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Abstract 

 

Electronics manufacturers are pushing the limits in reducing the physical size of circuitry 

while simultaneously increasing the number of transistors to satisfy Moore’s Law [1]. This 

includes investing in new materials, and configuring new ways to manufacture complex 3D 

(three dimensional) electronic packaging [1]. One key requirement of new materials and 

techniques is ensuring the high reliability of the resultant products in various challenging 

operating environments including thermal and mechanical extremes [2-4]. A viable method 

to enhance the properties and performance of a solder joint is by incorporation of 

reinforcement particles to the solder matrix, either by intrinsic or extrinsic methods. In this 

thesis a series of Sn-Cu Pb-free solder alloys with extrinsic or intrinsic phase reinforcement 

were manufactured and the microstructure and soldering behavior were investigated in 

detail.  

 

Additions of extrinsic reinforcement in the form of nano-sized ceramic material were made 

using a microwave sintering powder metallurgy (PM) method, which is a viable method to 

improve the mechanical and thermal properties of Pb-free solder materials. In addition, the 

advanced processing routes ensures a homogenous distributions of reinforcement particles 

is present. To investigate the performance of the reinforced bulk solders including thermal 

and mechanical properties and relate this to the microstructure, samples were investigated 

using techniques such as synchrotron micro-XRF, HRTEM, SEM, XPS, dilatometery, DSC 

and shear and microhardness testing. A hypothesis of how reinforcement improves solder 

properties is developed and discussed. Synchrotron X-ray radiography imaging (SXRI) was 

used to analyse the development of microstructure and the complex interactions occurring 

in the solders. Based on the properties of the fabricated solder, the microwave sintering PM 

route was discussed as a promising method for the reinforcement of Pb-free solders. 

 

The initial formation of interfacial IMC products was studied in Sn-Cu based solder alloys by 

in situ experiment techniques such as SXRI and UHV-TEM. The results provide direct 

experimental evidence of real-time initial Cu6Sn5 layer development during soldering and 

also the stress creation and release events that arise due to the polymorphic transformations 

of the Cu6Sn5 phase and the associated volumetric change. 
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In addition, the nucleation and growth behavior of primary intermetallics which can be 

considered an intrinsic reinforcing material in solder joints was studied. Here, the nucleation 

and growth behavior of primary Cu6Sn5 and β-Sn crystals in some of the most commonly 

used solder alloys including Sn-0.7Cu and Sn-3.0Ag-0.5Cu is explained. This also includes 

the effects of Ni additions for refining primary Cu6Sn5 in Sn-Cu solder joints. Using SXRI, 

observations were made during solder joint solidification, which is difficult using conventional 

methods. The initial nucleation and solidification kinetics of primary Cu6Sn5 crystals were 

discussed.  

 

The growth of primary and interfacial Cu6Sn5 intermetallics after multiple reflow and 

annealing and the effect of this growth on the solder joint shear strength was studied to 

understand the effect of electronic component assembly processes on microstructure 

development. It was found that additions of TiO2 reinforcement were able to reduce the 

number and total length of primary Cu6Sn5 particles and suppress the interfacial layer during 

multiple reflows. It is possible that TiO2 particles in intimate contact with the interfacial 

Cu6Sn5 hinder the Cu dissolution paths.  By reducing the undercooling, additions of TiO2 

result in a lower average thickness in the interfacial IMC and a more stable growth 

morphology. 

 

The collective results of this thesis demonstrate a detailed understanding of the manufacture 

of reinforced Sn-Cu Pb-free solder alloys and the mechanism of microstructure formation. 

The results are of significance scientifically and have industrial relevance and implications 

in controlling the microstructure and improving the performance and reliability of Pb-free 

solder joints.  
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Chapter 1 Introduction 

 

1.1 Motivation 

 

The electronic industry is constantly adapting to the requirements of the latest generation 

electronic devices. The advances in electronics today are accompanied by advances in 

soldering technology since interconnect materials such as solders are used in electronic 

packaging to electrically and mechanically join components to form functional circuits. In 

electronic assemblies, the solder alloy plays a critical role in performance and reliability [5, 

6].  

 

Development of solder alloys has also been driven by a need to reduce the consumption of 

lead (Pb) in the Sn-Pb solders used in previous generation electronic packaging industries.  

Initiatives such as Waste from Electronic Equipment (WEEE) and Restriction of hazardous 

Substances Directive (RoHS) which took effect on 1 July 2006 [7] have seen the EU 

minimize the use of hazardous substances such as Pb, halogen (Hg), cadmium (Cd), 

hexavalent chromium (Cr6+), polybrominated biphenyls (PBB) and polybrominated diphenyl 

ether (PBDE). In addition, there is a consumer preference for using environmental safe 

products as the concern on health awareness due to the toxicity of certain materials used in 

conventional electronic products have increased. Due to legislation implementation 

throughout the world and high demand in the consumer product market, the electronic 

industries have been focusing on the development of Pb-free solders. This change has been 

driven with the help of other government and public agencies throughout the world. 

Recently, Sn-Ag-Cu or known as SAC solder are the most widely used commercial Pb-free 

solder in high technology of electronic products while Sn-Cu and Sn-Cu-Ni are used as a 

low cost solder alternative in wave soldering for large electronic interconnections. Although 

currently there is a wide range of commercial Pb-free solders provided by the solder 

manufacturers, there is still a need to develop new Pb-free solders to meet the rapidly 

advancing technology in electronic products that requires high reliability solder joints in 

extreme environments. This includes the requirement of miniaturization of interconnections 

in an electronic product with higher functional densities [8, 9]. 
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Amongst the numerous research activities aimed at improving the Pb-free solder properties 

and performance is the use of a reinforcing additions. This viable method of enhancing the 

Pb-free solder properties and solder joint performance involves the use of a reinforcing 

phase either intrinsic or extrinsic, embedded in the solder matrix [10].  In the early stages of 

solder composite technology development, Guo [11] stressed that the development of 

composite Pb-free solder is likely to improve the service temperature capabilities and 

thermal stability of the solder joints. In addition, these reinforced solder could have improved 

joint strength [10]. Shen and Chan [12] discussed the benefits in terms of enhanced creep 

strength and thermo-mechanical fatigue resistance of solder materials while outlining the 

latest nano-composite solder development studies.  

 

Generally, a composite solder involves a eutectic solder alloy reinforced with other materials 

to improve the mechanical properties.   Reinforcing materials in solder alloys may be present 

in the matrix intrinsically or introduced by additions (extrinsic). Examples of intrinsic 

reinforcement in Pb-free solder solders include the commonly occurring Cu6Sn5 or Ag3Sn 

intermetallic phases [13-15].  

 

Ceramic reinforcement is an example of an extrinsic reinforcing. Ceramic reinforcing is an 

approach to enhance the alloy based solder matrix mechanical properties without the 

concern of new excessive phase formation during either fabrication or normal product use. 

In the fabrication of reinforced Pb-free solders, one of the best methods of ensuring the 

particle is homogeneously distributed in the matrix is by utilizing the powder metallurgy 

method [16]. However, using conventional sintering, requires a high amount of energy, cost 

and time. To overcome the drawbacks of the conventional sintering process, Gupta et al. 

[17] have introduced a microwave sintering method for producing solder composite 

materials.  With the unique characteristic heating mechanism present in the microwave 

sintering technique, significant advantages can be imparted to mechanical properties of the 

sintered material [18-20]. The homogenous distribution of reinforcement and the 

improvement of physical and mechanical properties makes this sintering technique an 

attractive method to investigate in the manufacture of solder alloys.   
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1.2 Problem Statement 

 

Among commercial Pb-free solders in the current market, the Sn-0.7Cu solder alloy is the 

most economical solder widely used in the wave soldering processes [21]. However, Sn-

0.7Cu alloys are known to result in poor mechanical properties as a result of high interfacial 

intermetallic compound (IMC) layer growth rate and normally couples with a thick Cu3Sn 

interfacial layer that leads to serious reliability issues [22].  

Recent research on intrinsic Cu6Sn5 or Ag3Sn intermetallics reinforcement have resulted in 

the improvement of creep and thermomechanical properties of Pb-free solders [13-15]. In 

addition, extrinsic reinforcement particles such as silicon carbide (SiC), alumina (Al2O3), 

zirconia (ZrO2), tin oxide (SnO2), titanium oxide (TiO2) and silicon nitride (Si3N4) additions, 

have also shown solder property improvements [23-36]. These ceramic reinforced solders 

are also reported to prevent or minimise the growth of interfacial IMCs. An in depth 

understanding of reinforcing effects and their interactions during soldering are needed to 

further develop Sn-Cu Pb-free solder composite technology. 

 

1.3 Research Study Objectives 

 

With current legislative demands and emerging technologies, solder joints of higher 

reliability and dimensional stability are in demand. Thus it is important for manufacturers and 

researchers to enhance current available solder performance or to synthesize future solder 

materials while limiting manufacturing costs. In achieving these goals, it is important to fully 

understand the properties and performance of the synthesized Pb-free solder and the 

subsequent solder joints. This study relates to enhancing the performance of several 

eutectic solder systems by using reinforcements and has the following objectives: 

 

1. To investigate the effects of ceramic reinforcement additions and microwave sintering 

on the physical, thermal and mechanical properties of reinforced solders. This 

includes an understanding of the effects of reinforcement on the thermal and 

mechanical properties of the solder. 

 

2. To investigate the interfacial Cu6Sn5 growth kinetics during early stages of soldering 

and the phase transformation mechanisms in Sn-Cu solder joint by developing 

characterisation methods for in situ observations including ultra-high voltage 
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transmission electron microscopy (UHV-TEM) and in situ synchrotron X-ray 

radiography imaging (SXRI).  

 

3. To investigate the nucleation and growth behavior of intrinsic reinforcing materials 

during soldering focusing on primary Cu6Sn5 intermetallics in soldered joints.  

 

4. To investigate the effect of assembly processing and operating condition on intrinsic 

and extrinsic reinforced solder joints.  

 

1.4 Thesis Structure 

 

This thesis is largely presented as a collection of peer-reviewed published papers, 

supplemented with accompanying text to address the thesis objectives and is presented in 

the following chapters: 

 

Chapter 1 – Introduction. 

Chapter 2 – Literature review. 

This chapter is a comprehensive review on the development of reinforced Pb-free 

solder alloys. 

Chapter 3 - Fabrication method of extrinsic ceramic reinforced solders and methods of in-

situ soldering observations using synchrotron X-ray radiography imaging (SXRI) techniques. 

This chapter covers the methodology used in the development of microwave sintered 

TiO2 reinforced solder including investigating the mechanical and thermal properties 

of the solder material. It also covers the developed method of an SXRI technique for 

in situ soldering observation used throughout the study. 

Chapter 4 - Interfacial intermetallic compound (IMC) layer formation in Sn-Cu solders in 

early stages of soldering and phase transformation. 

This chapter covers a detailed study on the initial growth kinetics of interfacial Cu6Sn5 

of common base reinforced solder materials during the soldering and its phase 

transformation using in situ techniques. 

Chapter 5 - Nucleation and growth behavior of primary intermetallics as an intrinsic 

reinforcing material in solder joints. 
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This chapter is an in-depth study on the nucleation and growth of primary Cu6Sn5 

during solidification and the effect of trace element additions such as Ni on primary 

Cu6Sn5 formation. 

Chapter 6 - Assembly processing and operating conditions: the effects of intrinsic and 

extrinsic reinforcement of solder joints. 

This chapter covers the effect of assembly processing and operating conditions on 

the mechanical shear strength of intrinsic and extrinsic reinforced solder joints. This 

includes a focus on the effects of multiple-reflow and annealing conditions on the 

solder ball joint strength.  

Chapter 7 Summary and future work. 
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Chapter 2 Literature Review 

 

A comprehensive review of advances in the development of reinforced Sn-Cu Pb-free 

solders is given in this chapter. The chapter reviews recent studies relating to reinforced Pb-

free solders regarding solder material development, reactions during solidification, 

interfacial reactions and improvements to solder properties.  

 

2.1 The development of lead-free solders 

 

Solder materials are widely used as electronic interconnections in electronic circuits 

connecting one device to another. In the old days, Pb-containing solders were mostly used 

in the electronic industry. One of the most typical Pb solders used in the electronic industry 

is the eutectic Sn-37Pb solder alloy since it provides a wide range of benefits. For example, 

this solder alloy has a relatively low melting point, is easy for manufacturing and rework for 

assemblies, and has excellent ductility and solder joint reliability. Pb-containing solders were 

widely used until the rise of environmental and health awareness, and in the last decade 

have become banned due to the toxicity content. The concern over the toxicity of electronic 

products originates from the toxic waste produced by manufacturers and electronic products 

disposed of by consumers. Toxic elements normally used in electronic assemblies are 

banned by the European Union (EU). These elements include Pb, Hg, Cd, Cr6+, PBB and 

PBDE [7].  

 

In the last decade, various programs and legislations took place to ban the use of toxic 

materials in electronic products, particularly lead. In the early stages of implementation, the 

United States, through National Electronics Manufacturing Initiative (NEMI), took the 

initiative in searching for solutions to the implementation of the toxic materials restriction in 

the manufacturing of electronic products. This initiative had been expanded to other 

countries such as in Europe and Japan. In Europe, the RoHS and WEEE regulations ban 

the use of Pb-containing solders. While in 2001, in Japan, the Enforcement Order of the Law 

for Promotion of Effective Utilization of Resources restricted the usage of Pb in electronic 

products. Since then, the RoHS, which was originally initiated in Europe in 2002, took effect 

in 2005 and until now has been widely used in most countries around the world. The 

initiatives and regulations implementation timeline for the restriction of the use of toxic 

materials in electronic products, including the usage of Pb is summarized in Figure 1 [37]. 
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Figure 1: The global initiatives and regulations implementation timeline for the restriction of 

the use of toxic materials in electronic products [37]. 

 

Since the implementation of RoHS, manufacturers and researchers have worked closely in 

producing solder materials that could meet current processing demands and contribute to 

product reliability. Various properties need to be considered in the development of new Pb-

free solders which covers the properties related to the manufacturing of and the performance 

and reliability of the solder joints. Properties related to the manufacturing covers its liquidus 

temperature, wettability performance with the substrate, manufacturability into various 

solder forms such as solder bars, wire and paste, recyclability, availability of materials and 

cost [5]. On the other hand, properties related to the performance and reliability of the solder 

joints covers the electrical and thermal conductivity, coefficient of thermal expansion (CTE), 

thermo-mechanical properties, mechanical properties such as shear and tensile, creep 

resistance, fatigue and corrosion resistance [5].  

 

Currently, there are various commercial Pb-free solders on the market. However, there is 

still a need to develop new solder material that meets current challenging technology 

requirements. As electronic technology emerges and becomes more sophisticated, there is 

a need to produce a highly reliable solder joint. In addition to that, the suitability of 

manufacturing using current soldering processes needs to be evaluated.  Current typical 

commercial Pb-free solder alloys can also be categorised based on its liquidus temperature 

application range including low melting temperature (<180 ˚C), low-mid range melting 

temperature (180-200 ˚C), middle range melting temperature (200-230 ˚C) and high melting 
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temperature range (>230 ˚C). Table 1 shows the typical Pb-free solder categories and 

available alloys on the current market [38]. 

 

Table 1: Pb-free solder categories and available alloys on the current market [38]. 

 

 

2.2 The development of reinforced solders 

 

Recently, there have been various research studies done on developing new solder alloys 

or in improving current available solder materials. One suggestion to improve the current 

available solder material is by incorporating reinforcements to the solder. Reinforcement to 

solder materials can also be categorised by intrinsic reinforcements and extrinsic 

reinforcements. Intrinsic reinforcement is categorised as reinforcement to the bulk solder 
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produced by forming intermetallic phase particles particularly during the soldering 

solidification or subsequent annealing. Extrinsic reinforcement is categorised as 

reinforcement particles incorporated into the solder externally. Examples of compounds 

used as intrinsic reinforcement to solder joints are primary intermetallic compounds such as 

Ag3Sn, Cu6Sn5, (Cu,Ni)6Sn5 and AuSn4. On the other hand, extrinsic reinforcements can be 

classified into metallic reinforcements and non-metallic reinforcements. Metallic 

reinforcements can be in the form of any single-element particles such as Al, Fe, Zn, Ni and 

Co or they can be in the form of any intermetallic compound particles such as Ag3Sn, 

Cu6Sn5, (Cu,Ni)6Sn5 and AuSn4 [39-42]. Non-metallic reinforcements can be in the form of 

ceramic particles such as particle oxides and non-oxides or carbon base materials (e.g., 

carbon nanotubes, activated carbons, graphite or diamonds). Examples of oxide particles 

includes TiO2, Al2O3, ZrO2, and SnO2 [33, 43-45]. Moreover, examples of non-oxides are 

carbide, nitride, boride or silicide particles. This includes SiC, Si3N4 and TiB2 [31, 46, 47].  

These reinforcement particles are in various shapes and sizes where they could be in the 

form of micro-size or nano-size particles. These shapes are flaky or spherical, and fibres or 

rods/tubes [48]. Overall, the reinforced Pb-free solders can be classified on the basis of 

Figure 2.  

 

The development of these reinforced solders are similar to the concept of metal matrix 

composite (MMC) materials in which the matrix used are alloys from a metal group and 

reinforcements are either metallic or non-metallic particles. In the development of reinforced 

solders, it is essential to meet certain criteria in order for the solder to be effectively used in 

current soldering technology applications. Several criteria are to be considered such as 

wettability of reinforcement to the solder matrix, wettability of solder to substrate, solubility 

of the reinforcement, optimal particle size and meet current solder processing and operating 

conditions [49, 50].  
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Figure 2 : Reinforced Pb-free solder classification. 

 

2.3 Fabrication methods of reinforced solders 

 

There are various methods in the fabrication of reinforced solders reported on in the current 

literature. However, the fabrication process of reinforced solders may be generalized into 

two main methods: mechanical mixing and in-situ method, as in Figure 3 [50]. In the 

fabrication of in-situ method, it may also be referred to as the intrinsic reinforcing method in 

forming primary intermetallic particles during soldering solidification [51]. Examples of 

primary particles in common Sn Pb-free solder alloys includes Cu6Sn5, Ag3Sn, (Cu,Ni)6Sn5 

and AuSn4. These primary intermetallics, which form during soldering, may act as intrinsic 

reinforcements to strengthen the solder joint. However, it is known that these intermetallics 

are brittle. Excessive and large primary intermetallics may deteriorate the solder joint 

strength depending on the location [52]. Large primary intermetallics located near the solder 

joint surface may create a weak point and a crack may be initiated. In the study of failure 

mechanisms of solder joints, Wang et al. [53] and Monlevade at al. [52] indicate that large 

intermetallics, which includes the primary and interfacial intermetallic compound layer, could 

promote crack initiation in solder joints. Xian et al. [54] report that primary Cu6Sn5 formation 

in the bulk solder is shown to be affected by the increasing Cu content of the liquid due to 

the Cu dissolution, the change in phase equilibria and the degree of undercooling for β-Sn.  
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Hung at al. [55] also report that Cu% in Sn-Cu solders influences the Cu-Sn intermetallic 

formation where increasing the Cu content increases the Cu-Sn intermetallic and refines the 

Sn-rich phase. Lewis et al. [56] and Park et al. [57] report that in eutectic Sn-Ag-Cu solder 

alloy, Cu6Sn5 intermetallic are the dominant intermetallic to form. Large plate-like primary 

Ag3Sn were able to be observed on a high silver content solder alloy [58, 59].  In addition, 

several studies indicate that in Sn-Cu and Sn-Ag-Cu solder alloys, the non-planar Cu6Sn5 

primary intermetallic typically forms in branches where it is hypothesized that it grows from 

a central point before separating into distinct branches [60, 61]. In addition to decreasing 

the cooling rate, the increase in Cu alloying could decrease the inter-branch spacing [60, 

62]. On the other hand, Tian et al. [63] report that grooves are formed and become deeper 

and longer after the complete formation of the prime-type Cu6Sn5 crystals which forms into 

branches. Tian et al. [63] also report that the hollowed Cu6Sn5 crystals structure in Sn-3.0Ag-

0.5Cu/Cu was attributed to the growth rates of different crystal planes. 

 

 

Figure 3: Methods of reinforced solder fabrication process [50]. 

 

Another method in the fabrication of reinforced solders is categorised as the mechanical 

mixing method. This method is utilized by extrinsically adding reinforcement particles (micro-

size or nano-size) into the solder alloy matrix and it involves a mixing step to ensure a 

homogenous distribution of reinforced particles. Various mechanical methods have been 

reported on in the literature which include: (i) mixing solder pastes with reinforcement 

particles, (ii) mixing molten solder alloy with reinforcement particles, (iii) mixing solder 

component powders with reinforcement particles, and (iv) mixing solder alloy powders with 

reinforcement particles [50]. 

 

One of the simple processes in fabricating the reinforced solder is mixing solder paste with 

reinforcement particles. It is a simple direct fabrication method and does not require any 

further process after mixing. In this process, solder paste, which consists of a mixture of flux 

and solder alloy spheres, is directly mixed with the reinforcement particles [29, 64].  
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Mixing molten solder alloy with reinforcement particles involves the melting of solder matrix 

and adding reinforcement particles in the molten solder alloy. Shen et al. [65] report on 

fabricated ZrO2 reinforced Sn-Ag solder. ZrO2 nano-size particles to the amount of 2% were 

added to the molten Sn-3.5Ag solder alloy in an arc melting furnace with argon gas 

atmosphere to reduce the effect of oxidation. The mixture was then mechanically mixed for 

30 minutes using an electromagnetic stirrer and subsequently cooled until it solidified.  

 

Mixing solder component powders with reinforcement is generally a method of weighing the 

amount of each component materials, e.g. Sn and Cu powders, and mixing the metal 

powders with reinforcement materials. This method is normally known as the mechanical 

alloying method in the fabrication of reinforced solders [66-69]. Mixing solder alloy powders 

with reinforcement particles is a method by mixing pre-casted solder alloy powders and then 

mechanical mixing with reinforcement particles. Lin et al. [70] [71, 72] and Liu et al. [73] 

fabricated reinforced solders by mixing nano-sized particles with Sn-Pb solder powders. 

Nano-sized Ag and TiO2 powders were mechanically mixed for 15-30 minutes in Sn-Pb 

solder powders with water soluble flux by Lin and Liu respectively. Then the solder mixture 

was melted on a heating plate to obtain the reinforced solder. In addition, the powder 

metallurgy method could be used by mixing the solder alloy powder with reinforcement 

particles which were reported on in several studies [10, 26, 30, 31, 36, 74-79].  

 

The powder metallurgy method consists of several steps which include mixing, forming and 

sintering as in Figure 4. The first step in the powder metallurgy process is weighing the 

desired mixture composition and subsequently blending the mixture homogenously. This 

step is important in ensuring the creation of a well homogenised mixture before further steps 

are taken.  Secondly, homogenously mixed powders are then formed by a compaction 

method which may consist of hot compaction, warm compaction or cold compaction. Cold 

compaction is the most commonly used compaction method while hot compaction is the 

least used in forming the mixed reinforced solder [26].  
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Figure 4: Common powder metallurgy process method [80]. 

 

The final important procedure in the PM process of the fabrication of reinforced solder is 

sintering. Sintering is essentially the most important procedure in ensuring the toughness of 

the compacted powders for further subsequent processing. The sintering method is whereby 

the formed mixture is heated below the melting point of the matrix and normally heated to 

70-80% of its liquidus temperature [81-83]. The sintering process can be either conventional 

sintering or microwave sintering. Conventional sintering is the process of heating the 
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compacted powders in normal ovens. Where conventional sintering would normally 

consume time and energy, microwave sintering is more efficient and only requires a short 

sintering time [84]. The use of microwave sintering in the fabrication of reinforced solders 

offers more than just densification of the metal compact. Microwave sintering also provides 

a unique heating characteristic of the metal compact with distinctive results. Conventional 

resistance heating from the outside to the inside of the compacted powder preform often 

results in poor microstructural characteristics at the core of the preform. Moreover, green 

compacts of solder sintered using conventional sintering are easily exposed to oxidation 

since long durations are required for homogenization of temperature while in microwave 

heating, the holding time is not required. Oxidation is highly detrimental in soldering because 

it prevents the solder reacting with the metal substrate. Oxidized sintered solder bulk can 

be considered useless for soldering.  

 

 

Figure 5: Temperature distribution samples for: (a) conventional heating (b) microwave 

heating (c) hybrid microwave heating [18]. 

 

Microwave heating is unique and different from conventional heating because of the special 

heating characteristics including penetrating radiation, rapid heating, controllable field 

distributions, and selective heating of materials and self-limiting [85]. There are two methods 

of microwave heating which can be used. They are direct heating by pure microwaves and 

the microwave hybrid technique. Pure microwave heating is where the samples are placed 

directly inside the microwave cavity and exposed to microwave energy while the hybrid 

technique, using a susceptor material, absorbs microwave energy to improve heating. 

Therefore, this is a more rapid sintering process compared to conventional and direct 

microwave heating. Morteza et al. [18] illustrate the heat distribution comparison during 

sintering using conventional microwave and hybrid microwave heating as shown in the 

temperature profiles schematics of Figure 5. The red colour in this Figure indicates the 

distributed heat and contrasts conventional heating, which results in heat being transferred 

from the outer to inner areas, with the situation in microwave heating, where heat is 

transferred from the inner to outer areas. The well distributed heat achieved by using hybrid 
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microwave heating results in a homogenous fine microstructure and reduces the porosity 

which may translate into increased solder reliability.  

 

Both conventional and microwave sintering are normally conducted with the aid of inert gas, 

such as argon or nitrogen, to eliminate oxidation [82]. The sintering procedure is used to 

fuse particles by solid-state bonding where the melted particle will cover the unmelted 

particles. Figure 6 indicates the particle bonding mechanism in sintering [86]. During the 

early stage of heating in the sintering process, particles will make contact, a neck growth 

will form, and the neck will subsequently grow larger. If the sintering time is prolonged, the 

particles will fully coalesce forming larger particle grains that are approximately 1.26 times 

larger than the diameter of the original single particle. In addition, pores that are initially 

entrapped between the particles will be reduced during sintering. Figure 7 shows the 

porosity reduction during sintering where the pores between the grain boundary are reduced 

producing a denser sintered material. These initial large pores become more spherical and 

smaller after sintering [86].  

 

 

Figure 6: Bonding of particles during sintering [86]. 
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Figure 7: Pore structure reduction during sintering [86]. 

 

After the sintering process, the sintered samples may be further processed to form the 

desired end product. In the fabrication of reinforced solder, sintered samples may be rolled 

or extruded. The extrusion method is reported as the secondary process after sintering of 

reinforced solders which creates higher solder strength, and could reduce the 

microstructural defects of the sintered solder [23, 36, 87]. 

 

2.4 Interfacial intermetallic compound (IMC) layer of reinforced solder 

 

The majority of the Pb-free solder alloy systems used in the production of electronic 

products, utilise Sn-rich solders. Since Sn-rich solders have excellent solderability on Cu, 

Cu substrate has been widely used in electronic assembly. Typically, during the soldering 

of Sn-Cu solder systems on Cu substrate, ƞ-Cu6Sn5 and ɛ-Cu3Sn phases are common 

interfacial layers that form between the solder/Cu substrate [5, 59, 88, 89]. During the liquid-

solid interaction of molten solder and Cu substrate, it is believed that a rapid dissolution of 

Cu into molten solder with a lower Cu concentration occurs immediately after the Cu oxide 

film has been removed by the actions of the flux. This rapid direct dissolution of Cu occurs 

until the conditions become favorable for the nucleation and growth of IMCs such as ƞ-

Cu6Sn5 and ɛ-Cu3Sn [90-92]. The formation of interfacial IMC layers are based on two main 

reactions: (i) dissolving of the metal substrate into the molten metal and (ii) bonding of the 

active constituent elements in solder material with the substrate material [93].  

 

The presence of interfacial IMCs is favourable because it shows the existence of 

metallurgical bonding between the two metallic surfaces, however, excessive formation of 

interfacial IMCs will degrade the reliability of the formed joint [94-96]. Therefore, 
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understanding the bonding reaction between the solder-substrate interfaces is 

fundamentally essential to understanding the reliability of solder interconnections. In 

improving the solder joint reliability, many researchers have investigated the growth 

behaviour of interfacial IMCs and several models have been developed to describe 

interfacial IMC growth during solder wetting reactions and solid-state ageing [90, 91, 97-

103]. In understanding the IMC growth mechanisms, recent kinetic studies of interfacial IMC 

growth have focussed on solid state ageing effects rather than the wetting reaction during 

the liquid-solid interaction. This solid state ageing is more favourable for laboratory 

examinations as the kinetic processes are much slower compared to the wetting reaction 

[104]. 

 

Solid state diffusion mechanism directly controls the progression of the intermetallic phase. 

The thickness of the intermetallic layer which is a result of time and the connection against 

the thickness of the intermetallic layer (𝑌), and the deterioration time (𝑡) can be described 

by Equation 1, 

 

𝑌 =  𝑌0 + √𝐷𝑡 (Equation 1, [89]) 

 

Where 𝑌0 is the thickness of the intermediate layer at 𝑡 = 0 and 𝐷 is the diffusion coefficient. 

By plotting the thickness of the intermetallic layer (𝑌) versus the square root of deterioration 

time (𝑡 1/2), the gradient of the graph is equivalent to the square of the diffusion coefficient of 

the intermetallic phase at a different deteriorating temperature. The diffusion coefficient is a 

function of temperature by Arrhenius equation as described in Equation 2, 

 

𝐷 = 𝐷0𝑒−𝑄/𝑅𝑇  (Equation 2, [89]) 

 

Where the temperature independent constant is identified as the frequency factor 𝐷0, for 

diffusion to occur the activation energy is 𝑄, while the universal gas constant is 𝑅 and the 

absolute temperature which is in Kelvin is 𝑇. By using the natural logarithm in Equation 2 

the activation energy of the intermetallic phase can be determined, which can then be 

expressed as Equation 3 as the diffusion coefficient.  

 

ln 𝐷 = ln 𝐷0 −
𝑄

𝑅
(

1

𝑇
)  (Equation 3, [89]) 
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This equation will the form of 𝑦 = 𝑚𝑥 + 𝐶, in which ln 𝐷 is the dependent variable and 1/T 

is the independent variable. When the diffusion coefficient (𝐷) is plotted versus the reverse 

deteriorating temperature (1/T), the activation energy (𝑄) can be determined from the 

gradient of the graph, and the frequency factor (𝐷0) can be computed from the intercept of 

the graph. 

 

Microstructures and intermetallic formation in a solder joint are often closely associated with 

solder joint reliability [61]. Most research on non-metal reinforced solders reports that 

additions of non-metal reinforcement either in micro-size or nano-size such as TiO2, Al2O3, 

SiC, Si3N4, single-wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes 

(MWCNT) reinforcements have suppressed intermetallic formation. In the study of Sn-

3.5Ag-0.5Cu with additions of Al2O3 nano-sized reinforcement, Tsao et al. [35] report that 

the Cu6Sn5 IMCs formed in prism like shapes rather than scallop like shapes in Sn-3.5Ag-

0.5Cu solders based on cross sectioned samples (Figure 8).  

  

 

Figure 8: Prism like intermetallic compound formation of Sn-3.5Ag-0.5Cu-1Al2O3 [35]. 

 

Tsao et. al. [35] hypothesized that the Al2O3 nanoparticles are absorbed in a liquid 

nanocomposite solder/Cu substrate interface which then suppresses the Cu dissolution in 

the liquid solder and in return reduces the Cu6Sn5 formation, retarding the IMC layer. This 

hypothesis is supported by the Gibbs-Thomson effect which may explain the growth rate of 

Cu6Sn5 between scalloped or prism like grain morphology with respect to the ripening flux 

(Jr) and interfacial reaction flux (Ji) [35, 61]. In addition, El-Daly et al. [24] report that by 

adding SiC nanoparticles to a Sn-1.0Ag-0.5Cu (SAC105) solder, the plasticity of SAC105 is 

altered due to the structural refinement of sub-grain sizes of primary β-Sn. El-Daly 
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hypothesize that SiC nanoparticles could act as additional nucleation sites where the rate 

of solidification of β-Sn will be faster and limit the time for the Ag3Sn and Cu6Sn5 to grow. 

This somehow limits the diffusion reaction in the solder alloy where in other words, the 

reinforcement acts as a barrier to Ag3Sn and Cu6Sn5 IMC formation. This mechanism was 

also reported by Liu et al. in the reinforcing with graphene nanosheets to Sn-Ag-Cu solder 

alloys where the graphene nanosheet enhanced the thermodynamic resistance of the IMC 

growth and the surface diffusion of the IMC was suppressed by the reinforcement [105]. 

Based on differential scanning calorimetry, the undercooling of Sn-1.0Ag-0.5Cu-0.75SiC 

was reported to be lower compared to SAC105 and the larger undercooling is associated 

with more extensive IMC growth [61]. Another study by Tsao [106], as in Figure 9, reveals 

the intermetallic suppression of Sn-3.0Ag-0.5Cu with nano-size TiO2 after thermal ageing. 

