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ABSTRACT 17 

Urban areas will need to pursue new water servicing options to ensure local supply security. 18 

Decisions about how best to employ them are not straightforward due to multiple considerations 19 

and the potential for problem shifting among them. We hypothesise that urban water metabolism 20 

evaluation based a water mass balance can contribute to this, and explore the utility of this 21 

perspective and the new insights it provides about water servicing options. Using a water mass 22 
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balance evaluation framework, which considers direct urban water flows (both ‘natural’ 23 

hydrological and ‘anthropogenic’ flows), as well as water-related energy, we evaluated how use 24 

of alternative water sources (stormwater / rainwater harvesting, wastewater / greywater recycling) 25 

at different scales influences the ‘local water metabolism’ of a case study urban development. 26 

New indicators were devised to represent the water-related ‘resource efficiency’ and 27 

‘hydrological performance’ of the urban area. The new insights gained were the extent to which 28 

alternative water supplies influence the water efficiency and hydrological performance of the 29 

urban area, and the potential energy trade-offs. The novel contribution is the development of new 30 

indicators of urban water resource performance that bring together considerations of both the 31 

‘anthropogenic’ and ‘natural’ water cycles, and the interactions between them. These are used for 32 

the first time to test alternative water servicing scenarios, and to provide a new perspective to 33 

complement broader sustainability assessments of urban water. 34 

1. INTRODUCTION 35 

An increasingly large proportion of the world’s growing population will reside in urban areas, 36 

especially cities (UN 2014). The resulting growth in demand for water coupled with climate 37 

change constraining supply or making it more erratic, means that large cities are increasingly 38 

prone to water shortages (Jenerette et al. 2006). Around a quarter of urban water supplies are 39 

estimated to be stressed, and if surface flows needed to maintain ecosystem service are 40 

considered, this would increase to a third (McDonald et al. 2014). Competition for supply with 41 

other water users, such as agriculture and environmental flows, is also expected to intensify as 42 

cities expand (OECD 2015). This means that urban areas, particularly those whose supplies are 43 

already stretched, will need to pursue efficiency measures and alternative water servicing options, 44 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

such as utilising available water within the urban area (rainwater and stormwater) and recycling 45 

wastewaters (IWA 2010). 46 

Making decisions about alternative water servicing options involves numerous considerations 47 

(Xue et al. 2015). For water cycle managers these include supply security, long-term costs, public 48 

health, allocating water to competing demands, and increasingly, the environmental externalities 49 

of energy use, greenhouse gases emissions (Behzadian and Kapelan 2015, Kenway et al. 2011b, 50 

Makropoulos and Butler 2010), and water quality (Walker et al. 2012). For urban and regional 51 

planners and managers, considerations also include the management of flooding, urban streams 52 

degradation from increased surface water runoff, and protecting the ecological and cultural values 53 

of water.  In dealing with such multiple objectives, which can be at odds with each other, it 54 

becomes important to look at urban water systems holistically (Huang et al. 2013), to avoid 55 

problem shifting and to optimize the overall outcome (Xue et al. 2015). For example, what is the 56 

best configuration for decentralized rainwater, stormwater and recycled wastewater in order to 57 

make optimal use of limited supplies, maintain / restore pre-urbanized hydrological flows, with 58 

least energy cost?  59 

A number of authors have explored the multiple objectives of water servicing options at small 60 

and intermediate urban scales (households / suburbs) (Makropoulos and Butler 2010, 61 

Makropoulos et al. 2008, Matos et al. 2014, Sharma et al. 2008), and at larger city scale 62 

(Behzadian and Kapelan 2015, Venkatesh et al. 2014, Xue et al. 2015).  Criteria considered 63 

include supply reliability, water savings, water-related energy use and greenhouse gas emissions, 64 

runoff quantity and quality, costs and human health. 65 

This past work has tended to focus on those water flows managed by the urban water 66 

infrastructure, rather than all flows of water (natural and anthropogenic) in an urban area . So it is 67 

currently not clear how to employ water servicing options to deliver desired outcomes for the 68 
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‘whole urban water system’, capturing issues of importance for both the managed and natural 69 

water cycles. In this work we account for both ‘natural’ hydrological flows (evapotranspiration, 70 

stormwater flows and groundwater infiltration) and ‘anthropogenic’ flows managed by urban 71 

infrastructure (piped water flows), together within a metabolism framework to consider the 72 

‘whole urban water system’. 73 

We hypothesise that the urban metabolism concept based on water mass balance offers a 74 

perspective that can complement decision making about urban water servicing. At its broadest, 75 

metabolism is a framework for conceptualising resource flows through urban systems as you 76 

might observe it in eco-systems or organisms (Decker et al. 2000, Fischer-Kowalski 1998, 77 

Newman 1999, Pincetl et al. 2012, Wolman 1965), with an inferred intent of emulating the higher 78 

resource efficiencies of natural systems. As an evaluation approach it has been used to quantify a 79 

range of resource flows into, out of, and through urban areas, most commonly energy, materials, 80 

greenhouse gases, nutrients, etc. (Daniels and Moore 2001, Kennedy et al. 2007, Wolman 1965). 81 

We focus on the less-explored water-related resource flows, employing the mass-balance 82 

technique to account for direct urban water flows, as well as water-related energy.   83 

Some researchers apply a broad interpretation of urban metabolism, considering both the direct 84 

and indirect metabolism of resources (Daniels 2002, Pincetl et al. 2012). In the case of water, this 85 

means direct (real)  flows of water from surrounding regions (‘local metabolism’), but also to 86 

indirect (virtual) water embodied in the goods and services produced using water from elsewhere 87 

(‘global metabolism’) (Huang et al. 2013). We apply a tighter interpretation of urban metabolism, 88 

after Baynes and Weidmann (2012), which focuses on direct resource exchanges. So we consider 89 

only direct water-related flows from surrounding supporting region, and define urban water 90 

metabolism evaluation as the quantification of water exchanges between an urban entity and its 91 
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supporting region, both natural and managed, to generate indicators of metabolic performance 92 

(Renouf and Kenway 2016).  93 

Based on this interpretation, urban water metabolism is a component within the broader (and 94 

extremely widely defined) topic of ‘urban water sustainability’. Other frameworks consider the 95 

broader economic, social and environmental sustainability dimensions (Behzadian and Kapelan 96 

2015, Venkatesh et al. 2014) or the life cycle environmental impacts of urban water systems 97 

(Fagan et al. 2010, Lane et al. 2015). Urban water metabolism evaluation, based on water mass 98 

balance of all direct flows can complement and link to broader sustainability assessment, and 99 

these links are described by Renouf and Kenway (2016).  100 

Applications of urban water metabolism evaluation to date have mostly examined and compared 101 

potable water use among cities and over time (Kennedy et al. 2007, Kennedy et al. 2015), to 102 

highlight the underutilization of available water sources (Kenway et al. 2011a), or quantify the 103 

degree to which urbanisation influences natural hydrological flows (Haase 2009).  We extend its 104 

use to evaluating water servicing options. 105 

Urban water mass balance has been identified as a  preferred approach for evaluating local urban 106 

water metabolism (Renouf and Kenway 2016), because it forces a comprehensive account of all 107 

water flows and fluxes (natural and anthropogenic) needed to assess an urban area as a whole.  108 

