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Abstract  

Lateral genetic transfer (LGT) refers to several processes by which microbes can take up, maintain 

and often integrate into their own genome genetic material from other organisms. It is widely accepted 

that LGT plays an important role in the evolution of microbial genomes, and in the ability of these 

organisms to adapt and exploit new ecological opportunities. Computational methods have been 

applied to detect LGT since the 1990s. Most classical approaches to inferring LGT follow the steps 

of delineating sets of orthologous sequences, multiple sequence alignment, phylogenetic inference 

and then finding incongruities between the topology of this tree and a reference tree. Most of these 

steps are computationally hard, so these methods lack scalability for analysis of very large datasets. 

With the ongoing development of new sequencing technologies in recent years, more and more 

sequences are becoming available for study, necessitating the development of new methods to detect 

LGT on large datasets. With access to lateral events, we can generate LGT networks in which nodes 

represent DNA carriers such as genomes or plasmids, and edges represent LGT events. By analysis 

of these networks, we can delineate genetic exchange communities (GECs), groups of organisms that 

have transferred genetic material amongst themselves, and study their properties. This thesis has three 

aims: 1) design and implement a method to detect LGT with high efficiency and effectiveness which 

can identify directionality of transfer; 2) apply this new method on empirical datasets to evaluate its 

performance, and build LGT networks based on the detections; and 3) analyse the LGT networks and 

identify genetic exchange communities. 

 

In Chapter 2, we develop an alignment-free method to detect LGT, based on term frequency – inverse 

document frequency (TF-IDF). TF-IDF is a concept from text mining, originally used to find the key 

words in a document. We treat genomes as documents and use k-mers (fixed-size short reads) to 

represent words. The genomes are arranged into groups, usually according to recognised biological 

relationships. If, in a sequence, we find a series of k-mers (separated from each other by no more than 

a gap of size G) that are infrequent within its own group, but frequent in a different group, then this 

segment is judged as lateral, with direction of transfer from the latter (donor) group into that (recipient) 

sequence. We tested this method on simulated datasets varying k, G and rates of nucleotide 

replacement within-group, between-group and post-LGT. We find that in many biologically relevant 

cases, the method performs effectively (precision and recall above 85%); it performs better if k is 

between 25 and 45, between-group distance is large, and within-group distance is small. We also 

compare our TF-IDF method with ALFY, another alignment-free method for LGT detection, on both 

simulated and empirical datasets (seven Staphylococcus aureus genomes). On the simulated datasets, 

TF-IDF exhibits slightly lower recall but much greater precision than ALFY. On the empirical dataset, 

TF-IDF finds all LGT events inferred by ALFY, as well as some other areas of interest including 
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likely lateral regions containing antibiotic-resistance genes. TF-IDF runs much faster than ALFY on 

large datasets, but in the current implementation can be memory-intensive. These results establish 

TF-IDF as a competitive method for inferring LGT.  

 

In Chapter 3, I apply TF-IDF to three empirical datasets (genomes of 27 Escherichia coli and Shigella; 

110 enteric bacteria; and 143 bacteria and archaea) to investigate its performance on datasets of 

different evolutionary breadth. We study the dependence of the method on k and G, and identify 

optimal parameters for a range of realistic scenarios. We observe an abundance of lateral transfers 

among groups of Escherichia coli and Shigella, and found indications of more-ancient transfers, 

which are otherwise difficult to detect. In the enteric bacteria dataset, most of the LGT signal comes 

from exchanges between E. coli and Shigella, but we could nonetheless recognise a lower rate of 

LGT with the other groups (except Yersinia). Few LGT events could be inferred between different 

phyla in the prokaryote dataset, as expected. We map these lateral regions to genes, and use 

enrichment tests to determine which biological process annotations are over- or under-represented 

among these lateral genes. 

 

In LGT networks, regions in which most nodes are interconnected with each other represent potential 

biological communities that exchange genetic material. In Chapter 4 we define cliques in LGT 

networks as genetic exchange communities (GECs). We are interested in the taxonomic and 

physiological nature of these GECs, and whether their members share common environments. 

Finding cliques (or near-cliques) in networks is an NP-hard problem; however, there exist several 

good heuristic methods for this, many of which are implemented in the software package GrAPPA). 

In this chapter we use GrAPPA to identify GECs in the datasets we studied in Chapter 3. By varying 

the parameter values of TF-IDF, we can identify phyla or classes that persist as members of GECs, 

and which are more transient in this sense. We then apply enrichment tests to identify the biological 

processes that underlie these GECs. 

 

Overall, this project has introduced new capabilities, generated new understanding and opened new 

perspectives in our understanding of LGT among bacteria and archaea. Using the TF-IDF method we 

can detect LGT in large genome-scale datasets, and for the first time systematically infer the 

directionality of transfer. The concept of GEC sheds new light on the processes behind lateral transfer, 

and will allow researchers to better understand the mechanisms and conditions behind LGT.  
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Chapter 1 Introduction 

Many bacteria and archaea can acquire genetic material not only vertically from their ancestor, but 

also laterally from other DNA carriers or the environment, and incorporate it into their genome. This 

process is referred to as lateral genetic transfer (LGT) or horizontal gene transfer (HGT). LGT is 

widespread among bacteria and archaea, where it has contributed fundamentally to functional 

innovation including antibiotic resistance, virulence and diverse metabolic capabilities. In addition, 

it is increasingly recognised that LGT has affected the genomes of many eukaryotic microbes. 

Although LGT plays an important role in the evolution of microbes, how to detect, delineate and 

analyse LGT systematically are still open issues. 

In this research, I adopted and modified term frequency - inverse document frequency (TF-IDF), one 

of the most successful ideas in text mining, to develop a new algorithm and software for LGT 

detection. I carried out rigorous tests on this alignment-free approach with synthetic datasets and with 

empirical datasets. Based on these tests, I conclude that TF-IDF can detect LGT with high efficiency 

and effectiveness, and will be scalable to much larger datasets.  

Thereafter I used TF-IDF to detect LGT events and infer LGT networks for three empirical datasets. 

In these networks, the nodes represent bacterial or archaeal genomes, and the edges connect pairs of 

genomes between which one or more LGT events has been inferred. Mapping these LGT events to 

annotated genes, I investigated how many source groups have contributed via LGT to each gene, and 

what biological functions have been affected.   

Finally, I took a more-formal approach to describe the sharing of genetic material within groups of 

genomes. Densely connected regions within LGT networks can be considered to reveal genetic 

exchange communities (GECs). Up to now, it has mostly not been possible to infer the direction of 

lateral transfer. However, with TF-IDF the edges are directed, i.e. for each recipient genome the TF-

IDF method identifies a source group. This has allowed me to explore more-precise definitions of 

GECs for empirical genome-sequence datasets. 

1.1 Lateral genetic transfer 

The first indication that genetic material could be exchanged between different bacteria dates to 1911, 

when it was observed that the human paratyphoid bacillus could take on the agglutination properties 

of calf paratyphoid bacillus during passage through a calf1. In 1928, Griffith2 showed that non-

virulent strains of Streptococcus pneumoniae could acquire virulence from a heat-stable substance 

extracted from a virulent strain. This substance was subsequently identified as DNA3. LGT did not 

gain much public attention until the 1950s, when bacteria with multi-drug resistance began to emerge 
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globally4. In recent decades, evidence has accumulated showing that LGT is an important source of 

evolutionary novelty in microbes5-9.  

Three main mechanisms of LGT are recognised: transformation10, transduction11 and conjugation12. 

In transformation, an organism takes up DNA from its environment directly. Conjugation is the 

process by which DNA is physically transferred through a cell-to-cell junction, carried on a plasmid. 

In transduction, DNA is acquired through infection by a bacteriophage. Conjugation frequently 

mediates gene transfer in proteobacteria, and is notable in the spread of determinants for antibiotic 

resistance.  

Under strong selection from antibiotics such as methicillin13, b-lactams or fluoroquinolones14, the 

antibiotic-resistance phenotype can spread rapidly within a population of bacteria, sometimes 

crossing a genus or species boundary. Although LGT is an important process in the spread of drug-

resistance genes, in laboratory studies almost any type of gene can be affected by LGT15. Particularly 

with the development of next-generation sequencing (NGS) technologies in last decade, it has become 

ever-more apparent that LGT is responsible for functional innovations far beyond antibiotic 

resistance16-18. Therefore, to understand the history and processes of microbial evolution it is essential 

to identify LGT events based on large NGS datasets. 

It is widely considered that a phylogenetic approach, in which the topology of a gene-family (or 

protein-family) tree is compared with that of a reference (species or genome) tree, is the gold-standard 

approach to discovering instances of LGT. Thus by default, genes are often treated as the unit of LGT, 

and the term xenologs has been introduced for genes whose distribution has come about by LGT19,20. 

However, the segment of DNA taken up into a host cell, and later recombined or inserted into its 

genome, does not have to coincide with a whole gene or any particular type of region within a gene, 

for example a region that encodes a structural domain of a protein21. DNA regions ranging from seven 

nucleotides in length22 up to an entire chromosome greater than 3 Mb23 have been identified as being 

of lateral origin. More generally, portions of genes, multi-gene clusters, pathogenicity islands and 

transposable elements can be involved in LGT events24. Once a DNA segment has been successfully 

transferred and integrated into the recipient genome25, the integrated segment can be overwritten by 

subsequent LGT events, making the genome a mosaic. LGT may have happened at any point in the 

past, and over time the resulting lateral region will evolve to become indistinguishable from the non-

lateral parts, a process known as amelioration26. These two phenomena, overwriting and amelioration, 

make it difficult to infer precisely the locations and origins of lateral events. 
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1.2 Methods for detecting LGT 

Detection necessarily forms the first step toward studying LGT or GECs. The recognised mechanisms 

of LGT (transformation, transduction, conjugation) introduce exogenous DNA segments of different 

lengths. A subset of this DNA may avoid the host defences and become stabilised in the new host 

organism by maintenance on a plasmid or other extrachromosomal element, or by incorporation into 

the host genome. For consistency with most of the literature, in this thesis I consider only regions of 

lateral origin that have been incorporated into the host genome and have subsequently become 

frequent in a population. If the newly introgressed DNA is very similar to the sequence it replaces, 

as for example would typically happen if the source and target organisms are close relatives, it may 

be difficult or impossible to identify that region as lateral. Similarly, as introduced above, overwriting 

and amelioration also complicate discovery. Various approaches have been used to detect regions of 

lateral origin; the most-general and most-commonly encountered methods are based on sequence 

composition or on phylogenetic inference.  

Sequence composition methods build on the observation that some properties tend to vary only within 

a limited range within a particular genome. A region of that genome atypical for that property might 

be suspected to be of exogenous origin. For instance, a stretch of DNA with 60% G+C inside an 

otherwise 40% G+C genome might be suspected to have arisen by LGT from an exogenous, 60% 

G+C genome27. The same applies to other features such as codon usage26, k-mer frequency 

distributions, profiles corresponding to hidden Markov models, protein domains and so on. 

The phylogenetic method is usually applied via a series of steps. Many variants have been introduced, 

but the key steps are as follows: the genes or proteins in a dataset are sorted into putatively 

orthologous families; for each family, the sequences are multiply aligned, a tree is inferred and its 

topology is compared with that of a reference (species or genome) tree, for example a ribosomal RNA 

sequence tree or a supertree. Incongruent structures (e.g. bipartitions16,28) are discovered, and the 

extent of disagreement is assessed, e.g. as a normalised count of subtree pruning and regrafting 

operations needed to reconcile the family and species trees29. LGT events lie in these incongruences30.  

Although these approaches have been applied widely to infer LGT, their limitations are also obvious: 

they are not scalable to very large datasets, or may be scalable only under simplifying assumptions 

and heuristics; they usually do not give the direction of transfer; and they cannot detect LGT between 

closely related genomes (neighbouring leaves on a tree). To address these problems, in this thesis I 

introduce and modify TF-IDF to infer LGT. 
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1.3 Term frequency-inverse document frequency (TF-IDF) 

The term frequency (TF) concept was first introduced in the late 1950s31,32 to find key words of a 

document or categorise the texts automatically. The content of a document can be subdivided into 

terms (words), each of which conveys part of the information in the document. The TF statistic 

quantifies the importance of each word in that article. There are three main ways to calculate this 

statistic (Table 1.1): 

Table 1.1 Three formats of TF calculation 

Name Meaning 

Binary weight (𝑏#) If the term appears in a document this is denoted 1, 

otherwise 0.  

Raw term frequency (𝑇𝐹#) The number of times a term appears in a document 

Augmented normalised 

term frequency ( 0.5 +

0.5 *+,
-./	(*+,)

) 

𝑇𝐹#  is normalised by maximum 𝑇𝐹#  to avoid the 

effects of very long documents; the value lies between 

0.5 to 1.0.  

 

Although TF is useful in showing that some terms are more representative (occur at higher 

frequencies) than others, it cannot retrieve more information about terms in a whole corpus. For 

example, two terms might occur at the same frequency in one document, but one of these terms also 

appears frequently in other documents in that corpus, whereas the other appears only rarely in the 

other documents. In such a case, the two terms carry different quantities of information about that 

specific document. For this reason, inverse document frequency (IDF) was introduced to calculate 

more accurately the importance of a term to a document33. The typical calculation of IDF is 𝑖𝑑𝑓# =

log	(𝑁/𝐷#) , where 𝑁  is the number of documents within a corpus, and 𝐷#  is the number of 

documents containing term 𝑤. So the full TF-IDF statistic is calculated by multiplying the two 34: 

𝑡𝑓×𝑖𝑑𝑓 = 𝑡𝑓#× log
𝑁
𝐷#

 

where 𝑡𝑓# = 𝑇𝐹#×𝐷# is the number of times of a term appears in the corpus. 

As one of the most famous ideas in information retrieval, TF-IDF has been successfully applied to 

extract relevant documents associated with a query, sort documents into categories, make decisions, 

mine emotions and in many other applications31,32,35-39. The form of TF-IDF to measure term weights 
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accurately has been proven using information theory40. If a word contains more information for a 

specific query in a document, the TF-IDF value will be larger; and if a word appears in fewer 

documents, the TF-IDF value will again be larger. 

Although TF-IDF has enjoyed considerable success in text mining, it cannot be applied to LGT 

detection directly. In its classical application, TF-IDF counts occurrences of words within a document 

and within a corpus. To improve accuracy and recall, such statistics may instead be calculated within 

specific categories, e.g. articles about biomedicine or published in Nature. No identical concepts exist 

naturally in molecular sequences, so modifications are necessary. In my thesis and published articles, 

we replaced classical words with k-mers (also referred to as n-grams41,42), which are (usually short) 

substrings of fixed size in a sequence. For example, sequence S = ACGTTA can be decomposed into 

three 4-mers, ACGT, CGTT and GTTA. A single sequence (gene, protein or genome) is treated as an 

article, and the corpus (in computational linguistics, a set of articles) is replaced by a set of such 

sequences, for example a dataset of microbial genomes. The analogue of a category of documents is 

a group of sequences, which in Chapter 3 was defined by criteria relevant to the problem e.g. taxon 

or multi-locus sequence type. These correspondences between TF-IDF and my application to LGT 

can be summarised as follows (Table 1.2): 

 

Table 1.2 Correspondence between classical TF-IDF, and TF-IDF for LGT detection. 

Classical TF-IDF TF-IDF on LGT detection 

Word in an article Fixed size short reads (k-mers) in a sequence 

Article Sequence (e.g. a genome) 

Corpus (a set of articles) Dataset (e.g. a number of genomes) 

Category (articles with similar topics) Phyletic group (a group of sequences with a 

common relevant property, e.g. distinct 

common ancestor) 

 

In this application, I calculate TF and IDF differently than in classical TF-IDF. My approach is 

designed to find LGT that has not yet spread (vertically or laterally) to all members of the recipient 

group. For example, I might seek to find DNA regions that have introgressed laterally into one or a 

few genomes of Escherichia coli but not into enteric bacteria more generally. If this is the case, k-

mers characteristic of the lateral segments should be relatively infrequent in genomes of enteric 
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bacteria, but common among genomes of the donor group. Thus I calculate and use the TF and IDF 

statistics separately in two stages, not multiplicatively as in the original TF-IDF application case. 

For the IDF component, the classical approach finds how many documents within a corpus contain a 

specific word. If that word appears in few documents, it is weighted more highly in the document in 

which it occurs (and in later extensions to classical IDF, in all documents where it occurs). For LGT 

inference, however, the goal of the IDF step is to determine whether a sequence contains segments 

from groups other than it own. Thus I count the occurrences of all k-mers shared between a sequence 

(the target sequence) and each external group (in the row of the R matrix). If this number is 

significantly greater than the average of all entries in the R matrix, there may have been LGT events 

between the target sequence and that external group, and the sequence is taken forward for further 

analysis in the TF component. 

In classical TF, if a word occurs at high frequency in a document, it is potentially highly representative 

of that document. Classically, the TF value of this word is multiplied by its IDF value (above), 

yielding the weight of that word in a document. For LGT analysis, we carry out the corresponding 

operation within segments of a sequence. If k-mers within a segment (of a sequence) are less frequent 

than the average frequency of all unique k-mers in that group (the group containing the target 

sequence), the segment is inferred as lateral. I present full details of the TF-IDF approach for LGT 

detection in Chapter 2, including pseudocode (in the corresponding Supplementary Material). 

1.4 LGT networks 

Following Darwin, the evolutionary history of biological entities (originally species, but more 

recently families of genes or proteins) can be summarised as a phylogenetic tree. However, 

widespread LGT events in microbes complicate the tree by adding lateral branches (Figure 1.1). For 

this reason, phylogenetic networks have been introduced as an alternative to trees.  
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Figure 1.1 A phylogenetic tree, reticulated by lateral branches to form a network. From W. Ford 

Doolittle (1999). 

Since the mid-1700s, networks have been used to describe real or imagined patterns among biological 

organisms43. In the 1990s, networks started to be applied to depict the molecular recombination 

history of sequences44 and this become mature in the following decades45-48. In a phylogenetic 

network, nodes represent DNA carriers (usually organism genomes, but sometimes viruses or 

plasmids) and edges connect pairs of nodes between which transfer has been inferred. Where there is 

only vertical transmission, this network is a standard phylogenetic tree. Alternatively, we might 

consider only the subset of nodes and edges involved in LGT, and these would form an LGT network.  

