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Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement
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Any practical experiment utilizing the innate D-dimensional entanglement of the orbital angular momentum
(OAM) of photons is subject to the generation capacity of the entangled photon source and the modal capacity of
the detection system. We report an experimental spontaneous parametric-down-conversion system able to generate
and detect tunable high-dimensional OAM entanglement. By tuning the phase matching, we demonstrate a factor
of 2 increase on the half-width of the OAM-correlation spectrum, from 10 to 20. In terms of quantum mutual
information capacity, this is an increase from 3.18 to 4.95 bits/photon. Furthermore, we measure correlations in
the conjugate variable, angular position, and obtain concurrence values 0.96 and 0.90. The good entanglement
measures in both OAM and angular position bases indicate bipartite, D-dimensional entanglement where D is
tunable.
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I. INTRODUCTION

Much attention has been directed to the two-dimensional
state space of photon polarization, which provides both a
conceptually and experimentally accessible testbed [1–4].
An even more fertile testbed is D-dimensional two-photon
entanglement, wherein each photon is a D-level qudit taking
on any of D possible values. From a fundamental standpoint,
higher-dimensional entanglement implies stronger violations
of locality [5,6] and is especially useful in the study of mutually
unbiased bases in higher dimensions [7]. More relevant
to practical applications, higher-dimensional entanglement
provides increased security and robustness [8–10] and a higher
information capacity [9,11,12]. Entangled photon pairs typi-
cally come from the process of spontaneous parametric-down-
conversion (SPDC) in a nonlinear crystal. High-dimensional
entanglement between these photon pairs can broadly be
classified into two groups. The first exploits the spectral [13]
and temporal [14] degrees of freedom; an experimental system
with at least 11 dimensions has been achieved for the latter
[14]. The second exploits the spatial degrees of freedom such
as transverse spatial profile [11] and transverse position and
linear momentum [10,12,15]; an experimental system with
a notable channel capacity of 7 bits/photon corresponding
to roughly 128 dimensions has been reported for the latter.
Most relevant to our work are studies exploiting the angular
position and the orbital angular momentum, which relate to the
modes with a spiral phase structure defined by the azimuthal
index � [16].

The entanglement of orbital angular momentum (OAM) in
photons generated via SPDC is firmly established theoretically
and experimentally [17,18]. The interest in OAM stems
from its discrete and theoretically infinite-dimensional Hilbert
space; � could be any integer. Since the pioneering experiment
of Mair et al. [18], OAM as well as its conjugate variable, angu-
lar position, has been steadily gaining ground as a mainstream
variable in which to observe quantum correlations. Bell-type
and Leggett inequalities have both been violated in two-
dimensional OAM subspaces analogous to the experiments
done previously for polarization [19,20]. The number of OAM
modes is generally referred to as the spiral bandwidth [21].

The generation spiral bandwidth is the number of OAM modes
that is produced by SPDC. The generation spiral spectrum of
SPDC (i.e., the range of the D entangled OAM states and
their respective weightings) has previously been calculated
analytically from the coincidence fringe obtained from a clever
angular equivalent of the Hong-Ou-Mandel interferometer
using bucket detectors [22]. In contrast, the measurement spiral
bandwidth is the number of OAM modes that can be measured.
It depends on the generation spiral bandwidth and detection
capability of the system.

Here we focus on the measurement spiral bandwidth, which
dictates the number of usable OAM modes. Any projective
measurement of OAM, wherein the OAM of the signal and
idler photons are directly measured using a mode transformer
(with a hologram or phase plate) and a single-mode fiber
coupled to a photon detector, is inherently sensitive to the
radial field distribution [22–24]. Measuring the OAM spectrum
in this manner will inevitably result in a spiral bandwidth that
is different from the generation bandwidth [22].