The report by Nai et. al [64] indicates that carbon nanotubes (CNT) reinforced Sn-Ag-Cu 

solder has minimal effect on the suppression of interfacial IMC during soldering but 

suppresses the interfacial IMC layer during the later isothermal annealing. It is reported that 

CNT reinforced Sn-Ag-Cu solder results in a lower diffusion coefficient compared to non-

reinforced solder where the reinforcement retards the diffusion of Cu and Sn atoms by acting 

as a diffusion barrier.  

 

 

Figure 9: The relationship of intermetallic compound thickness to ageing time and 

temperature for (a) Sn-3.5Ag-0.5Cu and (b) Sn-3.5Ag-0.5Cu + nano-size TiO2 reinforced 

solder [106].  

 

Study on the SrTiO3 nano-size particle reinforcement additions on Sn-3.0Ag-0.5Cu was 

conducted by Fouzder et al. [107]. In their report, it is shown that SrTiO3 suppresses the 

interfacial IMC layer which also results in a finer dispersion of IMC. The fine dispersion of 

IMC results in the SrTiO3 reinforced solder after multiple-reflow and annealing due to the 
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high surface free energy and nucleation density on the solder/Cu interface. In addition, Gain 

and Chan [108] investigated the effect of ZrO2 reinforcement particles to Sn-Ag-Cu solder 

after annealing and found that the additions of the nano-size particles also resulted in a 

decrease to the interfacial layer with a more planar interfacial Cu6Sn5 and Cu3Sn layer.   

 

Besides the additions of non-metallic reinforcements, several single element reinforcement 

particles have been reported to effect the suppression of the interfacial IMC. Haseeb et al. 

[109] report that additions of Mo nano-size particles could suppress the formation of 

interfacial IMC in Sn-3.5Ag-0.7Cu/Cu solder joint after reflow and subsequent numbers of 

reflow. As Figure 10 shows, with the additions of Mo, a significant thickness reduction and 

width of the interfacial Cu6Sn5 layer occurs. Haseeb hypothesized that the Mo nano-particles 

had suppressed the interfacial IMC through a discrete particle effect being absorbed by the 

interfacial IMC grain boundaries. Hasseb also conducted a study [110] on the Co nano-size 

particle additions to the Sn-Ag solder where the interfacial Cu6Sn5 in the solder joint changed 

from a scallop shape to a more planner interfacial layer. Additions of Co reinforcement 

particles reduced the thickness of the Cu3Sn interfacial layer and increased the Cu6Sn5 

layer. Co nano-sized particle additions reduced the effective interdiffusion coefficient in 

Cu3Sn and thus reduced its growth. In addition, during multiple reflow, it is reported that 

nano-sized Zn particles were able to suppress the interfacial Cu6Sn5 layer on Sn-3.8Ag-

0.7Cu [111]. It was reported that the thickness of interfacial Cu6Sn5 decreases as the Zn 

particles increases.  
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Figure 10: Backscattered images of (a) Sn-Ag-Cu solder after 10 days annealing, (b) Sn-

Ag-Cu-0.5SrTiO3 solder after 10 days annealing, (c) Sn-Ag-Cu solder after 40 days 

annealing and (d) Sn-Ag-Cu-0.5SrTiO3 solder after 40 days annealing [107]. 
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Figure 11: Backscattered images of interfacial Cu6Sn5 layer on (a) Sn-3.5Ag-0.7Cu after 

one time reflow (b) Sn-3.5Ag-0.7Cu-Mo after one time reflow (c) Sn-3.5Ag-0.7Cu after six 

time reflow and (d) Sn-3.5Ag-0.7Cu-Mo after six time reflow [109].   

2.5 Microstructure of reinforced solder 

 

As explained in section 2.2, intrinsic reinforcement is considered as reinforcing particles in 

the bulk solder produced by forming primary IMC particles during the soldering solidification 

or subsequent annealing while extrinsic reinforcement is incorporated in the solders 

externally. Microstructure observation and analysis of the solder matrix could determine the 

phases that form and also assist in understanding its distribution across the solder joint. This 

subsection is a review on microstructures of intrinsic and extrinsic reinforced solder.     

 

Wang et al. [112] investigated the growth of primary Cu6Sn5 in Sn-6.5Cu solder with the 

additions of 0.2 wt% Al trace element. Using a high resolution SXRI technique, it was 

reported that Al addition refined the size of the primary Cu6Sn5 (Figure 12). From the 

findings, it is suggested that based on the EDS analysis made on the primary intermetallic 

particles, Cu-Al intermetallic was also observed near to the primary Cu6Sn5. It is suggested 

that the Cu-Al intermetallic formation suppressed the primary Cu6Sn5 from growing. In the 

study, Wang also reported different shapes of primary Cu6Sn5 were observed in both Sn-
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6.5Cu solder and Al addition solder samples including I-shape, Y-shape and X-shape which 

resulted in a different growth rate during solidification.   

 

 

Figure 12: Microstructure of as-solidified (a) Sn–6.5Cu and (b) Sn–6.5Cu–0.2Al [112]. 

 

Effects of Ag and In additions is reported to result in formations of fine primary Ag3Sn fibers 

and Cu6Sn5 eutectic microstructure [113]. As shown in Figure 13, the additions of Ag and In 

result in a refining of β-Sn grains and may improve the creep resistance properties of the 

solder. With the increase of Ag to 2% into the solder alloy, more Ag3Sn fibres were observed 

which may act as a pinning effect between the Sn grain boundaries. On the other hand, with 

In additions, γ-SnIn4 precipitation was observed in the eutectic microstructure and Cu6Sn5 

eutectic were able to be reduced.    
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Figure 13: Backscattered electron SEM images of etched sample of: (a) Sn–0.7Cu, (b) 

Sn–0.7Cu–2Ag and (c) Sn–0.7Cu–2In and (d) image of selected EDS area conducted in 

the study [113]. 

 

In a study for investigating the SiC micro-sized particles (1 μm) effect to the bulk solder, 

Wang et al. [114]  report that primary IMC size and Sn dendrites were able to be reduced 

with additions of the reinforcement particles in Sn–3.7Ag–0.9Zn as shown in Figure 14. It is 

reported that due to the heterogeneous nucleation of Sn dendrites from the reinforcement 

particles and acting as nucleation sites, more and finer Sn dendrites could be produced.    

 



 

25 
 

 

Figure 14: (a) Microstructure of Sn–Ag–Zn (b) with 0.05% SiC additions and (c) with 0.1% 

SiC additions [114]. 

 

Investigations of SiC reinforcing effects were also conducted by El-Daly et al. [115] with 

maximum 0.75% additions of nano-sized SiC particles into Sn–1.0Ag–0.5Cu solder. It was 

found that there are limitations of reinforcement particles which efficiently benefit the primary 

Cu6Sn5 suppression and Sn grain refinements due to the effect of heterogeneous nucleation 

in the solder matrix. They also suggest that the reinforcing particles could reduce the velocity 

growth of intermetallic in the solder. Similar effects of Sn grains and primary IMC 

suppression observed in Sn-3.0Ag-0.5Cu solder (Figure 15)  was reported due to the 

additions of nucleation sites [46]. Additionally, El-Daly et al. [24] report SiC nano-sized 

particles added to a Sn-1.0Ag-0.5Cu altered the plasticity of the solder due to the structural 

refinement of sub-grain sizes of primary β-Sn (Figure 16).  

 

Tsao et. al. [35] report that Al2O3 nanoparticles are absorbed in a liquid nanocomposite 

solder/Cu substrate interface which then suppresses the Cu dissolution in the liquid solder 

[35, 61]. As shown in Figure 17 and 18 shows additions of Al2O3 nano-sized particles also 

reported to refine Ag3Sn and Cu6Sn5 intermetallic during the solidification of Sn-3.5Ag-0.5Cu 

and Sn-0.7Cu respectively [35, 44]. Tsao et al. report the refinement of primary Ag3Sn and 

Cu6Sn5 is due to the adsorption effect of Al2O3 reinforcements.  
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Figure 15: Backscattered electron SEM images (a) Sn-3.0Ag-0.5Cu solder matrix, (b) Sn-

3.0Cu-0.5Ag-0.7SiC solder matrix (c) EDS analysis results for (a), and (d) EDS analysis 

results for (b) [46]. 

 

 

Figure 16: Backscattered electron SEM images of Sn-1.0Ag-0.5Cu-0.75SiC with sub-

grains of primary β-Sn [24]. 
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Figure 17: Backscattered electron SEM images of (a) Sn-Ag-Cu, (b) Sn-Ag-Cu-0.25Al2O3, 

(c) Sn-Ag-Cu-0.5Al2O3 and (d) Sn-Ag-Cu-1Al2O3 [44]. 

 

  

 

Figure 18: Backscattered electron SEM images of (a) Sn-Ag-Cu,(b) Sn-Ag-Cu–0.5Al2O3, 

and (c) Sn-Ag–Cu-1Al2O3 [35]. 
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With the effect of nano-sized particles of ZrO2, Gain et al. [108, 116] report that the 

reinforcement reduces the Cu6Sn5 eutectics in the solder matrix (Figure 19). Similar to other 

non-metallic reinforcement effects, they also agree that the ZrO2 particles were being 

adsorbed at the surface of Sn and intermetallic phases and hence refined the microstructure.   

 

 

Figure 19: Backscattered electron SEM images of (a, b) Sn–Ag–Cu and (c, d) Sn–Ag–Cu–

1ZrO2 soldered on Cu-OSP substrate for 5 minutes (a and c) and 30 minutes (b and d) at 

250 °C [116]. 

 

In other studies, Tsao et al. report that the effect of TiO2 nano-sized reinforcement additions 

to Sn-0.7Cu [34] and Sn-3.5Ag-0.5Cu [117] also suppress the primary intermetallic. The 

effect of nano-sized TiO2 particles added to Sn-3.0Ag-0.5Cu was also investigated by Tang 

et al. with maximum of 0.6% of reinforcement [118]. A similar phenomenon was also found 

in their study with El-Daly et al. [115]  where they report that with the increase of TiO2 nano-

sized particles added to the solder, the amount of needle-like Ag3Sn decreases and 

becomes more significant after longer reflow time.  Hence, the majority of the literature 

suggests that additions of the non-metallic reinforcements were able to reduce the Sn grain 

size and other intermetallic in the bulk solder. However, there is yet solid proof to show that 

the hypothesis explanation of the reinforcement effect results in a finer microstructure. 
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2.6 Mechanical properties of reinforced solder 

 

This section is a report on the current literature on reinforcing effects to the mechanical 

properties of the solder joint. It is reported that the weak point in a solder joint is on the 

interface of the joint, where interfacial IMC layers form where cracks may be initiated [39]. 

During operating conditions of an electronic interconnection, severe environmental stress 

and loading is applied and hence weakens the solder joint. Hence, by using reinforced solder 

joints, precipitation hardening is possible and could potentially strengthen the solder joint 

[39].   

 

Tai et al [119] report that additions of nano-structured POSS to Sn-3.5Ag increased the 

hardness value of the reinforced solder with a relatively smaller Ag3Sn intermetallic and 

spacing. In the studies of El-Daly and Hammad [113, 120] the effects of Ag and In to the 

creep properties of Sn-0.7Cu are investigated and reported on. By suppressing the primary 

Cu6Sn5 intermetallic in the bulk solder and introducing small flake-like Ag3Sn in the bulk, 

creep resistance of the solder joint may increase (Figure 20).  

 

 

 

Figure 20: Creep test results comparing  Sn–0.7Cu, Sn–0.7Cu–In and Sn–0.7Cu–Ag 

[113]. 
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Increasing amount of SiC reinforcement also resulted in an increase of the microhardness 

value of the reinforced solder. The findings of Wang et al. [114], on studying the influence 

of SiC reinforcements to Sn–3.7Ag–0.9Zn where β-Sn dendrites, Ag3Sn and AgZn 

intermetallics were able to be refined, can be observed in Figure 21. Similarly, Tsao et al. 

[44] added 0.25-1wt% of Al2O3 nano-sized reinforcement particles in Sn-3.5Ag-0.5Cu where 

an increase of microhardness of the reinforced solders were achieved. The increase of 

microhardness was reported to be related to the dispersion strengthening of the Al2O3 

reinforcement particles and the intermetallic in the solder matrix.   

  

 

Figure 21: Hardness result of SiC reinforcement additions to Sn–Ag–Zn solders [114]. 

 

El-Daly et al. [46] report that SiC (0.7wt%) reinforced Sn–3.0Ag–0.5Cu refined the 

microstructure and significantly increased the solder joint strength and elastic modulus. 

Additions of SiC also resulted in a slight increase of liquidus temperature. Additions of Al2O3 

to Sn-3.0Ag-0.5Cu increased the reliability of the solder joint by increasing the solder joint 

strength by conducting a shear test after thermal shock which also resulted in the size 

reduction of Sn dendrites and increased the area of eutectic microstructure [121]. As in 

Figure 22, additions of Al2O3 up to 1% increased the shear strength to approximately 4000 

gf from approximately 3750 gf on the non-reinforced Sn-3.0Ag-0.5Cu solder joint [121]. 

Effects of Fe2O3 [122] relatively increased the solder joint of low silver Sn-Ag-Cu solder joints 

where smaller particle size (20 nm) resulted in the highest shear strength. This is majorly 

due to the suppression of the interfacial IMC which was reported by Gu et al [123]. Adding 

the reinforced silver modified graphene nanosheets to Sn-Ag-Cu solder alloy resulted in a 
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high ultimate tensile strength after additions of 0.05 wt% where from fracture surface 

analysis of the tensile test sample had indicated an accumulation of the reinforcement on 

the fracture surface of the solder, as can be observed in Figure 23 [124]. However the 

elongation of the solder had reduced with the increase of reinforcing additions [124], which 

is similar to MWCNT reinforcement additions to Sn-3.5Ag-0.7Cu where results of ultimate 

tensile strength increased by 0.07% of the reinforcement addition [125]. These CNTs were 

able to be observed on the fractured tensile samples as in Figure 24. Han et al. [126] report 

that additions of 0.5 wt% CNTs to Sn-3.5Ag-0.7Cu increased the ultimate tensile strength 

and yield strength but the ductility of the reinforced solder had reduced with the increase 

amount of reinforcement.  

 

 

Figure 22: Shear strength of reinforced Al2O3 Sn-3.0Ag-0.5Cu solder joint [121]. 

 

 

Figure 23: Secondary electron SEM images of fractured surface Ag modified graphene 

reinforced Sn-Ag-Cu solder [124]. 
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Figure 24: Secondary electron image of MWCNT reinforced Sn-3.5Ag-0.7Cu tensile 

fracture surface [125]. 

 

In addition, aluminium borate (Al18B4O33) whisker reinforcement added to Sn-Bi solder 

reduced the interfacial intermetallic layer compared to non-reinforced solder joint after 

multiple melting cycles and thermal annealed samples. It was reported that the whiskers 

reinforcement could hinder Sn dislocation slip and strengthen the solder joints [127]. Micro-

sized Si3N4 particles could be also used as reinforcing particles in Sn-0.7Cu solder which in 

the lap-shear test resulted in an increase of hardness and ultimate shear strength of the 

solder joint [128]. 

 

 

Figure 25: Tensile strength results of TiO2 reinforced solder comparing with non-

reinforced Sn-0.7Cu solder [129]. 

 

In most of the studies of Tsao et al., the TiO2 reinforced solder had improved the mechanical 

properties of a solder joint [129-133].  TiO2 additions to Sn-1.5Sb-1Ag resulted in 

refinements to Ag3Sn intermetallic in the bulk solder and resulted in a higher microhardness 
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and tensile strength on fast and slow cooled samples [133]. TiO2 particle additions on Sn-

0.7Cu solder were reported to increase the tensile strength to a more uniform eutectic 

microstructure with finer Cu6Sn5 intermetallic in the bulk solder [129]. As can be observed 

in Figure 25, a higher amount of TiO2 (1wt%) in Sn-0.7Cu increased the tensile strength of 

the reinforced solder [129].  

 

In general, most of the reinforcement additions were reported to increase the mechanical 

properties of the solder by increasing the tensile strength and hardness and increasing the 

solder joint shear strength. This was majorly due to the reinforcement additions that were 

able to pin to the dislocation slides in the bulk solder, suppressing the interfacial intermetallic 

layer and also refining the microstructure in the bulk solder.    

 

2.7 Summary and remarks 

 

In summary, reinforcement to solder materials can be categorised by intrinsic 

reinforcements and extrinsic reinforcements. Intrinsic reinforcement is categorised as 

reinforcement to the bulk solder produced by forming intermetallic phase particles 

particularly during the soldering solidification or subsequent annealing while extrinsic 

reinforcement is categorised as reinforcement particles incorporated to the solders 

externally. Based on the current literature, reinforcing solder materials with either intrinsic or 

extrinsic reinforcement particles is a viable method in improving solder joint properties such 

as the hardness and shear strength. Various reinforcement particles, of either nano or micro 

size, have been widely selected and used in solder alloys. Most of the findings widely report 

that nano-sized non-metallic particles were able to suppress the interfacial intermetallic layer 

of a solder joint and refine the microstructure in the solder matrix. Due to this effect, the 

mechanical properties of a solder joint were widely reported to have improved. The 

mechanism of the reinforcement additions to the refinements of the intermetallic (either in 

the interfacial layer or the matrix) of a solder joint is still not strongly proven or understood. 

In addition, the majority of reinforcement effect studies of solder joints were conducted on 

Sn-Ag-Cu solder alloy and less study reports were conducted on Sn-Cu solder alloys. Since 

complex reactions happen during soldering, especially in the reinforced solder joints, further 

in-depth investigation of the microstructure formation in reinforced solder joints is needed to 

fully understand the reactions. The purpose of this research study is to investigate the 

microstructure formations in reinforced Sn-Cu based solder in both intrinsic and extrinsic 
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reinforced solders. This includes investigating the effects of reinforced solder during single 

reflow, multiple reflow and annealing experiments. Solder joint strength of the reinforced 

solder will then be also evaluated.  

 

It is known that the microstructure of a material is an important factor in both materials 

processing and performance, and microstructure control plays is critical in determining 

properties in many applications [134]. In solder joints specifically, the microstructure can 

affect the performance including the fatigue life during thermal cycling [135], the tolerance 

to drop impacts [136] and the resistance to electromigration [137].  Since the mechanism by 

which reinforcement particle additions cause a refinement in the the intermetallics present 

in are unclear, this study focuses on the microstructure formation in reinforced solder joints.  

This is an important area of research in the electronic packaging field [2, 138] particularly 

considering the need to develop more advanced electronic joining technologies while 

meeting the global environmental demands required of Pb-free solder joints [1, 4]. The 

mechanisms relating to microstructure formation in the reinforced solder will have potential 

to be used as a basis in controlling the microstructure in the development of high-

performance solder joints for both general and specific applications. 
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Chapter 3 Fabrication method of extrinsic ceramic 
reinforced solders and methods of in-situ 
soldering observations using synchrotron X-ray 
radiography imaging (SXRI) techniques. 
 

This chapter focuses on the methodology which was used throughout the study to fabricate 

extrinsic ceramic reinforced solders and a method of in situ soldering observation using an 

SXRI technique. Fabrication of TiO2 reinforced solder using a PM method involving 

microwave sintering technique and characterization of the bulk solder materials is presented 

in Paper 1 of this thesis titled “Development of a microwave sintered TiO2 reinforced Sn-

0.7wt%Cu-0.05wt%Ni alloy”. In this paper, characterization of the fabricated reinforced 

solder materials was performed including microstructure, thermal properties the coefficient 

of thermal expansion and mechanical properties using microhardness indentation. Using 

XPS and advance characterization analytical tools such as synchrotron micro-XRF and 

HRTEM, the distribution of TiO2 throughout the solder matrix after microwave sintering was 

investigated. These results were used as a basis in understanding the bulk properties of the 

fabricated reinforced solder before soldering. Based on the superior properties of the 

fabricated solder, the microwave sintering PM route was discussed as a promising method 

for fabrication of reinforced Pb-free solders.  

 

In analysing complex and rapid reactions during soldering, an in situ soldering observation 

technique was successfully developed which enabled reactions during soldering to be 

observed in real-time.  The technique development is outlined in Paper 2 of this thesis and 

is titled “In-situ soldering process technique by synchrotron X-ray imaging”. This paper is a 

major achievement and represents the first in situ observation of the soldering process. This 

allowed complex reactions during soldering to be observed including the reactive wetting of 

molten solder on a Cu substrate, flux void formation and the initial formation of interfacial 

Cu6Sn5. This paper explains the experimental setup of the in situ soldering experiment using 

SXRI including methods for determining the optimum beam energy used for observation.  

This technique is used as a basis for other experiments in this thesis and was critical in 

understanding the microstructure formation of the reinforced solders.  It is a technique which 

can be further developed and is likely to find application in the analysis of complex reactions 

that cannot be observed using other techniques.  
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Abstract 

 

The use of reinforcing nano-size ceramic particulates is a promising method to improve the 

mechanical and thermal properties of lead-free solder materials. In addition, advanced 

fabrication processes routes such as microwave sintering powder metallurgy (PM) enhance 

properties in the fabrication of composite solders. To elucidate the mechanisms underlying 

the improvements in mechanical and thermal properties, Sn-Cu-Ni with TiO2 nano-

composite additions, fabricated via a microwave sintering PM method, were investigated 

using state-of-the-art characterization techniques. Synchrotron micro-X-ray fluorescence 

(XRF) results detected trace Ti in the solder matrix. This was consistent with X-ray 

photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy 

(HRTEM) results which indicated that nano crystals were within the Sn matrix. It is possible 

these nano crystal form due to the migration of Ti during the rapid high energy microwave 

heating. A hypothesis of improved thermal and mechanical properties of nano-composite 
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solders is discussed based on the results and the microwave sintering PM route was 

discussed as a promising method for next generation lead-free solder processing. 

 

1. Introduction 

Over the past few years the electronic packaging industry has grown rapidly becoming more 

advanced and sophisticated and is constantly adapting to the requirements of the latest 

generation electronic devices. Advances in electronics today are accompanied by advances 

in soldering technology since interconnect materials such as solders are used in electronic 

packaging to electrically and mechanically join components to form functional circuits. In 

electronic assemblies, the solder alloy plays a critical role in performance and reliability [1, 

2].  

 

Development of solder alloys has also been driven by a need to reduce the consumption of 

lead in the tin-lead (Sn-Pb) solders used in previous generation electronic packaging 

industries.  Initiatives such as WEEE (Waste from Electronic Equipment) and RoHS 

(Restriction of hazardous Substances Directive) which took effect on 1 July 2006 [3] have 

seen the European Union (EU) minimize the use of hazardous substances such as lead 

(Pb), mercury (Hg), cadmium (Cd), hexavalent chromium (Cr6+), polybrominated biphenyls 

(PBB) and polybrominated diphenyl ether (PBDE). In addition, there is a consumer 

preference for ‘green’ products in appliances as environmental and a health concern over 

the toxicity of electronic waste is increasing. This has driven the development of lead-free 

solders in the electronic packaging industries. Many organizations such as the Institute of 

Printed Circuits (IPC), the National Institute of Standard and Technology (NIST), the 

National Center for Manufacturing Science (NCMS), and The National Electronics 

Manufacturing Initiative (NEMI) have assisted the electronic industries in implementing lead-

free solders into their products [4]. Among the wide choices of eutectic-based alloys for lead-

free solder tin-silver-copper (Sn-Ag-Cu) is the most selected alloy in the industry while tin-

copper (Sn-Cu) and tin-copper-nickel (Sn-Cu-Ni) are frequently chosen as a lower cost 

alternative for wave soldering techniques [5]. Although there is a broad variety of lead-free 

solder provided by the solder manufacturing industries, there is still no consensus on a 

definitive replacement for traditional Sn-Pb solders [6-10].  

 

The current trend in the electronic packaging industry towards miniaturization of electronic 

devices has been constantly pressuring the microelectronic industries to develop finer pitch 

interconnects. Until now, higher functional densities in printed circuit boards (PCB) are made 
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possible by surface mount technology (SMT). However, SMT processes demand higher 

reliability and dimensional stability of solder joints as less and less solder is allowed for each 

joint. Therefore, the reliability of solder joints becomes extremely important in ultra-fine pitch 

technology [11, 12].  

 

Significant research has been directed at matching the existing lead-free solder properties 

with the processing and property constraints of current PCB materials. Due to the unique 

characteristics of Sn-Pb solders such as low cost and ease of manufacturing, finding suitable 

alternatives free of lead is a challenging issue. Not only must the lead-free alternatives meet 

health, environment and safety requirements, as well as solder joint reliability and 

performance expectations, they must also be compatible with the existing soldering 

processes. This includes the thermal properties of the solder such as liquidus temperature, 

melting range, undercooling and coefficient of thermal expansion (CTE).  

 

One of the emerging technologies in upgrading existing solder alloys involves using a 

composite technology approach to form metal matrix composites (MMCs). A viable way to 

enhance the performance and properties of solder is to introduce a second phase to the 

matrix, forming a composite solder where precipitation and dispersion hardening can be 

utilised [13].  In the early stages of solder composite technology development, Guo [14] 

stressed that the development of composite lead-free is likely to improve the service 

temperature capabilities and thermal stability of the solder joints. Shen and Chan [15] 

discussed the benefits in terms of enhanced creep strength and thermo-mechanical fatigue 

resistance of solder materials while outlining the latest nano-composite solder development 

studies.  

 

Generally, a composite solder involves a eutectic alloy solder reinforced or mixed with 

additional metals or non-metals that have low solubility and diffusivity. Ceramic 

reinforcement is a convenient approach in enhancing the alloy based solder matrix 

mechanical properties without the concern of excessive phase formation either during 

fabrication or later because of the high melting temperature difference between the alloy 

and the ceramic. However, the fabrication of such a composite solder with a homogenous 

distribution of reinforcement particles in an alloy is a challenge, especially when using 

conventional solidification processing methods. Solid state processing, commonly referred 

as powder metallurgy (PM) methods are a leading options to produce these lead-free 

ceramic composite solders with  homogenous distribution of particles [16]. However, in PM 
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methods, a conventional sintering step is quite a challenge in adopting this fabrication 

method since it consumes a significant amount of energy, time and cost and could increase 

the tendency for surface oxidation. Hence, a novel heat treatment process such as 

microwave sintering can be a viable way to development lead-free composite solders in 

order to overcome the inherent disadvantages of conventional sintering [17]. In fabricating 

such composite solder, an end product of a homogenously distributed reinforced composite 

pre-form solder is expected to be achieved for further use in a reflow soldering process with 

the objective of producing a solder joint of high integrity and strength.  

 

Recent research on the incorporation of small additions of ceramic reinforcement in a variety 

of solder matrices including silicon carbide (SiC) [18-20], alumina (Al2O3) [10, 21, 22], 

zirconia (ZrO2) [23-26], titanium oxide (TiO2) [27-32] and silicon nitride (Si3N4) [8, 33]   have 

shown improved mechanical and thermal properties of the resulting solder. Tsao [21] 

hypothesized that with the addition of ceramic reinforcement, these nano-sized ceramic 

particles are absorbed in the liquid during soldering and suppress the dissolution of the Cu 

substrate and in return retard the growth of the intermetallic compound (IMC). El-Daly [34] 

has hypothesized that ceramic nanoparticles could act as additional nucleation sites where 

the rate of solidification of β-Sn will be faster and thereby limit the growth of IMC’s such as 

Ag3Sn and Cu6Sn and in return reduce the brittleness of the solder joint [34]. However, these 

hypotheses are not strongly supported by experimental evidence. Research in the file of 

reinforced solder alloy has focused on developing the composite solder by using a powder 

metallurgy route which comprises of mixing, compaction and sintering of a solder pre-form 

[8, 17, 22, 35, 36]. In recent studies, microwave assisted sintering has been shown to result 

in superior solder performance, especially with respect to mechanical properties [8, 9, 37, 

38], [17, 39]. However, it is currently unclear how the combination of ceramic reinforcement 

and sintering technique act to improve properties. This paper aims to compare the 

processes of microwave sintering and conventional sintering on the microstructure, 

microhardness and thermal properties of a novel Sn-Cu-Ni solder reinforced with nano-scale 

TiO2. Several advanced characterization techniques such as differential scanning 

calorimetry (DSC), dilatometery, high resolution transmission electron microscopy (HRTEM) 

and scanning electron microscopy (SEM) coupled with energy dispersive X-ray 

spectroscopy (EDX), synchrotron micro-X-ray Fluorescence (XRF) mapping and X-ray 

photoelectron spectroscopy (XPS) were used throughout this study.  
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2. Experiment Details 

2.1 Sample Fabrication 

 

In this study, Sn-0.7wt%Cu-0.05wt%Ni solder powders in spherical shape with an average 

particle size of 45 µm supplied by Nihon Superior Co. Ltd. (Figure 1a and 1b) were used for 

the base matrix materials, along with 99.7% purity TiO2 anatase powder supplied by Sigma 

Aldrich, which had an average particle size of <50 nm (Figure 1c). The chemical composition 

of the Sn-0.7wt%Cu-0.05wt%Ni solder powder is shown in Table 1. To fabricate the Sn-Cu-

Ni with TiO2 nano-composite solder, 1wt% of TiO2 particles were incorporated into the Sn-

0.7wt%Cu-0.05wt%Ni solder matrix using a powder metallurgy route. The composite solder 

materials were homogeneously mixed with the base matrix powder in an airtight container 

using a tubular mixer for 1 hour. The solder mixtures were uniaxially compacted in a 12-mm 

diameter mold at 120 bar, and the compacted billets were conventionally and microwave 

sintered in an inert argon atmosphere. Conventional sintering was carried out using a 

horizontal tube furnace (VT furnace) of 6kW power in an argon controlled environment at 10 

°C/min heating rate. Sintering temperatures are normally between 0.75Tm to 0.98Tm and 

from previous studies, the sintering temperatures of Sn base materials for either 

conventional sintering or microwave sintering are in the range of 0.8Tm [8, 9, 17, 33, 36, 37, 

39-41]. Hence, in this study, a sintering temperature at 185 °C (~0.8Tm) was used for both 

conventional and microwave sintering. To ensure homogenous heating 2 hours of sintering 

time was used for conventional sintering [39, 42].  

 

A schematic diagram of the microwave sintering setup used in this study is shown in Figure 

1d. In this study, a microwave oven with an output power of 1,000W at full power was used 

with further details as in Table 2. Approximately 3 minutes of microwave sintering time was 

taken to achieve the sintering temperature.  
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Figure 1: (a) SEM image of Sn-0.7wt%Cu-0.05wt%Ni solder, (b) cross-section of as 

supplied Sn-0.7wt%Cu-0.05wt%Ni powder, (c) bright field TEM image of nano-size TiO2 

particulates and (d) schematic diagram of the microwave sintering setup. 

 

 

Table 1: Chemical composition of the Sn-0.7wt%Cu-0.05wt%Ni solder powder. 

 Sn Cu Ni Sb Bi Zn Al As Cd Pb 

Wt % Balanc

e 

0.62

0 

0.05

6 

0.00

8 

0.01

0 

0.00

4 

<0.00

1 

0.00

3 

<0.00

1 

0.03

1 
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Table 2: Microwave sintering set up specification. 

Microwave Oven Specification 

Power source 120 V, 60 Hz 

Frequency 2450 MHz 

Output power 1000 Watts 

Cavity dimensions 330 mm x 330 mm x 205 

mm  

Sintering Cell Specification 

Susceptor material Silicon Carbide 

Susceptor dimension Inner diameter: 40 mm 

Outer diameter: 52 mm 

Height: 76 mm 

Insulation material Alumina + Silica 

Insulation material internal dimension 150 mm x 150 mm x 155mm 

Insulation material thickness 25 mm 

 

2.2 Analysis and characterization 

 

The microstructures of the sintered samples were observed using a JEOL 6610 SEM in 

backscattered electron imaging mode at an accelerating voltage of 25 kV. A solution of 

2%HCl, 3%HNO3 and 95%C2H6O was used to micro-etch the samples. Microhardness 

values of the samples were obtained using a Vickers microhardness test machine operated 

according to the ASTM B933-09 standard test method. The test was conducted on the flat 

polished surface of each of the 12-mm diameter samples using an indentation load of 1 kg.f 

for a 10-s dwell time. A Mettler Toledo DSC was used to characterise the thermal reactions 

of the reinforced solders during melting and solidification. The total weight of each sample 

slice was kept below 10 mg following the requirement of the DSC equipment and was placed 

into a Cu pan, which was heated to a temperature of 250 °C and cooled down to room 

temperature using a heating and cooling rate of 10 °C/mm under a protective nitrogen 

atmosphere. The coefficient of thermal expansion (CTE) was measured using a Linseis 

L75HX1600 horizontal dilatometer from room temperature to 160 °C. The CTE of the 

samples were determined by measuring the displacement of the samples at a certain values 

of temperature. The test was conducted according to the ASTM E831-03 standard test 

method. Density measurement of three samples of each type were conducted by using 

Archimedes principle with Galden liquid.  
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The microstructures of the samples were examined using micro- XRF mapping and TEM 

analysis. Micro-XRF using a highly focused beam of extremely intense synchrotron radiation 

X-rays can detect very small trace metal element additions down to the pico level which 

can’t be achieved using conventional methods such as EDX or electron probe microanalysis 

(EPMA) [43]. In this study micro-XRF was used to detect Ti, Cu and Ni throughout a specific 

area of the sample. TEM analysis was conducted to further visualize and analyze the 

morphologic and crystallographic features at the nanometer scale. Synchrotron XRF 

mapping experiments were carried out at the beamline BL37XU of the SPring-8 Japan 

synchrotron with conditions identical to that used elsewhere [44-46]. A high flux 300 nm 

focused X-ray beam with 1.4 x 1012 photons s-1 was used at an X-ray energy of 12 keV. The 

data was then analyzed and processed using Igor 6.32A software from Wavemetrics, USA. 