Traditional evaluation frameworks have largely focused only on centralized potable water and 109 

wastewater systems, with the intent of matching supply to demand. More recent frameworks have 110 

enabled the integrated assessment of diversified (rainwater, stormwater, recycled wastewater) and 111 

centralized supplies (Bach et al. 2014), but still focus on water systems within an urban area, 112 

rather than the urban area as a whole. The framework proposed and tested here is a next step 113 

towards holistic evaluation because it considers the urban area as a whole, accounting for all 114 

water flows and fluxes, and also considers water-related energy implications (Renouf et al. 2016). 115 
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In this way, planning can optimise outcomes for the urban area as a whole, and avoid unintended 116 

problem shifting. 117 

We test our hypothesis by applying an urban water metabolism evaluation framework to a semi-118 

hypothetical large-scale urban development, and ask 1) what new insights about water servicing 119 

options does urban water metabolism evaluation provide, and 2) what is its utility in this context? 120 

The original concept for the framework (Renouf et al. 2016) aims to generate information for 121 

informing strategic urban and regional planning. In this work it is operationalized for the first 122 

time, with specific application to water servicing options. The main contribution is a 123 

demonstration of a holistic approach for evaluating water management in urban areas, with 124 

indicators of interest to water managers and urban planners. 125 

2. MATERIAL AND METHODS 126 

The water metabolism evaluation framework (Figure 1) developed for this work has at its core an 127 

urban water mass balance, based on a method described by Kenway et al (2011a). The water 128 

mass balance quantifies all natural and anthropogenic flows and fluxes of water through a defined 129 

urban area. The original method of Kenway et al. was extended to enable evaluation of 130 

alternative water sources by accounting for decentralized and recycled water supplies (described 131 

in 2.3). The second component is the quantification of energy use associated with water flows to 132 

estimate the water-related energy of the system (described in 2.4). The third component is the set 133 

of indicators derived from the water flow and energy use data to describe the water metabolism 134 

performance (described in 2.5). The novel features are its perspective on the urban system as a 135 

whole (rather than the water systems within the urban system), the detailed evaluation of all 136 

urban water flows in conjunction with the water-related energy implications, and new indicators 137 

that reflect the water resource management performance of the urban area. . 138 
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To test the utility of the framework water metabolism indicators were generated for a case study 139 

urban development in South East Queensland (SEQ) Australia (described in 2.1), for a set of 140 

water servicing scenarios (described in 2.2): 141 

- the development base case as described in the planning scheme, with a traditional, centralized 142 

water supply strategy; and 143 

- six alternative water servicing strategies, incorporating internal supplies of rainwater, 144 

stormwater and recycled wastewater. 145 

The derived indicators for the alternative strategies were compared with those for the base case to 146 

see what changes could be discerned, and what new insights the information provided.   147 

The analysis focused on exploring the utility of the framework, rather than drawing conclusions 148 

about the water servicing strategies, as the latter would require consideration of parameters 149 

beyond the resource management aspects considered here (such as life cycle costs and public 150 

health consideration). It used readily available data for a semi-hypothetical case study and water 151 

servicing scenarios, considered representative enough for the intended purpose of informing its 152 

further development.  153 

2.1 Case Study Urban Development 154 

The case study is the Ripley Valley Development Area (Figure 2), a proposed new urban 155 

development on the fringe of the high-growth, sub-tropical region of South East Queensland, 156 

Australia, designed to accommodate 120,000 people / 50,000 dwellings by 2030 (ULDA 2011). 157 

It was selected because i) being a new urban area, both the pre- and post-development states 158 

could be assessed, ii) prior hydrological modelling had been undertaken, providing some of the 159 

required data (McIntosh et al. 2013), and iii) alternative water servicing options had been scoped 160 

(CRC WSC 2015). It presented an opportunity to evaluate innovative solutions for securing water 161 
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supply in a region predicted to experience water stress with climate change (Gooda and Voogt 162 

2012), but which also improve its natural environment and enhance livability for its residents. 163 

The urban boundary was defined as the outer edge of the built-up areas (Figure 2), with an area of 164 

3,002 ha. Surrounding nature reserves (1,678 ha) were excluded. Vertically, the boundary extends 165 

from rooftop and tree tops, to the root zones of trees (assumed to be 1 meter below ground). 166 

The timeframe for the analysis was based on future land development, so the most recent data 167 

was obtained wherever possible. 168 

2.2 Water servicing scenarios 169 

Six water servicing scenarios were developed based on various modes of fit-for-purpose water 170 

supply (rainwater / stormwater harvesting, and wastewater / greywater recycling) at different 171 

urban scales (whole urban area, household, appliance) (Table 2). Harvesting of precipitation was 172 

considered at the large urban scale (harvesting stormwater for use across the whole urban area) as 173 

well as at the household scale (harvesting rainwater for use in residential and commercial 174 

premises). Recycling of wastewater was considered at the large urban scale via centralized reuse 175 

within or outside the urban area, at the household scale via decentralized use of greywater, as 176 

well as the small scale via reuse within an appliance (recirculating showers). Different extents of 177 

implementation (conservative and maximized) were also considered, where relevant. 178 

Conservative implementation was based on the scale typically being implemented in Australia at 179 

present. Maximized implementation assumes maximum practical utilization, including using 180 

more water than otherwise for maintaining green open space and vegetation for enhancing 181 

amenity. 182 

2.3 Estimation of water flows / fluxes as an urban water mass balance 183 
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The water mass balance method is a refinement on one originally described by Kenway et al 184 

(2011a), and is represented by the following equation (Figure 1): 185 

Input (Qi)   =  Output (Qo) + ∆S    186 

(P' + C + D + Ri)  = (ET + Rs + W+ G + Ri + Re) + ∆S (1) 187 

Where: 188 

P' = unharvested precipitation falling in the urban boundary, i.e. total precipitation (P) less any 189 

rainwater or stormwater harvested within the urban boundary 190 

C = centralized water supplies sourced from outside the urban boundary, which could include 191 

surface waters and groundwater 192 

D = decentralized water supplies harvested inside the urban boundary, including rainwater and 193 

stormwater and groundwater 194 

ET = evapotranspiration from the urban boundary 195 

Rs = stormwater run-off discharged from the urban boundary (not including that which is 196 

harvested within the urban boundary) 197 

W = wastewater discharged from the urban boundary (total wastewater generated less that 198 

which is recycled internally or externally) 199 

G = groundwater infiltration 200 

Ri = reuse / recycling of wastewater internally within the urban boundary 201 

Re = reuse / recycling of wastewater externally, in this case to agriculture in an adjoining valley 202 

∆S = change in the stored water volume within the defined boundary 203 

Decentralized supplies (D) can include stormwater and rainwater harvesting, local groundwater 204 

extraction (bores) and wastewater recycling (Sharma et al. 2013).  In this work we mainly refer to 205 

