larger

bias in the estimation of the variance component. The accuracy of the model based standard

errors for σb fluctuated above and below the acceptable limits. These fluctuations coincide

with the varying and skewed sampling distributions of the model based standard errors and

the exponentially increasing empirical standard error estimates (results not shown). Arguably

estimates of the variance component are often not of primary inferential interest (McCulloch

and Neuhaus, 2011a). However it is the only estimate of the true random effect variability

(Litiére et al., 2008) and is commonly used to estimate alternative summary measures of the

unobserved between-subject variability such as the intra-class correlation3. Biased estimation

of the variance components can subsequently impact the prediction and accuracy of best pre-

dicted random effect values (McCulloch and Neuhaus, 2011b). These results suggest that if

the random intercept distribution is suspected to be multimodal with moderate to extreme

departures from normality, caution should be exercised in interpreting estimates of the random

effect variability or complementary summary measures.

3However, as detailed in Section 3.1.1, the variance of the residual error in a random intercept logistic model

is fixed to π2

3 . Therefore, the bias in the ICC is expected to be minimal unless the true random effect variability
is small and the bias of the variance component is large. For the scenarios considered here, the bias of the ICC
is between 0% and 5% (i.e. for σ2 = 1: ICC bias= 2%, 0%, 3%, 5% and 4% for component mean distances of
0, 5, 10, 15 and 20).
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In the presence of MAR attrition, the impact of misspecifying the random intercept distri-

bution resulted in similar magnitudes and trends in the performance measures as observed in

the Complete Case data scenario. The minimal additional impact of MAR attrition is similar

to the results observed for the asymmetrical random effects considered in Chapter 5. These re-

sults are consistent with the findings of Wang (2010), whereby there was no interaction between

misspecified bivariate random effect distribution and attrition on the bias or mean-squared er-

ror of the estimated parameters and standard errors. Unlike Wang (2010) who considered two

missingness patterns (intermittent missing and attrition), two missing mechanisms (MCAR and

MAR) and three missingness rates (10%, 20% and 30%), this simulation study has only consid-

ered one attrition rate, one missingness pattern and one missing mechanism. Further research

considering other attrition rates, types and mechanisms of missingness is required, particularly

in the potentially realistic MNAR scenario.

Previous simulation studies investigating the impact of misspecification have considered

a relatively small number of true random effect distributions, predominately focused on uni-

modal or bimodal distributions. Furthermore, no previous literature has considered a variety

of the same family of distributions ranging in departures from normality. The simulation study

presented in this chapter has focused on symmetrical three component mixture of normal dis-

tributions, considering 21 different mean components and three component variances. Some of

the scenarios considered were extreme, with simulated random intercepts having total random

effect variances that may be unrealistic in practice (McCulloch and Neuhaus, 2011a). Further-

more, the restriction of equal mixing proportions and component variances used to generate the

symmetrical random intercept distributions are potentially unrealistic representation of under-

lying heterogeneity. However, the aim was to identify scenarios where misspecification of the

random intercept distribution impacted interpretation. Maximum likelihood estimates were

impacted for component mean distances exceeding 10, which corresponds to one of the first

scenarios where the true random effect is distinctly multimodal. Consistent with previous find-

ings, as the departure from the assumed normal distribution becomes more severe, the greater

the impact on inference. This was particularly true for parameters related to the misspecified

random effect and the time-invariant explanatory variables.

As for the asymmetrical multimodal distribution simulated in Chapter 5, incorrectly as-

suming normality when the random intercepts were a symmetrical three component mixture

of normals predominately impacted parameters associated with the random effect distribu-

tion. For random intercepts with similar total variances to the asymmetrical random intercept

distribution identified in the motivating example in Chapter 4 and considered in Chapter 5,

symmetric distribution with component means distances of 7 to 9, resulted in similar impact

as the asymmetrical mixture of normals simulated in Chapter 5. That is, marginally biased

estimation of β0 and β3, and poor coverage rates and inaccurate standard errors when esti-
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mating σb. Therefore, regardless of the symmetric or asymmetric multimodal distributions,

incorrectly assuming normal random intercepts when the random intercept was trimodal with

total random effect variances ranging between 9 to 18 (see Table 6.1 corresponding to µ3 − µ1

in the range 7 to 9) resulted in similar inferential impact as observed in Chapter 5.

As detailed in Chapter 2, literature assessing the impact of misspecified random effect dis-

tributions has predominately been within applications to clinical trials and biomedical settings

(e.g. Litiére et al. 2008; Neuhaus and McCulloch 2011; Heagerty and Kurland 2001). Within

the biomedical settings, the simulation studies generally consider a small number of explana-

tory variables, primarily focusing on the intercept, a time effect and a treatment effect (e.g.

Litiére et al. 2008). More explanatory variables including within- and between-cluster covariates

(Neuhaus and McCulloch, 2011; Heagerty and Kurland, 2001) and interactions (Heagerty and

Kurland, 2001) have been considered. However there has been limited literature considering

situations within panel survey data, whereby adjustments for numerous explanatory variables

would often be included in GLMMs. The simulation studies presented in Chapter 5 and in this

chapter provide a novel insight into the impact of misspecified random intercept distribution in

these more realistic scenarios of including time-varying and time-constant explanatory variables

within a panel survey setting.

The results of simulation studies may be restricted to the particular setting imposed. To

ensure that the results observed in the primary simulation study were not restricted to the

HILDA case study, an additional simulation study within a clinical trial setting was considered

as detailed in Appendix E. Albeit the smaller number of explanatory variables, and hence,

variability of the random intercepts, the impact of misspecification within a clinical trial con-

text was similar to the results within a panel survey setting (Appendix E). Furthermore, the

primary simulation study has a large number of varying factors, including the differing total

random effect variance for all scenarios (as highlighted in Table 6.1). The differing total random

effect variance may subsequently impact the results, as comparisons may be confounded by the

increasing total random effect variance. However, the additional secondary simulation study

presented in Appendix F with fixed total variances (σ2
b = 20, 25, 30 and 35) suggests that the

varying total random intercept variance in the primary study does not interact with the impact

of incorrectly assuming normality.

In summary, the results from the primary simulation study suggest that the assumed nor-

mality in random intercept logistic models is robust to minor deviations from the shape of

normality. However, when the true distribution is a symmetrical three component mixture of

normals, severe departures from the assumed normal random intercept distribution can impact

inference of maximum likelihood. Particularly when multimodality of the true random intercept

can be observed in the form of distinct modes, distributional misspecification resulted in bias,

lower coverage rates and inaccurate model based standard errors. The impact of misspecification

118



was generally restricted to parameters associated with the random effect distribution and time-

invariant explanatory variables. Unlike the bias and poor coverage rates produced for the effects

of time-invariant explanatory variables, estimation of the effects of time-varying explanatory

variables was generally robust to misspecification. However, even if the explanatory variable is

time-varying, it appears that the degree of within-subject variability of the explanatory variable

can also influence the impact of misspecification (i.e. bias observed for the parameter capturing

the effect of single women compared to married women, β3). The primary simulation study

considered a variety of true distributions, with varying component mean distances and compo-

nent variances. The different component variances (σ2 = 1, 2, 4) produced similar results, with

the most severe impact of misspecification corresponding to the most extreme distributions (i.e.

large component mean distances and smaller component variances). As observed in Chapter 5,

the presence of MAR attrition resulted in minimal additional impact on maximum likelihood

estimation of the model parameters. Estimates of the fixed effects parameters, typically the

parameters of interest, were generally robust to small or moderate departures from the assumed

normal distribution. However, for time-invariant explanatory variables and parameters related

to the misspecified random effect, caution in regards to inferential conclusions should be ex-

ercised when the random intercept distribution is suspected to be trimodal with distinct modes.

The impact of potential misspecification of the random effects distribution can be min-

imised by increasing the flexibility of modelling the random effects. Flexible methods do not

directly assess misspecification, though they can be used as a form of sensitivity analyses to

help identify potential misspecification (Agresti et al., 2004). Approaches relaxing the para-

metric assumption of the random effects in GLMMs include using finite mixtures of normal

distributions (Magder and Zeger, 1996; Verbeke and Lesaffre, 1996) or penalised Gaussian mix-

tures (Komarek and Lesaffre, 2008). Alternatively, the random effects can be approximated

using non-parametric (Laird, 1978; Heckman and Singer, 1984; Aitkin, 1999; Lesperance et al.,

2014) or semi-parametric techniques (Chen et al., 2002; Vock et al., 2014). In the next Chapter,

a novel application of the Vertex Exchange Method (VEM) is implemented to flexibly model

the random effects distribution. The proposed method utilises non-parametric maximum like-

lihood to simultaneously estimate the random effects and the coefficients of the fixed effects

in logistic mixed models. The performance of the proposed method is assessed by applying

the methodology to the HILDA case study considered in Chapter 4, and will be compared to

a selection of existing flexible random effect methods within a sensitivity analysis framework.

The sensitivity analyses presented in Chapter 7 will provide a novel comparison and assess the

practicality of flexibly modelling the random effect distribution in logistic mixed effect models

applied to panel survey data, including in the presence of attrition.

119



7 Vertex Exchange Method to flexibly model random

effect distributions in logistic mixed models

7.1 Introduction

In many practical applications the assumption of Gaussian distributed random effects in

GLMMs may be too restrictive and may not appropriately capture the latent heterogeneity

(Vock et al., 2014). The application of the random intercept logistic model in Chapter 4 pro-

vides an example whereby the assumed normal distribution may not adequately capture the

heterogeneity in a potential underlying mover-stayer scenario. As shown in Chapters 5 and 6,

maximum likelihood estimation of GLMMs may not be consistent if the random effect den-

sity is substantially misspecified. Estimation of intercept constant and variance components

was consistently biased, had poor coverage rates and, for the variance components, had in-

accurate standard errors. This can subsequently impact inference of the magnitude of the

between-individual variability of not only the individuals in the HILDA analysis, but also in

the population of working aged women in Australia (McCulloch et al., 2008). Furthermore, it

can impact the efficiency of individual-specific predictions of response profiles (McCulloch and

Neuhaus, 2011b). For large departures from normality, inference of parameters capturing the

effects of time-invariant explanatory variables was impacted by biased estimation and poor cov-

erage rates. To help guard against the impact of misspecifying the random effect distribution,

the parametric normality assumption can be relaxed by increasing flexibility of the assumed

distribution. In the application considered in Chapter 4, modelling the random intercepts as

a three component mixture of normal distributions provided a better fit than the assumed

normal distribution. However, it is unclear whether three components sufficiently captures the

potential latent mover-stayer scenario. Finite mixtures of normal distributions are extremely

flexible, however, other methods may more adequately capture the potentially extreme under-

lying heterogeneity of the latent mover-stayer scenario.

As reviewed in Section 2.7.1, a suite of methodology is available to relax the assumption

of Gaussian distributed random effects in GLMMs. Efficient methods have been developed to

fit GLMMs with flexible, parametric classes of random effect densities including, the class of

t-distributions (Lee and Thompson, 2008) and skew extensions of the t-distribution or normal

distributions (Ho and Lin, 2010). However, the parametric classes are generally not flexible

enough to capture multimodal densities, and the potential sub-population structure of the
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mover-stayer scenario. Alternatively, flexibility may be achieved by assuming that the random

effects belong to a smooth class of densities represented by the semi-non-parametric (SNP)

formulation of Gallant and Nychka (1987). Approaches that utilise the SNP class of densities

to fit random effects in GLMMs (Chen et al., 2002; Vock et al., 2014) are sufficiently flexible

to capture a range of densities including skewed, multimodal, and thick- or thin-tailed den-

sities, and hence, may be appropriate to capture underlying sub-populations. An approach

that allows a large degree of flexibility is to leave the random effects distribution completely

unspecified by modelling the random effects non-parametrically. Computational approaches

to obtain the non-parametric maximum likelihood (NPML) estimator of the random effects

distribution have been proposed (Laird, 1978; Aitkin, 1999; Follmann and Lambert, 1989; Les-

perance and Kalbfleisch, 1992; Heckman and Singer, 1984; Rabe-Hesketh et al., 2003; Wang,

2010a), and result in a discrete distribution on a finite number of support points (Lindsay,

1983). To overcome the discreteness of NPML estimators, smooth non-parametric maximum

likelihood (SNPML) estimators resulting in a continuous density have been proposed, whereby

the smoothing is obtained using finite mixtures of Gaussian distributions (Magder and Zeger,

1996), kernel methods (Knott and Tzamourani, 2007) or methods using a predictive recursive

algorithm (Tao et al., 1999), however, the degree of smoothness is often arbitrary.

As highlighted above, many methods are available to increase the flexibility of the assumed

random effect distribution. However the performance of these methods within the context of

capturing the latent heterogeneity of potential mover-stayer scenarios is limited. The choice of

the appropriate approach may be dependent on the goal of analysis (Vock et al., 2014). For

example, a commonly stated disadvantage of non-parametric approaches is that the discrete

approximation with a finite number of support points may not provide adequate insight into

the true data generating mechanism (Vock et al., 2014). However, estimation of the random

effect density may not be of primary interest, in which case non-parametric approaches may be

appropriate (Vock et al., 2014). The primary aim of this study is to induce sufficient flexibility

of the assumed random effects distribution to help protect against potential distributional mis-

specification of the random effects, rather than estimate the random effects distribution. This

chapter investigates NPML estimation in GLMMs as an appropriate modelling strategy for po-

tential mover-stayer scenarios in panel survey data, considering both univariate and bivariate

random effects.

The aim of NPML estimation in GLMMs is to simultaneously find maximum likelihood

estimates of the parameter coefficients and the random effect distribution, i.e., the number of

support points, and their corresponding location and probability weights. To obtain the NPML

estimator of the random effects distribution, the optimal number of support points needs to be

determined. One approach is to start with a large grid of support points and within an iterative

procedure either merge or omit support points as determined by directional derivative-based
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algorithms1 (Butler and Louis, 1992; Lesperance and Kalbfleisch, 1992; Tsonaka et al., 2009;

Baghfalaki and Ganjali, 2014; Lesperance et al., 2014). Alternatively, approaches can start with

a single support point and subsequently incorporate additional support points one by one as

determined by the directional derivative (Heckman and Singer, 1984; Follmann and Lambert,

1989; Rabe-Hesketh et al., 2003). The EM algorithm is often used to maximise the likelihood

for a given number of support points, either within the iterative procedure (Follmann and Lam-

bert, 1989), or considering the number of support points as unknown but fixed, and fitting a

number of models with varying numbers of support points (Aitkin, 1999).

A limited number of non-parametric computational approaches are available to fit GLMMs

with multiple random effects. Lesperance et al. (2014) propose an algorithm to compute the

NPML estimate of logistic mixed models with bivariate random effects. Their proposed Direct

Search Directional Derivative (DSDD) approach uses a direct search method (Torczon, 1991)

to identify maxima of the gradient function to include as support points, and estimates the

mixing proportions using the constrained Newton method proposed by Wang (2007). Within a

similar context to GLMMs, Tsonaka et al. (2009) applied the Vertex Exchange Method (VEM)

of Böhning (1985) to estimate the unspecified distribution of the multivariate random effects

shared between the response and missingness sub-models in a shared parameter model. The

VEM is a directional derivative based-algorithm that, for a fixed grid of support points, ex-

changes probability weight from a ‘bad’ support to a ‘good’ support in an iterative process.

In the context of linear mixed models with bivariate random effects, Baghfalaki and Ganjali

(2014) recently proposed an algorithm that is faster than the traditional VEM by updating

the probability weights for all grid points in each iteration. An advantage of the VEM ap-

proach is the simplicity and applicability in the specification of the random effects distribution

(Baghfalaki and Ganjali, 2014). However, application of the traditional VEM to flexibly model

multiple random effects in GLMMs has yet to be utilised.

In this chapter, we apply the VEM (Böhning, 1985) to fit univariate and bivariate random

effects in binary logistic mixed effects models. We consider the performance of flexibly mod-

elling the random effects non-parametrically when applied to panel survey data. The VEM

is applied to the HILDA case study considered in Chapter 4 to analyse women’s employment

participation over eleven waves of the HILDA survey. We extend the random intercept logistic

model applied in Chapter 4 to the bivariate random effect scenario, considering both random

intercepts and random slopes.

To assess the performance of the VEM, we compare the fit of the VEM approach to five

alternative flexible approaches currently available and implemented in standard software. These

comparisons within a sensitivity framework provide evidence of the practicality of available

methods when applied to panel survey data, in addition to potential mover-stayer scenarios.

1The directional derivative has also been referred to as the Gateaux derivative by Heckman and Singer
(1984), and subsequently by Rabe-Hesketh et al. (2003).
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As highlighted in Chapter 4, the focus is not to quantify or address the potential latent mover-

stayer scenario. The focus is to assess the appropriateness of flexibly modelling the assumed

random effects distribution in panel data to relax the parametric assumption and help protect

against the impact of misspecifying the random effect density.

7.2 Non-parametric estimation of the logistic mixed effects model

This section focuses on non-parametric estimation of the logistic mixed model, whereby the

distribution of the random effects is left completely unspecified. Specifically, non-parametric

estimation of this model assumes that the random effects distribution is discrete with unknown

number of support points. This section details an approach using the Vertex Exchange Method

of Böhning (1985) to maximise the log-likelihood with respect to the random effects distribution.

It begins by introducing the statistical framework (Section 7.2.1) and describing non-parametric

estimation of the random effects distribution in GLMMs (Section 7.2.2). This is followed by

Section 7.2.3, where the optimisation procedure to estimate the random effects distribution

using the Vertex Exchange Method is outlined.

7.2.1 Statistical framework

Following the statistical notation presented in Section 3.1, let yij denote the response for

individual i(i = 1, ..., N) at time j(j = 1, ...ni). We restrict our attention to the two-level logistic

mixed effects model and consider an alternative parameterisation to the model considered in

Section 3.1, such that,

logit(Pr(yij = 1)) = xij
′β(1) + zij

′(β(2) + bi) (7.1)

where xij is jth row of the design matrix xi for the f covariates with no random effect compo-

nent, zij is the jth row of the design matrix zi for the q covariates with both fixed and random

components, and bi is the q-dimensional vector of random effects. In this parameterisation of

the model, the β(1) and β(2) denote the f− and q-dimensional vector of regression coefficients

corresponding to xi and zi respectively. This alternative parameterisation enables the random

effects distribution not to be restricted to have zero mean, that will subsequently be utilised in

the estimation of β(2).

7.2.2 Non-parametric estimation

Non-parametric estimation of a GLMM implies no parametric distributional assumptions

are made for the random effects. Hence, the bi are completely unspecified and it is assumed

that bi ∼ G with G ∈ ΩM , where ΩM is the set of all distributional functions on the parameter

space M of bi. The marginal density of yi is given by

f(yi|G,θ) =

∫
ΩM

f(yi|bi,θ)dG(bi) (7.2)
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where θ = (β(1),β(2)) is the parameter vector. The random effect distribution G can be either

a continuous or discrete distribution. However, it has been shown that the non-parametric

maximum likelihood estimate (NPMLE) of the unspecified G is a discrete distribution with

finite support (i.e. at most C ≤ N support points) (Laird, 1978; Lindsay, 1983). Therefore, G

is a discrete distribution and thus, ΩM is reduced to a set of discrete distributions such that

the marginal density is given by

f(yi|G,θ) =
C∑
c=1

πcf(yi|µc,θ) for C ≤ N (7.3)

where µ = (µ1, ...,µC) are the support points in the q−dimensions and π = (π1, ..., πC) are

the corresponding weights of the discrete distribution, G.

7.2.3 Non-parametric estimation using the Vertex Exchange Method to

estimate the random effects distribution

The following optimisation procedure uses the Vertex Exchange Method of Böhning (1985)

to non-parametrically estimate the unspecified random effects distribution in a GLMM. The

optimisation procedure was originally described by Tsonaka et al. (2009) to estimate shared

parameter models with unspecified random effects, and as detailed further below, this study

adapts the procedure to estimate the random effects distribution in a logistic mixed model.

The optimisation requires an iterative two step procedure. In the first step, for θ fixed at its

current estimate (θ̂), G is estimated using the Vertex Exchange Method. In the second step, θ̂

is updated by maximising the profile likelihood at the estimated Ĝ from the first step by using

the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm (Nocedal and Wright, 2006).

These two steps are repeated in an iterative process until convergence is reached.

The Vertex Exchange Method (VEM) algorithm is detailed in Section 3.2.3.2, and will be

briefly described here. Consider the random effects to be located within a fixed q-dimensional

grid of support points, µ1, ...,µC (for C ≤ N), such that each of the q dimensions of the ran-

dom effects consists of K equally spaced and equally weighted support points (i.e C = Kq).

The VEM algorithm is based on the directional derivative to iteratively exchange probabil-

ity weight from a ‘bad’ support point to a ‘good’ support point. The grid of support points,

and thus the locations µ1, ...,µC , are kept fixed throughout the estimation procedure, such

that only the corresponding weights π1, ..., πC are updated. Originally, the VEM was utilised

within a two phase procedure to obtain the NPMLE (Böhning, 1999), whereby the locations

of the VEM estimate (Phase 1) were updated using the EM algorithm (Phase 2). However,

as the EM algorithm has minimal additional improvement to the model fit (Böhning, 1999),

the random effects distribution can be estimated using only the VEM step (Tsonaka et al.,

2009). By considering a very dense grid of support points for µ, the resulting estimated dis-

tribution derived by the VEM will provide an approximate NPMLE of G (Tsonaka et al., 2009).
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Therefore, the choice of the range of the grid and the number of support points may impact

the performance of the VEM algorithm to adequately approximate the NPMLE. Following the

methodology of Tsonaka et al. (2009), the range of the grid is based on the scaled random

effect, bi
∗ = Ŝb

−1
bi, where Ŝb is the estimated Cholesky decomposition of the random effects

covariance matrix corresponding to the GLMM assuming q-dimensional multivariate normally

distributed random effects. The q-dimensional grid for bi
∗ is defined by [−v, v]q, where v is

selected to be large enough not to be affected by boundary issues (i.e. such that the resulting

solution does not have support points located at −v and/or v in any of the q-dimensions).

Tsonaka et al. (2009) suggest that v values of 4 or 5 should be sufficient, however, if the result-

ing solution has support at the boundaries then the models should be refit with larger values

of v (i.e. a wider range). Empirical Bayes predictions of the random effects were calculated as

the grid-point corresponding to the maximum posterior probability, i.e. as the posterior mode.

Implementation of the estimation procedure requires initial values for the parameters (θ0)

and the weights of the support points (π0) to be specified. As suggested by Tsonaka et al.

(2009), the initial values for the model coefficients, θ0 = (β0(1),β0(2)) are set to be the es-

timated coefficients corresponding to a logistic mixed effects model assuming q−dimensional

multivariate normal random effects. As previously mentioned, the initial grid for the random

effects is fixed and assumes that the support points are equally spaced and equally weighted.

Therefore, the weights for each of the C support points, π0
c , are set to 1/C. In regards to the

second step of the optimisation procedure, to avoid identifiability issues, estimation of θ in the

second step is restricted to parameters with no random effect component, i.e. β(1). By utilising

the constraint that the mean of the random effects is zero (i.e.
∑C

c=1 πcµc = 0), the coefficients

of β(2) are fixed at the initial values (β0(2)) during the optimisation procedure and after model

convergence are updated by ˆβ(2) = β0(2) +
∑C

c=1 π̂cµ
′
c.

7.3 Statistical models and flexible random effect methodology

applied to the HILDA case study

The VEM approach to estimate random effect logistic models with an unspecified random

effect distribution is illustrated in an application to analyse employment participation in the

HILDA panel survey. To demonstrate the applicability of the approach, the VEM algorithm

is applied to estimate univariate and bivariate random effect logistic models. The performance

of the VEM approach is compared to other approaches to flexibly model the random effects.

Details of the application and the statistical methodology of alternative approaches applied to

logistic models with univariate and bivariate random effects are presented in Sections 7.3.1 and

7.3.2, respectively.
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7.3.1 Random intercept logistic model

The VEM approach was applied to the case study considered in Chapter 4. The same

random intercept logistic model as detailed in Equation 4.1 was used to analyse employment

participation of working aged women over 11 waves of the HILDA survey.

The model in Equation 4.1 was fitted assuming an unspecified random intercept distribution

and estimated using the VEM approach. Initial values for the coefficient estimates (both β(1)

and β(2)) were obtained from a random intercept logistic model assuming normally distributed

random effects. The initial grid of support points consisted of 301 grid-points with the range

based on the Cholesky decomposition of ±5 standard deviations of the assumed normal density

(i.e. b∗0i ∈ [−5, 5]). The VEM procedure reaches convergence when the stopping criteria for

the log-likelihood function (Section 3.2.3.2) between two consecutive iterations less than 10−7,

and when the maximum directional derivative over the grid of support points is less than 10−3

(Tsonaka et al., 2009). The VEM algorithm was implemented in R (R Version 3.0.2) using

syntax developed by Dr. Tsonaka (see Section 3.2.3.2 for details).

As part of assessing the performance of the proposed VEM approach, inference for the

VEM model was compared to the following methods: (i) logistic model assuming normal ran-

dom intercepts, (ii) logistic model assuming three component mixture of normal distributions,

(iii) the semi-non-parametric non-linear mixed model (SNP-NLMM) of Vock et al. (2014),

(iv) the logistic model with endpoints approach of Berridge and Crouchley (2011b) and (v)

non-parametric maximum likelihood estimation (NPMLE) derived using the Gateaux method

(NPMLE-Gateaux) as described by Rabe-Hesketh et al. (2003). The same random intercept

logistic model in Equation 4.1 was estimated by the aforementioned approaches.

The methods (ii) to (v) relax the Gaussian assumption into more general and flexible dis-

tributions, or in the case of the VEM and the NPMLE-Gateaux leave the random effect dis-

tribution completely unspecified. The methodologies of the flexible random effect approaches

are detailed in Section 3.2. Briefly, the SNP-NLMM approach assumes the random effects fol-

low a smooth density that can be represented by the semi-non-parametric method by Gallant

and Nychka (1987). The SNP representation does not cover all continuous densities, however

it is flexible enough to capture a variety of distributions including multimodal distributions

(Vock et al., 2014). The logistic model with endpoints has been developed by Berridge and

Crouchley (2011b) to identify stayers in a latent mover-stayer model. The logistic model as-

sumes that the latent stayers can be represented by random intercept values of negative and

positive infinity, whilst the movers are assumed to have normal distributed random intercepts.

The latent mover-stayer model is not restricted to the two types of stayers (i.e. always staying

in y = 0 or always staying in y = 1), and can also account for only one type of stayer by

incorporating one endpoint (at either −∞ or +∞ respectively). The NPML estimate derived

by the Gateaux method, is a non-parametric approach that utilises the directional derivative
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to increase the number of support points one at a time until the largest maximized likelihood

is achieved (Rabe-Hesketh et al., 2003).