Electron microscopy was conducted on a F20 Tecnai and a Jeol 2100 TEM equipped with 

a scanning transmission electron microscope (STEM)/ EDX. In preparing TEM cross-section 

samples, a focussed ion beam (FIB) was used to mill samples <100 µm in thickness. For 

further elemental composition analysis and potential chemical state bonding change due to 

the microwave and conventional sintering, XPS analysis was performed. XPS data was 

acquired using a Kratos Axis ULTRA X-ray Photoelectron Spectrometer incorporating a 

165mm hemispherical electron energy analyser.   The incident radiation was Monochromatic 

Al Kα X-rays (1486.6eV) at 225W (15kV, 15ma). Survey (wide) scans were taken at analyser 

pass energy of 160eV and multiplex (narrow) high resolution scans at 20eV. Survey scans 

were carried out over 1200-0eV binding energy range with 1.0eV steps and a dwell time of 

100ms.  Narrow high-resolution scans were run with 0.05ev steps and 250ms dwell time. 

Base pressure in the analysis chamber was 1.0x10-9 torr and during sample analysis 1.0x10-

8 torr. Atomic concentrations were calculated using the CasaXPS version 2.3.14 software 

and a Shirley baseline with Kratos library Relative Sensitivity Factors (RSFs). Peak fitting of 

the high-resolution data was also carried out using the CasaXPS software. Since XPS is a 

surface quantitative spectroscopy technique, in order to detect possibilities of a change in 

chemical state bonding with TiO2 additions and sintering, the samples was argon-ion etched 

to remove the oxidation layer and any contamination of the surface prior to XPS analysis.  

 

3. Results and Discussion 

3.1 Thermal Properties  

 

The thermal expansion of a solder material is important as heat during operation or 

processing can result in expansion and contraction during heating or cooling. With higher 
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values of the coefficient of thermal expansion, a solder material will expand and contract 

more and create higher amounts of stress particularly at the solder joint. It is also important 

that the difference of CTE between a solder material and a particular substrate is minimized. 

 

CTE measurements were conducted on microwave sintered and conventionally sintered Sn-

Cu-Ni samples with and without TiO2. CTE results of these materials were measured from 

room temperature to 200 °C as shown in Figure 2. Results indicated that the CTE of Sn-Cu-

Ni with TiO2 samples sintered either by microwave or conventional sintering processes have 

a similar behavior with respect to the CTE temperature relationship.  The microwave sintered 

Sn-Cu-Ni with TiO2 samples have slightly higher (approximately 1.00 10-6/K) values of CTE 

compared to conventional sintered samples. With the addition of nano-sized TiO2 particles, 

it is observed that the CTE values of both microwave sintered and conventionally sintered 

samples increases compared to samples free of TiO2 particles. Microwave sintering and the 

addition of reinforcement particles may increase the density of the sample and increase the 

amount of fine intermetallics as observed in the microstructure, which in return increases 

the CTE. In addition,  By comparing the CTE values at 150 °C, the CTE value of microwave 

sintered Sn-Cu-Ni with TiO2 was the highest (21.33 10-6/K) while the microwave sintered 

Sn-Cu-Ni sample had the lowest CTE value (9.33 10-6/K). In comparison with common metal 

substrates used in electronic joining, at 150 °C, pure Cu has a CTE value of approximately 

25.00 10-6/K [47]. Thus, although the CTE of microwave sintered Sn-Cu-Ni with TiO2 

samples have slightly higher values compared to conventionally sintered samples, the CTE 

mismatch compared to pure Cu is relatively small compared to the other samples tested.   

 

 

Figure 2: Coefficient of thermal expansion of microwave and conventionally sintered Sn-

Cu-Ni samples with and without TiO2. 
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In order to determine the liquidus temperature, freezing range and undercooling, DSC 

measurements were carried out during heating from room temperature to 250 °C and 

cooling to room temperature at a rate of 10 °C.mm-1 in both cases. Figure 3 (a) shows the 

results for conventionally sintered Sn-Cu-Ni, (b) microwave sintered Sn-Cu-Ni, (c) 

conventionally sintered Sn-Cu-Ni with TiO2 and (d) microwave sintered Sn-Cu-Ni with TiO2. 

The results of the thermal properties are shown in Table 3. The liquidus temperature of the 

solder is defined as where the alloy is completely molten. During heating in DSC 

measurement, the liquidus temperature of microwave and conventional sintered Sn-Cu-Ni 

with TiO2 were about 233.50 °C and 235.96 °C respectively which are slightly higher than 

the Sn-Cu-Ni samples sintered by either the microwave or conventional methods. The 

addition of TiO2 had a bigger effect on raising the liquidus temperature in the conventionally 

sintered samples (approximately 4.3 °C) compared to the microwave sintered samples 

(approximately 1.8 °C). In addition, based on the DSC curve, the freezing range can be 

measured as Tendset heating- Tonset heating. As in Table 3, samples with TiO2 additions resulted 

in a higher freezing range compared to samples with TiO2 additions where microwave 

sintered Sn-Cu-Ni with TiO2 samples have a smaller solidification range compared to 

conventionally sintered Sn-Cu-Ni with TiO2 samples with 5.94 °C and 8.73 °C respectively. 

The effect of TiO2 was to increase the freezing range and this effect was larger in the 

conventionally sintered samples. The smaller increase in freezing range with the microwave 

sintering process (for TiO2 reinforced solders) may reduce some manufacturing problems 

experienced during the soldering process [48]. The nucleation undercooling for the initial 

solidification reaction can be measured by Tonset heating-Tonset cooling. Microwave sintering 

increases the undercooling in alloys free of TiO2 which may relate to the dissolution of nuclei. 

There is very little difference between the nucleation undercooling in TiO2 containing 

samples.   
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Figure 3: Differential scanning calorimetry curve of (a) conventional sintered Sn-Cu-Ni, (b) 

microwave sintered Sn-Cu-Ni, (c) conventional sintered Sn-Cu-Ni with TiO2 and (d) 

microwave sintered Sn-Cu-Ni with TiO2. 
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Table 3: Thermal properties of microwave and conventional sintered Sn-Cu-Ni with TiO2 

nano-composite solder. 

 Coefficient 
of Thermal 
Expansion 

at  
150 ⁰C (10-

6/K) 

Liquidus 
Temperature 
(Tendset heating) 

(⁰C) 

Freezing Range 
(Tendset heating- 

Tonset heating) (⁰C) 

Undercooling 
(Tonset heating-
Tonset cooling) 

(⁰C) 

 
Conventional 

Sintered  
Sn-Cu-Ni 

 

17.78 231.69 2.98 18.88 

 
Microwave 

Sintered Sn-
Cu-Ni 

9.33 231.71 3.42 25.12 

 
Conventional 

Sintered  
Sn-Cu-Ni+TiO2 

 

20.14 235.96 8.73 20.12 

 
Microwave 

Sintered Sn-
Cu-Ni+TiO2 

21.33 233.50 5.94 19.33 

 

3.2 Microhardness and density    

 

The microhardness results shown in Figure 4 and Table 4, show a trend of higher hardness 

values in microwave sintered samples for both TiO2 containing and TiO2 free samples. While 

TiO2 increased the hardness of microwave sintered samples significantly, it had little or a 

slight softening effect in the conventionally sintered samples. There was no significant 

difference in the hardness result when comparing conventionally sintered TiO2 containing 

and TiO2 free samples. The hardest samples were the microwave sintered Sn-Cu-Ni with 

TiO2 which had an average microhardness value of 16.64 Hv. These results show that 

additions of TiO2 reinforcement to the Sn-Cu-Ni solder matrix have dramatically increased 

the hardness values in microwave sintered samples. From SEM micrographs as in Figure 

5e, it is suggested that microwave sintering of TiO2 reinforced samples may increase the 

rate of intermetallic formation and could also restrict the growth resulting in a uniform 

distribution of fine (Cu,Ni)6Sn5. Fine distributed intermetallics could enhance the pinning 

effect of the sample and hence increases the hardness. On the other hand, slightly coarser 

and smaller amounts of (Cu,Ni)6Sn5 intermetallics were observed in conventional sintered 
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samples which may relate to the long sintering time in comparison to the rapid times involved 

in microwave sintering.  

 

The density of samples was characterised for unsintered as well as conventionally and 

microwave sintered. Compared to the theoretical density of 7.272 g/cm3, the density of 

unsintered, conventionally and microwave sintered TiO2 containing samples was 7.081 

g/cm3, 7.095 g/cm3 and 7.113 g/cm3 respectively. Microwave sintered TiO2 containing 

sample resulted in the highest density which suggests that the microwave process had 

enhanced the sintering and slightly reduced the porosity of sample. 

 

 

Figure 4: Microhardness of sintered samples. 
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Table 4: Average microhardness of microwave sintered and conventional sintered Sn-Cu-

Ni with/without TiO2. 

 

Average Microhardness 

(Hv) 

Conventional Sintered Sn-Cu-Ni 12.80 

Microwave Sintered Sn-Cu-Ni 15.32 

Conventional Sintered Sn-Cu-Ni+TiO2 12.36 

Microwave Sintered Sn-Cu-Ni+TiO2 16.64 

 

3.3 Microstructure Characterization 

 

Samples of Sn-Cu-Ni with/without TiO2 along with cross-sectioned as supplied Sn-Cu-Ni 

powder and un-sintered Sn-Cu-Ni samples were chemically micro-etched and observed 

using SEM as indicated in Figure 5. On all samples, the majority of eutectic and primary β-

Sn phases were observed with (Cu,Ni)6Sn5 intermetallics formed as precipitates along 

crystal grain boundaries.  These fine (Cu,Ni)6Sn5 intermetallics were observed on as 

supplied (Figure 1b) and un-sintered Sn-Cu-Ni samples (Figure 5a) and exhibit slight growth 

in the sintered samples. Distributions of (Cu,Ni)6Sn5 intermetallics are slightly different 

between conventional sintered and microwave sintered samples where a higher number of 

fine (Cu,Ni)6Sn5 intermetallics observed in microwave sintered samples. By comparing 

microwave sintered samples without and with TiO2 (Figure 5c and Figure 5e respectively), 

the TiO2 microwave sintered samples are shown to contain a higher amount of fine columnar 

distributed (Cu,Ni)6Sn5 intermetallics. This higher number of fine columnar distributed 

(Cu,Ni)6Sn5 intermetallics formed may be related to the rapid heating experienced during 

microwave heating and this may increases the hardness of the material. In addition there 

are likely to be TiO2 particles located along the Sn-Cu-Ni particle grain boundary which 

appear as the more defined grain boundaries in Figure 5 (d) and (e) compared to (b) and 

(c). 
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Figure 5: Backscattered electron images of (a) un-sintered Sn-Cu-Ni, (b) conventionally 

sintered Sn-Cu-Ni, (c) microwave sintered Sn-Cu-Ni, (d) conventionally sintered Sn-Cu-Ni 

with TiO2 and (e) microwave sintered Sn-Cu-Ni with TiO2. 

 

In order to investigate the distribution and any potential segregation of TiO2 samples of 

conventional sintered and microwave sintered Sn-Cu-Ni with TiO2 were further analyzed and 

compared using synchrotron micro-XRF mapping. Figure 6 and Figure 7 show the results of 

micro-XRF mapping in Sn-Cu-Ni with TiO2 with microwave and conventional sintering 

respectively, showing that the Ti is mostly located within the particle grain boundaries in 

both samples. However, interestingly, a small amount of fine Ti can be observed inside the 

grains of microwave sintered Sn-Cu-Ni with TiO2 (Figure 6b) while Cu and Ni elements are 

found distributed throughout the grain and are likely to be (Cu,Ni)6Sn5 intermetallics) (Figure 

6c and 6d). Spot analysis was conducted on selected areas of the mapping results.  From 

these results, microwave technology can be a significant assistant in the sintering process 

since heat is generating within the materials and can produce homogeneous bulk heating 
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rates in small time frames and alter the distribution of elements in comparison to 

conventional sintering [37, 49].  

 

 

Figure 6: (a) SEM image of micro-XRF mapping area of microwave sintered Sn-Cu-Ni with 

TiO2 (b) Ti element mapping distributions, (c) Cu element mapping distributions, (d) Ni 

element mapping distributions, (e) point analysis spectrum at point 1 and (e) point analysis 

spectrum at point 2. 
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Figure 7: (a) SEM image of micro-XRF mapping area of conventional sintered Sn-Cu-Ni 

with TiO2 (b) Ti element mapping distributions, (c) Cu element mapping distributions, (d) Ni 

element mapping distributions, (e) point analysis spectrum at point 3 and (e) point analysis 

spectrum at point 4. 

 

Results of synchrotron micro-XRF on conventional and microwave sintered samples of Sn-

Cu-Ni with TiO2 were further analyzed using TEM. To eliminate any possibility of 

contamination of sample damage, samples were prepared using FIB (Figure 8a and 9a). 

Areas of interest are indicated as red box in the FIB sample cut images. From the TEM 

analysis results, particles of nano-size TiO2 can be clearly observed located along the 

particle grain boundaries on both conventional and microwave sintered samples as in Figure 
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8a and 9a respectively. In conventionally sintered Sn-Cu-Ni with TiO2 samples, a small 

amount of TiO2 particles were observed within the Sn matrix (Figure 8b and 8d). It is believed 

that these TiO2 particles had migrated during the semi-solid/liquid state regions of the Sn 

matrix during conventional sintering. In the microwave sintered TiO2 containing sample the 

HRTEM image and SADP of the Sn region as in Figure 9b contains many small nano-scale 

crystalline areas.  These small crystals (indicated with a white dotted line around the 

perimiter) may have formed due the migration of Ti ions which may occur due to the rapid 

microwave heating and the presence of microwave induced vibrations [50, 51]. Different 

lattice planes were observed for both Sn and nano crystals in the HRTEM images. It is 

believed that Schottky disorder could happen to TiO2 at <580 ºC where pairs of Ti ion 

vacancy and oxide ion vacancy are formed and that this could be accelerated by rapid 

microwave  heating [52]. In addition, with the interaction of multiple valence states of Sn and 

Ti may result in the possibility of substitution between Sn and Ti [52].  
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Figure 8: TEM images of conventional sintered Sn-Cu-Ni with TiO2 samples: (a) Focus ion 

beam milled sample; Bright field high resolution TEM image and SADP of (b) Sn region 

with TiO2 particles; (c) Sn area; (d) higher magnification of TiO2 particles in the Sn region.  

 



 

56 
 

 

Figure 9: TEM images of microwave sintered Sn-Cu-Ni with TiO2 samples: (a) Focus ion 

beam milled sample; Bright field high resolution TEM image and selected area diffraction 

pattern (SADP) of (b) Sn region; (c) TiO2 region; (d) Sn/TiO2 interface area.  

 

Based on XPS result of microwave sintered Sn-Cu-Ni with TiO2 (Figure 10a, 10b and 10c) 

and conventionally sintered Sn-Cu-Ni with TiO2 (Figure 10d, 10e and 10f), the binding 

energy of species on the surface can be evaluated. Samples were firstly ion milled using a 

soft X-ray to etch away oxide layers and contamination formed on the sample surface. From 

Figure 10b and 10e, the energy binding spectrum result of Ti 2p on microwave sintered and 

conventional sintered samples respectively shows that besides TiO2 (Ti4+) particles, it is 

likely other forms of Ti compounds exists containing Ti+, Ti2+, and Ti3+. Based on Table 5, a 

fraction of Ti4+ of about 48% was obtained on conventional sintering while about 45% was 

present in microwave sintered samples. Moreover, as shown in Figure 10b on microwave 
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sintered samples, the fraction of Ti2+ has significantly increased to about 18% compared to 

conventionally sintered sample (Figure 10c) with about a 5% fraction whereas Ti3+ 

decreases to about 24% on microwave sintered samples compared to conventionally 

sintered samples with about a 35% fraction. Ti+ remains relatively unchanged with no 

significant fraction difference. Hence, these XPS results coupled with synchrotron micro-

XRF mapping (Figure 6) and TEM analysis (Figure 9) suggest the possibility that, during 

microwave sintering with rapid heating and the presence of a high energy microwave, TiO2 

particles could dissociate and form other Ti compounds majorly associated with Ti2+. On the 

other hand, with the dissociation of TiO2 and the interaction of Sn from the Sn-Cu-Ni solder, 

the possibility of substitution between Sn and Ti could result in the formation of a new 

compound [52]. With a very small fraction of migrated Ti and the possibility of a new 

compound forming, it is impossible to obtaining meaningful analysis using conventional bulk 

material characterization techniques such as X-ray diffraction (XRD). Thus, to confirm an 

exact mechanism, investigations using other advanced characterization techniques such as 

synchrotron X-ray absorption fine structure (XAFS) are required and proposed for future 

research.  The results from XPS analysis as shown in Figure 10, could also be affected by 

argon-ion etching artifacts during sample preparation. Hence, the relative fractions of Ti+, 

Ti2+, Ti3+ and Ti4+ are thought to be meaningful but not necessarily absolute. 
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Figure 10: XPS spectra of microwave sintered Sn-Cu-Ni with TiO2 for (a) Sn 3d, (b) Ti 2p, 

(c) O 1s and conventionally sintered Sn-Cu-Ni with TiO2 for (d) Sn 3d, (e) Ti 2p, (f) O 1s. 
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Table 5: Binding energy of Ti 2p and concentrations of 

Ti+, Ti2+, Ti3+ and Ti4+ on microwave sintered and conventionally sintered Sn-Cu-Ni with 

TiO2. 

 

 Element Ti 2p 
3/2 
(eV) 

Ti 2p 
1/2 
(eV) 

Concentration 
(%) 

Microwave 
Sintered Sn-
Cu-Ni + TiO2 

Ti+ 455.4 461.3 13.52 

Ti2+ 456.1 461.5 17.93 

Ti3+ 457.5 463.1 24.37 

Ti4+ 459.2 464.7 44.19 

Conventionally 
Sintered Sn-
Cu-Ni + TiO2 

Ti+ 455.9 461.4 11.76 

Ti2+ 455.3 461.9 5.17 

Ti3+ 457.2 462.5 35.15 

Ti4+ 459.2 464.9 47.92 

 

 

4. Conclusions 

 

Microwave sintering has a unique heating characteristic that could potentially be a viable 

fabrication method for composite solder development. By comparing microwave sintered 

and conventionally sintered samples of Sn-Cu-Ni samples containing TiO2 additions, the 

following conclusions can be made: 

a) Additions of TiO2 reinforcement to the Sn-Cu-Ni solder matrix have dramatically 

increased the hardness values in microwave sintered samples where the microstructures 

indicates fine and homogenously distributed (Cu,Ni)6Sn5 intermetallics form within the 

particle grains.  

b) Density of microwave sintered TiO2 containing sample resulted with slightly higher 

density with 7.113 g/cm3 compared to conventional and unsintered sample with 7.095 

g/cm3 and 7.081 g/cm3 respectively. 

c) The CTE mismatch of microwave sintered, TiO2 containing samples with Cu at 150 ºC 

was the lowest of all alloys tested and would result in minimization of expansion and 

contraction during operating temperature. 



 

60 
 

d) Microwave sintered TiO2 containing samples were characterised by a decreased 

freezing range of 5.94 ºC and a liquidus temperature of 233.50 ºC. This is an acceptable 

freezing range and liquidus temperature for most soldering application and the increased 

hardness of these samples can contribute to improved reliability. 

e) It is possible microwave sintering with rapid heating may assist TiO2 particles to 

dissociate and form other Ti compounds associated with Ti2+. 
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Abstract. This paper demonstrates the development of an experimental technique of in-situ 

observation for soldering of Sn-0.7wt%Cu lead-free solder on a Cu substrate which was 

achieved for the first time by synchrotron X-ray imaging. Reactions between liquid solder 

and Cu substrate during a soldering process were able to be recorded in real-time. Individual 

stages of the soldering process consisted of flux activation in removal of Cu oxide, solder 

melting and contact with the Cu substrate (wetting) and intermetallic compound (IMC) and 

void formation between the solder and Cu substrate. The technique development which 

includes experimental setup with calculated optimum beam energy in the range of 20 – 30 

keV appears to result in a clear observation of real-time X-ray imaging of the soldering 

process.  This technique provides a key method to understand the mechanism of formation 

of micro-electronic inter-connects for future electronic packaging applications.  
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Introduction  

A synchrotron is a particle accelerator that produces very bright light of 

electromagnetic waves where these X-rays produced by synchrotron are 108 higher than 

conventional lab X-ray tubes [1]. This result in better and higher resolution for imaging 

techniques compared to conventional lab X-ray machines. At a synchrotron, to produce the 

electromagnetic waves, electrons are firstly fired by an electron gun into a linear accelerator, 

which then rapidly increases the speed of the electrons. A booster ring then helps to 

accelerate the electrons further (up to 8GeV for the SPring-8 Japan Synchrotron).  This 

booster ring then transfers the accelerated electrons to storage rings which contain bending 

magnets, wrigglers and undulators that cause the electrons to accelerate and to release 

very intense electromagnetic waves [1]. From the storage rings, the high intense 

electromagnetic waves are then emitted through beamlines and used on each experimental 

hutch for experiments, for example for imaging [1]. With high brilliance and high coherency 

monochromatized X-ray, synchrotron X-ray imaging is capable in obtaining high time 

resolution, high spatial resolution and good contrast in its transmission images results.   

Advances in synchrotron analysis have provided the opportunity for using 

synchrotron X-rays in observing the solidification process including microstructure formation 

and defect formation in metals [2-12]. By using hard X-rays in the synchrotron facility, the 

microstructure of metallic alloys can be observed in transmission images using 

monochromatic light. Limited studies have been conducted in real-time to observe solder 

joint behaviour, particularly the growth of intermetallics at later stage however at early stage 

during initial formation of the intermetallics at the moment of liquid solder wetting on a 

particular substrate have not been studied [13-15]. In attempts to understand solder joint 

reliability, most researchers in the field of solder materials have concentrated their 

researches on the growth of the intermetallic compounds (IMCs) and several models of IMC 

formation have been developed [16-22]. However, the formation of IMCs at the early stage 

during solder wetting is rather a rapid process which is difficult to observe using conventional 

microstructure observation techniques. The technique of real time in-situ imaging of the full 

soldering process which consists of a full observation of soldering stage at solid-liquid-solid 

transition would give further understanding on the early stages of IMC formation during 

solder wetting and its actual evolution during soldering.  This process observation has not 

been conducted in previous studies. In this study, for the first time, synchrotron X-ray real 

time in-situ imaging of a full soldering process of a Sn-0.7wt%Cu alloy on a copper substrate 

was performed. The experiment setup used is as in Figure 1 (a). To mimic a real solder joint 

condition, rosin based flux and similar real reflow soldering process temperature profiles 



 

69 
 

were used. This paper focuses on the development of the experimental procedure that 

enabled the in-situ soldering process of Sn-0.7wt%Cu solder on a Cu substrate to be 

observed by synchrotron X-ray imaging. 

 

 

Figure 1: (a) Synchrotron beamline for X-ray imaging at SPring-8, Osaka, Japan [2] and 

(b) sample cell setup for in-situ soldering process.   

 

Experimental Procedure  

Materials. Sn-0.7wt%Cu solder alloy and oxygen-free high thermal conductivity Cu 

substrate (100 µm thick) were used for the in-situ soldering experiment. To mimic the real 

reflow soldering process, rosin-based flux JO-1301007 supplied by Nihon Superior Co., Ltd. 

was used.    

Sample Preparation. A bulk Sn-0.7wt%Cu solder alloy ingot was sliced using Struers 

Accutum-50 precision cutter to about 2 mm thick. Samples were then placed on a jig for 

further fine grinding until reaches a thickness of around 100 µm.   

Sample Cell Setup. Thin Sn-0.7wt%Cu solder alloy, Cu substrate and rosin-based flux were 

placed vertically and sandwiched between two SiO2 plates as shown in Figure 1 (b). A 100 

µm thick polytetrafluoroethlene (PTFE) sheet was placed in between the SiO2 plates (as 

indicated in the red colour in Figure 2) with a vent provided for flux outgassing purposes.  

Experiment Process. The real time observation experiment was performed at BL20B2  and 

BL20XU beamlines at the SPring-8 synchrotron, with an energy of 23 keV using an in-situ 

synchrotron X-ray real time solidification observation setup (Figure 1a) developed from 

previous research [3, 4]. A planar undulator was used as a light source and the radiation 

was monochromatized with Si double crystal monochromators. An experimental hutch was 

located at 206m from the X-ray source point. With a high degree of coherence, absorption 

contrast and phase contrast which enhances boundaries in the sample are observed on 
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transmitted images. An image detector which collects image signals is located 2.5 - 3.0 m 

from the sample. These image signals are then converted into a digital format of 2000 X 

2000 pixels and 16-bit resolution. A charged coupe device (CCD) camera with exposure 

time of 1 s per frame was used to capture the images. To mimic the process of reflow 

soldering, a furnace with graphite heating elements where heat is transferred through 

radiation in an enclosed sample chamber was used. The samples were set to be heated 

from room temperature to approximately 250⁰C at 10⁰C/min and cooled down at 20⁰C/min.  

 

Beam Energy Selection  

Suitable photon energy which is normally referred to as X-ray energy is essential for 

obtaining a good contrast image. In determining the acceptable energy range, the Beer-

Lambert equation as in equation (1) can be applied [23]. From the Beer-Lambert equation, 

the intensity transmission of the X-ray could be determined.  

𝐼 =  𝐼0𝑒𝑥𝑝
−(

𝜇

𝜌
)𝜌𝑡

     (1) 

Where Io  and I  are the X-ray beam intensities at incident and transmission through a 

material, [
𝜇

𝜌
] is the mas-attenuation coefficient, ρ is the density of material and t is the 

thickness of material. 

 

 

 

Figure 3: Influence of photon energy on (a) intensity transmission of the X-ray on Sn, 

Cu6Sn5 and Cu and (b) contrast values between Sn and Cu6Sn5 phases. 
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Since Sn, Cu and Cu6Sn5 phases are the main phases for this in-situ observation, 

the values of intensity transmission of Sn, Cu and Cu6Sn5 were obtained [24]  based on 

density values of the phases [25] and were plotted as a function of photon energy (Figure 

3a) to determine the beam energy range for obtaining a sufficient contrast between different 

phases for the in-situ imaging results. Since Cu6Sn5 interfacial IMCs are located on the 

solder side between the solder and Cu, on the difference of intensity transmission values of 

Sn and Cu6Sn5. Based on Figure 3b, it is suggested that the optimum beam energy for 

Cu6Sn5 observation is in the range of 20 – 30 keV. 

 

In-situ Soldering Observation 

At BL20B2 beamline, the image signals are converted into a digital format of 2000 X 

2000 pixels representing a 5 mm X 5 mm area obtaining a 2.5 µm per pixel resolution ratio. 

This lower resolution in-situ imaging technique was used to observe the full soldering 

process formation at a larger image scale. This allowed observation of more on the material 

interactions in a full reflow soldering process. Using this technique, the flux activation 

process, solder void formation and solder wetting reaction were able to be observed. As in 

Figure 4a, at a full soldering process at 911 s, bulk and interfacial solder void formation were 

able to be observed clearly. At a low magnification image, using the BL20B2 beamline the 

IMC formation was able to be observed in-situ at the moment the liquid solder flows on the 

Cu substrate during solder wetting and subsequent IMC growth. In order to observe the IMC 

formation in detail, the BL20XU beamline was used for the in-situ soldering process where 

the higher magnification of images can be obtained. In the BL20XU beamline experiment 

which has a higher strength beam, image signals are converted into a digital format of 2000 

X 2000 pixels at 1 mm X 1 mm giving a higher resolution of 0.5 µm per pixel. Clear 

observations of IMC formation were obtained (Figure 4b) where further detail analyses of 

IMC formation and growth mechanism were possible.  
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Figure 4: Image of the in-situ soldering process of Sn0.7wt%Cu on a Cu Substrate at (a) 

low magnification observation experiment at 911 s performed at beamline BL20B2 and (b) 

high magnification observation experiment at 826 s performed at beamline BL20XU. 

 

Conclusion 

A full soldering process was successfully observed by synchrotron X-ray real-time in-

situ imaging for the first time. Using this experiment technique, material interactions in a real 

soldering process was able to be observed in-situ. This allowed capture of events which 

have been difficult to observe such as the initial IMC formation at the early stages of 

soldering during solder wetting. This technique development provides a key method to 

understanding the initial growth mechanisms of the IMC. This technique will be used as the 

basis for future research on understanding the growth mechanism and controlling the 

formation and growth of IMCs of various solder materials during soldering. 
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Chapter 4 Interfacial intermetallic compound (IMC) 
layer formation in Sn-Cu solders in early stages of 
soldering and phase transformation. 
 

This chapter focuses on the interfacial IMC layer formation in Sn-Cu solders on a copper 

substrate in early stage of soldering and the phase transformation mechanisms during 

heating. Paper 3 of this thesis, titled “Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces” 

reveals the initial formation of interfacial IMCs during early stages of reactive wetting. In situ 

soldering experiments were conducted on Sn-0.7Cu and Cu substrates using the SXRI 

technique. The initial formation of interfacial Cu6Sn5 intermetallic layer of Sn-0.7Cu during 

soldering on Cu and its structure transformation during soldering were revealed. This 

included characterising the kinetics of growth of the interfacial IMC during soldering. Sn-

0.7Cu solders can be considered amongst the class of ‘intrinsically’ reinforced solders with 

Cu6Sn5 the reinforcement material. This alloy was used as nominal base materials to be 

compared to other extrinsically reinforced solders.  

 

Paper 4 of the thesis titled “In-situ TEM observations of Cu6Sn5 polymorphic transformations 

in reaction layers between Sn-0.7Cu solders and Cu substrates” reveals the transformation 

mechanism of the Cu6Sn5 interfacial layer. Direct evidence of the relationship between the 

polymorphic phase transformation from monoclinic Cu6Sn5 to hexagonal Cu6Sn5 and stress 

accumulation/release in Cu6Sn5 formed at the interfacial layer has been obtained. The 

challenging phenomena was observed by UHV-TEM of thick Cu/Cu3Sn/Cu6Sn5/Sn-0.7Cu 

samples during heating and isothermal holding. Stress creation and release events 

associated with the polymorphic transformation of the Cu6Sn5 phase were accompanied by 

bend contours as discussed in the paper.  

 

The results of both of these papers (Paper 3 and Paper 4) provide a deep understanding of 

interfacial Cu6Sn5 in Sn-0.7Cu/Cu solder joints during soldering and subsequent heating. 
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Abstract 

In-situ observations of the reaction between solid Cu in contact with molten Sn-0.7wt%Cu 

were achieved using a synchrotron X-ray imaging technique. It is found that upon wetting, 

the rapid dissolution of Cu adjacent the solid-liquid interface was followed by near-

instantaneous interfacial intermetallic compounds (IMCs) formation. The kinetics of IMC 

formation were also elucidated. Results provide direct experimental evidence on the 

sequence of events in the dissolution reaction and subsequent diffusion, in particular on the 

growth mechanisms of the IMC layer. 

