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Abstract  
 

The range and quality of freely available geo-referenced datasets is increasing.  We evaluate the 

usefulness of free datasets for deforestation prediction by comparing generalised linear models and 

generalised linear mixed models (GLMMs) with a variety of machine learning models (Bayesian 

networks, artificial neural networks and Gaussian processes) across two study regions. Freely 

available datasets were able to generate plausible risk maps of deforestation using all techniques for 

study zones in both Mexico and Madagascar.  Artificial neural networks outperformed GLMMs in 

the Madagascan (average AUC 0.83 vs 0.80), but not the Mexican study zone (average AUC 0.81 

vs 0.89).  In Mexico and Madagascar, Gaussian processes (average AUC 0.89, 0.85) and structured 

Bayesian networks (average AUC 0.88, 0.82) performed at least as well as GLMMs (average AUC 

0.89, 0.80).  Bayesian networks produced more stable results across different sampling methods.  

Gaussian processes performed well (average AUC 0.85) with fewer predictor variables. 

 

Keywords 

Artificial neural network, Bayesian network, Deforestation, Freely available data, Gaussian process, 

Logistic regression 

 

Software and data availability 

Software 

Name: Netica version 5.12 

Developer: Norsys Software Corporation  

Address: 3513 West 23
rd

 Avenue, Vancouver, BC, Canada, V6S1k5 

Email: info@norsys.com 

Availability: www.norsys.com 

 

Name: ArcGIS 10.1 

Developer: ESRI 

Address: 380 New York Street, Redlands, CA 92373-8100 

Email: service@esri.com 

Availability: http://www.esri.com 

 

Name: Fragstats 

Developer: UMass Landscape Ecology Lab 

Address: 304 Holdsworth Natural Resources Center, Box 34210, Amherst, MA 01003 

mailto:info@norsys.com
http://www.norsys.com/
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Email: mcgarigalk@eco.umass.edu 

Availability: http://www.umass.edu/landeco/research/fragstats/fragstats.html 

 

Name: R Programming Language 

Developer: R Core Development Team 

Availability: https://www.r-project.org 

 

Name: MatLab 2014 

Developer: MathWorks 

Address: 1 Apple Hill Drive, Natick, MA 01760-2098, UNITED STATES 

Availability: www.mathworks.com 

 

Datasets 

Name: Land use change 

Developer: Conservation International 

Availability: Available on request. http://www.conservation.org   

 

Name: Terrestrial Ecoregions 

Developer: World Wildlife Fund 

Availability: http://worldwildlife.org/publications/terrestrial-ecoregions-of-the-world. 

 

Name: VMAP0 

Developer: mapAbility 

Availability: http://www.mapability.com 

 

Name: World Database of Protected Areas 

Developer: United Nations World Conservation Monitoring Centre 

Availability: http://www.protectedplanet.net 

 

Name: Natural Earth large scale datasets  

Developer: Natural Earth 

Availability: http://www.naturalearthdata.com 

 

Name: Landscan global population distribution  

Developer: Oak Ridge National Laboratory 

Availability: http://web.ornl.gov/sci/landsca 

 

Name: U.S. Geological Survey's Landat data 

Developer: U.S. Geological Survey's Earth Resources Observation and Science 

Availability: http://landsat.usgs.gov/Landsat_Search_and_Download.php 

 

  

http://www.conservation.org/
http://worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
http://www.protectedplanet.net/
http://www.naturalearthdata.com/
http://web.ornl.gov/sci/landscan/
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List of Abreviations 

ANN: Artificial neural networks 

BN: Bayesian networks 

CI: Conservation International  

DEM: Digital elevation model 

FN: False negative 

FP: False positive 

GLM: Generalised linear model 

GLMM: Generalised linear mixed model 

GP: Gaussian process 

IUCN: International Union for the Conservation of Nature 

ML: Machine learning 

NE: Natural Earth 

PA: Protected area 

TAN: Tree Augmented Naïve  

TN: True negative 

TP: True positive 

TSS: True skill statistic  

AUC: area under the (receiver operating) curve  

WDPA: World database on protected areas 

WWF: World Wildlife Fund 

 

 

 

1 Introduction 
 

Forests around the world remain at risk from a range of threats including urban population 

growth (DeFries et al. 2010), agricultural and infrastructure expansion (Newman et al. 2014), illegal 

logging (Gaveau et al. 2009) and insecure property rights (Robinson et al. 2014).  With the loss of 

the forests, we are also losing valuable ecosystem services (Rogers et al. 2010), critical habitats for 

maintaining biodiversity (Buchanan et al. 2008) and destroying an important carbon sink that could 

help mitigate increasing atmospheric concentrations of carbon dioxide (Wang et al. 2009).  In order 

to better understand and ultimately reduce these risks, researchers frequently turn to data driven 

analyses (Mas et al. 2004, Vaca et al. 2012, Allnutt et al. 2013, Newman et al. 2014) for which 

access to relevant and quality information is crucial.  

Despite their value, many datasets, especially at high resolution, still remain difficult or costly to 

obtain.  Socio-economic data may rely on costly surveys and gaining access to data on dynamic 
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variables, such as city or road locations, for the relevant time periods (i.e. when the deforestation 

was occurring) can be difficult and may require manual digitisation of maps.  In contrast, other geo-

referenced datasets, such as those describing land use change (Vaca et al. 2012, Allnutt et al. 2013), 

protected areas (WDPA 2010), political boundaries (NE 2013a) and ecoregions (Olson et al. 2001) 

are becoming freely available.  To date however, there has been no rigorous assessment of the 

utility of using these freely available datasets for deforestation risk modelling. 