The assumed normal distribution and three component mixture of normal distributions for

the random intercepts were implemented in SAS (Version 9.4, SAS Institute, Cary NC) using

adaptive quadrature. As detailed in Section 4.3, random intercept logistic models assuming

normality were estimated using 20 quadrature points, and the model assuming three component

mixture of normals was estimated using 54 or 61 quadrature points for the women with complete

case or monotone missing data, respectively. The SNP NLMM method was implemented in

SAS using the syntax developed by Vock et al. (2014). The SNP NLMM was fit using adaptive

Gaussian quadrature and 51 quadrature points, with the random effect density estimated based

on 20 grid points. As suggested by Vock et al. (2014) and detailed in Section 3.2.2, a maximum

smoothness parameter of four knots (Kmax = 4) was selected for the univariate random effects.

The number of knots corresponding to the optimal SNP model (i.e. either K = 0, 1, 2, 3 or

4), was selected using the Akaike information criterion (AIC). The logistic models with one or

two endpoints at negative and/or positive infinity were implemented in the R-package sabreR

(Crouchley, 2007) (R Version 2.08). The logistic model with one endpoint was estimated

based on non-adaptive quadrature and 24 quadrature points, and the logistic model with two

endpoints was based on adaptive quadrature and 6 quadrature points. The NPMLE-Gateaux

was implemented in STATA (Version 13.1, StataCorp, College Station TX) using the GLLAMM

procedure, with the initial model having one support point. At the completion of each model fit

with M support points, the Gateaux method assessed for additional support points within a grid

of 30 points ranging between ±5 standard deviations of the assumed normal random intercept

distribution. If the directional derivative exceeded 10−5 at any location within the specified

grid, a new support point was introduced (Rabe-Hesketh et al., 2003). This was estimated using

the previous model estimates as initial starting values and the additional support point at the

location corresponding to the greatest increase in likelihood. All analyses were performed for

both subgroups of women: the 1359 women with complete case data (Complete Cases) and the

1927 women with monotone missing data (Monotone Missing).

7.3.2 Random intercept and random slope logistic model

In many practical applications, GLMMs with only a random intercept may be too simple

to appropriately capture the heterogeneity. For longitudinal data it is often appropriate to

consider a GLMM with random intercepts and random slopes. To investigate the practicality

of using the VEM approach to estimate bivariate random effects, a logistic mixed model with

random intercepts and a random time effect is considered to model employment participation

in the HILDA case study.

Extending Equation 4.1 to incorporate a random intercept and a random slope requires the

time-varying age covariate in Equation 4.1 to be separated into two components: the time-
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invariant term, age at first wave, and a time-varying term, wave. Therefore, the time-effect

considered in this model is the wave of the HILDA panel survey. To aid interpretation of initial

time, the two age components were transformed to begin at zero. The transformations were

obtained by subtracting 1 from the wave of the HILDA survey and by subtracting 30 (the mini-

mum age at baseline) from the reported age at first wave, such that Waveij = 0, 1, 2, ..., 10 and

AgeBaselinei has values between 0 and 15. Furthermore, to avoid numerical and convergence

issues, and to ensure the coefficients of the time components were of similar magnitude to the

other model coefficients, the time components were again transformed by dividing each term

by 10 such that Wij = Waveij/10 and Ai = AgeBaselinei/10. The following logistic mixed

model is used to model employment participation of working aged women over the 11 waves of

HILDA:

logit[Pr(yij = 1|bi)] = (β0 + b0i) + (β1 + b1i)Wij + βAAi + β2x2ij +

β3x3ij + β4x4i + β5x5i + β6x6ij + β7x7ij (7.4)

where b0i and β0 are the random intercept and fixed constant coefficient, b1i and β1 are the ran-

dom slope and fixed slope coefficient corresponding to the wave term (Wij), βA is the coefficient

relating to the age at baseline covariate (Ai), and β2 to β7 are the corresponding parameter

coefficients of the fixed parameters x2ij to x7ij as defined in Section 4.2.

The model in Equation 7.4 was fitted to the HILDA case study assuming the distribution

of the random effects bi = (b0i, b1i)
′ was completely unspecified. Estimation of the model was

obtained using the VEM algorithm with the initial grid of support points for the random effects

consisting of 31 grid-points in each dimension and the range based on the scaled random effect

bi
∗ ∈ [−5, 5]× [−5, 5] using the Cholesky decomposition of the corresponding model assuming

bivariate normal random effects (Ŝb). The VEM procedure reaches convergence when the stop-

ping criteria for the log-likelihood function (Section 3.2.3.2) between two consecutive iterations

less than 10−7, and when the maximum directional derivative over the grid of support points is

less than 10−3 (Tsonaka et al., 2009). The VEM algorithm was implemented in R (R Version

3.0.2) using syntax that has extended the work from Dr. Tsonaka to estimate bivariate distri-

butions (see Section 3.2.3.2 for details).

The performance of the VEM approach to estimate the logistic mixed model with bivari-

ate random effects was compared to inferences for the parameters in the equivalent logistic

mixed model estimated using other approaches to flexibly model the random effects distri-

bution. However, not all the flexible approaches considered in the random intercept logistic

model extend to bivariate random effects. The logistic model with endpoints (Berridge and

Crouchley, 2011b) is only applicable to the univariate random effect scenario. Therefore the

performance of the VEM approach is compared to the following logistic mixed effect models

assuming the random effects are distributed as a: (i) bivariate normal, (ii) three component
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mixture of bivariate Gaussian distributions2, (iii) bivariate SNP density, and (iv) unspecified

bivariate distribution with the NPMLE derived by the Gateaux method. The same random

intercept and random slope logistic model in Equation 7.4 is estimated by these four approaches.

The models assuming bivariate normal distributed random effects were estimated using

the SAS NLMIXED procedure with adaptive Gaussian quadrature and 20 quadrature points.

The logistic mixed models based on the assumption that the random intercepts and random

slopes were distributed as a three component mixture of bivariate normals were estimated us-

ing the likelihood reformulation method (Liu and Yu, 2008) implemented using SAS procedure

NLMIXED. The logistic mixed models assuming that the random effects follow a bivariate SNP

distribution were estimated using the SNP NLMM macro (Vock et al., 2014) implemented in

SAS. The SNP approach was estimated using adaptive Gaussian quadrature with 21 quadrature

points, with the bivariate SNP density estimated based on 15 grid points in each dimension.

As suggested by Vock et al. (2014) a maximum smoothness parameter of two knots (Kmax = 2)

was selected for the bivariate random effects, and the number of knots, corresponding to the

optimal SNP model, was selected using AIC. The NPMLE-Gateaux method used to obtain

the NPML estimator of the bivariate random effects distribution was implemented in STATA

using the GLLAMM procedure. The initial model started with one support point in the two-

dimensional space. Additional support points were assessed using the Gateaux method within

a grid of 60 points ranging from -30 to 30 in each dimension (approximately equivalent to the

range based on ±5Ŝb). A new support point was included if the directional derivative exceeded

10−5 at any location. The subsequent model was estimated using the previous model estimates

as initial starting values and an additional support point at the location corresponding to the

greatest increase in the likelihood. All analyses were performed for the two sub-analysis groups

of women: the 1359 women with complete case data (Complete Cases) and the 1927 women

with monotone missing data (Monotone Missing).

As highlighted in Chapter 4, due to the limited number of explanatory variables considered

in this application, the random intercept and random slope logistic model is not appropri-

ate to address questions about employment transitions in Australian working aged women.

Additionally, more appropriate analyses would distinguish between full-time and part-time em-

ployment, and also unemployment and not in the labour force. This application serves as an

example to demonstrate the applicability and practicality of the VEM algorithm and other ex-

isting approaches when applied to panel survey data in the presence of a potential underlying

mover-stayer scenario. The explanatory variables considered in the random intercept and ran-

dom slope model are the same as the explanatory variables considered in the random intercept

model (Equation 4.1), enabling inferential comparisons between the univariate and bivariate

logistic mixed models.

2The choice of three components for the mixture of bivariate of normals was motivated by the three com-
ponents considered in the random intercept logistic model, relevant to the potential underlying mover-stayer
scenario.
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7.4 Results

The results of the VEM and alternative approaches applied to the HILDA panel survey

application are presented in Section 7.4.1 for the random intercept logistic model, and Section

7.4.2 for the random intercept and random slope logistic model.

7.4.1 Random intercept logistic models

To assess the performance of VEM to non-parametrically estimate random intercept logistic

models, the results of fitting VEM and the six alternative flexible random effects approaches

are presented separately for the two analysis sub-groups, the results for women with complete

cases are presented in Section 7.4.1.1 and the results for women with monotone missingness are

presented in Section 7.4.1.2. The sensitivity of inference to the assumed random effect distribu-

tion was assessed by comparing parameter coefficients and standard errors, and the practicality

of applying the approaches was assessed in terms of computational efficiency (Section 7.4.1.3).

7.4.1.1 Complete case data

The parameter estimates and corresponding standard errors of the seven approaches applied

to model the random intercept logistic model for the 1359 women in the HILDA sample with

complete cases are presented in Table 7.1. The estimated random intercept distributions for

the seven approaches for women with complete case data are shown in Figure 7.1.

The non-parametric maximum likelihood estimates for the VEM approach are given in the

first part of Table 7.1. The VEM approach required 881 iterations to converge to a random

effect distribution represented by 62 grid points (Figure 7.1(a)). The resulting specification of

the random intercept distribution identifies regions of support for the NPML estimator, sug-

gesting a region with large negative random intercepts (ranging between -14.62 and -13.93,

with cumulative probability weight of 0.03) and five other regions of support ranging between

-6.49 to 6.11. To investigate whether the random intercept potentially captures the under-

lying mover-stayer scenario, subject-specific empirical Bayes (EB) predictions of the random

intercepts were generated. Unlike the predicted probability that is dependent on the EB es-

timate and the fixed effects in the model, subjects with similar response profile patterns but

have different values for the fixed effect explanatory variables will subsequently have different

EB estimates. Hence, caution is required when interpreting the EB estimates in this context.

Therefore, the EB estimates will be used merely as an indication for the location of the under-

lying random effects. The EB random intercept estimates suggest one subject had the most

extreme negative random intercept value of -14.62, who was unemployed for all 11 waves and

interestingly, at wave 1 reported to be permanently unable to work. Of the remaining women

reported to be unemployed for all 11 waves, 60 had an EB estimate of -6.49 and 42 had an EB

estimate of -4.09. Generally, the EB estimates were positively related to the number of times

women were employed over the 11 waves. Women employed 1 to 10 of the 11 waves had EB
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Figure 7.1: Random intercept distributions for random intercept logistic models assuming
normal and more flexible random effect distributions applied to the HILDA case study for
women with complete case data
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Table 7.1: Comparison of VEM to other flexible random effect models applied to the 1359 women with complete case data in the HILDA
case study considered in Chapter 4. The parameter estimates (Est) and corresponding standard errors (SE) are presented for the fixed effects
and the random effect variance, where applicable.

VEM Normal 3 Component SNP NLMM SABRE SABRE NPMLE
Mixture (K=2) 2 Endpoints 1 Endpoint (M=7)

Est SE Est SE Est SE Est SE Est SE Est SE Est SE

Constant -0.895 1.203 0.495 1.068 0.464 0.629 0.461 0.726 0.545 0.828 0.436 -0.133 11.419
Age 0.120 0.003 0.091 0.010 0.090 0.009 0.091 0.009 0.089 0.010 0.096 0.010 0.099 0.010
Marital Status

Married/Defacto
Sep/Div/Wid -0.347 0.140 -0.279 0.141 -0.310 0.140 -0.304 0.140 -0.293 0.141 -0.300 0.138 -0.343 0.144
Single 0.201 0.232 -0.122 0.276 -0.116 0.261 0.010 0.278 0.075 0.288 0.041 0.233 0.112 0.225

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.092 0.159 -1.532 0.277 -1.521 0.247 -1.262 0.264 -1.039 0.264 -1.066 0.170 -1.145 0.170
Year 11 or less -2.428 0.168 -2.768 0.291 -2.824 0.267 -2.345 0.288 -2.108 0.298 -2.275 0.201 -2.458 0.199

Dependent Children
None
Youngest<5 -2.169 0.116 -2.327 0.156 -2.330 0.150 -2.291 0.151 -2.273 0.155 -2.316 0.145 -2.319 0.145
Youngest 5-24 -0.303 0.103 -0.395 0.123 -0.396 0.119 -0.398 0.122 -0.400 0.124 -0.388 0.112 -0.383 0.111

Random Effect
Variance 14.197 11.802 0.861 9.074 1.287 11.931 2.130 6.238 8.322 18.835

µ1 -5.437 0.662
σ1 1.121 0.417
π1 0.124 0.044
µ2 -0.700 0.342
σ2 1.502 0.515
π2 0.553 0.145
µ3 3.291 0.639
σ3 0.839 0.664
π3 0.323 0.109
Pr(−∞) 0.053 0.042
Pr(+∞) 0.064

−2ll 9667 9697 9691 9677 9698 9669 9660
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estimates ranging between -6.49 and 2.90. Of the 631 women who were in employment for all

11 waves, 93 (14.7%) had an EB estimate of -0.42 and 538 (85.3%) had the most positive EB

estimate of 2.90. Therefore, by leaving the random intercept distribution unspecified, the VEM

induces flexibility to capture extreme random effects.

In comparison to the conventional logistic model assuming normal random intercepts (−2×
ll =9697), non-parametric estimation based on VEM resulted in smaller residual deviance

(−2 × ll=9667) (Table 7.1). Similarly, the residual deviance of the model estimated by VEM

was lower (differences ranging from 2 to 31) than the other flexible random effect methods, with

the exception of the NPML estimation based on the Gateaux method which had the lowest

residual deviance of 9660. As discussed further in Section 7.5, one possible explanation for the

differences in the residual deviance is due to the limited and differing support in the extreme

random effect values for some methods.

The magnitude and direction of the fixed effect coefficient estimates were similar for the

seven estimation approaches, with the exception of changes in the direction of the coefficient

relating to single women. The standard errors corresponding to the fixed effect parameters

were of similar magnitude for all models, with the exception for standard errors corresponding

to the parameters capturing the effects of highest education at baseline (β4, β5). The standard

error estimate of the VEM method relating to the age term was at least a third the magnitude

of that for the other methods. Albeit some differences in the magnitude and direction of the

fixed effect parameter estimates, based on the 5% significance level, the same inference would

be made for all seven approaches.

Estimation of the parameters relating to the random intercept was sensitive to the statistical

approach implemented. The magnitude and direction of the constant coefficient ranged from

-0.895 as estimated by VEM to 1.203 when assuming normally distributed random intercepts

(Table 7.1). Similarly, the estimate of the random intercept variance differed substantially

depending on the flexible random effect method. As the variance of the SABRE models is

restricted to the potential mover sub-population, the SABRE random intercept variance can

not be directly compared. The variance estimate of the other five approaches ranged from

9.07 (SE=1.29) for the mixture approach to 18.83 for the NPMLE-Gateaux approach. For

non-parametric maximum likelihood the random intercept variance estimate is not a model

parameter but is derived from the estimated support locations and corresponding probability

weights. Therefore, the standard errors for the variance estimate are not computed for the two

non-parametric approaches. Furthermore, the VEM approach also derives the constant term

from the estimated random intercept distribution, and as such, the corresponding standard

error is not computed.

The VEM, three component mixture, SABRE and NPMLE-Gateaux approaches suggest
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a small proportion of women have extremely negative random intercepts (Figure 7.1). This

supports the extreme response patterns, corresponding to the potential latent sub-populations.

The SABRE logistic model with endpoints can be used to explicitly account for the latent

mover-stayer model. Based on the residual deviance, the logistic model with one support point

at negative infinity (−2ll = 9669) provides a better fit than the logistic model with support

points at negative and positive infinity (−2ll = 9698). Both the endpoint models suggest

that approximately 5% of the sample are latent stayers in the unemployment category (Fig-

ure 7.1(e) and Pr(−∞) in Table 7.1). Similarly to the VEM approach, the NPMLE-Gataeux

method suggests a support point with weight of 3.25% at −18.9. The SNP NLMM approach

was based on an optimal smoothness parameter of two knots (K = 2), suggesting that the ran-

dom intercept distribution is not normally distributed and appears to be skewed (Figure 7.1(d)).

As the VEM is an approximation to the NPMLE, it is useful to directly compare the two

methods that estimate the random intercept distribution non-parametrically, the VEM and

the NPMLE-Gateaux. The NPML estimate derived by the Gateaux derivative is based on

the optimal model with seven support points (M = 7), with the estimated random intercept

distribution shown in Figure 7.1(f). The regions with support identified by the VEM correspond

with the distribution estimated by the NPMLE-Gateaux. Furthermore, these two methods

resulted in similar residual deviances and produced similar coefficient estimates and standard

errors for the fixed effect parameters, with some differences in the magnitude of the random

intercept variance. This provides support that the approximation of the NPMLE obtained by

VEM is appropriate.

7.4.1.2 Monotone missing data

The parameter estimates and corresponding standard errors of the seven approaches applied

to the 1927 women in the HILDA sample with monotone missing data are presented in Table

7.2. Correspondingly, the estimated random intercept distributions are presented in Figure 7.2.

The VEM performed well in the presence of missing data, requiring 892 iterations to converge

to the random intercept distribution represented by the resulting 68 grid points (Figure 7.2(a)).

Similarly to the complete cases, the resulting distribution of the VEM identified regions of sup-

port with large negative random intercept values (ranging between -11.82 and -10.56 with a

cumulative probability weight of 0.03) and five other regions of support with values ranging

between -6.44 and 6.39. Of the 243 women that were observed to be unemployed for all waves,

one woman had an EB predicted value of the most extreme negative random intercept -11.82, 59

with an EB estimate of -6.44 and 183 with an EB estimate of -4.15. Interestingly, the woman

with the most negative EB estimate was the same woman with the most extreme negative

value in the complete case analysis who had reported as permanently unable to work. As in

the complete case analysis, the EB estimates were positively correlated with the proportion of

times the women were observed to be employed. Of the 934 women employed for all observed

waves, the EB estimates ranged from -2.09 to 3.52 (-2.09 (n=2), -0.14 (n=446), 2.84 (n=481),
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3.18 (n=4) and 3.52 (n=1)).

In terms of residual deviance, estimation based on the VEM approach (2 × ll = 11518)

resulted in substantially improved model fit over fitting the conventional model assuming nor-

mality of the random intercepts (2 × ll = 11543). Similarly, estimation based on VEM had

considerably smaller residual deviance than the other flexible random effect models (differences

ranging from 7 to 31), with the exception of the NPML-Gateaux method which produced the

lowest residual deviance of 11510.

The comparison of the VEM approach to the other flexible random effect approaches applied

to the monotone missing data scenario was similar to when the methods were applied to the

complete cases. One key difference is noticed in regards to inference. At the 5% significance

level, interpretation of the covariate comparing women either separated, divorced or widowed to

married women is considered significant for all the models except when assuming normally dis-

tributed random intercepts or if the SABRE model is estimated assuming one or two endpoints.

Therefore, this application provides an example where the interpretation of fixed effects may

differ depending on the implemented methodology and the presence of attrition. As identified

in the complete case application, variability in the parameter estimates and standard errors was

restricted to the parameters related to the random intercept. The random intercept variance for

all models except the SABRE endpoint models, ranged from 9.32 as estimated by the mixture

distribution and 17.57 as estimated by the NPMLE-Gateaux method based on 7 support points.

The VEM method approximating the NPMLE, produced similar parameter estimates and

standard errors as the NPML estimate derived by the Gateaux method. There were some dif-

ferences in the magnitude of the standard error of the age term, with the VEM estimate a third

the magnitude of the standard error estimated by NPMLE (and the other approaches). The

two non-parametric methods had smaller standard errors for the parameters associated with the

time-invariant variable, highest education level at baseline, than the other approaches, however

it did not alter inferential conclusions. As for the complete case analysis, the supportive regions

identified by the VEM approach closely corresponded to those by the NPMLE characterised

by the seven support points estimated by NPMLE-Gateaux (Figure 7.2(f)).

7.4.1.3 Computational efficiency

The CPU time required for each of the seven approaches and the two analysis sub-groups

are presented in Table 7.3. The VEM approach was the most time consuming, due to the

large number of initial grid points and the subsequent grid search required to determine the

random effect distribution. By reducing the number of starting grid points from 301 to 101, the

computation time for the complete cases reduced from over 6 hours to 44 minutes and resulted

in similar parameter estimates and slightly higher residual deviance (−2ll = 9671) (Appendix

G, Table G.1). The approach that required the least computation time was SABRE, the mod-
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Figure 7.2: Random intercept distributions for random intercept logistic models assuming
normal and more flexible random effect distributions applied to the HILDA case study for
women with monotone missing data
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Table 7.2: Comparison of VEM to other flexible random effect models applied to the 1927 women with monotone missing data in the HILDA
case study considered in Chapter 4. The parameter estimates (Est) and corresponding standard errors (SE) are presented for the fixed effects
and the random effect variance, where applicable.

VEM Normal 3 Component SNP NLMM SABRE SABRE NPMLE
Mixture (K=2) 2 Endpoints 1 Endpoint (M=7)

Est SE Est SE Est SE Est SE Est SE Est SE Est SE

Constant -0.686 1.348 0.459 0.676 0.425 0.893 0.430 0.911 0.509 0.984 0.417 0.071 8.252
Age 0.118 0.003 0.088 0.009 0.095 0.009 0.088 0.009 0.087 0.009 0.092 0.009 0.095 0.009
Marital Status

Married/Defacto
Sep/Div/Wid -0.289 0.135 -0.249 0.133 -0.319 0.137 -0.265 0.133 -0.242 0.135 -0.262 0.134 -0.294 0.139
Single 0.069 0.219 -0.190 0.246 -0.084 0.242 -0.143 0.245 -0.100 0.260 -0.050 0.221 0.003 0.209

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.166 0.152 -1.642 0.247 -1.555 0.240 -1.450 0.241 -1.281 0.265 -1.170 0.169 -1.232 0.166
Year 11 or less -2.541 0.159 -2.923 0.257 -2.865 0.265 -2.637 0.257 -2.462 0.281 -2.411 0.199 -2.559 0.186

Dependent Children
None
Youngest<5 -2.186 0.111 -2.352 0.146 -2.313 0.141 -2.335 0.142 -2.312 0.146 -2.329 0.136 -2.339 0.137
Youngest 5-24 -0.343 0.100 -0.439 0.117 -0.418 0.116 -0.445 0.116 -0.446 0.119 -0.430 0.109 -0.422 0.107

Random Effect
Variance 11.937 11.808 0.792 9.323 0.914 11.298 1.536 6.869 8.243 17.572

µ1 -4.917 1.707
σ1 1.935 0.620
π1 0.169 0.121
µ2 -0.378 0.348
σ2 1.439 0.906
π2 0.515 0.260
µ3 3.245 0.523
σ3 0.671 0.555
π3 0.316 0.146
Pr(−∞) 0.047 0.044
Pr(+∞) 0.068

-2ll 11518 11543 11527 11525 11549 11525 11510
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Table 7.3: Computational CPU time (hours:minutes) required to execute the seven flexi-
ble random intercept logistic model approaches when applied to the complete case (Complete
Cases) and monotone missing (Monotone Missing) data scenarios.

Complete Cases Monotone Missing
VEM 6:28 8:10
Normal 0:01 0:02
3 Component Mixture 0:15 0:28
SNP NLMM 1:51 2:58
SABRE - 2 Endpoints <0:01 <0:01
SABRE - 1 Endpoint <0:01 <0:01
NPMLE-Gateaux 0:20 0:17

els with either one or two endpoints requiring less than 1 second. Generally the approaches

applied to women with monotone missing data required longer CPU time in comparison to the

approaches applied to the complete cases, due to the larger sample size.

In regards to the practicality within a panel survey setting, all the existing methodology

were easily implementable. Particularly the SNP approach and the NPMLE-Gateaux method.

The SNP approach implemented in SAS with the SNP NLMM macro was relatively stable

to the choice of quadrature points and the number of grid points used in the random effect

density estimation (results not shown). The NPLME-Gateaux method implemented in STATA

using GLLAMM was robust to the grid range used in the Gateaux method (results not shown),

with minor changes in the estimated random intercept distribution and coefficient estimates

for parameters associated with the random intercept.

However as mentioned in Chapter 4 fitting a three component mixture of normal distribu-

tions with unequal variances using the likelihood reformulation in SAS was extremely sensitive

to starting values (up to the fourth decimal place) and the number of quadrature points. Hence,

the final models were obtained after numerous attempts alternating starting values and quadra-

ture points, which is not reflected in the reported CPU time. Similarly, the SABRE models

were easily implemented in R, however the model coefficients and the number of endpoints

were extremely sensitive to the choice of non-adaptive or adaptive quadrature, in addition to

the number of quadrature points and the starting values for the end-point parameters (results

not shown). Subsequently, model selection for the SABRE models was not straightforward.

The SABRE models with one or two endpoints presented in Tables 7.1 and 7.2 were based

on the combination of quadrature points and type of quadrature that resulted in the smallest

residual deviance (results not shown). Models with two endpoints were estimated using 6 adap-

tive quadrature points, and models with one endpoint were estimated using 24 non-adaptive

quadrature points. Both one and two endpoint models have been presented to highlight the

sensitivity of the SABRE model to user inputs, and to highlight the practicality of SABRE

models in panel data settings. Furthermore, it should be noted that differences in the residual

deviances for the SABRE models with one or two endpoints may partly be due to the differing
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user inputs, and thus, caution may be required when interpreting SABRE model comparisons.

7.4.2 Random intercept and random slope logistic model

The results of fitting the VEM and the alternative flexible random effect approaches to the

logistic mixed model with bivariate random effects are presented separately for the two analysis

sub-groups. The results for the analysis of the complete case and the monotone missing data are

presented in Sections 7.4.2.1 and 7.4.2.2, respectively. Fitting the logistic model with random

effects distributed as a three component mixture of bivariate normal distributions failed to

converge as detailed in Section 7.4.2.3. Therefore, the results presented are restricted to the

VEM, Normal, SNP and NPMLE-Gateaux approaches. Furthermore, the NPMLE Gateaux

method did not converge to the NPMLE for either of the data analysis sub-groups. For both

scenarios, the Gateaux derivative suggested an additional location for a support point, however

estimation of the model with the additional support point failed to converge to a resulting

solution. Hence, the corresponding results for the NPMLE Gateaux presented in this section

are based on the fit of the previous convergent model prior to non-convergence, and hence,

cannot be interpreted as the NPMLE solution.

7.4.2.1 Complete case data

The parameter estimates and corresponding standard errors of the four approaches applied

to the random intercept and random slope logistic model for the 1359 women in the HILDA

sample with complete cases are presented in Table 7.4. The estimated random effect densities

for the four approaches are shown in Figure 7.3.