Keywords: Soldering, synchrotron radiation, intermetallic compounds, phase 

transformations, kinetics.    
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During the liquid-solid interaction of molten solder and Cu substrates, it had been 

believed a rapid dissolution of Cu into molten solder with a lower Cu concentration occurs 

immediately after the Cu oxide film has been removed by the actions of the flux. This rapid 

direct dissolution of Cu occurs until the conditions become favourable for the nucleation and 

growth of intermetallic compounds (IMCs) such as ƞ-Cu6Sn5 and ɛ-Cu3Sn [1-3]. The rapid 

dissolution of Cu into the molten solder is important in understanding the evolution of IMC 

formation particularly during the soldering process as the size and morphology of the IMC 

has been associated with joint reliability. Among commercially available lead-free solders, 

those based on the near eutectic composition of Sn-0.7wt%Cu with trace level elemental 

additions such as Ni find applications in soldering due to their availability and low-cost as 

well as there association with minimal dissolution of Cu substrates [4, 5]. On the other hand, 

without trace element additions, Sn-0.7wt%Cu has poor mechanical properties and is prone 

to brittle intermetallic compound (IMC) growth and the formation of a thick interfacial IMC 

layer consisting of ƞ-Cu6Sn5 and ɛ-Cu3Sn, that can lead to serious reliability concerns[6]. In 

an attempt to improve solder joint reliability, many researchers have investigated the growth 

behaviour of interfacial IMCs and several models have been developed to describe IMC 

growth during solder wetting reactions and solid-state ageing [1, 2, 7-13]. In understanding 

the IMC growth mechanisms, recent kinetic studies of IMC growth have focussed on solid 

state ageing effects rather than the wetting reaction during the liquid-solid interaction. This 

solid state ageing is more favourable for laboratory examinations as the kinetic processes 

are much slower compared to the wetting reaction [14]. Existing IMC growth models are 

largely based on predictions of a sequence of reactions and to-date, lack validation, 

especially at the early stages of IMC formation during wetting.  

 

Figure 1: BL20XU beamline soldering temperature profile. 
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Recent in-situ real time imaging of IMC and solder void growth by Qu et al.[15-17] 

and Huang et al.[18] was conducted to understand the growth of interfacial IMCs. However, 

due to the experimental difficulty, real time in-situ imaging observations of molten solder 

alloy in contact with a solid substrate and studies of the kinetics of IMC formation at the early 

stages of soldering have not been achieved. In this study, X-ray real time in-situ imaging of 

the soldering process of a Sn-0.7wt%Cu solder alloy on a Cu substrate was performed 

focusing on the IMC growth mechanism during the initial liquid-solid interaction.  

The experiments were performed at BL20XU beamline in the SPring-8 synchrotron 

using an in-situ X-ray real time solidification observation setup developed from previous 

research [4, 19-22]. With a high degree of coherence, absorption contrast and phase 

contrast are observed on transmitted images with enhanced boundaries. The collected 

signals are then converted into a digital format of 2000 x 2000 pixels. This area represents 

a 1 mm x 1 mm area on the BL20XU experiments (giving a resolution of 0.5 µm per pixel). 

A planar undulator was used as a light source and the radiation was monochromatized with 

Si double crystal monochromators. An exposure time of 1s per frame to capture the images 

was used. To mimic the process of reflow soldering, a furnace with graphite heating 

elements where heat is transferred through radiation in an enclosed sample chamber was 

used. A 100 µm thickness of both Sn-0.7wt%Cu and the Cu sheet were used and a small 

amount of rosin-based flux was used in between the solder and Cu substrate. The sample 

was then placed in a sample cell where an observation window area of 10 x 10 mm2 with a 

vent for flux outgassing was made by using a 100 µm thickness poly-tetrafluoroethylene 

(PTFE) sheet placed between two SiO2 plates. Samples were set to be heated from room 

temperature to approximately 250 ⁰C at 0.17 ⁰C/s and cooled down at 0.33 ⁰C/s. There is a 

temperature difference between the actual temperature of the sample and the thermocouple 

reading due to the positioning of the thermocouple. The sample temperature was calculated 

by calibrating with the relative difference between the furnace temperature at the 

observation of melting to the melting point of Sn-0.7wt%Cu determined by differential 

scanning calorimetry result.  The temperature profile for the BL20XU beamline experiment 

shows the difference between the thermocouple reading and actual temperatures (Figure 

1). The average thickness of the IMC layer at a specific reaction time was determined by 

dividing the total IMC layer area with the total IMC layer length, both of which were measured 

using ImageJ software. After real-time observation experiments were completed, the 

samples were observed using a JEOL 6610 scanning electron microscope (SEM) in 

backscattered electron imaging mode at an accelerating voltage of 25 kV.   
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Figure 2: In-situ real time imaging observations of reactions between Sn-0.7wt%Cu and 

the Cu substrate interface at experimental times of (a) 645 s, (b) 655 s, (c) 990 s, and (d) 

1058 s. 

 

The moment of interfacial IMC formation during solder wetting and subsequent IMC 

growth was observed by the in-situ real time imaging technique. Figure 2 (a-d) shows snap 

shots of the soldering process. In addition, the soldering process has been recorded as a 

video and can be found in the supplemental material (Video S1). From Figure 2b, it can be 

observed that at the moment of molten solder contacting the solid Cu an instant planar 

(within the resolution of the imaging) IMC layer of significant thickness forms while molten 

solder flows on the Cu substrate. Subsequently, the IMC layer develops a scalloped 

interface and the rapid formation of interfacial solder voids is observed. The intermetallic ƞ-

Cu6Sn5 is known to dominate the interfacial structure during these initial stages of 

intermetallic growth. The formation of the initial IMC plays an important role in the kinetics 

of the diffusion process as the layer of ƞ-Cu6Sn5 formed at the interface reduces the Cu 

dissolution rate by altering the paths for Cu atoms to diffuse[1, 23]. Based on Figure 2c at 

212ºC (990s of soldering time), it is observed that large rod-shaped Cu6Sn5 intermetallics 

tend to nucleate and subsequently rapidly grow (Figure 2d) during cooling. These large 

intermetallics tend to form in the solder matrix far from the solder/substrate interface since 

Sn and Cu are consumed at the interface to form the interfacial IMC in the early stages of 

soldering [24].  
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Figure 3: Zoom in of in-situ real time imaging observations of solder voids and intermetallic 

compound (IMC) formation between Sn-0.7wt%Cu and Cu substrate interface at (a) 821 s, 

(b) 822 s, (c) 823 s, (d) 832 s, (e) 840 s, (f) 857 s, (g) 980 s, and (h) 1035 s of experiment 

time. The reaction time shown as an inset in the figures is relative to the initial observation 

of wetting. 

 

To further study IMC formation mechanisms a zoom-in of the in-situ real time imaging 

was conducted with the results shown in Figure 3a-3h. It can be observed that within one 

second of the Sn-0.7wt%Cu wetting the substrate, a planar IMC (ƞ-phase Cu6Sn5) phase 

forms. The wetting reaction commenced when the liquid solder reached a temperature of 

244 ⁰C.  At the moment of solder wetting, the dissolution of Cu into the molten solder 

encourages the rapid precipitation of a significant ƞ-Cu6Sn5 layer as in Figure 3b. This rapid 

formation of ƞ-Cu6Sn5  is in agreement with a simulation model by Huh et al.[25], which 

predicts formation of ƞ-Cu6Sn5 in a few milliseconds followed by further IMC growth after 

several seconds. Due to a higher driving force for precipitation at the metastable 

solder/substrate interface, this planar ƞ-Cu6Sn5 layer tends to form during the early stages 

of soldering compared to ɛ-Cu3Sn formation which forms at a later stage in a subsequent 

reaction[26]. 



 

82 
 

 

Figure 4: (a) Evolution of average total IMC thickness in the early stages of soldering, (b) 

ln plots of IMC growth and (c) a scanning electron microscopy image of the interfacial 

microstructure taken subsequent to the synchrotron experiments.  

 

To further investigate the mechanisms of IMC growth, the thickness is plotted against 

the reaction time in Figure 4(a). The measured layer thickness, x, versus time, t, can be 

modelled with an empirical power law relationship [27, 28]:  

        (1) 
0 ( )nx x A t 
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where x0 is the thickness of the IMC layer at t=0, A is the growth constant and n is the time 

exponent. Values of the time exponent, n can be obtained by multivariable linear regression 

analysis [28]: 

       (2) 

where the time exponent values are obtained from the slope of ln (x-x0) and ln(t) plot as in 

Figure 4(b). From 4(b) it can be seen that three time exponents can be used to characterise 

the measured growth data where the correlation of the experimental data. This implies three 

different growth mechanism have occurred with n=0.07 at 1 to 10 s of reaction time, n=0.31 

at 10 to 50 s of reaction time and n=0.03 at 50 to 270 s of reaction time. This finding is 

somewhat in agreement with that of Lee and Kim[29], where two different time exponents 

were observed for the reaction between Sn-37wt%Pb on a Cu substrate during soldering at 

230 ºC and 250 ºC with a time exponent n=0.15 for the first few seconds of reaction time 

followed by a time exponent n=0.32 for remaining growth. At the early stages of molten Sn-

0.7wt%Cu reacting with solid Cu, the liquid solder results in dissolution of Cu from the 

substrate. This dissolution reaction of Cu into liquid solder happens until the solder becomes 

supersaturated with Cu at the Cu/liquid solder interface with respect to the ƞ-Cu6Sn5 

phase[13, 30]. Since Sn-0.7wt%Cu is a near eutectic alloy, little change in composition is 

required for liquid solder at the Cu/liquid interface to become supersaturated and a 

significant thickness of planar ƞ-Cu6Sn5 intermetallic forms rapidly as observed in Figure 

3(b). It is proposed that the intermetallic thickness that forms initially corresponds to the 

distance that Cu manages to diffuse in excess of the eutectic point, before ƞ-Cu6Sn5 

nucleation becomes possible. However, the Cu concentration of the liquid at the interface 

will then progress through a transient stage when Cu atoms are depositing back to the Cu 

substrate surface to form the initial IMC layer[30].  From Figure 4(b), it is believed that at 1-

10 s of reaction time with a time exponent n=0.065, this transient is occurring and the growth 

rate is lowered. From 10 – 40 s of reaction time the time exponent is n=0.315 similar to the 

value of n=0.33  found by Gong et al.[31] between 100 s to 1,600 s of reaction time. It is 

known that during this stage of the reaction, intermetallic growth is dominated by grain 

boundary diffusion[30]. This growth mechanism can be observed in Figure 3(d)-(f). Small ƞ-

Cu6Sn5 grains are observed and the boundaries of these grains are likely to provide a fast 

diffusion path for Cu atoms to move to the liquid solder. After a few seconds of reaction time, 

at above 40 s with time exponent n=0.026, the rate of intermetallic growth has slowed. It is 

believed that this is due to a reduction in the temperature providing a barrier to diffusion. 

From the results obtained throughout this in-situ observation, it is expected that the 

0ln( ) ln lnx x A n t  
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intermetallic formation and growth mechanisms of Sn-0.7wt%Cu solder during soldering are 

controlled by both the nucleation barrier to Cu6Sn5  and the solubility of Cu in the liquid Sn-

0.7wt%Cu followed by the grain boundary diffusion of Cu to the molten Sn-0.7wt%Cu solder. 

Subsequent to the in-situ observation, samples were taken out from the experiment sample 

cell and observed using SEM as in Figure 4(c). It was observed that the total thickness of 

the intermetallic layer (ƞ-Cu6Sn5 + ɛ-Cu3Sn) is of the order of 8 µm with a relatively small 

contribution from the ɛ-Cu3Sn layer. 

In conclusion, we have successfully obtained evidence of the mechanisms occurring 

during the reaction of Sn-0.7wt%Cu solder with solid Cu. The initial interfacial IMC formation 

at the moment of solder wetting was able to be observed in real time where a significant 

thickness of instant planar ƞ-Cu6Sn5 was formed before further growth resulted in a 

subsequent scallop shaped interface in the ƞ-Cu6Sn5. The thickness and morphology of the 

intermetallic layer after soldering is believed to be determined by the nucleation barrier to 

Cu6Sn5 and the rate of the dissolution of Cu followed by the diffusion of Cu through the IMC 

layer into the Sn-0.7wt%Cu liquid.  In addition, large rod shape Cu6Sn5 intermetallics were 

found to form during cooling. The techniques outlined in this work and the findings will be 

used as the basis for future research into controlling the formation and growth of IMCs during 

soldering. This work will include a wider range of compositions of both solder and substrate.  
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Summary 
 

Direct evidence of the relationship between the polymorphic phase transformation from 

monoclinic Cu6Sn5 to hexagonal Cu6Sn5 and stress accumulation/release in Cu6Sn5 formed 

at the interface between Sn-0.7Cu lead free solder and their Cu substrates, has been 

obtained. To explore this challenging phenomena, we developed an in-situ 

heating/isothermal observation technique in ultra-high voltage transmission electron 

microscopy (UHV-TEM) that enables the observation of thick samples (around 0.5μm) for 

solder joints including Cu/Cu3Sn/Cu6Sn5/Sn-0.7Cu solder interfaces prepared by a focused 

ion beam milling (FIB) technique. The results show evidence of stress creation and release 

events by imaging bend contours that may arise due to the polymorphic transformations of 

the Cu6Sn5 phase and the associated volumetric change.   
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INTRODUCTION  
 

During the transition from traditional to lead-free soldering, there has been a simultaneous 

increase in the complexity and spatial density of electrical packages (combined 

circuitry/chips/solder etc.). This miniaturisation of circuitry has resulted in proportionally 

smaller volumes of solder at electrical interconnects 1. In the past a solder joint would retain 

a significant layer of the original Sn-alloy solder (Sn–0.7wt%Cu for example).  The drive 

towards miniaturisation has resulted in a relative increase in the volume fraction of 

intermetallic compounds (IMCs) in the microstructure of solder joints and in some cases, a 

solder joint may consist almost entirely of Cu6Sn5 and Cu3Sn 2 with different mechanical, 

physical properties and co-efficient of thermal expansion (CTE) 3. Therefore, the current 

understanding of the ‘bulk’ properties of solder joints mainly consisting of the β-Sn phase 

(which is already limited for many alloy/substrate combinations) is not always relevant when 

designing high performance 3D IC electrical packages. For this reason, there is a strong 

and urgent need to understand (i) the growth crystallography, morphology and anisotropic 

thermo-mechanical properties of intermetallic joints, and (ii) the impact these factors have 

on the integrity of solder joints for micro-electronics applications, and to use this information 

to develop interconnects with IMCs optimized for crack resistance.   

 

 

Fig. 1.  (a) Sn–Cu phase diagram and (b) magnified from Sn-rich corner of (a), 

adapted from 4,5. 

 



 

90 
 

 

Fig. 2.  A typical cross-sectioned ball grid array (Sn-0.7wt%Cu solder) on Cu 

substrate, adapted from 10. 

 

 

Fig. 3.  Schematic TTT diagrams of hexagonal to monoclinic transformations in Cu6Sn5 

intermetallics, adapted from 11,12. 

 

The reaction products in solder joints are typically the IMCs Cu6Sn5 and Cu3Sn, often of 

complex crystal structures and including trace elements from both the substrate and the 

solder.  Although conventional Sn-Cu binary phase diagrams (Figure 1)4,5, shows two 

polymorphs of Cu6Sn5, up to five variants have now been identified  (η, η’, η6, η8 and η4+1) 

6,7 but very limited information exists for these structures, particularly the latter three. It has 

been shown that a polymorphic transformation from hexagonal η-Cu6Sn5 to monoclinic η’-

Cu6Sn5 occurs as the temperature falls below 186°C. We have previously shown5,8,9 that 

the faceted eutectic (Cu,Ni)6Sn5 intermetallics containing Ni remain stable as the hexagonal 

η phase at room temperature when, in contrast, identically cooled binary Cu6Sn5 transform 

into the low temperature monoclinic η’ phase. This is an important discovery as the 
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transformation is associated with a volumetric change and this has been hypothesized to 

be a cause of internal stress generation in soldered joints during real-world applications, 

and research has already led to improvements in the performance of this IMC layer3. Nogita 

et. al.10 shows an example of a ball grid array (BGA) soldered joint (see Figure 2), 

commonly used in mobile phones and e-tablets, on an electronic circuit board produced 

using a slightly hypo-eutectic lead-free solder alloy (Sn-0.7Cu), which has a microstructure 

consisting of Sn primary dendrites and Sn-Cu6Sn5 eutectic. The cross section of the IMC 

layer between the solder ball and Cu substrate, contains crystals of Cu6Sn5, and within 

these crystals are a number of cracks and voids that are generated during solidification and 

cooling to room temperature10. These cracks compromise the reliability and diminish the 

shock resistance of the final microelectronic devices.  By adding trace Ni additions to this 

solder, we demonstrated that the Cu6Sn5 layer becomes stabilised in the hexagonal 

polymorph, undergoes less cracking and the growth texture of the layer is altered 10. 

However, direct evidence between the polymorphic phase transformations and the 

generation of stress has yet to be provided.  Additionally, although time-temperature-

transformation (TTT) diagrams of monoclinic to hexagonal transformations have been 

developed (see Figure 3)11,12, detailed mechanisms of the polymorphic phase 

transformation, such as nucleation and growth of monoclinic to hexagonal Cu6Sn5, in real 

solder joints (Cu/Cu3Sn/Cu6Sn5/Sn-0.7Cu solder) is not known.  

 

Fig. 4.  Whole-pattern profile fitting method to determine thermal expansion behavior 

of interfacial Cu6Sn5 and Cu substrate. The variation in lattice parameters of Cu6Sn5 and 

Cu in the temperature range 30–250 °C, adapted from 20. 
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A significant challenge in research on the link between phase transformation and crack 

formation has been the difficulty of proving the cracking mechanisms and, therefore, the 

mechanisms have long been the subject of questions. As the results, so far we proposed 

three possible hypotheses for the cause of cracking of Cu6Sn5 10 as (1) polymorphic 

transformations and associated stresses 5,8,9, (2) mismatch of mechanical properties, such 

as hardness and elastic modulus between interfacial structures 13-15, and (3) growth 

orientations associated with anisotropy of mechanical properties 15-19. This lack of 

fundamental understanding is reflected in many solder alloys and hampers the further 

rational development of alloys for increased reliability and use in emerging and demanding 

applications such as 3D ICs.  

 

Fig. 5.  SEM image of the sample. Area showing in the image corresponds to the in-

situ observation with heating and isothermal. 

 

As shown in Figure 4, we have performed in-situ XRD heating experiments 20 to determine 

the thermal expansion behavior of interfacial Cu6Sn5 and Cu substrates with Sn-0.7wt%Cu 

solder. In addition to the difference of the thermal expansion between Cu6Sn5 and Cu, there 

is a large discontinuity between them at around 180°C, which corresponds to the volume 

change due to the polymorphic transformation from monoclinic Cu6Sn5. In-situ transmission 

electron microscopy (TEM) is an established experimental technique that permits direct 

observation of the dynamics and mechanisms of deformation behavior. In this paper we 

report on direct evidence for the relationship between the polymorphic phase transformation 

and stress accumulations/release in Cu6Sn5 using ultra-high voltage transmission electron 

microscopy (UHV-TEM) with controlled temperature in-situ observations. 
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EXPERIMENTAL PROCEDURES  
 

BGA-sample preparation 

Sn-0.7wt%Cu bulk alloy was firstly prepared by casting a mixture of Sn and Cu. The 

solidified bulk sample was then cut into thin sheets and its composition was confirmed using 

energy dispersive X-ray spectroscopy (EDS) to be in the range of 99.3 wt% Sn and 0.7 wt% 

Cu. Sn-0.7wt%Cu solder sheets were further rolled at room temperature to approximately 

0.02 mm thickness. The thinned sheets were then punched into 2.5mm diameter discs and 

were further heated on a Pyrex plate to 250°C with the aid of N2 gas flow to form a ball 

shape. The fabricated solder balls were then sieved to achieve spheres of 500 - 600 μm. 

The solder balls, with a small amount of rosin mildly activated (RMA) flux were then soldered 

onto a Cu with organic soldering preservative surface finish (Cu-OSP) printed circuit board 

(PCB) with a 600 μm ball pitch using a tabletop reflow oven with a maximum 250°C reflow 

temperature and 127 s reflow time with N2 gas flow. The solder joint samples were then 

further annealed for 500 hours at 150 °C. 

 

 

Fig. 6.  The temperature profile for the in-situ observation of the sample. 

 

UHV-TEM sample preparations  

Annealed samples were cross-sectioned and fine polished perpendicular to the solder/Cu 

interface. UHV-TEM samples were then prepared using a FEI SCIOS focus ion beam (FIB) 

dual beam system. This system was used with the electron and ion column mounted at 52 

degrees to each other on a 21 port specimen chamber and a 7mm working distance, the 

featured area perpendicular to the solder/Cu interface were deposited with a Pt protective 

layer approximately 1.5 micrometers thick. Using a 30nA and 15nA beam, two cross-

sections were milled in serial mode to provide a 2 μm lamella. By using the Easylift needle 
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tip, the lamella cross-sectioned sample was transferred and welded using Pt deposition on 

a Cu TEM grid. Finally to provide a smooth cross-section area for UHV-TEM observation, 

the welded samples were thinned to about 0.5 μm thickness using 0.5nA beam current. 

Figure 5 shows SEM images of the sample, which clearly shows the cross-sectioned 

Cu/Cu3Sn/Cu6Sn5/Sn-0.7Cu solder. The area shown in Figure 5 corresponds to the in-situ 

observation area.  

 

 

Fig. 7.  (a) Low magnification bright field image of solder joint with selected area 

electron diffraction from Cu6Sn5, (b) higher magnification bright field image of 

Cu/Cu3Sn/Cu6Sn5 interface. 

 

 

In-situ Synchrotron XRD characterization 

For XRD experiments, Sn-0.7Cu/Cu solder joints were prepared by dipping Cu plates 

(C1220P) of 10 mm×30 mm×0.3 mm with flux into the molten solder in a solder bath at 

270°C. Samples were etched after being annealed for 500 hours at 150°C in a solution of 

ortho-nitrophenol (35 g) and NaOH (50 g) in 1 L of water at 80°C to completely remove the 

Sn phase from the solder alloys. XRD data were obtained from the prepared dipped Sn-

0.7Cu/Cu samples at 30°C, 150°C and 250°C, in flat-plate asymmetric reflection geometry 

with sample heater at the powder diffraction beamline of the Australian Synchrotron using 

an X-ray energy of 18keV. The Wavelength (0.689Å) and 2θ zero-error were determined 

from a standard 0.3 mm capillary of a LaB6/Si mixture using transmission geometry. The 

angle between the X-ray beam and the sample surface was fixed at 5°. Indexing of XRD 

patterns was conducted using TOPAS 4.2 software. A Fundamental parameter (FP) 

approach was employed in TOPAS21. 
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Fig. 8.  A still frame TEM images from in-situ video of an interface in Cu/Cu3Sn/Cu6Sn5/Sn 

taken at 210ºC. 

In-situ UHV-TEM observations 

In-situ UHV-TEM observations were performed using a JEM-1000 (JEOL, Japan) at an 

acceleration voltage of 1,000 kV with an EM-HSTH (JEOL, Japan) heating holder and high 

resolution video recorder. Figure 6 shows the temperature profile for the in-situ observation 

of the sample. A sample was measured at room temperature, then heated from 25 to 210ºC 

with heating a heating rate of approximately 20ºC/min following isothermal observations at 

210ºC. The beam-induced heating remains small at the acceleration voltage of 1,000kV, 

allowing for proper observations of the phase transformation. 

 

RESULTS AND DISCUSSION  

 

UHV-TEM bright field image of solder joint Cu/Cu3Sn/Cu6Sn5/Sn-0.7Cu solder 

Figure 7a and 7b shows a bright field image of solder joint and selected area electron 

diffraction from Cu6Sn5. Multiple small grains a few submicron size of Cu3Sn can be seen 

on the Cu substrate with a columnar morphology, with Kirkendall voids between the Cu3Sn 

and Cu substrate. It is expected that the relatively thick Cu3Sn layer with Kirkendall voids 

was formed during annealing for 500 hours at 150ºC20. The Cu6Sn5 layer is typical scalloped 

morphology and a single crystal grain was observed during in-situ heating experiments. 

According to the reported TTT diagram based on annealing for 500 hours at 150ºC, Cu6Sn5 

will be a stable monoclinic phase. However, it is difficult to determine whether this monoclinic 

phase is η’ or η4+1 from the electron diffraction pattern obtained from Cu6Sn5. The Sn phase 

also exists at outer areas of the Cu6Sn5, and interdiffusion with Cu6Sn5 can be expected 

during heating in the in-situ observation experiments.  In Figure 7 (a) and Figure 8 taken 

from the still frame in-situ video at 20ºC, no lattice defects, such as dislocations, stacking 
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faults or twining were recognised in Cu6Sn5 grains by bright field imaging at several tilting 

conditions. However, some wide and dark banded contrast patterns within Cu6Sn5 were 

found. This contrasting is likely to be bend contours 22 but not thickness fringes since the 

sample is flat with thickness of around 0.5 μm, prepared by parallel ion beam milling. Note 

thickness fringes only appear when the sample is not flat 22. 

 

 

Fig. 9.  Selected still frame TEM images from in-situ video of high voltage TEM of an 

interface in Cu/Cu3Sn/Cu6Sn5/Sn taken at (a) 20ºC, (b) 60ºC, (c) 120ºC, (d) 150ºC, (e) 

180ºC, (f) 190ºC, (g) 200ºC, and (h) 210ºC. 

 

In Figure 8, the thick doted lines correspond to grain boundaries of Cu, Cu3Sn, Cu6Sn5 and 

Sn-0.7wt%Cu solder, and the thin doted lines within Cu6Sn5 may be bend contours. Bend 
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contours are a diffraction phenomenon that arises from the change in orientation of particular 

sets of planes within the sample relative to the electron beam 22 and indicate that there is 

strain in the grains. In this instance the patterns appear in a temperature range which is 

likely to correspond to the polymorphic transformation of Cu6Sn5 and may be indicative of 

transformation related stresses. 

 

In-situ heating observations from room temperature to 210ºC  

Figure 9 (a)-(h) are selected still frame TEM images from the in-situ video of UHV-TEM of 

an interface in Cu/Cu3Sn/Cu6Sn5/Sn-0.7Cu solder taken at (a) 20ºC, (b) 60ºC, (c) 120ºC, (d) 

150ºC, (e) 180ºC, (f) 190ºC, (g) 200ºC, and (h) 210ºC. As shown in Figure 8 and Figure 

9(a), in Cu6Sn5, there are contrast patterns. Note the sample thickness is around 0.5 μm 

and flat due to the FIB for parallel cutting, so the thickness fringe, if any, should be straight 

but not curved. Contributions from thermal expansion are estimated at approximately 1.8% 

volume expansion from unit cell volume measurements by synchrotron XRD 14. At around 

180ºC, the contrast patterns moved from the left side of the Cu6Sn5 toward the right of the 

Cu6Sn5 grain, then disappeared and the new contrast patterns were created from the left 

side of the grain. There are potentially two different monoclinic variants, η’ and η4+1. The 

former transformation temperature is reported at 186ºC and the latter at 210ºC. This TEM 

experiments involve a heating rate of 20ºC /min to reach 210ºC, then isothermal holding. It 

is possible if monoclinic is η’, due to the relatively slow kinetics for the phase transformation 

from monoclinic η’-Cu6Sn5 to hexagonal η-Cu6Sn5, a phase transformation is observed at 

210ºC. Or alternatively if this monoclinic variant is η4+1, a phase transformation occuring at 

210ºC is expected. However, it is difficult to determine whether this monoclinic phase is η’ 

or η4+1 from the electron diffraction pattern obtained from Cu6Sn5. 

 

 

Fig. 10.  (a) SEM image of the sample used for XRD, (b) The XRD patterns from the 
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interfacial IMCs in Sn-0.7Cu/Cu show an η’/η4+1 Cu6Sn5 crystal structure at 30°C and 

150°C, and an η Cu6Sn5 structure at 250°C. 

 

 

Fig. 11.  Selected still frame TEM images from in-situ video of an interface in 

Cu/Cu3Sn/Cu6Sn5/Sn taken at 210ºC isothermally for (a) 0 sec, (b) 15 sec, (c) 45 sec, (d) 

75 sec, (e) 85 sec, (f) 95 sec, (g) 105 sec, and (h) 130 sec followed by heating to 210ºC. 

 

Figure 10 (a) shows an SEM image of the sample surface after removed Sn by etching. As 

shown in Figure 10 (b) after being annealed at 500h (identical to TEM samples in this study), 

the interfacial IMCs in Sn-0.7Cu/Cu show an η’/η4+1 Cu6Sn5 crystal structure at 30°C and 

150°C conditions.  As they are heated the peaks gradually shifted to low 2θ angle because 

of thermal expansion. The XRD pattern at 250 ºC became relatively flat and can be indexed 
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as hexagonal eta Cu6Sn5, Cu3Sn and Cu, which indicates that polymorphic phase 

transformation of Cu6Sn5 has completed. In-situ XRD patterns on identical samples to the 

TEM study therefore revealed a polymorphic transformation of Cu6Sn5.  

 

In-situ isothermal observations at 210ºC 

To eliminate the effects of thermal expansion, isothermal in-situ observations were made 

immediately after the temperature reached 210ºC as shown in the experimental temperature 

profile in Figure 6. Figure 11 (a)-(h) are selected still frame TEM images from in-situ videos 

of the interface in Cu/Cu3Sn/Cu6Sn5/Sn-0.7Cu solder taken at 210ºC isothermally for (a) 0 

sec, (b) 15 sec, (c) 45 sec, (d) 75 sec, (e) 85 sec, (f) 95 sec, (g) 105 sec, and (h) 130 sec 

followed by heating to 210ºC. During early stages of the observation in Figure 11(a)-(d), 

contrast patterns moved from the grain boundary to the center of the grain. Then after 105 

sec in Figure 11(g), all contrast patterns disappeared. In Figure 11(g) and (h), there is no 

contrast patterns in the Cu6Sn5. 

 

According to the review by Laurila et al23, during soldering and subsequent cooling the time 

available for the transformation into the low temperature monoclinic structure is not sufficient 

and the high temperature hexagonal Cu6Sn5 remains as a metastable phase. However, in 

our case, the sample had been annealed for 500hours at 150ºC, the transformation to 

monoclinic is expected to occur, evidenced by TTT diagram shown in Figure 3. The 

expected volume change if Cu6Sn5 transforms from the η’-monoclinic phase to the η-

hexagonal phase during service is a 2.15% shrinkage based on the ambient temperature 

theoretical densities of monoclinic and hexagonal Cu6Sn5: 8.270 g/cm3 and 8.448 g/cm3, 

respectively24. A 2% volume shrinkage would conceivably be accompanied by significant 

stress in the IMC layer. For our in-situ experiments, no crack propagation was observed but 

contrast patterns formation and movement. This is expected due to the sample thickness 

(0.5μm) being insufficient to accumulate the strain for initiation of cracking. 

 

Conclusion 

 

We observed two phenomena, namely, the polymorphic transformation of monoclinic to 

hexagonal Cu6Sn5 and strain of the Cu6Sn5 IMC layer formed at the interface of 

Cu/Cu3Sn/Cu6Sn5/Sn-0.7Cu solder joints by in-situ heating/isothermal while observing thick 

solder joint samples by high voltage transmission electron microscopy. Due to the 

polymorphic transformation from monoclinic to hexagonal, the strain has been accumulated 
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by volume changes that initiated at the grain boundary of the Cu6Sn5/Sn interface. This strain 

is a likely source of cracking of the Cu6Sn5 in samples that cycle through this critical 

temperature range.   

 

Acknowledgments 

 

This research has been conducted under an international cooperative research program 

between the University of Queensland, Australia, Kyushu University, and Nihon Superior 

Company Ltd., Japan. K. Nogita has been supported by the “UQ-KU Project”, which assists 

research collaborations between the University of Queensland and Kyushu University, 

during his visit at Kyushu University for high voltage TEM experiments. PXRD experiments 

were performed at the Australian Synchrotron Powder Diffraction Beamline 

(AS132/PD/5784). The authors greatly thank Dr. Qinfen Gu of Australian Synchrotron for 

technical assistance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

101 
 

References 

 

1. M. Waldrop, Nature  530, 144-147 (2016). 

2. H.-Y. Hsiao, C.-M. Liu, H.-w. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen & K. N. Tu, 

Science, 336, 1007-1010 (2012). 

3. D. Mu, S. D. McDonald, J. Read, H. Huang & K. Nogita, Current Opinion in Solid 

State & Materials Science, 20, 55-76 (2016). 

4. H. Okamoto. Phase Diagrams of Dilute Binary Alloys.  (ASM International, 2002). 

5. K. Nogita, Intermetallics, 18, 145-149 (2010). 

6. A.-K. Larsson, L. Stenberg & S. Lidin, Acta Crystallographica, B50, 636-643 (1994). 

7. Y. Q. Wu, J. C. Barry, Y. T, Q. F. Gu, S. D. McDonald, S. Matsumura, H. Huang & K. 

Nogita, Acta Mater., 60, 6581–6591 (2012). 

8. K. Nogita & T. Nishimura, Scripta Mater., 59, 191-194 (2008). 

9. U. Schwingenschlögl, C. d. Paola, K. Nogita & C. M. Gourlay, Appl. Phys. Lett., 96, 

061908 (2010). 

10. K. Nogita, C. M. Gourlay & T. Nishimura, JOM, 61, 45-51 (2009). 

11. K. Nogita, C. M. Gourlay, S. D. McDonald, Y. Q. Wu, J. Read & Q. F. Gu, Scripta 

Mater., 65, 922-925 (2011). 