Pors et al. have calculated D from coincidence fringes as
angular phase plate analyzers are rotated: D is the inverse of
the area under the peak-normalized coincidence fringe [25].
Using this technique, a dimensionality of D = 6 has been
measured for a SPDC system with a Schmidt number of 31.
Another technique is to measure the OAM states of the signal
and idler photons directly by forked diffraction holograms
and build up a measurement spiral spectrum, as was done by
Dada et al. in Ref. [6], where they have shown 11-dimensional
OAM entanglement via generalized Bell inequalities. Using
angular slits and forked diffraction holograms, Leach et al.
successfully demonstrated the Einstein-Podolsky-Rosen para-
dox by measuring angular position and 15 different OAM
states, although they did not obtain the dimensionality of the
measured OAM entanglement [16]. In this work, we quantify
the dimensionality of OAM entanglement via the quantum
mutual information capacity, the information that is shared
by the entangled photons. This is an especially meaningful
quantity for quantum key distribution [12,26,27] and has
not been measured for OAM previously. We measure 41
different OAM states and achieve an experimental quantum
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FIG. 1. (Color online) Experiment scheme. Photons from SPDC
in a 5-mm-long BBO crystal are measured in the OAM or angular
position basis by programming either a forked diffraction hologram
or an angular four-slit pattern on the SLMs (inset). The SPDC phase
matching is changed by tilting the BBO crystal about the axis shown
(inset). The CCD camera accessible via the flip-up mirror M allows
us to derive a phase-matching parameter according to Eq. (1).

mutual information capacity as high as 4.94 bits/photon
corresponding to a dimensionality of ∼ 30.

II. EXPERIMENT

To increase the number of measurable OAM modes, one
can either optimize the detection system or widen the OAM
spectrum of the generated two-photon state. These two are
equally important, but optimizing detection is fruitless if the
OAM states are not being generated in the first place. The
detection geometry is more often fixed but can be designed
optimally. The generation bandwidth can be modified by
changing the characteristics of the pump beam [28,29] or
by tuning the phase-matching conditions as shown previously
by temperature tuning a periodically poled potassium titanyl
phosphate crystal [22].

Our entangled photons are generated from a 5-mm-long
β-barium-borate (BBO) crystal cut for type-1 collinear SPDC
pumped by a collimated 355-nm pump beam (Fig. 1). The
pump beam is blocked by a longpass filter (IF1) after passing
through the crystal. The crystal is mounted on a rotation
stage, which allows us to change the orientation of the crystal,
consequently changing the phase matching from collinear to
near collinear. The signal and idler fields are incident on the
same beam splitter and imaged by lenses L1 (f = 400 mm)
and L2 (f = 200 mm) to separate spatial light modulators
(SLMs). A flip-up mirror (M) is used to direct the light to a
CCD camera positioned at the focal plane of L1 to allow us
to capture the far-field intensity of the down-converted fields
[Figs. 2(a) and 2(d)]. The SLMs are imaged by lenses L3
(f = 600 mm) and L4 (f = 3.2 mm) onto the facets of single-
mode fibers coupled to avalanche photodiodes (APDs) for
single-photon detection. Bandpass filters (IF2) of width 10 nm
and centered at 710 nm placed in front of the fibers ensure that
we measure signal and idler photons near degeneracy. The
outputs of the APDs are connected to a coincidence circuit

FIG. 2. (Color online) OAM and angular position measurements.
(a) For collinear phase-matching, the far-field intensity profile (blue
line) follows Eq. (1) (solid black line) with α = 0. (b) The measured
spiral spectrum has a half-width �� ≈ 10, with D ≈ 9. (c) The
central maximum (renormalised and background-subtracted) of our
angular position correlation measurement when the signal and idler
slits have a relative orientation of �φ, has a half-width of ≈ 12◦.
The inset shows the other maxima from the four-slit pattern. (d) For
noncollinear phase-matching, α = −2.2 in Eq. (1), the measurement
spiral bandwidth is wider, with (e) �� ≈ 20, D ≈ 30 and the angular
position correlation is narrower, with (f) a half-width of ≈ 8◦. Blue
dots and bars are experiment results, solid black lines are fits that
demonstrate consistency with a Fourier relation between OAM and
angle.

and the coincidence rate is recorded as a function of the
measurement states specified in the SLM.