The non-parametric maximum likelihood estimates for the VEM approach are given in the

first part of Table 7.4. The VEM approach required 1326 iterations to converge to a random

effect density represented by 113 grid points (Figure 7.3(a)). As for the random intercept

model, the resulting specification of the random effects distribution identified regions of sup-

port in the extreme values, particularly the following combinations: negative random intercepts

and negative random slopes, negative random intercepts and positive random slopes, and pos-

itive random intercepts and negative random slopes. The EB estimates corresponded with

the response profile pattern and the fixed effect explanatory variables. Women observed to

be unemployed for all 11 waves had extremely negative random intercepts and random slope

values. The most extreme EB estimate for the random intercept b0i and random slope b1i was

b̂i =(-17.26, -6.57)’, which corresponded to the same woman identified in the random intercept

logistic model to have the most extreme negative random intercept. The remaining 103 women

employed for all 11 waves had negative random intercepts and negative random slopes ranging

between b̂i=(-4.10, -9.75)’ and b̂i =(-1.75, -1.81)’. The most negative random intercepts and

positive random slopes corresponded to women consecutively employed for a small number of

times in the last waves. For instance, two women only employed once at wave 11 had an EB
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Table 7.4: Comparison of VEM to other flexible random effect approaches used to estimate the random intercept and random slope logistic
models when applied to the 1359 women with complete case data. The parameter estimates (Est) and corresponding standard errors (SE) are
presented for the fixed effects and the random effect variance-covariance matrix, where applicable.

VEM Normal SNP NLMM NPMLE
(K=2) (M=12)

Est SE Est SE Est SE Est SE
Constant 2.964 5.001 0.406 3.697 0.317 3.744 0.367
(Wave-1)/10 2.597 2.379 0.294 2.586 0.314 1.344 0.394
(Age Baseline-30)/10 1.252 0.144 0.248 0.316 0.451 0.124 0.650 0.316
Marital Status

Married/Defacto
Sep/Div/Wid -0.445 0.174 -0.250 0.191 -0.305 0.189 -0.257 0.182
Single 0.492 0.272 0.078 0.355 0.281 0.377 0.247 0.242

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.154 0.172 -1.776 0.331 -1.192 0.297 -1.027 0.215
Year 11 or less -2.812 0.193 -3.293 0.351 -2.528 0.331 -2.570 0.228

Dependent Children
None
Youngest<5 -2.647 0.130 -2.709 0.210 -2.596 0.203 -2.708 0.189
Youngest 5-24 -0.710 0.128 -0.749 0.178 -0.687 0.180 -0.813 0.167

Random Effects
σ2
b0

35.351 17.182 1.691 25.447 3.133 19.253
σ2
b1

78.141 23.869 2.524 32.259 3.587 35.774
σb0,b1 -22.926 -4.459 1.518 -11.661 2.815 -16.801
−2ll 8995 9105 9063 9031
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Figure 7.3: Random effect density for random intercept and random slope logistic models assuming bivariate normal and more flexible random
effect distributions applied to the HILDA case study for women with complete case data
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estimate of b̂i=(-22.6,17.3)’, and 16 women consecutively employed 2 to 4 times in the last 2

to 4 waves had b̂i=(-21.3,23.6)’. Similarly, the most positive random intercepts and negative

random slopes corresponded to women consecutively employed for a large number of times in

the initial waves. For instance, 13 women consistently employed for the first 8 to 10 waves had

an EB value of b̂i=(17.1, -24.0)’, 9 women consecutively employed for the first 7 to 9 waves

had an EB value of b̂i=(12.6, -22.5)’ and 8 women consecutively employed for the first 5 to 7

waves had an EB value of b̂i=(8.1, -20.7)’. There was variability around EB values for women

with similar response profile patterns due to differences in the values of the explanatory vari-

ables (results not shown). Interestingly there were no women with extreme positive random

intercepts and slopes. Of the women observed to be employed for all 11 waves, 614 had EB

estimate of b̂i =(3.8,-1.8)’ and 17 with b̂i =(5.5,-3.4)’. Therefore, the VEM approach appears

to be a flexible approach to capture the extreme bivariate random effects.

Flexibly modelling the random effects density improved the model fit, with the SNP,

NPMLE-Gateaux and the VEM approaches resulting in smaller residual deviances than the

conventional model assuming bivariate normally distributed random effects (−2ll = 9105). Es-

timation based on the VEM approach resulted in the lowest residual deviance (−2ll = 8995),

substantially smaller than that for the SNP (−2ll = 9063) and the NPMLE-Gateaux method

(−2ll = 9031).

The magnitude and direction of the fixed effect coefficients unrelated to the random ef-

fects were similar for the four estimation approaches, however the VEM approach generally

produced more positive coefficient estimates than the other three approaches. The magnitude

of the standard errors corresponding to the fixed effect parameters varied between the four

approaches. The VEM approach generally produced the smallest standard errors, particularly

for the coefficients relating to baseline education and the number of dependent children. The

VEM standard error estimates of the parameters relating to the baseline education was ap-

proximately half the magnitude of those for the assumed normal model. At the 5% significance

level, inference of the fixed effect parameters differed depending on the estimation approach.

Interpretation of the age at baseline is considered significant for all approaches except when

assuming bivariate normally distributed random effects. Furthermore, the parameter captur-

ing the effect of women either separated, divorced or widowed comparing to married women

was considered significant for the two non-parametric approaches, VEM and NPMLE-Gateaux,

however not for the Normal or SNP approach.

Estimation of the parameters relating to the random effects was sensitive to the estimation

approach. The magnitude of the constant coefficient ranged from 2.964 for the VEM approach

to 5.001 when assuming bivariate normal random effects. Similarly, the magnitude of the wave

term coefficient ranged from 1.344 for the NPMLE Gateaux approach to 2.597 for the VEM

approach. The corresponding standard errors were similar for the three approaches that es-
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timated standard errors. The estimate of the random intercept variance (σ2
b0

), random slope

variance (σ2
b1

) and the covariance (σb0,b1) differed substantially depending on the estimation

approach. The VEM approach produced the largest estimates (in terms of magnitude) for all

components of the variance-covariance matrix, with an estimate of the random slope variance

(σ2
b1

= 78.1) at least double the magnitude of that for the other methods.

The two non-parametric approaches suggest that a proportion of women have extreme ran-

dom effects. The inclusion of random slopes continues to support the extreme response patterns

that correspond with the latent sub-population. The women with extremely negative random

intercepts and negative slopes may represent the latent stayers in unemployment (resulting in

predictive probabilities of almost zero for any time-point), and similarly, women with extremely

positive random intercepts and positive slopes may represent latent stayers in employment (pre-

dictive probabilities of almost one for any time-point). Therefore, as observed in the random

intercept logistic model, this is suggestive of latent stayers in the unemployment state. The

SNP approach, based on an optimal smoothness parameter of two knots in the two-dimensional

space (K=2), suggests that the random effect density is not bivariate normal (i.e K=0) but a

skewed, unimodal density (Figure 7.3(c)).

As the NPMLE-Gateaux method did not converge to the NPML estimator, the model

fit and estimated random effect distribution (Figure 7.3(d)) can only be interpreted as an

approximation to the NPML estimator. Therefore the performance of the VEM to approximate

the NPML estimator can not be directly assessed. However, it is reassuring that the resulting

discrete random effect distribution of the NPMLE-Gateaux approach with 12 support points

was located in similar regions as identified by VEM (Figure 7.3(a)). However, unlike the VEM

approach, the NPMLE-Gateaux did not have any support points in regions with large negative

random intercepts and random slopes. However this may be due to the NPMLE-Gataeux not

converging to the NPML estimate.

7.4.2.2 Monotone missing data

The results of the VEM approach and the other flexible random effect models applied to

the 1927 women with monotone missing data are shown in Table 7.5 with the resulting random

effect distributions presented in Figure 7.4. The VEM performed well in the presence of missing

data, requiring 1162 iterations to converge to a bivariate random effect distribution represented

by 169 grid points (Figure 7.4(a)). The resulting distribution was similar to the distribution

for the complete cases, yet with more variability. Similar regions of support were identified as

for the complete case analysis, however the supportive region in the extreme negative random

intercept and negative random slope was not as extreme. The EB predicted random effects

appeared to be correlated with the number of waves a woman was in the HILDA study, the

response profile pattern and the values of the explanatory variables. For example, the extreme

negative random intercept and random slope of b̂i =(-9.9, -22.2)’ corresponded to 10 women
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Table 7.5: Comparison of VEM to other flexible random effect approaches used to estimate the random intercept and random slope logistic
models when applied to the 1927 women with monotone missing data. The parameter estimates (Est) and corresponding standard errors (SE)
are presented for the fixed effects and the random effect variance-covariance matrix, where applicable.

VEM Normal SNP NLMM NPMLE
(K=2) (M=9)

Est SE Est SE Est SE Est SE
Constant 3.599 5.060 0.365 3.920 0.284 4.183 0.272
(Wave-1)/10 2.820 2.389 0.277 2.619 0.445 1.230 0.284
(Age Baseline-30)/10 0.705 0.146 0.291 0.274 0.441 0.222 0.334 0.159
Marital Status

Married/Defacto
Sep/Div/Wid -0.466 0.162 -0.242 0.180 -0.259 0.193 -0.298 0.165
Single 0.260 0.228 -0.057 0.316 -0.024 0.514 -0.074 0.215

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.316 0.162 -1.892 0.297 -1.406 0.274 -1.440 0.168
Year 11 or less -2.750 0.171 -3.420 0.312 -2.841 0.308 -2.557 0.195

Dependent Children
None
Youngest<5 -2.746 0.123 -2.782 0.196 -2.699 0.180 -2.768 0.168
Youngest 5-24 -0.812 0.123 -0.869 0.168 -0.812 0.167 -0.981 0.148

Random Effects
σ2
b0

32.438 17.569 1.563 26.765 4.304 11.907
σ2
b1

98.404 26.757 2.697 37.555 4.424 19.799
σb0,b1 -25.498 -5.204 1.489 -13.090 3.471 -7.369
−2ll 10740 10867 10824 10843
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Figure 7.4: Random effect density for random intercept and random slope logistic models assuming bivariate normal and more flexible random
effect distributions applied to the HILDA case study for women with monotone missing data

145



unemployed for all 11 waves. For the remaining women always observed in unemployment, the

EB estimates varied from b̂i =(-24.0, 18.0)’ for women observed for 9 to 11 waves, to b̂i =(-1.3,

0.4)’ for women observed for 1 to 5 waves.

In comparison to the conventional logistic mixed model assuming bivariate normal random

effects (−2ll = 10867), estimation based on the VEM substantially improved the model fit

(−2ll = 10740). Furthermore, the VEM had a smaller residual deviance than the other two

flexible random effect models, SNP and the NPMLE-Gateaux (differences of 84 and 103, re-

spectively).

In regards to inference, the statistical significance (at the 5% level) differed depending on

the estimation approach. As in the complete case data scenario, interpretation of the age at

baseline was considered significant for all approaches except when assuming bivariate normally

distributed random effects. Furthermore, the covariate comparing women separated, divorced

or widowed to married or defacto women was only considered significant for VEM. As identified

in the complete cases, variability was observed for all parameter estimates, particularly for pa-

rameters related to the random effects. The VEM produced the largest estimates (in terms of

magnitude) for all components of the variance-covariance matrix. There were differences in the

magnitude of the standard errors, with the VEM consistently producing the smallest standard

errors (for all parameters).

The NPML estimation using the Gateaux failed to converge to the NPMLE, so the model fit

and the estimated random effect distribution is based on the convergent model with 9 support

points (Figure 7.4(d)). As for the complete case scenario, it is reassuring that the approximate

distribution of the NPMLE-Gateaux approach has support points in similar locations identified

by VEM.

7.4.2.3 Computational efficiency

The CPU time required for each of the four approaches to model the bivariate random ef-

fects distribution when applied the two analysis sub-groups is presented in Table 7.6. The VEM

approach was the most time consuming, due to the large number of initial grid points and the

subsequent grid search required to estimate the bivariate random effects distribution. Due to

the complexity estimating the bivariate distribution, all four approaches required substantially

more computational time than required to estimate the random intercept logistic model (Table

7.3). The standard logistic mixed model assuming bivariate normality required almost 2 hours

for the complete case analysis, and almost 3 hours for the analysis with monotone missing data.

In contrast to the random intercept logistic model, implementation of the flexible random

effects and estimation were not straightforward. Additionally, not all of the flexible approaches

converged. Convergence of the SNP approach for the bivariate random effects was sensitive
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Table 7.6: Computational CPU time (hours:minutes) required to execute the four flexible
random intercept and random slope logistic model approaches when applied to the women with
complete case data (Complete Cases) and the women with monotone missing data (Monotone
Missing).

Complete Cases Monotone Missing
VEM 37:44 50:52
Normal 1:45 2:42
SNP NLMM 5:26 6:29
NPMLE-Gateaux 2:18 0:45

to the number of quadrature points. For example, for the complete case data scenario, the

model fit with a smoothness parameter of two (K = 2) failed to converge when estimated with

20, 25 or 31 quadrature points. Similarly, for the monotone missing data scenario the model

with K = 2 failed to converge when estimated with 21 quadrature points, yet it did converge

when estimated with 25 or 31 quadrature points. Therefore, the results in Table 7.5 for the

monotone missing data are based on 31 quadrature points and 20 grid points (the model corre-

sponding to the minimum AIC). However, even though the SNP approach converged, not all of

the standard errors of the model parameters were estimated. Both of the models presented in

Tables 7.4 and 7.5 failed to estimate standard errors for one of the smoothness parameters used

to estimate the random effect density. Furthermore, the SNP approach was also sensitive to

the parameterisation of the model covariates. For instance, when the time components (age at

baseline and the wave term) were not transformed to be interpreted as a per 10 year increase,

the SNP approach with two knots failed to converge (results not shown).

The NPMLE-Gateaux method implemented in STATA using the GLLAMM procedure failed

to converge to the NPMLE. The results presented in Tables 7.4 and 7.5 are based on models

with 12 and 9 support points, corresponding to the last model that successfully converged.

Therefore, the resulting model fit from the NPMLE-Gateaux method can not be defined as

the NPML estimator, and the reported CPU time refers to the last converging model (Table

7.6). Furthermore, the NPMLE-Gateaux method was sensitive to the number of initial support

points, resulting in unstable coefficient estimates and estimated random effects distribution

(results not shown).

Fitting the random effects as a three component mixture of bivariate normal distributions

failed to converge. Similar convergence problems have previously been reported by Ghidey

et al. (2010) in the context of linear mixed models, whereby estimation of the heterogeneity

model with more than two components of bivariate normals was not feasible. By reducing the

number of parameters considered in the model and restricting the components of the finite

mixture to have the same variance-covariance matrix, the model still failed to converge. As

for the random intercept application, the likelihood reformulation method implemented in SAS

was sensitive to the starting values and the number of quadrature points. Limited literature
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is available regarding the selection of starting values. In this application starting values for

the fixed effect coefficients were set as the estimated coefficients from the corresponding model

assuming multivariate normal random effects. Starting values for the parameters of the three

component mixture, the mixing proportions and the component means for the random intercept

and random slopes, were based on the results of a three component cluster (K-means) of the

Empirical Bayes estimates of the corresponding model assuming bivariate normal distributed

random effects. A range of starting values based on the results for three component mixture

parameters were assessed iteratively. However, none of the starting values considered resulted

in a convergent model.

In contrast to the other flexible modelling approaches, the VEM model was easily imple-

mentable to the bivariate logistic mixed model application. The VEM approach was relatively

robust to the choice of initial starting values for the coefficients and the initial grid, including

the number of grid points and the range of grid points (Appendix H). The sensitivity was

restricted to parameters relating to the random effects and the estimated variance-covariance

matrix, predominately due to the solutions having supportive regions on the boundary of the

two-dimensional grid. The resulting solution of the VEM approach had support at the bound-

aries, particularly at the minimum and maximum random slope values (as shown in Figures

7.3(a) and 7.4(a)). Even when the initial grid for b∗i was defined as [−7, 7]× [−7, 7] the resulting

solution had support at the boundaries (Appendix H). The boundary issue still remained when

different parameterisations of the wave and age at baseline term were considered (results not

shown). Therefore, the boundary issue is a direct consequence of the extreme response patterns

observed in the application considered in this chapter.

7.5 Discussion

In this chapter the Vertex Exchange Method (Böhning, 1985) was applied to estimate logis-

tic mixed models with unspecified random effect distributions. The performance of the VEM

was assessed in an application to the HILDA panel survey. By extending the random intercept

model considered in Chapter 4 to random intercepts and random slopes, this chapter presents

a novel application of the VEM to flexibly model univariate and bivariate random effects in

GLMMs. The VEM approach performed well to estimate logistic models with univariate and

bivariate random effects, inducing sufficient flexibility to capture the underlying heterogeneity.

Although computationally intensive, the simplicity of the VEM approach (Baghfalaki and Gan-

jali, 2014) was consequently easily implementable. The resulting specification of the random

effects distribution is an approximation to the non-parametric maximum likelihood estima-

tor, identifying regions of support in the q−dimensional random effects density. The specified

random effects distribution for both the univariate and bivariate models suggested regions of

support in the extremes corresponding to potential latent stayers in the unemployment state.

Thus, the results from this application suggest that non-parametric estimation of GLMMs us-

ing VEM can provide an appropriate modelling strategy to capture the potentially extreme
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underlying heterogeneity of latent mover-stayer scenarios.

To assess the performance of VEM, the model fit of the VEM approach was compared to

alternative random effect approaches currently implementable in standard software. In addition

to the conventional logistic model with normal random effects, four flexible random effect ap-

proaches were considered: a finite mixture of normal distributions (Verbeke and Lesaffre, 1996),

SNP density (Vock et al., 2014), normal distribution with endpoints at positive and/or nega-

tive infinity (Berridge and Crouchley, 2011b), or non-parametric estimation using the Gateaux

derivative (Rabe-Hesketh et al., 2003). Multivariate extensions of the aforementioned methods

were applied to flexibly model the bivariate random effects in a logistic mixed model, except

for the end-point model of Berridge and Crouchley (2011b). For both logistic models with uni-

variate and bivariate random effects, the conventional logistic model assuming normality of the

random effects had the largest residual deviance. This suggests that the normality assumption

may not be the most appropriate distribution to capture the extreme random effect distribu-

tion resulting from potential mover-stayer scenario. Increasing the flexibility of the assumed

random effect distribution resulted in an improved model fit (in terms of residual deviance).

For both the random intercept logistic model and the more complex random intercept and

random slope logistic model, non-parametric estimation of the random effects, either by VEM

or the Gateaux approach, substantially improved the model fit compared to the equivalent

model assuming normality. Furthermore, the non-parametric approaches had lower residual

deviance than any other flexible modelling approach considered. This application suggests that

non-parametric estimation may provide an efficient and suitable computational approach in

panel survey applications.

Not only are non-parametric estimation approaches useful to guard against possible impli-

cations of misspecified random effect distributional assumptions (Agresti, 2013), they are also

efficient (Butler and Louis, 1992; Agresti, 2013), particularly when the random effects distri-

bution is not of direct interest (Agresti, 2013). However, non-parametric approaches can be

susceptible to estimated mass points located on the boundary (boundary solutions), partic-

ularly for GLMMs with categorical responses (Skrondal and Rabe-Hesketh, 2004). This was

evident for VEM estimation of the random intercept and random slope logistic model. Not only

did the resulting distribution of the VEM approach have supportive regions at the minimum

and maximum bounds of the initial grid range, the boundary issue was reflected in the large

estimates for all components of the variance-covariance matrix. To overcome and further inves-

tigate the boundary issue, VEM bivariate models were refit with wider grids (Appendix H), as

suggested by Tsonaka et al. (2009). Due to the nature of the extreme observed response pro-

files the boundary issue remained. However even as the boundaries were made more extreme,

final inference of the fixed effects did not change (Appendix H). Furthermore, non-parametric

estimation of the random intercept logistic model by NPLME-Gateaux may have resulted in a

boundary solution. The resulting random intercept distributions had small probability mass at
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extreme negative values (corresponding to predictive probability of almost zero). The impact

of the boundary solution was also reflected in the large estimated random intercept variance es-

timate and the large standard error of the constant coefficient of the NPMLE-Gateaux method.

As observed in this application, within the context of an underlying mover-stayer scenario, there

will always be support at the boundaries. Therefore, as observed in Appendix H, regardless of

the range of the initial grid, the likelihood for approaches where random effect distributions put

appreciable probability on large magnitude values will always be further improved by giving

people with constant response profiles probability weight at the extremes. When boundary

solutions (or mover-stayer scenario) are suspected, caution is required when interpreting pa-

rameters related to the random effects from these approaches. However, as primary interest is

often on the fixed effects, any boundary issues are expected to have minimal inferential impact

on the fixed effect parameters unrelated to the random effects.

Sensitivity of model parameters and inferential conclusions to the assumed random effects

distribution as assessed within a sensitivity analysis framework may indicate misspecification

(Litiére et al., 2008; Neuhaus et al., 2011). In the random intercept logistic model considered

here, estimation of the fixed effect parameters was moderately robust to the assumed random

intercept distribution. Consistent with the findings of McCulloch and Neuhaus (2011a), more

variability in the coefficient estimates and standard errors was observed for parameters cap-

turing the effects of time-invariant explanatory variables than for the time-varying explanatory

variables. However, variability was predominately restricted to the parameters relating to the

random effect distribution. The sensitivity of estimating the parameters relating to the random

intercept is consistent with previous literature (Litiére et al., 2008; McCulloch and Neuhaus,

2011a). Albeit some differences in the estimation of the fixed effect parameters, inferential

conclusions were similar for all parameters, with the exception of one time-varying explanatory

variable.

In contrast to the random intercept model, the estimation of the logistic model with random

intercepts and random slopes appeared to be sensitive to the assumed bivariate distribution,

including the fixed effect parameters. Consistent with the limited literature examining mis-

specification of the joint random intercept and random slope distribution (Litiére et al., 2008;

McCulloch and Neuhaus, 2011a; Neuhaus et al., 2013), estimation of time-varying parame-

ters were more robust to the assumed random effect density than time-invariant parameters.

The substantial variability in the coefficients relating to the random effects, including the

variance-covariance matrix, corroborate with previous results in the literature (Litiére et al.,

2008; McCulloch and Neuhaus, 2011a; Neuhaus et al., 2013), and suggest inconsistent estima-

tion of these parameters. It has previously been shown that only minimal bias of fixed effects is

expected, unless there is severe distributional misspecification (Neuhaus et al., 2013). As model

estimation appears to be sensitive to the assumed bivariate density, this suggests that in this

application caution is required when interpreting the model parameters. Therefore, the differ-
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ence in inferential conclusions identified within this sensitivity analysis framework highlights

the importance of exploring more flexible random effect distributions to assess the robustness

of distributional assumptions.

As panel survey data are susceptible to missing data, the performance of the approaches was

assessed in a complete case analysis scenario and in the presence of monotone drop-out missing

data. For the respective flexible approaches, there were minimal differences in the magnitude

of the fixed effect parameter estimates for the two data scenarios. This may be related to the

nature of missingness. Previously it has been suggested that employment status is related to

the likelihood of responding to the HILDA survey (Watson and Wooden, 2009). However, the

similarity of the parameter coefficients for the complete case and the monotone missing data

scenarios suggests that missingness may not be related to the outcome in the study population

considered in this application. Hence, the potential consistency of the maximum likelihood

estimation in the presence of ignorable missingness may partly explain the similarities of the

parameter estimates.

No studies could be identified which compare the performance of flexibly modelling the joint

random intercept and random slope distribution in GLMMs. By investigating the performance

of existing methodology to flexibly model univariate and bivariate random effect logistic mod-

els in a panel survey application, we provide a novel insight into the practicality of flexibly

modelling random effects. The flexible approaches considered to estimate the random intercept

logistic model were easily implementable and performed relatively well, regardless of the missing

data scenario. However, the SABRE approach was sensitive to the number of quadrature points

and the use of non-adaptive or adaptive quadrature. This may be due to the extreme assumed

random intercept distribution. By placing weight at negative and positive infinity, variability

of the subject-specific random effects is not permissible. As the logistic model considered in the

case study adjusts for explanatory variables, variability of the subject-specific random effects is

expected, even at the extremities. By placing endpoints at the negative and/or positive infinity,

potential stayer sub-populations can be identified, however in the presence of explanatory vari-

ables it may be too restrictive. Furthermore, the default specification of the initial grid in the

SNP NLMM macro may not have been wide enough to capture the extreme negative random

intercepts in the case study. The considered approaches performed well in the panel survey

application, particularly the SABRE and two non-parametric approaches, providing sufficient

flexibility to capture the extreme random intercept distribution.

However, the additional complexity of estimating random slopes subsequently complicated

the implementation and performance of flexibly fitting logistic models with bivariate random ef-

fects. The commonly implemented logistic model assuming bivariate normal random effects was

easily implemented, yet failed to adequately capture the potential underlying heterogeneity. In-

creasing the flexibility of the assumed random effect distribution, either by semi-non-parametric
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techniques or non-parametric techniques, was not as straightforward as for the random inter-

cept model. With the exception of the VEM approach, the remaining flexible approaches had

issues in regards to model convergence. Regardless of the choice of starting values, the three

component mixture of bivariate normal distributions failed to converge. Even in the context

of univariate random effects, estimation and convergence of GLMMs assuming finite mixtures

of normal distributions are known to be sensitive to initial parameter values (Litiére et al.,

2008). Furthermore, the NPMLE-Gateaux method failed to converge to the non-parametric

maximum likelihood estimator, and convergence of SNP NLMM was sensitive to starting values

and estimation settings. Even when the SNP approach converged, not all standard errors were

estimable. Furthermore, as in the random intercept scenario, the default range of the grid used

to estimate the SNP random effect density may not have been wide enough to capture the

extreme random effects. In contrast, the VEM approach was easily implementable and had

no convergence issues. Furthermore, the VEM approach was relatively stable to the choice of

initial starting values and initial grid size. However, parameters relating to the random effects

were sensitive to the initial grid range due to boundary issues. This highlights the importance

of sensitivity analyses to identify parameters susceptible to boundary solutions for flexible ap-

proaches that place probability on large magnitude values of the random effects distribution.

One of the practical limitations of the VEM approach is the computation time required for

model convergence. For both univariate and bivariate random effects, the VEM required more

CPU time than any other flexible random effect approach considered. For the univariate ran-

dom effects, numerous computational approaches have been developed to estimate univariate

random effects in GLMMs (Follmann and Lambert, 1989; Lesperance and Kalbfleisch, 1992;

Aitkin, 1999; Rabe-Hesketh et al., 2003), yet availability in standard software is limited. Non-

parametric estimation approaches for GLMMs with higher dimensional random effects is an

understudied area. The Gateaux method implemented in STATA is extendable to higher di-

mensions, however, as experienced in the panel survey application considered in this study,

convergence to the NPML estimator may not occur. Recently two fast computational methods

have been proposed to estimate bivariate random effects for GLMMs (Lesperance et al., 2014)

and for LMMs (Baghfalaki and Ganjali, 2014). However neither is currently implementable

in standard software. The estimation of the probability weights proposed by Baghfalaki and

Ganjali (2014), using the relative frequency of the grid-points, is computationally faster than

VEM. However, unlike the well-known properties of VEM (see Böhning (1999)), it is unclear

whether the method of Baghfalaki and Ganjali (2014) is an NPMLE, as there is little evidence

showing the mathematical or asymptotic properties of the proposed method. Therefore, even

though the VEM approach may be considered computationally intensive, the simplicity and the

well-known asymptotic properties enable reliable approximation to the NPMLE. If the VEM

would be followed by the EM algorithm to fine tune the location of the support points, i.e.

run the EM algorithm with the location and weights of the support points from the VEM

solution as the initial starting values, the resulting solution would be NPMLE. However, as the
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EM algorithm is computationally slow and has minimal additional improvement in regards to

log-likelihood (Böhning, 1999), the NPMLE approximation derived from exclusively using the

VEM algorithm is appropriate (Tsonaka et al., 2009). Development of efficient non-parametric

estimation procedures for GLMMs with multiple random effects is an area gaining interest.