12. G. Zeng, S. D. McDonald, J. J. Read, Q. F. Gu & K. Nogita, Acta Mater., 69, 135–148 

(2014). 

13. D. Mu, H. Tsukamoto, H. Huang & K. Nogita, Mater. Sci. Forum, 654-656, 2450-2454 

(2010). 

14. D. Mu, J. Read, Y.-F. Yang & K. Nogita, J. Mater. Res., 26, 2660 - 2664 (2011). 

15. D. Mu, H. Huang & K. Nogita, Mater. Lett., 86, 46-49 (2012). 

16. H. Tsukamoto, T. Nishimura & K. Nogita, Mater. Lett., 63, 2687-2690 (2009). 

17. D. Mu, H. Yasuda, H. Huang & K. Nogita, J. Alloys Compd., 536, 38-46 (2012). 

18. D. Mu, H. Huang, S. D. McDonald & K. Nogita, J. Electron. Mater., 42, 304-311 

(2013). 

19. D. Mu, H. Huang, S. D. McDonald, J. Read & K. Nogita, Mater. Sci. Eng., A, 566, 

126-133 (2013). 

20. G. Zeng, S. D. McDonald, Q. F. Gu, Y. Terada, K. Uesugi, H. Yasuda & K. Nogita, 

Acta Mater., 83, 357–371 (2015). 

21. R. W. Cheary & A. Coelho, J. Appl. Crystallogr., 25, 109-121 (1992). 

22. E. A. Stach, T. Freeman, A. M. Minor, D. K. Owen, J. Cumings, M. A. Wall, T. Chraska, 

R. Hull, J. J.W. Morris, A. Zettl & U. Dahmen, Microsc. Microanal., 7, 507-517 (2001). 



 

102 
 

23. T. Laurila, V. Vuorinen & J. K. Kivilahti, Materials Science and Engineering R, 49, 1-

60 (2005). 

24. G. Ghosh & M. Asta, J. Mater. Res., 20, 3102-3117 (2005). 

 

Authors 

 

K. Nogita is an associate professor and director of Nihon Superior Cemtre for the 

Manufacturing of Electronic Materials (NS CMEM) in the School of Mechanical and Mining 

Engineering at the University of Queensland (UQ), Australia and an invited professor at 

Kyushu University (KU), Japan. M. A. A. Mohd Salleh is a lecturer at Universiti Malaysia 

Perlis (UniMAP) and a PhD student at UQ. E. Tanaka is a senior research fellow at KU. G. 

Zeng was a PhD student at UQ and now is a Research Associate at the Department of 

Materials, Imperial College London, UK. S. D. McDonald is senior research fellow at UQ. 

S. Matsumura is a professor of Department of Applied Quantum Physics and Nuclear 

Engineering and director of The Ultramicroscopy Research Center, KU. 

K. Nogita can be reached at k.nogita@uq.edu.au. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:k.nogita@uq.edu.au


 

103 
 

Chapter 5 Nucleation and growth behavior of 
primary intermetallics as an intrinsic reinforcing 
material in solder joints. 
 

This chapter focuses on the nucleation and growth behavior of primary intermetallics that 

form in the solder matrix. As primary Cu6Sn5 crystals can be considered an intrinsic 

reinforcing material variations in their nucleation and growth behaviour in different solder 

alloys (Sn-0.7Cu and Sn-3.0Ag-0.5Cu) with and without the presence of Ni additions were 

analysed. In Paper 5 titled “In situ imaging of microstructure formation in electronic 

interconnections” the formation of primary Cu6Sn5 in the solidification of Sn-0.7Cu and Sn-

3.0Ag-0.5Cu was studied. Outstanding questions on how the solder joint microstructure 

develops in real soldering applications that are difficult to conclusively answer with post 

mortem studies were revealed by the in situ SXRI technique. This included the nucleation 

and growth of flux voids in soldering and the interaction of solder paste and the substrate, 

initial rapid wetting and nucleation of the interfacial Cu6Sn5 intermetallics and interfacial 

voids during early soldering, nucleation location of time and nucleation growth rate of 

primary Cu6Sn5 intermetallics in a solder joint during soldering and Sn dendrite nucleation 

during soldering solidification. 

 

Paper 6 titled “Effect of Ni on the formation and growth of primary Cu6Sn5 intermetallics in 

Sn-0.7wt%Cu solder pastes on Cu substrates during the soldering process” investigates the 

effect of 0.05 wt% Ni on the formation and growth of primary Cu6Sn5 in Sn-0.7Cu solder 

paste soldered on a Cu substrate using a real-time synchrotron imaging technique. It was 

found that small additions of Ni significantly alter the formation and growth of the primary 

Cu6Sn5 primary intermetallics making them smaller. In contrast, without Ni, primary Cu6Sn5 

primary intermetallics tend to continue growth throughout solidification and end up much 

larger and coarser. The effect of the Ni addition appears to be in promoting the nucleation 

of a larger number of small Cu6Sn5 crystals. The results provide direct evidence of the 

sequence of events in the reaction of Ni containing Sn-0.7Cu solder pastes with a Cu 

substrate, and in particular the formation and growth of the primary Cu6Sn5 intermetallic. 
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Abstract  

The development of microstructure during melting, reactive wetting and solidification of 

solder pastes on Cu-plated printed circuit boards has been studied by synchrotron 

radiography.  Using Sn-3.0Ag-0.5Cu/Cu and Sn-0.7Cu/Cu as examples, we show that the 

interfacial Cu6Sn5 layer is present within 0.05 s of wetting, and explore the kinetics of flux 

void formation at the interface between the liquid and the Cu6Sn5 layer. Quantification of the 

nucleation locations and anisotropic growth kinetics of primary Cu6Sn5 crystals reveals a 

competition between the nucleation of Cu6Sn5 in the liquid versus growth of Cu6Sn5 from 

the existing Cu6Sn5 layer. Direct imaging confirms that the β-Sn nucleates at/near the 

Cu6Sn5 layer in Sn-3.0Ag-0.5Cu/Cu joints.     
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Introduction  

Microstructures are an important link between materials processing and performance,  and 

microstructure control is essential for any materials processing route where the 

microstructure plays a major role in determining the properties1. In the application of 

electrical and electronic devices, Sn alloys are used widely as solder materials, joining one 

electrical connection to another.  The interconnection microstructure can strongly affect the 

performance of a joint including the fatigue life during thermal cycling2, the tolerance to drop 

impacts3 and the resistance to electromigration4.  Hence, microstructure formation in solder 

joints is an important area of research5,6 particularly considering the need to develop more 

advanced electronic joining technologies while meeting the global environmental demands 

required of Pb-free solder joints7,8.  

 

In the last decades, characterization techniques for understanding microstructure 

development in a solidification process have advanced significantly with the development of 

3rd generation synchrotron X-ray imaging techniques. This has enabled studies of Sn alloy 

solidification related to columnar and equiaxed dendritic growth, eutectic solidification, 

intermetallic growth behaviour and stresses and strain induced by phase transformations9-

16.  Furthermore, several studies have focussed on X-ray imaging of solder solidification 

during a solder reaction with a substrate such as Cu.  In our previous study17,18, we reported 

on the formation of the Cu6Sn5 interfacial layer at the liquid/Cu interface during the early 

stages of soldering and the effect of Ni on the growth of primary (Cu,Ni)6Sn5 in Sn-0.7Cu/Cu 

joints. In synchrotron studies of soldering solidification (with a substrate), Ma et al.19 and 

Huang et al.20 reported the observation of a morphology change of large Ag3Sn plates in 

Sn-3.5Ag/Cu joints. In addition, Qu et al.21 investigated thick interfacial Cu6Sn5 layer growth 

at a late stage of soldering at 350 ˚C. Qu et al.22 in another study investigated interfacial flux 

void formation in pure Sn and Sn-3.5Ag foils soldered on Cu. However, from existing 

synchrotron studies of solder reactions, the solder joint experiments were conducted at low 

frame rates (above 0.5 s per frame) and fast reactions during the soldering process, 

especially in the  early stages of reactive wetting and subsequent solidification, were unable 

to be investigated. Previous synchrotron soldering experiments also used large volumes of 

solder and Cu foils as substrates, and small volumes of solder paste and substrates with a 

surface finish similar to industrial soldering have not been reported.  

 

Although there have been many studies of microstructure formation in Pb-free solder joints 

by post mortem methods23-26, outstanding questions remain on how solder joint 
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microstructures develop in the soldering process that are difficult to conclusively answer 

using these techniques. For example, the nucleation and growth of flux voids in the solder 

paste during activation and early wetting and their interaction with solidification reactions 

during soldering are not well understood.  There is limited information on the nucleation time 

of the interfacial Cu6Sn5 intermetallic layer and interfacial voids, of the kinetics of primary 

Cu6Sn5 solidification in solder joints, and of the -Sn dendrite nucleation location in joints. 

 

Here we conduct a synchrotron radiography investigation on the reflow of commercial solder 

pastes on FR-4 type printed circuit boards (PCBs), with Cu-plating and organic soldering 

preservative (OSP) surface finish, that mimics the solder reaction and solidification 

processes that occur in electronics manufacturing.  This approach enables the direct 

observation and quantification of flux activation, solder paste melting, reactive wetting and 

flux void formation during heating to the peak temperature and then the nucleation and 

growth of primary intermetallic compounds (IMCs) and the point of β-Sn nucleation during 

solidification.  We use Sn-3.0Ag-0.5Cu and Sn-0.7Cu (wt.%) solder pastes as case studies 

with a particular focus on quantifying the nucleation and growth kinetics of flux voids and 

primary Cu6Sn5 crystals, understanding their formation mechanisms, and identifying the 

location of β-Sn nucleation. 

 

Results 

Reactive wetting and flux void development. A typical example of the first moments of 

solder wetting and spreading is shown in Figure 1a-g for molten Sn-0.7Cu on Cu.  Initially, 

in Figure 1a, the liquid is not in contact with the Cu substrate and, between the frames in 

Figure 1a and b, the liquid spreads from left to right over the Cu.  Within 0.05 s of solder 

wetting, the dissolution of Cu from the substrate caused the formation of a ƞ-Cu6Sn5 layer. 

Together with the formation of interfacial layer, interfacial voids were also present (Figure 

1b). Subsequently, the layer develops a scalloped interface and the growth of interfacial 

solder voids is observed. Figure 1h is a post- mortem scanning electron microscopy image 

of the same sample which shows the interfacial Cu6Sn5 layer and interfacial voids which 

formed during reactive wetting. 

 



 

109 
 

 

Figure 1: In situ real time imaging observations of interfacial Cu6Sn5 formation during early 

wetting reactions between liquid Sn-0.7Cu and the Cu substrate interface at (a) 0 s, (b) 

0.05 s, (c) 0.10 s, (d) 28.10 s, (e) 66.30 s, (f) 87.60 s and (g) 114.30 s times after wetting: 

(h) a post mortem backscattered electron scanning electron microscopy (SEM) image of 

the solidified sample. 

 

Figure 2a shows the solder paste on the Cu-plated PCB at the first moment of solder melting. 

The individual ~35µm grains of solder powder can be seen suspended in flux. Figure 2a 

shows the first moment of melting. There are a number of voids/bubbles in the paste and at 

the paste-Cu interface which exist from the first moments of melting.  These are mostly 

caused by flux outgassing17,24. At the stage shown in Figure 2a, the voids have an irregular 

shape and are present between the solid solder grains. As the solder paste fully melts in 

Figure 2a,b and c, the voids develop into a spherical shape to minimise their interfacial area 

with the molten solder. Figure 2b is a snapshot during solder paste melting where both liquid 

solder and unmelted solder powder coexist.  In the first few seconds after melting (Figure 

2b-d), many flux voids first become more spherical and then float up and out of the solder 

ball due to buoyancy.  However, comparing Figure 2b-f, it can be seen that the flux voids at 

the solder-substrate interface do not float upwards despite being significantly less dense 

than the liquid solder.   
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Figure 2: (a-f) Synchrotron image sequence of the flux void formation during early wetting 

of Sn-0.7Cu paste on a Cu substrate and (g) quantification of interfacial voids size 

(diameter) formation and growth in Sn-0.7Cu paste during soldering from synchrotron 

image sequences (compilation from several experiments where different colours indicates 

different flux voids). 

 

A bubble is expected to remain attached to the Cu6Sn5 layer if the balance of interfacial 

energies satisfies the following inequality (assuming for simplicity that there is only a small 

contact area between the bubble and interfacial intermetallic compound (IMC) so that the 

bubble shape is unchanged): 

 

𝛾𝐼𝑀𝐶−𝑔 < 𝛾𝐿−𝑔 + 𝛾𝐼𝑀𝐶−𝐿   (1) 

 

Where 𝛾 is the interfacial Gibbs energy per unit area (IMC-g refers to intermetallic compound 

layer and flux void interface, L-g refers to liquid solder and flux void interface and IMC-L 

refers to intermetallic compound layer and liquid solder interface).  This inequality is likely to 
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be met given the relatively high interfacial energy between liquid Sn and Cu6Sn5. The total 

interfacial energy would be even lower if bubbles were located in the grooves between the 

Cu6Sn5 scallops. Therefore, they would be partially stabilised against a buoyancy force in 

these locations.  This appears to be the origin of the difficulty of removing flux voids from 

the solder-substrate interface. It can also be seen in Figure 2e-f, that the size of the 

interfacial flux voids increases with time and that new voids nucleate and grow at the 

Cu6Sn5-L interface between 17 and 116 s after the onset of melting. Figure 2g is a 

compilation plot showing the diameter of interfacial flux voids as a function of the time from 

wetting. Note that the measurements were gathered from several Sn-0.7Cu/Cu synchrotron 

imaging experiments. From this plot, it can be seen that some interfacial flux voids of 5-15 

µm were observed from the moment of wetting and that further flux voids nucleate later as 

the joint is heated towards the peak reflow temperature. All observable interfacial voids grow 

rapidly to a size of at least 4 µm in diameter and then continue to expand (maximum 

expansion near peak temperature ~250 °C) and then contract during cooling. Towards the 

end of contracting, a sudden slight increase (approximately 1%) in their size was observed 

coinciding with the β-Sn nucleation event, which is associated with solidification shrinkage 

as the undercooled liquid solidifies within a few frames. Subsequently, it can be seen that 

the flux void sizes remain constant after β-Sn nucleation when they are surrounded by solid.  

 

Similar interfacial flux voids formed in all experiments, as can be seen in Figures 1, 3 and 

4.  In some experiments, bubbles of evaporated flux continuously formed near the air-solder-

substrate triple points, were transported upwards along the sides of the solder ball and then 

floated away.  Examples of this are highlighted with arrows in Figure 2e.  Note that the large 

round features near the centre of the solder balls in Figures 1-4 are shallow bubbles between 

the sample and the quartz confining sheets.  These are artifacts of the experiment and form 

even without flux and will not be discussed further. 

 

Nucleation and growth of primary Cu6Sn5 crystals. Figure 3a-3e and Figure 4a-4e, show 

the development of primary Cu6Sn5 during continuous cooling from the peak temperature of 

250C in Sn-3.0Ag-0.5Cu/Cu and Sn-0.7Cu/Cu respectively. On both figures, the central 

round features are shallow bubbles (artifacts) while the round features at the Sn/Cu6Sn5/Cu 

interface are flux voids.  The dark rods in the solder ball are primary Cu6Sn5 and the tin liquid 

is slightly brighter.  Figure 3f and 4f are processed images where each Cu6Sn5 crystal has 

been segmented and colored by its nucleation time to visualise the sequence of nucleation 

events.  In Sn-3.0Ag-0.5Cu/Cu, many Cu6Sn5 grew from the edge (the side surface) of the 



 

112 
 

solder ball into the liquid as observed in Figure 3a-c and in Figure 3f (dark blue). Other 

Cu6Sn5 crystals appear to nucleate in the bulk liquid but note that there are also solder 

surfaces perpendicular to the x-ray beam. The Cu6Sn5 nucleation location can be inferred 

from the observation that the crystals did not move under gravity despite being significantly 

denser than liquid Sn (8,082 vs 6,967 kg/m3 at 250 C27,28).  This suggests that the Cu6Sn5 

crystals nucleated on the surface or on particles attached to the surface (possibly on the 

oxide where the SnO-L interfacial energy is relatively high) in both Sn-3.0Ag-0.5Cu/Cu and 

Sn-0.7Cu/Cu joints.  Also it can be observed from the colour maps in Figure 3f and 4f that 

the nucleation sequence of primary Cu6Sn5 in both materials bears no detectable 

relationship to the small temperature gradient of ~1 K (from the top to bottom of the field of 

view) and nucleation events do not follow an isotherm sweeping through the sample. 

 

 

Figure 3: Synchrotron image sequence of the nucleation and growth of primary Cu6Sn5 in 

a Sn-3.0Ag-0.5Cu/Cu joint.  Images have been normalised against a frame shortly before 

that in (a). Cu6Sn5 are dark.  The two central round features are bubbles.  The round 

features at the Cu6Sn5 interfacial layer are flux voids.  (f) a processed image with each 

Cu6Sn5 segmented and coloured by its nucleation time in s. t=0 is the onset of cooling 

from the peak temperature of 250C. 
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Figure 4: Synchrotron image sequence of the nucleation and growth of primary Cu6Sn5 in 

a Sn-0.7Cu/Cu joint.  Images have been normalised against a frame shortly before that in 

(a). Cu6Sn5 are dark.  The central round feature is a bubble.  The round features at the 

Cu6Sn5 interfacial layer are flux voids.  (f) is a processed image with each Cu6Sn5 

segmented and coloured by its nucleation time in s. t=0 is the onset of cooling from the 

peak temperature of 250C. 

 

The solidification kinetics of all primary Cu6Sn5 crystals in a joint of Sn-3.0Ag-0.5Cu/Cu and 

Sn-0.7Cu/Cu are quantified in Figure 5. Since the primary Cu6Sn5 crystals grew as faceted 

rods without branching, their growth could be quantified by a single vector.  Figure 5a and 

5d are plots of Cu6Sn5 growth vectors and Figure 5b and 5e are similar plots using a single 

origin.  They show that there is no preferred Cu6Sn5 growth direction which is consistent with 

growth from randomly oriented nucleation sites.  
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Figure 5: Quantification of the solidification kinetics of primary Cu6Sn5 crystals from the 

synchrotron image sequences in Figures 3 and 4. (a)-(c) Sn-3.0Ag-0.5Cu/Cu.  (d)-(f) Sn-

0.7Cu/Cu. (a) and (d): Cu6Sn5 growth vectors. (b) and (e): the same vectors with a 

common origin showing the growth orientation distribution. (c) and (f): the growth tip 

position versus time for most Cu6Sn5 crystals in each sample. (g) total number of Cu6Sn5 

crystals versus time for each joint. (h) histogram of the number of Cu6Sn5 nucleation 

events with time. (i) size distribution of the primary Cu6Sn5 crystals at the end of 

solidification in both joints. 

 

Figure 5c and 5f are plots of the growth length of primary Cu6Sn5 crystals as a function of 

time, where Figure 5a, b and c have a common Cu6Sn5 colour scale as do Figure 5d, e and 

f.  Here, ‘growth length’ is the distance from the nucleation point to the growth tip along the 

main [0001] growth direction. In the Sn-3.0Ag-0.5Cu/Cu joint, the first two Cu6Sn5 crystals 

grew with a near-constant tip velocity of 9.8 m/s for ~600 m before slowing down due to 

solute field interaction with surrounding growing Cu6Sn5 crystals.  Most other Cu6Sn5 

crystals in Figure 5c exhibited nonlinear growth from immediately after nucleation because 

the existing Cu6Sn5 led to overlapping solute fields reducing the tip undercooling.  In the Sn-



 

115 
 

0.7Cu/Cu joint, there was little linear growth (Figure 5f) because crystals nucleated in close 

proximity and solute fields overlapped early during growth. 

 

Figure 5g shows the number of Cu6Sn5 crystals versus time, Figure 5h is a plot of the 

number of Cu6Sn5 nucleation events versus time, and Figure 5i shows the distribution of 

final lengths of Cu6Sn5 crystals for both joints.  Combining Figure 5g-i, it is clear that Cu6Sn5 

rods are more numerous and, generally, shorter in Sn-0.7Cu/Cu joints than in Sn-3.0Ag-

0.5Cu/Cu joints. Some understanding of the origin of more primary Cu6Sn5 nucleation events 

in Sn-0.7Cu/Cu can be gained from the predicted solidification path in Figure 6, which 

assumes that dissolution of the substrate occurs until the liquid solder is uniformly saturated 

in Cu.  It can be seen that a slightly higher fraction of primary Cu6Sn5 is predicted to form in 

Sn-3.0Ag-0.5Cu/Cu than in Sn-0.7Cu/Cu for the same β-Sn nucleation undercooling.  The 

growth restriction factor (GRF)29 can be deduced directly from the T vs fs plots because it 

can be expressed as − (
𝜕𝑇

𝜕𝑓𝑠
)

𝑓𝑠→0
  (2).  Since the T vs fs slope is slightly steeper near fs=0 in 

Sn-0.7Cu/Cu, it can be seen that the GRF is higher for this joint.  Thus, a given level of 

constitutional supercooling develops in a shorter Cu6Sn5 growth distance in Sn-0.7Cu/Cu 

compared with Sn-3.0Ag-0.5Cu/Cu which would enable nucleation events to occur closer 

together in Sn-0.7Cu/Cu. 

 

Note that the only primary intermetallic phase observed in this work was Cu6Sn5 (i.e. Ag3Sn 

primary crystals were never observed in Sn-3.0Ag-0.5Cu/Cu joints).  This can be understood 

from the predicted solidification path in Figure 6: primary Ag3Sn are not predicted to form 

until below ~198°C  (Tnuc~19K).  For joints of the size studied in this work soldered to Cu, 

it is common for the nucleation undercooling for β-Sn to be less than 19K30.  This 

interpretation was confirmed in our laboratory studies in which primary Ag3Sn only formed 

in Sn-3.0Ag-0.5Cu/Cu joints at undercoolings higher than 20K (refer to supplementary data). 
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Figure 6: (a) Sn-Ag-Cu 250C isothermal section based on Thermocalc29. Crosses mark 

the initial solder compositions and the arrows show the change in liquid composition due 

to Cu substrate dissolution (up to the solubility limit). (b) Predicted development of primary 

IMC during cooling from 250C in Sn-3.0Ag-0.5Cu/Cu and Sn-0.7Cu/Cu joints, assuming 

the liquid was saturated in Cu at 250C.  The circles show the equilibrium eutectic onset 

temperatures and, below these temperatures, primary Cu6Sn5 only continues to grow if -

Sn fails to nucleate. Note that, in Sn-3.0Ag-0.5Cu/Cu, primary Ag3Sn crystals are not 

predicted to form until ~198C (Tnuc~19K). 

 

In Figure 5h, the highest nucleation rate occurs at the beginning of primary Cu6Sn5 

solidification.  However, in both joints, the number of Cu6Sn5 crystals continuously increases 

during cooling from the peak temperature almost until the nucleation of -Sn.  That is to say, 

nucleation occurred continuously during cooling and did not only occur in the first stages of 

cooling as commonly occurs in the solidification of alloys31.  One reason for this appears to 

be the highly anisotropic faceted growth mechanism of Cu6Sn5, where this crystal only grows 

along [0001] and does not branch (under the conditions of the paper).  Thus, Cu6Sn5 cannot 

grow into liquid regions that are not in the [0001] growth path and constitutional supercooling 

builds up in these liquid regions until it exceeds the required nucleation undercooling for 

Cu6Sn5, when a new nucleation event is triggered. This effect is compounded by the high 

GRF of Cu6Sn5 in Sn-rich compositions which causes a large constitutional supercooling to 

develop in a relatively short growth distance.  Thus, due to the combined high growth 

anisotropy and GRF, it is easier for new Cu6Sn5 crystals to nucleate in the liquid than it is 

for existing Cu6Sn5 to branch during growth, which causes continuous nucleation during 

cooling in a near-uniform thermal field. 
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In some samples, some primary Cu6Sn5 also grew from the pre-existing Cu6Sn5 reaction 

layer as shown in Figure 7c-g for Sn-3.0Ag-0.5Cu/Cu.  This shows that there is competition 

between primary Cu6Sn5 nucleation in the liquid versus Cu6Sn5 growth from the Cu6Sn5 

reaction layer.  For example, as shown in Figure 3, late during solidification of the Sn-3.0Ag-

0.5Cu/Cu between 50.25 s – 84.75 s of cooling time, some Cu6Sn5 crystals grew upwards 

from the pre-existing Cu6Sn5 layer (turquoise and orange crystals in Figure 5(c) and (f)).  

Note also that other Cu6Sn5 crystals grew from elsewhere down into the layer in the same 

time period and, from the post mortem SEM images in Figure 7a and 7b, it is often not 

possible to deduce whether primary Cu6Sn5 grew into the layer or grew out from the layer, 

which highlights the importance of in-situ imaging.   

 

 

Figure 7:  Growth of primary Cu6Sn5 on Sn-3.0Ag-0.5Cu/Cu near the interfacial 

intermetallic compound (IMC) layer later during solidification (a)-(b) post-mortem SEM 

images. (c)-(g) in-situ synchrotron images at five different times. 

 

The growth of Cu6Sn5 out from the layer produces long IMC protrusions that are undesirable 

and potentially harmful to reliability.  In Sn-Ag-Cu/Cu-OSP solder joints after drop impact 

testing, Pang32 reported that the crack path could occur either near the Cu-Cu6Sn5 interface, 

the Sn-Ag-Cu-Cu6Sn5 interface, or in the middle of the Cu6Sn5. After 500 cycles of thermal 
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cyclic testing, drop impact tests indicated that the dominant cracking was  observed in the 

Cu6Sn5 interfacial layer32.  In addition, Tian et al.33 have proven that long primary Cu6Sn5 

crystals in the bulk solder joint were the crack sources during in-situ tensile tests of Sn-3Ag-

0.5Cu/Cu after multiple reflows. Thus, it is important to understand the conditions under 

which Cu6Sn5 grows out from the layer and methods to prevent it.  It was found that samples 

where Cu6Sn5 grew out from the layer usually had a region of open liquid ahead of the layer 

relatively late during primary Cu6Sn5 solidification. Open liquid regions remain when no or 

few primary Cu6Sn5 rods have their [0001] growth direction oriented towards the IMC layer 

(e.g. Figure 3).  In this situation, new Cu6Sn5 can only nucleate in the liquid ahead of the 

layer if the constitutional supercooling in this region exceeds the required nucleation 

undercooling.  This is less likely in the solute field ahead of the growing Cu6Sn5 layer than 

in the liquid far from the layer, and becomes even less likely late during cooling when the 

solute fields of surrounding primary Cu6Sn5 have impinged on the solute field of the Cu6Sn5 

layer.  When the nucleation of new primary Cu6Sn5 crystals are suppressed in this way, the 

conditions exist for Cu6Sn5 to grow out from the existing Cu6Sn5 layer.  The development of 

open liquid regions ahead of the Cu6Sn5 layer is more likely when there are few, large 

Cu6Sn5 rods (such as in Figure 3) because this increases the chance that a few Cu6Sn5 rods 

will have a [0001] direction towards the layer.  On the other hand, Cu6Sn5 can be prevented 

from growing out from the layer by encouraging numerous small Cu6Sn5 to nucleate 

throughout the liquid (with numerous growth directions) so that no large liquid region 

develops ahead of the interfacial IMC layer into which layer crystals need to grow (e.g. for 

Sn-0.7Cu/Cu in Figure 4a-f). 

 

β-Sn nucleation and growth.  Although the in-situ imaging technique used here was not 

optimized for the high interface velocities after -Sn nucleates, useful information could still 

be extracted. The nucleation location of β-Sn in Sn-3.0Ag-0.5Cu/Cu joints was observed to 

be at/near the interfacial Cu6Sn5 layer as indicated by the red arrow towards the top (Figure 

8a-8c). This has been inferred in previous ‘post mortem’ work30,34 but here we directly prove 

that -Sn nucleates on or near the Cu6Sn5 layer in Sn-3.0Ag-0.5Cu/Cu joints. The 

subsequent growth of the β-Sn dendrite can be seen by comparing Figure 8a, b and c where 

the dendrite growth velocity was measured to be around 800 µm/s early during growth. Post-

mortem EBSD mapping in Figure 8d shows that there is a single β-Sn crystal in the joint. 

Comparing the EBSD inverse pole figure (IPF) map with the BSE-SEM image in Figure 8e 

shows that the dendrite growth direction is close to <110>.  With the knowledge of the 

nucleation location (the start of the red arrow in Figure 8a-f), the β-Sn primary dendrite arm 



 

119 
 

spacing was measured as a function of growth distance.  The primary dendrite arm spacing 

increases from around 10 µm at the nucleation location to 300 µm at the maximum distance 

from nucleation (Figure 8g), which is consistent with the dendrite tip velocity decreasing 

during growth into an undercooled melt due to the release of latent heat and consequent 

decrease in tip growth undercooling24,35,36.  Previous research has shown that Sn-3.0Ag-

0.5Cu/Cu joints usually solidify with one -Sn orientation or two or three -Sn orientations 

that are all related by a twin orientation relationship30,34,37,38. The presence of a single -Sn 

orientation in Figure 8 is consistent with this. 

 

 

Figure 8: (a) - (c) Synchrotron images of the nucleation and growth of β-Sn in the Sn-

3.0Ag-0.5Cu/Cu joint. (d) EBSD inverse pole figure (IPF)-y map of the Sn-3.0Ag-0.5Cu/Cu 

joint with the unit cell orientation superimposed.  (e) BSE-SEM image in which the β-Sn 

dendrite growth direction can be deduced.  Arrows show the growth direction in two 

regions projected onto the imaging plane. (f) BSE-SEM image of dendrites near the 
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nucleation site. (g) plot of primary dendrite arm spacing versus distance from the observed 

nucleation point. 

 

 

Figure 9: EBSD inverse pole figure (IPF)-y map of the Sn-0.7Cu/Cu joint with unit cell 

orientations superimposed.  The inserts show the -Sn dendrite morphology relative to its 

unit cell orientation, and a primary Cu6Sn5 rod relative to its unit cell orientation. 

 

For the Sn-0.7Cu/Cu joint, EBSD mapping showed multiple β-Sn crystal orientations and no 

evidence of solidification twinning (Figure 9).  A dendrite near the upper surface, highlighted 

by the insert, is growing almost in the sectioning plane and has a dendrite growth direction 

close to <110>, similar to the Sn-3.0Ag-0.5Cu/Cu joint in Figure 8. The other insert confirms 

that the Cu6Sn5 rods are oriented along [0001].  The larger number of -Sn orientations and 

wider range of misorientation angles in Figure 9 than Figure 8 is a significant difference 

between Sn-0.7Cu/Cu and Sn-3.0Ag-0.5Cu/Cu joints, that occurs both in these in-situ 

experiments and other BGA studies30,37.  

 

In summary, using time-resolved synchrotron X-ray radiography adapted to mimic the paste 

reflow soldering process, nucleation events and microstructure evolution which cannot be 

deduced from post-mortem methods have been revealed and quantified during soldering 

solidification. The elucidation of solder joint microstructure development revealed in this 

study could be used as a basis for the design of an optimized and controlled microstructure 

in solder joints for future electronic interconnects technology.  
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Methods 

Sample preparation. Sn-0.7Cu and Sn-3.0Ag-0.5Cu (wt.%) solder pastes with 35 µm 

average solder sphere diameter were used. A Cu plated printed circuit board (Fire retardant-

FR-4 type) with 600 µm ball pitch size was cross sectioned to produce a Cu-OSP substrate 

suitable for radiography with 100 µm thickness and 600 µm wide pitch. A small amount of 

solder paste (approximately 0.0002 g) was placed on the Cu pad in a cavity within a 100 µm 

thick polytetrafluoroethylene (PTFE) spacer sheet with an observation window of 10 x 10 

mm2 and a vent for flux outgassing.  Finally, the paste, substrate and PTFE were secured 

between two quartz plates. Further details, including a figure of the materials and sample 

preparation are given in the Supplementary Figure 2. 

 

Synchrotron X-ray Imaging.  Experiments were conducted at BL20XU in the SPring-8 

synchrotron using the solidification observation setup developed in previous research14,39 

and an X-ray energy of 21 keV. Transmitted images were converted into visible light and 

recorded in a digital format with 2,000 X 2,000 pixels representing a 1 mm X 1 mm field of 

view giving a resolution of 0.477 µm per pixel. An exposure time of 120 ms per frame with 

20 frames per second was used. A radiation furnace with graphite heating elements applied 

a reflow profile that heated from room temperature to approximately 250 ⁰C at 0.33 ⁰C/s, 

held at this peak temperature for 30 s before cooling down at approximately 0.33 ⁰C/s.  