D as stormwater and rainwater harvested within the urban boundary, and consider wastewater 206 

recycling separately. 207 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

D =  Dp +Ds + Dg  (2) 208 

Where: 209 

Dp = rainwater harvesting 210 

Ds = stormwater harvesting 211 

Dg = groundwater extraction  212 

Internally recycling of wastewaters can be via centralized collection by the sewerage system or 213 

decentralized collection of greywater at the household or appliance scale. 214 

Ri = Rw+Rg+Rh  (3) 215 

Where: 216 

Rw =  wastewater reused / recycled to the centralized water supply system  217 

Rg =  greywater reuse / recycled to the household 218 

Rh =  greywater reuse / recycled within an appliance, in this case a recirculating shower 219 

Changes in storage (∆S) within the urban system were considered to achieve the mass balance, 220 

but were assumed to be minimal under normal circumstance, so any change in storage (∆S) can 221 

be attributed to computation errors. 222 

Refinements made to the original Kenway et al. (2011a) equation addressed some limitations in 223 

how it accounts for wastewater reuse / recycling, and rainwater / stormwater harvesting.  The first 224 

was in relation to how it accounts for water reuse /recycling. The original equation only 225 

accounted for inputs and outputs across the urban boundary, and not water recirculated within the 226 

urban boundary. The refined equation represents reused / recycled volumes as first flowing out of 227 

the urban boundary then re‐entering as an input. This means that Ri is included in both sides of 228 

the equation, keeping the mass balance intact while making these flows obvious in the mass 229 

balance. The second refinement was to deduct harvested rainwater (Dp) and stormwater flows 230 
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(Ds) from the amount of precipitation (P), so that P now represents unharvested precipitation 231 

available to hydrological processes. Finally, the original equation assumed that total volumes of 232 

rainwater and stormwater runoff could be harvested, which in practice overestimates Dp and Ds. 233 

The refined equation instead adopts maximum harvestable volumes of Dp and Ds, after McIntosh 234 

et al. (2013), which is the difference between post-development and pre-development stormwater 235 

runoff (Fletcher et al. 2007). This ensures that stormwater runoff exiting the system does not fall 236 

below the natural runoff in the pre-development scenario, thus avoiding overharvesting and the 237 

negative effects on soil moisture and downstream ecology. 238 

Other studies have used water mass balance equations similar to the one developed here, (Barron 239 

et al. 2013, Bhaskar and Welty 2012, Haase 2009, Kennedy 2012) except that some flows have 240 

been included, excluded or itemised separately depending on the context or objective of the 241 

study, such as groundwater exchanges, leakages from and infiltration into piped water supplies, 242 

lawn and garden irrigation and decentralized supplies. 243 

The values derived for populating the water mass balance were based on estimates and 244 

assumptions defined in Appendix A. Values for flows managed by the urban water infrastructure 245 

(C, D, W, R) were derived from published data or estimated from first principles. Values for the 246 

natural hydrological flows / fluxes (P, Rs, G and ET) were derived using a hydrological model -247 

Model for Urban Stormwater Improvement Conceptualisation (MUSIC) 248 

(http://ewater.org.au/products/music). 249 

MUSIC is an urban hydrological model that simulates the characteristics of stormwater runoff 250 

(flows, duration, frequency, quality) based on rainfall data, land characteristic and 251 

imperviousness factors, and used most commonly to design stormwater infrastructure (Elliott and 252 

Trowsdale 2007). Here we have used it to estimate the magnitudes of the annual natural 253 

hydrological flows from the defined urban system boundary. Rainfall data available within the 254 
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model was for Brisbane, the major city adjacent to the case study development and within a 255 

similar climatic region..  Data for the period 1 July 2000 to 15 June 2010 was used. This was 256 

considered to be a reasonable representation of the case study area for the purposes of our study. 257 

Evapotranspiration data for Ripley Valley was obtained from the Bureau of Meteorology (BOM 258 

2006). Soil characteristics required by the model to estimate infiltration were taken from the Gold 259 

Coast City Council’s guidelines (GCCC 2006). 260 

For the pre-development landscape, the imperviousness factor was set to 10%, giving an annual 261 

volumetric runoff coefficient (AVRC) of 0.15 (GCCC 2006).  For the post-development 262 

scenarios, imperviousness factors were generated using the regression equation (5) developed by 263 

McIntosh et al. (2013), which is based on dwelling density. This generated overall AVRC values 264 

which compared favorably with generic values reported in GCCC (2006) (0.38 to 0.40).  265 

Total imperviousness = 0.0649 x ln(housing density) + 0.1822 (5) 266 

For the post development scenarios, flows / fluxes resulting from irrigation and pipe leakages 267 

were added to the groundwater infiltration (G) and evapotranspiration (ET) values based on a 268 

partitioning to ET and G of 75% and 25% respectively, after Chrysoulakis et al. (2015). Pipe 269 

leakage rates from the centralized supply main were assumed to be 8% of C (BOM 2015) and 270 

leakages at the user were assumed to be 7% of demand (Beal et al. 2012).  271 

2.4 Estimation of water-related energy 272 

Energy of the water supply system was calculated according to the following equation, using 273 

estimates and assumptions defined in Appendix A: 274 

Etot =   EC +  (EDp + EDs + EDg) + (ERi + ERe) + EW  + ∆EU   (4) 275 

Where: 276 
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Etot =  total energy used by the water system 277 

EC =  energy used for treating and supplying centralized water 278 

EDp =  energy used for treating and supplying harvested rainwater 279 

EDs =  energy used for treating and supplying harvested stormwater 280 

EDg =  energy used for extracting, treating and supplying groundwater 281 

ERi =  energy used for treating and supplying wastewater recycled internally 282 

ERe =  energy used for treating and supplying wastewater recycled externally 283 

EW =  energy used for treating and discharging wastewater 284 

∆EU = change in household energy use   285 

Energy use associated with water treatment, distribution, wastewater treatment (secondary 286 

treatment), and operation of rainwater tanks, was based on water-related energy use for South 287 

East Queensland reported by Kenway et al.(2015). Energy use in rainwater tank operation was 288 

further validated against Cook et al. (2012).  In the absence of energy use data for household 289 

greywater recycling in Australia, data related to UK households (Memon et al. 2015) was used. 290 

In the absence of data on energy use for stormwater treatment, it was estimated assuming a 291 

pressure sand filtration and chlorine disinfection. Energy for pumping was estimated from first 292 

principles, based on assumed delivery heads, because as the development was not yet in place it 293 

was not possible to source real data (see Appendix A).. For greywater recycling within the 294 

appliance (recirculating shower), changes in water-related energy in the use phase was also 295 

considered, to account for the water heating avoided due to the recovery of heat energy as well as 296 

water. For the other scenarios there were no changes to water-related energy in the use phase. 297 

2.5 Indicators of local water metabolism 298 
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There is no agreed set of indicators for representing the performance of urban water systems. 299 

Indicators currently reported in literature represent a diverse range of water system characteristics 300 

depending on the study’s objective  (for example, level of service, reliability, system yield, 301 

resilience, system leakages, water management policies, social acceptance, pollutant loads and 302 

environmental impacts, etc.) (ADB 2013, Behzadian and Kapelan 2015, EIU 2011, Mirza et al. 303 