To analyse these data, researchers have often relied on classical statistics such as generalised linear 

models – GLMs (Hastie et al. 2009), and more recently generalised linear mixed models – GLMMs 

(Green et al. 2013).  While these techniques are well accepted and easily implemented, they assume 

explanatory variables are independent (unless dependencies are explicitly modelled) and cannot 

exploit nonlinear relationships between dependent and independent variables (unless they are 

known to be nonlinear a priori and data can be transformed).  Machine learning (ML) methods such 

as artificial neural networks - ANNs (Hastie et al. 2009), Bayesian networks – BNs (Fenton and 

Neil 2013) and Gaussian processes – GPs (Rasmussen and Williams 2006), do not make these 

assumptions.  This may prove to be advantageous when it comes to modelling deforestation risk 

where predictor variables may not be independent or relationships linear.  

While comparisons of multiple ML and statistical methods have been conducted in assessing 

landslide susceptibility (Pham et al. 2016), land use change (Tayyebi et al. 2014), and conservation 

biology (Kampichler et al. 2010), such broad comparisons have not been undertaken for 

deforestation risk assessment, with studies either offering no model comparison (Mas et al. 2004, 

Basse et al. 2014) or a limited comparison of only two methods (Pérez-Vega et al. 2012).  This 

study aims to address this gap while at the same time evaluating a variety of relevant, freely 

available or low cost datasets to determine their usefulness in predicting deforestation risk, defined 

here as probability of the presence or absence of deforestation.   

By using several statistical and machine learning techniques, we assess whether machine learning is able 

to improve on the more commonly used methods from classical statistics. In doing so we provide 

researchers with guidance on the comparative performance of these analytical methods in predicting 

deforestation risk.  We first describe the datasets used in this study along with each deforestation risk 

modelling method compared.  We then describe the design and implementation of each modelling 

method, the predictor variables included and the model evaluation metrics used in this study.  Finally, 

we examine how the ML models compared against standard statistical models and the implications of 

these results. 
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1.1 Freely available datasets 

Free or low cost datasets are becoming increasingly common and cover a range of factors 

relevant to analysing deforestation.  While efforts are being made to look at methods for improving 

the quality of land use images in these datasets (Estes et al. 2016), many are already at a standard 

that is potentially useful for practical deforestation prediction.  High levels of correlation amongst  

variables are common in land use change, with multiple factors sometimes resulting in the same 

result (van Vliet et al. 2016), and deforestation is no exception to this.  While these correlations can 

create complications with model design and validation (van Vliet et al. 2016), it also suggests that  

the large range of available datasets (detailed further in this section) may provide an alternative 

source of variables in cases where more expensive or difficult to collect options are not available.   

One major development in geo-referenced datasets is the World Database on Protected Areas 

(WDPA), which is maintained by the United Nations Environmental Program World Conservation 

Monitoring Centre (UNEP-WCMC).  The positive influence of protected areas (PAs) on preventing 

deforestation within their boundaries has been shown (Mas 2005, Gaveau et al. 2009), although 

there is some debate in the literature regarding the magnitude of this influence, with some evidence 

that the credit afforded to protected areas is due not to the protected status of the forest, but to other 

attributes, such as accessibility (Gaveau et al. 2009).  The database is a global, geo-referenced dataset 

that details the location (as a polygon layer) and date of declaration for the world‟s PAs (WDPA 2010).  

It also lists details such as the conservation category (if any) for each PA, as described by the 

International Union for the Conservation of Nature – IUCN (Dudley 2008).   

The Landsat Thematic Mapper and Enhanced Thematic Mapper images provide global data with a 

spatial resolution of 30 m x 30 m (Wang et al. 2009), with the most recent satellite, Landsat 8, being 

launched in 2013 (NASA 2015).  Data from the Landsat satellite program (UT-Battelle 2013) are 

frequently used in deforestation studies for calculating slope and elevation variables (Mas et al. 2004, 

Gaveau et al. 2009, Wang et al. 2009).  Satellite data is also available from the National Aeronautics 

and Space Administration‟s (NASA‟s) Geocover project which has been used by Conservation 

International (CI) to create land use change datasets for many deforestation hotspots. The dataset for 

Mexico is in raster format (28.5 m resolution) and maps forest lost between 1990 and 2000, and 

between 2000 and 2005, where forest is defined as old growth forest, secondary and degraded forests, 

and plantations (Vaca et al. 2012).  An equivalent dataset covering Madagascar exists from the same 

source (Allnutt et al. 2013).  

Other non-profit organisations also make data available without charge for scientific or other non-

commercial purposes.  Natural Earth (NE) has published a large number of datasets with global 
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coverage, including political boundaries and locations of populated places, ports and airports (NE 

2013b).  These datasets give access to a number of variables that have been linked to deforestation risk, 

such as distance to populations of different sizes (Mas et al. 2004) and political boundaries, such as 

states and countries that may have differing forest protection policies.  Similarly, the World Wildlife 

Fund (WWF) has produced a global map of terrestrial ecoregions (Olson et al. 2001), which has been 

used to identify and control for differences in deforestation rates between the different ecoregions (Vaca 

et al. 2012).  A global dataset of major roads is also available (mapAbility 2012).  While a useful 

reference, this last dataset should be used with caution as the dates for when the roads were created are 

not given, meaning that it cannot be verified if the roads were in existence at the time when 

deforestation occurred.  

As well as free information it is possible to purchase data.  As an example, The Oak Ridge National 

Laboratory offers the Landscan population pressure raster dataset at 1 km (UT-Battelle 2013). While the 

cost may prove prohibitive for some studies, the data is considered high quality and the algorithms used 

to calculate population pressure make use of roads, populated areas (urban boundaries) and populated 

points (towns and villages).  It  has been used previously to estimate population pressure when 

analysing deforestation (Rogers et al. 2010).  As with the road location data, values in the population 

pressure dataset represent the state of the world in a recent time period, rather than when deforestation 

was occurring.   This may affect the relevance of the information, particularly if there have been 

significant population movements over the past few decades. 

The datasets described have several advantages that make them widely applicable to deforestation 

studies.  All provide extensive, in some cases global, coverage of deforestation hotspots while still 

having sufficient resolution for more local studies.  Most also offer enough information to derive a 

selection of potentially useful predictor variables for estimating deforestation risk.  The variety of the 

datasets provides an extensive range of potential predictor variables, including many of the most 

commonly studied predictors such as slope, elevation, population pressure and surrounding land use.  