 

X-ray image processing and analysis. Image sequences were flatfield corrected and 

normalized against 10 frames shortly before the nucleation of primary intermetallic and flux 

voids for the primary intermetallic study and void study respectively using Image-Pro Plus 

v.7.0. For the study of primary intermetallics, a 3x3x5 (x,y,t) median filter was applied and 

for the study of tin dendrites, a 3x3 (x,y) median filter was applied. To quantify the growth of 

flux voids, Image-Pro Plus v.7.0 was used for object tracking. To quantify the primary Cu6Sn5 

solidification kinetics, a routine was written in MATLAB 7.1 to identify the time (frame) at 

which each pixel becomes a solid pixel. First, the transmitted X-ray intensity was smoothed 

in time to reduce noise using a locally weighted linear regression. The sudden decrease in 

the intensity associated with a liquid pixel becoming a solid pixel was defined as the 

intersection of a linear-fit line to the flat region prior to solidification with a linear-fit line 

through the point with steepest decreasing slope.  Crystal growth kinetics were then 

extracted from the solidification time of each pixel within each Cu6Sn5 crystal. 
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Analytical Scanning Electron Microscopy (SEM). 

Beamline samples were polished for scanning electron microscopy (SEM) and electron 

backscatter diffraction (EBSD) analysis. For measuring the dendrite arm spacing, polished 

samples were lightly etched (93% distilled water + 5% sodium hydroxide + 2% 2-

nitrophenol). A Zeiss Auriga field emission gun SEM was used, with an Oxford Instruments 

INCA 80mm2 x-sight energy dispersive X-ray (EDX) detector and a Bruker EBSD detector. 

EBSD mapping was conducted at 20kV, scanning at 1 µm step per pixel and 50 ms exposure 

time. Kikuchi patterns were analysed using Bruker Espirit 2.0 software.  
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Figure Captions 

 

Figure 1: In situ real time imaging observations of interfacial Cu6Sn5 formation during early 

wetting reactions between liquid Sn-0.7Cu and the Cu substrate interface at (a) 0 s, (b) 0.05 

s, (c) 0.10 s, (d) 28.10 s, (e) 66.30 s, (f) 87.60 s and (g) 114.30 s times after wetting: (h) a 

post mortem backscattered electron scanning electron microscopy (SEM) image of the 

solidified sample. 

 

Figure 2: (a-f) Synchrotron image sequence of the flux void formation during early wetting 

of Sn-0.7Cu paste on a Cu substrate and (g) quantification of interfacial voids size (diameter) 

formation and growth in Sn-0.7Cu paste during soldering from synchrotron image 

sequences (compilation from several experiments where different colours indicates different 

flux voids).    

 

Figure 3: Synchrotron image sequence of the nucleation and growth of primary Cu6Sn5 in a 

Sn-3.0Ag-0.5Cu/Cu joint.  Images have been normalised against a frame shortly before that 

in (a). Cu6Sn5 are dark.  The two central round features are bubbles.  The round features at 

the Cu6Sn5 interfacial layer are flux voids.  (f) a processed image with each Cu6Sn5 

segmented and coloured by its nucleation time in s. t=0 is the onset of cooling from the peak 

temperature of 250C. 

 

Figure 4: Synchrotron image sequence of the nucleation and growth of primary Cu6Sn5 in a 

Sn-0.7Cu/Cu joint.  Images have been normalised against a frame shortly before that in (a). 

Cu6Sn5 are dark.  The central round feature is a bubble.  The round features at the Cu6Sn5 

interfacial layer are flux voids.  (f) is a processed image with each Cu6Sn5 segmented and 

coloured by its nucleation time in s. t=0 is the onset of cooling from the peak temperature of 

250C. 

 

Figure 5: Quantification of the solidification kinetics of primary Cu6Sn5 crystals from the 

synchrotron image sequences in Figures 3 and 4. (a)-(c) Sn-3.0Ag-0.5Cu/Cu.  (d)-(f) Sn-

0.7Cu/Cu. (a) and (d): Cu6Sn5 growth vectors. (b) and (e): the same vectors with a common 

origin showing the growth orientation distribution. (c) and (f): the growth tip position versus 

time for most Cu6Sn5 crystals in each sample. (g) total number of Cu6Sn5 crystals versus 

time for each joint. (h) histogram of the number of Cu6Sn5 nucleation events with time. (i) 

size distribution of the primary Cu6Sn5 crystals at the end of solidification in both joints. 
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Figure 6: (a) Sn-Ag-Cu 250C isothermal section based on Thermocalc29. Crosses mark the 

initial solder compositions and the arrows show the change in liquid composition due to Cu 

substrate dissolution (up to the solubility limit). (b) Predicted development of primary IMC 

during cooling from 250C in Sn-3.0Ag-0.5Cu/Cu and Sn-0.7Cu/Cu joints, assuming the 

liquid was saturated in Cu at 250C.  The circles show the equilibrium eutectic onset 

temperatures and, below these temperatures, primary Cu6Sn5 only continues to grow if -

Sn fails to nucleate. Note that, in Sn-3.0Ag-0.5Cu/Cu, primary Ag3Sn crystals are not 

predicted to form until ~198C  (Tnuc~19K). 

 

Figure 7:  Growth of primary Cu6Sn5 on Sn-3.0Ag-0.5Cu/Cu near the interfacial intermetallic 

compound (IMC) layer later during solidification (a)-(b) post-mortem SEM images. (c)-(g) in-

situ synchrotron images at five different times. 

 

Figure 8: (a) - (c) Synchrotron images of the nucleation and growth of β-Sn in the Sn-3.0Ag-

0.5Cu/Cu joint. (d) EBSD inverse pole figure (IPF)-y map of the Sn-3.0Ag-0.5Cu/Cu joint 

with the unit cell orientation superimposed.  (e) BSE-SEM image in which the β-Sn dendrite 

growth direction can be deduced.  Arrows show the growth direction in two regions projected 

onto the imaging plane. (f) BSE-SEM image of dendrites near the nucleation site. (g) plot of 

primary dendrite arm spacing versus distance from the observed nucleation point. 

 

Figure 9: EBSD inverse pole figure (IPF)-y map of the Sn-0.7Cu/Cu joint with unit cell 

orientations superimposed.  The inserts show the -Sn dendrite morphology relative to its 

unit cell orientation, and a primary Cu6Sn5 rod relative to its unit cell orientation.  
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Supplementary Data  

 

Supplementary Figure 1: SEM-BSE images of Sn-3.0Ag-0.5Cu/Cu joints at undercooling 

of (a) 14.9 K, (b) 19.7 K, (c) 33.8 K and (d) 41.4 K, indicating primary Ag3Sn blades only 

formed in the joints at undercoolings higher than 20 K. 
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Supplementary Methods 

 

Supplementary Figure 2: Schematic diagram of in situ soldering observation experiment 

sample cell setup. (a) sample of solder paste on Cu PCB (b) parts of sample cell and (c) 

assembled parts of sample cell. Note that image is not to scale. 

 

Solder pastes with 35 µm average solder sphere diameter were used with similar weight 

(approximately 0.0002 g) were used throughout the experiments. A Cu plated with organic 

soldering preservative (OSP) surface finish printed circuit board (Fire retardant FR-4 type) 

with 600 µm ball pitch size was cross sectioned to produce a Cu-OSP substrate suitable for 

radiography with 100 µm thickness. A small amount of solder paste was placed on the Cu 

pad (Supplementary Figure 2a). As in Supplementary Figure 2b and 2c, samples were 

placed in a cavity within a 100 µm thick polytetrafluoroethylene (PTFE) spacer sheet with 

an observation window of 10 x 10 mm2 and a vent for flux outgassing.  Finally, the paste, 

substrate and PTFE were secured between two quartz plates. 
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ABSTRACT 

This paper investigates the effect of 0.05wt%Ni on the formation and growth of primary 

Cu6Sn5 in Sn-0.7wt%Cu solder paste soldered on a Cu substrate using a real-time 

synchrotron imaging technique. It was found that small additions of Ni significantly alter the 

formation and growth of the primary Cu6Sn5 primary intermetallics making them small. In 

contrast, without Ni primary Cu6Sn5 primary intermetallics tend to continue growth 

throughout solidification and end up much larger and coarser. The primary effect of the Ni 

addition appears to be in promoting the nucleation of a larger amount of small Cu6Sn5. The 

results provide direct evidence of the sequence of events in the reaction of Ni containing 

Sn-0.7wt%Cu solder paste with a Cu substrate, and in particular the formation and growth 

of the primary Cu6Sn5 intermetallic. 

 

Keyword: Synchrotron imaging, solder paste, intermetallic, solidification. 

 

INTRODUCTION 

Electric and electronic devices have rapidly become more advanced and denser 

necessitating stronger and higher reliability interconnects and advances in solder materials. 

Among commercially available lead-free solders, Sn-0.7wt%Cu solder systems were widely 

used in wave soldering due to their availability and low cost [1, 2].  However, Sn-0.7wt%Cu 

has poor mechanical properties, is prone to brittle intermetallic compound (IMC) growth and 

formation of large primary ƞ-Cu6Sn5 in the solder matrix and a thick interfacial IMC layer 

consisting of ƞ-Cu6Sn5 and ɛ-Cu3Sn, that can lead to serious reliability concerns [3]. Due to 

this disadvantage, research has been undertaken on the micro-alloying effects of several 

elements in the Sn-Cu solder system including Ni [4-8], Zn [6], Bi [9], In [10] and Al [11, 12]. 

These micro-alloying studies have been made to improve the mechanical properties of a 

solder joint. Within the range of alloys developed, the near eutectic composition of Sn-

0.7wt%Cu with ~0.05 wt% Ni has been used in industry since 1999 [13]. Yoon et al. [14] 

investigated the growth of interfacial Cu6Sn5 in Sn-Cu-Ni solders after thermal ageing and 

identified that the interfacial intermetallic compound (IMC) activation energy was considered 

low compared to the activation energy of interfacial IMC in binary Sn-Cu solders. In another 

study, Yang et al. [7] reported that with Ni additions to Sn-0.7wt%Cu the growth of Cu3Sn 

interfacial IMC was suppressed which also resulted in the formation of fine needle-like 

(Cu,Ni)6Sn5 at the solder/substrate interface. In addition, the reported effects of small 

additions of Ni in Sn-0.7wt%Cu solder alloys have included better fluidity [15], alterations to 
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the eutectic composition and promotion of a near eutectic Sn-Cu6Sn5 microstructure [16], 

stabilisation of the hexagonal high temperature phase of Cu6Sn5 [17], and suppression of 

cracking in Cu6Sn5 solder joints formed between Sn-0.7wt%Cu solders and Cu substrates 

[18]. However, most of these investigations on IMC formation in Sn-Cu and Sn-Cu-Ni solder 

systems were ex-situ experiments and focused on the interfacial IMC rather than the primary 

IMC that forms in the solder matrix prior to β-Sn nucleation. 

Previous research has used synchrotron radiography to directly image (i) the solidification 

of primary Cu6Sn5 intermetallics in bulk solders (without a substrate) [19] [11] [20] and (ii) 

the intermetallic reaction layer [21].  Recently, we have successfully developed [22] a 

synchrotron based in-situ method to observe, in real time, the entire soldering process of a 

solder paste on a Cu substrate, including the solid-liquid-solid transition to provide an 

understanding on the real-time primary intermetallic growth. In this study, we use this 

technique to observe the soldering of Sn-0.7wt%Cu and Sn-0.7wt%Cu-0.05wt%Ni solder 

paste on a Cu substrate in order to investigate the influence of Ni additions on the formation 

and growth of the primary Cu6Sn5 intermetallic.  

 

EXPERIMENTAL PROCEDURE 

Real time observation experiments were performed at the BL20XU beamline in the SPring-

8 synchrotron using the solidification observation setup developed in previous research [22-

24]. The parameters were chosen to allow a high degree of coherence, absorption contrast 

and phase contrast enabling boundaries in the sample to be observed on transmitted 

images. These image signals collected were then converted into a digital format of 2000 X 

2000 pixels at 1 mm X 1 mm field of view giving a resolution of 0.477 µm per pixel. A planar 

undulator was used as a light source and the radiation was monochromatized with Si double 

crystal monochromators. An exposure time of 1 s per frame to capture the images was used. 

To mimic the process of reflow soldering, a furnace with graphite heating elements where 

heat is transferred through radiation in an enclosed sample chamber was used (Figure 1a). 

The sample position and sample cell configuration is shown in Figure 1b, and each sample 

of either  Sn-0.7wt%Cu or Sn-0.7wt%Cu-0.05wt%Ni solder paste supplied by Nihon 

Superior Co Ltd had an average solder spheres sizes of 35 µm and was placed vertically on 

a thin 100 µm Cu substrate. The observation window area of 10 x 10 mm2 with a vent for 

flux outgassing was made by using a 100 µm thickness poly-tetrafluoroethylene (PTFE) 

sheet placed between two SiO2 plates. Samples were set to be heated from room 



 

138 
 

temperature to approximately 250 ⁰C at 0.33 ⁰C/s and held for 30 s before cooling down at 

approximately 0.33 ⁰C/s. The soldering temperature profiles for the experiments are shown 

in Figure 1c. Experimental time from 0 s was determined from the point of solder melting at 

227 ⁰C.  

 

 

Figure 1: (a) Synchrotron real-time in-situ observation heating furnace setup, (b) soldering 

sample cell setup, and (c) temperature profile of Sn-0.7wt%Cu/Cu and (d) temperature 

profile of Sn-0.7wt%Cu-0.05wt%Ni/Cu. 
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Figure 2: Threshold  X-ray synchrotron images for measuring primary intermetallic 

compounds (IMC) of (a) Cu6Sn5 on Sn-0.7wt%Cu and (b) (Cu,Ni)6Sn5 on Sn-0.7wt%Cu-

0.05wt%Ni. Individual primary Cu6Sn5 particles are labeled with letters corresponding to 

the particles shown in Figure 3(i) and Figure 4(i).  

 

The size of primary intermetallics on Sn-0.7wt%Cu and Sn-0.7wt%Cu-0.05wt%Ni solder 

pastes on Cu substrates was measured using ImageJ software. Synchrotron radiography 

images were then processed by using a threshold method [25] to obtain an accurate 

measurement. Several primary intermetallics of each solder alloy were chosen for 

measurement as indicated in Figure 2.   After synchrotron in-situ observation, samples were 

polished and scanning electron microscopy (SEM) images were obtained using 

backscattered mode. Electron dispersive X-ray spectroscopy (EDS) point analysis and 

mapping was conducted to observe the Ni and Cu distribution. 

To help with the analysis of the results, an additional experiment was performed to test 

whether any solid phases are present at the peak temperature of 250C.  Approximately 200 

g of Sn-0.7wt%Cu-0.05wt%Ni solder paste was heated to 250°C until all flux was removed.  

The sample was then poured into a borosilicate glass test tube to produce a cylindrical 
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sample 18 mm in diameter.  This was then held vertically at 250°C for 24 hrs before being 

abruptly quenched in water.  The microstructures of the top and bottom of the sample were 

then studied to explore whether any particles had settled or floated under gravity at 250°C.  

 

RESULTS  

Figure 3 reveals the real-time observations of reactions between Sn-0.7wt%Cu solder paste 

and the Cu substrate at nine experimental times. From the observations, Sn-0.7wt%Cu 

solder paste which contains solder spheres and flux starts to transform to a more viscous 

suspension (Figure 3a) at approximately 227°C and the solder spheres contained in the 

suspension fully melt after a few seconds as seen in Figure 3b. The liquid Sn-0.7wt%Cu 

then immediately wets the Cu substrate followed by the formation of interfacial Cu6Sn5 IMC. 

From Figure 3c, it can be seen that at the moment the molten solder contacts the solid Cu 

an intermetallic layer of significant thickness forms, while molten solder flows onto the Cu 

substrate. During the reflow soldering process, solder voids can be observed as in Figure 3 

and 4 due to the flux outgassing process. After a peak temperature of 250°C for 30 s, the 

solder then was cooled down. During cooling (Figure 3d-3i), primary rod-shaped Cu6Sn5 

intermetallics nucleated at 110 – 120 s of the experimental time at approximately 244 – 

240°C. The large primary rod-shaped Cu6Sn5 continue to grow during cooling before 

solidification is complete.  
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Figure 3: Real-time observations of reactions between Sn-0.7wt%Cu solder paste and the 

Cu substrate at experimental times of (a) 0 s, (b) 10 s, (c) 11 s, (d) 112 s, (e) 118 s, (f) 123 

s, (g) 130 s, (h) 135 s and (i) 143 s. 

 

Figure 4 reveals the real-time observation of the reaction between Sn-0.7wt%Cu-0.05wt%Ni 

solder paste and the Cu substrate at an experimental time of (a) 0 s, (b) 4 s, (c) 22 s, (d) 34 

s, (e) 119 s, (f) 123 s, (g) 132 s, (h) 141 s and (i) 147 s. From the observations, the solder 

spheres and flux starts to transform to a more viscous suspension (Figure 4a) at 

approximately 227°C and the solder spheres contained in suspension tend to fully melt after 

a few seconds. The liquid Sn-0.7wt%Cu-0.05wt%Ni then immediately wets the Cu substrate 

and interfacial Cu6Sn5 IMC formation occurs (Figure 4c). From the synchrotron image 

sequences, small pre-existing primary (Cu,Ni)6Sn5  particles approximately 8 µm in length 

were observed before the peak temperature during heating. For example, at 34 s of the 

experimental time at 239.9°C in Figure 4d. Within the resolution of imaging, the pre-existing 

(Cu,Ni)6Sn5  could only be clearly observed when they were being pushed by an adjacent 

void and it is not possible to conclude on whether these pre-existing particles completely 

melted or not from the imaging. Later in this section, it will be shown that (Cu,Ni)6Sn5 
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particles are stable at 250°C in Sn-0.7wt%Cu-0.05wt%Ni.  During cooling from the peak 

temperature (Figure 4e-4i), new primary (Cu,Ni)6Sn5  intermetallics nucleate and grow to a 

scale of a few tens of μm in length at 92 – 147 s of the experimental time at approximately 

250 – 238°C. Note that primary Cu6Sn5 form earlier (at higher temperature) in Sn-0.7wt%Cu-

0.05wt%Ni/Cu joints than in Sn-0.7wt%Cu/Cu joints as shown in Figure 1c and d. Similar to 

the large Cu6Sn5 rods observed on Sn-0.7wt%Cu/Cu, the new primary (Cu,Ni)6Sn5 

intermetallics tend to nucleate and grow with increasing time during cooling before tin 

nucleation. Due to the density difference with the liquid, these small (Cu,Ni)6Sn5  

intermetallics tend to settle down at the interface between the molten solder and Cu 

substrate. However it is clear that these particles do not form at the substrate but in the bulk 

of the solder.  

 

Figure 4: Real-time observations of reactions between Sn-0.7wt%Cu-0.05wt%Ni solder 

paste and the Cu substrate at experimental times of (a) 0 s, (b) 4 s, (c) 22 s, (d) 34 s, (e) 

119 s, (f) 123 s, (g) 132 s, (h) 141 s and (i) 147 s. 
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A key finding in this work is that the primary Cu6Sn5 are significantly smaller and more 

numerous in Sn-0.7wt%Cu-0.05wt%Ni/Cu than in Sn-0.7wt%Cu/Cu, as can be seen by 

comparing Figure 3 and 4. Within the field of imaging as in Figure 3 and 4, approximately 

15 large Cu6Sn5 and more than 100 small (Cu,Ni)6Sn5 primary intermetallics were observed 

on Sn-0.7wt%Cu/Cu and Sn-0.7wt%Cu-0.05wt%Ni/Cu respectively. For the primary Cu6Sn5 

growth investigations of both solder alloys, four typical individual intermetallic Cu6Sn5 

particles were chosen and measured which are indicated as A, B, C, and D for Sn-0.7wt%Cu 

and E, F, G and H for Sn-0.7wt%Cu-0.05wt%Ni (Figure 2, Figure 3i and Figure 4i). In Figure 

5, the evolution of primary Cu6Sn5 intermetallics in Sn-0.7wt%Cu and Sn-0.7wt%Cu-

0.05wt%Ni during cooling are plotted. Noting the different axis limits, it is obvious that the 

sizes of primary Cu6Sn5 intermetallics in Sn-0.7wt%Cu-0.05wt%Ni are smaller compared to 

Sn-0.7wt%Cu with approximately 150 – 350 µm2 and 1300 – 1800 µm2 in area size, 

respectively. As in Figure 5a, the primary Cu6Sn5 intermetallic in Sn-0.7wt%Cu tends to 

continue to grow until the tin nucleates while, in Sn-0.7wt%Cu-0.05wt%Ni, the growth of 

some rods is restricted before tin nucleates. Several studies have shown that a smaller size 

of primary IMCs in the matrix could strengthen the solder mechanically by pinning dislocation 

glide [26, 27]. In contrast, larger brittle primary IMCs could promote crack initiation in a solder 

joint [27].  
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Figure 5: Evolution of primary intermetallic growth of (a) Sn-0.7wt%Cu/Cu and (b) Sn-

0.7wt%Cu-0.05wt%Ni/Cu joints, during cooling. A, B, C, D, E, F, G and H are typical 

individual primary intermetallics chosen for measurements in this study.  

 

Subsequent to the in-situ observation, samples were taken out from the experiment sample 

cell and prepared for further metallographic observations including SEM coupled with 

electron dispersive x-ray spectroscopy (EDS). Figure 6 shows the Sn L and Cu K maps of 

regions containing primary and interfacial Cu6Sn5 in Sn-0.7wt%Cu/Cu. It can be clearly 

observed that the Cu K distributions are associated primarily with the large rod-shape 

primary Cu6Sn5 and the interfacial IMC layer of Sn-0.7wt%Cu. Figure 7 shows the 

distribution of Sn L, Ni K and Cu K of Sn-0.7wt%Cu-0.05wt%Ni/Cu which shows that Ni is 

present in the Cu6Sn5 reaction layer as (Cu,Ni)6Sn5. It is not clear if there is any Ni in the 

primary Cu6Sn5 from the EDS mapping, but EDS point analysis in Table I confirms that Ni is 

present in both the primary Cu6Sn5 and interfacial Cu6Sn5 with ~2 at% Ni and ~3 at% Ni 

respectively.  
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Figure 6: Backscattered SEM image and EDS mapping images of (a) primary Cu6Sn5 IMC 

and (b) interfacial Cu6Sn5 IMC layer and of Sn-0.7wt%Cu/Cu taken subsequent to the 

synchrotron experiments. 
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Figure 7: Backscattered SEM image and EDS mapping images of (a) primary Cu6Sn5 IMC 

and (b) interfacial Cu6Sn5 IMC layer and of Sn-0.7wt%Cu-0.05wt%Ni/Cu taken subsequent 

to the synchrotron experiments. 
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Table I: SEM-EDS results of the (Cu,Ni)6Sn5 composition in Sn-0.7wt%Cu-0.05wt%Ni for 

the primary Cu6Sn5 and interfacial Cu6Sn5 layer in Sn-0.7wt%Cu-0.05wt%Ni/Cu joints, as 

well as bulk samples held at 250°C for 24 hours. # = number of points/particles studied.  

Mean compositions are shown with standard deviations in brackets. 

Number of points/particles 
studied # 

Sn 
(at%) Cu (at%) Ni (at %) 

Primary Cu6Sn5 in joint on Cu 15 
48.4 
(1.4) 

49.7 
(1.6) 1.9 (1.3) 

     

Interfacial Cu6Sn5 in joint on Cu 10 
48.4 
(2.2) 

48.4 
(2.2) 3.2 (1.1) 

     

Primary Cu6Sn5 in bulk solder 22 
49.4 
(2.5) 

35.8 
(1.9) 

14.8 
(1.9) 

 

To further investigate the pre-existing (Cu,Ni)6Sn5 primary phase observed on heating near 

the peak reflow temperature in Sn-0.7wt%Cu-0.05wt%Ni/Cu joints (e.g. Figure 4d), an 

experiment was conducted holding the molten solder at 250°C for 24 hours and 

subsequently quenching the sample in water.  Figure 8 shows the bottom of a quenched 

sample after 24 hours at 250°C.  A layer of particles can be seen clearly and these were 

found to be (Cu,Ni)6Sn5 containing ~15 at% Ni by EDS analysis (Table I). At 250°C, the 

density of (Cu,Ni)6Sn5 is ~8180 kg.m
-3

 [28] and that of liquid tin is 6980 kg.m
-3

 [29], and 

gravity has concentrated the (Cu,Ni)6Sn5 particles in  a layer at the bottom. Note that the 

whole sample is approximately 8 times taller than the region shown and that the volume 

fraction of (Cu,Ni)6Sn5 particles at 250°C is actually very low.  This result is in reasonable 

agreement with the Thermo-Calc prediction using the TCSLD v.3 database [30].  It predicts 

that, at equilibrium at 250°C, Sn-0.7wt%Cu-0.05wt%Ni should consist of 99.16 mass% liquid 

and 0.84 mass% (Cu,Ni)6Sn5 (0.74 vol% (Cu,Ni)6Sn5).  This result is also consistent with our 

past work that has shown Sn-0.7wt%Cu-0.05wt%Ni to be a hypereutectic composition in the 

(Cu,Ni)6Sn5 primary phase field  in contrast to Sn-0.7Cu which is hypoeutectic (in the Sn 

primary phase field) [16] [19]. 
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Figure 8: (a) Optical micrograph of Sn-0.7wt%Cu-0.05wt%Ni held at 250°C for 24 hours. 

(b)  SEM image of (Cu,Ni)6Sn5 observed in the same sample. 

 

DISCUSSION 

A key finding in this work is that primary Cu6Sn5 form at higher temperature and are 

significantly smaller and more numerous in Sn-0.7wt%Cu-0.05wt%Ni /Cu joints than in Sn-

0.7wt%Cu /Cu joints.  

 

In both samples at the early stages of molten solder reacting with the Cu substrate, there is 

a rapid reaction with the Cu substrate and the quick formation of an interfacial IMC layer. 

The formation of -Cu6Sn5 interfacial IMC becomes possible after the Cu substrate/liquid 

solder interface becomes supersaturated in Cu. For Sn-0.7wt%Cu this requires Cu 

dissolution to the binary liquidus composition at T=250C which is ~1.2 wt% Cu  [30].  In 

contrast, Sn-0.7wt%Cu-0.05wt%Ni is already saturated in Cu at 250C, as demonstrated in 

Figure 8, which is most likely the reason for the earlier formation of primary Cu6Sn5 in Sn-

0.7wt%Cu-0.05wt%Ni/Cu joints. 

 

Figure 8 shows that Sn-0.7wt%Cu-0.05wt%Ni (without a Cu substrate) is a mixture of liquid 

and (Cu,Ni)6Sn5 at 250C.  Therefore, primary (Cu,Ni)6Sn5 is not expected to fully melt during 

reflow soldering, which is consistent with the observations. For example, Figure 4d shows 

that some pre-existing primary (Cu,Ni)6Sn5 exists before the peak temperature at 250°C. On 

cooling, some new primary (Cu,Ni)6Sn5 probably grow from these pre-existing (Cu,Ni)6Sn5 

particles rather than nucleating from the liquid. This indicates that the size of primary 

(Cu,Ni)6Sn5  particles in the original paste will affect the size of primary (Cu,Ni)6Sn5 during 
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solidification on cooling from the peak temperature.  Since the powder in solder paste is 

made by atomization (at a high cooling rate), the primary (Cu,Ni)6Sn5 in the powder is small 

and is probably one reason that primary (Cu,Ni)6Sn5 particles in Sn-0.7wt%Cu-

0.05wt%Ni/Cu joints are smaller than in Sn-0.7wt%Cu/Cu joints where all primary Cu6Sn5 

must nucleate from the liquid. 

 

A further factor that is expected to affect the size of primary Cu6Sn5 in joints is the influence 

of dilute Ni additions on the shape of the Sn-Cu-Ni phase diagram.  During soldering to Cu 

substrates, Cu dissolution will increase the Cu content of the liquid to a composition where 

the liquid is in equilibrium with the Cu6Sn5 interfacial reaction layer.  For binary Sn-

0.7wt%Cu/Cu joints, this is the liquidus composition at T=250C which is ~1.2 wt% Cu [30]. 

For Sn-0.7wt%Cu-0.05wt%Ni/Cu joints, Figure 8 shows that the liquid composition is already 

in equilibrium with (Cu,Ni)6Sn5 at  250C, but further Cu dissolution is expected which will 

feed the growing IMC layer, enrich the liquid in Cu (as the liquid follows the (Cu,Ni)6Sn5 

liquidus contour at 250C), and decrease the Ni content of the (Cu,Ni)6Sn5.  This is 

consistent with the SEM-EDS results in Table I where the mean composition of the 

(Cu,Ni)6Sn5 interfacial layer  is about 3 at% Ni and the primary (Cu,Ni)6Sn5 is about 2 at% 

Ni, which is significantly lower than the ~15 at% Ni in the primary (Cu,Ni)6Sn5 in Sn-

0.7wt%Cu-0.05wt%Ni without a Cu substrate  (Table I).  Primary Cu6Sn5 crystals are 

therefore expected to be forming from liquid of ~Sn-1.2wt%Cu in Sn-0.7wt%Cu/Cu joints 

and from hypereutectic liquid containing somewhat less than 0.05 wt% Ni in Sn-0.7Cu-

0.05Ni/Cu joints.  Thermo-Calc predictions show that even very dilute Ni additions steepen 

the Cu6Sn5 liquidus surface significantly compared with the binary Cu6Sn5 liquidus line [30].  

Previous work has shown that composition changes that significantly increase the liquidus 

slope (while keeping the partition coefficient near-constant) lead to grain refinement [31] 

[32].  In particular, grain refinement occurs when the growth restriction factor, 𝑄 =

(
𝜕(Δ𝑇𝑠)

𝜕𝑓𝑠
)

𝑓𝑠→0
 or 𝑄 = − (

𝜕𝑇

𝜕𝑓𝑠
)

𝑓𝑠→0
,  is increased (where Δ𝑇𝑠 is the solute undercooling, T is the 

liquidus temperature and 𝑓𝑠 is the fraction of solid) [33, 34].  A higher 𝑄 requires a larger 

amount of heat to be removed per increment of solid fraction developed in the early stages 

of growth which restricts crystal growth and also increases the degree of constitutional 

supercooling in the liquid ahead of the Cu6Sn5 crystals in which further nucleation events 

can occur.  Thus, the steepening of the Cu6Sn5 liquidus surface due to dilute Ni additions is 
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likely to be a factor in the observed grain refinement of primary Cu6Sn5 in Sn-0.7wt%Cu-

0.05wt%Ni/Cu compared with Sn-0.7wt%Cu/Cu joints. 

It is possible that differences in the diffusion of Cu into the liquid also play a role.  In the Sn-

0.7wt%Cu-0.05wt%Ni solders, the interfacial Cu6Sn5 are a finer needle-like shaped Ƞ-

Cu6Sn5 [7] with a larger grain boundary area and provide a large area of molten solder in 

contact with the initial interfacial IMC (e.g. compare Figure 6b and 7b). This contrasts with 

Sn-0.7wt%Cu solder where  scallop shaped Ƞ-Cu6Sn5 interfacial IMCs are known to form 

[7] with a smaller grain boundary area in contact with molten solder. With a larger grain 

boundary area in contact with the molten solder, Cu atoms diffuse faster. As a result, the Cu 

concentration from the solder matrix and a faster Cu atom diffusion from the Cu substrate is 

likely play some role in allowing the primary Cu6Sn5 intermetallic in the Sn-0.7wt%Cu-

0.05wt%Ni/Cu joint to form earlier compared to the Sn-0.7wt%Cu/Cu joint (Figure 1).  

Finally, it is natural to consider whether Ni introduces nucleation sites for Cu6Sn5 to the melt, 

but we found no evidence for any additional phases and it seems that grain refinement of 

primary Cu6Sn5 is mostly due to the effect of Ni on the Sn-Cu-Ni phase diagram.  

 

CONCLUSIONS 

The entire soldering process of solder pastes on Cu substrates was directly observed using 

a real-time synchrotron imaging technique to investigate the formation and growth of primary 

Cu6Sn5 intermetallic in the solder matrix of Sn-0.7wt%Cu/Cu and Sn-0.7wt%Cu-

0.05wt%Ni/Cu solder joints. With a 0.05 wt% Ni addition to Sn-0.7wt%Cu, the nucleation 

and growth of the primary Cu6Sn5 intermetallic was significantly altered.  Primary Cu6Sn5 

formed at higher temperature and were significantly smaller and more numerous in Sn-

0.7wt%Cu-0.05wt%Ni/Cu joints than in Sn-0.7wt%Cu/Cu joints.  The morphologies of 

primary Cu6Sn5 intermetallic are observed to be large and rod shaped in Sn-0.7wt%Cu 

solder paste while smaller Cu6Sn5 particles were observed in Sn-0.7wt%Cu-0.05wt%Ni 

solder paste. 
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Chapter 6 Assembly processing and operating 
conditions: the effects of intrinsic and extrinsic 
reinforcement of solder joints. 
 