Spontaneous parametric-down-conversion is the nonlinear
interaction of three photons whose frequencies ωj [j stands
for the p (pump), s (signal), or i (idler) photon] are related
as ωp = ωs + ωi . There is a range of wave vectors that will
satisfy this energy conservation, and we can define an on-axis
phase mismatch �kz from the z components of the wave
vectors kj , �kz = kp,z − ks,z − ki,z [30]. The significance of
phase matching has been realized previously in the seminal
paper of Kleinman [30], in which he calls SPDC optical
parametric noise. In any three-wave-mixing process, 2/�kz

is the coherence length over which the three interacting fields
remain in phase. In SPDC, �kz has implications for efficiency
(SPDC is brightest when �kz ∼ 0), but more importantly
determines the spectral distribution of the down-converted
photons [31,32]. Theoretical treatment of phase matching
is complicated and several approximations have been
made [29,33,34], but it is easy to do in practice by tuning
either the temperature or angular orientation of the crystal [31].
In the case of our bulk crystal, changing the angular orientation
changes the index of refraction for the pump beam and hence
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�kz and the far-field intensity profile of the down-converted
fields. The intensity profile I we obtain mirrors the
sinc-phase-matching term in SPDC and is fitted with the
function

I (r) = sinc2

(
ar2

f 2
+ α

)
, (1)

where r is radial coordinate in the focal plane of a lens
with focal length f (L1), α = (|kp| − |ks | − |ki |)L/2 is
a phase-matching parameter that determines the opening
angle of SPDC, and a = (|ks | + |ki |)L/4n2, where n is the
refractive index for the signal and idler wavelengths and L

is the crystal length [35]. In the case where the transverse
momentum of the photons is conserved, α is dominated by
�kz; we take this as a measure of our on-axis phase mismatch
and α = 0 for the collinear case.

We measure both OAM and angle correlations for two
different phase-matching conditions. To measure OAM, we
encode forked diffraction gratings of topological charge �s on
one SLM and �i on the other. These holograms transform the
incoming field to a fundamental mode, which is the only mode
that can be coupled to the fibers [18]. Since we are working
in the collinear to near-collinear regime, OAM is conserved in
our SPDC, hence we expect the OAM of the signal and idler
photon to be anticorrelated, i.e., the coincidence count is high
only when �s = −�i [36]. Ideally, to measure correlations in
angular position, we encode angular slits of width δφ centered
at angle φ in both SLMs and rotate one with respect to the
other, expecting high coincidence counts when the two slits
are aligned [16]. Because the angle and OAM are Fourier
related [37], a wide spiral bandwidth means a correspondingly
narrow angular correlation that should be measured with a
narrow angular slit. This presents a limitation in practice
because a narrow angular slit means fewer counts, which
are difficult to discern against the background. We solve this
problem by using not one, but four narrow slits (7◦ wide,
almost twice as narrow as what was used previously [16])
thereby enabling us to still measure tight angular correlations
without sacrificing counts. With one four-slit pattern oriented
at φs and another oriented at φi , we measure the coincidences
as a function of �φ = φs − φi . As a result of having four slits,
our angular position coincidence curves have more than one
maximum [Figs. 2(c) and 2(f) insets] from which the width of
the angular correlation can be derived.

Orbital angular momentum and angular position measure-
ments for two different phase-matching conditions are shown
in Fig. 2. We have judiciously subtracted the accidental counts
A = S × I × �t , where S and I are the single channel counts
of the signal and idler arms, respectively, and �t = 10 ns is
our coincidence timing window. We define the measurement
spiral bandwidth �� as the full width at half maximum of
the measured spiral spectrum. For collinear phase matching
α = 0 in Eq. (1) [Fig. 2(a)], we find �� ≈ 10 [Fig. 2(b)]
and the corresponding half-width of the central peak in the
angular position coincidence curve is 12◦ [Fig. 2(c)]. With the
addition of an on-axis phase mismatch α = −2.2 in Eq. (1), the
opening angle of the spot is slightly increased (to ≈1.1◦ from
the propagation axis to the first minimum, compared to 0.9◦
for α = 0). There is a central dip in the intensity distribution
[Fig. 2(d)]; we find �� ≈ 20 [Fig. 2(e)]. The half-width of

the corresponding angular position correlation is narrower, as
expected from the Fourier relationship [37,38], and is 8◦. The
solid black lines in Figs. 2(b) and 2(e) are Lorentzian and
are empirical fits to our data. Using these fits, we are able
to calculate the expected angular correlation from the Fourier
relation, with the added consideration that our angular masks
have a finite slit width [solid line in Figs. 2(c) and 2(f)]. Angular
position measurements are very sensitive to alignment, and
we attribute the imperfect fits in Figs. 2(c) and 2(f) to
this.