 

1.2 Modelling methods 

GLMs (Hastie et al. 2009) are a family of statistical techniques commonly applied in 

deforestation prediction.  In a GLM the output is modelled as a linear combination of the inputs, 

sometimes passed through a nonlinear function (e.g. a sigmoidal function for logistic regression).  

GLMMs are an extension of GLMs that can model random effects among groups of predictors and 

are becoming widely used in environmental and conservation analysis studies (Green et al. 2013, 
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Newman et al. 2014).  Both GLMs and GLMMs are unable to account for interactions between 

predictors unless these are explicitly modelled and pre-specified.  

ANNs are predictive models loosely based on the biological structure of the human brain 

(Rumelhart et al. 1986, or more recently Haykin 2009).  An ANN is constructed by linking input 

nodes, with weighted connections, to output nodes via one or more layers of hidden nodes.  Without 

these hidden layers an ANN is equivalent to either linear or logistic regression, depending on the 

output function used.  During training, data are presented to the network via the input layer.  These 

values are then processed by the first layer of hidden nodes, where they are multiplied by the 

weights for each node and processed according to a sigmoidal activation function.  The output from 

each layer of hidden nodes is used as the input to the next layer of hidden nodes (Haykin 2009).  

The output from the final hidden layer is passed to the output nodes. 

A BN is a graphical model that takes a probabilistic approach to representing relationships 

among variables (Fenton and Neil 2013).  At the core of this approach is Bayes theorem, which uses 

conditional probabilities to estimate the probability of a hypothesis given the evidence.  Key 

benefits of BNs are their ability to deal with uncertain or missing data and a clear, graphical 

representation of the relationships between variables (Uusitalo 2007).  Another advantage of BNs is 

that both the network structure (cause and effect relationships among variables) and conditional 

probabilities can be either learnt from data or derived from expert knowledge. 

GPs are a spatial model that can be viewed as a particular instance of the well-established 

geostatistics technique of kriging (Hastie et al. 2009) and allow for a very flexible range of response 

functions to be modelled. The model is defined by a mean and covariance function, which defines a 

prior distribution over the possible functions. Given a training set, this can be converted into a 

posterior distribution using Bayes Rule.  The posterior distribution is then used to make predictions 

e.g. by taking the mean of the posterior distribution as the predicted value of the response function 

at a test point. A detailed explanation of the equations used in GPs is given in Section 1 of the 

online supplementary material.   

ANNs have shown promising results when applied to deforestation risk modelling (Mas et al. 

2004) and more generally to modelling changes in land use (Basse et al. 2014).  BNs have been 

successfully applied to numerous environmental management studies including reforestation 

(Frayer et al. 2014) and forest dynamics (Liedloff and Smith 2010).  While no research was found 

that specifically used GPs in deforestation risk assessment, the method is similar to Kriging 

(Rasmussen and Williams 2006) making it a suitable approach for modelling spatial patterns 

(Campos-Taberner et al. 2015, Yan et al. 2016).  
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2 Materials and methods 

 

Two areas were selected for this study, one in Mexico (Figure 1) and the other in Madagascar 

(Figure 2).  Mexico, is widely recognised as one of a handful of the remaining mega-diverse 

countries for biodiversity and has historically had high deforestation rates (Mas 2005).  Changes in 

government policies and investment in infrastructure in the late 20
th

 century played a major role in 

increasing forest loss (Ellis and Porter-Bolland 2008).   

 

   
Figure 1: Location of study area (outlined in black) within the Mexican Yucatan peninsula.   
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Figure 2: Location of study area (outlined in black) within Madagascar 

 

Within the Yucatan region there are variations in the types of agriculture, access to alternative 

incomes (such as tourism) and forest management policies. Therefore the underlying factors 

affecting deforestation (such as population pressure or land tenure) differ in influence from area to 

area (Ellis and Porter-Bolland 2008). There are several major protected areas in the region, 

including the Calakmul Biosphere Reserve, El Mirador National Park and Tikal National Park.  For 

this study a 100 km x 200 km area was selected from the state of Campeche, overlapping the 

Calakmul Biosphere Reserve (WDPA 2010). 

Like Mexico, Madagascar has high levels of deforestation and is a priority for conservation due 

to its substantial number of endemic species (Allnutt et al. 2013). There are several prominent 

causes of deforestation in the country including slash and burn farming carried out primarily for 

rain fed hill rice cultivation (McConnell et al. 2004), both legal and illegal logging of hardwoods, 

and mining (Allnutt et al. 2013).  Exact deforestation rates are not known as estimates are generally 

considered inaccurate due to missing data caused by cloud cover, and also vary depending on the 

definition of forest (Agarwal et al. 2005).  For this study, the north eastern province of Toamasina 

was chosen.  The province has an area of approximately 75,000 km
2
 and consists of two main 

ecoregions; Madagascan lowland forest along the east and a section of Madagascan sub humid 
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forests in the west (Olson et al. 2001).  Land use change maps for both study regions are given in 

Section 2 of the online supplementary material. 

 

2.1 Data and Variable selection 

A selection of freely available or low cost datasets were used to model deforestation risk.  The 

datasets used in this study were the WDPA (WDPA 2010),  CI land use change data (Vaca et al. 

2012), NE political boundaries and city locations (NE 2013b), WWF terrestrial ecoregion (Olson 

and Dinerstein 2002) the digital elevation model (DEM) from Landsat (Reuter et al. 2007), 

MapAbility road location (mapAbility 2012) and the Landscan population pressure (UT-Battelle 

2013).   