2013, van Leeuwen et al. 2012, Venkatesh et al. 2014). 304 

Indicators of local water metabolism specifically focus on water resource management, in terms 305 

of how well water (and water-related resources) are utilized in urban areas, with the aim of 306 

guiding decisions towards more metabolically-efficient urban areas. They can be a sub-set of, or 307 

complement, broader sustainability indicators reported by other evaluation frameworks, which 308 

for example often include social and economic performance indicators (Behzadian and Kapelan 309 

2015). Some studies report indicators that we’d suggest are related to water metabolism, such as 310 

water self-sufficiency and the scale on centralized or externally-sourced water input (Kennedy et 311 

al. 2014, Makropoulos and Butler 2010, van Leeuwen et al. 2012), but the development of water 312 

metabolism indicators is in its infancy.  313 

The elements of metabolic-efficiency we considered were i) reducing demand for water extracted 314 

from external sources by harvesting water within the urban area and recycling wastewaters, ii) 315 

avoiding unintended consequences of energy use, and iii) maintaining or restoring pre-316 

development hydrological conditions (Table 2). The first two have been captured in a set of 317 

water-related resource efficiency indicators and the third in a set of hydrological performance 318 

indicators. There are other elements of water metabolic efficiency, such as nutrient conservation, 319 

or the drain of urban areas on their supplying region, but we have not explored these at this stage. 320 

The indicators of water-related resource efficiency tell us the extent to which resources are 321 

consumed for the provision of urban water, in this case water extracted from external sources and 322 
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energy (both per person per year). They also tell us the extent of internal harvesting and recycling 323 

in place to affect the resource efficiency. The internal harvesting and recycling ratios represent 324 

the proportion of urban water demand that is met by fresh water (rainwater and stormwater) 325 

harvested and wastewaters recycled within the urban area, respectively.  326 

The indicators of hydrological performance tell us about the degree of departure from pre-327 

development hydrological flows, in terms of the magnitude of annual flows. It is the ratio of post- 328 

to pre-development flows, for stormwater runoff, total stream discharge, evapotranspiration and 329 

infiltration to groundwater. A ratio > 1 means that the magnitude of the annual flow/flux is larger 330 

than pre-developed landscape, and a ratio <1 means it is smaller. The rationale for these 331 

indicators is that the changed hydrology brought about by urbanization affects environmental 332 

qualities that urban planners endeavor to manage. Increased stormwater flows and stream 333 

discharges degrade the health, ecology and water quality of urban streams and receiving water 334 

bodies (Walsh et al. 2005), reduced evapotranspiration contributes to urban heat island effect 335 

(Coutts et al. 2014), and reduced infiltration inhibits natural groundwater recharge.  336 

In relation to stormwater runoff, we recognize that frequency, duration and intensity of flows are 337 

important considerations for harvesting potential and for urban stream health (Ashbolt et al. 338 

2013, Fletcher et al. 2007). However, the framework currently uses the magnitude of stormwater 339 

flow as a proxy for stormwater flows. 340 

3. RESULTS AND DISCUSSION 341 

The estimated annual water flows / fluxes contributing to the water mass balance of the Ripley 342 

Valley for each scenario are reported in Table 3. These are also depicted in Sankey diagrams 343 

(Figure 3) to visually show how the different water servicing options affect the water balance. It 344 

was possible to achieve a water mass balance for the system (Qi = Qo +∆S) (see right hand 345 
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columns in Table 3). The water-related energy estimates are reported in Table 4. This data was 346 

used to derive the water metabolism indicators (Figures 4a and b) for each scenario.  347 

3.1 Water metabolism of the urban development base case 348 

Here we discuss the water metabolism of the pre-development and post-development base case 349 

scenarios, against which the performances of the alternative water servicing options were 350 

evaluated. 351 

In the pre-development case, the only inflow of water into the system is precipitation (P), 70% of 352 

which subsequently flows out of the system as evapotranspiration (ET), 16% as stormwater 353 

runoff (Rs), and 14% as groundwater infiltration (G) (Figure 3a). The pre-development Rs, 354 

estimated using the MUSIC model (3.7 GL/yr), corresponds well with the annual average 355 

harvestable volumes estimated for Ripley by McIntosh et al (2013) using the ArcHydro model 356 

(1.3 – 3.1 GL/yr depending on dry/wet year, degree of dwelling density). There were no prior 357 

estimations of ET and G to compare our estimates with.  358 

Urbanization of the Ripley Valley in the development base case (as per the planning scheme) 359 

introduces an additional inflow of centralized water supply (C) and outflow of wastewater (W), 360 

of a scale equivalent to around half the annual precipitation (Figure 3b). The increased 361 

imperviousness was estimated to increase Rs by around 2.5-fold, which is consistent with other 362 

modelling studies for similar climatic regions (Ashbolt et al. 2013, Fletcher et al. 2007, McIntosh 363 

et al. 2013). Total stream discharge, which is the combined outflows of Rs and W to receiving 364 

waters, would increase by 5-fold. Evapotranspiration and infiltration are expected to decrease by 365 

17%, and 27% respectively. The base case development has no internal harvesting or recycling, 366 

with all water supply sourced externally at a rate of ~95 kL/p/yr and with water-related energy 367 

use of 115 kWh/p/yr. 368 
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3.2 Water metabolism of the development with alternative water servicing options 369 

Here we discuss how the alternative water supply options influence the water metabolism of the 370 

urban development. The volumes of rainwater, stormwater and wastewater potentially available 371 

for use in the urban development, could individually supply a significant proportion of the 372 

development’s water demand in theory (50%, 50%, and 80% respectively), if water quality 373 

constraints were not considered. More realistically, if only non-potable uses were considered, this 374 

would reduce to 21%, 21% and 34% respectively. Therefore there is considerable capacity for 375 

internal supply in theory, as previously recognized by Kenway et al. (2011a) for Australian cities. 376 

Rainwater and stormwater scenarios  377 

If rainwater or stormwater were harvested (Dp and Ds) and used to a conservative extent (garden 378 

irrigation and toilet flushing) a modest reduction in the stormwater runoff ratio (post 379 

development flows relative to pre-development flows) would be expected, reducing it from 2.5-380 

fold to 2.0/2.3-fold respectively. This is consistent with the findings of Ashbolt et al (2013) for a 381 

similar scenario. If Ds use was maximized (all legal sub-potable uses), stormwater flows could 382 

potentially be restored to near pre-development flows (Figure 3c and 4b).  However similar 383 

modelling for nearby Brisbane by Fletcher et al (2007) found that this would be difficult in 384 

practice because the greater rainfall intensities in this sub-tropical climate leads to overflowing of 385 

stormwater collection ponds. So considering the magnitude of total annual flows alone does not 386 

necessarily give a realistic representation of the hydrological restoration potential. Total stream 387 

discharge will remain high since externally sourced water (C) will continue to be discharged as 388 

wastewater (Figure 4b). 389 

Using rainwater and stormwater to enhance green space and vegetation use was found to have 390 

little restorative effects on evapotranspiration (ET) and groundwater infiltration (G), even when 391 
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maximized (Figure 4b). The fraction of harvested water assumed to be directed to irrigation and 392 

subsequently becoming ET and G, is very small compared with the total ET and G fluxes of the 393 