This chapter focuses on the effect of processing and operating conditions on the 

microstructure and properties of intrinsic and extrinsic reinforced solder joints. The 

microstructure of the reinforced solder joints, particularly differences in the interfacial 

intermetallic layer thickness caused by the extrinsic reinforcing particles during multiple 

reflow soldering and isothermal annealing was investigated. Solder joint strength was then 

investigated as an indicator of the performance of the reinforced solder.  

 

In Paper 7 of the thesis titled “Suppression of Cu6Sn5 in TiO2 reinforced solder joints after 

multiple reflow cycles” the effects of multiple reflow cycles on TiO2 reinforced Sn-0.7Cu 

solder fabricated by a powder metallurgy microwave sintering technique was investigated. 

In an electronic assembly, with complex 3D packaging and multiple layer substrates, solder 

joints are often subjected to multiple heating cycles. Hence it is important to understand the 

effects of multiple reflow cycles in solder joints. Compared to TiO2-free equivalents, a relative 

suppression of the Cu6Sn5 phase, both as primary crystals and as an interfacial layer was 

observed. The likely mechanism of Cu6Sn5 layer suppression relates to the accumulation of 

TiO2 at the interfacial Cu6Sn5 layer hindering the diffusion and dissolution pathways of Cu 

from the substrate into the molten solder. The suppression of Cu6Sn5 results in TiO2 

reinforced solder joints having a higher shear strength after multiple reflow cycles compared 

to Sn-0.7Cu solder joints.   

 

In Paper 8, titled “Effects of Ni and TiO2 additions in as-reflowed and annealed Sn0.7Cu 

solders on Cu substrates” reports the effect of Ni, TiO2 and a combination of both additions 

on the suppression of interfacial Cu6Sn5 and Cu3Sn in Sn-0.7Cu after isothermal annealing. 

The solder joint strength of the fabricated samples was also studied. In this paper, 

microstructure analysis reveals the combination of both additions (Ni and TiO2) resulted in 

the suppression of the Cu6Sn5 and Cu3Sn interfacial layers. Using a high speed shear solder 

ball tester, the solder joint strength, total fracture energy and fracture modes were analysed. 

It was found a combination of Ni and TiO2 additions to Sn-0.7Cu resulted in a superior shear 

strength and fracture energy of the solder joints as a result of the interfacial layer 

suppression after isothermal annealing. 
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Abstract  

In the current generation of 3D electronic packaging, multiple reflows are often required 

during soldering. In addition, electronic packages may be subjected to additional solder 

rework or other heating processes. This paper investigates the effects of multiple reflow 

cycles on TiO2 reinforced Sn-0.7Cu solder fabricated by a powder metallurgy microwave 

sintering technique. Compared to TiO2-free equivalents, a relative suppression of the 

Cu6Sn5 phase, both as primary crystals and as an interfacial layer was observed. The likely 

mechanism relates to the TiO2 nanoparticles promoting nucleation and decreasing the 

amount of time that liquid is in contact with the interfacial layer. The TiO2 particles appear to 

stabilise the interfacial Cu6Sn5 layer and result in a more planar morphology. The 

suppression of Cu6Sn5 results in TiO2 reinforced solder joints having a higher shear strength 

after multiple reflow cycles compared to Sn-0.7Cu solder joints. 

 

Keywords: Lead-free solder, intermetallic compound, synchrotron, multiple reflow, shear 

strength. 
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1.0 Introduction 

 

Solder alloys play a crucial role in determining performance and reliability in the assembly 

and interconnection of electronic products and have electrical, thermal and mechanical 

functions [1, 2]. The relative importance of solder alloy properties has increased due to 

continued miniaturization of microelectronic circuitry and the use of finer pitch interconnects. 

Higher functional densities in printed circuit boards (PCB) have been made possible by 

surface mount technology (SMT) using reflow soldering, often with multiple reflow cycles.  

Other heating cycles can be present in manufacturing such as additional solder rework [3]. 

One challenge associated with current generation Pb-free solder alloys is that during 

multiple thermal cycles, the joint strength may degrade due to the rapid growth of the 

interfacial layer of intermetallic compounds [4-12]. In a typical Pb-free solder joint, Cu6Sn5, 

which may form either as primary crystals or an interfacial layer during soldering can play a 

determining role in solder joint strength. There is evidence that by suppressing the Cu6Sn5 

interfacial layer, solder joint properties could be improved [13-17] and as such there are 

benefits associated with controlling the growth of this layer during multiple reflows.  

 

It has recently been reported that additions of reinforcement to a variety of solder matrices, 

with compounds including silicon carbide (SiC) [18-20], nickel oxide (NiO) [21], alumina 

(Al2O3) [22-24], zirconia (ZrO2) [25-28], titanium oxide (TiO2) [29-34] and silicon nitride 

(Si3N4) [35, 36] result in suppression of the growth of the interfacial layer during soldering 

[37]. In our recent study [38], we developed a method of fabricating a reinforced solder using 

a powder metallurgy microwave sintering method that results in a homogeneous distribution 

of  TiO2 in the solder material and an improvement in the bulk solder material thermal and 

mechanical properties. However, properties related to the solder joint strength after multiple 

reflows of this reinforced solder are yet to be explored.  

 

This paper investigates the effects of multiple reflow cycles on the TiO2 reinforced Sn-0.7Cu 

solder joint by comparing it with a base Sn0.7wt%Cu (unreinforced) solder joint. This 

includes investigating the evolution of Cu6Sn5 intermetallics both as a primary phase in the 

bulk solder and as an interfacial compound layer during multiple reflow and its effect on the 

solder joint strength. Since it is impossible to investigate the evolution of primary Cu6Sn5 in 

real time using conventional methods, advanced real time experimental techniques 

including synchrotron X-ray imaging were used.  
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2.0 Experimental 

2.1 Sample Fabrication 

In this study, Sn-0.7Cu solder powders of spherical morphology with an average particle 

size of 45 µm were supplied by Nihon Superior Co. Ltd. and used for the base matrix 

material, along with 99.7% purity TiO2 anatase powder supplied by Sigma Aldrich, which 

had an average particle size of <50 nm. To fabricate the Sn-Cu containing TiO2 nano-

composite solder, 1wt% of TiO2 particles were incorporated into the Sn-0.7Cu solder matrix 

using a powder metallurgy route similar to previous research [38]. The composite solder 

materials were homogeneously mixed with the base matrix powder in an airtight container 

using a tubular mixer for 1 hour. The solder mixtures were uniaxially compacted in a 12-mm 

diameter mold at 120 bar, and the compacted discs were microwave sintered in an inert 

argon atmosphere. The cycle involved approximately 3 minutes of microwave sintering at 

1000W to achieve a sintering temperature of 185 °C (~0.8Tm).  For comparing with the base 

material, a Sn0.7Cu alloy was prepared by compacting the Sn0.7wt%Cu solder powder and 

sintering using the same method as the composite solder without the addition of TiO2 

particles. Sintered samples were then cold rolled to produce thin solder sheets for solder 

ball fabrication. Thin solder sheets of approximately 100 µm thickness were used for 

synchrotron x-ray imaging experiment while thinner sheets (approximately 23 µm) were 

used for solder ball fabrication as subsequently described.  

 

2.2 Solder ball fabrication 

Solder balls of approximately 600 µm diameter size were prepared by punching the thin 

(23 µm) solder sheet using a 2.5 mm diameter metal punch. The punched solder sheets 

were then dipped in a rosin mildly activated (RMA) flux and placed on a Pyrex sheet. 

Using a controlled heating temperature, the 2.5 mm diameter solder discs were melted 

using a reflow oven at 250 °C maximum temperature with N2 gas flow. The solder discs 

adopted a spherical morphology under the action of surface tension during melting, 

resulting in solder balls pf approximately 600 µm in diameter. To ensure uniformity of size 

the solder balls were passed through a series of sieves eliminating balls that were 

substantially bigger or smaller than 600 µm. In making solder joints, the fabricated balls 

were reflowed at 127s of reflow time (time above 227°C) on a 600 µm ball pitch size of Cu 

substrate printed circuit board (PCB) with organic soldering preservative (OSP) surface 

finish with the aid of small amount of RMA flux using a desktop reflow oven with N2 gas 

flow (reflow temperature profile shown in Figure 1a).  
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2.3 Thermal Analysis 

To investigate the thermal reactions of a solder joint during soldering and multiple reflow 

cycles, a Mettler Toledo differential scanning calorimetry (DSC) under a N2 atmosphere was 

used. In this experiment, the solder samples underwent a series of reflow cycles in a DSC 

which was prepared as in Figure 1b. The solder balls were coated with small amount of RMA 

flux and placed on a 600 µm ball pitch size Cu substrate printed circuit board (PCB) with 

organic soldering preservative (OSP) surface finish and placed in an encapsulated 

aluminium pan (substrate side down). A hole was made on the aluminium pan lid for flux 

outgas venting purposes. Six samples of each of Sn-0.7Cu and Sn-0.7Cu+TiO2 were heated 

at 20 °C/min to 250 °C and cooled down at room temperature at 20 °C/min for six cycles. 

Thermal reactions in each reflow cycle were determined based on the endothermic (heating) 

and exothermic (cooling) temperature curves.   

2.4 Synchrotron X-ray Radiography Imaging 

The real time observation experiments were performed at BL20XU beamline in the SPring-

8 synchrotron using an in-situ synchrotron X-ray real time solidification observation setup 

developed in previous research [39-42]. The parameters were chosen to allow a high degree 

of coherence, absorption contrast and phase contrast enabling boundaries in the sample to 

be observed on transmitted images. These image signals were then converted into a digital 

format of 2000 X 2000 pixels at 1 mm X 1 mm giving a resolution of 0.477 µm per pixel. A 

planar undulator was used as a light source and the radiation was monochromatized with Si 

double crystal monochromators. An exposure time of 1s per frame to capture the images 

was used. To mimic the process of reflow soldering, a furnace with graphite heating 

elements where heat is transferred through radiation in an enclosed sample chamber was 

used. The approximately 100 µm thin rolled solder foils were cut into 3 x 2 mm2 pieces and 

placed vertically on thin 100 µm Cu substrates. The observation window area of 10 x 10 

mm2 with a vent for flux outgassing was made by using a 100 µm thickness poly-

tetrafluoroethylene (PTFE) sheet placed between two SiO2 plates. Samples were set to be 

heated from room temperature to approximately 250°C at 20°C /min and cooled down at 

approximately 20°C/min to 180°C for six cycles. The soldering temperature profiles for the 

experiments are shown in Figure 1c.  

2.4 High Speed Shear Solder Joint Test 

The solder joint strength after multiple reflows was tested using a Dage 4000 high speed 

bond tester at 60 µm shear height. A 50N shear load cartridge was used at 100 mm/s and 

2000 mm/s shear speed. The high speed shear test sample positioning is as shown in Figure 
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1d. The microstructures and X-ray microanalysis of the samples were analysed using a 

JEOL 6610 scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy 

(EDS) in secondary and backscattered electron imaging mode at an accelerating voltage of 

20 kV. For a top-down view of the interfacial layer, solder joints were etched using a solution 

of 2% 2-nitrophenol, 5% sodium hydroxide and 93% of distilled water. Before detailed SEM 

imaging and X-ray microanalysis were conducted, samples were thoroughly cleaned and 

rinsed using acetone in an ultrasonic bath. 
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Figure 1: a) Reflow temperature profile using benchtop reflow oven, b) multiple reflow 

cycle temperature profile for in-situ synchrotron X-ray imaging experiment and c) high 

speed shear test setup and sample positioning. 
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3.0 Results and Discussion 

3.1 Thermal reactions in solder joints during multiple reflow 

Thermal reactions during heating and cooling of solder joints are important in understanding 

the reactions of the solid-liquid-solid transition during soldering. Figure 2 shows a differential 

scanning calorimetry curve of multiple reflow cycles of Sn-0.7Cu with TiO2 (Figure 1a and 

1b) and Sn-0.7Cu during cooling and heating (Figure 1c and 1d). During heating, the 

endothermic melting peaks, were consistent throughout the multiple cycles for both type of 

solder joints. However, during cooling the exothermic solidification peak varied with each 

reflow cycle. From the DSC results, the undercooling (the onset on heating minus the onset 

on cooling) and liquid contact temperature range (end heating - end cooling) of both solder 

joints were analysed. It is observed that generally as the number of heating cycles increases, 

Sn-0.7Cu solder joints displayed a higher undercooling compared to Sn-0.7Cu with TiO2 as 

in Figure 3a. In addition, the range of temperatures for which liquid is present in Sn-0.7Cu 

solder joints is higher compared to Sn-0.7Cu with TiO2.  In other words, by promoting 

nucleation earlier, the TiO2 particles reduce the time of contact between the IMC layer and 

the liquid phase during solidification. In both solder joints, a trend of increased undercooling 

was observed as the number of reflow cycles increases. It is likely Cu from the substrate 

dissolves more into the molten solder with every reflow cycle and increases the Cu content 

in the solder allowing it to become slightly increasingly hyper eutectic. During reactive 

dissolution of the Cu substrate during the soldering of Sn-0.7Cu at 250 °C, the liquid will 

become enriched in Cu to a maximum solubility limit of approximately 1.2wt%Cu [41]. 

However the small increment in Cu concentration is not able to be detected by DSC as 

shown in Figure 2.   
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Figure 2: Typical differential scanning calorimetry curve of multiple reflow cycle of Sn-

0.7Cu with TiO2 at (a) cooling (b) heating and Sn-0.7Cu at (c) cooling (d) heating. 
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Figure 3: (a) Average undercooling and (b) liquid contact temperature range of Sn-0.7Cu 

and Sn-0.7Cu with TiO2 during multiple reflow cycle. 
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3.2 Microstructure analysis 

3.2.1 Cu6Sn5 primary growth during multiple reflow 

The nucleation and growth of Cu6Sn5 primary crystals during simulated multiple reflow 

cycles was observed using in-situ synchrotron X-ray imaging in both Sn-0.7Cu and Sn-

0.7Cu with TiO2. Figure 4 shows the distribution of Cu6Sn5 primary crystals during 

solidification just prior to Sn nucleation during each reflow cycle of both solder joints. In order 

to quantify the nucleation rate and growth of primary Cu6Sn5 during multiple reflow cycles, 

the apparent numbers and total length of primary Cu6Sn5 primary were measured just prior 

to Sn nucleation during each reflow cycle. The apparent numbers and length were then 

divided by the given area resulting in the number density and total length.  Figure 5 shows 

the number density and total length of Cu6Sn6 primary crystals during each reflow cycle in 

both the Sn-0.7Cu and Sn-0.7Cu with TiO2 solder joints. Results in Figure 5a indicate that 

the number density of primary Cu6Sn5 crystals in Sn-0.7Cu containing TiO2 solder joint is 

initially higher compared to Sn-0.7Cu and this number reduces after multiple reflow. As 

shown in Figure 5b, the total length of Cu6Sn5 primary crystals in the reinforced solder is 

decreased indicating the crystals were able to be suppressed compared to Sn-0.7Cu. It is 

acknowledged that the numbers and length of primary Cu6Sn5 in TiO2 containing solder 

measured using this synchrotron technique may not include small particles of Cu6Sn5 below 

the resolution limitations of this technique and thus the measured numbers and length were 

should be considered apparent values. The results indicate that during reflow cycles, TiO2 

reinforcements in the bulk solders may act as nucleation sites to both primary Cu6Sn5 and 

β-Sn, as also supported by the DSC results (Figure 3).  
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Figure 4: Real-time observations of reactions of (a-f) Sn-0.7Cu solder and (g-l) Sn-0.7Cu 

solder with TiO2 between Cu substrate before Sn nucleation during each reflow cycle. 
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Figure 5: (a) Number and (b) total length of Cu6Sn6 primary during each reflow cycle in Sn-

0.7Cu solder joint and Sn-0.7Cu with TiO2 solder joint. 
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3.2.2 Interfacial Cu6Sn5 growth during multiple reflow 

As can be observed in Figure 6 and 7, the interfacial Cu6Sn5 layer present in Sn-0.7Cu/Cu 

and Sn-0.7Cu+TiO2/Cu after multiple reflow cycles respectively, differs significantly. In Sn-

0.7wt%Cu/Cu, the interfacial Cu6Sn5 crystals were more needle-like and scalloped in 

morphology while in TiO2 containing solders, the interfacial Cu6Sn5 were shorter and more 

faceted. In Sn-0.7Cu, heterogeneous growth of the interfacial layer was observed where the 

majority of the growth comes from select grains that advance a long way from the interface, 

which is not observed in TiO2 containing solder. These Cu6Sn5 crystals that manage to grow 

ahead of the interface will reject Sn solute laterally and this will further limit the growth of the 

neighbouring grains.  The TiO2 particles appear to hinder the growth of advancing grains 

and the IMC layer appears to be inherently more stable. In addition to cross-section 

observations, these solder joint samples were etched in to remove the Sn and reveal the 

morphology of the Cu6Sn5. Top-down (viewing direction normal to the substrate) 

observations of interfacial Cu6Sn5 layers present in Sn-0.7Cu/Cu and Sn-0.7Cu+TiO2/Cu 

after multiple reflow cycles are shown in Figure 8 and 9 respectively. In the TiO2 containing 

solders, a more faceted and flat morphology of the interfacial Cu6Sn5 was observed as 

indicated in the red circle in Figure 9f.  

 

To measure the average interfacial Cu6Sn5 thickness, the total area of the interfacial layer 

was divided by the total length measured from the cross-sectioned samples. Figure 10a 

compares the average interfacial layer thickness growth over multiple reflow cycles. For Sn-

0.7Cu/Cu, the average interfacial layer grows from ~5.2 µm after the first reflow cycle to a 

maximum of ~13 µm thickness after multiple reflows. In the Sn-0.7Cu+TiO2/Cu, it shows that 

the growth of the interfacial layer is relatively supressed and grows from an initial average 

of ~4.2 µm thickness after the first reflow cycle to a maximum of ~8 µm thickness after 

multiple reflows. 

 

The thickness of the interfacial layer in diffusion couples can be generally expressed by an 

empirical power-law equation; 

𝛿 = 𝑘𝑡𝑛          (1) 

where 𝛿 is the average thickness of the interfacial layer, k is the growth rate constant, n is 

the time exponent and t is the reflow time (time above liquid temperature during reflow). In 

obtaining the growth rate constant (k) and time exponent (n), linear fitting results of a log-

log graph of interfacial layer thickness of Sn-0.7Cu solder joint and Sn-0.7Cu with TiO2 

solder joint with reflow time were plotted as in Figure 10b. Reflow time is considered to be 
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the time above 227 °C, and each cycle in this experiment was of 127 s reflow time. Results 

shows that Sn-0.7Cu has a slightly higher growth rate constant compared to the reinforced 

solder with values of 0.52 and 0.43 µm/s respectively. Both solder materials displayed a 

similar time exponent value of approximately 0.5 and this 𝑡
1

2 dependence indicates that the 

interfacial layer thickness of both samples is controlled by volume diffusion or chemical 

reaction [43]. Tang et al. [44] in their recent study of TiO2 additions to Sn-3.0Ag-0.5Cu 

indicated that the time exponent values of both interfacial Cu6Sn5 and Cu3Sn are close to 

0.5 at 150°C ageing temperature. It is also reported that with 0.1wt% TiO2 additions to Sn-

3.0Ag-0.5Cu the activation energy of the interfacial layer increases where it majorly effects 

the Cu6Sn5 layer and little influence on the Cu3Sn layer [44]. 

 

High magnification, top-down images of the interfacial layer of both materials and EDS on 

the interfacial layer are shown in Figure 11a-c, and it is observed that agglomerated particles 

on the Cu6Sn5 exist at the boundary of the interfacial layer of Sn-0.7Cu+TiO2/Cu after six 

reflow cycles. This suggests TiO2 remains in contact with the interfacial Cu6Sn5 layer and 

stabilises the Cu diffusion path into the molten solder. Hsiao et al. [45] in his study on 

inhibiting the consumption of Cu during multiple reflows of Pb-free solder on Cu substrates 

concluded that the channels between the Cu6Sn5 scallops play a critical role in the growth 

of the Cu-Sn interfacial layer. From the study, it is reported that the channels serve as rapid 

diffusion and dissolution paths of Cu into the molten solder to facilitate the growth of the 

interfacial layer. Considering this, it is possible that TiO2 particles in intimate contact with the 

Cu6Sn5 interfacial stabilises the Cu dissolution path and prevent individual grains from 

growing further from the interface during reflow cycles. This suppression of the interfacial 

layer is also promoted by the shorter time of contact between the liquid and the IMC layer in 

the TiO2 containing solders as observed in the DSC results. The DSC results also indicate 

that the Sn-0.7Cu samples solidify at a larger undercooling and this is well known to be 

associated with a higher velocity  and more unstable interface [46]. This is consistent with 

our observation in Figure 3a and 10b where the TiO2 containing solders grown at lower 

undercoolings have a lower growth rate for the interfacial layer and a more planar 

morphology.  
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Figure 6: Micrographs of the interfacial Cu6Sn5 layer of Sn-0.7Cu/Cu after the (a) first, (b) 

second, (c) third, (d) fourth, (e) fifth, and (f) sixth reflow cycles.  

 

 

Figure 7: Micrographs of interfacial Cu6Sn5 layers of Sn-0.7Cu-TiO2/Cu after the (a) first, 

(b) second, (c) third, (d) fourth, (e) fifth, and (f) sixth reflow cycles. 
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Figure 8: Top-down view of the interfacial Cu6Sn5 layer of Sn-0.7Cu/Cu after the first 

reflow cycle at low (a) and high (b) magnification. The third reflow cycle at (c) low and (d) 

high magnification.  The sixth reflow cycle at (e) low and (f) high magnification. 
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Figure 9: Top-down view of the interfacial Cu6Sn5 layer of Sn-0.7Cu+TiO2/Cu after the first 

reflow cycle at low (a) and high (b) magnification. The third reflow cycle at (c) low and (d) 

high magnification.  The sixth reflow cycle at (e) low and (f) high magnification. 
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Figure 10: (a) Average interfacial layer thickness of Sn-0.7Cu solder joint and Sn-

0.7Cu+TiO2 solder joint after multiple reflows and (b) log-log graph of the interfacial layer 

thickness of Sn-0.7Cu solder joint and Sn-0.7Cu+TiO2 solder joint with reflow time. 
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Figure 11: Interfacial Cu6Sn5 layer of solder joints after six reflow cycles of (a) Sn-

0.7Cu/Cu, (b) Sn-0.7Cu+TiO2/Cu and (c) energy dispersive x-ray spectroscopy (EDS) spot 

analysis (red cross) on the Sn-0.7Cu+TiO2/Cu interfacial layer. 

 

3.3 Solder joint strength 

The solder joint strength of both solder materials after multiple reflows were evaluated using 

a high speed shear solder ball machine at 100mm/s and 2000mm/s shear speed. A lower 

shear speed was chosen to evaluate the bulk solder joint strength while a higher solder 

speed was used in evaluating the solder joint strength at the interfacial layer [47]. After the 

shear tests were conducted, samples were examined using SEM to analyse the failure 

modes of each of the sheared solder joints. Failure was classified as one of four different 

failure modes including ductile, quasi-ductile, quasi-brittle and brittle as indicated in Figure 
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12. Figure 13 shows the average shear strength of the Sn-0.7Cu and Sn-0.7Cu+TiO2 solder 

joint at 100 mm/s shear speed and the failure mode percentage of Sn-0.7Cu after the first, 

third and sixth reflow cycles. At both 100mm/s and 2000mm/s shear speeds, the results 

show that the TiO2 containing solder joints resulted in a higher shear strength on every reflow 

cycle compared to Sn-0.7Cu solder joints. After multiple cycles, the shear strength at 

100mm/s shear speed of Sn-0.7Cu solder joints decreases, however in TiO2 containing 

solder joints, the shear strength is relatively insensitive to the number of reflow cycles and 

remains around ~14 N. Most of the failure modes for both solders at 100mm/s shear speed 

were dominated by the quasi-ductile mode.  

 

Figure 14 shows the average shear strength of Sn-0.7Cu and Sn-0.7Cu+TiO2 solder joints 

when tested at a 2000 mm/s shear speed and the failure mode percentage of Sn-0.7Cu after 

the first, third and sixth reflow cycle. Similar to the solder joint strength at 100mm/s, after 

multiple cycles, the shear strength of Sn-0.7Cu solder joints at a 2000mm/s shear speed 

significantly decreases, however in TiO2 containing solder joints, the shear strengths 

decrease only slightly from ~15N to ~14N. After increasing the shear speed, the brittle and 

quasi-brittle failure modes were dominant and increasing the reflow cycle increases the 

percentage of brittle failure modes. The results show that with additions of TiO2, both the 

strength of the bulk solder area and the interfacial layer area were higher compared to Sn-

0.7Cu after multiple reflows. 

 

 

Figure 12: Micrograph of different failure mode of high speed shear fractured samples. 
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Figure 13: (a) Shear strength of Sn-0.7Cu and Sn-0.7Cu+TiO2 solder joint at 100 mm/s 

shear speed, (b) failure mode percentage of Sn-0.7Cu after the first, third and sixth reflow 

cycle and (c) failure mode percentage of Sn-0.7Cu+TiO2 after the first, third and sixth 

reflow cycle. 
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Figure 14: (a) Shear strength of Sn-0.7Cu and Sn-0.7Cu+TiO2 solder joint at 2000 mm/s 

shear speed, (b) failure mode percentage of Sn-0.7Cu after first, third and sixth reflow 

cycle and (c) failure mode percentage of Sn-0.7Cu+TiO2 after first, third and sixth reflow 

cycle. 

 

 

 

 



 

179 
 

4.0 Conclusions 

In conclusion, the effect of multiple reflow cycles on the formation of Cu6Sn5 primary 

crystals and the interfacial layer in Sn-0.7Cu and Sn-0.7Cu+TiO2 solders on copper 

substrates was investigated. In addition, the effects of the growth of Cu6Sn5 after multiple 

reflows on the solder joint strength were evaluated. The following conclusion can be made: 

 

a) Multiple reflow and TiO2 additions to Sn-0.7Cu affect the Cu6Sn5 primary and 

interfacial layer growth mechanisms.  

b) Sn-0.7Cu solder joints displayed a higher undercooling and larger temperature 

(and subsequently time) range over which liquid is present compared to Sn-0.7Cu 

with TiO2. This primarily occurs due to the role that TiO2 particles have in promoting 

nucleation and earlier solidification.  

c) Additions of TiO2 were able to reduce the number density and total length per unit 

area of primary Cu6Sn5 particles and suppress the interfacial layer during multiple 

reflows. It is possible that TiO2 particles in intimate contact with the interfacial 

Cu6Sn5 stabilise the Cu dissolution path.  By reducing the undercooling, additions 

of TiO2 result in a lower average thickness in the interfacial IMC and a more stable 

growth morphology. 

d) With the suppression of primary and interfacial Cu6Sn5 in TiO2 containing solders, 

the solder joint strength in the bulk solder area and the interfacial layer area were 

able to be increased.  The strength of TiO2 containing solder joints was relatively 

insensitive to the number of reflow cycles however the strength of Sn-0.7Cu solder 

joints generally decreased with increasing reflows.   
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Abstract  

The growth of Cu6Sn5 and Cu3Sn5 interfacial layers after isothermal annealing and the 

resultant effect on the solder joint strength are studied in TiO2 and Ni containing Sn0.7Cu 

solders. These composite solders were fabricated using a powder metallurgy method and 

reflow soldered on a Cu substrate printed circuit board (PCB) with an organic soldering 

preservative (OSP) surface finish. With TiO2 additions, a more planar scalloped Cu6Sn5 

morphology was observed with reduced interfacial boundary grooves while a fine scallop-

shaped interfacial (Cu,Ni)6Sn5 layer was observed in Ni containing solder joints. The 

interfacial layer was further suppressed with a   combination of Ni and TiO2 even after 

annealing which resulted in superior shear strength and fracture energy. 

 

Keywords: Lead-free solder, Reflow soldering, Microstructure, Intermetallic, Interfacial 

reaction, Shear strength 
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1.0 Introduction 

Intermetallic phases such as Cu6Sn5 and Cu3Sn often form at the solder/substrate interface 

in many Pb-free solder joints. During thermal ageing, the interfacial intermetallic layer may 

grow and Kirkendall voids often form at the Cu6Sn5/Cu substrate interface. The brittle 

interfacial intermetallic layer and voids at the solder joint interface can deteriorate the solder 

joint reliability where cracks may be initiated and propagate. Hence, controlling the thickness 

of interfacial intermetallics and minimising void formation can improve solder joint reliability. 

  

Ceramic reinforcement of solder matricies with a variety of micrometer or nanometer-size 

particles such as silicon carbide (SiC), nickel oxide (NiO), alumina (Al2O3), zirconia (ZrO2), 

titanium oxide (TiO2) and silicon nitride (Si3N4) has been proposed by Mohd Salleh et al. 

(2013) as a method of suppressing the growth of Cu6Sn5 interfacial intermetallic layers 

during soldering. Chellvarajoo and Abdullah (2016) showed that additions of 2.5 wt% NiO in 

a Sn3.0Ag0.5Cu solder alloy resulted in a reduction of 60% thickness of the intermetallic 

layer after a single reflow. However, Shen and Chan (2009) reported that additions of ZrO2 

suppressed the intermetallic layer observed in a Sn9Zn/Cu solder joint after five reflow 

cycles. During single and multiple reflow cycles, Said et al. (2016) reported that the 

suppression of the intermetallic layer could be more significant during isothermal annealing. 

 

Various hypotheses exist relating to how the interfacial intermetallic layer is suppressed by 

additions of particle reinforcements. Chuang et al. (2010) hypothesized that the Al2O3 

nanoparticles are absorbed in a liquid nanocomposite solder/Cu substrate interface which 

then suppresses the Cu dissolution in the liquid solder and in return reduces the formation 

of Cu6Sn5 intermetallic compound (IMC) layer. In addition, El-Daly et al. (2013) hypothesized 

that SiC nanoparticles could act as additional nucleation sites where the rate of solidification 

of β-Sn will be faster and limit the time for the Ag3Sn and Cu6Sn5 to grow. This mechanism 

was also reported by Liu et al. (2013) in the reinforcing of Sn-Ag-Cu solder alloys with 

graphene nanosheets which enhanced the thermodynamic resistance to IMC growth and 

reduced diffusion.  

 

A growing body of research exists relating to the development of Sn0.7Cu alloys through 

reinforcement additions. This includes additions of either metallic or non-metallic particles 

to the solder. Somidin et al. (2013) investigated the effect of additions of aluminum particles 

to Sn0.7Cu showing both thin Cu9Al4 and Cu6Sn5 intermetallic layers were formed.  Mohd 

Salleh et al. (2011) and Mohd Salleh et al. (2012) have concluded that additions of Si3N4 
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could enhance the wettability and reduce the Cu6Sn5 intermetallic layer thickness and have 

shown that the shear joint strength could be significantly improved. In addition, Tsao et al. 

(2012) had investigated the mechanical and thermal properties of TiO2 reinforced Sn0.7Cu 

bulk solder. In their report, the melting temperature of the reinforced solder was able to be 

reduced and an improvement of hardness and tensile strength of the bulk solder was 

achieved. It has also been reported by Zeng et al. (2014) that Ni additions to Sn0.7Cu solder 

alloys suppress the Cu3Sn layer intermetallic layer which  typically forms between the 

Cu6Sn5/Cu interface as a result of continuous Cu diffusion from the substrate into the Cu6Sn5 

layer. Besides the suppression of the intermetallic layer, Mohd Salleh et al. (2016a) revealed 

that primary Cu6Sn5 in the bulk could be significantly refined with Ni additions. In Sn-Ag-Cu 

solders, additions of Ni was reported by Chuang and Lin (2003) to also effectively suppress 

the Cu6Sn5 layer. Shohji et al. (2005) had also proved that additions of Ni to Sn-Ag-Cu solder 

were able to suppress the layer after annealing and subsequently improve the solder joint 

shear strength on Cu substrates after annealing for 1000 hours at 100˚C. 

 

 

This paper investigates the effects of Ni, TiO2 and combination of both additions in the 

suppression of the interfacial intermetallic compound after isothermal annealing and their 

effects on the solder joint mechanical performance by means of high speed shear testing. 

This includes investigating the solder joint strength, fracture deformation energy and 

analysis of the failure mode. In addition, we also seek to understand the presence of TiO2 

reinforcement in the solder joints and how it suppresses the interfacial intermetallic layer.  