The development and availability of computationally fast NPML estimation methods in stan-

dard software will benefit the practical implementation of non-parametric approaches, including

within the sensitivity analysis framework.

The approximate standard errors for parameters unrelated to the random effects in the

VEM approach were obtained from the Hessian of the log-likelihood evaluated at the estimates

of θ̂ and Ĝ. However, as suggested by Follmann and Lambert (1989), these implicitly assume

that the number of support points of G is equal to the estimated number and approximate stan-

dard errors have been shown to underestimate standard errors (Follmann and Lambert, 1989;

Tsonaka et al., 2009), as the models fail to account for the uncertainty produced by estimating

the random effect distribution (Butler and Louis, 1992). The standard errors need to account

for the additional uncertainty and some non-parametric approaches estimate the standard er-

rors using adjustment methods (Butler and Louis, 1992) or by utilising the computationally

intensive bootstrap method (Tao et al., 1999; Baghfalaki and Ganjali, 2014). Aitkin (1999)

proposed to obtain correct standard errors by calculating the absolute value of the parameter

estimate divided by the square root of the deviance change on omitting variables one-by one,

subsequently requiring numerous model fits. Furthermore, as standard errors for VEM have

only been calculated for the model parameters unrelated to the random effects (i.e. β1 in

Equation 7.1), estimation of standard errors for all model parameters could be calculated using

the method proposed by Tsonaka et al. (2009) based on the Hessian of the log-likelihood for

all model parameters. The proposed method of Tsonaka et al. (2009) produces good quality

standard errors, except that it may overestimate the standard errors for parameters relating

the random effects. Fast and consistent estimation of standard errors for all parameters in non-

parametric maximum likelihood estimation of GLMMs is an area requiring further investigation.

Model comparison of parametric, semi-parametric and non-parametric estimation of GLMMs

is not straight forward. Not only does difficulty arise when comparing the discrete solution

of non-parametric approaches to methods resulting in continuous solutions (Ghidey et al.,

2010), model comparison is complicated as standard asymptotic theory does not apply for non-

parametric methods (Litiére et al., 2008). Within the sensitivity analysis framework considered

in this study, the residual deviance has been used as an indication of model fit as previously

utilised in the literature (Aitkin, 1999; McCulloch and Neuhaus, 2011a; Lesperance et al., 2014).

Formal model comparison of non-parametric estimation of GLMMs based on differences in the

residual deviance is lacking theoretical justification (Aitkin, 1999). Furthermore, as all residual

deviances are approximations, caution should be applied when comparing the model fit based

on deviance. However, given the focus has been on investigating the sensitivity of conclusions
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with respect to the distributional assumptions for the random effects, formal comparison of

model fit is not of primary interest here.

In summary, this chapter highlights the practicality of implementing approaches to relax the

parametric assumption of the random effects distribution to potentially reduce the risks asso-

ciated with misspecifying distributional assumptions in logistic mixed models. By considering

different approaches within a sensitivity analysis framework, potential distributional misspec-

ification of the random effects can be identified in practice. In this application to the HILDA

panel survey, the reported sensitivity of the logistic mixed model to the assumed random ef-

fects distribution highlights an example whereby the conventional model assuming normality

may lead to biased estimation of model parameters. Leaving the random effects distribution

completely unspecified and estimated using non-parametric maximum likelihood techniques

provides an efficient approach to capture underlying heterogeneity of the random effects in a

potential mover-stayer scenario. Non-parametric estimation using the VEM provides a reliable

approximation to the NPMLE. The VEM performed well to capture the multimodality of the

random effects, particularly for the more complex bivariate distributions, where the VEM al-

gorithm was the only flexible approach to reach model convergence. Albeit the computational

time required to estimate the VEM, the performance of the VEM to flexibly model the ran-

dom effects in panel survey settings, including missing data due to attrition, is encouraging

for consideration in future applications. This is particularly true for scenarios where extreme

underlying heterogeneity of univariate or bivariate random effects may be suspected.
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8 Discussion

8.1 Major findings

This study provides a novel insight into the inferential impact of assuming normal dis-

tributed random effects in logistic mixed models applied to panel survey settings where an

underlying sub-population structure exists. In a mover-stayer scenario, the assumed normal

distribution fails to adequately capture the underlying heterogeneity. Rather, the multimodal-

ity of the random intercepts is more appropriately characterised by a three component mixture

of normal distributions. The three major findings of this study are highlighted and further

discussed below:

1. Incorrectly assuming normally distributed random intercepts for underlying trimodal dis-

tributions can impact inference for model parameters differently, and is dependent on the

type and severity of departure from normality.

In situations where there exists multimodality of the random intercept distribution, the inferen-

tial impact of incorrectly assuming normality is dependent on the type and severity of departure

from the normal distribution. For minor departures from a single mode, and for departures from

symmetry such as an asymmetric distribution in a mover-stayer scenario, incorrectly assuming

normality had minimal impact on estimating fixed effect parameters. However, in these set-

tings incorrectly assuming normality resulted in biased estimates of parameters related to the

misspecified random intercept, the intercept constant and the random effect variance compo-

nent. For large departures from normality characterised by multimodality in the form of three

distinct modes, inference for fixed effects parameters of time-invariant explanatory variables

and parameters related to the random effects were sensitive to distributional misspecification

of the random effects. Incorrectly assuming normality in scenarios with distinct multimodality

produced biased parameter estimates and poor coverage rates of confidence intervals for the

intercept constant, time-invariant explanatory variables and those time-varying explanatory

variables exhibiting minimal within-individual variability. Inference for the random effect vari-

ance was extremely sensitive to distributional misspecification of the random effects, resulting

in biased estimates, poor coverage rates of confidence intervals and inaccurate standard errors.

2. Relaxing the parametric assumption of the random effects distribution using the non-

parametric Vertex Exchange Method (VEM) is a viable approach to induce more flex-

ibility to capture underlying heterogeneity in univariate and bivariate random effects
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distributions in panel survey applications, including settings with missing data due to

attrition.

Assuming more flexible distributions for the random effects within a sensitivity analysis frame-

work can provide a practical approach to identify and potentially reduce the inferential impact

of violating distributional assumptions of the random effects. Non-parametric approaches pro-

vided considerable flexibility to capture multimodal distributions. Non-parametric methods

resulted in lower residual deviances when compared to existing methods, and were easily im-

plementable in standard software. VEM is a promising method to non-parametrically estimate

the random effects in logistic mixed models applied to panel survey data, including scenarios

with missing data due to attrition. Albeit being computationally intensive, the VEM induced

sufficient flexibility to capture the underlying heterogeneity. The VEM performed well when

applied to logistic mixed models with univariate and bivariate random effects, and was the

only approach to reach model convergence when compared to four existing methods (including

another non-parametric method) to capture the bivariate random intercept and random slope

distribution.

3. MAR attrition has minimal additional inferential impact on model parameters in the

presence of distributional misspecification of the random effects.

For a similar rate of 29.5% attrition as observed in the HILDA case study, the inferential impact

of incorrectly assuming normality in the presence of MAR attrition was similar to the impact

for the random intercept logistic model with complete data. The minimal additional impact

may be due to the potential consistency of logistic mixed models in the presence of MAR

missingness. Furthermore, approaches to induce flexibility of the random effects distribution

performed well when applied to the HILDA case study with complete or monotone missing

data. For each approach, there were similarities between the parameter estimates for the two

analysis sub-groups, giving support to the MAR assumption for the underlying missingness

mechanism in the HILDA case study.

The remainder of this chapter provides more detailed discussion of the major findings of this

study and potential implications to other applications in the social sciences. Firstly, Section

8.2 continues to discuss the inferential impact of misspecifying the random effects distribution

in random intercept logistic models, considering the impact on each type of model parameter.

Section 8.3 discusses the additional impact of missing data due to attrition, focusing on the

impact of misspecifying the random effects distribution and the performance of approaches to

flexibly model the random effects. Section 8.4 discusses the implications of the major findings of

these studies in other applications of GLMMs to analyse longitudinal panel survey data. Section

8.5 details key computational issues that arise when implementing GLMMs assuming a normal

or flexible distribution for the random effects. This is followed by a discussion of methodological

issues for the statistical and simulation techniques implemented throughout the study (Section
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8.6). Lastly, Section 8.7 discusses the limitations of this study and highlights areas for future

work, and finally, Section 8.8 closes with some concluding remarks.

8.2 Severity of departures from normality

The impact of misspecification on maximum likelihood estimation of random intercept logis-

tic models was dependent on the degree of departure of the true random intercept distribution

from the assumed normal distribution, either in terms of departures from symmetry or depar-

tures from a single mode. Thus, the combination of the mean component distance and the

component variances of the three component mixture of Gaussians leading to a skewed distri-

bution or distinct multimodality was a contributing factor.

Depending on the severity of departure from normality, the impact of incorrectly assum-

ing normality when the true random intercept distribution was multimodal could affect the

estimation of the time-varying or time-invariant fixed effects differently. Furthermore, the de-

gree of severity of misspecification had differing inferential impact on parameters related to

the misspecified random effect, including the intercept constant and variance component of the

random effects. The impact on estimating each of the model parameters is discussed further in

the following sections.

8.2.1 Impact on inference about time-invariant fixed effects

The impact of misspecification on estimating the effects of time-invariant explanatory vari-

ables can depend on the type and the severity of departure of the true distribution from normal-

ity. For true random effects distributed as an asymmetric trimodal (Chapter 5) or symmetric

mixture distribution with little or moderate multimodality (mean component distance less than

14, Chapter 6), estimation of time-invariant fixed effects was relatively robust to distributional

misspecification of the random intercepts.

However, for true random intercepts distributions with distinct multimodality and large

departures from normality (component mean distances of 14 or more, Chapter 6), incorrectly

assuming normality produced biased estimates and poor coverage rates of the effects of time-

invariant explanatory variables. Larger magnitudes of bias and lower coverage rates corre-

sponded with more extreme cases of multimodality, as characterised by larger distances be-

tween the mean components and smaller component variances. This is consistent with previous

literature, whereby bias and loss of efficiency have been reported when true distributions are

substantially different from the assumed distribution (Agresti et al., 2004)1 and for true random

effects with large variability (Heagerty and Kurland, 2001; Litiére et al., 2008). Although the

parameter estimates were impacted by misspecification of the random intercept distribution,

1For example, assuming a normal random intercept distribution when the true distribution is discrete with
two points (Agresti et al., 2004).
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the accuracy of model based standard errors was robust to misspecification as previously re-

ported for a similar number of time-points as observed in the HILDA case study (McCulloch

and Neuhaus, 2011a)2.

Typically simulation studies investigating inferential impact on time-invariant fixed effects

in the presence of misspecified random effects have considered a binary time-invariant explana-

tory variable (Heagerty and Kurland, 2001; Litiére et al., 2008; McCulloch and Neuhaus, 2011a;

Neuhaus et al., 2013). Often the binary variable is simulated to represent treatment effect (i.e

within a clinical trial setting), and subjects are randomly allocated to one of the two treatment

groups with equal probability. However, McCulloch and Neuhaus (2011a) considered a binary

variable with unequal allocation of 25% and 75%, reporting similar inferential impact as for

binary time-invariant explanatory variables with equal allocation. The simulation studies pre-

sented here consider a three-level categorical time-invariant explanatory variable representing

baseline education level. By considering three categories with unequal allocation of 28%, 40%

and 32% (Table 4.2), the results provide insight into the impact of misspecifying random effects

on inference for categorical time-invariant fixed effects suggesting a similar impact as previously

reported for binary time-invariant variables.

Estimation of parameters corresponding to the time-invariant explanatory variables is often

considered an important inferential goal in longitudinal analysis (McCulloch and Neuhaus,

2011a), such as the effectiveness of a treatment in a clinical trial. Previously it has been

conjectured that time-invariant fixed effects are more sensitive than time-varying explanatory

variables to distributional misspecification of the random effects, as both time-invariant fixed

effects and the random effects capture variability among individuals (Chen et al., 2002). The

results from this study show that for large departures from normality in the form of distinct

multimodality, misspecification can produce large biased estimates and poor coverage rates for

the effects of time-invariant explanatory variables.

8.2.2 Impact on inference about time-varying fixed effects

Consistent with findings from previous theoretical and simulation studies, misspecification of

the assumed random effect distribution had little impact on estimation and inference for time-

varying explanatory variables. The minimal impact may be contrasted with time-invariant

explanatory variables being roughly orthogonal to between-subject effects as previously postu-

lated by Chen et al. (2002). Incorrectly assuming normality when the random effects were an

asymmetric or symmetric mixture distribution generally resulted in minimal bias, and exhibited

close to nominal coverage rates with accurate model based standard errors.

2Efficiency was reported for cluster sizes of 10. For cluster sizes of 20 or 40, McCulloch and Neuhaus (2011a)
reported that incorrectly assuming normality resulted in larger standard deviation estimates of the time-invariant
explanatory variable than correctly fitting the random intercept logistic model for a Tukey distribution.
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The results from the simulation studies presented in Chapters 5 and 6 suggest that the de-

gree of within-subject variability of explanatory variables may influence the magnitude of bias

when estimating time-varying fixed effects in the presence of misspecification. For instance, the

coefficient capturing the effect of single women was consistently underestimated and negatively

biased. This particular variable exhibited substantial stability over the observational period,

whereby only 5% of women transitioned when the explanatory variable was treated as a binary

indicator variable. Furthermore, as only 10% of the women in the HILDA sub-sample were

ever single over the observational period, the small cell size may also be a contributing factor

to the stable nature of the explanatory variable. In addition to the stability, the large standard

error and small magnitude of the true coefficient may have also contributed to the observed

bias. The observed large standard error may also partly be explained by the relationship with

dependent children. Although 26.6% (53/199) of single women had at least one dependent

child at the first wave, the small cell size of single women with dependent children could lead to

instabilities of the parameter estimates and subsequently, contribute to the large standard error.

The impact of misspecification on estimating the effects of categorical time-varying ex-

planatory variables has not previously been considered. Simulation studies have predominantly

focused on time-varying continuous covariates by either considering a single continuous co-

variate representing a linear time trend (Litiére et al., 2008; McCulloch and Neuhaus, 2011a),

considering two continuous covariates representing a linear time trend and a time by group

interaction (Heagerty and Kurland, 2001), or considering two orthogonal time-varying continu-

ous covariates (Neuhaus et al., 2013). However, in comparison to linear trends of time-varying

covariates, transitions of categorical variables may be complicated by the direction of possible

transitions or categories with absorbing states. For instance, transitions of the categorical vari-

able capturing marital status is restricted by certain combinations (i.e. single never married

→ married → divorced is suitable, whilst the transition of single never married → divorced

→ single never married is not permissible). By considering two time-varying categorical vari-

ables with differing within-subject variability, the simulations considered in this study provide

a novel insight into the impact of misspecifying random effect distributional assumptions on

both time-varying covariates and time-varying categorical variables.

Inference of time-varying fixed effects in longitudinal studies is often considered the most

relevant (McCulloch and Neuhaus, 2011a), as evaluation of time-varying covariates is often a

primary reason for conducting longitudinal research (McCulloch and Neuhaus, 2013). Con-

sistent with the results of theoretical studies and simulation studies considering time-varying

continuous covariates, misspecification of the random effect distribution generally had minimal

impact on the estimation of coefficients for continuous and categorical time-varying explana-

tory variables. However, the results of this study suggest that the inferential impact of mis-

specification on estimation of time-varying categorical variables may depend on the degree of

within-subject variability. Categorical variables exhibiting minimal within-subject variability
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can result in biased estimation of the corresponding regression coefficient.

8.2.3 Impact on inference about the intercept constant

The results from the simulation studies suggest that misspecification of the random inter-

cept distribution can induce biased estimates of the intercept constant. Incorrectly assuming

normality of the random intercepts when the true distribution was an asymmetric mixture

(Chapter 5) or a symmetric mixture with distinct modes (mean component distance 14 or

larger, Chapter 6), resulted in overestimation and substantial bias of the intercept constant.

The sensitivity to distributional misspecification when estimating the intercept constant is con-

sistent with theoretical and simulation studies that have shown that estimation of parameters

directly related to the misspecified random effect may be biased when the true distribution dif-

fers substantially from the assumed (Neuhaus et al., 1992; Heagerty and Kurland, 2001; Litiére

et al., 2008; McCulloch and Neuhaus, 2011a; Neuhaus et al., 2013). Furthermore, the bias

observed for the asymmetric mixture distribution (Chapter 5) is consistent with the sensitivity

of the intercept constant to assuming a symmetric distribution when the true distribution is

asymmetric (Neuhaus et al., 1992). As previously reported (Heagerty and Kurland, 2001; Mc-

Culloch and Neuhaus, 2011a), larger departures from normality and large true random effect

variances resulted in more positively biased estimates. Furthermore, coverage of the intercept

constant estimate was impacted for large departures of the symmetric mixture distribution from

normality (component mean distances 14 or larger), resulting in poor coverage rates below the

nominal 95%. However, as previously reported by Neuhaus et al. (1992), the accuracy of model

based standard errors was robust to distributional misspecification.

Typically inference for the intercept constant is not of direct interest, however bias of the

intercept constant can transfer over to estimation of the mean value of the outcome variable3

(McCulloch and Neuhaus, 2011a). The sensitivity of the intercept constant in the presence of

misspecified random effects should be taken into account when inference focuses on the mean

estimation of the outcome variable or the intercept constant.

8.2.4 Impact on inference about the random effects variability

Estimation and inference for the variability of the random intercept can be severely impacted

by misspecification of the random effects distribution. Departures from the assumed normal

distribution, as defined by multimodality of the true random intercepts either as an asymmetric

mixture (Chapter 5) or symmetric mixture with distinct modality (mean component distance

12 or larger, Chapter 6), resulted in seriously biased estimates of the variance component, with

extremely poor coverage below the nominal rate and inaccurate model based standard errors.

The observed sensitivity is consistent with the bias reported for scenarios where the shape of

the true distribution differs from that of the assumed distribution (Neuhaus et al., 1992; Litiére

3As estimated at fixed values of the explanatory variables included in the model.
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et al., 2008). For instance, large bias has previously been reported when incorrectly assuming

normality for random intercepts distributed as an exponential, chi-squared, power-function or

an asymmetric mixture of two normals (Litiére et al., 2008). Larger true random effect vari-

ances resulted in larger bias in the estimation of the variance component, and are consistent

with the findings of Litiére et al. (2008). However, for the symmetric mixture distribution

considered in Chapter 6, smaller component variances for the same component mean distance,

corresponding to more extreme multimodality, resulted in larger bias.

Previously it has been suggested that the direction of the bias can change depending on

the true distribution (Litiére et al., 2008). However unlike the underestimation previously re-

ported for true asymmetric two component mixture of normals (Litiére et al., 2008), assuming

normality for both true asymmetric and symmetric mixtures resulted in overestimation of the

true random effect variability. The assumed normal distribution appears to be more sensitive

to departures from symmetry, with increased skewness in the true asymmetric mixture dis-

tribution having a greater impact. This concurs with the results presented by Litiére et al.

(2008). The sensitivity of an asymmetric distribution may partly be explained by the skewness

of the distribution, as large bias has been reported when true skewed distributions are incor-

rectly assumed to be symmetric (Neuhaus et al., 1992; Litiére et al., 2008; Neuhaus et al., 2013).

Estimates of the variance component are often not of primary inferential interest (McCulloch

and Neuhaus, 2011a), however it is the only measure of the true random effect variability (Litiére

et al., 2008). Bias of the variance component may subsequently impact alternative summary

measures of the unobserved between-subject variability, such as the intra-class correlation4, and

may complicate identifying problems in the mean structure (Litiére et al., 2008). Furthermore,

biased and inaccurate estimates of the variance components can also impact the accuracy of

the best predicted random effect values, particularly for situations when the true distribution

has a wider range of support than assumed, and for the random effect distribution with large

variances (McCulloch and Neuhaus, 2011b). The results from the simulation studies suggest

that if true random intercepts are suspected to differ from the assumed normal, either as an

asymmetric mixture or a symmetric mixture with distinct modes, estimation and inference for

the variance component and complementary summary statistics can be impacted.

8.2.5 Misspecification of bivariate random effects distribution

This study has predominately focused on misspecification in random intercept logistic mod-

els, however as demonstrated in Chapter 7, it may be appropriate to consider more complex

random effect structures. The logistic mixed models presented in Chapter 7 indicate sensitiv-

ity to the assumed random effects distribution when estimating the effects of time-invariant

4For random intercept logistic models, large differences may arise when the true random intercept distribu-
tions has a small true random effect variability. As the ICC for the random intercept logistic model has a fixed
residual error of π2/3, similar ICC values will arise for true random intercept distributions with large variability
unless there exists substantial bias.
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explanatory variables and parameters relating to the random effect. Misspecification of the

bivariate random effects distribution is an understudied area, with limited literature suggesting

the impact on inferential conclusions is analogous to the random intercepts scenario (McCulloch

and Neuhaus, 2011a; Neuhaus et al., 2013). Thus, there is scope for future work, particularly

investigating misspecification within panel survey settings (by considering attrition and cat-

egorical explanatory variables) and situations with extreme distributions (multimodality as

identified in this study). Simulation studies to quantify the impact on inference and prediction

will be valuable, and have been highlighted as an area for ongoing research.

8.3 Impact of attrition

Missing data resulting from non-response and attrition is a complication of longitudinal

data. In practical applications of GLMMs to longitudinal data, estimation can be affected by

the simultaneous impact of misspecifying the random effects distribution in the presence of

missing data. This was supported by the results presented in Chapter 4, whereby 29.5% of

the HILDA study population experienced attrition and assuming a three component mixture

for the random intercepts provided a more adequate fit than assuming normality in a random

intercept logistic model. Although maximum likelihood estimation of GLMMs can provide

consistent estimators when missing data is assumed to be missing at random (MAR), valid

inference requires correct specification of the mean and variance-covariance structure of the

dependent variable (Hedeker and Gibbons, 2006). One of the objectives of the simulation stud-

ies was to examine the effect of misspecification of random effects distributions on parameter

estimates in settings with missing data due to MAR attrition.

The results presented in Chapters 5 and 6 suggest that, in the presence of MAR attrition,

the impact of misspecifying the random intercept distribution was similar as that observed in

the complete data scenario. In particular, distributional misspecification in the presence of

MAR attrition generally resulted in similar trends and magnitudes of bias, coverage rates and

accuracy of model based standard errors. The minimal additional effect of attrition was similar

regardless of whether the true random intercepts were an asymmetric or symmetric mixture

distribution. These results are consistent with the findings of Wang (2010b), whereby the in-

teraction between misspecifying the bivariate random effects distribution and MCAR or MAR

attrition had minimal impact on the estimated parameters and standard errors. Similarly,

minimal additional impact of missingness was suggested by Neuhaus et al. (2013), when inves-

tigating misspecification of the bivariate random effects distribution for different cluster sizes.

By considering cluster sizes uniformly distributed between 4 and 10, the scenario presented in

Neuhaus et al. (2013) is consistent with a MCAR missingness mechanism.

The simulation studies have generated attrition assuming an underlying MAR missingness

mechanism. However, as the effect of missing data on consistent estimation of GLMMs is de-

pendent on the underlying reason for missingness, it would be valuable to explore the impact of
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other mechanisms. For instance, as the MNAR missingness leads to inconsistent estimation of

GLMMs, the joint misspecification of the assumed missingness mechanism and random effects

distribution is an area of future research. Furthermore, the simulation studies generated miss-

ing data with similar rates of wave-to-wave attrition as the 29.5% observed in the HILDA case

study. However attrition rates can differ between longitudinal studies and populations under

study. In the similar context of shared parameter models, the effect of misspecifying random

effects distributions can become more pronounced for some parameters as the number of re-

peated longitudinal measurements per individual decreases (Rizopoulos et al., 2008). This is in

contrast to results presented by Wang (2010b) reporting negligible differences in the impact of

misspecified random effect distributions in logistic mixed models when considering three attri-

tion rates of 10, 20 and 30%. Perhaps the interaction of higher attrition rates and substantial

discrepancies of the true random effects distribution from normality are contributing factors

that impact inference for model parameters in GLMMs. Preliminary results from additional

simulation studies assessing the impact of 10, 30 and 50% attrition rates in the clinical trial

setting presented in Chapter 6, support this idea. These results are only preliminary, and

further research is required by considering different attrition rates and alternative missingness

mechanisms, such as MNAR attrition and simultaneous intermittent missingness and attrition.

Furthermore the simulation studies have considered a large number of 1000 individuals. Per-

haps the simultaneous impact of missingness and misspecifying the assumed random effects

distribution may be more pronounced in settings with fewer individuals, an area requiring fur-

ther research.

To assess the feasibility of using more flexible modelling approaches to relax the parametric

assumptions of the random effects distribution in practical applications, the sensitivity analysis

in Chapter 7 considered applications of the logistic mixed model in settings with missing data

due to attrition. Estimation of the flexible approaches applied to the logistic mixed models

with univariate and bivariate random effects was not affected by the potential complexity asso-

ciated with missing data due to attrition. This may partly be explained by the large number of

individuals and the relatively large number of time-points in the HILDA case study (N=1927

and ni ≤ 11). Therefore, difficulties in regards to model convergence may occur in applications

where limited data are available due to perhaps, fewer individuals and/or fewer time-points.

Furthermore, loss of information due to intermittent missingness may also impact implementa-

tion and use of flexible random effects approaches. In addition to the performance of the flexible

approaches within the panel survey setting, implementation of diagnostic tests in Chapter 4,

highlights the practicality of informal and formal diagnostic tests to detect misspecification of

the assumed random intercept distribution in the presence of attrition. Further investigation of

the feasibility of flexible modelling approaches and diagnostic testing in practical applications

should consider other types, mechanisms and rates of missingness.

In summary, the presence of MAR attrition in estimation of random intercept logistic mod-
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els will have minimal additional impact when the random effects distribution is misspecified,

provided the overall sample size is large. In particular, for similar rates of MAR attrition as

in the HILDA case study, incorrectly assuming normality for true multimodal random inter-

cept distributions can produce biased estimators of the fixed effects and parameters relating to

the random intercept. By considering a range of departures from the assumed normal distri-

bution, from minor to major departures in terms of symmetry and multimodal distributions,

these results contribute to the limited literature assessing the effects of misspecification in the

presence of attrition. In particular they provide an insight into the interaction of attrition and

extreme random effect distributions due to potential mover-stayer scenarios in an application to

panel survey data. Furthermore, implementation and estimation of approaches to induce more

flexibility and detect misspecification of univariate and bivariate random effect distributions

performed well in the presence of attrition in panel survey applications.