An early evolutionary network, depicting the combined lateral and vertical gene evolutionary history 

of bacteria and archaea, was constructed in 2005 by analysis of 165 microbial genomes49. This 

network displays small-world properties, implying that genetic material can be transferred amongst 

all of these organisms, across taxonomic boundaries, via a small number of LGT events: the original 

donor and final recipient might have no phylogenetic, ecological or geographical relationship but 

communicate through highly connected nodes (hubs) in the network. In the same year Beiko et al.16 

used a network representation to identify “highways” of sharing among 144 fully sequenced genomes 

of bacteria and archaea. Dagan et al.50 reported a network describing the combined vertical and lateral 

evolutionary history of 22 archaebacterial and 159 eubacterial genomes, and they analysed this 
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network to reveal details of community structure. Fondi and Fani reconstructed a network on 5,030 

proteins associated with antibiotic resistance from 122,482 plasmid-encoded amino acid sequences51. 

A small number of these nodes account for most of the connections (i.e. are hubs), indicating that a 

few microorganisms (and/or their plasmids) interact with a large spectrum of microbes. These hubs 

thus play a pivotal role in the sharing of antibiotic resistance throughout the bacterial world, and the 

authors propose that focusing on them could prevent the dissemination of antibiotic resistance in 

certain habitats. 

The largest genetic network published so far is that of Halary et al.52, linking 45,845 DNA sequences 

from environmental metagenome projects, and 532,682 protein sequences encoded in microbial, 

phage and plasmid genomes. The nodes in the network are individual sequences, and the edges derive 

from reciprocal best BLAST hits. By adjusting the threshold requirement (BLAST identity), these 

authors argue that plasmids are key vectors of genetic exchange among bacterial chromosomes. 

Kloesges et al.53 reconstructed a network among 329 sequenced proteobacteria, reporting that in 

proteobacteria most LGT takes place between closely related species (those with high sequence 

similarities) and that this transfer is frequently mediated by conjugation, i.e. by plasmids. In 2011, a 

directed network of recent LGT events was reconstructed among 657 microbes54; age and 

directionality of LGT were inferred from G+C content. 

1.5 Genetic exchange communities (GECs) 

The term exchange community was first introduced in connection with LGT in 200317 and described 

as “a collection of organisms that can share genes by (LGT), but need not be in physical proximity”. 

In 2011, Skippington and Ragan recommended a somewhat different definition55: “a GEC is a set of 

entities, each of which has over time both donated genetic material to, and received genetic material 

from, every other entity in that GEC, via a path of lateral transfer”. Their intention was twofold: to 

disentangle the definition from issues such as spatial, temporal or phylogenetic proximity, and to 

enable a graph-based framework for “thinking precisely and operationally about GECs”. They also 

argued that GECs do not exist a priori in nature, but instead are “constructed dynamically by 

organisms through diverse physical, chemical and biological interactions with their environment and 

with each other”55. In an LGT graph, potential GEC structures include cliques (sets of nodes, each of 

which reaches all others directly), para-cliques (near-cliques, falling short of being a clique by lacking 

a defined, usually small, number of edges, transitively closed sets (sets of nodes, each of which can 

reach all the others) and paths (series of nodes connected by edges). Abstracting ideas about GECs 

in this way can help us think rigorously and ask well-defined questions about the flow of genetic 

determinants across the biosphere55. The first GEC reconstructed from empirical data56 showed that 
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all five phyletic groups recognised within the E. coli – Shigella clade are members of a single common 

GEC. 

In this thesis, I rigorously define dense structures (cliques) in LGT graphs as GECs. Delineating 

GECs can help us understand what kinds of microbes exchange genetic material frequently, and what 

kinds of biological processes are frequently involved in LGT events. Considering the GECs that exist, 

and those that apparently do not, may reveal opportunities for and barriers to LGT. This information 

will help us understand how microbes evolve, and how they contribute to the biosphere.  

1.6 Objectives 

Genetic exchange communities have been defined as sets of entities which exchange (donate and 

receive) genetic material over time via LGT. In order to find GECs among the very large datasets 

being built up for infectious disease microbes, or GECs occurring at broad scale across the microbial 

biosphere, we need a method that can be applied to very large multi-genome datasets quickly, 

accurately and in a highly scalable manner. TF-IDF has proven to be an efficient, effective and highly 

scalable tool to discover patterns in very large datasets of documents, such as traditional texts, web 

pages or output from social media. This study aimed to modify TF-IDF so it can detect LGT within 

large microbial genome datasets; construct LGT networks; find GECs, and identify the biological 

processes associated with these GECs.  

1.7 Thesis outline 

The following chapters introduce how I implemented and tested a method based on TF-IDF for LGT 

detection, and how I identified GECs by reconstructing LGT networks. I first modified the classical 

TF-IDF idea to make it suitable for LGT detection. Specifically, the TF part was modified from 

finding high-frequency terms in one article, to finding significantly low-frequency k-mers in a 

genome; and the IDF part was modified from finding low-frequency terms in a corpus, to finding 

significantly high-frequency k-mers in other phyletic groups. The new method was tested rigorously 

and compared with ALFY57, another alignment-free method for LGT detection, using simulated 

datasets and a small empirical dataset. I varied sequence lengths, evolutionary distances between 

phyletic groups and between sequences within-group, and the deletion rate of each sequence to test 

the performance of the method under a range of biologically relevant situations. I was able to show 

that TF-IDF works well when the boundaries of groups are clear, and sequences within a group are 

similar to each other. TF-IDF exhibits slightly lower recall but much greater precision than ALFY. I 

also applied TF-IDF on a dataset of seven Staphylococcus aureus genomes; previous studies have 

demonstrated LGT to exist between two of these strains, TW20 and MRSA25257,58. My TF-IDF 

method finds all the LGT events inferred by ALFY, and further identifies some other genomic regions 
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to be of interest; these regions encode mobile elements and antibiotic-resistance genes. The TF-IDF 

method runs much faster than ALFY on large datasets. The details are presented in Chapter 2. 

In Chapter 3, I applied my TF-IDF method to three empirical genome datasets (27 Escherichia coli 

and Shigella; 110 enteric bacteria; and 143 bacteria and archaea) to investigate its performance in a 

variety of real-life situations, and to identify instances of LGT. I studied how the method depends on 

word length and gap size, and found optimal (or nearly optimal) parameters for a range of biologically 

realistic scenarios. These results provide guidance for selecting word length and gap size in real 

applications.  

I observed an abundance of lateral transfers among groups within the E. coli – Shigella dataset. Some 

of these indicated more-ancient transfers, which are otherwise difficult to detect. Using the reference 

tree structure, I was able to distinguish (in part) between multiple recent transfers from different 

source groups, versus a single transfer from their common ancestor. In the enteric bacteria dataset, 

most of the LGT signal arises from exchanges between E. coli and Shigella, I observed a lower 

frequency of exchange involving the remaining groups (with the exception of Yersinia). Few LGT 

events were inferred among phyla in the prokaryote dataset, as expected. I carried out enrichment 

tests on Gene Ontology (GO) terms to see what biological processes are over- or under-represented 

in inferred LGT events; this analysis showed that a wide range of processes, not only those involved 

in antibiotic resistance or recombination, are over-represented. I reconstructed several LGT networks 

and showed that they manifest complex subgraph structures (GECs). 

In Chapter 4, I further studied the LGT networks inferred for the three datasets used in Chapter 3. 

Using different criteria, I identified GECs within these networks and identified lateral genes that 

underlie these GECs. Core GEC structures are those that tend to be stable as k is varied, and 

encompass most of the LGT events in a dataset. Different frequencies of LGTs make up various 

densities of the network, and specific bacterial species tend to be represented among the “hubs”, while 

others are relatively silent to LGT. The enriched biological processes within GECs are accordant to 

the whole LGT network, although the actual rank of specific terms may be slightly different. This 

reveals GECs plays a key role in microbial evolutionary processes, which are affected by LGT.  

Finally, in Chapter 5 I briefly summarise the main research results, and identify important directions 

and challenges that remain for future work. These include optimisation of the data structure 

underlying TF-IDF to reduce memory usage, and deployment on a distributed computation platform 

(e.g. Hadoop) to improve its capability and efficiency for processing larger datasets. More microbial 

genomes will be sequenced and should be studied for patterns of LGT, which will increase our 

fundamental understanding of LGT and our knowledge of their importance in specific environments. 

Currently, nodes in the inferred LGT networks and GECs represent groups of sequences (or genomes), 
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but for many applications we instead want to understand lateral relationships involving individual 

sequences (or genomes). Bringing the TF-IDF approach to bear on individual sequences may require 

changes or refinement at the level of algorithms, data management, parameter-value optimisation, 

graphical representation, and the definition of GECs. 

This project is the first to apply TF-IDF to molecular or genomic datasets to identify LGT, indeed to 

our knowledge the first to apply TF-IDF to any biological question. Directional and multi-source 

transfers were systematically studied for the first time. The TF-IDF method is fast, efficient, and 

sufficiently scalable to detect evidence of LGT in large multi-genome datasets, which provides us the 

opportunity to construct LGT networks of microbes on a large scale. These LGT networks are not 

uniform across genomes, and potential GECs can be recognised that reveal what kinds of bacteria 

frequently exchange genetic information, and the genes and biological processes that have been 

affected by LGT. 
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Chapter 2 A novel alignment-free method for detection of lateral genetic 

transfer based on TF-IDF 

 
Lateral genetic transfer plays a key role in the evolution of microbes. Inferring instances of LGT from 

genome-sequence data is one of the most challenging issues in this research area. The traditional 

methods for LGT detection usually search for regions of sequence with atypical features (e.g. G+C 

content or codon usage), or incongruence between gene trees and a reference tree. With the 

development of next-generation sequencing technologies, the number of sequences available for 

research has grown dramatically in the last decade. However, the traditional methods are not scalable 

to data of this size. New, efficient and effective methods for LGT inference are needed for 

phylogenetic and phylogenomic research.  

 

To tackle this issue, I introduced term frequency – inverse document frequency (TF-IDF), one of the 

most successful methods in text mining, to develop an algorithm for LGT detection. I modified the 

original TF-IDF to make it applicable to molecular sequences. DNA sequences are decomposed into 

short reads of fixed size (k-mers). A sequence region composed of k-mers that appear infrequently in 

their own group of sequences, but frequently in an external group of sequences, are inferred as lateral, 

with the direction of transfer from the latter (donor) group into the former (recipient) sequence. The 

method has been implemented as software and is downloadable from Github. The method has been 

tested using both simulated datasets, and (in this chapter) one empirical dataset. In the following 

chapters it will be applied to more empirical datasets. The results show that TF-IDF can be an 

effective and efficient method for LGT detection on large sequence datasets. 

 

Results presented as a publication 

The work reported in this chapter has been published as a research article in the Nature Publishing 

Group journal Scientific Reports, volume 6, article 30308 (publication date 25 July 2016). 

Supplementary material for this publication follows the main text. Supporting datasets are assigned 

DOI numbers http://dx.doi.org/10.14264/uql.2016.483-487 and are available for download from 

UQ eSpace. 
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Abstract 

Lateral genetic transfer (LGT) plays an important role in the evolution of microbes. Existing 

computational methods for detecting genomic regions of putative lateral origin scale poorly to large 

data. Here, we propose a novel method based on TF-IDF (Term Frequency-Inverse Document 

Frequency) statistics to detect not only regions of lateral origin, but also their origin and direction of 

transfer, in sets of hierarchically structured nucleotide or protein sequences. This approach is based 

on the frequency distributions of k-mers in the sequences. If a set of contiguous k-mers appears 

sufficiently more frequently in another phyletic group than in its own, we infer that they have been 

transferred from the first group to the second.  

We performed rigorous tests of TF-IDF using simulated and empirical datasets. With the simulated 

data, we tested our method under different parameter settings for sequence length, substitution rate 

between and within groups and post-LGT, deletion rate, length of transferred region and k size, and 

found that we can detect LGT events with high precision and recall. Our method performs better than 

an established method, ALFY, which has high recall but low precision. Our method is efficient, with 

runtime increasing approximately linearly with sequence length. 

2.1 Introduction 

Many microbes can acquire DNA from their environment and incorporate it into their genome via 

processes of lateral genetic transfer (LGT; also known as horizontal gene transfer, HGT)1. 

Circumstantial evidence for LGT was first reported more than a century ago2, and the phenomenon 

gained widespread attention in the 1950s with the emergence and spread of multi-drug resistance in 

bacteria3. With the uptake of genome sequencing over the last two decades, it has become increasingly 

clear that LGT plays a central role in the evolution of microbial genomes1,4-6. LGT not only 

contributes to the spread of antibiotic resistance, but is also responsible for a range of metabolic 

innovations involving carbon and nitrogen metabolism, ion transport and other core processes7, which 

in turn can define microbial physiology and thus ecosystem function. 

The recognised mechanisms of LGT (transformation, transduction and conjunction) can introduce 

exogenous regions of very different lengths, from short fragments to large chromosomal blocks8. 

Recombination need not be constrained by gene boundaries9, and there is little evidence to suggest 

that entire genes, or structurally based regions within genes, are privileged units of transfer10,11. In 

any event, genomic regions of lateral origin can be overwritten, wholly or in part, by subsequent LGT 

events. Thus microbial genomes can become mosaics, with regions of different lengths reflecting the 

history of LGT events, transfer mechanisms and donors in each lineage. Further, over time, sequence 
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regions of lateral origin will evolve to become indistinguishable from the non-lateral background, a 

process known as amelioration12. 

This complex biology presents challenges for the detection and delineation of genomic regions of 

lateral origin. As typically applied, approaches based on the topological comparison of inferred 

phylogenetic trees implicitly take genes (gene families) as the unit of analysis. Extensions that test 

for recombination breakpoints are computationally intensive, yet fail to identify the specific 

lineage(s) affected by transfer and/or subsequent overwriting. Directionality of transfer can also be 

difficult or impossible to determine by any phylogenetic approach. More broadly, computational 

methods are differentially sensitive to the extent of amelioration13,14. Considerable scope thus remains 

for the development of new methods that are sensitive, directional, scalable, informative on individual 

genomes or lineages, and do not require the units of analysis to be delineated a priori. 

Alignment-free approaches to detect LGT at genome level have been developed in recent years. 

ALFY (ALignment-Free local homologY)15,16 uses Kr
17 based on shustrings (SHortest Unique 

subSTRINGS) to calculate pairwise evolutionary distances between genomes, which can then serve 

as input into a neighbor-joining algorithm18 to compute a phylogenetic tree. Then ALFY compares 

the generated tree with a reference, inferring topological incongruence as instances of LGT. 

Another alignment-free method for LGT detection is based on the so-called purity measure19. This is 

a concept from text mining, and is used to detect unusual regions of a string without recourse to 

domain knowledge. If most substrings of string x, which is itself a substring of string T, appear with 

the same frequency as x, then the purity value of x is high, i.e. subpatterns in x occur infrequently in 

T outside whole occurrences of x, as would be expected if x had arisen by LGT. Both of these 

alignment-free methods use suffix trees20 for scalability on large sequence datasets. However, they 

consider only one target sequence (although ALFY incorporates a pairwise comparison between 

query and multiple subject sequences) and do not take into account any natural group structure of the 

dataset, whether taxonomic (a hierarchy of species, genera etc.), ecological or otherwise. 

In this paper, we propose a novel alignment-free method for LGT detection based on concepts from 

TF-IDF (Term Frequency-Inverse Document Frequency). TF-IDF is a numerical statistic from 

document analysis that reflects the importance of a word (term) to a document within a collection or 

corpus, by comparing the frequency of a word in a document with its occurrence in other documents. 

Term frequency (TF) is used to indicate the topic of a document21. The TF of term t in document D 

is simply the raw frequency of t in D, denoted by tf(t,D). The inverse document frequency (IDF)22 is 

used to distinguish a word from the prevalent vocabulary in the corpus. If t appears in Dt articles, then 

its IDF is idf(t)=D*/Dt, where D* is the number of all documents in the corpus. Thus a high IDF 
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indicates that the term appears infrequently, and as such carries more importance for a specific article. 

Salton and Buckley combined the TF and IDF statistics into a single statistic that is widely used as a 

weighting factor in text mining and information retrieval22-24. 

Here we apply concepts from TF-IDF to develop an algorithm to detect LGT events in microbial 

genomes. Using simulated datasets, we test this algorithm and compare its performance with ALFY 

on sets of sequences of different length, from the size of a single gene (1000 nucleotides) up to 300-

fold longer, and evaluate its performance over k-mer length and a biologically relevant range of values 

for parameters including substitution rate between groups, within groups and post-LGT. We find that 

with appropriate parameter values, the algorithm performs with good precision and recall; 

furthermore, runtime increases approximately linearly with sequence length, and in most cases TF-

IDF performs much better than ALFY15. We also apply this method to an empirical dataset composed 

of seven Staphylococcus aureus genomes, and recover putative regions of lateral origin that 

correspond to genes involved in transport, antibiotic resistance, pathogenicity and virulence. Our 

results are comparable with those found with ALFY, and include two genomic regions independently 

confirmed by Holden et al.25. 

2.2 Results  

2.2.1 Performance with different parameter values 

As described in Methods, we varied branch length at three stages of the simulation process (variation 

between groups, variation within groups, and variation post-LGT) and examined the effect on 

precision and recall. The results are shown in Figures 2.1-2.4 for simulations under the HYK8526 

model of sequence change; the corresponding plots for F8427 are in the Supplementary file. Since TF-

IDF does not detect LGT between sequences within a group, for the comparison we ignore such 

regions that are detected by ALFY; and if an atypical region is equally predicted in several sequences 

of potential donor groups, we treat this result as a single prediction for the calculation of precision 

and recall. 

Figure 2.1 shows that when variation between groups is less than 0.05, the average distance 

accumulated between groups is less than 15%; at this degree of between-group similarity, the 

precision of our TF-IDF method is low (less than 50%) because the high similarity makes lateral 

regions harder to distinguish in the recipient group. Precision increases to a high level when variation 

between groups is above 0.1. Recall is high throughout (approximately 90%) and is less affected by 

variation; however, at the shortest sequence length examined here (1000), some simulated LGT 

segments are less than 50 nt in length, too short to contain enough information to make them distinct. 

As a consequence, recall is significantly lower for this sequence length only. 
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Figure 2.1. Performance of TF-IDF with variation between groups. Precision (A) increases with 

variation between groups. Recall (B) is not substantially affected by variation between groups. 

Variation within groups is 0.01, variation post-LGT is zero, and deletion is zero. Error bars are 2× 

standard error.  

The precision of ALFY is low, around 0.35, and stable across all branch lengths, but its recall is high. 