To create data samples for training and testing the models, random sample points were generated 

across the study areas and then overlaid on to the CI land use change datasets.  A change in land 

cover from forest to non-forest across a time step represents deforestation.  For this study, the 

deforestation response variable was defined as either 0 if deforestation was absent between 2000 

and 2005 or 1 if deforestation was present during this timeframe.  The value of the response 

variable for each sample point was initially defined as whether or not the underlying 30 m x 30 m 

cell in the CI dataset was deforested between 2000 and 2005.  For the Mexican dataset, this resulted 

in a prevalence rate for deforested sample points of less than 1%.  Data containing low prevalence 

rates presents an issue for both statistical and ML models because extremely large datasets are then 

required for models to have sufficient examples of deforestation to learn from.  Two strategies were 

therefore used to deal with the low prevalence of deforested sample points within the sample.  

The first strategy was to redefine the conditions that needed to be met for a sample point to be 

considered deforested.  Instead of determining deforestation according to the land cover change 

only within the 30 m x 30 m cell underlying a sample point, a target region of 500 m x 500 m 

surrounding this point was considered.  If any deforestation had occurred within this target region, 

then the sample point was classified as deforested (deforestation present).  If not then the point was 

classified as not deforested (deforestation absent).  This increased the prevalence rate of deforested 

sample points in the Mexican and Madagascan datasets to 4.8% and 18% respectively, providing 

more examples of deforestation for the models to learn from.   

The second strategy was to create a second dataset for each study area using stratified random 

sampling (Haibo and Garcia 2009).  For this sampling technique, half of the samples were randomly 
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selected from points where deforestation was present within the target region and half randomly 

selected from points where deforestation was absent within the target region.  This created a sample 

with a 50% prevalence rate of deforested sample points.  For both standard random sampled and 

stratified sampled datasets, sample points with no forest in the surrounding 500 m x 500 m target 

region in 2000 were removed.  Sample points were spaced a minimum of 250 m apart to minimise 

spatial autocorrelation.   

Mexican and Madagascan samples had 8000 and 7000 points respectively.  1000 points were 

removed from each sample and reserved as a final validation set for evaluating the best performing 

models of each method.  To create the training and testing datasets, the remaining points in each 

sample were randomly split into two equal sized sets using repeated random subsampling.  Both the 

training and testing set contained the same number of deforested samples points.  This procedure 

was repeated 20 times, with replacement, creating the training and testing pairs used for all models.  

While greater confidence would be possible with a greater number of trials, the extensive time 

required to run each trial for the GPs meant that all models were restricted to 20 trials to allow for 

an equal assessment of all methods. 

A range of predictors previously identified as relevant to deforestation (such as slope and 

surrounding deforestation) were selected as candidates for inclusion in the deforestation risk models 

developed in this study (Table 1).  Predictors represented either measures of proximity to a sample 

point, the land use within the 500 m x 500 m target region surrounding a sample point, or the land 

use within the neighbourhood immediately surrounding the 500 m x 500 m target region.  To select 

a land use neighbourhood size relevant to predicting deforestation risk, areas of 1 km x 1 km, 2 km 

x 2 km and 5 km x 5 km were tested over 20 trials using both the random and stratified random 

samples. The performance of each modelling method in predicting deforestation risk was assessed 

for each neighbourhood size using the True Skill Statistic (TSS) (this metric is explained in section 

2.3).  Based on the results, a 1 km x 1 km neighbourhood was selected for all modelling methods 

except for BNs, which performed better when a 5 km x 5 km neighbourhood was used.   

All deforestation predictors were extracted from the  georeferenced datasets using scripts written 

in Python 2.7 (Python Software Foundation 2012).  Predictors representing land use (such as the 

distance to the forest edge) were derived from land cover values in 2000.  Predictors measuring land 

use change (such as percentage of deforestation in the surrounding area) were derived from the 

change in land cover between 1990 and 2000. Fragmentation variables were calculated using 

Fragstats version 4.1 (McGarigal 2012) and were class-based metrics calculated on the forest class 

of land use in 2000.   For road location, distance to cities and population pressure, the currently 



  

13 

 

available data was used, as no meta-data was available to clarify the dates represented in the 

datasets. 

Table 1: Deforestation predictors considered in this study 

 

Dataset Feature Predictor definition Example of 

previous usage 

Conservation 

International 

Land Use 

Change 

Geographic 

Coordinates 

Longitude, latitude of sample point  

Surrounding 

deforestation 

Distance to nearest deforestation in 

2000, percentage of the area that 

was deforested between 1990 and 

2000 

Müller et al. (2011) 

Fragmentation 

of 

surrounding 

forest 

Edge density, landscape division 

index,  proximity index 

distribution, fractal index 

dimension, percentage of area 

forested (all measured for 2000)  

Mas et al. (2004) 

Proximity to 

forest edge 

Distance to edge of forest in 2000 McConnell et al. 

(2004) 

World 

Database on 

Protected 

Areas 

Surrounding 

protected 

areas 

The percentage of the target region 

that falls within a PA, PA ID (if 

relevant) for PA containing the 

target region,  PA IUCN category, 

PA size, distance to nearest PA 

(start (1990) middle (2000) and end 

of the study period (2004) ) 

Gaveau et al. (2009) 

Landsat 

Digital 

Elevation 

Data 

Slope Median slope of target region Buchanan et al. 

(2008) 

Elevation Median elevation of target region Mas (2005) 

Ruggedness Standard deviation of slope in 

target region 

Müller et al. (2011) 

MapAbility 

Road 

Location 

Proximity  to 

road  

Distance to nearest road (up to 15 

km) 

Htun et al. (2013) 

Landscan 

Population 

Data 

Population 

pressure 

The population density in either the 

1 km or 3 km area surrounding the 

sample point 

Laurance et al. 

(2002) 

Natural 

Earth 

Political 

boundary 

The state political boundary.  Used 

only as a control 

- 

Proximity  to 

river 

Distance to nearest river (up to 15 

km) 

Laurance et al. 

(2002) 

Proximity  to 

city 

Distance to nearest city  (Mas et al. (2004) 

WWF 

Ecoregions 

Ecoregion The ecoregion containing sample 

point.  Used as a control in Mexico, 

but included as a variable in 

Madagascar due to variation within 

study region. 