8.4 Implications to analysis of longitudinal household surveys in the

social sciences

As the use of random effects in modelling increases (Agresti et al., 2004), understanding the

implications of violating model based assumptions becomes crucial for accurate inference and

interpretation. In practical applications of GLMMs, the conventional wisdom is that the choice

of the random effects distribution is not critical (Agresti et al., 2004), and that the normality

assumption is generally robust to misspecification (McCulloch and Neuhaus, 2011a). It has

been shown that misspecifying the assumed random effect distribution has minimal impact on

estimating the fixed effect parameters, typically the parameters of interest (McCulloch and

Neuhaus, 2011a). This study shows that estimates of the fixed effects parameters from ran-

dom intercept logistic models that incorrectly assume normally distributed random intercepts

are generally robust to this misspecification, particularly in settings where the true underly-

ing random effects reflect a mover-stayer scenario and in settings with missing data following

the missing at random mechanism. For large departures from the assumed normal distribution

characterised by distinct multimodality in a symmetric three component mixture of normal dis-

tributions, this study provides an example whereby misspecifying the random effects distribu-

tion in a two-level random intercept logistic model can produce biased estimates of parameters

associated with the random effects in conjunction with time-varying and time-invariant fixed

effect parameters. The impact of misspecification on estimating the time-varying parameters

were restricted to categorical variables exhibiting minimal within-individual variability.

The total variance of the simulated random intercept distributions presented here may be

considered more extreme than observed in practical applications of logistic mixed models5.

Nonetheless, the illustrative example considered here was highly heterogeneous, resulting in

over 50% of working aged women exhibiting constant response profiles over all eleven waves.

5Previously McCulloch and Neuhaus (2011a) considered simulated random intercepts with total random
effect variance exceeding 4 as large (i.e. σ2

b ≥ 4).
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Taking account of the stability in the response profiles can be important, particularly for anal-

ysis of the labour market (Hyslop, 1999). The observed constant response profiles, particularly

in the analysis of recurrent events, could be due to state dependence, heterogeneity in the pop-

ulation, or possibly a mixture of both (Davies, 1993; Hyslop, 1999). Therefore, estimation of

GLMMs in applications with constant response profiles may be susceptible to misspecification

of the random effects distribution. Initial exploration for constant response profiles prior to

estimating the GLMM may help identify a potential non-normal random effects distribution.

This highlights scenarios whereby the assumed normal distribution may not adequately capture

the underlying heterogeneity and subsequently impact inferential conclusions.

Non-parametric estimation of the random effects provides a flexible approach to model the

random effects, particularly in scenarios with substantial underlying heterogeneity due to a

potential mover-stayer scenario. The similarity between the mover-stayer models and non-

parametric characterisation of population heterogeneity has previously been noted by Davies

and Crouchley (1986). In the context of a random intercept logistic model with no explana-

tory variables, the perceived goodness-of-fit success often observed for the three-spike Bernoulli

mover-stayer model was argued to be due to it sufficiently approximating the non-parametric

characterisation of the underlying heterogeneity (Davies, 1993). The results presented here

suggest that the use of a non-parametric approach may accommodate an underlying mover-

stayer scenario in logistic mixed models with explanatory variables. Although non-parametric

estimation of the random effects distribution may be poor, it does not necessarily translate to

poor estimation of the marginal distribution (Heckman and Singer, 1984; Agresti et al., 2004).

Therefore, it is an appropriate method when the random effects distribution is not of primary

interest (Heckman and Singer, 1984; Litiére et al., 2008). Albeit the increased computational

burden and potential loss of efficiency for situations whereby the assumed normal distribution

would not be badly violated (Agresti et al., 2004), non-parametric methods provide consistent

estimation in data-rich settings (Chapter 12.4 in McCulloch et al., 2008). Hence, implementa-

tion of non-parametric approaches in longitudinal panel survey data may be a practical solution

to relax the parametric assumptions and potential issues related to misspecifying the random

effects distribution. Previously Agresti et al. (2004) and Muthén and Asparouhov (2008) among

others, recommended more frequent use of non-parametric estimation of the random effects in

practice. However, utilisation within panel survey settings remains limited. Perhaps the devel-

opment and availability of computationally fast non-parametric maximum likelihood estimation

methods in standard software, particularly for GLMMs with multiple random effects, will aid

the implementation of non-parametric approaches for practical users of panel data.

As demonstrated in Chapter 7, implementation of non-parametric approaches to model the

random effects within a sensitivity analysis framework can provide a practical way for users

to gain confidence in the interpretation of their results. Specifically, comparing the model

fit of a GLMM assuming normal random effects with the model fit of random effects fitted
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non-parametrically can efficiently validate the robustness of assuming normality (Agresti et al.,

2004). However, model comparison based on the estimated fixed effect parameters of the para-

metric and non-parametric model can be misleading (Muthén and Asparouhov, 2008). Although

the parameter estimates of the two approaches may be similar, higher order moments of data

will be appropriately captured by non-parametric approaches (Muthén and Asparouhov, 2008).

Furthermore, computational challenges associated with non-parametric approaches do not guar-

antee that the algorithm has converged to the maximum likelihood, and thus non-parametric

approaches may lead to biased parameter estimates. Additionally, the performance of non-

parametric methods is often dependent on the number of mass points, with a larger number

of mass points generally resulting in improved model fit at the cost of increased computational

power and issues of over-parametrisation6. However, the choice of the optimal number of mass

points is not straight-forward. Methods such as the VEM and the Gateaux-derivative method

can provide, respectively, either an approximation or an estimate of the non-parametric maxi-

mum likelihood estimator. The VEM approach had no convergence or estimation issues when

implemented to estimate the more complex bivariate random effects distribution (Chapter 7),

suggestive that VEM is a viable non-parametric approach in longitudinal panel applications.

Simulation studies will be beneficial to further investigate the performance of VEM in applica-

tions of binary longitudinal data.

Often the greatest perceived limitation of the non-parametric approach is the discrete nature

of the random effects distribution. However, if inferential interest is in density estimation of the

random effects or making individual-specific predictions, alternative methodologies to flexibly

model the random effects distribution are available(i.e. SNP-NLMM method by Vock et al.,

2014). Furthermore, inclusion of these methods into the sensitivity framework can provide

more evidence about the robustness of the assumed distribution (Agresti et al., 2004; Litiére

et al., 2008).

However, flexible modelling of the random effects can be challenging in practice. Not only is

the accessibility dependent on the availability of software packages, but it can also be restricted

in regards to the complexity of the model (i.e. single or multiple random effects). Although

the accessibility within standard statistical packages is improving, not all methods will induce

sufficient flexibility to capture the extreme distribution in situations with constant response

profiles. For instance, the default boundary of the assumed random effect distribution for the

SNP-NLMM method (Vock et al., 2014) had limited support to capture the underlying hetero-

geneity of the random effects distribution. Similarly, when explanatory variables are included in

the analysis, a random intercept logistic model with endpoints (Berridge and Crouchley, 2011a)

may be too restrictive to capture the variability at the extremities of the distribution. In addi-

6For example, the number of mass points M can only be as large as the number of individuals N in the
study. Or in the case of binary response data, M can only be as large as the number of distinct response and
explanatory variable profiles. Therefore, in the case of a random intercept logistic model with no explanatory
variables, M is restricted to be less than the number of observed distinct response profiles.

166



tion to the limitations of some methods to induce sufficient flexibility, flexible approaches may

be susceptible to boundary solutions. For approaches where random effect distributions put

appreciable probability on large magnitude values, such as the logistic model with endpoints or

non-parametric approaches, boundary solutions can lead to instabilities of model parameters

related to the random effects. Sensitivity of these approaches to the initial choices regarding the

distributional range of the random effects should be assessed, and caution is required when in-

terpreting parameters related to the random effects. Furthermore, implementation of the more

flexible approaches may not be straightforward. For instance, using the likelihood reformula-

tion method of Liu and Yu (2008) to model non-normal distributed random effects requires the

user to reformulate the log-likelihood. Thus, correct specification of the reformulation model

can be challenging in practice and requires users to understand statistical programming in SAS

and theoretical aspects of the model.

Although development of diagnostic testing for distributional misspecification of random

effects has recently received attention in the literature (i.e Verbeke and Molenberghs, 2013;

Drikvandi et al., 2016), implementation in practice is limited. This may be partly explained

by the accessibility of diagnostic tests in standard statistical software, with some methods re-

quiring users to request syntax from the authors. As demonstrated in Chapter 4, the graphical

exploratory tool of Verbeke and Molenberghs (2013) provides an easily implementable diag-

nostic tool to assess the distributional misspecification, however it is restricted by only using

information from individuals with non-constant response profiles. The formal diagnostic test

of Drikvandi et al. (2016) utilises information from all individuals, providing an easily imple-

mentable diagnostic test to identify distributional misspecification. However, both diagnostic

tools were applied to the random intercept logistic model, and implementation to the bivariate

random intercept and random slope scenario is not as straight forward.

The diagnostic tests considered here have focused on misspecification of the random effects

distribution, nonetheless, a suite of alternative diagnostic tests is available that assess overall

fit (i.e. Pan and Lin, 2005; Alonso et al., 2010b) and other aspects of the model specification

(i.e. Pan and Lin (2005) describe a test for the functional form of the explanatory variables

and also a test for the adequacy of the link function). Increasing the implementation of diag-

nostic tools in practice will be beneficial to formally detect violations of model assumptions,

and thus, understand the potential impact on inferential conclusions. Sensitivity analyses can

provide an informal and easily implementable tool to assess robustness of statistical methodol-

ogy. This is not only limited to the distributional assumptions of the random effects, but can

consider sensitivity to assumptions of underlying missing data mechanisms and other GLMM

assumptions.
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8.5 Computational issues

Longitudinal analysis of categorical responses using GLMMs can suffer from computational

difficulties. Evaluating the likelihood is complicated by the calculation of high dimensional in-

tegrals (McCulloch et al., 2008). Therefore, not only can the choice of numerical approximation

techniques impact estimation, but numerical methods can be sensitive to the number of clus-

ters and cluster size (Hosmer et al., 2013). In this study, maximum likelihood estimation has

been restricted to numerical integration techniques utilising adaptive Gaussian quadrature7.

Adaptive quadrature is a reliable method to estimate GLMMs, however it is still susceptible to

numerical issues (Hosmer et al., 2013; Capanu et al., 2013) and convergence to a global maxi-

mum can be difficult to obtain (Lesaffre and Spiessens, 2001). Although adaptive quadrature

is not as sensitive to the number of quadrature points as non-adaptive quadrature (Lesaffre

and Spiessens, 2001), the sensitivity to the choice of quadrature points should routinely be ex-

amined (Lesaffre and Spiessens, 2001; Hosmer et al., 2013). More quadrature points improves

approximation of the log-likelihood (Capanu et al., 2013), however increasing the number of

quadrature points can subsequently lead to numerical convergence issues (Hosmer et al., 2013).

For the logistic mixed models assuming normal distributed random effects considered in this

study, estimation was based on 20 adaptive quadrature points. Sensitivity analyses suggest

stability of the parameter estimates and that 20 quadrature points provided a good approxi-

mation of the log-likelihood (results not shown).

Implementation of GLMMs in alternative software packages often differ in default settings,

including the number of quadrature points and numerical method used for estimation. For

instance, eight quadrature points is the default for the GLLAMM procedure in STATA, whilst

the NLMIXED procedure in SAS adaptively selects the number of points. Not only does the

default number of quadrature points differ, the default initial starting values and optimization

procedure can vary between software procedures. The different choice of these aspects can im-

pact inferential interpretation (as demonstrated by Lesaffre and Spiessens (2001) and Chapter

17 of Molenberghs and Verbeke (2005)), however for relatively large datasets the differences are

generally minimal (Li et al., 2011). To ensure reliability of GLMM estimates, users should con-

sider the stability of parameter estimates and model convergence to the choice of user-specified

options and default settings of software packages. Furthermore, to enable reproducibility of

results, users should include details of the software package and user-specified options.

As for GLMMs assuming Gaussian distributed random effects, approaches to flexibly model

the random effects distribution may be sensitive to the choice of input parameters and starting

values, resulting in unstable model parameters and failed model convergence. For instance, the

likelihood reformulation method to model the random effects as a finite mixture of normal dis-

tributions was extremely sensitive to the initial starting values and to the number of quadrature

7Capanu et al. (2013) suggest that adaptive Gaussian quadrature is a good choice for settings with non-
complex random effects structure and a moderate to large number of observations per random effect.
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points used in the estimation (see Appendix B for further details). Model convergence issues

can be more susceptible in more complex scenarios, such as modelling multiple random effects.

For instance, in the bivariate random effects scenario considered in Chapter 7, both the NPMLE

as estimated using the Gateaux derivative in GLLAMM and the SNP-NLMM estimated in SAS

failed to converge or obtain standard errors for all model parameters (see Section 7.4.2 for de-

tails). Convergence issues are often noted in the output (Hosmer et al., 2013), however it is up

to the user to assess the model output and be wary of model convergence when interpreting

estimated coefficients. The sensitivity of flexible approaches to user-specified options should be

assessed to ensure stability and numerical convergence.

Increases in computational power and memory allow estimation of GLMMs with normal and

non-normal random effects to be implemented in practice. However, as highlighted in Chapter

7, the computational burden required to flexibly model the random effects distribution can

vary substantially depending on the methodology and the number of random effects included

in the model. In these scenarios, the use of high performance computers and parallel computing

may alleviate some of the computational burden. The use of high performance computers was

particularly beneficial when implementing the VEM to estimate the logistic mixed models with

univariate and bivariate random effects. Furthermore, high performance computing and paral-

lel processing were beneficial to reduce the computational burden associated with performing

simulation studies in panel survey settings (Chapters 5 and 6).

8.6 Statistical and simulation methodology and appropriateness of

measures to assess adequacy of model fit

8.6.1 Statistical methodology

This study has implicitly assumed that the observed constant response profiles in the HILDA

case study are due to heterogeneity in the population. Furthermore, this study has assumed

that the heterogeneity can be adequately captured by the random effects distribution in lo-

gistic mixed models. However, as constant response profiles may be due to a combination of

state dependence and population heterogeneity (Davies, 1993; Hyslop, 1999), models that can

additionally account for state dependence, such as transition models, may more appropriately

disentangle the two effects. Therefore, it would be intriguing to investigate non-normality,

and potentially multimodality, of the random effects distribution in transition models applied

to mover-stayer scenarios. Furthermore, if interest was in quantifying the substructure of the

population, implementation of latent mixture models may be beneficial.

Estimation of GLMMs can be sensitive to the coding of explanatory variables in the mean

structure of the model. For instance, the constant intercept coefficient is interpreted as the

expected value of the outcome when all explanatory variables have the value zero (Hox, 2010).
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If the value zero is not a viable value for an explanatory variable, then subsequently, the value

of the intercept is meaningless. Often the intercept is not of primary interest, though centering

or transforming explanatory variables to make a zero value legitimate can aid model interpre-

tation. For GLMMs that do not have random coefficient terms, i.e. random intercept models,

the model is invariant to linear transformations (Hox, 2010). Thus, in the case study applying

a random intercept logistic model to women aged 30 to 44 (at the first wave), changing the

age term to be the difference of age and 30 years, will enable the value zero to be meaningful.

However, with the exception of the constant coefficient, transforming the age term to start at

zero will result in no differences of the coefficient estimates or the estimated random intercept

variance (results not shown). Furthermore, by including age as a single term in the random

intercept logistic models (Equation 4.1), the term captures two processes: the time-invariant

effect of age at the first wave, and the time-varying effect over time as captured by the waves

of the survey. Thus, the age term included in the random intercept logistic models may be

confounded. Reparameterisation of the age term into the two terms (time-invariant initial age

at the first wave, and a time-varying wave term) marginally alters the resulting coefficient es-

timates, and suggests no significant differences in initial age and a significant linear trend for

each wave (results not shown).

The explanatory variables considered in the case study capture a selection of variables that

are commonly utilised in modelling labour force participation (i.e. Jenkins, 2006; Parr, 2012;

Tannous and Smith, 2013). Even when a more complex model, containing more explana-

tory variables, is considered, there still exists multimodality in the random effects (results not

shown). Thus, albeit the smaller number of explanatory variables included in the motivating

case study, the multimodality of the random intercepts, potentially due to the latent mover

stayer scenario, is expected to be observed in practice.

8.6.2 Simulation methodology

Simulation studies aim to generate datasets with similar properties and resemblance as the

original data (Burton et al., 2006). However, simulating longitudinal data to effectively pre-

serve the correlation and temporal changes of the explanatory variables can be challenging.

Methods have been developed to simulate fixed effects explanatory variables from multivariate

distributions (Wicklin, 2013), however, generating correlated categorical explanatory variables

can be complicated by considering both the within- and between-variable correlations. As

the simulated longitudinal data in this study generates two time-varying categorical variables

and one time-invariant categorical variable, resampling individuals from the HILDA data set

and using their explanatory variables provides an adequate method to capture the within- and

between-covariate variability. By using the HILDA data to generate the simulated data, caution

is required in generalising the results to other longitudinal panel surveys and in other applica-

tions of the random intercept logistic model. However, the results for misspecification within

a clinical trial setting (Appendix E) suggest similar results as presented for the longitudinal
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panel survey setting (Chapter 6). Furthermore, the simulation study within the clinical trial

setting generated explanatory variables using multivariate normal distributions, and as such,

gave support that the resampling methods utilised to simulate longitudinal panel survey data

were appropriate. Additionally, all simulation studies had high convergence rates, providing

increased confidence in the simulation results.

The performance measures used to assess the impact of misspecifying the assumed random

intercept distribution in the simulation study are similar to the measures utilised in Neuhaus

et al. (2013). The relative bias has been calculated using the average parameter estimate over

the total number of simulations. However, as the sampling distribution of parameter estimates

may be skewed, the median as utilised by Neuhaus et al. (2013) may provide a more accurate

summary measure. Utilising the median as the summary measure for the parameter estimates

will result in minimal differences in regards to substantial bias (1% and 2.3% of simulated

scenarios in Chapter 5 and 6, respectively). Similarly, using the median of the standard error

estimates to calculate the standard error ratio would result in minimal differences in regards to

the accuracy of model based standard errors (1% and 0.2% of simulated scenarios in Chapters

5 and 6, respectively). As skewness of the sampling distributions may be related to a smaller

number of simulated datasets (Chapter 15 of Green 2012), the minimal differences in overall

conclusions between the median- and mean-based summary estimates were to be expected.

This provides support that the large number of Monte Carlo simulations considered in the

simulation studies is sufficient.

Previously it has been argued that misspecification of the random effects distribution re-

quires simulating a single true random effect distribution and varying the assumed distribution

(Neuhaus et al., 2011). By simulating a variety of true underlying random intercept distribu-

tions and only considering the normality assumption, it may be argued that the simulation

studies presented here merely assess the robustness of the normality assumption (Neuhaus

et al., 2011). Albeit the underlying differences, Litiére et al. (2011) considers the two ap-

proaches to be complementary. Furthermore, the choice of the approach may be dependent on

the complexity of the model, and practical issues such as computational burden. For instance,

to investigate distributional misspecification of bivariate random effects, Neuhaus et al. (2013)

considered the impact of incorrectly assuming a bivariate normal distribution and simulated a

range of true bivariate random effect distributions. Thus, to supplement the simulation results

presented here, further work could consider fixing the true multimodal random effect and con-

sider alternative assumed distributions, such as finite mixture distributions or non-parametric

estimation techniques. Furthermore, to assess the consistency of the results presented here,

alternative magnitudes of coefficient values for the explanatory variables could be considered

(i.e. as considered by Neuhaus et al., 2013).
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8.6.3 Model fit and comparison

Comparing the adequacy of the model fit for models with alternative random effect distri-

butions is not straight-forward, as there is generally no unrestricted model that can be used for

comparison (Muthén and Asparouhov, 2008). As utilised by McCulloch and Neuhaus (2011a)

and Neuhaus et al. (2013), the residual deviance, calculated as the negative of twice the log-

likelihood, has been used as an indicative measure of the model fit. However, comparison tools

based on the estimated log-likelihood have limitations. The reported log-likelihood value corre-

sponds to the maximum of the approximation to the log-likelihood (Molenberghs and Verbeke,

2005), and as such, is dependent on the number of quadrature points and estimation tech-

niques (Lesaffre and Spiessens, 2001; Molenberghs and Verbeke, 2005). This implies that the

maximised log-likelihood values from different models are not necessarily comparable (Molen-

berghs and Verbeke, 2005), and that the differences may reflect the quality of the technique

to obtain a close approximation to the model likelihood. Further, as the maximised likelihood

refers to the marginal distribution, different random effects distributions can generate similar

marginal distributions (Agresti et al., 2004). Thus, assessing the fit of models by comparing

log-likelihood values (and subsequently, residual deviance) may not identify a better model fit

unless the marginal distributions differ substantially (Agresti et al., 2004).

Alternatively, information criteria could be used to compare non-nested models. Informa-

tion criteria compare models based on their maximised log-likelihood value, but penalise for the

complexity of the model (i.e. number of parameters and number of individuals). To account for

the differing number of parameters used to estimate the models with different assumed random

effect distributions, criteria such as the AIC or BIC could be utilised (i.e. as implemented

by Litiére et al., 2008). However as information criteria were originally developed for stan-

dard linear models, additional challenges arise when applying the criteria to multilevel models

(Steele, 2013). For instance, specification of the number of model parameters is not straight

forward (Steele, 2013), specifically for models with flexible random effects. Furthermore, as

discussed for the residual deviance, information criteria may not detect differences between

alternative assumed random effects distributions unless the marginal distributions are quite

different (Agresti et al., 2004). To overcome this issue, performance criteria can be calculated

using the conditional distribution by conditioning on the random effects distribution (Agresti

et al., 2004). The conditional AIC has been developed for linear mixed models (Vaida and Blan-

chard, 2005) and development of conditional AIC for GLMMs is an area of ongoing research.

However, model selection based on information criteria is not straight forward, as alternative

information criteria may lead to different conclusions (Chapter 15 of Molenberghs and Verbeke,

2005). Furthermore, there is not one criterion that can be considered the best (Steele, 2013),

as the choice is often dependent on the objective of the model comparison (Müller et al., 2013).
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8.7 Limitations and scope for further research

This study has investigated the impact of misspecifying and inducing more flexible distribu-

tions for the random effects distribution in logistic mixed models when applied to panel survey

data. However, there are avenues and considerations that require further research.

Firstly, the logistic mixed models considered in this study are too simple to realistically

address questions about employment participation of Australian working aged women. More

appropriate analyses would consider more than two employment states by distinguishing be-

tween part-time and full-time employment, and also distinguishing between unemployment and

not in the labour force. By considering the four employment states, multinomial or ordinal lo-

gistic mixed models could still be susceptible to subjects exhibiting constant response profiles,

and hence, an extreme random effects distribution. Distributional misspecification of the ran-

dom effects in multinomial or ordinal logistic mixed models have received little attention in

the literature. A limited simulation study presented by Hartzel et al. (2001) suggests minimal

impact on fixed effect coefficients in random intercept ordinal logistic models. More research

into inferential impact on misspecification in multinomial or ordinal logistic mixed models is

required, particularly by considering similar scenarios as identified in the HILDA case study,

such as attrition and potential multimodality of the random effects distribution. Furthermore,

it would be of interest to assess the performance of approaches to induce more flexible ran-

dom effects distributions in GLMMs for categorical response variables with more than two

categories. It is of particular interest to investigate whether the VEM can sufficiently capture

the potentially complex underlying random effects distribution when applied to multinomial or

ordinal mixed models.

Secondly, the predominant focus of this study has been to investigate the impact of mis-

specifying the random effects distribution in logistic mixed effects models. In doing so, it has

been implicitly assumed that other aspects of the model have been correctly specified. That

is, it has been assumed that the mean structure of the model has been correctly specified, and

that, with the exception of the distributional assumption, the random effects structure has also

been correctly specified. However in practice, all model assumptions are violated, at least to

a minor degree (McCulloch and Neuhaus, 2011a). Therefore, simultaneous misspecification of

the random effect distribution and other model assumptions can occur in practice. Research

investigating inferential impact of simultaneous misspecification is limited, and as discussed in

more detail below, is an important area for future research.

The explanatory variables considered in the case study were a selection of variables com-

monly considered when modelling labour force participation. The restricted selection of ex-

planatory variables does not extensively capture the phenomenon under study, and therefore,

an important explanatory variable (or variables) could potentially be omitted from the mean

structure. Furthermore, inability to capture information about certain relevant factors within
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the HILDA panel survey may also contribute to an important variable to be omitted from the

mean structure of the model. The effects of omitting key explanatory variables in GLMMs has

not been extensively investigated in the literature (McCulloch et al., 2008). Biased estimates

of the coefficients in the mean structure can occur when the omitted explanatory variable is

correlated with other explanatory variables in the mean structure (McCulloch et al., 2008). Fur-

thermore, biased estimates of the included explanatory variables can occur when the omitted

variable is independent of the other explanatory variables (Neuhaus and Jewell, 1993; McCul-

loch et al., 2008). As the random effects capture the heterogeneity of unobserved time-invariant

variables, omitted variables may subsequently impact the random effect distribution. It has

been suggested that if the distribution of the omitted time-invariant covariate8 is different from

the distribution of the random effects, the convolution of the distributions will not equal the

random effects distribution, nor be in the same family of distributions (McCulloch et al., 2008).

Thus, omitting a time-invariant covariate could be considered as misspecifying the random

effects distribution (McCulloch et al., 2008). However, as omitted time-invariant categorical

variables could result in polarisation (and hence, multimodality) of the random effects distribu-

tion (Agresti et al., 2004), further research should explore if the results presented here generalise

to omitted time-invariant categorical variables.

Incorrect specification of the mean structure may also occur when a covariate is incorrectly

assumed to have a simple linear relationship when a non-linear or more complex relationship

exists. In the models considered in this study, the age term has been included as a linear term.

However, it may be more appropriate to additionally include a quadratic or higher-order term

to capture a non-linear changes over time. Furthermore, misspecification of the mean structure

can also occur when interaction terms are excluded. Perhaps incorrect specification of these

aspects of the mean structure will subsequently be captured by the random effects. There-

fore, it would be beneficial to assess distributional aspects of the random effects in scenarios

when the mean structure is incorrectly specified due to omission of non-linear time trends and

interaction terms. Furthermore, by leaving the random effects distribution unspecified, non-

parametric estimation of the random effects distributions may capture model misspecification

in these scenarios. This is an area requiring further work and investigation.

Aspects of the random effect structure are also susceptible to misspecification. Incorrect

specification can occur when a fixed effect for an explanatory variable should have a corre-

sponding random effect, thus incorrectly omitting a random effect. As identified in Chapter

7, the substantial improvement in the residual deviance from considering univariate random

effects to bivariate random effects indicates that the random effects structure may be mis-

specified when only random intercepts are included in the model. Previously, Heagerty and

Kurland (2001) reported that incorrectly using a fixed coefficient for a time-varying continuous

explanatory variable in a logistic mixed effects model, could result in bias of up to 30 to 50%

8It has been presumed that the term covariate used by (McCulloch et al., 2008) in this context refers to a
time-invariant continuous explanatory variable.
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in estimated regression coefficients related to the explanatory variable (including interaction

terms). Additionally, the random effects structure can be misspecified by incorrectly assuming

the unobserved heterogeneity is time-invariant. The assumption that the latent time-invariant

variable is constant over time can be restrictive in practical applications. For instance, in the

case of employment participation, the unobserved propensity to take on employment may vary

over time due to changes in perceptions and attitudes to employment. Heagerty and Kurland

(2001) reported biased estimates of the fixed effect coefficients and the random intercept vari-

ance when autocorrelated random intercepts were incorrectly assumed to be time-invariant.