There are two reasons for this. Firstly, ALFY cannot infer the direction of transfer, and may correctly 

predict one transfer from donor to recipient, but then (erroneously) predict it again from recipient to 

donor, effectively halving its precision. In the accompanying article28 we compare TF-IDF with 

another directional LGT inference approach29 applied to genome-scale empirical data. Secondly, 

ALFY predicts all most-similar regions as lateral transfers without using a threshold to determine if 

the similarity is significant or not. As such, it is apparent that ALFY is a useful tool for determining 
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areas which should be further studied for transferred segments, but as a stand-alone detector of LGT 

it is inferior to TF-IDF. For sequences of length 1000 nt, ALFY’s default sliding window size is too 

large, leading to reduced performance. 

Figure 2.2 shows the effect of variation within groups on precision and recall. Here, the precision of 

TF-IDF increases as variation increases. As above, the sequences must be sufficiently dissimilar for 

the TF statistic to support a decision of LGT. Recall is high, and stable when the sequence length is 

³ 3000 nt. Again, at sequence length 1000, some short LGT events (< 50 nt) are ignored, resulting in 

decreased recall. The precision of ALFY is stable for variation above 0.005, but again low. TF-IDF 

shows greater stability and better performance than ALFY in almost all cases, and increasingly 

outperforms it as the variation increases. As in Figure 2.1, ALFY displays better recall than TF-IDF 

at sequence lengths greater than 1000 nt, but the gap is not large. When the variation within groups 

is low and the sequence length is short (1000 nt), ALFY again fails to detect most LGT events, leading 

to extremely low recall (see Supplementary file). 
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Figure 2.2. Performance of TF-IDF with variation within groups. Precision (A) increases with 

variation within groups, while recall (B) is essentially unchanged. Variation between groups is 0.1, 

variation post-LGT is zero, and deletion is zero. Error bars are 2× standard error.   

Figure 2.3 shows the performance of TF-IDF against variation post-LGT and deletion rate for 

sequences of length 300,000 nt. Plots for other sequence lengths are similar in nature and can be 

found in the Supplementary file. As variation increases, both precision and (especially) recall 

decrease substantially, as substitutions progressively obscure the regions of lateral origin. When the 

branch length post-LGT reaches 0.05 (i.e. one nucleotide in ten is expected to have changed, as this 

is a two-level tree), almost all k-mers (for k = 40) have been changed, whether in lateral regions or 
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not. In this case, all k-mer based methods, including TF-IDF, will fail (and indeed, even alignment-

based methods will struggle). 

 

Figure 2.3. Performance of TF-IDF with variation post-LGT and deletion. Precision (A) decreases 

with variation post-LGT, but is unaffected by deletion. Recall (B) decreases greatly  with variation 

post-LGT and slightly with deletion. Variation between groups is 0.1, and variation within groups is 

0.01. Sequence length is 300,000 nt. 
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As the amount of deletion increases, precision remains stable and recall decreases slightly. Deletion 

can move an LGT segment within a sequence, or delete part (or parts) of it. Moving an LGT region 

does not change its k-mers, so this will not affect the performance of TF-IDF. Deletions within a 

lateral region affect only the immediately adjacent k-mers, with little effect on precision unless the 

region becomes so fragmented that k-mer counts are reduced to the point where they are ignored by 

TF-IDF, degrading the recall. 

Precision and recall increase slightly with sequence length, but length does not appear to interact 

substantially with the substitution-rate parameters. Since there is no interaction between variation 

post-LGT and deletion (Figure 2.3), we can fix one of these parameters and vary the other. Figure 2.4 

shows that for TF-IDF and ALFY, both precision and recall decrease as variation post-LGT increases. 

The precision of ALFY is worse than that of TF-IDF, but its recall is higher and more stable. When 

deletion is varied (Figure 2.5), precision is stable except at sequence length 1000, while recall 

decreases slightly for TF-IDF. As before, TF-IDF is more precise than ALFY, whereas ALFY 

exhibits higher recall (except at sequence length 1000). 
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Figure 2.4. Performance of ALFY with variation post-LGT. Precision (A) and recall (B) decrease 

with variation post-LGT. Variation between groups is 0.1, variation within groups is 0.01, and 

deletion is zero. Error bars are 2× standard error.   
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Figure 2.5. Performance of ALFY with deletion. Precision (A) is stable with deletion. Recall (B) 

decreases with deletion. Variation between groups is 0.1, variation within groups is 0.01, and 

variation post-LGT is 0.01. Error bars are 2× standard error.   

2.2.2 k-mer size 

k-mer size also affects the performance of TF-IDF. As shown in Figure 2.6, precision increases with 

k, but recall decreases. This effect is roughly consistent for every sequence length we examined. The 

two plots indicate that in this simulation, precision and recall are best balanced at k = 40. Indeed, in 

our experience (as shown and unpublished) k = 40 is a useful default setting, in the absence of 

conditions that argue otherwise. However, if LGT is sufficiently obscured by substitution such that 

nearly all k-mers are unique, TF-IDF will not be able to find sets of k-mers that appear frequently in 
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distant groups, and no LGT will be predicted. In such cases, shorter k may give better performance. 

Note that larger k imposes a greater memory cost, and more computational time is spent indexing 

unique k-mers.  

 

Figure 2.6. Performance of TF-IDF with k-mer size. Precision (A) increases with k, while recall (B) 

decreases with k. Error bars are 2× standard error. 

2.2.3 Computation time 

Figure 2.7 compares computation time (walltime) for various sequence lengths L for ALFY and TF-

IDF. All experiments were done on a virtual machine with a single AMD Opteron 2.3-GHz processor 

and 256 GB memory. As noted below, TF-IDF is expected to scale as O(nL log U), where U is the 

number of unique k-mers in the dataset. U is highly dependent on variation at all levels of the 
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simulation, which also leads to variation of time consumption in each experiment; if the final 

sequences are sufficiently dissimilar, we expect U to increase as the number of possible k-mers in the 

dataset, i.e. as nL. Thus, we expect the time to have an O(L log L) dependence on L, and this is verified 

in Figure 2.7; the slope of the fitted line is 1.07. For ALFY, the time consumption is O(n2L) for 

detecting LGTs between all sequences in a dataset. In a dataset with tens of sequences or more, ALFY 

will take much longer than TF-IDF, and this is shown in Figure 2.7. 

 

Figure 2.7. Log-log plot of sequence length against walltime. The base of log is 𝑒.  

Figure 2.8 shows how walltime depends on U. As above, we expect time divided by L to have a linear 

relationship with log U, and this is clearly shown. 

 

Figure 2.8. Log U against time divided by sequence length. The slope of the regression line is 

0.0002, and the grey area is the 95% confidence interval. The base of log is 𝑒. 
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2.2.4 Analysis of an empirical dataset 

We also tested our algorithm on an empirical dataset that had previously been examined by the 

developers of ALFY15. We used a subset of their dataset, seven genomes of Staphylococcus aureus, 

because this dataset contains strong group information (six genomes from Clonal Complex 8 (CC8) 

and one multi-drug resistant strain from CC30, S. aureus MRSA252) and showed LGT in their 

analysis. We investigate potential LGT into S. aureus TW20, a member of CC8, from MRSA252. 

Setting k = 40, we identify 1421 regions of TW20 as of lateral origin. Many of these are short and, in 

this simple example (where the donor group is of size 1, reducing the efficacy of the IDF component) 

potentially due to noise; but 173 are of length ³ 2000, 52 of ³ 4000 and 20 of ³ 6000 nt (Table 2.1). 

It is unclear how to optimise selection of the length threshold, but setting it at ³ 2000 nt we infer as 

lateral 35.6% of the genome, which incorporates 66.7% (4/6) of the TW20 penicillin-binding genes, 

and ³ 50% (i.e. > 1.5-fold over-representation) of the annotated genes encoding efflux proteins (2/4), 

metalloproteinases and -peptidases (3/3), permeases (31/45) and uptake proteins (2/4), types of 

functions known to be mobilised by LGT11,30. For details see Supplementary Table S1. By contrast, 

hypothetical proteins, which might be expected to show no bias for or against lateral origin, are not 

enriched at any of the length thresholds mentioned above. Ribosomal proteins, which are not expected 

to be lateral (Jain et al., 1999), are rarely represented in our lateral regions (8/60). Phage proteins are 

not represented in our detected lateral regions; recalling that our approach can discover LGT only 

within the dataset, these results might accurately reflect the history of genetic relationships among 

these seven genomes. Scope remains for further analysis with other empirical data, and with different 

settings for k and gap size. 

Table 2.1. Summary of regions in the Staphylococcus aureus TW20 genome (GenBank 
NC_017331.1) inferred as lateral by TF-IDF. Numbers in the top row refer to the length ranges of 
segments selected for analysis. 
 
   2000-3999 4000-5999 6000+      2000+ 
   No.   % No.     % No.     %     No.     %     

LGT regions    121   8.5    32    2.3      20   1.4   173 12.2 

Mean size (nt)   2797   ---- 4782    ---- 29600   ---- 6263   ---- 

Median size (nt)  2786   ---- 4727    ---- 10496   ---- 3112   ---- 

Nucleotides           338413 11.1 153009    5.0    592007 19.5  1083429 35.6 

Proteins1     405 14.6   169    6.1     515 18.5 1071 39.2 

Hypothetical proteins   116 14.3     38    4.7     157 19.3   311 38.3 

 
1 Protein-coding genes fully or partially contained within a region inferred as lateral by TF-IDF. 



 
 

30 

Both our TF-IDF method and ALFY identify most of the genomic region from 2.80-0.42 Mb (TF-

IDF) or 2.8-0.5 Mb (ALFY) as lateral (Figure 2.9); this region includes two transposons, SCC 

elements and genes encoding methicillin and penicillin resistance. Robinson and Enright31 

hypothesised that the methicillin resistance, at least, had been transferred from CC30 into a CC8 

background as part of a large chromosomal replacement. The region from 1.75-1.80 Mb includes the 

transposon Tn55425, which encodes resistance to erythromycin and spectinomycin. A region from 

2.11-2.15 Mb incorporating a number of annotated phage genes was likewise identified. Regions 

identified as lateral by TF-IDF but not by ALFY include 1.06-1.17 Mb (transport protein genes) and 

2.64-2.65 Mb (a transporter and a member of the TetR family of regulatory proteins, which control 

the expression of genes involved in multidrug resistance and pathogenicity). 

 

Figure 2.9. Comparison of TF-IDF and ALFY with an empirical dataset. Both A and B represent 

the genome of Staphylococcus aureus TW20. A shows the result of ALFY analysis15; regions 

inferred to have been transferred from MRSA252 are represented in black, while regions 

homologous between TW20 and USA300.TCH15156 are shown in grey. B shows the result of TF-

IDF analysis. TF-IDF can infer LGT only from outside the target group, so no region is in grey. 

Both plots were generated from analysis of the seven S. aureus genome dataset. 

2.3 Discussion and Conclusion 

We have developed a fast alignment-free method to infer LGT events. Our method is based on TF-

IDF, one of the most important methods used in information retrieval. TF-IDF has been widely 

applied in search engines, document classification and related applications including relevance 

decision-making. Here we apply TF-IDF to sequence analysis for the first time, treating a sequence 

or genome as an article and each k-mer as a word. Using simulated datasets, we show that TF-IDF 

can effectively find LGT events with good precision and recall, outperforming ALFY in most 

biologically realistic situations. We also analyse an empirical dataset and show that TF-IDF finds 

essentially all regions identified by ALFY as of lateral origin. TF-IDF further detects other regions 

that, based on annotated gene content, may also have arisen via LGT. Our method is alignment-free 

and scales very well in both length and number of sequences, i.e. to many entire genomes. It is worth 

noting that in each simulated dataset, all sequences share the same length and group size. For the 

empirical dataset, the group sizes and lengths of the seven S. aureus are of the same magnitude. For 

this reason, we did not normalise the count of k-mers in the IDF step. However, in other empirical 
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datasets the sequence length and group size may vary greatly, and normalisation might be 

considered28. 

 

Our method is purely data-driven, its performance relying strongly on sequence and group 

information in the dataset. In our simulations, when sequences are relatively similar within-group 

(variation 0.005-0.02) and relatively dissimilar between-group (variation > 0.1), group boundaries 

are clear, and the precision and recall of our algorithm is high. When speciation is modest (< 0.05), 

within-group divergence high (< 0.1) or LGT events obscured by subsequent evolution (> 0.02), TF-

IDF loses precision in inferring LGT events.   

In the accompanying article28 we apply this method to larger empirical datasets. TF-IDF could further 

be applied to environmental data, e.g. to study the flow of genetic material in communities and across 

the biosphere. We anticipate that significant scope remains for further algorithmic and 

implementational improvements.  

2.4 Methods 

2.4.1 Notation 

Here we establish some notation. We start with a dataset of n sequences, each of length L. For 

empirical datasets (and for some approaches to simulation) the length may vary among sequences; in 

those cases we use L to denote the average length. The sequences in the dataset are divided into m 

groups corresponding to closely related genomes (e.g. belonging to the same clonal group, species or 

genus). We denote each sequence as Si,j , where i = 1,2,…,n is the number of the sequence in the 

dataset and j = 1,2,…,m is the number of the group to which the sequence belongs. The number of 

sequences in group j is denoted by hj. 

Our method proceeds by comparing substrings (words) of a fixed length k, called k-mers. We encode 

each sequence as a frequency vector of k-mers, counting only those k-mers that actually appear in the 

sequence, and denoting the number of unique k-mers appearing in the dataset by U. In general, U is 

much smaller than 4B, the total number of all possible k-mers. 

Although we illustrate our approach here using nucleotide sequences, the method is easily adapted 

for amino acids, requiring only a change of alphabet. 

2.4.2 TF-IDF on texts 

As mentioned above, TF-IDF was introduced to indicate the topic of a document, and distinguish that 

document from others in the same corpus for a specific query. The classical usage of TF-IDF is as a 
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smart retrieval system and for automatic document categorisation32-34. A variant uses prototype 

vectors to calculate relevance between documents with a nearest-neighbor learning method35. 

PrTFIDF36 is an improved version of TF-IDF founded on a probabilistic model for text categorization, 

and there are other variants for calculating TF-IDF37. In recent years, TF-IDF has also been applied 

in other areas including decision-making and sentiment analysis24,38. 

TF-IDF is widely used in text mining and information retrieval because it allows the identification of 

terms that are characteristic of (and hence important for) one text or a set of texts. It is not sufficient 

for a term to be frequent in a text (TF); it must also be rare in other texts in the corpus (IDF). 

Importantly, IDF depends only on the occurrence of terms, not on their numerical frequencies. 

Drawing on analysis of documents in three independent domains, Salton and Yang39 identified five 

situations relevant to the performance of TF-IDF: 

1. Terms that appear frequently across a corpus contribute little to performance because they do 

not discriminate between relevant and non-relevant documents;  

2. Terms that appear in a moderate number of texts and show somewhat skewed distributions 

provide good retrieval performance;  

3. Terms with sharply skewed distribution occurring in very few documents are important only 

for those documents;  

4. Rare terms are important for the few queries and documents in which they occur; and 

5. Terms of low or moderate frequency, but with a flat distribution across documents, are 

similarly useful for the documents in which they occur. 

Classically, the frequencies of terms in a corpus follow a power law (Zipf law), in which case TF-

IDF performs well. However, TF-IDF can perform adequately even when this is not the case: TF-

IDF requires only that terms relevant to the query are distributed intensively in a subset of documents 

within the corpus23,40; this might include the query terms themselves (e.g. happy), or related terms in 

the corpus (pleased, delighted).  

2.4.3 TF-IDF on sequences 

Molecular sequences have long been analogised with natural language41 or treated as texts42. 

Alternatively, both molecular sequences and texts have been subsumed within a broader class of 

objects43. The analogy is not precise: in sequences, “terms” must be recognized computationally, e.g. 

by extracting k-mers. Fast approaches exist for extracting k-mers44,45, and k-mer distribution in 

empirical sequences has been studied at some length46-48. Like words in text, short k-mers (k between 

three and eight) in DNA sequences show Zipf-like scaling49, although this is not sufficient to confirm 

DNA sequences as a natural language50. 
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Although there is dispute whether DNA is a language or not, some methods in text mining have been 

successfully applied to DNA analysis. For example, the first (to our knowledge) software to identify 

lateral transfer in biological datasets51 was repurposed from the analysis of textual contamination in 

manuscripts, which in turn was built on software for phylogenetic inference from DNA sequences52 

(PHYLIP). 

Sequences (genomes, genes, proteins) do, however, differ from texts in some properties. For example, 

k-mer frequency distributions in sequences are usually much flatter than term frequencies in texts. 

Experience from text mining indicates that this is not critical, but this remains to be explored and is 

in fact a goal of the current work. In the specific application here, genomic regions of lateral origin 

are expected to have k-mers that appear frequently in genomes of the donor taxon, but rarely in the 

host. This is analogous to conditions 2 and/or 4 above39. 

Our algorithm works by comparing the frequencies of identified k-mers in a group of sequences (our 

TF) with their frequencies in other groups (our IDF). If a k-mer in one sequence is prevalent in a 

different group but not in its own, then it may have arisen by LGT from the group in which it is 

prevalent, and the direction of the transfer should be from that (donor) group to the recipient sequence. 

We compare these TF and IDF statistics to appropriate thresholds to optimize detection performance, 

i.e. to balance precision and recall. 

Our algorithm consists of four steps: extracting all k-mers from genomes within one dataset, 

calculating inverse document frequencies, constructing potential LGT segments, and calculating term 

frequencies. For pseudocode, see the Supplementary file. 

2.4.4 Extracting k-mers 

To extract k-mers we scanned all the genomes, incrementing one nucleotide at one time. If the genome 

length is L, then L-k+1 k-mers are found. Unique k-mers were indexed in a red-black tree53 for further 

searching. 

2.4.5 Calculating IDF 

To calculate the inverse document frequency, we construct an 𝑛×𝑚 relationship matrix R, denoting 

the frequency (number of occurrences) at which k-mers in each sequence appear in each group. Each 

row in R corresponds to a sequence, and each column corresponds to a group. Suppose sequence i 

consists of k-mers wi,1, wi,2,…, wi,L-k+1. If the word w appears in group j with frequency fj(w), then the 

entries of the relationship matrix are  
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𝑅FG = 𝑓G 𝑤F,I .
JKBLM

INM

								(1) 

 

The entries in R are our IDF values. Eq. (1) is applied only on 𝑗 ≠ Θ(𝑖), where Θ(𝑖) is the group 

containing sequence 𝑖. The larger the Rij, the more likely that sequence i contains a region transferred 

laterally from group j. Note that this is in contrast to the original definition of IDF, where a higher 

IDF indicates that the word appears less frequently in other documents.  

To detect potential lateral-transfer events, we compare the IDF values against a threshold t. This 

threshold is the average value of all entries in R: 

 

𝒕 =
𝟏
𝒏𝒎 𝑹𝒊𝒋

𝒎

𝒋N𝟏

𝒏

𝒊N𝟏

.							(𝟐) 

IDF values that are above the average are used for further analysis.  