Vaca et al. (2012) 
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Multicollinearity among predictors may cause models, particularly GLMs, to become unstable 

and reduce the effects of any one variable (Aguilera et al. 2006).  To reduce the possibility of this 

occurring, for any pair of predictors where the Pearson correlation coefficient was higher than 0.8 

one variable was excluded.  Both the Mexican and Madagascan datasets showed that landscape 

division index was heavily correlated with percentage of region forested.  The former was therefore 

removed from the study.   

For Mexico, median slope was excluded due to correlation with median elevation.  The distance 

to nearest PA in the middle of the study period (2000) was excluded due to correlation with nearest 

PA at the start and end of the study period (1990 and 2005 respectively).  For Madagascar, distance 

to the nearest PA at the start and end of the study period were removed due to correlation with 

distance to the nearest PA in the middle of the study period.  In the Mexican region, only three PAs 

were present, resulting in insufficient examples to warrant the inclusion of the PA characteristics 

included for the Madagascan datasets.  The distance to river was not available at the time the 

Mexican datasets were created and therefore was only included for Madagascar.  Only one 

ecoregion was present for Mexico so this predictor was excluded from the Mexican datasets.  Data 

for the GLMs, ANNs and GPs were normalised between 0 and 1.    

 

 

2.2 Deforestation risk modelling 

 

GLMs were implemented in the R programming language.  Four models were tested; a GLM,  a 

stepwise GLM and a GLMM (including X and Y coordinates of the sample points as random 

effects) using the MASS package (Venables 2002), and a GLM with interactions among the 

predictors using the glmulti package (Calcagno and de Mazancourt 2010).  The glmulti package 

takes a maximum of 15 predictors and includes linear interactions between each combination of two 

or three predictors as separate predictors.  Models testing for interactions were therefore 

implemented using the 15 most significant predictors from the GLM.   

ANNs were implemented in Matlab 2014 (The MathWorks Inc 2014) using the ANN toolbox.  

ANNs used a resilient backpropagation learning algorithm and were allowed to run a maximum of 

3000 epochs.  During training, 350 sample points were selected as a validation set to help avoid 

overfitting.  These were used to evaluate the network after each epoch and terminate training in any 

instances where no improvement was made after 300 epochs.   
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Ten separate sets of randomly selected starting weights were selected with those resulting in the 

lowest mean squared error being used for the final ANN.  Initial trials were run using a single layer 

network and either 2, 5, 10, 20, 30, 60, 90, 120 or 150 hidden nodes, as well as a double layer 

network with 5, 10 or 30 nodes in each layer.  From these trials a single layer network (with 10 or 

60 hidden nodes) and a double hidden-layer ANN (with either 5, 10 or 30 nodes per layer) were 

tested for further trials.  ANNs had two output nodes, representing 0 and 1.  A prediction was 

interpreted as deforested when the predicted probability of a “1” was higher than for a “0”. 

Three different BN structures were implemented using the Netica software (Norsys Software 

Corp 2013); a naïve BN where predictor variables were considered independent, a Tree Augmented 

Naïve BN (TAN) that allowed for dependent relationships among predictor variables and an expert-

designed BN where relationships among predictor variables were specified by experts.  The expert-

designed BN was developed with input from four experts with experience in deforestation.  All 

experts were sent a description of the deforestation predictors that they could select from to 

construct the causal structure of the BN and an introduction to BNs.  The expert-designed BN with 

the best TSS performance was selected for comparison with the other models.  

For each BN, continuous variables were discretised using a custom R script developed for this 

study.  The algorithm first split the range of a continuous variable into 150 equal interval buckets to 

ensure a fine initial discretisation.  Any buckets with less than a specified minimum number of 

sample points, was merged with the adjoining bucket containing the least number of sample points.  

This was repeated until all buckets contained at least the specified minimum number of sample 

points.  The minimum number of sample points was calculated as the number of points required to 

meet the 95% confidence level for that sample size (Moore 1996). 

If, after satisfying the minimum number of sample points per bucket, the number of buckets 

exceeded 20, the buckets were further merged until a maximum of 20 buckets remained. This 

resulted in continuous nodes having a maximum of 20 states, with each state capturing the 

minimum number of sample points required for a 95% confidence level.  A limit of 20 states was 

given to nodes to ensure that the BNs were computationally efficient (since the more states used in 

a BN, the larger the condition probability tables become and the less computationally efficient the 

model becomes) and all conditional probabilities within the models were learnt from a sufficient 

number of samples. 

All GPs were run in Matlab, release 2014 (The MathWorks Inc 2014), using the GPML toolbox 

(Rasmussen and Nickisch 2010).  Prior to the main training, a GP is presented with a subset of the 
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data from which it learns hyperparameters that define the covariance function.  This stage of the 

process has significant runtime requirements (a single trial learning hyperparameters on 1500 points 

takes around ten hours to complete on a dedicated server).  Runtime can be reduced by reducing the 

number of samples presented, however trials indicated this resulted in reduced performance.  As 

GPs are a spatial model, they were also tested when trained using only the X and Y coordinates of 

sample points to test how well they would predict spatial patterns in deforestation with no 

predictors apart from the existing locations of deforestation. 

 

2.3 Evaluation of datasets 

The usefulness of the individual datasets was evaluated based on analysis of the predictor 

variables that were most influential in the GLMs and BNs.   For the GLMs this was measured based 

on the p-values for each predictor.  For the BNs, a sensitivity to finding analysis was run in Netica 

and the percent variance for each variable was used as a measure of its importance.   Predictors with 

small p-vales or high sensitivities in the BNs were more important for predicting deforestation   

presence.  Datasets providing these were considered as more useful in predicting deforestation risk 

in each study zone. 

 

2.4 Model performance assessment 

 

All models selected for comparison were evaluated on their ability to predict whether samples 

would be deforested in the 2000 – 2005 time period, including their ability to produce a reasonable 

map of deforestation risk for this time period.  Models were evaluated over 20 trials using TSS, 

sensitivity and specificity, calculated using a confusion matrix (Table 2). 