urban area, and so the relative changes to ET and G are minor. We suspect the scale of vegetation 394 

and irrigation would need to be much larger than modelled here to bring about any significant 395 

restoration of ET and G, but this was not explored. 396 

In relation to resource efficiency, an internal harvesting ratio of up to 45% could be achieve 397 

through rainwater or stormwater use, although in practice around 20% is more likely based on 398 

conservative practices. External water extraction would decrease from 95 kL/p/yr to around 60 399 

kL/p/yr when maximised, and to 82-92 for conservative use (Figure 4a). There would be an 400 

overall energy cost for rainwater use of 15-35 kWh/p/yr (Figure 4a), because household rainwater 401 

pumps were assumed to be relatively energy inefficient, and would offset the energy savings 402 

from displacing centralized water supply (Table 4). For stormwater utilization, there could be a 403 

slight energy saving of 12 kWh/p/yr if use is maximized (Figure 4a) because pumping at this 404 

larger scale can be more energy-efficient, whereas conservative use gives a similar overall energy 405 

use to the base case (Table 4). 406 

Wastewater recycling scenarios at different scales 407 

The influence that wastewater recycling has on the metabolism of the urban area was found to 408 

depend on the scale. For centralized wastewater recycling, the resource efficiency benefits are 409 

similar to the stormwater scenario, increasing the internal recycling ratio, displacing demand for 410 

external water supplies, and reducing energy intensity (Figure 4a). Decentralized greywater 411 

recycling at the household scale also reduces demand for external water supplies, but comes at a 412 

considerable energy cost of between 43-80 kWh/p/yr (Figure 4a). This is because, the on-site 413 

treatment (sand filtration and UV disinfection) and pumping are relatively energy inefficient.  414 

Greywater recycling within the appliance (recirculating showers) offers significant overall energy 415 
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use reductions due to the heat recovery that occurs within the appliance (Figure 4a). The short 416 

timeframe of the recycling enables heat energy as well as water to be recovered. Since energy for 417 

water heating in the use phase is far much more significant than energy use for supplying water 418 

(Kenway et al. 2011b), influencing this component of the water cycle can be very significant. 419 

The recycling scenarios do not offer any restorative effects on Rs, ET and G, but total stream 420 

discharge is decreased because less wastewater is discharged (Figure 4b), which occurs 421 

downstream of the development. Recycling wastewater to agricultural areas outside the urban 422 

development does not provide any metabolism benefits to the urban development itself. The 423 

benefits would accrue to the agricultural activities by way of displaced freshwater extraction, and 424 

possibly displaced fertilizer input if the nutrient content of the wastewater is utilized. Due to the 425 

urban-centric nature of the evaluation framework, this external benefits are not considered. 426 

3.3 What new insights does the urban metabolism perspective provide about water 427 

servicing options? 428 

The insights in relation to resource efficiency are as follows: 429 

− The harvesting and use of rainwater / stormwater and the recycling of wastewaters offers 430 

noticeable improvement to water efficiency only when utilization is maximized, i.e. reducing 431 

per person extraction of external water by 37% (from 96 kL/p/yr to 56-63 kL/p/yr). In 432 

contrast conservative use only improves it by only 4-18% (from 96 kL/p/yr to 80-92 kL/p/yr). 433 

− Energy considerations can be important. The water efficiency benefits of utilizing rainwater 434 

and greywater at the household-scale can have energy trade-offs (for pumping), increasing 435 

water-related energy use by up to 31% and 67% respectively. Whereas the higher pumping 436 

efficiency of stormwater and wastewater utilization at larger scales can reduce overall water-437 
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related energy use by up to 10%. However, when heat energy is recovered through greywater 438 

recycling within the appliance (recirculating shower) the energy savings can be considerable.  439 

The insights in relation to hydrological performance are as follows:  440 

− When the use of harvested rainwater and stormwater is maximized it can potentially reduce 441 

the scale of annually-averaged stormwater runoff to near pre-development levels, whereas 442 

conservative use has only moderate influence. 443 

− Utilizing internal water sources for irrigation may have little effect on restoring 444 

evapotranspiration (ET) and groundwater infiltration (G) toward pre-development levels, 445 

even when maximized. For ET, any increases from irrigation of green space are too small to 446 

offset the large decrease from the vegetation loss of urbanization. This has implications for 447 

the role of irrigation to mitigate urban heat island effects (Coutts et al. 2014). The scale of 448 

rainwater/ stormwater / wastewater use for vegetation irrigation may need to be very large to 449 

have to effect a discernable restoration of ET. For G, opportunities for improving infiltration 450 

become scarcer with increasing dwelling density, unless irrigation occurring in the urban 451 

periphery within the defined urban boundary is considered. 452 

Overall, the analysis suggests that use of harvested rainwater / stormwater may offer more 453 

metabolism benefits than wastewater recycling. This is because harnessing precipitation falling 454 

on the urban area improves both resource efficiency and restores hydrological flows (of 455 

stormwater), also been noted by Fletcher et al. (2007). In comparison, while wastewater recycling 456 

offers similar water efficiency benefits, it does less to restore hydrological flows. However, the 457 

analysis did not consider potential nutrient recovery benefits of wastewater recycling, which may 458 

alter the relative benefits.  459 
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These insights about water servicing options are from a local resource management perspective, 460 

i.e. they are ‘urban centric’. Other studies that have taken different perspectives to evaluate water 461 

servicing options have come to different conclusions. For example, Sharma et al (2009) assessed 462 

a similar suite of urban water servicing options to those assessed here using environmental life 463 

cycle assessment (LCA). They concluded that stormwater harvesting may not be preferred, due to 464 

the indirect environmental impacts embodied in the establishment of water storage and third-pipe 465 

distribution infrastructure. This flags that both the direct and indirect implications of urban water 466 

management need to inform decision making. 467 

3.4 What is the utility of a metabolism evaluation framework? 468 

 The value of the metabolism perspective was to understand the attributes of water servicing 469 

options from the perspective of both resource efficiency and restoring hydrological performance. 470 

The water mass balance that underpins the evaluation accounted for all anthropogenic and natural 471 

flows through urban areas, so that the multiple aspects of local water resource efficiency were 472 

considered in a consistent framework. In particular evapotranspiration and groundwater 473 

infiltration, which are not commonly considered in water cycle studies, can be considered as well 474 

as stormwater runoff.  Also, observations about the scale of implementation were possible within 475 

this consistent context.  476 

The resource efficiency indicators are useful for quantifying and comparing the degree to which 477 

urban areas are moving towards reduced reliance on external, centralized supplies. The 478 

hydrological performance indicators help us understand the extent of intervention needed to 479 

maintain or restore pre-development hydrological conditions. It brings together consideration of 480 

both the ‘anthropogenic’ and ‘natural’ water cycles, and the interactions between them, and 481 

considers the urban area as a whole rather than just the water systems within the urban area. 482 
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The following limitations were revealed which should be addressed in future iterations of the 483 

framework: 484 

− The selection of a greenfield development made it straightforward to examine hydrological 485 

flows relative to the pre-development conditions, but this would be more difficult when 486 

evaluating existing or in-fill urban developments, and would require definition of the pre-487 

urbanized reference landscape. 488 

− Setting the urban boundary tightly around the built-up urban footprint means that the benefits 489 

when urban waters are utilized outside the urban area are not evident, and may require 490 

reconsideration of how the urban boundary is set. 491 

− There are limitations to using only the annual magnitude of stormwater flows, as flow 492 

frequency and intensity strongly influence harvest potential and urban stream impacts. 493 