2.4.6 Constructing potential LGT segments 

We then mark potential lateral segments in each sequence. For each sequence i and group j with a 

sufficiently high IDF value, we examine each k-mer in sequence i to see if it appears in group j. Then 

we join all consecutive k-mers which do, forming potential lateral segments. Because mutations or 

other genomic events may disrupt the perfect matching, we allow gaps between blocks of k-mers of 

size up to a threshold G. Here we set G = 2k, a value at which the total number of detections is not 

greatly affected in real application28. We then assess the significance of these potential lateral 

segments using term frequency. 

2.4.7 Calculating TF 

For each potential lateral segment 𝜎  in a sequence, we calculate the frequency (number of 

occurrences) at which each of its component k-mers appears in sequences of its own group, say j. Our 

TF statistic for 𝜎 is the sum of these: 

 
𝜹𝝈 = 𝒇𝒋(𝒘)

𝒘∈𝝈

.								(𝟑) 

If 𝛿c  is higher than some threshold, then 𝜎  occurs frequently in its own group, and as such is 

considered not to be the consequence of a lateral event; otherwise it is considered to be of lateral 

origin. 
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To set the threshold, we calculate the average frequency of all unique k-mers in the recipient group j, 

denoted by 𝜏G.	Then we compare 𝛿c to 𝑙𝜏G, where l is the number of k-mers contained in the segment. 

If 𝛿c  is smaller, we consider 𝜎  to have been transferred laterally from the other group into this 

sequence. Other approaches to setting the threshold are possible, but we do not consider them here. 

Note that our method considers lateral transfers only within the dataset; like most other LGT methods, 

it is silent on potential transfers from sources external to the dataset. In addition, it can detect transfers 

only between groups, not between sequences in the same group. 

2.4.8 Runtime analysis 

The computational complexity of the algorithm is dominated by extraction of the unique k-mers in 

the dataset. To find these, we scan each of the n sequences of length L. As each unique k-mer is found 

it is added to a library, which is stored in a red-black tree53. A red-black tree is an approximately 

balanced tree, which guarantees that searching and insertion are efficient. On average, this step takes 

𝑂(𝑛𝐿	𝑙𝑜𝑔	𝑈) time, where U is the number of unique k-mers stored in the tree. The frequency of each 

k-mer is also computed at this time. The remaining calculations are much quicker because most of 

the frequency (f) terms are zero. Thus for biological sequences of standard complexity, runtime 

increases about log-linearly with sequence length. Note that the k-mer profiles of each sequence could 

in principle be stored and retrieved for future use. 

2.4.9 Implementation 

We have implemented this algorithm in C++. The program can be compiled using GCC 4.8.2 and run 

on Unix, Unix-like and Windows platforms. We use the map template from STL (Standard Template 

Library) to index all distinct k-mers in a dataset. The inner implementation of map is a red-black 

tree53.   

2.4.10 Comparisons with ALFY 

ALFY finds putative homology (shared DNA segments) between pairs of sequences by matching 

shustrings (shortest unique substrings). If a match is found with a region in an otherwise distant 

sequence, it will be judged as a potential lateral transfer. This method shows high efficiency and 

effectiveness for LGT detection15,16, so we use it to benchmark our method.  

The inputs to both TF-IDF and ALFY are sequences. For TF-IDF the group information is 

compulsory, while ALFY requires a query sequence and subject sequences. Both TF-IDF and ALFY 

can process DNA sequences; TF-IDF can also process amino-acid sequences, but ALFY does not 

currently implement evolutionary models of amino-acid change. Only k-mer frequencies will be taken 

into consideration for calculating the value of TF-IDF. 
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In TF-IDF, if a k-mer has low a frequency in its own group but high frequencies in other groups, then 

this k-mer will be judged atypical. A set of contiguous atypical k-mers will be inferred as lateral, with 

the direction of the transfer from the k-mer prevalent group. In contrast, ALFY computes the average 

shustring length between segments of only two sequences at a time. The longer the average shustring, 

the closer the two segments; and if the sequences themselves are otherwise distant in the reference 

tree, the segment in question will be inferred as lateral, without any implication of which sequence 

was donor or recipient. 

If the sequences are grouped such that each group is compact and boundaries between groups are 

clear, then TF-IDF should find lateral segments easily. ALFY does not use group information, so 

grouping does not affect its performance. 

The computational complexity of TF-IDF is O(nL log nL), where n is total number of sequences in a 

dataset, and L the average length of sequences in a dataset. The computational complexity of the 

ALFY algorithm is O(nL). However, TF-IDF will process all sequences and infer all potential lateral 

regions over an entire dataset, whereas ALFY makes all pairwise comparisons between a single query 

sequence and the others. For fairness of comparison, all sequences in a dataset should be set as queries 

to find all LGTs in a dataset, in which case the complexity of ALFY increases to O(n2L), which in 

practice is much slower than TF-IDF. 

2.4.11 Simulation of datasets 

In order to test the performance of TF-IDF in different situations, and to compare with ALFY, we 

simulated datasets under the HYK8526 and F8427 evolutionary models. Our simulation process is as 

follows: 

(1) We start with one random sequence, which will become the ancestor of all sequences in the 

dataset. We vary the length L of this sequence from 1000 to 300000 characters to simulate 

sequences from a single gene to a significant part of a genome (but our algorithm can be applied 

to sequences of any length). 

(2)  To establish phyletic groups (i.e. to simulate speciation), the ancestral sequence is allowed to 

evolve along a balanced binary tree with four levels of equal branch lengths, using the 

evolutionary model. The branch length varies from 0.01 to 0.20 (substitutions per site) in steps 

of 0.05. We refer to this parameter as variation between groups. 

(3) To populate these groups with sequences, each descendant (leaf) in the initial tree (above) is 

allowed to evolve along another phylogenetic tree under the same evolution model. Again we 

use a balanced binary tree with four levels of equal branch length, which vary from 0.001 to 

0.020 in steps of 0.005. We refer to this parameter as variation within groups.  
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(4) We then simulate LGT events between groups. For the sake of simplicity, here we make 

transfers only into sequences in Group 1. We fix the number of LGT events at 20, with lengths 

normally distributed around mean 0.1 of the sequence length, and standard deviation half that 

amount. For each simulated event the recipient sequence (in Group 1) is selected at random, 

with (typically) several sequences receiving multiple transfers and others receiving none. 

Transfer events overwrite the equivalent positions in the recipient sequence, but (to simplify 

our simulation) cannot themselves be subsequently overwritten. Five of the 20 LGT events are 

simulated to come from the group (of 16 sequences) arising from the most-recent common 

ancestor on the binary tree (from Step 2), five from descendants of the second-most recent 

ancestor (32 sequences), five from the third (64 sequences) and five from the deepest 

bifurcation (128 sequences). Thus the probability of transfer decreases with increasing distance 

(on the tree) between donor and target. 

(5) In a final evolutionary process, we further evolve each of the 256 sequences along a balanced 

two-level tree, with branch lengths varying from 0 to 0.1 in steps of 0.025. We refer to this 

parameter as variation post-LGT.  

(6) In some simulations, Step 5 also includes a stochastic process (implemented by using a shell 

script to call ALF54, not to be confused with ALFY) which deletes from 0 to 10% of a sequence. 

The proportion was varied using the deletion rate setting in ALF, while keeping deletion length 

distribution at its default value. We refer to this parameter as deletion. We did not simulate 

duplications here because bacterial genomes contain very few repetitive components. 

After the above steps, we select one descendant of each tree to yield our final dataset (256 sequences 

per simulation). 

In addition to varying the parameters mentioned above for both TF-IDF and ALFY, for TF-IDF only 

we also varied the word length k, in steps of 10 from 20 to 50. As the number of possible parameter 

combinations above is very large, at Step 2 we varied only the variation between groups parameter 

while keeping all others fixed at minimal-impact settings. Similarly at Step 3 we varied only the 

variation within groups parameter. For each parameter combination we simulated 50 datasets under 

the F84 model of sequence change, and 50 under HYK85. This process is depicted in Figure 2.10, 

and is explained in greater detail in the Supplementary file. We also analysed smaller datasets 

omitting Step 4, to examine whether TF-IDF inferred LGT when none was present; no segments met 

the IDF (k-mers frequent in donor groups) and TF (k-mers infrequent in the recipient group) criteria 

simultaneously, so no LGT was inferred. 
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Figure 2.10. Overview of data simulation. Flowchart of the simulation process. The simulation 

starts with a single ancestor and generates 16 sequences, which serve as ancestors for each group 

(variation between groups). Within each group we generate 16 descendants (variation within 

groups). Following the simulation of lateral genetic transfer, we simulate a final stage of evolution 

(variation post-LGT) which may include deletion. From each initial ancestor the simulation 

generates 256 sequences. 

2.4.12 Performance measures 

We assessed the performance of our algorithm on simulated data using two measures. Precision is 

the proportion of inferred LGT events which are real (i.e. were actually simulated): 

Precision = tp / (tp + fp)     (4) 

where tp and fp are the total lengths of all true and false positives respectively. Recall is the proportion 

of true (simulated) LGTs which were inferred by the algorithm: 

Recall = tp / (tp + fn)      (5) 

where fn is the total length of false negatives (simulated LGTs which were not found). 

Figure 2.11 illustrates the output of TF-IDF analysis of a simulated dataset, showing the 20 regions 

of (simulated) lateral origin of which 19 were detected (wholly or in part) by TF-IDF. Positions 797-

877 of Sequence 11 represent a false positive inference of LGT, and positions 58-117 of Sequence 2 

a false negative. Overall for this dataset (i.e. LGT from Groups 2-16 into Group 1), precision was 
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0.82 and recall 0.95. Complete details (start and end coordinates) are presented in the Supplementary 

file. 

 

Figure 2.11. An example of simulated and inferred LGTs. The x-axis displays the nucleotide 

position, and the y-axis the sixteen sequences generated in our first (recipient) group. The wide bars 

show the lateral regions actually simulated, and the narrow black bars the regions inferred as lateral 

by TF-IDF. Here, variation between groups is 0.1, variation within groups is 0.001, variation post-

LGT is 0.01, deletion is zero, k = 40 and sequence length is 1000 nt. 
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1 Pseudocode for the TF-IDF algorithm  

 

1. Begin 
2.     Recognise all the different 𝑘-mers of size 𝑘 and label as 1, 2, … , 𝑈. 
3.     // Compute Matrix 𝐌 
4.     𝐌	 ← 𝑍𝑒𝑟𝑜𝑠(𝑛×𝑈)  // 𝑍𝑒𝑟𝑜𝑠 returns an all-zero matrix of the specified 

dimensions. 
5.     For each sequence 𝑖 do 
6.         For each 𝑘-mer 𝜅 in sequence 𝑖 do 
7.             	𝐌 𝑖, 𝐿 𝜅 ← 	𝐌 𝑖, 𝐿 𝜅 + 1    // 𝐿(𝜅) returns the label of 𝑘-mer 𝜅. 
8.         End For 
9.      End For 
10.      // Compute Matrix 𝐑 
11.      𝐑	 ← 𝑍𝑒𝑟𝑜𝑠(𝑛×𝑚) 
12.      For each sequence 𝑖 do 
13.         For each group 𝑗 except Θ(𝑖) do   // 𝛩(𝑖) returns the group of 

sequence 𝑖. 
14.              For each sequence 𝑖′ in group 𝑗 do 
15.                    𝐑 𝑖, 𝑗 ← 𝐑 𝑖, 𝑗 + 𝛀(𝑖, 𝑖′)  // 𝛀(𝑖, 𝑖′) returns the number of 
16.                                               // common elements between 

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠	𝑖	𝑎𝑛𝑑	𝑖′. 
17.              End For 
18.         End For 
19.      End For 
20.      𝑡	 ← 	𝐚𝐯𝐠(𝐑)    // 𝐚𝐯𝐠(𝐑) returns the average value of elements of 𝐑. 
21.      // Compute 𝜏 
22.      𝛕	 ← 𝑍𝑒𝑟𝑜𝑠(𝑚) 
23.      For each group 𝑗 do 
24.         Κ ← 𝐌 𝑗, °     //	𝐌 𝑗, °  returns the rows that represent the sequences 

in 𝑗 
25.         𝜏(𝑗) ← 𝑛𝑢𝑚𝑒𝑙(Κ) 𝑛𝑢𝑚𝑒𝑙(𝑢𝑛𝑖𝑞𝑢𝑒(Κ)) 
26.      End For 
27.      // Detect LGTs 
28.      𝑖, 𝑗, 𝑣 ← 𝐅𝒎𝒂𝒙(𝐑)  // 𝐅𝒎𝒂𝒙 𝐑  returns the maximum value of 𝐑 as v, with 
29.                            // corresponding sequence i and group j. 
30.      While  𝑣 > 𝑡 
31.         // Cut sequence 𝑖  
32.         𝝎 ← 𝑍𝑒𝑟𝑜𝑠(𝑚) 
33.         For each 𝑘-mer 𝜅 in sequence 𝑖 do 
34.              𝝎(𝑖) ← 𝒊𝒔𝒎𝒆𝒎𝒃𝒆𝒓(𝜅,j)   // 𝒊𝒔𝒎𝒆𝒎𝒃𝒆𝒓(𝜅,j) returns 1 if 𝜅 exists in 

at  
35.                                      // least one sequence of species j, 0 otherwise. 
36.         End For 
37.         𝑇𝑎𝑔𝑆	 ← 0  
38.         𝑇𝑎𝑔𝐸	 ← 0 
39.         𝐼𝑛𝑡𝑟𝑝𝑡	 ← 0 
40.         For each element 𝜁 (𝑝-th) in 𝝎 do 
41.              If 𝜁=1 
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42.                   If 𝑇𝑎𝑔𝑆 = 0 
43.                        𝑇𝑎𝑔𝑆 ← 𝑝 
44.                        𝑇𝑎𝑔𝐸 ← 𝑝 
45.                   Else 
46.                        𝑇𝑎𝑔𝐸 ← 𝑝 
47.                   End If 
48.                   𝐼𝑛𝑡𝑟𝑝𝑡 ← 0 
49.              Else 
50.                   If 𝑇𝑎𝑔	 ≠ 0 
51.                        𝐼𝑛𝑡𝑟𝑝𝑡 ← 𝐼𝑛𝑡𝑟𝑝𝑡 + 1 
52.                        If 𝐼𝑛𝑡𝑟𝑝𝑡 > 2×𝑘 
53.                            Add 𝑇𝑎𝑔𝑆, 𝑇𝑎𝑔𝐸  to 𝒇   // 𝒇 denotes segments of 

interest 
54.                            𝑇𝑎𝑔𝑆 ← 0 
55.                        End If 
56.                    End If 
57.              End If 
58.         End For 
59.         For each segment 𝜙 in 𝒇 do 
60.              𝜀 ← 0 
61.              For each sequence 𝑖′ in group 𝜗(𝑖) do 
62.                   For each 𝑘-mer 𝜅 in 𝜙 do 
63.                               𝜀 ← 𝜀 +𝐌(𝑖′, 𝐿 𝜅 ) 
64.                   End For 
65.              End For 
66.              If 𝜀 < 𝚪 𝑖 ×𝑙  // l denotes the length of the fragment, i.e., 𝑇𝑎𝑔𝐸 −

𝑇𝑎𝑔𝑆 
67.                   Add 𝒇 as a LGT. 
68.                   // Update Matrix 𝐑 
69.                  𝐑 𝑖, 𝑗 ← 0 
70.              End If 
71.         End For 
72.          𝑖, 𝑗, 𝑣 ← 𝐅𝒎𝒂𝒙(𝐑) 
73.     End While 
74. End Begin 
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2 Details of our simulation 
 
The simulation process is as follows: 
 
Step 1: Generate groups 
 

• Generate one random sequence as ancestor of all sequences.  
• Set a phylogenetic tree to generate different groups. Here, we use a 4-level full 

binary tree, thus generating 16 sequences, each of which will become the 
ancestor of a group. The branch lengths of the tree are identical and control the 
variation between groups. 

 
Step 2: Generate individuals in each group 
 

• Pick one sequence generated in last step as the ancestor of a group. 
• Set a phylogenetic tree to generate individuals. As with the last step, we use a 

4-level full binary tree to generate 16 individuals. The branch lengths of the tree 
are identical and control the variation within groups. 

• Repeat the previous two lines until all sequences generated in Step 1 have been 
used. 

 
256 sequences are generated in this step. 
 
Step 3: Add LGT events 
 

• Set the total number of LGT events. We use 20 in our experiments. 
• Determine the distribution of LGT events. We take LGTs only to group 1 from 

other groups. The LGT donors are distributed evenly (5 each) among the 
following four sets: group 2, groups 3 and 4, groups 5 to 8, and groups 9 to 16. 

 
Step 4: Evolve post-LGT 
 

• Set a 2-level full binary tree. The branch lengths are identical and control the 
variation post-LGT. 

• Let every sequence evolve following this tree, and add deletion simultaneously 
to get 4 descendants. 

• Randomly pick one descendant from each sequence. 
 

This generates a final simulation dataset with 256 sequences. 
 
Parameters 
 
Variation between = 0.01, 0.05, 0.1, 0.15, 0.2, within = 0.01, post_LGT = 0, deletion 

= 0, k=40 
Variation between = 0.1, within = 0.001, 0.005, 0.01, 0.015, post_LGT = 0, deletion = 

0, k=40 
Variation between = 0.1, within = 0.01, post_LGT = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 

deletion = 0, 0.025, 0.05, 0.075, 0.1, 0.125, k = 40 
𝜋* = 𝜋� = 𝜋� = 𝜋� = 0.25, 𝜅 = 2 under HYK85 model. 
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𝜋* = 0.291, 𝜋� = 0.275, 𝜋� = 0.304, 𝜋� = 0.130, 𝜅 = 2 under F84 model. 
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3 Coordinates of simulated and inferred LGT regions in Group 1 for Figure 2.2 
 
Simulated LGT Inferred LGT Recipient 

(Sequence) 
Donor 
(Group) 

Start Length Start Length   
297 95 297 97 1 16 
182 56 182 56 4 16 
786 177 786 177 7 15 
614 170 614 172 4 15 
532 142 532 143 15 11 
552 131 552 131 7 6 
157 50 157 50 7 8 
739 50 739 50 1 5 
722 51 722 53 13 6 
92 50 92 53 5 7 
445 95 444 96 6 3 
112 50 111 52 3 4 
163 115 161 118 14 4 
62 167 62 169 15 3 
585 206 585 206 2 3 
662 134 662 215 11 2 
562 66 562 66 3 2 
525 127 525 127 1 2 
39 96 38 98 1 2 
58 117 -- -- 2 2 
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4 Performance of TF-IDF under the F84 model (variation between and within 
groups) 

 
Here we replicate the TF-IDF analyses shown in Figures 2.3 and 2.4, under the F84 
evolution model. 
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5 Full comparison of recall of TF-IDF and ALFY for variation within groups 
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6 Performance of TF-IDF with variation post-LGT and deletion with different sequence 
lengths. 