 

Table 2:  Confusion matrix used to assess the predictive performance of deforestation risk models 

    Actual Value 

    
Recorded 

deforestation present 

Recorded 

deforestation absent 

Predicted 

Value 

Predicted  

deforestation 

present 

True positive (TP) False positive (FP) 

Predicted 

deforestation 

absent 

False negative (FN) True negative (TN) 
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Sensitivity measures the proportion of observed presences (deforested sample points) that are 

predicted correctly, while specificity measures the proportion of observed absences (forested 

sample points) that are predicted correctly.  TSS combines sensitivity and specificity (Table 3), with 

a value greater than 0 indicating better than random model performance (Allouche et al. 2006).  The 

Kappa statistic and overall accuracy are commonly used performance metrics in deforestation 

modelling studies. We avoided their use to assess the performance of our deforestation risk models 

because these metrics become unreliable when prevalence rates are low (Allouche et al. 2006). 

 

Table 3: Metrics used to assess the predictive performance of deforestation risk models 

Metric Description Range Formula 

Sensitivity 

Proportion of observed 

presences that are 

predicted correctly 

0 - 1 
  

     
 

Specificity 

Proportion of observed 

absences that are predicted 

correctly 

0 - 1 
  

     
 

True Skill 

Statistic 

Combined sensitivity and 

specificity (a value greater 

than 0 is better than 

random, a value less than 0 

is worse than random) 

-1 - 1 Sensitivity + Specificity -1  

 

We used a 50% probability cut off to distinguish between predicted deforestation presence and 

absence (i.e. a sample point was categorised as deforested if it had more than a 50% predicted 

deforestation probability).  To compensate for any bias caused by this, and evaluate the 

performance of models across a range of probability cut offs, the area under the receiver operating 

curve (AUC) was also used to assess model performance.  AUC takes into account the sensitivity 

and specificity of predictions across all probability cut offs from 0 to 100% (Lobo et al. 2008).     

The effect of selecting a 50% cut off was further examined by correcting for the known 

prevalence rate of deforested sample points within the datasets.  To do this, sample points were 

ranked from highest to lowest predicted deforestation probability.  Then the known deforestation 

prevalence in the datasets was used to categorise sample points as deforested or not.  For example, 

if the known prevalence rate of deforested samples in the dataset is 10% then the top 10% of sample 

points (ranked from highest to lowest predicted deforestation probability) were categorised as 

deforested.   
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3 Results  

 

Results presented in this section cover both the usefulness of the datasets and a comparison of 

the statistical and machine learning methods tested for predicting the probability of deforestation.   

 

3.1 Model selection 

  

Neither the GLM using stepwise selection or the GLM including interactions performed better 

than the standard GLM, however performance was improved when the X and Y coordinates of the 

sample points were modelled as random effects.  The structure of the ANNs was found to have little 

influence on model performance (compared to other factors such as sample method) and a single 

layer ANN with 60 hidden nodes was selected for comparison with the other modelling techniques.  

The naïve and TAN BNs both outperformed the expert designed BNs, with the naïve BN scoring 

higher on sensitivity.  GPs were run with 1500 sample points used for learning the hyperparameters, 

with the exception of the GPs trained only on geographic coordinates of the sample points for 

Madagascar, which required 2500 points to successfully learn the hyperparameters.  The model 

designs selected for method comparison are summarised in Table 4. 

 

Table 4: Final designs used in method comparison 

Technique Selected designs 

GLM 
GLM; GLMM with X and Y as random 

effects 

ANN Single hidden layer with 60 hidden nodes 

BN Naïve BN;  TAN BN 

GP 
GP (all variables);  GP (X and Y coordinates 

only) 

 

Selected results for preliminary model selection for each technique are provided in Section 3 of 

the online supplementary material.  Both naïve and TAN BNs are shown due to differences in their 

comparative performance across the different metrics.  GLM and GLMM performance is also 

shown for comparison. 

 

3.2 Dataset usefulness 
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Both GLMMs and BNs are able to measure the order of influence of predictors on model 

predictions.  In both study areas, CI land use change proved to be the most influential dataset, with 

surrounding deforestation and distance to the nearest deforestation being amongst the most 

influential predictors in Mexico and edge density of the target region being the most influential 

predictor in Madagascar.  Distance to the nearest city (from the NE dataset) and median elevation 

(from the Landsat DEM) were also important predictors.  Several of the protected area variables 

from the WDPA dataset (percentage of target region protected and percentage of neighbourhood 

protected) were also important predictors in Mexico, but not in Madagascar (possibly due to the 

small amount of protected area within the Madagascan study area).   The one dataset which was not 

free, Landscan population pressure, did not provide any significant predictors in either area.  

Detailed results of individual variable importance for the GLMs and BNs are provided in Section 4 

of the supplementary online material. 

 

3.3 Method Comparison  

 

The performance results for the selected models of each machine learning method are presented 

in Figure 3 to Figure 6.   

 

  
 

Figure 3: Results over 20 trials for the Mexican study region for models trained on randomly 

sampled points (note change in scale between plots). Naïve BNs had higher overall TSS scores as a 

result of high sensitivity.  GLMMs outperformed both GLMs and ANNs.  Boxplots show the 

minimum, maximum and median values as well as the 25
th

 and 75
th

 quartiles.  Outliers are shown as 

circles. 
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Figure 4: Results over 20 trials for the Mexican study region for models trained on stratified 

randomly sampled points (note change in scale between plots).  Naïve BNs did not show the same 

improvement in performance when trained on stratified randomly sampled points as other models 

(the performance of naïve BNs remained stable when trained on randomly versus stratified 

randomly sampled points).  Boxplots show the minimum, maximum and median values as well as 

the 25
th

 and 75
th

 quartiles.  Outliers are shown as circles. 