These aspects of misspecification require further work, particularly as these may additionally

contribute to distributional misspecification, especially in applications of logistic mixed models

with constant response profiles.

Furthermore, it has been assumed that the random effects are uncorrelated with the explana-

tory variables. However, in practice this assumption is often violated (Neuhaus and McCulloch,

2014). Non-zero correlations can occur as the random effects may include omitted covariates

that are associated with both the response and the explanatory variables. Ignoring correlations

between random effects and explanatory variables in a random intercept logistic model can

produce biased estimates of the parameter coefficients and other model parameters (Neuhaus

and McCulloch, 2006). Conditional likelihood (fixed effects models, Section 2.3.2.1) and hybrid

approaches (decomposition methods, Section 2.3.2.2) can provide consistent estimates of the

within-individual effects in settings where the random effects are correlated with time-varying

explanatory variables (Neuhaus and McCulloch, 2006). However, the hybrid model produces

biased estimates for the other model parameters, including both the intercept constant and

random effect variance estimate (Neuhaus and McCulloch, 2006; McCulloch et al., 2008). Ad-

ditionally, Neuhaus and McCulloch (2014) recently reported inconsistent estimation of con-

ditional likelihood and hybrid models in situations where the random effects were correlated

with the explanatory variables in the presence of MAR attrition. However, by decomposing

the time-varying explanatory variable into the baseline value and the change over time from

baseline, consistent and unbiased estimation of the within-individual effects can be produced

in the presence of MAR attrition (Neuhaus and McCulloch, 2014). As the correlation between

the random effects and explanatory variables can also be viewed as misspecifying the distribu-

tion of the random effects (Neuhaus and McCulloch, 2006), further work could compare the

performance of decomposition methods9 and approaches to flexibly model the random effects

distribution when applied to panel survey data in the presence of MAR attrition. In particular

this further work could consider non-parametric estimation of the random effects distribution,

as leaving the distributional assumptions unspecified may provide an avenue to capture this

type of model misspecification.

9Decomposing the time-varying explanatory variables using the observed baseline value is suggested by
Neuhaus and McCulloch (2014). However, the work presented by Neuhaus and McCulloch (2014) only considers
continuous time-varying variables. Further work is required in regards to categorical time-varying explanatory
variables to determine whether it is feasible to treat them as continuous variables.
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Thirdly, the focus of this study has been on maximum likelihood techniques for estima-

tion. However, the hierarchical model formulation of the GLMM makes estimation within a

Bayesian framework very appealing (Molenberghs and Verbeke, 2005; Lynch, 2007). Bayesian

approaches treat all unknown parameters as random, assuming they are distributed according

to a prior distribution. This provides a framework to induce flexibility to model the random

effects. For instance, Bayesian Markov Chain Monte Carlo (MCMC) techniques have been

developed to estimate the heterogeneity model (Ho and Hu, 2008). Furthermore, extensions of

the heterogeneity model based on penalised Gaussian mixtures (Komarek and Lesaffre, 2008)

and Dirichlet processes (Kleinman and Ibrahim, 1998; Jara et al., 2007) have also been devel-

oped. With the increasing accessibility of Bayesian methods and the increasing computational

power to analyse longitudinal panel data, it would be valuable to explore the practicality and

performance of Bayesian approaches to account for multimodal distributions within potential

mover-stayer scenarios.

Finally, the heterogeneity of the underlying random intercept distribution in the HILDA

case study has been postulated to be captured and represented by a three component mixture

of normal distributions. However, this may be too simplistic. In a mover-stayer scenario, if

the observed stayers consist of latent stayers and latent movers that have yet to transition,

perhaps a five component mixture would more appropriately capture the heterogeneity. Thus,

the heterogeneity model utilised here is limited by assuming the number of components is known

apriori. Different models with varying number of mixture components could be considered, with

the optimal number selected using goodness-of-fit tests conditional on maximum likelihood

estimates (Verbeke and Lesaffre, 1996) or information criteria (Proust and Jacqmin-Gadda,

2005). However, not only do these approaches ignore the uncertainty in estimating the optimal

number of components, the computational burden to estimate more than three components in

the panel survey application is expected to be intensive. Approaches have been developed which

implement Bayesian MCMC schemes capable of comparing models with a different number

of components, such as reversible jump MCMC (RJMCMC) methodology (Richardson and

Green, 1997), allowing the number of components and model parameters to be simultaneously

estimated (Watier et al., 1999; Ho and Hu, 2008). However, these RJMCMC methods can

be cumbersome as they often converge slowly (Carlin and Louis, 2000) and have currently

only been developed for linear mixed models. Variational Bayes methods could provide an

alternative to RJMCMC methods to jointly estimate the model parameters and estimate the

optimal number of mixture components (McGrory and Titterington, 2007). This is an avenue

that has been highlighted for future research.

8.8 Concluding remarks

As the use of longitudinal panel data increases in the health and social sciences, there is a

growing need for the appropriate use and understanding of underlying assumptions of statisti-
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cal models. The accuracy of model based inference is crucial for researchers and policy makers

utilising results to formulate and evaluate policy initiatives. This study provides a novel in-

sight into the impact of assuming the random effects follow a normal distribution in logistic

mixed models applied to panel survey data where an underlying sub-population structure, such

as a mover-stayer scenario, exists. For departures from the normal distribution characterised

by multimodality with three distinct modes and skewness, incorrectly assuming normality in

random intercept logistic models produced biased estimates, poor coverage rates of the confi-

dence intervals and inaccurate model based standard errors for the intercept constant and the

random intercept variance component. Estimation of the fixed effects parameters, typically the

parameters of interest, is generally robust to misspecification. However for large departures

from normality characterised by multimodality with three distinct modes, incorrectly assum-

ing normality for the random effects in a random intercept logistic model can result in biased

estimation of the coefficients capturing the effects of time-invariant categorical explanatory

variables and time-varying categorical explanatory variables exhibiting minimal within-subject

variability.

Misspecification in the presence of MAR attrition had negligible additional inferential im-

pact. Using more flexible distributions for the random effects can provide a practical solution to

reduce the impact of violating distributional assumptions in logistic mixed models. Utilisation

of these approaches within a sensitivity analysis framework, can provide an easily implementable

solution to identify potential misspecification of univariate or bivariate random effects in prac-

tice. In applications to panel survey data, including in the presence of attrition, the VEM

algorithm of Böhning (1985) induced increased flexibility to capture multimodality of random

intercepts. Furthermore, it was the only approach in comparison to existing approaches to con-

verge and capture the complexity of the bivariate random effects. The performance of the VEM

to flexibly model the random effects in logistic mixed models reported here should encourage

its implementation in different applications to health and social sciences.
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Appendix A: SAS syntax for likelihood reformulation

method

The following SAS code uses the likelihood reformulation method (Liu and Yu, 2008) to fit

a random intercept logistic model assuming the random intercepts are distributed as a three

component mixture of normal distributions with unequal component variances to the case study

in Chapter 4. The corresponding model estimates for the 1359 women with complete case data

and the 1927 women with monotone missing data are presented in Table 4.3.

A.1 Complete case data

proc nlmixed data=hildadata2LR qpo int s=54 cov ;

parms beta1 =0.09 beta2=−0.3 beta3=−0.12 beta4=−1.53 beta5=−2.8 beta6=−2.33 beta7=−0.4

mu1=−4.37 mu2=0.34 mu3=4.40 p1=0.1 p2=0.42 sd1 =1.1 sd2 =1.49 sd3 =0.79;

bounds sd1 sd2 sd3 p1 p2>=0;

bounds p1 p2<1;

where Completers =1;

/∗ c o n d i t i o n a l l i k e l i h o o d f o r observed data g iven random e f f e c t s ;∗/

eta = a + beta1 ∗hgage + beta2 ∗mar i ta lS ta t3ca t1 + beta3 ∗mar i ta lS ta t3ca t2 +

beta4 ∗Basel ineEduc12 + beta5 ∗Basel ineEduc3 + beta6 ∗DependChild1 +

beta7 ∗DependChild2 ;

expeta = exp ( eta ) ;

p=expeta /(1+ expeta ) ;

l o g l i k=employment 2cat∗ l og (p) + (1−employment 2cat )∗ l og (1−p ) ;

/∗ l og f i n i t e mixture dens i ty ∗/
/∗ To s a t i s f y the r e s t r i c t i o n : p1+p2+p3=1∗/
p3=1−p1−p2 ;

logmixden=log ( ( p1/ sd1 )∗ exp (−0.5∗(( a−mu1)/ sd1 )∗∗2) + ( p2/ sd2 )∗ exp (−0.5∗(( a−mu2)/ sd2 )∗∗2) +

( p3/ sd3 )∗ exp (−0.5∗(( a−mu3)/ sd3 ) ∗ ∗ 2 ) ) ;

/∗ l og standard normal dens i ty ∗/
lognormalden=−(a ∗∗2)/2 ;

/∗ l a s t i d =1 f o r the l a s t obse rvat i on f o r the same id , o therw i se l a s t i d =0;∗/
i f l a s t i d =1 then l o g l i k=l o g l i k+logmixden−lognormalden ;

model employment 2cat ˜ gene ra l ( l o g l i k ) ;

random a˜normal (0 , 1 ) s ub j e c t=xwaveid ;

e s t imate ’ prob3 ’ 1−p1−p2 ;

e s t imate ’ beta0 ’ p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3 ;

es t imate ’RE Var ’ p1 ∗ ( (mu1 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3))∗∗2 + sd1 ∗∗2)

+ p2 ∗ ( (mu2 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3))∗∗2 + sd2 ∗∗2)

+ (1−p1−p2 )∗ ( (mu3 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3))∗∗2 + sd3 ∗∗2 ) ;

e s t imate ’mean1 ’ mu1 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3 ) ;

e s t imate ’mean2 ’ mu2 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3 ) ;

e s t imate ’mean3 ’ mu3 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3 ) ;

run ;
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A.2 Monotone missing data

proc nlmixed data=hildadata2LR qpo int s=61 cov ;

parms beta1 =0.09 beta2=−0.25 beta3=−0.2 beta4=−1.6 beta5=−2.9 beta6=−2.3 beta7=−0.4

mu1=−4.1 mu2=0.3 mu3=3.8 p1=0.14 p2=0.37 sd1 =1.2 sd2 =1.4 sd3 =0.76;

bounds sd1 sd2 sd3 p1 p2>0;

bounds p1 p2<1;

/∗ c o n d i t i o n a l l i k e l i h o o d f o r observed data g iven random e f f e c t s ;∗/

eta = a + beta1 ∗hgage + beta2 ∗mar i ta lS ta t3ca t1 + beta3 ∗mar i ta lS ta t3ca t2 + beta4 ∗Basel ineEduc12

+ beta5 ∗Basel ineEduc3 + beta6 ∗DependChild1 + beta7 ∗DependChild2 ;

expeta = exp ( eta ) ;

p=expeta /(1+ expeta ) ;

l o g l i k=employment 2cat∗ l og (p) + (1−employment 2cat )∗ l og (1−p ) ;

/∗ l og f i n i t e mixture dens i ty ∗/
/∗ To s a t i s f y the r e s t r i c t i o n : p1+p2+p3=1∗/
p3=1−p1−p2 ;

logmixden=log ( ( p1/ sd1 )∗ exp (−0.5∗(( a−mu1)/ sd1 )∗∗2) + ( p2/ sd2 )∗ exp (−0.5∗(( a−mu2)/ sd2 )∗∗2)

+ ( p3/ sd3 )∗ exp (−0.5∗(( a−mu3)/ sd3 ) ∗ ∗ 2 ) ) ;

/∗ l og standard normal dens i ty ∗/
lognormalden=−(a ∗∗2)/2 ;

/∗ l a s t i d =1 f o r the l a s t obse rvat i on f o r the same id , o therw i se l a s t i d =0;∗/
i f l a s t i d =1 then l o g l i k=l o g l i k+logmixden−lognormalden ;

model employment 2cat ˜ gene ra l ( l o g l i k ) ;

random a˜normal (0 , 1 ) s ub j e c t=xwaveid ;

e s t imate ’ prob3 ’ 1−p1−p2 ;

e s t imate ’ beta0 ’ p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3 ;

es t imate ’RE Var ’ p1 ∗ ( (mu1 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3))∗∗2 + sd1 ∗∗2)

+ p2 ∗ ( (mu2 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3))∗∗2 + sd2 ∗∗2)

+ (1−p1−p2 )∗ ( (mu3 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3))∗∗2 + sd3 ∗∗2 ) ;

e s t imate ’mean1 ’ mu1 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3 ) ;

e s t imate ’mean2 ’ mu2 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3 ) ;

e s t imate ’mean3 ’ mu3 − ( p1∗mu1 + p2∗mu2 + (1−p1−p2 )∗mu3 ) ;

run ;
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Appendix B: Sensitivity analyses of likelihood

reformulation method applied to the HILDA

case study in Chapter 4

The likelihood reformulation method (Liu and Yu, 2008) applied to estimate logistic models

assuming mixture distributed random intercepts in the HILDA case study (Chapter 4) appeared

to be sensitive to the number of adaptive quadrature points. To explore the impact of the choice

of the adaptive quadrature points used in the estimation, a sensitivity analysis was performed

by re-fitting the likelihood reformulation method with adaptive quadrature points ranging from

10 to 80. The sensitivity analyses were performed for both data scenarios: the women with

complete case data, and the women with monotone missing data.

B.1 Complete case data

For the random intercept logistic models that converged, the parameter coefficients and

standard errors for the women with complete case data estimated using the likelihood refor-

mulation method for quadrature points ranging from 24 to 80 are presented in Table B.1. The

residual deviance (−2ll) was similar for all converged models ranging from 9685.7 to 9690.6.

The deviance increased slightly as the number of adaptive quadrature points increased. The

model parameters, standard errors and the deviance appeared to stabilise after 54 quadrature

points, with the deviance for the models with 54 to 80 quadrature points ranging between

9690.4 to 9690.6. Therefore, the results in Table 4.3 for the Complete Data scenario are based

on 54 adaptive quadrature points.
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Table B.1: Fitting the three component mixture of normal distributions as the random intercept for the 1359 women with complete case
data. The same starting values for all models were used, however the number of quadrature points (Points) varied and ranged from 10 to
80. The following results are the estimates (Est) and corresponding standard errors (SE) of converged models for the fixed effect coefficients
(β0, β1, β2, β3, β4, β5, β6, β7) and the estimates of the random intercept three component mixture distribution (mixing proportions: π1, π2, π3,
mean components: µ1, µ2, µ3), standard deviations: σ1, σ2, σ3, as well as the estimated intercept (β̂0 = π̂1µ̂1 + π̂2µ̂2 + π̂3µ̂3) and the total random
effect variance (σ2

b )

Points Fixed Effects Variance Component −2ll
β0 β1 β2 β3 β4 β5 β6 β7 π1 π2 π3 µ1 µ2 µ3 σ1 σ2 σ3 σ2

b

24
Est 0.632 0.093 -0.337 0.049 -1.439 -2.567 -2.268 -0.369 0.143 0.593 0.265 -5.159 -0.223 3.287 2.309 1.749 0.649 9.377

9680.5
SE 0.483 0.009 0.130 0.275 0.290 0.299 0.149 0.121 0.082 0.168 0.104 1.618 0.316 0.552 1.037 0.400 0.225 0.924

28
Est 0.441 0.097 -0.359 0.061 -1.391 -2.554 -2.262 -0.375 0.156 0.542 0.302 -4.963 -0.336 3.160 2.338 1.592 0.662 9.277

9680.2
SE 0.457 0.009 0.138 0.274 0.270 0.291 0.150 0.122 0.074 0.132 0.079 1.378 0.333 0.351 0.695 0.316 0.646 0.953

32
Est 0.454 0.096 -0.339 0.065 -1.388 -2.500 -2.269 -0.376 0.151 0.561 0.288 -5.000 -0.277 3.170 2.452 1.675 0.629 9.310

9680.3
SE 0.458 0.009 0.156 0.276 0.252 0.269 0.149 0.121 0.059 0.134 0.086 1.105 0.316 0.353 0.820 0.332 0.319 0.919

34
Est 0.373 0.098 -0.363 0.059 -1.374 -2.549 -2.248 -0.368 0.172 0.516 0.312 -4.674 -0.325 3.110 2.400 1.526 0.660 9.161

9680.6
SE 0.456 0.009 0.139 0.274 0.268 0.294 0.149 0.121 0.150 0.228 0.100 2.560 0.372 0.354 1.298 0.516 0.747 1.004

42
Est 0.374 0.098 -0.362 0.056 -1.372 -2.547 -2.249 -0.369 0.171 0.519 0.310 -4.683 -0.317 3.118 2.411 1.539 0.657 9.176

9680.6
SE 0.456 0.009 0.139 0.274 0.268 0.293 0.149 0.122 0.147 0.219 0.096 2.544 0.376 0.352 1.305 0.485 0.743 1.004

48
Est 1.017 0.091 -0.480 -0.065 -1.637 -2.761 -2.365 -0.401 0.126 0.567 0.307 -5.465 -0.540 3.238 1.450 1.589 0.773 9.023

9685.8
SE 0.459 0.009 0.141 0.268 0.263 0.291 0.151 0.121 0.057 0.168 0.121 0.913 0.378 0.544 0.518 0.603 0.672 1.123

50
Est 0.992 0.092 -0.494 -0.062 -1.630 -2.771 -2.349 -0.410 0.128 0.570 0.303 -5.446 -0.506 3.256 1.466 1.594 0.771 9.050

9685.7
SE 0.458 0.009 0.141 0.268 0.263 0.295 0.151 0.121 0.066 0.193 0.135 1.049 0.391 0.587 0.566 0.689 0.585 1.093

52
Est 0.990 0.092 -0.497 -0.062 -1.623 -2.778 -2.337 -0.417 0.128 0.570 0.302 -5.445 -0.502 3.258 1.467 1.593 0.770 9.041

9685.7
SE 0.459 0.009 0.141 0.268 0.263 0.297 0.150 0.121 0.067 0.196 0.137 1.071 0.399 0.596 0.564 0.700 0.680 1.148

54
Est 1.068 0.090 -0.310 -0.116 -1.521 -2.824 -2.330 -0.396 0.124 0.553 0.323 -5.437 -0.700 3.291 1.121 1.502 0.839 9.074

9690.6
SE 0.464 0.009 0.140 0.261 0.247 0.267 0.150 0.119 0.044 0.145 0.109 0.662 0.342 0.639 0.417 0.515 0.664 1.287

56
Est 1.073 0.090 -0.310 -0.116 -1.524 -2.821 -2.331 -0.395 0.124 0.552 0.324 -5.442 -0.705 3.286 1.122 1.502 0.839 9.071

9690.6
SE 0.464 0.009 0.140 0.262 0.247 0.267 0.150 0.119 0.044 0.144 0.109 0.657 0.343 0.637 0.414 0.511 0.668 1.289

58
Est 1.066 0.090 -0.310 -0.116 -1.527 -2.819 -2.333 -0.396 0.124 0.553 0.323 -5.435 -0.697 3.292 1.122 1.502 0.841 9.072

9690.6
SE 0.464 0.009 0.140 0.261 0.247 0.267 0.150 0.119 0.045 0.146 0.110 0.668 0.343 0.645 0.421 0.520 0.661 1.291

60
Est 1.066 0.090 -0.310 -0.116 -1.528 -2.817 -2.334 -0.396 0.125 0.553 0.323 -5.435 -0.697 3.292 1.122 1.502 0.841 9.074

9690.6
SE 0.465 0.009 0.140 0.261 0.247 0.267 0.150 0.119 0.045 0.147 0.111 0.673 0.344 0.649 0.424 0.523 0.662 1.296

62
Est 1.070 0.090 -0.310 -0.116 -1.530 -2.815 -2.336 -0.396 0.124 0.553 0.323 -5.439 -0.700 3.288 1.121 1.502 0.840 9.073

9690.6
SE 0.465 0.009 0.140 0.262 0.247 0.267 0.150 0.120 0.045 0.146 0.110 0.669 0.344 0.644 0.422 0.520 0.664 1.293

64
Est 1.068 0.090 -0.310 -0.116 -1.532 -2.813 -2.337 -0.396 0.124 0.553 0.323 -5.437 -0.698 3.290 1.121 1.502 0.842 9.067

9690.6
SE 0.464 0.009 0.140 0.262 0.247 0.267 0.150 0.119 0.045 0.147 0.111 0.669 0.344 0.647 0.422 0.521 0.660 1.293

66
Est 1.069 0.090 -0.312 -0.115 -1.534 -2.813 -2.339 -0.396 0.125 0.551 0.324 -5.439 -0.696 3.285 1.125 1.506 0.837 9.097

9690.4
SE 0.465 0.009 0.140 0.262 0.248 0.268 0.150 0.120 0.047 0.149 0.111 0.697 0.346 0.645 0.439 0.533 0.676 1.299

68
Est 1.069 0.090 -0.310 -0.116 -1.535 -2.810 -2.339 -0.397 0.124 0.552 0.323 -5.439 -0.699 3.288 1.121 1.503 0.841 9.075

9690.5
SE 0.465 0.009 0.140 0.262 0.247 0.267 0.150 0.120 0.045 0.147 0.111 0.676 0.345 0.649 0.426 0.524 0.664 1.298

70
Est 1.073 0.090 -0.310 -0.116 -1.535 -2.810 -2.340 -0.397 0.124 0.552 0.324 -5.442 -0.702 3.285 1.121 1.503 0.841 9.071

9690.5
SE 0.465 0.009 0.140 0.262 0.248 0.267 0.150 0.120 0.045 0.146 0.110 0.670 0.345 0.645 0.423 0.520 0.666 1.296

72
Est 1.070 0.090 -0.310 -0.116 -1.536 -2.809 -2.340 -0.397 0.124 0.553 0.323 -5.439 -0.699 3.287 1.121 1.503 0.842 9.073

9690.5

Continued on next page
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Points Fixed Effects Variance Component −2ll
β0 β1 β2 β3 β4 β5 β6 β7 π1 π2 π3 µ1 µ2 µ3 σ1 σ2 σ3 σ2

b

SE 0.465 0.009 0.140 0.262 0.248 0.267 0.150 0.120 0.045 0.147 0.111 0.676 0.345 0.650 0.426 0.524 0.663 1.299

74
Est 1.067 0.090 -0.311 -0.116 -1.538 -2.808 -2.339 -0.391 0.124 0.554 0.322 -5.437 -0.698 3.290 1.122 1.503 0.843 9.058

9690.5
SE 0.464 0.009 0.140 0.262 0.247 0.267 0.150 0.119 0.045 0.147 0.111 0.668 0.345 0.654 0.422 0.522 0.657 1.299

76
Est 1.070 0.090 -0.310 -0.115 -1.537 -2.808 -2.341 -0.397 0.124 0.552 0.323 -5.439 -0.700 3.287 1.121 1.503 0.842 9.074

9690.5
SE 0.465 0.009 0.140 0.262 0.248 0.267 0.150 0.120 0.045 0.148 0.111 0.678 0.345 0.651 0.427 0.525 0.664 1.301

78
Est 1.071 0.090 -0.310 -0.116 -1.537 -2.808 -2.341 -0.397 0.124 0.552 0.323 -5.440 -0.701 3.286 1.121 1.503 0.842 9.072

9690.5
SE 0.465 0.009 0.140 0.262 0.248 0.267 0.150 0.120 0.045 0.147 0.111 0.674 0.345 0.649 0.425 0.523 0.664 1.300

80
Est 1.071 0.090 -0.310 -0.116 -1.537 -2.808 -2.341 -0.398 0.124 0.552 0.323 -5.441 -0.701 3.286 1.121 1.503 0.842 9.072

9690.5
SE 0.465 0.009 0.140 0.262 0.248 0.267 0.150 0.120 0.045 0.147 0.111 0.675 0.345 0.649 0.425 0.523 0.664 1.299
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B.2 Monotone missing data

For the random intercept logistic models that converged, the parameter coefficients and

standard errors for the women with monotone missing data estimated using the likelihood

reformulation for quadrature points ranging from 15 to 80 are presented in Table B.2. The

residual deviance (−2ll) for the converged models were similar, ranging between 11526 to

11534. The parameter estimates for the fixed effects and variance components were relatively

stable for all quadrature points. However, there appeared to be variability in the standard

errors for parameters in the variance component. For instance, the standard error for estimate

for the mixing proportion of the first component (π1) ranged from 0.020 (21 points) to 1.789 (79

points), and the standard error for the mean of the first component (µ1) ranged from 0.235 (21

points) to 24.899 (79 points). Furthermore, some models had consistently large standard errors

for all variance component parameters, such as, models with 75 and 79 quadrature points. The

observed variability in the results may indicate that the model estimates are local maxima

of the likelihood. This may be an attribute of the starting values selected for the likelihood

reformulation method, as the estimation of the variance components appeared sensitive to the

choice of starting values for the variance component. The observed variability could perhaps

also be a consequence of the missing data. The parameter estimates and standard errors for

the models estimated with 57 and 61 quadrature points were similar. The results in Table 4.3

for the monotone missing data are based on 61 quadrature points, as it produced consistently

small standard errors.
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Table B.2: Fitting the three component mixture of normal distributions as the random intercept for the 1927 women with monotone missing
data. The same starting values for all models were used, however the number of quadrature points (Points) varied and ranged from 10 to
80. The following results are the estimates (Est) and corresponding standard errors (SE) of converged models for the fixed effect coefficients
(β0, β1, β2, β3, β4, β5, β6, β7) and the estimates of the random intercept three component mixture distribution (mixing proportions: π1, π2, π3,
mean components: µ1, µ2, µ3, standard deviations: σ1, σ2, σ3) as well as the estimated intercept (β̂0 = π̂1µ̂1 + π̂2µ̂2 + π̂3µ̂3) and the total random
effect variance (σ2

b )

Points Fixed Effects Variance Component −2ll
β0 β1 β2 β3 β4 β5 β6 β7 π1 π2 π3 µ1 µ2 µ3 σ1 σ2 σ3 σ2

b

15
Est 0.876 0.091 -0.253 -0.200 -1.610 -2.895 -2.299 -0.400 0.149 0.499 0.353 -4.974 -0.589 2.933 1.208 1.369 0.735 8.227

11534
SE 0.461 0.009 0.151 0.234 0.222 0.238 0.150 0.137 0.040 0.210 0.174 0.333 0.681 0.471 0.392 0.877 0.508 0.620

21
Est 0.952 0.089 -0.255 -0.199 -1.605 -2.901 -2.299 -0.408 0.142 0.492 0.366 -5.051 -0.643 2.833 1.214 1.392 0.814 8.175

11534
SE 0.389 0.008 0.133 0.242 0.223 0.256 0.130 0.104 0.020 0.061 0.049 0.235 0.225 0.175 0.352 0.239 0.212 0.604

22
Est 0.896 0.090 -0.253 -0.200 -1.604 -2.899 -2.301 -0.398 0.148 0.495 0.357 -4.994 -0.610 2.915 1.208 1.369 0.732 8.236