 
Performance on variation post-LGT and deletion (sequence length = 100,000 nt) 
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Performance on variation post-LGT and deletion (sequence length = 30,000 nt) 
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Performance on variation post-LGT and deletion (sequence length = 10,000 nt) 
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Performance on variation post-LGT and deletion (sequence length = 3,000 nt) 
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Performance on variation post-LGT and deletion (sequence length = 1,000 nt) 
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7 Supplementary Table S1. Detection of lateral regions in Staphylococcus aureus TW20 by 

TF-IDF, at k = 30 and k = 40 

 

Annotated functions of proteins fully or partially contained within an LGT region of 

Staphylococcus aureus TW20, as discovered in this dataset by TF-IDF (k = 40). The first row is the 

length range of LGT segments selected for analysis. 

 

  2000-

3999 nt 

4000-

5999nt 

6000+ 

nt 

 2000+ 

nt 

2000+ nt 

Annotated 

function1 

Annotated 

in 

genome 

Number Number Number  

Number    

% 

       

adhesion / 

adhesion 

4 0 0 2 2 50 

antiporter 10 1 0 1 2 20 

capsular 

polysaccharide 

16 0 0 16 16 100 

capsule 3 0 0 3 3 100 

coagulase 1 0 0 1 1 100 

efflux 4 1 0 1 2 50 

integrase 9 0 1 0 1 11 

lactamase 8 0 0 5 5 62 

lysine 13 0 0 1 1 8 

metalloproteinase 

/metallopeptidase 

3 1 0 1 2 66 

penicillin 6 1 0 3 4 66 

permease 45 8 5 18 31 69 

phage 249 12 14 0 26 11 

recombinase 6 0 0 0 0 0 

resistance protein 9 0 1 1 2 22 

restriction 9 0 0 3 3 33 

siderophore 5 0 0 5 5 100 

surface protein 5 1 1 4 6 100 
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toxin 19 1 0 0 1 5 

transport protein 28 3 1 7 11 39 

transporter 98 14 3 28 45 46 

transposase 30 0 2 2 4 13 

uptake 4 1 1 0 2 50 

ribosomal protein 60 2 1 5 8 13 

polymerase 

(DNA/RNA) 

15 5 2 1 8 53 

 

  



 
 

60 

Annotated functions of proteins fully or partially contained within an LGT region of 

Staphylococcus aureus TW20, as discovered in this dataset by TF-IDF (k = 30). The first row is the 

length range of LGT segments selected for analysis. 

 

 

  2000-

3999 nt 

4000-

6499 nt 

6500+ 

nt 

 2000+ 

nt 

2000+ 

nt 

Annotated 

function1 

Annotated 

in 

genome 

Number Number Number  

Number    

% 

       

adhesion / 

adhesion 

4 0 0 4 4 100 

antiporter 10 7 0 1 8 80 

capsular 

polysaccharide 

16 0 0 16 16 100 

capsule 3 0 0 3 3 100 

coagulase 1 0 0 1 1 100 

efflux 4 1 1 1 3 75 

integrase 9 2 1 0 3 33 

lactamase 8 1 0 4 5 62 

lysine 13 2 0 3 5 38 

metalloproteinase 

/metallopeptidase 

3 2 0 1 3 100 

penicillin 6 3 2 2 (7)2 100 

permease 45 11 7 15 33 73 

phage 249 13 17 0 30 12 

recombinase 6 2 0 0 2 33 

resistance protein 9 1 0 1 2 22 

restriction 9 0 0 3 3 33 

siderophore 5 0 0 5 5 100 

surface protein 5 0 1 2 3 60 

toxin 19 1 0 0 1 5 

transport protein 28 8 1 11 20 71 



 
 

61 

transporter 98 26 11 22 59 60 

transposase 30 4 0 2 6 20 

uptake 4 1 1 1 3 75 

ribosomal protein 60 13 9 32 54 90 

polymerase 

(DNA/RNA) 

15 5 2 5 12 80 

 

Notes: 

1. As annotated in GenBank NC_017331.1  

2. The 5¢ and 3¢ ends of the penicillin binding protein 2B gene fall into different inferred LGT 

regions.  
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Chapter 3 Exploring lateral genetic transfer among microbial genomes using 

TF-IDF 

 

Lateral genetic transfer is an important source of phenotypic innovation in microbes. Studying this 

phenomenon is thus a key way to gain insight into microbial evolution. The traditional way to depict 

the evolutionary history of organisms is on a phylogenetic tree, the leaves of which represent 

contemporary organisms, the internal nodes show a hierarchy of common ancestors, and the branches 

depict the vertical (parent to offspring) transmission of genetic material. LGT might be added as 

lateral branches, although often there is not enough knowledge of donor and recipient lineages, or the 

ancestry of transfer events. More recently, patterns of genetic relatedness among microbes have been 

depicted as a network. 

 

Here, I applied the TF-IDF method to three empirical multi-genome datasets of different size 

(numbers of genomes), evolutionary relatedness and group structure to detect LGT, and I generated 

networks in which the edges represent LGT events. These networks are not uniform, and their 

connectivity is affected by evolutionary distance between groups. The genes affected by these LGT 

events are described by a range of Gene Ontology terms, particularly those of metabolic, regulatory, 

and intracellular and trans-membrane transport processes. I carried out the first systematic analysis 

of genes inferred to have received LGT from more than one donor group, and showed that some of 

them might equally well be explained by a single ancient transfer. Initial analysis indicated the 

presence of potential community structures within the LGT networks; this question forms the basis 

of the following chapter. 

 

Results presented as a publication 

The work reported in this chapter has been published as a research article in the Nature Publishing 

Group journal Scientific Reports, volume 6, article 29319 (publication date 25 July 2016). 

Supplementary material for this publication follows the main text. Supporting datasets are assigned 

DOI numbers http://dx.doi.org/10.14264/uql.2016.483-487 and are available for download from 

UQ eSpace. 
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Abstract 

Many microbes can acquire genetic material from their environment and incorporate it into their 

genome, a process known as lateral genetic transfer (LGT). Computational approaches have been 

developed to detect genomic regions of lateral origin, but typically lack sensitivity, ability to 

distinguish donor from recipient, and scalability to very large datasets. To address these issues we 

have introduced an alignment-free method based on ideas from document analysis, term frequency-

inverse document frequency (TF-IDF).  

Here we examine the performance of TF-IDF on three empirical datasets: 27 genomes of Escherichia 

coli and Shigella, 110 genomes of enteric bacteria, and 143 genomes across 12 bacterial and three 

archaeal phyla. We investigate the effect of k-mer size, gap size and delineation of groups on the 

inference of genomic regions of lateral origin, finding an interplay among these parameters and 

sequence divergence. Because TF-IDF identifies donor groups and delineates regions of lateral origin 

within recipient genomes, aggregating these regions by gene enables us to explore, for the first time, 

the mosaic nature of lateral genes including the multiplicity of biological sources, ancestry of transfer 

and over-writing by subsequent transfers. We carry out Gene Ontology enrichment tests to investigate 

which biological processes are potentially affected by LGT. 

3.1 Introduction 

Many microbes can acquire DNA from an exogenous source (other microbes, or the environment) 

and maintain it for transmission to subsequent generations, either incorporated into the new host 

genome or stabilised on a plasmid or other extra-chromosomal element. This process, lateral genetic 

transfer (LGT; also known as horizontal genetic transfer), generates size and gene-content diversity 

among microbial genomes, and is a major driver of metabolic innovation1-3 including resistance to 

antibiotics4,5. 

Computational approaches have been applied to detect regions of lateral origin in microbial genomes 

since the 1990s6,7. In the accompanying article8 and elsewhere9 we review the main biological and 

computational factors that make LGT detection so challenging. Briefly, there is great diversity (and 

little predictability) with regard to the length, source or features of the introgressed DNA. LGT events 

can overwrite an existing sequence, including other lateral regions, rendering the new host genome 

an evolutionary pastiche or mosaic. Over time, features (e.g. G+C content or codon usage) indicative 

of lateral origin will be “ameliorated” to become indistinguishable from those of the new host 

genome9-11. For these reasons, accurately identifying regions of lateral origin can be very challenging. 
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Next-generation sequencing technologies are increasingly making it possible for researchers to 

address large-scale questions in the biological sciences, including open questions regarding the 

mechanisms and impact of LGT2,9,12. Several computational approaches are available to detect 

regions of probable exogenous origin in a genome, among which tree-based methods are considered 

to be the gold standard13. Taking genes (gene families) as the units of analysis, these approaches 

delineate orthogroups, multiply align sets of sequences, infer gene trees and compare their topologies 

against that of a reference “species” tree; well-supported instances of topological incongruence are 

taken as prima facie instances of LGT14-16. Such workflows are computationally demanding, yet 

cannot identify recombination breakpoints in individual genomes, and often fail to resolve the 

direction of transfer. They can be accelerated by use of approximate methods, better matching of 

computational tasks to hardware, and parallelisation, but nonetheless remain slow with large 

datasets17. 

For these reasons there is much interest in approaches that avoid altogether the potentially NP-hard 

steps of multiple sequence alignment, tree inference and tree reconciliation, while keeping track of 

regions of each individual genome in a manner that is agnostic to the number, size and nature of units 

of transfer. Alignment-free approaches have much to offer in this context. Among the main families 

of alignment-free approaches, those based on word counts or on substring match lengths have 

received the most attention18,19. The former compute a measure of similarity between two sequences 

based on the number or frequency distribution of matching “words” of length k, whereas the latter 

assess the length of the longest word that occurs in two sequences, or the shortest word unique to one 

of the sequences. In either case the match may be required to be perfect, or a defined number of 

mismatches may be permitted. In the simplest case, each pairwise measure can be transformed into a 

distance, and a matrix of such distances used as input for computing a distance tree, e.g. by neighbour-

joining20-22. Evidence is accumulating that in phylogenetic inference per se, these alignment-free 

methods can offer acceptable performance – in certain cases better than approaches based on multiple 

sequence alignment – at much greater computational speed and scalability19. Other approaches to 

alignment-free sequence comparison, including methods based on compressibility20,21, nucleotide 

correlations23,24, gene order or recombination breakpoints25,26, have seen more-limited application. 

There has, however, been little exploration of how any of these alignment-free methods might be 

extended to other steps in an LGT workflow. 

In the accompanying article8 we introduce TF-IDF as a scalable alignment-free approach to identify 

directional LGT in large molecular-sequence datasets. Variants of TF-IDF are widely used in text 

mining and information retrieval, for example to find important words, group and classify documents 

by topic, or retrieve documents that match a user query27,28. Using synthetic nucleotide-sequence data, 
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we showed that by using TF-IDF we can detect LGT events with high precision and recall under a 

range of biologically realistic scenarios including different rates of deletion and nucleotide 

substitution8. We reported that TF-IDF performs well with a small empirical dataset (seven genomes 

of Staphylococcus aureus29) even though our target group consisted of a single sequence, presumably 

reducing the influence of the IDF term. The regions identified by TF-IDF as lateral matched closely 

with those inferred by a well-regarded method, ALFY30, while in addition we identified two regions 

not found using ALFY that include genes encoding transporters and regulators of multidrug resistance 

and pathogenicity8. 

Here we explore the strengths and limitations of TF-IDF as applied to the discovery of regions of 

lateral origin among different-sized sets of empirical microbial genome sequences. Specifically, we 

investigate the effects of key parameter-value settings (k, and gap size G), and strategies for 

delineating, including or excluding, and subdividing groups. We consider how to interpret multiple 

inferred transfers into the same genome sequence, and look for evidence for overwriting. Furthermore, 

we determine the biological process annotations over- or under-represented among the genes we infer 

to have been affected by LGT, and report new LGT networks. Three empirical datasets (and variants) 

have been selected to illustrate a diversity of potential use cases, and address the above issues.  

3.2 Results 

3.2.1 Parameter values for TF-IDF analysis 

To investigate the performance of TF-IDF on empirical data, we compare the number of regions 

identified as of potential lateral origin (Figure 3.1a,c,e) and the total length of these regions (Figure 

3.1b,d,f) as a function of k and G in our three datasets. We examine the results in more detail for each 

dataset separately, and then discuss how to select suitable parameters in different situations. 
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Figure 3.1. Number of regions detected as lateral, as a function of k and G. The panels on the left 

show total numbers of LGT detections in the ECS (panel a), EB (panel c) and BA (panel e) datasets. 

The panels on the right show the total length (in nucleotides) of all LGT detections in the same 

datasets. 

Dataset 1 (E. coli and Shigella: ECS) 

Here we use the six groups suggested by Skippington and Ragan31. TF-IDF presents the 27 ECS 

genomes as having sustained very extensive LGT from within the ECS clade itself. Inferred lateral 
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segments hundreds of nucleotides in length are common (Supplementary Table S1), and the gaps 

between these segments tend to be small. 

 

We show the dependence of the total number of lateral regions detected and the total length of all 

detections on k and G in Figures 3.1a and 3.1b respectively. As gap size G increases, the total number 

of detections decreases sharply, indicating that many potential LGT segments are being merged 

together. When k is large, we see a corresponding rise in the total length. However, when k is small, 

the total length is relatively stable with respect to G, in part because the gaps between segments 

contain k-mers that are also frequent in the recipient genome’s own group, causing further proposed 

mergers to fail the TF hurdle. These k-mers can be false positives. With these considerations in mind, 

we set G to 2k. At this value, we see that both number and length of detections are relatively stable 

with respect to k. We choose the value k = 40, which we have shown to work well in simulations8.  

Dataset 2 (enteric bacteria: EB)  

The EB clade is biologically more ancient than ECS, and accordingly their genomes show smaller 

similarity values (Table 3.1). Delineating groups within the EB dataset by genus, we find fewer and 

shorter LGT detections than in the ECS dataset (Supplementary Table S1). As before, we see a 

dramatic decrease in total number of detections as G increases (Figure 3.1c); however, the total 

detection length (Figure 3.1d) remains relatively stable with respect to G at all values of k. This again 

indicates that a large number of false positive segments are being merged with increasing G, and thus 

we again set G = 2k. Here there is a substantial decrease in the total number of detections as k 

increases from 20 to 25, suggesting that there are too many common k-mers at this value. We again 

choose a large value of k = 40 to avoid this problem.  

Dataset 3 (bacteria and archaea: BA) 

The 143 BA genomes are much less closely related among themselves, with their common biological 

ancestor dating nearly to origin of cellular life32. These genomes share many fewer identical k-mers 

than do ECS or EB (Table 3.1), and k plays a much more important role than does G. Because regions 

of inferred lateral origin in this dataset present a much weaker signal than in the previous datasets, 

we should set k to a small value in order to detect these signals. We observe (Figures 3.1e and 3.1f) 

a precipitous drop in the both the number of detections and detection length from k = 20 to 25, again 

indicating the presence of too many common k-mers at the former value to make any useful detections. 

However, the detections are more stable for k ≥ 25, so we set k = 25. The value of G appears to make 

relatively little difference, so we again select G = 2k for consistency. 
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We note that TF-IDF is not biased toward detecting more LGT events in larger datasets. With suitable 

settings of k and G (as discussed above), fewer regions of within-dataset lateral origin, totaling fewer 

nucleotides, are detected in EB and BA than in ECS even though they contain many more sequences. 

For the subsequent analyses, we fix k and G at the optimal values we have found above. 

Table 3.1. Summary of genome similarity (percentage of pairwise shared 12-mers) for the three 
datasets. For abbreviations see text. 
Dataset Minimum % Maximum % Mean % Standard 

deviation % 

ECS 37.15 94.5 64.06 10.58 

EB 29.08 99.99 45.43 15.65 

BA 0.4243 99.42 15.94 10.44 

 

3.2.2 LGT networks and effect of grouping 

Next we investigate the networks of inferred LGT among the genomes in each of our datasets. TF-

IDF requires that we recognise or delineate groups of sequences in the dataset; an inferred LGT event 

represents transfer into a genome from a donor group (other than that containing the recipient 

genome). Using Dataset 1, we explore the effect of different ways of delineating groups. With 

Datasets 2 and 3 we ask whether adding further potential donor groups affects the inference. As our 

results will form the basis of functional analysis (see next section), here we aggregate inferred LGT 

events by gene. Although genes are not units of LGT33,34, they are our link to functional annotation, 

notably in the GO database35. This mapping moreover allows us to explore, for the first time, multiple 

and overlapping transfers in a functional context. As intergenic regions account for only minor 

proportions of these genomes, we anticipate that results aggregated by gene will be substantially 

applicable to whole genomes as well.  

Dataset 1 (E. coli and Shigella) 

We apply two strategies for delineating groups in the ECS dataset. One uses six established phyletic 

groups36, thereby reflecting the diverse biological and physiological features that underlie the 

recognition of taxa in ECS. The other is explicitly phylogenetic: we cut the MRP supertree of 

Skippington and Ragan31 at basal branches to yield four groups. For details of group membership, 

please consult Supplementary Figure S1. As a control, we also generate 50 pseudo-replicate 

groupings based on the latter. 
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We begin with the biological (phyletic) delineation of groups. Of the 124717 genes annotated in the 

20 E. coli and 7 Shigella genomes, we infer 45412 (36.4%) to have received LGT from at least one 

source group. Figure 3.2 shows the directed LGT network connecting the groups of E. coli (A, B1, 

B2, D and E) and Shigella (S). Of these 27 genomes, we infer 24 to have accepted an LGT event 

(Table 3.2). Group E (E. coli O157:H7 EDL933 and O157:H7) has been the most-active donor group, 

supplying genetic material to a total of 18059 genes across all the other groups. Group E has also 

been the most-active recipient of LGT on a per-gene basis, with 7177 of its 10490 genes (68.4%) 

showing evidence of LGT, all donated from Group B1. The genome E. coli O157:H7 in group E is 

known to have acquired substantial genetic material by LGT37; this was notably not found by using a 

classical LGT detection method31. Group B1 (E. coli E24377A, 55989, SE11 and IA11) has been 

second most-active both as donor and recipient, donating to 16237 genes across all the other groups, 

and accepting LGT into 12131 of 18751 genes (64.7%), with all other groups as donors (Table 3.2 

and Figure 3.2).  