− A resource efficiency consideration missing from this current analysis is that of nutrients. 494 

Decisions about alternative water servicing options would be further enhanced by also 495 

considering nutrient metabolism, both in terms of their mobilization by stormwater and 496 

wastewaters, and their conservation and beneficial utilization in wastewater.  497 

− Metabolism evaluation which focuses on the direct implications of urban water management 498 

should be considered along with the indirect implications as assessed by life cycle 499 

assessment. 500 

4. CONCLUSIONS 501 

This work demonstrated how a “water mass balance” metabolism perspective can be used to 502 

generate indicators of urban water-related resource efficiency and hydrological performance, 503 

from a local resource management perspective. The novel contribution is the development of new 504 
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indicators that bring together consideration of both the ‘anthropogenic’ and ‘natural’ water cycles 505 

and the interactions between them, on the basis of the whole urban area rather than just the water 506 

system within the urban area. 507 

Scenario analysis was used to show how this can be used to assess alternative urban water 508 

servicing options. The new insights this provided, which are different from other perspectives, 509 

relate to the extent to which alternative water supplies can influence the water efficiency and 510 

hydrological performance of the urban area: 511 

i) The harvesting of precipitation falling on the urban area (rainwater, stormwater) can 512 

positively influence both the water efficiency and the restoration of natural hydrological 513 

flows (especially runoff), whereas wastewater recycling only influences water efficiency; 514 

ii)  The extent to which alternative water sources are used needs to be maximized to give 515 

noticeable benefits; 516 

iii)  While the runoff can be reduced through the harvesting rainfall and runoff, it will be more 517 

difficult to influence restoration of evapotranspiration and groundwater infiltration; 518 

iv) Scale of implementation influences water-related energy efficiency. Rainwater/graywater 519 

use at household scale can have an energy cost, but stormwater / wastewater use at larger 520 

scales can be an energy saver. Water recycling at the appliance scale (eg. recirculating 521 

showers) can be a very large energy saver due to the heat recovered. 522 

The indicators are a step forward in representing local urban water performance and can guide us 523 

toward more resource-efficient urban water systems. However, there remains considerable scope 524 

to further optimise the framework in future iterations by extending scope of metabolism 525 

indicators, in particular water-related nutrient efficiency. 526 
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Table and figure captions 704 

 705 

Table 1 – Scenarios 706 

 707 

Table 2 – Indicators of urban water metabolism 708 

 709 

Table 3 – Water mass balance, before and after development, and for water servicing alternatives 710 

 711 

Table 4 – Water-related energy use, before and after development, and for water servicing 712 
alternatives 713 

 714 

Figure 1 Urban water metabolism evaluation framework. 715 

The framework is a refinement of the urban water mass balance described in Kenway et al. 716 
(2011a), to enable evaluation of alternative water sources and water-related energy use. 717 

 718 

Figure 2 Structure plan and location of the case study Ripley Valley Urban Development Area. 719 

Reproduced with the permissions of Ipswich City Council (ICC 2009). Ripley Valley is located 720 
in South East Queensland, approximately 40km south-west of Brisbane. 721 

 722 

Figure 3–Urban water mass balances (maximized scenarios only) 723 

The width of the lines represents the magnitude of the annual flows / fluxes of water (GL/yr) 724 
flowing into, out of, and through the urban boundary of the proposed Ripley Valley urban 725 
development, (a) before development, (b) after development (b), and (c-f) under alternative water 726 
servicing alternatives. Only the maximized scenarios are depicted. In the case of (c) and (e), two 727 
separate scenarios are shown in the one diagram, in which case, the two values refer to each 728 
scenarios respectively.  729 

a) Pre-development 730 
b) Development base case 731 
c) Rainwater harvesting (in households) / stormwater harvesting (in the urban area) 732 
d) Wastewater recycling (in urban area) 733 
e) Greywater recycling (in household) / Greywater recycling (in appliance) 734 
f) Wastewater recycling (outside urban area) 735 
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 736 

Figure 4– Indicators of water metabolism 737 

For stormwater and total stream discharge, urbanisation generates flows that are higher than pre-738 
development (>1), so initiatives that reduce the relative flows down towards 1 are preferred. For 739 
evapotranspiration and infiltration, urbanisation generates flows that are lower than pre-740 
development (<1), so initiatives that increase the relative flow up towards 1 are preferred. 741 

a) Indicators of resource efficiency 742 

b) indicators of hydrological performance (relative to pre-development state) 743 

 744 

 745 
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Appendix A:  Analysis parameters and data sources 

Parameter Unit 
Assumed 
values 

Source and comments 

 
Proposed urban development in Ripley Valley 
Total area ha 4,680 Ripley Valley Development Scheme (ULDA 2011) - 

Includes urban area and nature reserve. 
Total urban development area ha 3002 (ULDA 2011) 
Population  people 120,000 (ULDA 2011) - projection as at 2030. 
Dwellings - 50,000 (ULDA 2011) - projection as at 2030. 
 
Land use types 
Urban core ha 289.72 (ULDA 2011) - 55 households/ha 
Secondary urban core (west) ha 304.83 (ULDA 2011) -35 households/ha  
Secondary urban core (east) ha 250.48 (ULDA 2011) - 20 households/ha  
Neighborhoods ha 1,156.56 (ULDA 2011) - 15 households/ha  
Villages and constrained residential areas ha 988.29 (ULDA 2011) - 10 households/ha  
Rural residential ha 11.93 (ULDA 2011) - 3 households/ha  
    
Parameters applied in MUSIC to model natural hydrological flows (P, Rs, G and ET) 
Rainfall mm 1021.6 Time series rainfall data for Brisbane for the period 

1 July 2000 to 15 June 2010 was used in the model, 
based on 6 min intervals. This data was pre-loaded 
in the MUSIC model, but originated from the 
Australian Bureau of Meteorology 
(www.BOM.gov.au). The value provided here is the 
mean annual rainfall for Brisbane. 

Evapotranspiration mm 66.7 Monthly average evapotranspiration data for 
Brisbane for the period 1 July 2000 to 15 June 2010 
was used in the model, derived from BOM (2006). 
The value provided here is the annual average. 

Soil characteristics    As per Gold Coast City Council’s guidelines (GCCC 
2006).  

Imperviousness factors 
• Pre-development 
• Urban core 
• Secondary urban core west 
• Secondary urban core east 
• Neighborhoods 
• Villages and constrained residential areas 
• Rural residential 

%  
10 
44 
41 
38 
36 
33 
24 
 

For the pre-development case, the imperviousness 
factor was set to 10% giving an annual volumetric 
runoff coefficient (AVRC) of 0.15 (pers. Com. Tony 
Weber, May 2015). 
For post development scenarios, the 
imperviousness factors from McIntosh et al. (2013) 
were adopted. 