 

2.0 Experimental 

2.1 Sample and solder ball fabrication 

Chellvarajoo and Abdullah (2016) reported that most of the methods used to fabricate 

reinforced solders involve mixing reinforcement particles into a solder paste (a mixture of 

flux and solder spheres) where due to the buoyancy of the flux and outgassing and density 

differences, reinforcement particles were observed to be concentrated on the surface of the 

solder joint after being pushed out during the soldering process. Thus, to reduce the 

possibility of reinforcement push-out by excessive flux in solder pastes and to obtain a 

homogenous reinforcement of distribution in the solder matrix, Mohd Salleh et al. (2015a) 

have previously developed a method of fabricating a preform TiO2 reinforced solder by a 

powder metallurgy microwave sintering method. This homogeneous distribution of 

reinforcement allows the mechanisms of interfacial intermetallic layer suppression to be 
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investigated with more confidence. In preparing the samples, Sn0.7Cu and Sn0.7Cu0.05Ni 

solder powders of spherical shape (45 µm average particle size) were supplied by Nihon 

Superior Co. Ltd. for the base matrix materials, along with 99.7% purity TiO2 anatase powder 

supplied by Sigma Aldrich Co.  (<50 nm average particle size). Table 1 and 2 presents the 

chemical compositions of the solder powders used as base alloys as obtained using optical 

emission spectroscopy. Four different solder composition were prepared including Sn0.7Cu, 

Sn0.7Cu0.05Ni, Sn0.7Cu+TiO2 and Sn0.7Cu0.05Ni+TiO2. To fabricate the reinforced 

solders, 1wt% of TiO2 particles were incorporated into the base solder matrix using a powder 

metallurgy route. The TiO2 reinforcement was homogeneously mixed with the base matrix 

powder (Sn0.7Cu alloy and Sn0.7Cu0.05Ni) separately in an airtight container using a 

tubular mixer for 1 hour. The solder mixtures were uniaxially compacted in a 12-mm diameter 

mold at 120 bar, and the compacted discs were microwave sintered in an inert argon 

atmosphere. Using a microwave oven with an output power of 1,000W at full power, 

approximately 3 minutes of microwave sintering time was taken to achieve the sintering 

temperature of 185°C (~0.8Tm). For comparison the base materials, Sn0.7Cu alloy and 

Sn0.7Cu0.05Ni alloys were prepared by compacting the Sn0.7Cu and Sn0.7Cu0.05Ni 

solder powders respectively and sintered using the same method as the reinforced solders. 

Sintered samples were then cold rolled to produce thin solder sheets of approximately 23 

µm thickness. 

 

In fabricating solder balls, thin solder sheets were punched using a 2.5 mm diameter metal 

punch to form a thin solder discs. The thin solder discs were then dipped in a rosin mildly 

activated (RMA) flux and placed on a Pyrex sheet. Using a controlled heating temperature, 

the solder discs were melted using a reflow oven at 250°C maximum temperature with the 

aid of N2 gas flow. Due to the solder melting and the action of surface tension, solder sheets 

were transformed to solder balls of spherical shape with an approximate diameter of 600 

µm. Solder balls were passed through sieves to ensure a uniform size. The fabricated solder 

balls with small amount of RMA flux were then placed on a Cu substrate printed circuit board 

(PCB) with an organic soldering preservative (OSP) surface finish and were solder reflowed 

at 127 s of reflow time at 250 °C maximum temperature with the aid of small amount of flux 

using a desktop reflow oven with N2 gas flow. The solder reflow temperature profile used in 

preparing the solder joints is shown in Figure 1a.   
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Table 1: Chemical composition of the Sn0.7Cu powder. 

 Sn Cu Ag Fe Bi Al Cd Ni Sb Zn Pb As Hg 

Composition 

(wt%) 

Balance 0.686  0.009 0.006 0.013 <0.001 <0.001 <0.002 0.020 <0.001 0.008 <0.005 <0.001 

 

Table 2: Chemical composition of the Sn0.7Cu0.05Ni powder. 

 Sn Cu Ni Sb Bi Zn Al As Sb Cd Pb 

Composition 

(wt%) 

Balance 0.620 0.056 0.08 0.013 <0.001 <0.001 <0.002 0.020 <0.001 0.686 

 

2.2 Isothermal ageing and microstructure analysis 

The growth of the interfacial intermetallic compound growth was studied by conducting 

isothermal annealing experiment at 150°C for 0, 500, 1000, 1500 and 2000 hours. In 

ensuring temperature uniformity throughout the samples during isothermal ageing, solder 

joints were isothermally annealed in an oven with a mechanical convection heating system 

supplied by Thermo Scientific.  

 

Solder joints were then cross-sectioned for microstructure observations. The 

microstructures of the samples were analysed using a JEOL 6610 SEM/energy dispersive 

X-ray spectroscopy (EDS) in secondary and backscattered electron imaging mode at an 

accelerating voltage of 20 kV. For a top-down view of the intermetallic formation, solder 

joints were etched using solution of 2% 2-nitrophenol, 5% sodium hydroxide and 93% of 

distilled water. Before detailed SEM imaging and EDS were conducted, samples were 

thoroughly cleaned and rinsed using acetone in an ultrasonic bath. The interfacial IMC 

thickness of each sample was measured using ImageJ software. An average of the 

interfacial IMC thickness in each image was measured by dividing the total area by the total 

length. 

 

2.3 High speed shear solder joint evaluation 

In evaluating the solder joint strength of samples after isothermal ageing, solder joints were 

sheared using a Dage 4,000 high speed bond tester with a 60 µm shear height. A 50 N 

shear load cartridge was used at a 2,000 mm/s shear speed. The high speed shear test 

sample positioning is as in Figure 1b. Shear strength of the solder joints was determined by 

means of the maximum shear force of each solder ball shear test conducted while the total 

shear energy were determined by the total area of shear force and displacement. Shear 
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fracture initiation energy was determined base on the area of shear force and displacement 

graph from shear initiation until the maximum shear force while the shear fracture 

propagation energy was determined by the area from maximum shear force until the end of 

shear displacement. After high speed shear tests were conducted, samples were examined 

using scanning electron microscopy (SEM) to analyse the fracture surface and failure modes 

of each of the sheared solder joints. Failure mode distribution was analysed base on four 

different failure modes classified as ductile (100% area with bulk solder), quasi-ductile 

(>50% area with bulk solder), quasi-brittle (>50% area with exposed interfacial layer) and 

brittle (100% area with exposed interfacial layer) as shown in Figure 1a-f respectively.  

 

Figure 1: a) Solder reflow temperature profile for solder joint fabrication, b) high speed 

shear test setup and sample positioning and (c-f) backscattered electron SEM images of 

four different main solder joint fracture modes after high speed shear testing.  

 

3.0 Results and Discussion 

3.1 Microstructure of annealed solder joints 

Microstructure formations particularly on the growth of interfacial intermetallic layers in 

Sn0.7Cu, Sn0.7Cu+TiO2, Sn0.7Cu0.05Ni, Sn0.7Cu0.05Ni+TiO2 solder joints after 

isothermal annealing were investigated. As in Figure 2a-d, it was observed that in Sn0.7Cu 

solder joints, a scallop-shape interfacial Cu6Sn5 layer had formed with a planar layer of 

Cu3Sn. Both Cu6Sn5 and Cu3Sn grew during isothermal annealing and became significantly 

thicker after 2000 hours of annealing. As in Figure 2d, after 2000 hours the scalloped 

morphology of the interfacial Cu6Sn5 in Sn0.7Cu solder joints had become coarser and flatter 
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compared to the as-reflowed, 500, 1000 and 1500 hours of annealing conditions. In contrast, 

Figure 2e-f shows the formation and growth of interfacial Cu6Sn5 and Cu3Sn of Sn0.7Cu 

with TiO2 additions after isothermal annealing. It was observed that with additions of the 

reinforcement, a flatter Cu6Sn5 layer formed with a less scallop-shaped morphology 

compared to the Sn0.7Cu solder joints. However, the interfacial Cu3Sn layer of the 

reinforced Sn0.7Cu was slightly thicker compared to the non-reinforced Sn0.7Cu.  As 

reported by Mohd Salleh et al. (2016b), the grooves between the Cu6Sn5 scallops play a 

critical role in the growth of Cu-Sn interfacial layer and during annealing, the grooves serves 

as diffusion paths of Cu into the solder. It is also reported that during soldering, the TiO2 

particles come into intimate contact with the Cu6Sn5 interfacial layer modifying the Cu 

diffusion and dissolution path into the molten solder and preventing individual Cu6Sn5 grains 

from growing further and reducing the Cu6Sn5 channels. One result of less Cu6Sn5 groove 

formation during soldering is that subsequent Cu diffusion from the substrate during thermal 

annealing will be unbalanced and the growth of the Cu3Sn layer will be favoured. Besides 

that, as shown in Figure 2, in both the reinforced and non-reinforced Sn0.7Cu, Kirkendall 

voids on the Cu3Sn layer were observed to increase after longer annealing times. Studies 

made by Yu et al. (2016) reported that Kirkendall voids were introduced by an unbalanced 

diffusion at the interface and are promoted by higher temperature and annealing times. 

 

Comparing the 0.05wt% Ni additions to Sn0.7Cu, as in Figure 3a-d, the formations of 

interfacial (Cu,Ni)6Sn5 layer were rather finer scallop-shape and becomes courser after a 

longer annealing time.  With additions of TiO2 reinforcement to the Sn0.7Cu0.05Ni as in 

Figure 3e-h, the morphology of the interfacial layer was similar to the non-reinforced solder 

joints. However, a thinner interfacial (Cu,Ni)6Sn5 layer was observed. From cross-sectioned 

microstructure observations on Sn0.7Cu0.05Ni samples regardless of reinforcement 

additions, fine primary (Cu,Ni)6Sn5 were observed near the interfacial layer. From Mohd 

Salleh et al. (2016a) study, this fine primary (Cu,Ni)6Sn5 forms in the bulk solder and sinks 

to the interfacial layer during solidification. In Sn0.7Cu, primary Cu6Sn5 particles were larger 

and the majority were in the bulk solder.  Figure 4a-c and 4d-f shows the interfacial 

intermetallic layer and primary intermetallic morphology after 2000 hours of annealing in the 

Sn0.7Cu+TiO2 and Sn0.7Cu0.05Ni+TiO2 samples respectively. A relatively flat and coarse 

interfacial Cu6Sn5 layer and generally larger primary Cu6Sn5 particles were observed in 

reinforced Sn0.7Cu solder joints.  
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Figure 2: Backscattered electron SEM images of the interfacial Cu6Sn5 and Cu3Sn 

intermetallic compound layers in annealed Sn0.7Cu after (a) 0 hours, (b) 1000 hours, (c) 

1500 hours, (d) 2000 hours and Sn0.7Cu+TiO2 after (e) 0 hours, (f) 1000 hours, (g) 1500 

hours, (h) 2000 hours. 

 

 

Figure 3: Backscattered electron SEM images of interfacial (Cu,Ni)6Sn5 and the Cu3Sn 

intermetallic compound layers in annealed Sn0.7Cu0.05Ni after (a) 0 hours, (b) 1000 

hours, (c) 1500 hours, (d) 2000 hours and Sn0.7Cu0.05Ni+TiO2 after (e) 0 hours, (f) 1000 

hours, (g) 1500 hours, (h) 2000 hours. 
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Figure 4: Secondary electron SEM images of deep etched solder joints after 2000 hours of 

isothermal annealing revealing the primary and interfacial intermetallic compounds of (a-c) 

Sn0.7Cu+TiO2 and (d-f) Sn0.7Cu0.05Ni+TiO2. 

 

Investigations of the interfacial intermetallic compound layer growth after annealing were 

carried out by measuring the average thickness of the total interfacial layer 

(Cu6Sn5/(Cu,Ni)6Sn5 + Cu3Sn) and Cu3Sn layer after reflow and annealing. Figure 5a is the 

average thickness of total interfacial intermetallic compound layer of Sn0.7Cu, 

Sn0.7Cu+TiO2, Sn0.7Cu0.05Ni and Sn0.7Cu0.05Ni+TiO2 solder joints after annealing. 

Generally, with the increase of annealing time, the total interfacial layer becomes thicker. 

From the graph, comparing Sn0.7Cu and Sn0.7Cu0.05Ni solder joints, a slightly thinner total 

interfacial layer of Ni-containing solder joints was observed on as-reflowed samples however 

it grew thicker than Sn0.7Cu after 500, 1000 and 1500 hours of annealing. After 2000 hours 

of annealing, the total thickness of the interfacial layer had increased significantly in Sn0.7Cu 

which resulted in the thickest interfacial layer (~12-13 µm) compared to other solder joints. 

Across all samples, it was shown that additions of TiO2 in both Sn0.7Cu and Sn0.7Cu0.05Ni 

had suppressed the interfacial layer by around 10-40% (compared to no TiO2) where the 

suppression percentage increases with the increase in annealing time. Sn0.7Cu0.05Ni+TiO2 

resulted in the thinnest total interfacial layer after 2000 hours of annealing with 

approximately 6.6 µm total interfacial layer thickness compared to approximately 8.5 µm in 

Sn0.7Cu0.05Ni. 

 

During early stages of Sn0.7Cu solder wetting, Mohd Salleh et al. (2015b) found that 

interfacial Cu6Sn5 will rapidly form followed by subsequent scallop shaped growth while the 
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Cu3Sn layer may form in between the Cu6Sn5 layer and the Cu as result of continuous Cu 

diffusion from the substrate into the Cu6Sn5 layer. It is reported by Wang et al. (2014) that 

Cu3Sn formation could be accelerated by annealing. From Figure 5b, it is observed that in 

Sn0.7Cu and Sn0.7Cu+TiO2, a significant layer of Cu3Sn forms changing from ~0.8 µm as-

reflowed to ~5 µm after 2000 hours of annealing. However, with Ni additions, a relatively 

fine and thinner interfacial Cu3Sn layer were observed indicating the Ni additions were able 

to suppress the Cu diffusion from the substrate into the Cu6Sn5 layer. Comparing samples 

with TiO2 additions in both Sn0.7Cu and Sn0.7Cu0.05Ni, there is no significant growth or 

suppression of Cu3Sn and it appears that TiO2 does not play a role in controlling the Cu 

diffusion from the substrate into the layer. It is believed that TiO2 plays a significant role 

during the liquid solder wetting where TiO2 nanoparticles between the liquid solder and 

substrate acts as a dissolution barrier which reduces the Cu dissolution from the substrate. 

Thus, excessive reinforcement may also result in a barrier for wetting. After the rapid 

formation of the Cu6Sn5 layer during wetting, TiO2 nanoparticles may be pushed above the 

Cu6Sn5 layer and remain as a diffusion barrier from the matrix.  

 

Although the TiO2 nanoparticles density (4.2g/cm3) is much lower than the liquid Sn (6.98 

g/cm3), a higher surface energy of TiO2 nanoparticle (~1.9 J/m2 ) compared to Sn liquid (~0.5 

J/m2 ) at 227 ˚C allows the liquid Sn to wet the nanoparticles. During soldering, with 1wt% 

of TiO2 additions, some reinforcement will remain in the solder while some particles near the 

surface were observed to be pushed out during solidification. Stefanescu et al. (1988) 

reported that when a moving solidification front intercepts an insoluble particle, it can either 

be pushed or engulfed. Engulfment during solidification occurs when solid grows over the 

particle, followed by enclosure of the particle in the solid. Evidence of TiO2 reinforcement 

remaining on the interfacial Cu6Sn5 was observed in deep-etched reinforced solder balls 

with aggregation of TiO2 particles as in Figure 4b, 4e (red arrow) and 6. Figure 6a and 6b 

indicate that TiO2 may be pushed or engulfed by the interfacial compounds and Sn during 

solidification. As in Figure 6c, a cup shape of Cu6Sn5 can be observed partially surrounding 

the TiO2 aggregated particles while being pushed. Figure 6b and 6d confirms the presence 

of TiO2 reinforcement by EDS point analysis. Thus, it is possible to use TiO2 nanoparticles 

as reinforcement additions in soldering and suppress the total interfacial layer during 

soldering and annealing. Subsequently by controlling the microstructure in the solder joint, 

the solder joint strength could be improved. 
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Figure 5: Average thickness of the (a) total interfacial intermetallic compound, (b) 

interfacial Cu6Sn5/(Cu,Ni)6Sn5 intermetallic compound and (c) interfacial Cu3Sn layer 

formation of isothermal annealed Sn0.7Cu, Sn0.7Cu+TiO2, Sn0.7Cu0.05Ni and 

Sn0.7Cu0.05Ni+TiO2  after 0, 500, 1000, 1500 and 2000 hours. 
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Figure 6: Secondary electron SEM images and EDS point analysis of agglomerated TiO2 

found attached to the interfacial layers of (a-b) Sn0.7Cu+TiO2 and (c-d) 

Sn0.7Cu0.05Ni+TiO2 after 2000 hour isothermal annealing. 

 

3.2 Shear strength and fracture energy of solder joints 

Mechanical performance of solder joints was conducted by evaluating the shear strength, 

total shear fracture energy, shear fracture initiation energy and shear fracture propagation 

energy. Figure 7a represents an example of a high speed solder ball shear strength result 

comparing as-reflowed Sn0.7Cu, Sn0.7Cu+TiO2, Sn0.7Cu0.05Ni and Sn0.7Cu0.05Ni+TiO2. 

As in Figure 7a, the shear force graph of as-reflowed Sn0.7Cu and Sn0.7Cu+TiO2 had a 

similar trend indicating a more brittle fracture characteristic with a steeper slop before and 

after the maximum shear force compared to as-reflowed Sn0.7Cu0.05Ni and 

Sn0.7Cu0.05Ni+TiO2 which indicates a more ductile fracture solder joint. Tsukamoto et al. 

(2010) reported that from a shear force graph, a steeper slope indicates a more brittle 

fracture characteristic. Results of the shear strength of each solder joint composition after 

annealing are plotted in Figure 7b. With 1wt%TiO2 in the as-reflowed samples, the solder 

joint strength of Sn0.7Cu had increased by about 20% of the average shear strength while 

the addition of 0.05wt%Ni had increased by about 28% (~16 N) of the average shear 

strength. The Sn0.7Cu0.05Ni+TiO2 samples had the highest average solder joint strength 

among all the solder joints of approximately 16.5 N while Sn0.7Cu resulted in the lowest 

average solder joint strength of approximately 12.5 N. Annealed solder joints had a relatively 
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decreasing values of average shear strength after 500, 1000, 1500 and 2000 hours of 

annealing time. At the maximum annealing time (2000 hour), it was observed that solder 

joints with the additions of TiO2 had the highest average shear strength with a similar 

strength between Sn0.7Cu+TiO2 and Sn0.7Cu0.05Ni+TiO2. This indicates that TiO2 

additions had improved the solder joint strength in all annealed samples and a combination 

of 0.05wt%Ni and TiO2 to Sn0.7Cu resulted in the highest shear strength. Referring to the 

total interfacial intermetallic thickness and the Cu3Sn interfacial thickness (Figure 4a and b) 

after annealing, the shear strength of the solder joint decreases as the thickness of these 

interfacial layer increases. It is believed that besides the suppression of the interfacial layer, 

TiO2 could also act to pin dislocations in the solder joint matrix which increases the solder 

joint. However, it is known that solder joint strength does not only rely on the interfacial layer 

thickness and could also be influenced by other factors such as flux void formation, 

Kirkendall void formation and large primary intermetallics in the solder joint matrix.  

 

Figure 8 shows the total shear energy, fracture initiation energy and fracture propagation 

energy of the solder joint samples at 0, 500, 1000, 1500 and 2000 hours of annealing. 

Sn0.7Cu0.05Ni+TiO2 resulted in the highest shear energy value compared to other solder 

joint compositions. In contrast, Sn0.7Cu had the lowest shear energy value. It is observed 

that with an increasing annealing time, the total shear energy of Sn0.7Cu0.05Ni and 

Sn0.7Cu0.05Ni+TiO2 decreased while Sn0.7Cu and Sn0.7Cu+TiO2 did not display a 

decreasing shear energy value after annealing. This may be due to the low shear energy in 

as-reflowed samples of Sn0.7Cu and Sn0.7Cu+TiO2 which indicates a brittle fracture 

threshold value even before annealing. By distinguishing the fracture initiation and 

propagation energy, the relative energy required for a solder joint fracture to initiate and 

propagate could be determined. As shown in Figure 8b, fracture initiation energy of solder 

joints had a similar trend to the total fracture initiation energy. On as-reflowed solder joints, 

for Sn0.7Cu0.05Ni+TiO2, approximately 1.8 mJ is required to initiate a solder joint fracture 

and this decreases after annealing time to 2000 hours to approximately 0.9 mJ. Similarly a 

decreasing trend of Sn0.7Cu0.05Ni fracture initiation energy is apparent, where the 

approximately 1.6 mJ is required to initiate a solder joint fracture decreases after annealing 

for 2000 hours to approximately 0.8 mJ. The fracture propagation energy of the sheared 

solder joints is shown in Figure 8c and it is seen in as-reflowed solder joints and after 2000 

hours of annealing, Sn0.7Cu0.05Ni+TiO2 resulted in the highest value compared to other 

solder joints. However, no obvious trend in fracture propagation energy in all solder joints 

after annealing was apparent.    
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Figure 7: (a) Shear force versus displacement graph for high speed shear tests with the 

colored area showing the initial fracture energy of the as-soldered solder joint samples and 

(b) the shear force indicating the shear strength of solder joints after 0, 500, 1000, 1500 

and 2000 hours of isothermal annealing. 
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Figure 8: (a) Total shear energy, (b) fracture initiation energy and (c) fracture propagation 

energy of 0, 500, 1000, 1500 and 2000 hour isothermal annealed solder joints. 

 

3.3 Fracture surface analysis 

Figure 9 and Figure 10 show the fracture mode distributions of the high speed shear solder 

joint samples collected from SEM images based on the failure modes defined in Figure 1c-

f. Figure 9a indicates the fracture mode distribution of Sn0.7Cu in as-reflowed solder joints 

and annealed solder joints. It is observed that the majority of the fracture modes for this 

solder joint composition were relatively brittle and a small percentage of quasi-brittle failure 



 

200 
 

was observed. When TiO2 additions were made to Sn0.7Cu, a less brittle fracture was 

observed and quasi-brittle failure dominated. It is likely the suppression of the total interfacial 

layer thickness as in Figure 4a has influenced the fracture mode and a reduced interfacial 

layer thickness resulted in more fracture in the bulk solder which resulted in quasi-brittle and 

quasi ductile failure modes at 2000 hours in annealed solder joints. In Sn0.7Cu0.05Ni and 

with the additions of TiO2, less brittle failure was observed. After annealing to 2000 hours, 

100% of samples experienced quasi-brittle failure in Sn0.7Cu0.05Ni solder joints while with 

TiO2 additions, a mixture of ductile, quasi-ductile and quasi-brittle failure modes were 

observed. It is apparent therefore that Ni and TiO2 additions can alter the failure mode from 

a more brittle failure mode to a more ductile failure mode. This may be attributed to a 

suppression of the Cu3Sn layer and the total interfacial layer thickness. Koo et al. (2008) 

found that the Cu3Sn layer may also be associated with Kirkendall voids which become more 

prevalent in annealed solder joints. 

 

 

Figure 9: Fracture mode distribution of high speed shear results of annealed solder joints 

of (a) Sn0.7Cu and (b) Sn0.7Cu+TiO2 after 0, 500, 1000, 1500 and 2000 hours. 
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Figure 10: Fracture mode distribution of high speed shear results of annealed solder joints 

of (a) Sn0.7Cu0.05Ni and (b) Sn0.7Cu0.05Ni+TiO2 after 0, 500, 1000, 1500 and 2000 

hours. 

 

For a clearer understanding on the factors that affect the failure modes, fracture surfaces 

were analysed. Figure 11 and 12 shows the SEM image of the fracture surfaces of all 

sheared solder joints after 2000 hours of annealing. As in Figure 11a and b in the Sn0.7Cu 

fracture surface, failure modes of brittle and quasi-brittle were majorly caused by the 

formation of Kirkendall voids with the sheared solder joint fracturing predominantly through 

the Cu3Sn and Cu6Sn5 layer. From the fracture surface of the Cu3Sn layer as in Figure 11b, 

the Kirkendall voids played a major role. With additions of TiO2, although a thick layer of 

Cu3Sn was measured in the solder joints, the majority of the fracture surface was through 

the large Cu6Sn5 interfacial layer and the bulk solder. In both samples, intergranular brittle 

cracks were observed (indicated by red arrows) on the Cu6Sn5 interfacial scallop grooves 

where large Cu6Sn5 scallop grooves were observed in cross section image of the interfacial 

layer as in Figure 2d and h.  
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Figure 12a and b are detailed fracture surfaces of Sn0.7Cu0.05Ni sheared solder joints after 

2000 hours of annealing which show quasi-brittle failure modes of the solder joints were 

through the (Cu,Ni)6Sn5 layer and bulk solder. Evidence of the existence of solder voids 

were observed where cup-shaped fracture was observed in the bulk solder as indicated with 

the red arrow in Figure 12b. Fracture surfaces of Sn0.7Cu0.05Ni+TiO2 as in Figure 12c and 

d show fracture of the solder joints occured through the bulk solder, Cu3Sn and (Cu,Ni)6Sn5 

layer. At the bulk solder near to the surface of the solder ball, primary (Cu,Ni)6Sn5 cracks 

were observed. These brittle primary intermetallics which exists at the edge of the solder 

ball may act as a weak point where fracture may initiate.  

 

 

Figure 11: Detailed surface fracture backscattered electron SEM images of (a) brittle mode 

Sn0.7Cu annealed for 2000 hours, (b) quasi brittle mode Sn0.7Cu annealed for 2000 

hours, (c) quasi brittle mode Sn0.7Cu+TiO2 annealed for 2000 hour and (d) quasi ductile 

mode Sn0.7Cu annealed for 2000 hours. Red arrows indicate the intergranular brittle 

cracks at the Cu6Sn5 grooves. 
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Figure 12: Detailed surface fracture backscattered electron SEM images of (a-b) quasi 

brittle mode Sn0.7Cu0.05Ni annealed for 2000 hours, (c) quasi ductile mode 

Sn0.7Cu0.05Ni+TiO2 annealed for 2000 hours and (d) quasi brittle mode 

Sn0.7Cu0.05Ni+TiO2 annealed for 2000 hours. Red arrows in (b) indicate the interfacial 

solder voids at the fracture surface. 

 

4.0 Conclusions 

The effects of Ni, TiO2 in isolation and when combined on the microstructure and properties 

of Sn0.7Cu solders on Cu substrates were examined for a range of annealing times.  

 

The following conclusion can be made: 

 

a) A scallop-shaped interfacial Cu6Sn5 layer with a planar layer of Cu3Sn formed when 

using Sn0.7Cu. With additions of TiO2 reinforcement to Sn0.7Cu, a more planar 

scalloped Cu6Sn5 morphology was present with reduced interfacial boundary 

grooves. A fine scallop-shaped interfacial (Cu,Ni)6Sn5 layer was present when using 

Sn0.7Cu0.05Ni and Sn0.7Cu0.05Ni+TiO2. 

b) Additions of TiO2 to both Sn0.7Cu and Sn0.7Cu0.05Ni suppressed the total interfacial 

layer by 10-40% with the suppression percentage increasing with an increase in 

annealing time. 
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c) Kirkendall voids on the Cu3Sn layer were observed to increase after longer annealing 

times where a fine and significantly thinner interfacial Cu3Sn layer was observed in 

solder joints containing Ni. This shows that Ni was able to suppress the Cu diffusion 

from the substrate into the Cu6Sn5 layer and suppress the Cu3Sn layer. 

d) Evidence of TiO2 reinforcement remaining on the interfacial Cu6Sn5 in deep etched 

reinforced solder balls indicates that TiO2 may be pushed or engulfed by the 

interfacial layer growth and Sn during solidification. TiO2 nanoparticles between the 

liquid solder and substrate may act as a dissolution barrier which reduces the Cu 

dissolution from the substrate during soldering and remain as a diffusion barrier from 

the matrix during annealing.  

e) The solder joint strength of solders containing TiO2 increased by about 20%-28% of 

the average shear strength compared to non-reinforced solder joints and 

Sn0.7Cu0.05Ni+TiO2 displayed the highest average solder joint shear strength and 

total fracture energy among all the solder joints after reflow and subsequent 

annealing. 

f) Ni and TiO2 additions altered the failure mode from brittle to a more ductile failure 

mode. This was attributed to the suppression of the Cu3Sn layer and the total 

interfacial layer thickness. 
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Chapter 7 Summary and future work 

 

In this research, a number of peer reviewed journal articles have been published (or 

submitted for publication). The research has successfully contributed to an in-depth 

understanding of microstructure formation in reinforced Sn-Cu Pb-free solder joints. The 

study has focussed on both intrinsic and extrinsic reinforcing methods with Cu6Sn6 

intermetallic as an intrinsic and nano-size TiO2 particles as extrinsic reinforcing materials.  

 

A microwave sintering PM method was successfully used to fabricate TiO2 reinforced 

solders. A homogenous distribution of TiO2 reinforcement was achieved using this technique 

which also resulted in samples with a higher density compared to conventional sintering 

techniques. With the unique heating characteristics obtained using microwave sintering, a 

fine distribution of TiO2 in the solder balls was achieved. Using this sintering technique, the 

hardness of the bulk solder increased and the CTE mismatch between copper at 150˚C and 

the microwave sintered TiO2 containing samples was reduced relative to the non-reinforced 

samples. In addition to the fabrication of the TiO2 reinforced solder, a method of in situ 

soldering observation using an SXRI technique was developed which enabled a full 

soldering reaction process from the solder wetting until the solder joint solidification to be 

observed for the first time. This experiment technique was used as a main analytical tool in 

analysing the microstructure formation of the reinforced solder during soldering.  

 

During early stages of soldering at the moment of solder wetting between Sn-0.7Cu/Cu, a 

significant thickness of Cu6Sn5 of planar morphology formed almost instantly (within 0.05s) 

before further growth resulted in a subsequent scallop-shaped interface. The growth kinetics 

of the interfacial Cu6Sn5 layer during soldering process were determined and 3 growth 

mechanism stages were observed mainly (i) a transient stage where the Cu concentration 

of the liquid at the interface was removed from the substrate, (ii) a growth stage dominated 

by grain boundary diffusion and (iii) a stage of slow intermetallic growth during cooling. In 

addition, primary Cu6Sn5 nucleation and growth were observed in real time during the 

cooling stage of the soldering process. During subsequent heating in separate experiments, 

it was shown that a polymorphic transformation of monoclinic to hexagonal Cu6Sn5 occurred 

and this was associated with strain development at the interface of Cu/Cu3Sn/Cu6Sn5/Sn-

0.7Cu.  
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Microstructure formation in an intrinsic solder joint was studied using Sn-0.7Cu, Sn-3.0Ag-

0.5Cu and Sn-0.7Cu-0.05Ni solder pastes on Cu substrates. Development of the 

microstructure during, melting, reactive wetting and solidification of Sn-0.7Cu and Sn-3.0Ag-

0.5Cu solder pastes on Cu-plated FR-4 printed circuit boards (PCBs) was observed. The 

rapid interfacial Cu6Sn5 layer formation is present within 0.05s of wetting, and the kinetics of 

flux void formation at the interface between the liquid and the Cu6Sn5 layer were determined.  

Quantification of the nucleation locations and anisotropic growth kinetics of primary Cu6Sn5 

crystals revealed a competition between the nucleation of Cu6Sn5 in the liquid versus growth 

of Cu6Sn5 from the existing Cu6Sn5 layer. Additions of 0.05 wt% of Ni to Sn-0.7Cu could 

significantly alter the formation and growth of the primary Cu6Sn5 intermetallics making them 

small and flake-like. Ni additions appeared to promote the nucleation of a larger amount of 

small flake-like Cu6Sn5.   

 

The influence of multiple reflows and isothermal annealing on microstructure formation in 

extrinsically reinforced solder joints was successfully studied. After the multiple reflow of 

TiO2 reinforced Sn-0.7Cu compared to TiO2-free equivalents, a relative suppression of the 

primary Cu6Sn5 and interfacial Cu6Sn5 was observed where the suppression of Cu6Sn5 

resulted in a higher shear strength. Additions of 0.05 wt% Ni and TiO2 to Sn-0.7Cu resulted 

in the suppression of the Cu6Sn5 and Cu3Sn layers after isothermal annealing which resulted 

in a high solder joint strength and fracture energy.  

  

The research relating to reinforced solder joint microstructure development performed in this 

study could be used as a basis for the design of an optimized and controlled microstructure 

in solder joints for future electronic interconnects technology and contribute towards 

producing high reliability solder joints. Areas of future research that would complement and 

build on the the research performed in this thesis are as follows: 

 

i. Explore how to control the microstructure in different solder alloys by manipulating 

the number and size of primary intermetallics and the thickness of interfacial 

intermetallic compounds.  

ii. Explore the unique characteristic of microwave sintering and develop a suitable 

microwave sintering powder metallurgy technique for high volume manufacturing 

of extrinsic reinforced solder suitable for industrial applications. 
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iii. Further investigate the relationship of various reinforcement particles and their 

influence on microstructure, possibly coupled with a finite element analysis model 

to evaluate solder joint reliability in various processing and operating regimes. 
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