 

Figure 3.2. Inferred network of LGT within the ECS dataset with six biologically based groups. The 

numbers on each edge show the total number of genes involved in LGT events from one group into 

genomes in the other group. 
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Table 3.2.  Numbers of lateral genes with single or multiple donors in each genome within the ECS 
dataset. The genomes are grouped into six groups following a phyletic criterion (see text). 
Grou
p 

Organism Numbe
r of 
genes 

Number 
of 
lateral 
genes 

Donor 
groups 

Number 
of 
lateral 
genes 
with 1 
donor 

Number 
of 
lateral 
genes 
with 2 
donors 

Number 
of 
lateral 
genes 
with ³ 3 
donors 

D E. coli SMS 
3 5  

4744 0 - - - - 

D E. coli IAI39  4725 1469 S 1469 - - 
D E. coli 

UMN026  
4878 2930 S, B1, 

B2 
1004 769 1157 

S Shigella 
flexneri 5 
8401  

4336 1030 E, A, B1 855 120 55 

S Shigella 
flexneri 2a  

4053 1142 D, E, A 650 288 204 

S Shigella 
flexneri 2a 
2457T  

4385 1188 E, A, B1 880 158 150 

S Shigella 
sonnei Ss046  

4563 1842 D, E, A, 
B1 

638 626 578 

S Shigella 
boydii Sb227  

4391 1859 D, E, A, 
B1 

974 538 347 

S Shigella 
boydii CDC 
3083 94  

4532 1280 A, B1 1093 187 - 

S Shigella 
dysenteriae  

4063 1300 A 1300 - - 

E E. coli O157 
: H7  

5204 3685 B1 3685 - - 

E E. coli O157 
: H7 
EDL933  

5286 3492 B1 3492 - - 

A E. coli K12 
substr 
W3110  

4213 1211 S, E, B1 1050 117 44 

A E. coli K12 
substr 
MG1655  

4140 2045 D, E, 
B1, B2 

927 465 653 

A E. coli HS  4366 2585 D, S, E, 
B1, B2 

891 667 1027 

A E. coli C 
ATCC 8739  

4434 0 - - - - 

B1 E. coli 
E24377A  

4729 2945 S, E, A, 
B2 

1469 1068 412 

B1 E. coli 55989  4953 3108 S, E, A, 
B2 

1526 1081 501 

B1 E. coli SE11  4684 2918 S, E, A, 
B2 

1448 1049 421 
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B1 E. coli IAI1  4385 3157 D, S, 
E,A, B2 

1161 991 1005 

B2 E. coli 0127 
H6 E2348 69  

4809 1561 E, B1 1120 448 - 

B2 E. coli 536  4542 1183 E, B1 855 328 - 
B2 E. coli 

CFT073  
4897 0 - - - - 

B2 E. coli ED1a  5012 1230 S, E 941 305 - 
B2 E. coli 

UTI89  
4827 563 B1 563 - - 

B2 E. coli S88  4688 1088 E, B1 801 287 - 
B2 E. coli 

APECO1  
4878 592 B1 592 - - 

 

To evaluate how grouping affects the inference of LGT using TF-IDF, we delineated a different 

number of groups (four) using a phylogenetic criterion (see above). As physiology is not entirely 

orthogonal to phylogeny, the two groupings are not unrelated. Phylogenetic Group 1 includes B2 and 

two members of D; Group 2 encompasses E, one member of D and one Shigella; Group 3 has the 

same membership as A; and B1 and the remainder of S are merged into Group 4 (for complete lists 

see Supplementary Table S2). We now infer 18200 genes to have received LGT from at least one 

source group (Table 3.3), only 40.1% of the number detected in the previous grouping. The directed 

network is shown in Figure 3.3.  

 

Figure 3.3. Inferred network of LGT within the ECS dataset with four phylogenetically based 

groups. The numbers on each edge show the total number of genes involved in LGT events from 

one group into genomes in the other group. 
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Table 3.3. Numbers of lateral genes with single or multiple donors in each genome within the ECS 
dataset. The genomes are grouped into four groups by cutting the MRP supertree (see text). LGT 
events were detected in only 17 of these 27 genomes. 
Grou
p 

Organism Numb
er of 
genes 

Number 
of lateral 
genes 

Donor 
groups 

Number 
of lateral 
genes 
with 1 
donor 

Number 
of lateral 
genes 
with 2 
donors 

Number 
of 
lateral 
genes 
with ³ 3 
donors 

2 E. coli 
UMN026  

4878 2122 1 2122     

4 Shigella 
flexneri 5 
8401  

4336 923 2, 3 680 243   

4 Shigella 
flexneri 2a  

4053 590 2, 3 445 145   

4 Shigella 
flexneri 2a 
2457T  

4385 999 2, 3 674 325   

4 Shigella 
sonnei Ss046  

4563 988 2, 3 688 300   

4 Shigella 
boydii Sb227  

4391 1314 2, 3 848 466   

4 Shigella 
boydii CDC 
3083 94  

4532 1244 2, 3 879 365   

2 Shigella 
dysenteriae  

4063 1363 3, 4 498 865   

2 E. coli O157 : 
H7 EDL933  

5286 832 4 832     

3 E. coli K12 
substr W3110  

4213 875 2, 4 596 279   

3 E. coli K12 
substr 
MG1655  

4140 1255 1, 4 860 395   

3 E. coli HS  4366 1901 1, 2, 4 948 587 366 
4 E. coli 

E24377A  
4729 694 2, 3 495 199   

4 E. coli 55989  4953 1193 1, 2, 3 670 361 162 
4 E. coli SE11  4684 683 2, 3 457 226   
4 E. coli IAI1  4385 944 1, 2, 3 507 300 137 
1 E. coli ED1a  5012 280 4 280     

 

The fortuitous stability of Group A or 3 (see above) allows us to make a meaningful comparison of 

the results between the two groupings. We infer the Group A genomes to have accepted LGT into 

5841 (34.1%) of their genes, and the very same Group 3 to have accepted LGT into 4031 genes 

(23.5%). This difference should reflect compositional changes within the donor groups, which affects 
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the IDF step. Conversely, group A is inferred to have affected 39571 other genes by transfer, but only 

14169 genes are affected by group 3 in the second grouping. This reflects the increased k-mer 

diversity of each recipient group, which decreases the TF threshold (that the frequency must fall 

below) and thus results in fewer detections. The four Group A/3 genomes show grossly similar trends 

between the two groupings, although details differ e.g. in number of genes with ³ 3 LGT donor groups. 

Finally, using results from TF-IDF analysis of the ECS dataset with the biological grouping, we 

compared the mean G+C content of the lateral genes (not just their inferred lateral regions) with that 

of their host genome, using a paired t-test. We find that G+C content is significantly higher in the 

inferred lateral genes; the P-value is 0.0017. Anomalous G+C content has often been used to detect 

transferred genes10,38. 

To explore the level of transfer signal in the dataset, we generate 50 randomised groupings based on 

the four phylogenetic groups as described above. In Figure 3.4, we compare the total detection length 

for the randomised groups against the real grouping. The total detection length in the real grouping is 

much greater than for any randomised grouping; indeed it is 6.2 standard deviations above the mean. 

Thus we are very confident that there exists strong lateral signal in this dataset, and that the grouping 

we have selected is effective in showing it. In Figure 3.5 we show the LGT network for the 

randomised groups. For seven of the twelve directional edges, we detect more genes in the actual 

grouping than in most (44-50) of the replicates. No LGT is found from group 2 or 3 to group 1 using 

the actual grouping information, while from group 4 to group 1 we inferred fewer genes than in 48 of 

the randomised groupings. 
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Figure 3.4. Histogram of the distribution of total length of all detections of the 50 randomly 

assigned replicates. The total detection length in the actual grouping (based on cutting the MRP 

supertree) is shown as a red line. 

 

 

 

 

 

Figure 3.5. Summary of the LGT networks inferred using TF-IDF of the 50 random replicates of the 

ECS data. The numbers on each edge show the total number of genes involved in LGT events from 

one group into genomes in the other group, averaged over the 50 groupings. Number in parentheses 

are the standard deviations. 

Dataset 2 (enteric bacteria)  

Dataset 2a is a superset of ECS, containing additional genomes of E. coli and Shigella, plus genomes 

from Klebsiella, Salmonella and Yersinia. Naïvely taking the five genera as groups, we infer LGT 

only between E. coli and Shigella (Figure 3.6a). This happens because the lateral signal is dominated 

by the 62 E. coli and Shigella genomes, which are far more similar to each other (and thus share many 

more identical k-mers) than with the remaining genera. Since by default we set the IDF threshold to 

the average frequency of shared k-mers between a sequence and a group, only the E. coli and Shigella 

transfers are strong enough to overcome this threshold. There are potentially several non-exclusive 

ways to circumvent this situation, e.g. by manually overriding the default use of the mean value, or 

reducing the number of ECS genomes or groups. Here we reduce the number of groups by 

alternatively merging E. coli and Shigella into a single group, keeping only one or the other, or 
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deleting both (Table 3.4). Figure 3.6 shows the LGT networks inferred in each case. Although the 

actual numbers of inferred transfers (even outside E. coli and Shigella) depend strongly on how we 

deal with E. coli and Shigella, common trends are nonetheless apparent, e.g. that Salmonella genomes 

are always inferred to have accepted more LGT from Klebsiella than vice-versa, and that Yersinia is 

only weakly connected. 
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Figure 3.6. LGT networks of the EB dataset and its variants. We treat the E. coli and Shigella 

genomes in different ways: (a) assigned to separate groups, (b) with Shigella removed, (c) with E. 

coli removed, (d) combined into a single group, and (e) with both groups removed from the 

analysis. 

 

Table 3.4. Variants of the EB dataset based on treatment of the E. coli and Shigella groups. 
Ways of grouping Group information Number of 

sequences 

Combine E. coli and 

Shigella 

Yersinia, E. coli + Shigella, Salmonella, 

Klebsiella 

110 

Keep only E. coli Yersinia, E. coli, Salmonella, Klebsiella 92 

Keep only Shigella Yersinia, Shigella, Salmonella, 

Klebsiella 

57 

No E. coli or Shigella Yersinia, Salmonella, Klebsiella 48 

 

Dataset 2 also allows us to investigate the effect of external groups (here Klebsiella, Salmonella and 

Yersinia) on inference within a clade (ECS). We generate Dataset 2b by replacing the 62 E. coli and 

Shigella genomes in Dataset 2a with the 27 ECS genomes as above. Using the phyletic (biological) 

grouping introduced above for the ECS dataset and retaining the default criterion for the IDF 

threshold (see previous paragraph), TF-IDF infers many more transfers within ECS (Figure 3.2, 

Figure 3.7 and Supplementary Table S3). Inclusion of the more-distantly related genomes has lowered 

the mean value of elements in the relationship matrix, thereby allowing many more regions within 

the ECS genomes to exceed the IDF threshold. Even with the additional TF filter, which remains 

unchanged, this results in a great increase in the number of transfers. As might be expected, all 

transfers detected in the ECS dataset by itself are still detected. Interestingly, this increase is non-

uniform across the ECS subgraph: in every case where we inferred no LGT from one group into 

another when only the ECS dataset was examined, we found abundant LGT after adding the three 

additional genera.  
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Figure 3.7. The LGT network inferred using TF-IDF from Dataset 2b, using six phyletic groups for 

E. coli and Shigella and grouping the remaining genomes according to genus. The numbers on each 

edge show the total number of genes involved in LGT events from one group into genomes in the 

other group. 

As mentioned above, another option is to manually override the default use of the mean k-mer 

frequency value as the IDF threshold. When we set the threshold from the ECS dataset as the IDF 

threshold in Dataset 2b, we infer exactly the same genes in the ECS genomes to have accepted LGT 

from an ECS donor group. That is, presence or absence of external groups does not affect the 

performance of TF-IDF beyond their effect on the IDF threshold. We consider this further in the 

Discussion. 

Dataset 3 (bacteria and archaea) 

The 143-genome Bacteria and Archaea (BA) dataset allows us to examine the effect of within-group 

heterogeneity on inference using TF-IDF. Here we delineate groups taxonomically by phylum (15 

phyla) or alternatively by class (31 classes). Grouping the genomes by phylum, we infer 686 genes 

as affected by LGT, many fewer than in the smaller but less-divergent previous datasets. Indeed, we 

infer no inter-phylum LGT involving the archaeal phyla (Crenarchaeota, Euryarchaeota, 

Nanoarchaeota) or three of the bacterial phyla (Aquificales, Planctomycetes, Thermotogales), 

presumably for the reason indicated above for Datasets 2a and 2b: potential matches fail to pass the 

IDF threshold. Of the nine remaining bacterial phyla, eight are inferred to have been both donors and 

recipients, while one (Chlamydiales) has been a recipient only (Figure 3.8). The highest-activity 

pathways (“highways”14) lie between Proteobacteria and High-G+C Firmicutes (378 genes affected), 

followed by those between Proteobacteria and Low-G+C Firmicutes (101 genes). Two phyla 

represented by one genome each, Thermus/Deinococcus and Chlorobi, contribute 13.9% and 6.3% 
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of total inter-phylum LGT; if more sequences had been included, these groups might be recognised 

as even more-active in inter-phylum LGT.  

 

 

Figure 3.8. The LGT network inferred for the BA dataset grouped by phylum. The numbers on each 

edge show the total number of genes involved in LGT events from one group into genomes in the 

other group. 

When we alternatively group the 143 genomes into 31 classes (Figure 3.9), the number of genes 

inferred to have accepted inter-class LGT increases nearly five-fold to 3043. We infer 24 lateral genes 

among eight archaeal classes with a ninth class, Archaeoglobales, silent to inter-class LGT. As above, 

no LGT is detected between archaea and bacteria. This grouping divides Proteobacteria into four 

subdivisions (a, b, g, e) at class level; genomes of the former three are rich in inferred lateral genes, 

whereas the e subdivision is relatively silent. In accordance with our phylum-level analysis, the 

Bacillus/Clostridium class and Actinomycetales (from High-G+C Firmicutes) are inferred to have 

engaged in LGT with genomes across the subdivisions of Proteobacteria. By contrast, and in 

contradiction to earlier reports, we infer no LGT involving the Thermotoga39 or Aquifex40 genomes. 

This may be due to features of our dataset e.g. the number, size, balance, composition and cohesion 

of groups, and/or the phylogenetic distinctiveness of these genomes (see Discussion and conclusions). 
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Figure 3.9. The LGT network inferred for the BA dataset grouped by class. The numbers on each 

edge show the total number of genes involved in LGT events from one group into genomes in the 

other group. 

 

Using a dataset of 657 bacterial and archaeal genomes and a multi-step LGT inference approach based 

on anomalous G+C content and phylogenetic discordance, Popa et al.41 identified 4700 genes of 

inferred lateral origin. Nine of these were also identified as lateral in our TF-IDF analysis of the 143-

genome dataset, although with different inferred donors. Our comparison (Supplementary Section 2 

and Tables S4-S7) indicates that at least at this phyletic scale, TF-IDF provides access to LGT events 

spanning broader phyletic distances than does the approach of Popa et al.41. 

3.2.3 Multiple donor groups and superimposed transfers 

In the ECS dataset we observe a large number of transfers; correspondingly, we find many instances 

in which a gene is inferred to have accepted genetic material laterally from more than one donor 

group. This is especially prevalent in the phyletic grouping of six groups, whereas the phylogenetic 

grouping (four groups) contains fewer transfers as observed above. Here we look more closely at 

genomes which contain genes with multiple donors, to determine if we can untangle the sources of 

multiple transfer.  

There are two possible explanations for such instances. One is that the gene is truly a mosaic, having 

accepted multiple transfers in the past. However, an alternative explanation is that there was only one 

transfer, but it was more ancient. For example, if a sequence is inferred to have accepted genetic 

material from groups G1 and G2, then it is possible that instead there was a single ancestral transfer 

from an ancestor of G1 and G2. This explanation is parsimonious only if G1 and G2 are closely 

related (i.e. monophyletic, or adjacent on the phylogenetic tree) and the events are inferred to affect 
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overlapping regions on the genome. If either of these conditions is not met, it is more likely that more 

than one transfer event has occurred. 

 

In Table 3.5, we examine the relative frequencies of possible ancestral transfers in eighteen ECS 

genomes. For ease of analysis, we consider only genes which are inferred to have accepted material 

from exactly two donor groups. Of the 2240 such genes in E. coli K12 W3110, K12 MG1655, HS 

and IAI1, which contain monophyletic relationships in their donor-group pairs, we observe 18446 

events into these genes, forming 6549 overlapping regions. Of these overlapping regions, the donor 

groups are monophyletic in 1869 cases. Thus there is considerable evidence for both ancient transfers 

and mosaicism. However, ancient transfers (identified in this way) represent only 22-30% of 

overlapped events in these four genomes. For the other genomes no monophyletic overlapping 

regions are found, i.e. most overlaps may be the result of multiple lateral events. This is the first time 

a computational method has given us broad accessibility to data that can indicate the presence of these 

phenomena. 

Table 3.5. Numbers of inferred lateral genes with two donors in the ECS dataset, and the phyletic 
relationship of the donors. 
Genome 
name 

Lateral 
genes with 
two 
donors 

Number of 
overlaps 
(pairwise) 

Number 
monophyletic 

Number non-
monophyletic 

Proportion 
monophyletic 

E. coli K12 
substr 
W3110  

117 223 50 173 22.4% 

E. coli K12 
substr 
MG1655  

465 1514 423 1091 27.9% 

Shigella 
flexneri 2a  

288 709 0 709 0 

Shigella 
flexneri 2a 
2457T  

158 361 0 0 0 

Shigella 
sonnei Ss046  

626 1564 0 1564 0 

Shigella 
boydii Sb227  

538 1247 0 1247 0 

E. coli 536  328 522 0 522 0 
Shigella 
flexneri 5 
8401  

120 259 0 259 0 

E. coli HS  667 1885 564 1321 29.9% 
E. coli 
E24377A  

1068 2272 0 2272 0 
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Shigella 
boydii CDC 
3083 94  

187 277 0 277 0 

E. coli SE11 
(#20) 

1049 2250 0 2250 0 

E. coli 0127 
H6 E2348 69  

448 670 0 670 0 

E. coli IAI1  991 2927 832 2095 28.4% 
E. coli S88  287 413 0 413 0 
E. coli ED1a  305 431 0 431 0 
E. coli 55989  1081 2344 0 2344 0 
E. coli 
UMN026  

769 2445 0 2445 0 

 

3.2.4 Biological process enrichment  

To determine the frequencies at which different sorts of proteins are implicated in our LGT detections, 

we extracted protein-name annotations from the corresponding GenBank files (Table 3.6). The most-

frequent name annotation is in LGT events is hypothetical protein, followed by membrane protein, 

transcriptional regulator and transporter, protein types known to be exchanged among bacteria42,43. 