Applied irrigation directed to G % 25 Derived from Chrysoulakis et al. (2015) 
Applied irrigation directed to ET % 75  
 
Parameters applied to estimate flows managed by the centralized urban water system (C and W) 
Residential water demand L/p/day 200 Derived from SKM (2013). 
Portion of residential water demand that is for 
conservative sub-potable uses 

%  22 Percentage of total demand used for irrigation, toilet 
flushing and washing machine, based on Beal et al. 
(2012). 

Portion of residential water demand that is for 
maximised sub-potable uses 

% 43 Derived from Beal et al. (2012) 

Commercial water demand kL/ m2 /yr 3.34 Average annual demand as per the Department of 
Environment and Heritage (2006) guidelines for 
mixed office and commercial area. 

Total commercial area ha 34 ICC 2009 
Portion of commercial water demand that is for 
conservative sub-potable uses 

% 50 Estimated percentage based on total demand, in 
the absence of reliable data. 

Open space / green area ha 304.5 (ICC 2009) (this is doubled for maximized case) 
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Parameter Unit 
Assumed 
values 

Source and comments 

Open space water demand ML/ha/yr 1.8 Open space water use for SEQ estimated by 
Mitchell et al. (2008). 

Water supply leakage rate % 10 Derived from  BOM (2015). 
Wastewater generated as a percentage of water 
use 

% 80 The ratio can be 50 - 90% depending upon leakage, 
lawn irrigation and stormwater infiltration. It was 
assumed to be 80% as lawn irrigation is modest 
and being a new planned development, stormwater 
infiltration is expected to be minor. 

 
Parameters applied to estimate decentralized inflows (D) 
Groundwater withdrawal  0 No groundwater withdrawal. 
Roof area for rainwater harvesting – residential m2 150 Assumed roof area per residential dwelling. 
Roof area for rainwater harvesting – commercial % 60 Percentage commercial roof area (34 ha) available 

for harvesting 
Maximum roof runoff generated GL/yr 5.96 Calculated from above values 
Volumetric reliability of rainwater tanks % 29 Umapathi et al. (2012) 
 
Parameters applied to estimate recycled flows (R) 
Greywater generation – residential % 71 Percent of residential demand (based on Beal et al. 

(2012) – Bath 31%, Taps 19%, clothes washer 
21%) 

Greywater generation – commercial % 25 Assumed, based on minimal bath or clothes 
washing facilities in commercial buildings. 

Maximum greywater generated GL/yr 6.46 Calculated from above values. 
Residential water use for showers L/p/day 59 Derived from Beal et al. (2012). 
Reduction in shower water use with recirculating 
showers 

% 70 Cintep (2012). 

Area of irrigated urban agriculture ha 1,000 Derived from assumed vegetable demand of 375 
gm/person as per NHMRC (2013) recommendation, 
and vegetable production of 15.8 tonnes/ha/yr for 
SEQ region. 

Irrigation water demand for urban agriculture ML/ha/yr 3.75 Based on water demand for vegetable irrigation in 
peri-urban areas around Brisbane (Lockyer Valley) 

Parameters applied to estimate water-related energy (E) 
Supply of water from Mt Crosby water treatment 
plant to Ripley Valley 

kWh/ML 102 Estimated based on a delivery head presure of 
40m, (assuming head loss from 22 km pipeline 
through hilly terrain, and residual head of 10 m to 
deliver to local storage tanks), and a pump 
efficiency of 70%. 

Supply of harvested rainwater and recycled 
wastewater to local users 

kWh/ML 68 Estimated based on a delivery head pressure of 
30m (transmission pipe losses and residual 
pressure of 10 m at the farthest property), and a 
pump efficiency of 70%. 

Supply of recycled wastewater to nearby 
agricultural areas 

kWh/ML 85 Estimated based on a delivery head pressure of 
35m (same as local supply plus additional loss of 
5m due to 4-8km transmission pipeline to 
agricultural areas). 

Stormwater treatment kWh/ML 78 Based on a pressure sand filtration with pumping 
head of 20 m, and a pump efficiency of 70%. 

Energy consumption in water treatment at Mt 
Crosby WTP 

kWh/ML 301 Kenway et al. (2015) 

Retail water distribution kWh/ML 78 Kenway et al. (2015) 
Wastewater treatment to secondary level fit for 
stream discharge, irrigation and sub-potable use 

kWh/ML 587 Kenway et al. (2015) 

    
Greywater treatment and supply at individual 
household level 

kWh/ML 3,512 Memon et al. (2015) 

Rainwater supply from storage tanks at kWh/ML 1,509 Kenway et al. (2015) 
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Parameter Unit 
Assumed 
values 

Source and comments 

individual household level 
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Table 1 – Scenarios 

Reference cases 
 

  

Pre-development Agricultural landscape with limited paved surfaces and roads, as modelled by McIntosh et al. (2013). 
Developed base 
case 

An urbanised landscape as per the Ripley Valley Development Scheme (ULDA 2011) at 2030 (see Table 2). 
All water is supplied via the centralized system which supplies treated water from Wivenhoe Dam, 300km NW, via Mt 
Crosby Water Treatment Plant, outside the urban boundary. There is no supplementary supply of rainwater / stormwater, 
or recycling of wastewater / greywater. Wastewater generated from all dwellings is treated at a local wastewater 
treatment plant (WWTP) to secondary level conforming to surface water discharge standards and discharged to the 
nearby Bundamba Creek. 

Alternative water 
servicing options 

Urban scale of 
implementation Conservative implementation Maximised implementation 

Stormwater use In urban area Stormwater runoff is harvested from all hard surfaces 
(roofs, roads, carparks) within the urban boundary. 
Volume harvested is assumed to be limited by the 
maximum harvestable volume.1 
Stormwater is treated by sand filtration, and supplied 
for irrigation within the urban boundary.  
10% of maximum harvestable volume is used to 
irrigate 304.5 ha designated as open space in the 
planning scheme (parks, sports fields, green corridors, 
street landscaping etc.). 

As per conservative implementation, 
except that:  
97% of maximum harvestable volume is 
used to irrigate open space within the 
urban boundary (304.5 ha), plus natural 
areas (300 ha – 10% of total area) to 
enhance vegetation, plus all legal sub-
potable demand in residential and 
commercial dwellings (garden irrigation, 
toilet flushing, clothes washing) by ‘third 
pipe’ supply. 

Rainwater use In household Rainwater is harvested from the roofs of residential 
and commercial dwellings in individual tanks. 
Volume harvested is assumed to be limited by the 
maximum harvestable volume1 and the volumetric 
reliability of the tanks.2 
Water supplied untreated to same property. 
100% of harvested volume is used for some sub-
potable demand (garden irrigation and toilet flushing) 

As per conservative implementation, 
except that:  
The volumetric reliability of the tanks2 
is assumed to be large enough to 
supply maximised sub-potable demand. 
100% of harvested volume is used for all 
legal sub-potable demand in (garden 
irrigation, toilet flushing, clothes washing) 

Wastewater 
recycling 

In urban area Wastewater from all residential and commercial 
dwellings (80% of water supply) is treated at a local 
wastewater treatment plant to secondary level with 
disinfection suitable for irrigation, stream discharge 
and sub-potable use. 
5% of treated effluent is recycled for irrigation within 
the urban boundary, in the same way as the 
conservative stormwater use scenario. 