 

 

  

Figure 5: Results over 20 trials for the Madagascan study region for models trained on randomly 

sampled points (note change in scale between plots). In contrast to Figure 3, ANNs outperformed 

GLMMs.  GPs were again amongst the best performing models.  Boxplots show the minimum, 

maximum and median values as well as the 25
th

 and 75
th

 quartiles.  Outliers are shown as circles. 
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Figure 6: Results over 20 trials for the Madagascan study region for models trained on stratified 

randomly sampled points (note change in scale between plots).  All models except the naïve BN 

again show an increase in sensitivity.  Boxplots show the minimum, maximum and median values 

as well as the 25
th

 and 75
th

 quartiles.  Outliers are shown as circles. 

 

In most cases the GLMM had a higher median TSS and AUC score than the standard GLM, with 

the exception being models trained on stratified sampled data in the Madagascan study area (Figure 

6).  In this instance the TSS scores were similar for both.  In both study areas, when trained on the 

randomly sampled points (Figure 3 and Figure 5), the naïve BN had higher sensitivity than the other 

models and a higher TSS score.  This was a result of the naïve BN over predicting the amount of 

deforestation. The ANN outperformed the GLMM in Madagascar (Figure 5 and Figure 6), but the 

reverse was true for Mexico (Figure 3 and Figure 4).  

 

3.4 Spatial Analysis 

Mapped results for models that were retrained using all points from the training sample (n = 7000 

for Mexico, n = 6000 for Madagascar) and tested on the unseen set of validation samples (n = 

1000), showed that all models predicted deforestation in roughly the same locations.  Predicted and 

actual deforestation maps for the Mexican study area (Figure 7) between 2000 and 2005 show how 

locations predicted to have a high probability of deforestation corresponded to areas where 

deforestation had actually occurred.  The exception was the naïve BN, which over predicted 

deforestation occurrence. This is reflected in the high sensitivity scores obtained for the naïve BN 

(Figure 3 and Figure 5).  Mapped results for the Madagascan study area are presented in Section 5 
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of the supplementary material, available online, as well as those for models trained on the stratified 

datasets (given in Section 6). 

    

 

Figure 7: Predicted probability of deforestation (2000-2005) for models trained on randomly 

sampled points in the Mexico study area and tested on 1000 validation sample points previously 

unused in model training or testing.

The TSS scores for the models tested on the validation samples (Figure 8) show that adjusting 

deforestation predictions to reflect the known prevalence rate of deforested samples within the 

datasets improved the performance of models trained on randomly sampled points, but reduced the 

performance of the models trained on stratified randomly sampled data.  This reduced the 

differences in TSS scores between models trained on standard randomly sampled and stratified 

randomly sampled points. 
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Figure 8:  TSS results for models with the cut off for a deforested sample set as either a 50% 

probability of deforestation, or adjusted to replicate the known prevalence of deforested samples in 

the datasets).

 

3.5 GPs and deforestation location 

 

The mapped predictions of the GP tested on the validation sample, when trained using only the X 

and Y coordinates of sample points as predictor variables (Figure 9), corresponded reasonably well 

with locations where deforestation had actually occurred.  Mapped results for the Madagascan study 

area are presented in Section 5 of the supplementary material, available online.   
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Figure 9:  Probability of deforestation (2000-2005) of GPs for the Mexican study area trained using 

either only the geographic coordinates as predictors, or the entire set of predictors, and tested on the 

validation sample previously unused in model training or testing. 

 

Including predictors in addition to the X and Y coordinates of the sample points resulted in 

slightly better model performance for both AUC and TSS (full results available in Section 7 of the 

supplementary online material).   It should also be noted that, while a good result was generally 

obtained, GPs trained only on the geographic coordinates failed to produce reasonable predictions 

on any metric for several trials unless presented with additional sample points for learning the 

hyperparameters. 

4 Discussion and Conclusion 

Although obtaining datasets for deforestation studies can be challenging, the range and quality of 

freely available data sources is increasing.  The datasets obtained for this study were sufficient to 

produce reasonable predictions of deforestation risk using even basic statistical models (GLMs and 

GLMMs), with AUC values generally above 0.8, which is considered good (Platts et al. 2008).  The 
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freely available data allowed for a variety of different predictors to be used in modelling 

deforestation risk, which is crucial considering that the deforestation predictors can differ between 

regions.  They also allowed different deforestation predictors to be used to represent the same 

deforestation pressure (for instance using population pressure from the Landscan dataset or distance 

to cities from the NE data to represent population pressure).  

The CI data proved to be valuable for both the Mexican and Madagascan study areas, providing 

information on land use change from which the most influential deforestation predictors were 

derived (such as surrounding deforestation, distance to the nearest deforestation and edge density of 

the target region).  The usefulness of the WDPA was naturally affected by the characteristics of the 

protected areas within each study area.  The Mexican study area contains large, adjacent protected 

areas, creating an uninterrupted and sizable protected area categorised in one IUCN category. In 

contrast, the Madagascan study area has multiple small protected areas categorised in several IUCN 

categories.  This meant that for each study area, different deforestation predictors were relevant for 

comparing the effect of PAs and illustrating the importance of having access to a variety of datasets. 

In the Madagascan study area, distance to roads (from the MapAbilty dataset) was not a 

significant deforestation predictor for the GLM or BN models, and was only significant in the 

Mexican study area when a GLMM was used.  Based on previous studies (Htun et al. 2013, 

Robinson et al. 2014)  it is unlikely that an area‟s proximity to roads is entirely irrelevant to its 

deforestation risk.  Our results are most likely a reflection of inaccuracies in the road dataset 

resulting from new roads continually being built with no road construction date being recorded.  It 

is therefore difficult to match the timing of road construction with the timing of deforestation.  

When approximating population pressure, the distance to the nearest city (calculated from the NE 

data) proved to be more useful than population pressure derived from the Landscan data (which had 

to be paid for).  This shows that proxy deforestation predictors obtained from freely available data 

may be just as useful as those obtained from purchased data.   