We focus on our OAM measurements and derive the mutual
information H . This can be calculated from the probabil-
ities H = −∑

�s
p(�s) log2[p(�s)] − ∑

�i
p(�i) log2[p(�i)] +∑

�s ,�i
p(�s,�i) log2[p(�s,�i)], where p(�s,�i) is the proba-

bility of measuring �s and �i , p(�s) = ∑
�i

p(�s,�i) is the
probability of measuring �s , and p(�i) = ∑

�s
p(�s,�i) is the

probability of measuring �i . For φ = 0 the mutual information
is 3.17 ± 0.60 bits/photon, corresponding to a dimensionality
D = 2H ∼ 9. Adjusting the phase matching to φ = −2.2
results in a mutual information of 4.94 ± 1.03 bits/photon,
corresponding to D ∼ 30, twice the measurement range of our
previous results in Ref. [16]. We remark that apart from being
detection limited, we have also defined our dimensionality
stringently by calculating it from the mutual information. In
this way we are sensitive to the level of noise and crosstalk
even for measurements where �s �= �i , which becomes more
apparent with higher-valued OAM states. As such, we expect
our dimensionality to be less than the Schmidt number K

for our system. We have independently measured K for our
system via sector phase plates and find these greater than
our measured D. For φ = 0 we obtain K = 35 ± 2 and for
φ = −2.2 we obtain K = 49 ± 2 [39]. The values of K can
also be estimated from Ref. [33], which gives 35 for φ = 0
and 43 for φ = −2.2 with our experiment parameters. We also
remark that K , being defined in terms of just probabilities,
does not give any hint about the shape of the spiral spectrum.
A full decomposition in terms of OAM modes has been treated
elsewhere, albeit not for the noncollinear case [40,41]. The
OAM spectrum, although not Lorentzian, is Lorentzian-like in
shape and this has motivated us to use a Lorentzian fit [6,41].
Theoretical fits for our results and hence estimates for �� can
only be obtained from a full model of our experiment, such as
one based on the Klyshko backpropagation picture [42].

A simple geometrical argument can elucidate why the spiral
spectrum widens as we tune the phase matching. This involves
the concept of the optical étendue E = A	, where A is the
near-field beam area and 	 is the solid angle subtended by
the beam in the far field [23,43]. In the treatment of noise in
laser amplifiers, the étendue normalized with respect to the
wavelength λ, E/λ2, is the number of transverse modes that
can be supported; E acts as a measure of the quantum states in a
beam [43,44] and E is more often invoked in the discussion of
light collection, but is equally applicable in the case of SPDC
where light is instead being emitted. Regardless of the phase
matching, A is the same in our experiment: The SLMs are in
the near field of a particular plane in the crystal and minute
changes to crystal orientation (typically 1/20 of a degree) do
not change the image on the SLMs. However, this changes
the far-field opening angle, 	 increases for α = −2.2; hence
the number of transverse (both azimuthal and radial) modes
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emitted increases. In setting up a SPDC experiment, this has
important practical implications: One should ensure that the
detection étendue is greater than the generation étendue to
maximize the overlap between the pump and detection modes.
Using the Klyshko picture as a guide, where the detected signal
(or idler) mode is backpropagated to the crystal, reflected
off the crystal, and propagated to the other detector [42], the
overlap is maximized by keeping all corresponding far-field
solid angles and near-field beam diameters in the signal and
idler arms the same. The reason we use two lenses to image the
crystal onto the SLMs instead of one is to match the far-field
angles in both arms and this gives us an effective detection
system.

III. ENTANGLEMENT

Measuring the entanglement of D dimensions is not
as straightforward as measuring the entanglement of two-
dimensional systems. We can violate a Bell inequality for
higher dimensions as implemented in Ref. [6], but this is
difficult for D ∼ 30 because the intensity mask reduces the
count rates considerably. Instead, we employ the entangle-
ment measure E = ∑

�s ,�i
p(�s,�i) − p(�s)p(�i) proposed in

Ref. [45], similar to the I -concurrence or Renyi-2 entropy
apart from numerical factors. Here E is zero for separable
states. For our results, we calculate values of 0.8101 ± 0.01
and 0.8097 ± 0.02 for φ = 0 and −2.2, respectively, indi-
cating that our two-photon OAM states are nonfactorable
and therefore entangled. The presence of crosstalk in the
higher OAM modes prevents us from getting a significantly
higher entanglement measure for φ = −2.2 as one might
expect.