11534
SE 0.422 0.009 0.134 0.244 0.220 0.237 0.140 0.113 0.075 0.129 0.062 0.937 0.210 0.212 0.788 0.528 0.201 0.629

30
Est 0.909 0.090 -0.254 -0.200 -1.605 -2.898 -2.301 -0.399 0.147 0.494 0.359 -5.007 -0.621 2.899 1.208 1.371 0.738 8.223

11534
SE 0.422 0.009 0.136 0.236 0.220 0.232 0.142 0.113 0.052 0.196 0.160 0.598 0.634 0.474 0.559 0.554 1.526 1.305

33
Est 0.682 0.095 -0.317 -0.085 -1.560 -2.863 -2.310 -0.416 0.168 0.517 0.315 -4.932 -0.375 3.238 1.935 1.448 0.667 9.305

11527
SE 0.425 0.009 0.137 0.242 0.241 0.267 0.141 0.116 0.124 0.268 0.151 1.758 0.353 0.525 0.618 0.935 0.568 0.916

36
Est 0.908 0.090 -0.253 -0.200 -1.605 -2.898 -2.301 -0.399 0.147 0.494 0.359 -5.005 -0.621 2.904 1.208 1.368 0.731 8.228

11534
SE 0.426 0.009 0.140 0.247 0.225 0.231 0.145 0.113 0.159 0.498 0.344 1.758 0.969 0.921 1.240 1.676 2.404 1.825

39
Est 0.858 0.092 -0.390 -0.160 -1.655 -2.799 -2.324 -0.383 0.154 0.497 0.349 -5.086 -0.556 3.039 1.551 1.388 0.923 8.981

11529
SE 0.430 0.009 0.132 0.241 0.230 0.245 0.141 0.114 0.078 0.225 0.161 1.039 0.545 0.539 0.554 0.734 1.082 1.206

46
Est 0.885 0.090 -0.254 -0.199 -1.619 -2.886 -2.300 -0.410 0.147 0.501 0.352 -4.984 -0.569 2.892 1.212 1.409 0.834 8.219

11534
SE 0.211 0.001 0.131 0.234 0.219 0.222 0.135 0.112 0.067 0.112 0.050 0.806 0.198 0.105 0.614 0.471 0.229 0.619

51
Est 0.616 0.095 -0.311 -0.068 -1.564 -2.810 -2.277 -0.396 0.171 0.530 0.299 -4.805 -0.288 3.257 2.088 1.530 0.623 9.265

11526
SE 0.427 0.009 0.167 0.252 0.287 0.384 0.140 0.117 0.388 0.791 0.407 5.435 0.615 1.141 1.618 2.613 0.559 1.140

55
Est 0.632 0.096 -0.341 -0.066 -1.569 -2.834 -2.298 -0.409 0.173 0.518 0.310 -4.824 -0.345 3.267 2.047 1.466 0.630 9.348

11526
SE 0.424 0.009 0.139 0.243 0.243 0.271 0.140 0.115 0.159 0.320 0.168 2.248 0.337 0.610 0.827 1.075 0.372 0.927

57
Est 0.617 0.095 -0.312 -0.065 -1.563 -2.809 -2.277 -0.396 0.171 0.530 0.299 -4.804 -0.291 3.256 2.109 1.533 0.618 9.276

11526
SE 0.425 0.009 0.138 0.245 0.253 0.267 0.140 0.116 0.108 0.261 0.160 1.501 0.428 0.529 0.698 0.894 0.477 0.891

59
Est 0.616 0.095 -0.310 -0.068 -1.563 -2.810 -2.277 -0.397 0.171 0.530 0.299 -4.801 -0.289 3.256 2.093 1.529 0.615 9.259

11526
SE 0.425 0.009 0.147 0.245 0.256 0.305 0.140 0.116 0.239 0.482 0.249 3.370 0.433 0.735 1.106 1.586 0.448 0.957

61
Est 0.611 0.095 -0.311 -0.067 -1.563 -2.809 -2.275 -0.395 0.172 0.530 0.299 -4.792 -0.284 3.258 2.100 1.531 0.618 9.267

11526
SE 0.425 0.009 0.137 0.245 0.254 0.264 0.141 0.117 0.096 0.251 0.161 1.314 0.456 0.536 0.673 0.867 0.535 0.900

64
Est 0.641 0.095 -0.312 -0.076 -1.544 -2.846 -2.289 -0.405 0.172 0.520 0.308 -4.840 -0.318 3.239 2.002 1.467 0.650 9.258

11526
SE 0.427 0.009 0.146 0.245 0.258 0.313 0.140 0.116 0.221 0.474 0.259 3.038 0.503 0.769 0.878 1.623 0.646 0.964

69
Est 0.604 0.094 -0.317 -0.156 -1.466 -2.704 -2.303 -0.419 0.186 0.509 0.304 -4.559 -0.255 3.220 2.219 1.478 0.656 9.224

11526
SE 0.429 0.009 0.138 0.244 0.260 0.276 0.141 0.115 0.121 0.298 0.184 1.587 0.529 0.582 0.715 0.984 0.615 0.931

70
Est 0.894 0.091 -0.399 -0.177 -1.662 -2.808 -2.277 -0.420 0.152 0.493 0.355 -5.099 -0.579 2.982 1.456 1.352 0.885 8.766

11530
SE 0.426 0.009 0.131 0.238 0.226 0.237 0.139 0.113 0.036 0.133 0.112 0.492 0.465 0.401 0.384 0.383 0.943 1.085

75
Est 0.588 0.096 -0.320 -0.066 -1.562 -2.814 -2.277 -0.398 0.175 0.527 0.299 -4.743 -0.280 3.261 2.125 1.526 0.599 9.265

11526
SE 0.430 0.010 0.207 0.272 0.328 0.496 0.141 0.120 0.691 1.362 0.673 9.595 0.878 1.822 3.061 4.361 1.054 1.232

79
Est 0.590 0.096 -0.318 -0.068 -1.558 -2.803 -2.277 -0.397 0.174 0.529 0.297 -4.747 -0.268 3.260 2.139 1.538 0.619 9.275

11526
SE 0.479 0.016 0.458 0.403 0.733 1.285 0.143 0.148 1.789 3.585 1.796 24.899 2.387 4.723 7.255 11.542 1.792 2.935

80
Est 0.678 0.095 -0.323 -0.087 -1.558 -2.864 -2.314 -0.418 0.169 0.515 0.316 -4.922 -0.381 3.247 1.919 1.437 0.677 9.326

11527
SE 0.426 0.009 0.136 0.242 0.238 0.260 0.141 0.115 0.109 0.235 0.134 1.529 0.343 0.497 0.590 0.815 0.585 0.926
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Appendix C: Caterpillar plots of Empirical Bayes

estimates for the HILDA case study

considered in Chapter 4

The predicted random intercept (Empirical Bayes estimates) estimated from the logistic

models fit in the case study (Chapter 4) are presented graphically in Figure C.1. This plot,

sometimes called a ‘caterpillar plot’, displays the Empirical Bayes estimate of the random in-

tercept in rank order along with an error bar. The error bar represents the 95% confidence

interval around each of the Empirical Bayes estimates, and is calculated by multiplying the

standard error by a factor of 1.39 instead of the conventional 1.96 multiplication factor (Hox,

2010). The value 1.39 (1.96/
√

2) results in confidence intervals that can be used for pairwise

comparisons. For example, if the error bars of two individuals do no overlap, the two individuals

are interpreted as having significantly different random intercepts at the 5% significance level

(Goldstein and Healy, 1995). Furthermore, caterpillar plots can be used to identify extreme

residuals of the intercept by assessing for significant deviations from the average value of zero.

Figure C.1 (a) and (b) presents the caterpillar plots for the predicted random intercepts for

the complete case data scenario when assuming a normal and a three component mixture of

normals, respectively. Figure C.1 (c) and (d) presents the corresponding caterpillar plots for

the monotone missing data scenario. The caterpillar plots in Figure C.1 show that the stan-

dard errors of the predicted random intercepts were generally larger when assuming a normal

random intercept (Figure C.1(a) and (c)) than assuming a three component mixture of normal

distributions (Figure C.1(b) and (d)).

For the 1359 women with complete case data, the estimated standard errors of the predicted

random intercepts when assuming normal random intercepts were always larger than the as-

sumed mixture distribution for the observed stayers, i.e. the 103 women never employed over

the 11 waves and the 631 women observed to always employed over the 11 waves. For the 1926

women with monotone missing data, the standard error of the predicted random intercepts

when assuming normal random intercepts were always larger than the assumed mixture distri-

bution for the 934 women observed to always be employed, and sometimes larger (34.6%) for

the 243 women who were observed to never be employed. Some predicted random intercepts

had large standard errors, particularly for assuming a mixture distribution for women with

monotone missing data (Figure C.1 (d)), which may partly be explained by the instability of

198



the likelihood reformulation method used to estimate the model with mixture distribution for

the random intercepts (see Table B.2 in Appendix B for further details).
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Figure C.1: Caterpillar plots of the Empirical Bayes (EB) estimates (dark blue dots) and corresponding and 95% confidence interval bands
(blue error bars) for the fitted logistic model in Chapter 4 to (a) Complete cases assuming a normal distribution for the random intercept, (b)
Complete cases assuming three component mixture of normal distribution for the random intercept, (c) Monotone missing data assuming a
normal distribution for the random intercept, and (d) Monotone missing assuming a three component mixture of normal distribution for the
random intercept.
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Appendix D: Derivation of the drop-out model used to

generate missing at random attrition in

simulation studies presented in Chapters

5 and 6

An ordinary logistic regression was used to investigate the associations of observed variables

with the conditional probability of drop-out (pij(α)) in the HILDA case-study. For the 1927

women with monotone missingness, the data was set up such that an indicator variable, dij,

represents the first time subject i drops out of the study. Therefore, dij = 1 when subject i

drops out of the study between time j− 1 and j (for j = 2, ..., 11). As the focus is on attrition,

all previous time-points prior to drop-out will be observed, such that di1 = ... = di,j−1 = 0. It

is assumed that all subjects are observed at the first time-point, i.e. di1 = 0 for all i = 1, ..., N .

If the subject was observed for all time-points, then dij = 0 for all j = 1, ..., 11. An ordinary

logistic regression was fit to the dataset to model Pr(dij = 1). The variables included in the

model were based on the same variables considered in the case study. The final drop-out model

was determined by using forward and backward selection. The levels of categorical variables

included in the drop-out model were selected based on the cell frequencies and chi-squared

test comparing the model likelihood ratios. Four categories for the highest level of education

were used as there were no differences in the model fit for having two, three or four categories.

The final drop-out model captured wave-specific effects by including linear and quadratic wave

terms (w1j and w2
1j), and included the following explanatory variables: employment status at

the previous wave yi,j−1, age at first wave w2i, highest level of education attained at first wave

(w3i, w4i, w5i), and dependent children at the previous wave (w6i,j−1 and w7i,j−1). The final

drop-out model was given by the following logistic model:

logit(Pr(dij = 1|di,j−1 = 0)) = α0 + α1w1j + α2w
2
1j + α3w2i + α4w3i + α5w4i + α6w5i +

α7w6i,j−1 + α8w7i,j−1 + α9yi,j−1.

The estimated coefficients (Estimate) and corresponding standard errors (SE) of fitting the

ordinary logistic regression to the 1927 women with monotone missing data in HILDA case

study is shown in Table D.1.

These coefficient estimates (Table D.1) motivated the choice of the coefficients used to

simulate the MAR attrition in the simulation studies, by generating the following conditional
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probabilities:

pij =
1

1 + exp(−ψij)

where

ψij = 0.28− 0.69w1j + 0.04w2
1j − 0.035w2i + 0.33w3i + 0.45w4i + 0.55w5i

−0.59w6i,j−1 − 0.15w7i,j−1 − 0.33yi,j−1

Data set-up and analysis of drop-out was performed in STATA Version 13 .

Table D.1: Coefficient estimates and corresponding standard errors (SE) of the ordinary
logistic regression to model drop-out in the HILDA case study.

Parameter Coefficient Estimate SE
Intercept α0 0.282 0.472
Wave α1 -0.687 0.075
Wave2 α2 0.040 0.006
Age at wave 1 α3 -0.035 0.011
Highest Education at wave 1
Bachelor or higher 0
Diploma/Certificate α4 0.329 0.135
Year 12 α5 0.451 0.145
Year 11 or less α6 0.551 0.125

Dependent Children at previous wave (j − 1)
None 0
Youngest aged < 5 α7 -0.585 0.137
Youngest aged 5-24 α8 -0.154 0.100

Previous Employment Status (Yj−1) α9 -0.332 0.096
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Appendix E: Simulation study assessing impact of

misspecifying the assumed random

intercept distribution within a clinical trial

setting

The aim of this secondary simulation study is to assess the impact of misspecified mul-

timodal random intercept distributions with and without attrition in a clinical trial setting.

Considering the same multimodal distributions as in Chapter 6, the random intercepts in this

secondary simulation were generated as symmetric three component mixture distributions. Us-

ing the same simulation set-up detailed in Litiére et al. (2008), data were generated to represent

a binary response and a treatment effect in a randomised clinical trial.

The simulation considered by Litiére et al. (2008) is based on a case study comprising of

patient data from a randomised clinical trial, comparing two treatments for chronic schizophre-

nia (Alonso et al., 2004). The randomised clinical trial compared the effect of risperidone with

conventional antipsychotic agents. The primary aim of the statistical analysis was to assess the

evolution of improvement in a patient’s global mental condition over the course of treatment.

Clinical Global Impression (CGI) is generally used to measure a subject’s mental condition, and

is based on a seven-grade scale. The primary outcome variable as considered by Litiére et al.

(2008) is a dichotomous version of CGI, classifying patient i at time j as normal to mildly ill

(yij = 1 if CGI ∈ [1, 3]) or moderately to severely ill (yij = 0 if CGI ∈ [4, 7]). The clinical trial

comprised of 128 patients, whereby 64 were randomly assigned to receive risperidone treatment

(zi = 1) and the remaining 64 to an active control (zi = 0), for a total of 8 weeks. The outcome

was assessed at six fixed time-points, at 0, 1, 2, 4, 6 and 8 weeks. In the clinical trial, by the

end of the treatment, 31 (48.4%) of the subjects in the control group and 37 (57.8%) of the

subjects in the risperidone group had dropped out of the study. As in Litiére et al. (2008), the

missing data generating mechanism is assumed to be missing at random (MAR).
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E.1 Simulation study design

Binary response data representing the severity of schizophrenia were generated from the

following model as considered in Litiére et al. (2008):

logit(Pr(yij = 1|bi)) = β0 + β1zi + β2tj + bi. (E.1)

This model includes an intercept, a time-invariant binary covariate zi representing treatment

for subject i (randomly assigned with equal probability), and a continuous time covariate tj

with values 0, 1, 2, 4, 6 and 8. The coefficients were the same as in the simulation study

considered by Litiére et al. (2008), and were based on the results of fitting the same random

intercept logistic model to the real data (Table I in Litiére et al. 2008): β0
0 = −8, β0

1 = 2 and

β0
2 = 1.

The same random intercept distributions considered in Chapter 6 were included in the sim-

ulation study. Therefore, the random intercept (bi) in Equation E.1 was generated from a

symmetric three component mixture of normals. Twenty-one different random effect distribu-

tions of increasing component mean distances, each with component variances σ2 = 1, 2 and 4,

were considered. The different mean combinations for µ1, µ2 and µ3 have a symmetric distri-

bution with mean zero. The specific case was considered where µ1 = −µ3 and µ2 = 0, with µ3

ranging from 0 to 10, increasing in increments of 0.5.

Simulations were performed for each of the 63 combinations of component mean distance

and component variance, to generate complete data for 1000 subjects. To investigate the

additional impact of missingness, two missingness scenarios were considered: complete data

and incomplete data due to attrition. Attrition was assumed to be generated by the missing

at random (MAR) mechanism, with the overall attrition of 30% by the end of the observation

period. The MAR missingness was simulated using similar methodology as described in Section

3.4.2. The probability of drop-out for subject i at time j was generated using the following

logistic model,

logit(Pr(dij = 1|di(j−1) = 0)) = 3.5 + 0.95× yi,j−1 − 0.6× vj (E.2)

where yi,j−1 is the outcome at the previous time-point, and vj = 1, 2, 3, 4, 5 is the visit number,

corresponding to week tj = 1, 2, 4, 6, 8. The values of the coefficients were based on the ob-

served coefficients of fitting the above model to the real data analysed by Litiére et al. (2008).

Using the observed fitted coefficients as starting values, the final coefficients were obtained by

adjusted each coefficient iteratively to acquire an overall attrition rate of 30%.

For each of the 21 random intercept distributions, 3 variance component settings and two

missingness scenarios (126 combinations in total), 1000 datasets each containing 1000 subjects
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Figure E.1: Percentage Bias for parameter coefficients of random intercept logistic model
for complete data (C) and MAR attrition of 30% (MAR)for increasing distances of random
intercept component means (µ3 − µ1) under three component variance scenarios (σ2 = 1, 2 or
4) in the clinical trial simulation study. Grey horizontal solid line at 0 percentage bias and grey
horizontal dashed lines at ± 10%.

were generated. A random intercept logistic model (Model in Equation E.1) assuming Gaussian

distributed random effect was fitted to each simulated dataset. The same performance mea-

sures as detailed in Chapter 3 and used in Chapters 5 and 6 were used (i.e. percentage bias,

coverage of 95% confidence intervals and standard error ratio). As bias based on the average

value is sensitive to extreme values, calculation of the percentage bias is based on the median

value of the 1000 simulations.

Simulations and analyses were conducted in SAS (Version 9.4, SAS Institute, Cary NC). All

random intercept logistic models were fitted using the SAS procedure NLMIXED with adaptive

Gaussian Quadrature using 20 quadrature points.

E.2 Results and discussion

Figure E.1 shows the percentage bias as a function of increasing component mean distances

for the three variance component scenarios and both data scenarios. With increasing compo-
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nent mean distances, Figure E.1 shows that misspecification produced larger biased estimators

for the random intercept standard deviation (σb). For component mean distances exceeding 10,

the percentage bias was outside the acceptable limit of ±10%. Incorrectly assuming normally

distributed random intercepts when the true random intercept was a three component mixture

of normals generally produced unbiased estimates for fixed effect parameters (β0, β1 and β2) for

component mean distances less than 12. As the component mean distances exceeded 12, bias

in the estimates of the slope effect β1 increased, exceeding the acceptable threshold of 10% for

distances larger than 15 for all scenarios. Non-linear trends in the percentage bias of β0 and β2

were observed for distances exceeding 12, coinciding with the large exponential increase in the

empirical standard error (results not shown). Patterns in percentage bias were similar for the

three variance components and for the two missing data scenarios.
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Figure E.2: Coverage of 95% confidence intervals for parameter coefficients of random in-
tercept logistic model for complete data (C) and MAR attrition of 30% (MAR) for increasing
distances of random intercept component means (µ3 − µ1) under three component variance
scenarios (σ2 = 1, 2 or 4) in the clinical trial simulation study. Grey horizontal solid line at
nominal coverage rate 0.95 and grey horizontal dashed lines at coverage rate 0.936 and 0.964.

Figure E.2 presents the coverage rate as a function of increasing component mean distances

for the three variance component scenarios and both data scenarios. As the component mean

distance increased, misspecifying the random intercept distribution produced poor coverage
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rates for all parameters. There were poor coverage rates for estimates of the varaince compo-

nent (σb) for all scenarios as the component mean distance exceeded 3. Misspecification resulted

in close to nominal coverage rates for β1, with poor coverage rates observed for all scenarios for

the most extreme component mean distance considered. The non-linear trend in the coverage

rate for β0 and β2 can partially be explained by the exponential increase in the estimated stan-

dard errors for the larger component mean distances (results not shown). This suggests that,

as the distance between the mean components increases, the width of the confidence interval

also increases, consequently leading to apparent improvements in the coverage rates. Coverage

rates had similar patterns for the three component variance scenarios. Similar coverage rates

and trends as for the complete data scenario were observed for the 30% MAR attrition scenario.
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Figure E.3: Ratio of mean model-based standard error to the empirical standard error for
parameter coefficients of random intercept logistic model for complete data (C) and MAR
attrition of 30% (MAR) for increasing distances of random intercept component means (µ3−µ1)
under three component variance scenarios (σ2 = 1, 2 or 4) in the clinical trial simulation study.
Grey horizontal solid line at ratio=1 and grey horizontal dashed lines at ratio of 0.9 and 1.1.

Figure E.3 presents the ratio of the mean standard error to the empirical standard error for

the increasing distance between the component means. Assuming normal random intercepts

in the presence of misspecification generally resulted in accurate model based standard errors.

However, for severe departures from normality (µ3 − µ1 ≥ 18), inaccurate model based stan-
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dard errors were produced. These large decreases in accuracy correspond with the exponential

increase of the empirical standard errors for all parameters as the component mean distances

exceeded 18. The large variability of the parameter estimates and associated standard errors,

resulted in skewed sampling distribution, and hence non-parametric summary measures of the

model based standard error and empirical standard error may be better performance measures

for these extreme true random intercept distributions. Again, patterns for the accuracy of the

model based standard errors were similar across the three variance component scenarios and

the two missing data scenarios.

The simulated attrition rate of 30% was similar to the observed attrition rate in the HILDA

panel survey, and the additional impact of MAR attrition was minimal as observed in the

HILDA simulations considered in Chapters 5 and 6.

There were excellent convergence rates for all but eight iterations in the simulation study.

Out of the 1000 simulations for the most extreme distance between the component means (i.e.

µ1, µ2, µ3 = −10, 0, 10), there were four instances each when analysing MAR data for variance

components σ2 = 1 and 2.

E.3 Summary

Within a clinical trial scenario, the impact of incorrectly assuming normally distributed

random intercepts when the true distribution is a symmetrical three component mixture of

normals was similar to that for the panel survey setting. Severe departures from the assumed

normal distribution (component mean distances ≥ 18) resulted in large variability of parameter

estimates and the corresponding standard errors for all variance and missing data scenarios.

These extreme true random intercept distributions resulted in biased estimates, poor coverage

rates and inaccurate model based standard errors. Similar to the simulation studies considered

in Chapters 5 and 6, estimation of the random intercept variance component in the presence

of misspecified random intercept distributions were biased and had extremely poor coverage

rates.
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Appendix F: Simulation study assessing impact of

misspecified random intercept distributions

for true symmetric three component

mixture with fixed total random effect

variances

The aim of this additional secondary simulation study is to assess whether the varying total

random effect variance in the simulation study presented in Chapter 6 subsequently affects the

observed results. For instance, the simulation study in Chapter 6 kept the component variances

fixed at either σ2 = 1, 2 or 4, resulting in unequal total variance (as σ2
b is a function of the

component means and component variances, as derived by σ2
b = σ2 + 2

3
µ2

3). To investigate the

potential impact, the simulation study presented here considers the same panel survey setting

motivated by the HILDA case study and the same random intercept distribution as considered

in Chapter 6. However, by altering the component variances, this secondary simulation study

fixes the total random effect variance at σ2
b = 20, 25, 30 and 35.

F.1 Simulation study design

Utilising the same simulation study design as described in Section 6.2, clustered binary

response data, representing employment status over 11 years, were generated for 1000 women

using the random intercept logistic model presented in Equation 4.1. The same design matrix

and fixed effect parameter values detailed in Secion 6.2 were used to generate the response data.

In this secondary simulation study, the random intercept bi was simulated from a symmetric

three component mixture of normals (Equation 6.1). The variance components of the mixture

distribution used to generate the random intercepts were selected such that the total random

effect variance was fixed at σ2
b = 20, 25, 30 and 35. To ensure a variety of distributions that

would allow the total true random effect variances to be fixed, the component means were

restricted to µ3 ranging from 0 to 5, increasing in increments of 0.5. Higher values of µ3 would

generate higher σ2
b values than those considered here. The four variance scenarios were selected

to represent variability observed in panel survey settings, and are similar to the magnitudes

considered in the simulation study of Litiére et al. (2008).
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Table F.1: Component variances (σ2) used to generate the random intercepts in the secondary
simulation study for true random effect variances fixed at σ2

b = 20, 25, 30 and 35 for component
mean distances ranging from 0 to 10. The component variances were determined by σ2 =
σ2
b − 2

3
µ2

3

Component Mean True Random Variance
Distance σ2

b = 20 σ2
b = 25 σ2

b = 30 σ2
b = 35

µ3 − µ1 = 0 20.00 25.00 30.00 35.00
µ3 − µ1 = 1 19.83 24.83 29.83 34.83
µ3 − µ1 = 2 19.33 24.33 29.33 34.33
µ3 − µ1 = 3 18.50 23.50 28.50 33.50
µ3 − µ1 = 4 17.33 22.33 27.33 32.33
µ3 − µ1 = 5 15.83 20.83 25.83 30.83
µ3 − µ1 = 6 14.00 19.00 24.00 29.00
µ3 − µ1 = 7 11.83 16.83 21.83 26.83
µ3 − µ1 = 8 9.33 14.33 19.33 24.33
µ3 − µ1 = 9 6.50 11.50 16.50 21.50
µ3 − µ1 = 10 3.33 8.33 13.33 18.33

For the four true random variance scenarios considered in this simulation study, the values

of the variance components (σ2
1 = σ2

2 = σ2
3) for the 11 mean component scenarios are shown

in Table F.1. The density distributions of the simulated random intercepts for selected mean

scenarios (µ1 = −µ3 = 0, 5 and 10) are shown in Figure F.1. In comparison to the primary

simulation study considered in Chapter 6, for similar component mean distances of µ3−µ1 = 0

to 10, the total random effect variance and component variances are larger (i.e. see Table 6.1)

and subsequently, the distributions are not as extreme as those with distinct modes shown in

Figure 6.1.

As in the primary study, simulations were performed under two missing data scenarios:

complete data and incomplete data due to attrition. Attrition was generated from a MAR

mechanism by implementing the same drop-out model detailed in Sections 3.4.2 and 6.2.

Across the eleven component mean scenarios, four total variance scenarios and the two miss-

ing data scenarios (complete data and incomplete data due to attrition), 4400 datasets each

containing 1000 subjects were generated. A random intercept logistic model assuming Gaussian

random effects was fitted to each simulated dataset. The robustness of assuming normality in

the presence of misspecified random intercepts was assessed by using the same performance

measures as described in Section 6.2.

Simulations and analyses were conducted in SAS (Version 9.4, SAS Institute, Cary NC). All

random intercept logistic models were fitted using the SAS procedure NLMIXED with adaptive

Gaussian Quadrature using 20 quadrature points.
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Figure F.1: Density of the true random intercept distributions for component mean distances
µ3 − µ1 = 0, 5 and 10 for the four true total variance scenarios: σ2

b = 20, 25, 30 and 35.
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F.2 Results and discussion

The performance measures of percentage bias, coverage rates of the 95% confidence intervals

and the ratio of the mean model based standard errors to the empirical standard errors for the

complete data scenario are shown in Figures F.2, F.3 and F.4 respectively. The results are

similar as observed in Chapter 6 for minor departures in the true random intercept distribu-

tion from the assumed normal distribution (i.e. for comparable component mean distances of

µ3−µ1 = 0 to 10). The results presented here suggest misspecification of the random intercept

distribution has some impact on the inference of parameters associated with the random effect.