The freely available data used in this study are not an exhaustive list, and all indications are that 

freely available geo-referenced datasets, such as those provided by Landsat and the WDPA, will 

continue to improve in quality and availability.  The factors that affect deforestation differ from 

region to region and therefore the success of models trained on freely available datasets will 

naturally depend on whether these datasets contain data relevant to that area.  The difference in the 

importance of variables between the Mexican and Madagascan study zones is possibly a reflection 

of the differences in the context of deforestation between the two regions (such as differences in 

underlying cause of deforestation or climatic factors).  Efforts should be made to seek out data for 
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predictor variables that are considered to be relevant to the context.  For example, datasets such as 

national census data could also prove valuable for approximating the causes of deforestation, such 

as fuel wood use (Davidar et al. 2010). 

Despite theoretical advantages, ANNs only outperformed the more basic GLMMs in the 

Madagascan study area.   This is consistent with current thinking that neither method consistently 

produces better results and supports a previously suggested approach to first try the basic GLMs 

and then move to ANNs (Tan et al. 2006).  It should be noted that, although this study applied the 

same normalisation technique to the data for the GLMs, ANNs and GPs, the GLMs performance 

over the ANNs may have been improved had different normalisation or transformation techniques 

been applied to the data.  In contrast to other studies (Bradshaw et al. 2007) modelling the 

geographic coordinates as random effects improved GLM performance in both regions, highlighting 

the importance of taking into account the spatial nature of deforestation when relying on statistical 

models.  This was also evident in the performance of the GPs.  Although performance was 

improved when predictors in addition to the geographic coordinates for sample points were used, 

the spatial nature of GPs meant they were able to make better than random predictions of 

deforestation risk when presented with only the X and Y coordinates of the sample points as 

predictors.  

Although reasonable results for GPs were obtained when trained only the geographic coordinates 

of sample points, it is acknowledged that there are a number of limitations to this approach.  First, 

models trained only on the X and Y coordinates of sample points are unable to account for sudden 

changes in terrain that could affect deforestation risk.  Secondly, they often require more training 

samples to produce good prediction performance compared to models trained on a range of 

deforestation predictors.  Nevertheless it does provide evidence that for a spatial process like 

deforestation, the ability of spatial models such as GPs to extrapolate patterns from surrounding 

areas may offer useful results when the geographic coordinates of existing deforestation locations is 

the only predictor available. 

In the low prevalence rate situation (random sampling) the naïve BNs had higher TSS scores than the 

GLMs.  This demonstrates the importance of using a range of metrics to evaluate model performance 

and  supports the work of Lobo et al. (2008) and Platts et al. (2008), who propose that TSS, 

sensitivity and specificity are required to obtain a true picture of model performance.  Furthermore, 

our results showed that models with poor TSS scores (which are based on a 50% probability cut off) 

may still produce high AUC scores, further supporting the notion that models should not be 

evaluated using a single metric.  
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The poor sensitivity and TSS results for all models (except the naïve BNs) trained using data 

derived from standard random sampling is at least in part a reflection of the low number of 

deforestation samples in the training data (i.e an imbalance between the number of deforestation 

presence and absence samples). This meant that the models had fewer examples of deforestation to 

learn from. Sensitivity and TSS were improved when models were trained using data derived from 

stratified sampling because the models had far more examples of deforestation from which to learn.  

When assessed using AUC, model performance was less affected than the other metrics by how 

the training data were sampled. Training models using data derived from stratified sampling 

resulted in smaller improvements in AUC compared to the improvement seen in sensitivity and 

TSS.  This is because AUC evaluates model performance across a range of probability cut-offs for 

deforestation presence rather than a fixed 50% probability cut off used by sensitivity and TSS.  The 

fixed cut off used by sensitivity and TSS means that the prediction of deforestation presence only 

has to vary slightly above or below 50% for it to be classified as correct or incorrect, making the 

model performance results more sensitive to the training data. 

The performance of BNs was more stable than the other modelling methods across the two 

different sampling strategies (standard random sampling and stratified random sampling).  While 

GLMs, ANNs and GPs in this study performed relatively poorly when training on data derived from 

standard sampling (i.e. imbalanced data), the number of design options available for dealing with 

imbalanced data (Haibo and Garcia 2009) means that these methods should not be overlooked when 

one data class (in this case deforestation) is uncommon.  We used stratified random sampling to 

correct for data imbalance because our data contained only a relative imbalance, meaning that 

enough deforestation samples existed in the data without having to generating synthetic or 

duplicated points.   

The stratified sampling provided a balanced dataset (with equal numbers of forested and 

deforested points), which improved model performance on most metrics used in this study.  

However it also caused models to over-predict deforestation and resulted in a corresponding drop in 

specificity.  It is also unsuitable in instances where a genuinely rare class is present.  In these cases, 

data imbalance can still be corrected for using methods such as synthetic minority oversampling 

technique (SMOTE) (Chawla et al. 2002).      

The deforestation risk models tested in this study are presence/absence models and therefore 

their use is restricted to predicting the presence/absence of deforestation. While this was sufficient 

for the purpose of this study, and allowed the use of common performance metrics to evaluate the 
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models (such as TSS and AUC), it has the disadvantage that the models cannot be used to predict 

the amount or total area of deforestation, which would be useful for planning or zoning studies.  A 

further limitation of the models we tested is that they assume deforestation predictors do not change 

over time. This is a common assumption amongst many deforestation models based on machine 

learning (Mas et al. 2004), but is particularly relevant for our models where the deforestation predictors 

were selected based on previously known predisposing deforestation risk factors (Geist and Lambin 

2001). This means that our models are not able to account for changes in the influence of 

predisposing deforestation risk factors over time, and if they change in future, our models may 

become less reliable.   

Despite these limitations, our results show that freely available datasets can be used to predict 

the probability of deforestation within the study zones.  It is hoped that this will encourage those 

studying deforestation to consider what information may already be available to either compensate 

for missing datasets or complement existing ones.  Furthermore we have shown that machine 

learning methods can be used to analyse these data and provide a reliable alternative to traditional 

statistical methods when modelling deforestation risk. 
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