To further investigate the biological processes affected by LGT, we carried out functional enrichment 

tests (see Methods), selecting a false discovery rate of 0.05 as significance threshold. Here we present 

a general discussion of biological processes over- or under-represented in the datasets; full lists of 

terms are given in Supplementary Tables S8-S10. 

Table 3.6. Top 25 protein names (as extracted from the GenBank files) inferred to be affected by an 
LGT event in the ECS dataset. 
Counts Protein name 
11944 hypothetical protein 
1426  membrane protein 
1056  transcriptional regulator 
 615  transporter 
 454  oxidoreductase 
 265  transposase 
 251  LysR family transcriptional regulator 
 232  tail protein 
 192  two-component system response regulator 
 190  lipoprotein 
 182  two-component system sensor histidine kinase 
 162  diguanylate cyclase 
 158  hydrolase 
 144  AraC family transcriptional regulator 
 141  MFS transporter 
 135  ABC transporter ATP-binding protein 
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 125  porin 
 124  peptide ABC transporter permease 
 121  putative DNA-binding transcriptional regulator 
 115  protease 
 105  fimbrial protein 
 104  sensor histidine kinase 
 102  multidrug ABC transporter ATP-binding protein 
 100  glycosyl transferase 
  95  ABC transporter permease 

 

Among the ECS genomes, enrichment analysis identifies metabolite and trans-membrane transport, 

carbohydrate metabolic processes, and small-molecule biosynthesis and catabolism as particularly 

over-represented as inferred targets of LGT; at least 42 of the 50 most over-represented terms refer 

specifically to such processes. By contrast, the 21 most under-represented terms refer to transposition, 

genetic recombination, translation, or metabolism of peptides or nitrogenous compounds.  

Within the Enteric Bacteria (EB) dataset, enrichment of terms can depend on how we group the E. 

coli and Shigella genomes.  When 62 E. coli and Shigella genomes are combined into a single group, 

biological processes related to translation, nitrogen-compound and RNA biosynthesis, and viruses 

dominate the most over-represented functions, while trans-membrane transport and polysaccharide 

metabolism are under-represented. Removing all E. coli and Shigella genomes, only the E. coli 

genomes, or only the Shigella genomes, does not greatly affect this picture. When the E. coli and 

Shigella genomes are retained but grouped separately, the TF-IDF analysis is dominated by LGT 

between these groups (Figure 3.6a); viral processes including entry into and release from host cells, 

and extracellular (lipo)polysaccharide biosynthesis, come to the fore among over-represented 

processes, while translation, transposition, and purine and ribose metabolism are now under-

represented. These results illustrate how grouping can affect the functional interpretation of LGT in 

bacterial genomes. 

With the BA dataset grouped by phylum, relatively few genes are inferred to have accepted LGT 

(above). Thirty-five processes are found to be over-represented (see Supplementary section 4), with 

translational elongation (GO:0006414) being by far the most significant. No under-represented 

process passes our FDR threshold. Grouping instead by class, diverse metabolic processes appear as 

over-represented, while only two processes appear as (slightly) under-represented. 

3.3 Discussion and conclusions 

TF-IDF is an alignment-free method for the detection of regions of exogenous origin in molecular 

sequences. Based on the content of k-mers in a specific dataset, the method can identify regions of 
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exogenous origin in a sequence, and their inferred donor groups within the dataset, with high 

efficiency and effectiveness8. Here we apply TF-IDF on three empirical microbial-genome datasets 

of different sizes and sequence diversity to explore the advantages and limitations of this method. We 

systematically varied two key parameter-value settings (for word length k and gap size G), and 

investigated how the delineation of groups affects the performance of TF-IDF. 

Our results indicate that it may not be possible to identify a value of k optimal for all datasets. 

However, for these microbial genome datasets, the distribution of shared 12-mers helps us to select 

k. Within the ECS genomes, the vertical components of which share a relatively recent common 

ancestor, the proportion of identical 12-mers is relatively high (median >60%) and a longer k (35 £ k 

£ 50) supports high-confidence detections while not missing too many real LGTs. By contrast, in the 

highly divergent BA dataset in which most genomes share <30% identical 12-mers pairwise, almost 

no LGT is detected at k ³ 40. To ensure adequate LGT signal in such a dataset, k must be set smaller 

(20 £ k £ 30). However, at k £ 15, k-mers are too frequently matched pairwise at random, leading to 

an unacceptable level of false positives. In general, larger values of k are appropriate for high-

similarity datasets, and shorter k for low-similarity data.  

G determines how aggressively nearby lateral k-mers are consolidated into a single region. Given a 

sufficient density of such k-mers, a larger G causes intervening non-lateral regions to be merged into 

the consolidated region. This can cause some false positive regions to be detected by TF-IDF. At 

shorter G, the total number of detections increases without greatly affecting total detection length. 

Thus shorter G is preferred for precise delineation of lateral segments. In most cases, G = 2k is a 

satisfactory option. 

Apart from k and G, TF-IDF is also sensitive to how groups are recognised within the dataset. Many 

more transfers were inferred within the ECS dataset when six, rather than four, groups were 

recognised. It is difficult to disentangle the effects of group number, size, composition and 

phylogenetic cohesion, but we use the fortuitous stability of Group A/3 to argue that both TF and IDF 

terms can contribute to this sensitivity. We further demonstrate that the presence or absence of 

external groups does not affect the performance of TF-IDF beyond their effect (via the constituent 

sequences) on the IDF threshold. These results emphasise that as implemented here, TF-IDF is 

deterministic and is self-tuning to the dataset. 

We suspect that these effects manifest so strongly in ECS Groups E and B1 because these lineages 

have been particularly active in LGT. Analysing a 64-genome superset of our ECS dataset, 

Lukjancenko et al.44 find that members of Group E contribute almost half of the new gene families, 
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while our four Group B1 strains contribute aggressively to the rise in pan-genome size. Additional 

effects arising from variation in gene content may contribute further. 

TF-IDF delivers the most power when applied to a sequence dataset with high within-group similarity 

but uniformly low between-group similarity. However, group structure can be arbitrary in real-life 

cases. Our results with the ECS subset of Dataset 2 illustrate strategies for dealing with uneven or 

unbalanced data. The substantial loss of LGT signal when we assign sequences randomly to groups 

strongly indicates that groups should be delineated so as to capture the underlying phylogenetic 

structure where possible. This may not always be possible, as in our BA dataset, where Thermotoga 

and Aquifex are represented by single genomes of uncertain but relatively distant phylogenetic 

relationship. Other strategies for delineating groups can be imagined, but lie outside the scope of the 

present study. 

 

It has long been considered that lateral transfers from different donor groups can be superimposed in 

the recipient genome, yielding mosaic or pastiche genes45,46. We have now demonstrated this in the 

ECS dataset. Most genes that have accepted LGT have done so in multiple events, often from different 

donor groups. Where group structure reflects evolutionary history and neighbouring genomic regions 

are inferred to have been donated by groups adjacent on the tree, the transfer may have been ancestral. 

Taking a gene-centric approach restricted (for simplicity of analysis) to genes with only two inferred 

lateral origins, we find that a modest proportion (22-30%) might best be explained by ancestral 

transfer. To our knowledge, this is the first systematic computational study of multiple or overlapping 

origins in empirical genome-scale data. 

We mapped genes containing the inferred lateral regions to Gene Ontology (GO) terms using 

BLAST2GO then applied enrichment tests, identifying a wide range of biological processes as 

preferentially affected by LGT. Many processes known to be shared laterally are indeed over-

represented, although others (including e.g. transposition) are under-represented, whether as a 

consequence of their actual distribution in the dataset, or their presumed origin from a donor group 

not represented in the dataset. 

Our inference that genes annotated as involved in translational elongation (GO:0006414) in the BA 

dataset, and in translation (GO:0006412) in the EB dataset, are overrepresented among the LGT sets 

bears comment, as “informational” functions are considered less-susceptible to LGT than 

“operational” genes e.g. those involved in cellular transport or metabolism42. Closer examination 

reveals that (1) substantial subsets of our LGT-enrichment sets annotated with translational 

elongation (in BA) or translation (in EB) are not core informational genes, or indeed informational 
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genes at all, but appear in our lists via secondary annotations e.g. involving specialised regulatory 

relationships; (2) many informational genes42 are well-known to be susceptible to LGT; (3) even 

“core” informational genes are sometimes transferred laterally; and (4) in a few cases, core 

informational genes that we infer as lateral have features or properties (e.g. constraints, domains, 

paralogs, phyletic distributions) that could indicate a lateral history, or help explain why a lateral 

history has gone unrecognised by classical methods (for details see Supplementary material). Further, 

translation is over-represented when the 62 E. coli and Shigella genomes are combined into a single 

group; when they all are removed from the analysis; or when only E. coli, or only Shigella, are 

removed. However, when we include these E. coli and Shigella genomes but group them separately, 

translation becomes under-represented. That is, the LGT “translation” signal is being driven from 

parts of the dataset other than the E. coli-Shigella axis, and is completely overshadowed (indeed 

driven to under-representation) by the (much stronger) signal from the mostly non-translational 

transfers between E. coli and Shigella.  

For each dataset, the groups (nodes) and inferred transfers (edges) constitute the LGT network. Each 

of these three networks exhibits one or more densely connected regions (subgraphs), as well as nodes 

that are more-weakly connected or unconnected. The lack of connection between archaea and bacteria 

in the BA dataset is a case in point: far fewer transfers are inferred between archaea and bacteria than 

internally among archaea, or internally among bacteria. In the TF-IDF analysis of Dataset 2a, Yersinia 

remains almost unconnected to other genera; this illustrates that even among LGT-active groups, 

some genera can remain inactive.  

In summary, our results demonstrate that TF-IDF can be applied on diverse empirical genome-scale 

datasets, resulting in the inference of inter-group directional LGT and providing first steps toward the 

systematic reconstruction of multiple and superimposed transfer events. These inferred transfers 

affect a broad range of biological processes, including many already known or suspected to be 

affected by LGT. Future work will explore whether and how the settings of k and G affect topological 

features of the inferred LGT networks, hence our interpretation of lateral biology in microbial 

communities and the biosphere.  

3.4 Methods 

3.4.1 Datasets 

From our earlier simulation study8 we know that the performance of TF-IDF can be affected by how 

groups are delineated within a dataset, and by the divergence of sequences within a group. If 

sequences within groups are similar to one another (expected mutations up to 0.16/nucleotide) and 

the groups are dissimilar from one another (expected mutations between neighbouring groups above 
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0.2/nucleotide), the boundaries between groups are clear and TF-IDF can achieve high precision 

(>80%) and recall (>90%)8. Here, we select three empirical datasets that differ in number of 

sequences and divergence among sequences, to explore the performance of TF-IDF under a range of 

biologically realistic situations. Table 3.7 shows general information (number of sequences, sequence 

lengths and G+C content) on these datasets, while further information is presented in the following 

paragraphs. 

Table 3.7. General description of the datasets investigated in this research. 
Name Number 

of 
sequences 

Mean 
length 

Range of lengths Mean G+C 
content (%) 

Range of G+C 
content (%) 

ECS 27 4906162 4369232-5528445 50.76 50.39-51.33 

EB  110 4920079 3976195-6097032 51.03 47.00-57.68 

BA 143 3011345 490885-9105828 45.67 22.48-72.12 

 

Dataset 1: Escherichia coli and Shigella (abbreviated hereafter as ECS), represented by 20 and 7 

genomes respectively. Here and elsewhere47 the Shigella genomes are resolved as one or more 

lineages within the genus Escherichia. Some genomes within ECS are known to be rich in regions of 

inferred lateral origin47. Using alignment-based methods, we have previously shown that lateral 

transfer of protein-coding regions within ECS is biased by phylogeny (i.e. genetic relatedness and/or 

sequence similarity) more than by environment31, whereas the distribution of small RNAs has been 

affected more by gene loss than by LGT48. For the present work we recognise groups within ECS in 

two alternative ways: (1) by cutting the MRP supertree31 at certain levels (see Supplementary Figure 

S1), or (2) by using recognized phyletic groups36. These approaches yield four and six groups 

respectively.  

Dataset 2a: 110 genomes from the Enterobacteriaceae (53 Escherichia, 9 Shigella, 9 Klebsiella, 22 

Salmonella and 17 Yersinia), here abbreviated EB. Among these Escherichia, Shigella, Klebsiella 

and Salmonella are considered relatively susceptible to LGT. Strains of Yersinia harbour plasmids 

that encode genes of probable lateral origin49,50 but our datasets exclude plasmid sequences. Yersinia 

appears not to be naturally competent51 and although its main chromosome shows evidence of 

pathogenicity islands, their genes match sequences outside the Enterobacteriaceae52 and thus would 

not be recognised as lateral in our analyses of Dataset 2. We recognise each genus as a separate group 

except for E. coli and Shigella, which we treat in different ways (see Results). 

Dataset 2b: These 75 genomes constitute a subset of Dataset 2a (pruned to 20 E. coli and 7 Shigella) 

and a superset of Dataset 1 (addition of 58 genomes from the other genera). We expect to see the 
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same LGT detections within E. coli and Shigella as in the ECS dataset when the threshold is the same. 

Together, Datasets 2a and 2b allow us to explore the effects of group inclusion/exclusion (of groups 

other than ECS) and subdivision (ECS). 

Dataset 3: 143 genomes across 12 bacterial and 3 archaeal phyla, abbreviated here as BA. This dataset 

allows us to explore the effects of phyletic breadth, degree of sequence divergence, unbalanced group 

size and disruptive genomes on LGT inference. This dataset has been well-explored in our group 

using classical alignment-based (and some novel) methods for more than ten years14,33,34; MRP53 and 

16S rRNA reference trees are available. This dataset moreover offers a more-general (less-biased) 

selection of Gene Ontology (GO) Biological Process (BP)35 annotations than do specialist datasets 

dominated by human and animal pathogens (our Datasets 1 and 2). 

 

These datasets span a variety of evolutionary divergences. Information on the divergence among a 

dataset is important for setting the parameters of TF-IDF; however, typical approaches based on 

alignments are time-consuming and do not scale well with increasing number of sequences. To 

quantify this variation, we thus compute a rough measure of sequence similarity by calculating the 

percentage of identical 12-mers shared between each pair of sequences. Summary information is 

presented in Table 3.1. The distribution of similarities is shown in Figure 3.10; here we see that as 

expected, the ECS genomes are most similar pairwise, the EB genomes are more divergent (with a 

small bimodality consistent with the ECS subset) and the BA genomes the most divergent, with most 

sequence pairs sharing fewer than 30% of their 12-mers. 

 

Figure 3.10. Distribution of 12-mer frequencies in the ECS, EB and BA datasets. The x-axis shows 

binned proportions of 12-mers shared pairwise over all genomes in each dataset; the left y-axis 

shows frequencies (counts) of 12-mers, and the right y-axis gives the name of the dataset. 
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3.4.2 TF-IDF and parameterisation 

In this study we apply the TF-IDF method we devised in previous research8. TF-IDF is an alignment-

free method that detects LGT by the relative frequencies of k-mers in pre-determined groups. The 

method proceeds in four steps: 

1. Extract all unique k-mers in a dataset and build a k-mer dictionary of the dataset. 

2. IDF: we count the identical k-mers between each sequence and each group other than its own. 

A relationship matrix R is built in which rows are genomes, columns are groups, and 

individual elements count the number of identical k-mers shared between a sequence and a 

group. For consistency across group sizes and genome lengths, we normalise these counts by 

dividing by the number of genomes in the group (column), and by the number of nucleotides 

in the genome (row). We then compute the mean over all elements in R. If the value of an 

element exceeds the mean, the corresponding genome potentially contains lateral events 

(segments) donated by that group. 

3. For each genome with potential transfers from a donor group, we construct potential LGT 

segments by amalgamating all neighbouring k-mers in the genome which also appear in that 

group. These segments are further merged by joining all segments which are separated by an 

amount less than a threshold, which we refer to as gap size (G). 

4. TF: if the average frequency of all lateral k-mers in a candidate LGT segment is lower than 

the average frequency of all k-mers in the group containing that genome, then that segment is 

considered to have arisen by LGT. 

In this work we vary word length k and gap size G (see Table 3.8). Based on the results of our previous 

study8, we limit k to the range 20-45; when k < 20 many detected events are false positives, while at 

k ³ 50 common k-mers become too rare, resulting in decreased performance. Values of G were 

selected to cover a biologically reasonable range of granularity consistent with computational 

feasibility. 

Table 3.8. Range of parameter values investigated with the TF-IDF method. k is the size of k-mers. 
Parameter  Parameter values 

Word length k  20-45 in steps of 5 

Gap size G 2k, 4k, 8k 

 

For the ECS dataset, we also vary group composition in order to study its effect on inference using 

TF-IDF. We recognise groups in two ways as described above; in addition, we also generate 50 

randomised groupings patterned on the first grouping (into four groups by phylogeny) by allocating 
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each sequence to a group chosen at random, while preserving the number of sequences in each group. 

By doing this we generate a control set in which vertical inheritance signal is greatly attenuated, and 

against which we can compare our actual grouping. The total detection length based on actual groups 

(generated by cutting the MRP tree) is significantly higher than from the random replicates.  

3.4.3 Gene Ontology mapping and enrichment tests 

For each recipient genome, our TF-IDF analysis outputs a list of regions (coordinates) inferred to be 

of lateral origin, and the inferred donor group of each. To identify the biological functions affected 

by these regions, we map these coordinates to genes annotated in the host genome (as given in the 

NCBI .ffn and .gbk files). For both biological and statistical reasons, we examine only relatively long 

regions: biologically we are interested only in LGT events with potential to have functional 

consequence, while statistically we seek to minimise false positives and noise. Thus, a gene is 

considered only if it contains at least one segment which is longer than a given threshold. These 

thresholds (given in Table 3.9) are selected on different datasets to be close to the average length of 

all LGT detections in that dataset. This accounts for the variation in sequence diversity among the 

datasets. 