Bias in the estimation of the intercept constant β0 was observed for all component mean

distances and variance component scenarios (Figure F.2). As observed in Chapter 6, minimal

bias was observed for the other parameters with the exception of β3. Similarly, negligible bias

in estimating the random intercept standard deviation σb was observed for component mean

distances µ3 − µ1 < 10.

Close to nominal coverage rates for all parameters were observed, with the exception of

σb where the larger departures from the assumed normal distribution (i.e. µ3 − µ1 > 8 and

σ2
b = 20, 25) resulted in low coverage rates (Figure F.3). The lower coverage rates for σb are

consistent with the trend in the coverage rate observed in Chapter 6 for similar component

mean distances.

Similarly, for small deviations from the shape of normality, accurate model based standard

errors were produced for all parameters with the exception of σb (Figure F.4). As observed in

Chapter 6 for similar component mean distances, there were some fluctuations of the standard

error ratio for σb, with inaccurate model based errors produced for the most extreme true ran-

dom intercept distribution considered (µ3 − µ1 > 8 and σ2
b = 20).

The magnitude and trend in the performance measures were similar for the four total ran-

dom effect variances. There were some deviations in the trend for coverage and standard error

ratio for smaller total random effect variances, corresponding to the largest departures from

normality. For instance, some deviations in the magnitude of coverage and standard error ratio

were observed for the smallest total random effect variance of σ2 = 20 and the most extreme

component mean distance of µ3 − µ1 = 10.

As in Chapters 5 and 6, MAR attrition had minimal additional impact. The impact of

misspecifying the random intercept distribution in the presence of MAR attrition was similar

to that in the complete data scenario, producing similar magnitudes and trends for percentage

bias, coverage rates and accuracy of model based standard errors (results not shown).

The actual rate of attrition in the simulated datasets for all scenarios averaged 32.8% (range:
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Figure F.2: Percentage bias for parameter coefficients of random intercept logistic model
applied to the Complete data for increasing distances of random intercept component means
(µ3 − µ1) under four total random effect variance scenarios (σ2

b = 20, 25, 30 or 35). Grey
horizontal solid line at percentage bias=0 and grey horizontal dashed lines at ±10%.
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Figure F.3: Coverage rates of 95% confidence intervals for parameter coefficients of random in-
tercept logistic model applied to the Complete data for increasing distances of random intercept
component means (µ3 − µ1) under four total random effect variance scenarios (σ2

b = 20, 25, 30
or 35). Grey horizontal solid line at nominal coverage rate of 95% and grey horizontal dashed
lines at coverage rates of 0.93 and 0.97.
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27.9% to 37.3%) and was similar to the observed rate of 29.5% in the HILDA subgroup of work-

ing aged women (Table 4.1). The attrition rates for the eleven component means and the four

total random effect variance scenarios were similar (results not shown).

The rate of subjects staying in unemployment for all observed time-points for the complete

data and the MAR attrition data averaged 12.6% (range: 6.8% to 19.8%) and 17.2% (range:

10.4 to 24.3%), respectively. As in the primary simulation study, the number of observed stay-

ers in the unemployed group was influenced by the true random effect distribution, with higher

proportion of continuously unemployed for more extreme distributions, such as smaller total

random effect variance and larger component mean distances (results not shown). As in the

primary simulation study, the rate of subjects staying employed for all observed time-points

averaged 51.1% (range: 44.8% to 57.2%) for the complete data, and 53.6% (47.0% to 60.5%)

for the MAR attrition data scenario.

There were excellent convergence rates of 100% for all iterations of the simulation study.

F.3 Summary

By restricting the total random effect variance to σ2
b = 20 to 35, the resulting simulated

random intercepts considered in this secondary simulation study were not as extreme as the

multimodal distributions considered in the primary simulation. Thus, the negligible impact of

incorrectly assuming normally distributed random intercepts for minor departures from nor-

mality were similar regardless of whether the total random effect variance was fixed or not. The

results from this simulation study suggest that the varying total random effect variance for the

simulated random effect distributions considered in Chapter 6 does not additionally influence

the observed results.
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Figure F.4: Ratio of mean model-based standard error to the empirical standard error for
parameter coefficients of random intercept logistic model applied to the Complete data for
increasing distances of random intercept component means (µ3 − µ1) under four total random
effect variance scenarios (σ2

b = 20, 25, 30 or 35). Grey horizontal solid line at ratio=1 and grey
horizontal dashed lines at ratio of 0.9 and 1.1.
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Appendix G: Sensitivity of the Vertex Exchange Method

in random intercept logistic models

The Vertex Exchange Method (VEM) was applied in Chapter 7 to estimate the logistic

models assuming unspecified distributions of the random intercept. It was based on an initial

grid consisting of 301 equally spaced support points based on the Cholesky decomposition, with

the range set at ±5 standard deviations of the assumed normal random intercept distribution.

Furthermore, the starting values for the parameter coefficients were set to the estimates from

the equivalent random intercept logistic model assuming normally distributed random inter-

cepts. To assess the impact of the choice of the initial starting values and the initial grid used

in the estimation, a sensitivity analysis was performed by re-fitting the VEM algorithm to

the HILDA case study with alternative starting values and initial grids. Two sets of starting

values were considered, parameter coefficients of the equivalent model with random intercepts

assumed to be normally distributed (random intercept logistic-normal model), or no random

intercepts (binary logistic model). A total of six different combinations of initial grid size and

grid range were considered, consisting of three initial number grid points, K=101, 301 or 501,

and the range of the grid was either 5 or 7 standard deviations of the equivalent model with

assumed normal random intercepts. The sensitivity analyses were performed for both missing

data scenarios: the women with complete cases and the women with monotone missing data.

In total, 24 scenarios were considered.

G.1 Complete case data

The parameter estimates and standard errors of the 12 fitted VEM random intercept logistic

models for women with complete cases are presented in Tables G.1 and G.2. Table G.1 contains

the results for when the starting values are set to parameter estimates of the random intercept

logistic-normal model, and Table G.2 contains the results for when the starting values are set

to the parameter estimates of the standard binary logistic model. The VEM algorithm was

robust to the choice of starting values and the initial grid choice, producing similar residual

deviance (-2ll) for all models, ranging from 9663 to 9682. There was more variability in the

residual deviance for models with the grid size of 101, particularly for the starting values based

on the random intercept logistic-normal model, however the residual deviance stabilised for

larger grid sizes of 301 and 501 (−2ll ranging from 9663 to 9667). The parameter estimates

and standard errors for the fixed effects not related to the random intercept were similar (when
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rounded to one decimal place) across the number of grid points and the grid range. There were

some minor differences observed for the constant coefficient (estimates ranging between -0.401

and -0.782) and the random intercept variability (estimates ranging from 12.135 to 13.589).

The computational time for calculating the model substantially increased with the number of

initial grid points. Models with 101 initial grid points required less than an hour of CPU time,

whilst the models with 501 initial grid points required over 13 hours.

G.2 Monotone missing data

The parameter estimates and standard errors of the 12 fitted VEM random intercept logistic

models for women with monotone missing data are presented in Tables G.3 and G.4. Table G.3

contains the results for when the starting values are set to parameter estimates of the random

intercept logistic-normal model, and Table G.4 contains the results for when the starting values

are set to the parameter estimates of the standard binary logistic model. Similar robustness

to the complete case data scenario was observed for the monotone missing scenario, with sim-

ilar residual deviance for all models (ranging from 11515 to 11527). There were some minor

differences observed for coefficients relating to the random intercept, the intercept coefficient

ranged from -0.434 to -1.100, and the random intercept variance estimate ranged from 11.100 to

13.536. For the two different starting values, there were minimal differences for the coefficients

and standard errors for the parameters unrelated to the random intercept, particularly for the

larger grid points of 301 and 501. For the same choice of initial grid, differences in the residual

deviance between the two starting values ranging between -2 to 4 (random intercept logistic

model - ordinary logistic model). As the sample size for the monotone missing sub-group is

larger (n=1927), the computational time for estimating the model took longer than for the

complete cases. The models with 101 initial grid points required approximately an hour of

CPU time, compared to over 16 hours required for the models with 501 initial grid points.

G.3 Summary

The VEM applied to estimate the unspecified distribution of the random intercept logistic

model is robust to the choice of initial grid, including the grid size and the range of grid points,

and the choice of starting values. The parameters related to the random intercept were sensitive

to the number of grid points, with variability of the parameter estimates and standard errors

shown for 101 grid points. Similar robustness was demonstrated for both of the missing data

scenarios. Therefore the results presented in Chapter 7, based on 301 grid points with the

range of grid points set at 5 standard deviations and starting values based on the random

intercept logistic-normal model, are similar to those reported for another set of starting values

and models based on similar, or larger, number of grid points and range of grid points.
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Table G.1: Sensitivity of VEM to the choice of the initial grid, including the number of grid points (K=101, 301 or 501) and the range
of the grid points (± 5 or 7 standard deviations), when applied to the 1359 women with complete case data in the HILDA case study with
starting values based on the random intercept logistic model with normal distributed random intercepts. The parameter estimates (Est) and
corresponding standard errors (SE) are presented for the fixed effects and the random effect variance with the CPU computational time.

Starting Values Random intercept logistic-normal model
Grid Points 101 301 501
Grid Range ±5σb ±7σb ±5σb ±7σb ±5σb ±7σb

Est SE Est SE Est SE Est SE Est SE Est SE

Constant -1.124 -1.645 -0.895 -0.877 -0.806 -0.809
Age 0.127 0.003 0.139 0.003 0.120 0.003 0.121 0.003 0.118 0.003 0.120 0.003
Marital Status

Married/Defacto
Sep/Div/Wid -0.351 0.140 -0.371 0.140 -0.347 0.140 -0.350 0.139 -0.346 0.139 -0.346 0.139
Single 0.229 0.238 0.295 0.255 0.201 0.232 0.200 0.234 0.188 0.231 0.193 0.232

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.082 0.160 -1.054 0.166 -1.092 0.159 -1.091 0.158 -1.096 0.159 -1.094 0.158
Year 11 or less -2.435 0.169 -2.457 0.175 -2.428 0.168 -2.439 0.167 -2.431 0.168 -2.432 0.167

Dependent Children
None
Youngest<5 -2.135 0.116 -2.073 0.118 -2.169 0.116 -2.172 0.116 -2.184 0.116 -2.179 0.116
Youngest 5-24 -0.282 0.103 -0.247 0.105 -0.303 0.103 -0.301 0.103 -0.311 0.103 -0.307 0.103

Random Effect
Variance 12.415 11.949 14.197 12.674 14.409 12.711

−2ll 9671 9682 9667 9667 9666 9666
CPU Time (hh:mm) 0:44 0:51 6:28 5:51 13:46 15:29
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Table G.2: Sensitivity of VEM to the choice of the initial grid, including the number of grid points (K=101, 301 or 501) and the range of the
grid points (± 5 or 7 standard deviations), when applied to the 1359 women with complete case data in the HILDA case study with starting
values based on the ordinary binary logistic model (with no random effect). The parameter estimates (Est) and corresponding standard errors
(SE) are presented for the fixed effects and the random effect variance with the CPU computational time.

Starting Values Binary logistic model
Grid Points 101 301 501
Grid Range ±5σb ±7σb ±5σb ±7σb ±5σb ±7σb

Est SE Est SE Est SE Est SE Est SE Est SE

Constant -0.732 -0.651 -0.517 -0.672 -0.401 -0.782
Age 0.118 0.003 0.118 0.003 0.112 0.003 0.116 0.003 0.110 0.003 0.119 0.003
Marital Status

Married/Defacto
Sep/Div/Wid -0.345 0.140 -0.345 0.140 -0.344 0.139 -0.344 0.139 -0.340 0.139 -0.346 0.139
Single 0.189 0.229 0.185 0.230 0.160 0.227 0.177 0.230 0.150 0.226 0.189 0.232

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.097 0.158 -1.107 0.162 -1.108 0.159 -1.101 0.159 -1.114 0.160 -1.093 0.159
Year 11 or less -2.428 0.167 -2.454 0.171 -2.435 0.167 -2.432 0.168 -2.436 0.169 -2.429 0.168

Dependent Children
None
Youngest<5 -2.186 0.115 -2.199 0.117 -2.224 0.116 -2.198 0.116 -2.235 0.116 -2.180 0.116
Youngest 5-24 -0.312 0.102 -0.318 0.103 -0.332 0.103 -0.317 0.103 -0.341 0.103 -0.308 0.103

Random Effect
σ2
b0

12.538 12.135 13.440 12.508 13.589 12.935

-2ll 9665 9666 9663 9665 9663 9666
CPU Time (hh:mm) 0:46 0:43 4:45 6:05 13:55 15:48
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Table G.3: Sensitivity of VEM to the choice of initial grid, including the number of grid points (K=101, 301 or 501) and the range of
the grid points (± 5 or 7 standard deviations), when applied to the 1927 women with monotone missing data in the HILDA case study with
starting values based on the random intercept logistic model with normal distributed random intercepts. The parameter estimates (Est) and
corresponding standard errors (SE) are presented for the fixed effects and the random effect variance with the CPU computational time.

Starting Values Random intercept logistic-normal model
Grid Points 101 301 501
Grid Range ±5σb ±7σb ±5σb ±7σb ±5σb ±7σb

Est SE Est SE Est SE Est SE Est SE Est SE

Constant -0.659 -1.100 -0.686 -0.589 -0.706 -0.434
Age 0.118 0.003 0.128 0.003 0.118 0.003 0.116 0.003 0.118 0.003 0.113 0.003
Marital Status

Married/Defacto
Sep/Div/Wid -0.292 0.134 -0.297 0.136 -0.289 0.135 -0.292 0.135 -0.291 0.134 -0.288 0.135
Single 0.054 0.219 0.105 0.233 0.069 0.219 0.060 0.218 0.066 0.219 0.054 0.214

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.162 0.152 -1.150 0.157 -1.166 0.152 -1.172 0.153 -1.163 0.152 -1.181 0.153
Year 11 or less -2.551 0.158 -2.561 0.163 -2.541 0.159 -2.544 0.157 -2.542 0.158 -2.544 0.158

Dependent Children
None
Youngest<5 -2.199 0.111 -2.132 0.112 -2.186 0.111 -2.201 0.111 -2.187 0.111 -2.213 0.111
Youngest 5-24 -0.344 0.100 -0.312 0.101 -0.343 0.100 -0.349 0.100 -0.341 0.100 -0.358 0.100

Random Effect
Variance 11.520 11.591 11.937 12.000 12.329 11.973

−2ll 11518 11527 11518 11517 11518 11515
CPU Time (hh:mm) 1:21 1:03 8:10 6:56 18:12 16:44
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Table G.4: Sensitivity of VEM to the choice of initial grid, including the number of grid points (K=101, 301 or 501) and the range of the grid
points (± 5 or 7 standard deviations), when applied to the 1927 women with monotone missing data in the HILDA case study with starting
values based on the ordinary binary logistic model (with no random effect). The parameter estimates (Est) and corresponding standard errors
(SE) are presented for the fixed effects and the random effect variance with the CPU computational time.

Starting Values Binary Logistic Model
Grid Points 101 301 501
Grid Range ±5σb ±7σb ±5σb ±7σb ±5σb ±7σb

Est SE Est SE Est SE Est SE Est SE Est SE

Constant -0.811 -0.823 -0.604 -0.508 -0.609 -0.520
Age 0.120 0.003 0.122 0.003 0.115 0.003 0.115 0.003 0.115 0.003 0.114 0.003
Marital Status

Married/Defacto
Sep/Div/Wid -0.300 0.136 -0.294 0.136 -0.292 0.135 -0.289 0.135 -0.290 0.135 -0.288 0.134
Single 0.094 0.231 0.085 0.233 0.069 0.217 0.058 0.216 0.070 0.217 0.057 0.216

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.163 0.155 -1.152 0.158 -1.179 0.153 -1.174 0.153 -1.178 0.153 -1.172 0.153
Year 11 or less -2.549 0.160 -2.521 0.164 -2.544 0.159 -2.541 0.158 -2.543 0.159 -2.535 0.158

Dependent Children
None
Youngest<5 -2.183 0.110 -2.145 0.111 -2.205 0.111 -2.205 0.111 -2.202 0.111 -2.200 0.111
Youngest 5-24 -0.337 0.100 -0.324 0.101 -0.353 0.100 -0.353 0.100 -0.352 0.100 -0.350 0.100

Random Effect
σ2
b0 12.047 11.100 13.536 11.907 13.244 12.101

-2ll 11520 11523 11516 11516 11516 11516
CPU Time (hh:mm) 1:21 0:57 7:42 6:35 18:44 17:18
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Appendix H: Sensitivity of the Vertex Exchange Method

in random intercept and random slope

logistic models

The Vertex Exchange Method (VEM) applied in Chapter 7 to estimate logistic mixed models

with random intercepts and random slopes was based on the initial grid consisting of 31 equally

spaced support points in both dimensions. Thus, the initial grid consisted of 961 support

points with the range of the grid set at ± 5 times the Cholesky decomposition of the variance-

covariance matrix corresponding to the equivalent model assuming bivariate normal random

effects (Ŝb). To assess the impact of the initial grid and starting values used in VEM estimation,

a sensitivity analysis was performed by re-fitting the VEM algorithm to the HILDA case study

with alternative initial grids and starting values of the fixed effect parameters. The initial

grids consisted of either 31 or 51 initial grid points in each dimension, such that the two

dimensional grid for the two random effects were either K=31 × 31 or 51 × 51, and the range

of the grid was based on the Cholesky decomposition multiplied by a factor of 5 or 7, ±5Ŝb or

±7Ŝb. Furthermore, two alternative sets of starting values for the fixed effect parameters were

considered, either the starting values were the estimated coefficients of the equivalent logistic

mixed model assuming bivariate normal random effects, or the standard binary logistic model.

Therefore a total of four different combinations of the initial grid and two initial starting values

were considered. The sensitivity analyses were performed for both missing data scenarios, the

women with complete cases and the women with monotone missing data. The corresponding

results for the two data analysis sub-groups are presented in Section H.1 and H.2, respectively.

H.1 Complete case data

The parameter estimates and standard errors of the logistic mixed models estimated by

the VEM approach for women with complete case data are presented in Table H.1. The VEM

algorithm was robust to the initial grid choice, particularly to the number of grid points used.

A comparison of the initial grid values within each starting value subset shows stability of the

fixed effect coefficients, producing similar residual deviance for the models. For models using the

logistic mixed model as starting values the residual deviance ranged from 8989 to 8995, and the

residual deviance for models utilising the standard logistic model as starting values ranged from

8990 to 9007. The VEM algorithm applied to the logistic mixed model with bivariate random

effects was susceptible to boundary issues. As such, larger initial grids (±7Ŝb) resulted in
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larger magnitude of estimates for parameters relating to the random effects, with the exception

of the constant coefficient. For instance, all estimates of the variance-covariance matrix were

larger for the corresponding model based on the ±7Ŝb than on the ±5Ŝb model. The choice of

starting values did produce differences in the magnitude of the coefficient estimates, however

at the conventional 5% significance level, the same inference would be made for all models.

Furthermore, the absolute difference in the coefficient and standard error estimates for the two

sets of starting values generally decreased as the initial number of grid points and range of grid

points increased. The computational time for calculating the model substantially increased

with the number of initial grid points, with marginal differences in CPU time observed for the

two choices of starting values.

H.2 Monotone missing data

The parameter estimates and standard errors of the logistic mixed models estimated by

the VEM approach for women with monotone missingness are presented in Table H.2. Similar

conclusions as for the complete case data scenario were observed for the monotone missing

scenario. The VEM approach was robust to the initial grid choice, though coefficient estimates

differed depending on the initial starting values of the coefficients. In comparison to the com-

plete case scenario, the absolute differences between the equivalent models with the different

initial starting values were not as extreme, potentially due to the larger number of observations

in the Monotone missing data scenario. Albeit the differences in the coefficients and standard

error estimates, at the 5% significance level, the same inferential conclusions would be made for

all VEM models. Within each initial starting value subgroup, the VEM approach was robust to

the number of initial grid points resulting in similar residual deviances. The residual deviance

ranged from 10736 to 17041 for models with starting values based on the logistic mixed model,

and ranged from 10736 to 10754 for models with starting values based on the standard logistic

model. As observed for the complete cases, the VEM approach was susceptible to boundary

solutions, and therefore, the choice of the initial grid range impacted the estimation of param-

eters related to the random effects. In comparison to the grid range of ±5Ŝb, the larger grid

range of ±7Ŝb resulted in larger estimates for all components of the variance-covariance ma-

trix. As expected, the larger sample size for the monotone missing data scenario required more

CPU time that for the complete case scenario. The CPU time required for model convergence

increased with the initial number of grid points and the grid range.

H.3 Summary

The VEM used to estimate the random intercept and random slope logistic model was

robust to the choice of the initial grid, including the number of grid points and the range

of the initial grid, and to the choice of starting values. Increasing the number of initial grid

points to consist of 51 equally spaced support points resulted in a marginal improvement of the

residual deviance, however the CPU time required to fit the model was approximately 4 times
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longer. The results presented in Chapter 7 adequately represent the performance of the VEM

to estimate the bivariate random effects distribution in the HILDA case study, and the VEM

is computationally practical.
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Table H.1: Sensitivity of VEM to the choice of initial grid, including the number of grid points (K=31 or 51) and the range of the grid points (±
5Ŝb or 7Ŝb) in addition to the choice of starting values, either based on coefficients of a random intercept and random slope logistic model assuming
bivariate normal random effects or the standard logistic model, when applied to the 1359 women with complete case data in the HILDA case study.
The parameter estimates (Est) and corresponding standard errors (SE) are presented for the fixed effects and the random effect variance, along
with the CPU computational time.

Starting Values Logistic-normal mixed model Binary logistic model
Grid Points 31 x 31 51 x 51 31 x 31 51 x 51

Grid Range ±5Ŝb ±7Ŝb ±5Ŝb ±7Ŝb ±5Ŝb ±7Ŝb ±5Ŝb ±7Ŝb

Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE
Constant 2.964 2.747 2.977 2.549 2.645 2.236 2.671 2.547
(Wave-1)/10 2.597 3.367 2.564 2.892 2.187 2.703 2.599 2.787
(Age Baseline-30)/10 1.252 0.144 0.798 0.149 1.226 0.140 1.281 0.146 1.215 0.142 1.283 0.160 1.215 0.138 1.040 0.147
Marital Status

Married/Defacto
Sep/Div/Wid -0.445 0.174 -0.406 0.178 -0.409 0.173 -0.440 0.177 -0.391 0.167 -0.495 0.177 -0.423 0.168 -0.415 0.175
Single 0.492 0.272 0.345 0.257 0.390 0.243 0.300 0.256 0.413 0.268 0.250 0.286 0.457 0.247 0.427 0.258

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.154 0.172 -1.147 0.175 -1.149 0.166 -1.178 0.170 -0.978 0.168 -1.001 0.191 -1.089 0.162 -1.115 0.171
Year 11 or less -2.812 0.193 -2.760 0.177 -2.854 0.181 -2.840 0.187 -2.646 0.186 -2.648 0.212 -2.692 0.181 -2.715 0.186

Dependent Children
None
Youngest<5 -2.647 0.130 -2.628 0.130 -2.641 0.126 -2.619 0.128 -2.496 0.132 -2.505 0.149 -2.558 0.128 -2.597 0.126
Youngest 5-24 -0.710 0.128 -0.674 0.126 -0.681 0.123 -0.715 0.127 -0.620 0.127 -0.654 0.142 -0.645 0.125 -0.651 0.126

Random Effects
σ2
b0

35.4 54.6 35.3 54.7 36.1 65.4 39.3 58.1
σ2
b1

78.1 114.7 80.5 118.4 73.5 116.3 73.1 109.2
σb0,b1 -22.9 -37.2 -23.5 -33.0 -13.7 -30.9 -22.4 -27.8

-2ll 8995 8995 8989 8990 9001 9007 8994 8990
CPU Time (hh:mm) 43:12 47:59 199:12 236:09 37:44 48:03 228:37 232:43
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Table H.2: Sensitivity of VEM to the choice of initial grid, including the number of grid points (K=31 or 51) and the range of the grid points (±
5Ŝb or 7Ŝb) in addition to the choice of starting values, either based on coefficients of a random intercept and random slope logistic model assuming
bivariate normal random effects or the standard logistic model, when applied to the 1927 women with monotone missing data in the HILDA case
study. The parameter estimates (Est) and corresponding standard errors (SE) are presented for the fixed effects and the random effect variance,
along with the CPU computational time.

Starting Values Logistic-normal mixed model Binary logistic model
Grid Points 31 x 31 51 x 51 31 x 31 51 x 51

Grid Range ±5Ŝb ±7Ŝb ±5Ŝb ±7Ŝb ±5Ŝb ±7Ŝb ±5Ŝb ±7Ŝb

Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE
Constant 3.599 3.332 3.492 3.309 3.092 3.434 3.375 3.303
(Wave-1)/10 2.820 2.725 2.381 2.703 2.035 2.205 2.407 2.625
(Age Baseline-30)/10 0.705 0.146 0.742 0.149 0.915 0.139 0.923 0.144 1.236 0.140 0.930 0.167 0.800 0.143 0.860 0.151
Marital Status

Married/Defacto
Sep/Div/Wid -0.466 0.162 -0.468 0.175 -0.422 0.167 -0.435 0.167 -0.420 0.165 -0.369 0.166 -0.427 0.168 -0.410 0.171
Single 0.260 0.228 0.270 0.253 0.286 0.230 0.206 0.229 0.254 0.239 0.235 0.258 0.297 0.226 0.184 0.242

Highest Education
Bachelor or higher
Year 12/Dip/Cert -1.316 0.162 -1.273 0.167 -1.265 0.157 -1.333 0.164 -1.204 0.160 -1.440 0.183 -1.306 0.158 -1.350 0.167
Year 11 or less -2.750 0.171 -2.861 0.170 -2.865 0.165 -2.915 0.168 -2.772 0.175 -2.970 0.222 -2.849 0.165 -2.907 0.171

Dependent Children
None
Youngest<5 -2.746 0.123 -2.771 0.124 -2.777 0.118 -2.799 0.122 -2.612 0.122 -2.721 0.140 -2.778 0.118 -2.776 0.123
Youngest 5-24 -0.812 0.123 -0.847 0.124 -0.818 0.118 -0.834 0.120 -0.749 0.120 -0.804 0.138 -0.813 0.119 -0.834 0.121

Random Effects
σ2
b0

32.4 44.0 31.6 43.3 30.5 39.0 34.3 46.8
σ2
b1

98.4 123.9 88.0 118.9 86.9 114.4 85.3 120.6
σb0,b1 -25.5 -39.0 -27.1 -38.6 -20.9 -31.9 -24.3 -41.5

−2ll 10740 10741 10736 10736 10750 10754 10738 10736
CPU Time (hh:mm) 50:52 58:26 194:36 251:33 57:19 53:16 243:55 251:59
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