Furthermore, we exploit the Fourier relationship, or com-
plementarity between OAM and angle [37,46], to characterize
the entanglement in the angular position basis. When a photon
passes through an angular aperture we can observe interference
in the OAM distribution of the signal (or idler) field, the
modulation of which depends on the spiral spectrum of
the photons [47]. We can encode angular two-slit patterns
on the SLMs [slits 1 and 2 in Fig. 3(a)] and measure the
resulting OAM interference when SLM1 (idler) is set to
measure �i = 0 and the value of �s on SLM2 is scanned from
−�max to �max (�max = 20 in our case). It has been shown
that the visibility of the resulting interference pattern is the
same as the concurrence (ranges from 0 to 1, 1 being the
maximally entangled case) of the two-qubit density matrix
written in the angular position basis [47,48]. We verify strong
angular position correlation in Figs. 3(b) and 3(d), where we
have measured the coincidences when we encode only one slit
(of width 18◦) on each SLM for both phase-matching condi-
tions. As expected, we get appreciable coincidences only when
we encode the same slit positions for both SLMs. Ideally the
diagonals should be 0.5, but due to imperfect alignment we
get small probabilities off the diagonal.

The interference of the two-slit patterns in Fig. 3(a) with
their corresponding OAM values leads to a modulation in
the coincidences that can be measured in the OAM basis.
Figures 3(c) and 3(e) show the coincidences for α = 0
[Fig. 3(b) inset] and α = −2.2 [Fig. 3(d) inset]. The measured
concurrence is 0.96 ± 0.07 for α = 0 and 0.90 ± 0.12 for

FIG. 3. (Color online) Concurrence measurements. (a) We
encode two-slit patterns (width 18◦, separated by 45◦) in SLM1 and
SLM2 with the corresponding OAM values shown. With only one slit
in each SLM (1 or 2), we verify the strong angular position correlation.
(b) For α = 0, we get high coincidences only when both SLMs have
slits with the same angular position. (c) The measured concurrence is
0.96. We show (d) a similar angular position correlation for α = −2.2
and measure (e) a concurrence of 0.90.

α = −2.2, demonstrating that we indeed have entangled
angular qubit states for both phase-matching conditions.
We remark that the decrease in the concurrence value is
counterintuitive considering that the latter case corresponds
to a greater number of OAM modes. This may be due to
imperfect alignment, as measurements in the angular position
basis are more sensitive to this. We also emphasize that the
measurements made in Figs. 3(b) and 3(d) (strong angular
position correlation) and Figs. 3(c) and 3(e) (interference in the
OAM basis) can be produced simultaneously only by OAM-
angular position entangled sources. The good entanglement
measures in both OAM and angular position bases for both
phase-matching conditions indicate genuine two-photon D-
dimensional entanglement, where D is tunable.

IV. CONCLUSION

In conclusion, we have demonstrated a system where
we can generate and detect high-dimensional two-photon
entanglement. We have characterized the entanglement in
terms of the mutual information shared by the entangled
photon pairs. Minute changes to the angular orientation
of a bulk BBO crystal (≈1/20 of a degree) widens the
OAM measurement spiral spectrum and narrows the angular
position correlation, as a consequence of phase matching in
SPDC. We have designed our detection system guided by
the concept of the optical étendue and we have achieved as
much as 4.94 bits/photon, implying 30-dimensional OAM
entanglement. We can obtain a relatively flat spectrum for a
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few OAM modes, which could allow future protocols to forego
entanglement concentration. We note that our measurements,
although in a high-dimensional space, are still dichotomous,
in contrast to a polarization beam splitter that sorts the two
possible polarization states. However, a mode sorter that
separates all of the D orthogonal OAM states has been recently
developed [49]. Coupled with the generation and detection
geometry that we have characterized in this work, this points
to the possibility of new experiments such as detection
loophole-free Bell test experiments [50], superdense coding

[51,52] beating the linear optics threshold, and multivalued
quantum walks [53] where a higher-dimensional space is
desirable.
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