As per conservative implementation, 
except that:  
59% of the treated effluent is used for 
irrigation, in the same way as the 
maximised stormwater use scenario. 

 Outside urban 
area 

As per wastewater recycling within the urban area, 
except that treated wastewater is supplied to an 
adjacent agricultural area, 4-8km W, outside the urban 
boundary. 
Used for irrigation of vegetable crops. 
Volume used is based on that required to grow crops 
to meet local demand only. 

Not applicable 

Greywater 
recycling 

In household Greywater (bathroom wastewater) from residential and 
commercial dwellings (approximately 70% of total 
wastewater after Beal et al. (2012) is collected in 
individual tanks. 
It is treated using sand filtration and UV disinfection at 
the property and supplied back to the same property. 
34% of total 6.46 GL/yr of generated greywater is used 
for some sub-potable demand in residential and 
commercial dwellings within the urban boundary 
(garden irrigation and toilet flushing). 

As per conservative implementation, 
except that:  
62% of generated greywater is used for all 
legal sub-potable demand in residential 
and commercial dwellings within the urban 
boundary (lawn irrigation and toilet 
flushing, clothes washing) 

 In appliance Recirculating showers are installed in all residential 
dwelling to recycle shower water. 
Water, and electricity for water heating are assumed to 
be reduced by 70%. 

Not applicable 

Notes: 
1. Maximum harvestable volume is the difference between post-development and pre-development stormwater runoff, to 

ensure that stormwater runoff exiting the system does not fall below the natural runoff in the pre-development scenario, 
thus minimizing negative effects of over-harvesting on soil moisture, downstream hydrology / ecology (Fletcher et al. 2007, 
McIntosh et al. 2013). 

2. Volumetric reliability is the ratio of rainwater available from the rainwater tank to the total household water demand 
(Umapathi et al. 2013)  
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Table 2 – Indicators of urban water metabolism 

 Unit Description Equation 

Indicators of resource efficiency 

Internal harvesting ratio - 
Volume	of	freshwater	harvested	internally	�within	the	urban	area�		

Total	volume	of	water	supplied	to	meet	demand
 

�

�C + D + Ri�
 

Internal recycling ratio - 
Volume	of	water	recycled	internally	�within	the	urban	area�

Total	volume	of	water	supplied	to	meet	demand
 

Ri

�C + D + Ri�
 

Water extracted kL/person/yr 
Volume	of	water	extracted	from	external	sources

Population	of	the	urban	area
 

C

Population
 

Energy used kWh/person/yr 
Total	water − related	energy	use

Population	of	the	urban	area
 

#$%&

Population
 

Indicators of hydrological performance 

Stormwater runoff ratio - 
Post − development	stormwater	runoff

Pre − development	stormwater	runoff
 

Rs'

Rs(
 

Total stream discharge 
ratio - 

Post − development	discharge

Pre − development	discharge
 

�Rs +W�'

�Rs +W�*
 

Infiltration ratio - 
Post − development	groundwater	infiltrate

Pre − development	groundwater	infiltrate
 

+'

+%
 

Evapotranspiration ratio - 
Post − development	evapotranspiration

Pre − development	evapotranspiration
 

ET'

ET(
 

Notations: See Section for 2.1 for definitions of acronyms. x = value for post-development scenario, o = value for pre-development  
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Table 3 – Water mass balance, before and after development, and for water servicing alternatives 

 

Scenario 
 Qi (GL/yr) Qo (GL/yr) Ri ∆S Mass Balance 

 P' C D ET Rs G W Re  
 Qi Qo +∆S 

Pre-development 23.2 0.0 0.0 16.3 3.7 3.3 0.0 0.0 0.0 -0.1 23.2 23.2 

Developed base case 23.2 11.5 0.0 13.6 9.3 2.4 9.2 0.0 0.0 0.2 34.7 34.7 

Stormwater 
use 

In urban area             
Conservative 22.7 11.0 0.6 13.6 8.8 2.4 9.2 0.0 0.0 0.3 34.3 34.3 

Maximised 17.8 6.7 5.4 14.0 3.9 2.5 9.2 0.0 0.0 0.3 29.9 29.9 

Rainwater 
use 

In household             
Conservative 21.5 9.8 1.7 13.6 7.6 2.4 9.2 0.0 0.0 0.2 33.0 33.0 

 Maximised 18.9 7.2 4.3 13.6 5.0 2.4 9.2 0.0 0.0 0.2 30.4 30.4 

Wastewater 
recycling  

In urban area 
   

    
 

 
   

Conservative 23.2 11.0 0.0 13.6 9.3 2.4 8.7 0.0 0.6 0.2 34.2 34.2 

Maximised 23.2 6.7 0.0 14.0 9.3 2.5 3.8 0.0 5.4 0.3 29.9 29.9 

Outside urban 
area 

23.2 11.5 0.0 13.6 9.3 2.4 5.3 3.9 0.0 0.2 34.7 34.7 

Greywater 
recycling 

In household 
   

    
 

 
   

Conservative 23.2 9.3 0.0 13.6 9.3 2.4 7.5 0.0 2.2 -0.3 32.5 32.5 

Maximised 23.2 7.5 0.0 13.6 9.3 2.4 6.0 0.0 4.0 -0.6 30.7 30.7 

In appliance 23.2 11.0 0.0 13.6 9.3 2.4 8.5 0.0 0.9 0.4 34.2 34.2 

Notations: See Section for 2.1 for definitions of acronyms  
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Table 4 – Water-related energy use, before and after development, and for water servicing 
alternatives 

  Water-related energy use (GWh/yr) 

 

 Treating and 
supplying 

centralized 
water (EC) 

Treating and supplying 
decentralized and 
recycled water (ED, 

ER) 

Treating and 
discharging 

wastewater (Ew) 

Change to 
energy in 
use phase 

(∆EU)  

Total 
(ETot) 

Developed base case 5.9 NA 7.9  13.8 

Stormwater use In urban area      

Conservative 5.7 0.1 7.9  13.7 

Maximised 3.5 0.9 7.9  12.3 

Rainwater use In household      

Conservative 5.1 2.6 7.9  15.6 

Maximised 3.7 6.5 7.9  18.1 

Wastewater 
recycling  

In urban area      

Conservative 5.7 0.5 7.5  13.7 

Maximised 3.5 5.2 3.3  12.0 

Outside urban 
area 5.9 3.8 4.5  14.2 

Greywater 
recycling 

In household  
  

  

Conservative 4.8 7.7 6.4  18.9 

Maximised 3.9 14.1 5.1  23.1 

In appliance 5.7 NA 7.3 -389 -376 

Notations: See Section for 2.1 for definitions of acronyms  
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Highlights 

 

A water mass balance that brings together both ‘natural’ and ‘anthropogenic’ urban water 

cycles 

 

New ‘water metabolism’ indicators of ‘resource efficiency’ and ‘hydrological performance’ 

 

Insights about alternative water servicing options to support the holistic decision making  

 