Table 3.9. Thresholds for mapping LGT segments to genes. The thresholds are selected by means of 
all detections in three empirical datasets. 
Dataset Thresholds for laterally transferred genes 

ECS > 500 contiguous k-mers (500 + k-1 nt) 

EB > 100 contiguous k-mers (100 + k-1 nt) 

BA > 10 contiguous k-mers (10 + k-1 nt) 

 

For each dataset we used blastp54 at E £ 10-5 to match protein-coding regions annotated in all genomes 

to the Swiss-Prot database55. Genes were distinguished by GI number and position. Gene Ontology 

(GO) terms associated with the matches were retrieved using BLAST2GO56,57 version 3.3.1 (mapping 

and annotation functions) from GO database version b2g_may15, yielding the background database 

for enrichment testing. We then submit a list of genes implicated as recipients of LGT, querying this 

list against the entire database. Regardless of the number of inferred lateral regions or donor groups 

involved, each gene is counted only once. We use a two-tailed Fisher’s exact test with a false 

discovery rate (FDR) of 0.05. This yields a list of GO Biological Process (BP) annotations which are 

over- and under-represented in the test set58. 
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Overview of Supplementary Material: 
 
 
Section 1. Supplementary material for ECS (E. coli and Shigella genomes) dataset, and for 
comparison among our datasets 
 
Supplementary Tables S1-S3 and Supplementary Figure S1 
 
Section 2. Comparison between TF-IDF analysis of our BA (bacteria and archaea) dataset with 
grouping by class, and results reported by Popa et al. (2011) on a 657-genome bacteria and archaea 
dataset. 
 
Supplementary Tables S4-S7 
 
Section 3. Index of sheet names and contents for Excel spreadsheets 
 
These spreadsheets (Supplementary Tables S8-S10), reporting Gene Ontology enrichment results 
for our three main datasets, are too large to be displayed here. They are being assigned DOI 
numbers and will be available for download from UQ eSpace. 
 
Section 4. Supplementary material for Gene Ontology enrichment tests 
 
Supplementary Tables S11-S12 
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Section 1. Supplementary material for ECS (E. coli and Shigella genomes) dataset, and for 
comparison among our datasets 
 
 
Table S1. Summary of lengths of the inferred lateral segments, showing the mean, median first 
quartile, and median third quartile lengths of all inferred segments.  
Dataset Mean Median First quartile Third quartile 
ECS 550.70 269 113 622 
EB 116.22 56 8  104 
BA (phylum level) 7.188 3 2 6 
BA (class level) 9.84 4 2 8 

 
Table S2. Group assignments for ECS genomes into six or four groups (see text and Figure S1). 
Six groups Four groups Organism 
D 1 E. coli SMS 3 5 
D 1 E. coli IAI39 
D 2 E. coli UMN026 
S 2 Shigella dysenteriae 
S 4 Shigella flexneri 5 8401 
S 4 Shigella flexneri 2a 
S 4 Shigella flexneri 2a 2457T 
S 4 Shigella sonnei Ss046 
S 4 Shigella boydii Sb227 
S 4 Shigella boydii CDC 3083 94 
E 2 E. coli O157:H7 
E 2 E. coli O157:H7 EDL933 
A 3 E. coli K12 substr W3110 
A 3 E. coli K12 substr MG1655 
A 3 E. coli HS 
A 3 E. coli C ATCC 8739 
B1 4 E. coli E24377A 
B1 4 E. coli 55989 
B1 4 E. coli SE11 
B1 4 E. coli IAI1 
B2 1 E. coli 0127 H6 E2348 69 
B2 1 E. coli 536 
B2 1 E. coli CFT073 
B2 1 E. coli ED1a  
B2 1 E. coli UTI89  
B2 1 E. coli S88  
B2 1 E. coli APECO1 

 
 
 
Table S3. Summary of lateral regions inferred among the 27 ECS genomes in Dataset 2b (i.e. when 
these 27 ECS genomes replace the 52 E. coli and Shigella genomes in the EB dataset, and Salmonella, 
Klebsiella and Yersinia genomes are present). 
Grou
p 

Organism Number 
of genes 

Number of 
lateral genes 

Donor groups 

D E. coli SMS 3 5 4744 3346 - 



 
 

98 

D E. coli IAI39 4725 3212 S 
D E. coli UMN026 4878 3615 S, B1, B2 
S Shigella flexneri 5 8401 4336 1989 E, A, B1 
S Shigella flexneri 2a 4053 1850 D, E, A 
S Shigella flexneri 2a 2457T 4385 2091 E, A, B1 
S Shigella sonnei Ss046 4563 2436 D, E, A, B1 
S Shigella boydii Sb227 4391 2388 D, E, A, B1 
S Shigella boydii CDC 3083 

94  
4532 2347 A, B1 

S Shigella dysenteriae 4063 2236 A 
E E. coli O157:H7 5204 4489 B1 
E E. coli O157:H7 EDL933  5286 4570 B1 
A E. coli K12 substr W3110 4213 2534 S, E, B1 
A E. coli K12 substr MG1655 4140 2580 D, E, B1, B2 
A E. coli HS  4366 2983 D, S, E, B1, B2 
A E. coli C ATCC 8739  4434 3183 - 
B1 E. coli E24377A  4729 3628 S, E, A, B2 
B1 E. coli 55989  4953 3836 S, E, A, B2 
B1 E. coli SE11  4684 3616 S, E, A, B2 
B1 E. coli IAI1  4385 3512 D, S, E,A, B2 
B2 E. coli 0127 H6 E2348 69  4809 3021 E, B1 
B2 E. coli 536  4542 2702 E, B1 
B2 E. coli CFT073 4897 2844 - 
B2 E. coli ED1a  5012 2925 S, E 
B2 E. coli UTI89 4827 2681 B1 
B2 E. coli S88  4688 2709 E, B1 
B2 E. coli APECO1 4878 2781 B1 
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Figure S1. MRP supertree of the ECS dataset [1], further annotated to show the two ways we group 
the 27 ECS genomes: by a biological criterion (into Groups D, S, E, A, B1 and B2) or by cutting the 
supertree on deep branches (into Groups 1, 2, 3 and 4). 
 
 
 

 
 
 
 
 
[1] Skippington, E. & Ragan, M. A. Phylogeny rather than ecology or lifestyle biases the 

construction of Escherichia coli-Shigella genetic exchange communities. Open Biology 2, 
120112 (2012).   
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Section 2. Comparison between TF-IDF analysis of our BA (bacteria and archaea) dataset with 
grouping by class, with results reported by Popa et al. (2011) on a 657-genome bacteria and archaea 
dataset. 
 
Popa and colleagues [1] analysed a dataset of 657 bacterial and archaeal genomes (sets of individual 
genes) using an approach that allows genes to be identified as lateral. In some cases (about 7% of 
the total) they can infer the direction of transfer. Lists of their genomes (Genome_list_dLGT.txt) 
and inferred lateral genes (dLGT-data.txt) are available as Supplemental Material [1]. Here we 
compare these lists with the corresponding results from our TF-IDF analysis of Dataset 3 (143 
bacterial and archaeal genomes) analysed at class level, and report on overlaps.  
 
POPA [1]: 
Groups: 17 groups (mostly classes & phyla) 
Genomes: 657 
Genes: 2,129,548 
Lateral genes: 52,621 (from dLGT-data.txt) 
Unique lateral GI numbers: 41,392 (from dLGT-data.txt) 
Unique lateral inter-generic GI numbers (donors and recipients): 5819  
Genomes contributing these 5819 inter-generic lateral GIs: 317 
Unique lateral inter-generic GI numbers (recipients only): 4700 
Genomes contributing these 4700 recipient GIs: 277 
 
OUR DATASET 3 (BACTERIAL & ARCHAEAL GENOMES): 
Level-3 groups: 31 classes 
Genomes: 143 
Genes: 390,801 
Unique GI numbers: 375,468 
Lateral events:  3623 (k = 25, G = 2k = 50) 
TF-IDF between-class lateral recipient GIs: 3043 (coverage threshold: see Main text, Table 9) 
Genomes contributing these 3043 recipient GIs: 100 
 
OVERLAP DATA: 
Genomes in both POPA and BA: 40 (genus/species/strain descriptors identical or nearly identical)* 
Group overlap: substantial overlap or similarity (see Tables S5 and S6) 
GIs common to POPA 41,392 and BA 375,468: 4513 (POPA laterals in BA) 
GIs common to POPA 41,392 and BA 3403: 81 (POPA laterals in BA laterals) 
GIs common to POPA 5819 and BA 375,468: 800 (POPA inter-generic laterals in BA) 
GIs common to POPA 5819 and BA 3043: 9 (POPA inter-generic laterals in BA laterals) 
 
*Because Popa et al. do not report genome versions, precise (version) identity would have to be 
reverse-engineered from GI lists (which themselves are incomplete). However, the numbers of 
matched GI numbers suggest that at least half of the 40 genomes appearing in both the POPA and 
BA lists are represented by the same, or nearly identical, versions.  
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Thus when the two methods are applied to large, similarly diverse (bacteria plus archaea) datasets, 
they detect about the same density of unique “long-distance” lateral recipient GIs: 
 
POPA: 4700 inter-generic recipients / 317 contributing genomes 
TF-IDF: 3623 inter-class recipients / 100 contributing genomes 
 
However, the POPA “long-distance” transfers are almost always within-class or even closer 
(Escherichia and Shigella are almost certainly the same genus). This is apparent from Figure 2A of 
Popa et al. [1], where very few clusters (connected components) encompass nodes of different 
colours.  By contrast, all the “long-distance” transfers inferred using TF-IDF are necessarily (given 
the way we delineate groups in this case) between-class. 
 
As illustrated by the nine inferred recipient genes above, the appearance of a gene in LGT lists from 
these two approaches does not imply that the same (or a compatible) lateral event has been inferred. 
A decade ago one of us [2] pointed out that different “surrogate” (non-phylogenetic) methods may 
agree less often than expected under a purely stochastic model. G+C-based methods preferentially 
identify relatively recent transfer events [3]. The method employed by Popa et al. [1] is a hybrid 
(G+C plus phylogenetic) method, but its initial screening step is based on G+C content. 
 
We conclude that TF-IDF provides access to LGT events spanning broader phyletic distances than 
does the approach of Popa et al. [1].  
 
 
REFERENCES FOR SECTION 2 
 
[1] Popa O, Hazkani-Covo E, Landan G, Martin W & Dagan T. Directed networks reveal genomic 

barriers and DNA repair bypasses to lateral gene transfer among prokaryotes.  Genome Res. 21: 
599-601 (2011). 

 
[2] Ragan MA. On surrogate methods for detecting lateral gene transfer.  FEMS Microbiol. Lett. 

201: 187-191 (2001). 
 
[3] Ragan MA, Harlow TJ & Beiko RG (2006) Do different surrogate methods detect lateral genetic 

transfer events of different relative ages?  Trends Microbiol. 14: 4-8 (2006). 
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Table S4. Nine GIs common to POPA 5819 and BA 3043 datasets (see above). 
 
1 
RECIPIENT  16272575 Haemophilus influenzae Rd KW20 (Gamma-proteobacteria) 
GENE  NP_438792.1 Elongation factor Tu 
DONOR POPA 875 Actinobacillus_pleuropneumoniae_L20 (Gamma-proteobacteria) 
DONOR TF-IDF Bacillus/clostridium  
 
2 
RECIPIENT 16762890 Salmonella enterica subsp. enterica serovar Typhi str. 

CT18 (Gamma-proteobacteria) 
GENE  NP_458507.1 B12-dep homocysteine-N5-methyltetrahydrofolate 

transmethylase 
DONOR POPA 822 Klebsiella_pneumoniae_MGH_78578 (Gamma-proteobacteria) 
DONOR TF-IDF Deinococcus 
 
3 
RECIPIENT 16763372 Salmonella enterica subsp. enterica serovar Typhi str. 

CT18 (Gamma-proteobacteria) 
GENE  NP_458989.1 ABC transporter ATP-binding protein 
DONOR POPA 818 Citrobacter_koseri_ATCC_BAA-895 (Gamma-proteobacteria) 
DONOR TF-IDF Alpha-proteobacteria 
 
4 
RECIPIENT 16767822 Salmonella enterica subsp. enterica serovar 

Typhimurium str. LT2 (Gamma-proteobacteria) 
GENE  NP_463437.1 ABC transporter ATP-binding protein 
DONOR POPA 818 Citrobacter_koseri_ATCC_BAA-895 (Gamma-proteobacteria) 
DONOR TF-IDF Alpha-proteobacteria 
 
5 
RECIPIENT 27467230 Staphylococcus epidermidis ATCC 12228 (Low-GC 

Firmicutes)   
GENE  NP_763867.1 Elongation factor Tu 
DONOR POPA 324 Enterococcus_faecalis_V583 (Low-GC Firmicutes) 
DONOR TF-IDF Gamma-proteobacteria 
 
6 
RECIPIENT 30018378 Bacillus cereus ATCC 14579 (Low-GC Firmicutes) 
GENE  NP_830009.1 Elongation factor Tu 
DONOR POPA 281 Lysinibacillus_sphaericus_C3_41 (Low-GC Firmicutes) 
DONOR TF-IDF Gamma-proteobacteria 
 
7 
RECIPIENT 30260299 Bacillus anthracis str. Ames (Low-GC Firmicutes)  
GENE  NP_842676.1 Translation elongation factor Tu 
DONOR POPA 281 Lysinibacillus_sphaericus_C3_41 (Low-GC Firmicutes) 
DONOR TF-IDF Gamma-proteobacteria 
 
8 
RECIPIENT 33593471 Bordetella pertussis Tohama I (Beta-proteobacteria) 
GENE  NP_881115.1 Isocitrate dehydrogenase 
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DONOR POPA 57 Ralstonia_eutropha_H16 (Beta-proteobacteria) 
DONOR TF-IDF Gamma-proteobacteria 
 
9 
RECIPIENT 56480411 Shigella flexneri 2a str. 301 (Gamma-proteobacteria) 
GENE  NP_709501.2 DNA gyrase subunit B 
DONOR POPA 801 Escherichia_coli_O157H7 (Gamma-proteobacteria) 
DONOR TF-IDF  Beta-proteobacteria 
 
 
(In addition, 56480411 appears twice as a donor in POPA, in each case donating to an Escherichia 
coli O157:H7 strain) 
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TABLE S5. Genomes in our BA data, grouped at Level 3 (by class). 
 
Crenarchaeota:  
   1 Aeropyrum (1 genome)  
   2 Sulfolobales (2 genomes) 
   3 Thermoproteales (1 genome) 
Euryarchaeota:  
   4 Archaeoglobales (1 genome) 
   5 Halobacteriales (1 genome) 
   6 Methanobacteriales (1 genome) 
   7 Methanococcales (1 genome) 
   8 Methanopyrales (1 genome) 
   9 Methanosarcinales (2 genomes) 
   10 Thermococcales (3 genomes) 
   11 Thermoplasmales (2 genomes) 
Nanoarchaeota:  
   12 Nanoarchaeum (1 genome) 
Aquificales:  
   13 Aquificaceae (1 genome) 
Bacteroidetes:  
   14 Bacteroidaceae (1 genome) 
   15 Porphyromonadaceae (1 genome) 
Chlamydiales:  
   16 Chlamydiaceae (7 genomes) 
Chlorobi:  
   17 Chlorobiales (1 genome) 
Cyanobacteria:  
   18 Chroococcales (4 genomes)  
   19 Nostocales (1 genome) 
   20 Prochlorophytes (3 genomes)  
High G+C Firmicutes:  
   21 Actinomycetales (12 genomes) 
Low G+C Firmicutes:  
   22 Bacillus/Clostridium group (34 genomes) 
Planctomycetes:  
   23 Planctomycetales (1 genome) 
Proteobacteria:  
   24 alpha subdivision (9 genomes) 
   25 beta subdivision (8 genomes) 
   26 epsilon subdivision (5 genomes) 
   27 gamma subdivision (33 genomes) 
Spirochaetales:  
   28 Leptospiraceae (1 genome)  
   29 Spirochaetaceae (2 genomes) 
Thermotogales:  
   30 Thermotoga (1 genome) 
Thermus/Deinococcus group:  
   31 Deinococcus (1 genome) 
 
TABLE S6.  Genome numbers in groups from Popa et al. (2011), file “dLGT-data.txt” 
 
      59   Actinobacteria 
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      89   Alphaproteobacteria 
    125   Bacilli 
        8   Bacteroidetes 
      71   Betaproteobacteria 
        6   Chlamydiae  
        4   Chlorobi 
        7   Chloroflexi 
      31   Clostridia 
        7   Crenarchaeota 
      29   Cyanobacteria 
        4   Deinococcus-Thermus 
      16   Deltaproteobacteria 
      15   Epsilonproteobacteria  
      16   Euryarchaeota 
    203   Gammaproteobacteria 
      12   Mollicutes  
        9   Spirochaetes 
        4   Thermotogae 
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TABLE S7. Strain names identical, or nearly identical, between the Popa et al. 657-genome list and 
ours. Close similarity of names does not guarantee identical assemblies or annotation versions 
(hence identical GI lists); conversely, in a few cases strain designations were changed or 
abbreviated, disguising potentially similar records. Our comparison of GIs was not pre-filtered 
through this name list, so full disambiguation of strain designators is not necessary for the purposes 
of this Supplementary analysis.  
 
Bacillus_anthracis_Ames 
Bacillus_cereus_ATCC_14579 
Bacteroides_thetaiotaomicron_VPI-5482 
Bordetella_bronchiseptica_RB50 
Bordetella_parapertussis_12822 
Bordetella_pertussis_TohamaI 
Bradyrhizobium_japonicum_USDA110 
Brucella_melitensis_16M 
Brucella_suis_1330 
Chlorobium_tepidum_TLS 
Chromobacterium_violaceum_12472 
Enterococcus_faecalis_V583 
Escherichia_coli_CFT073 
Escherichia_coli_O157:H7 
Escherichia_coli_O157:H7_EDL933 
Haemophilus_ducreyi_35000HP 
Lactococcus_lactis_lactis 
Mesorhizobium_loti_MAFF303099 
Neisseria_meningitidis_MC58 
Neisseria_meningitidis_Z2491 
Nitrosomonas_europaea_ATCC_19718  
Nostoc_sp._PCC_7120 
Oceanobacillus_iheyensis_HTE831 
Pasteurella_multocida_Pm70  
Salmonella_typhimurium_LT2 
Salmonella_enterica_Typhi_Ty2 
Shigella_flexneri_2a_2457T 
Sinorhizobium_meliloti_Rm1021 
Staphylococcus_aureus_MW2 
Staphylococcus_aureus_Mu50 
Staphylococcus_aureus_N315 
Streptococcus_agalactiae_2603V/R 
Streptococcus_agalactiae_NEM316 
Streptococcus_pneumoniae_R6 
Streptococcus_pneumoniae_TIGR4 
Vibrio_vulnificus_CMCP6 
Vibrio_vulnificus_YJ016 
Wigglesworthia_brevipalpis_Str. 
Yersinia_pestis_CO92 
Yersinia_pestis_KIM 
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Section 3. Index of sheet names and contents for Excel spreadsheets 
 
 
Table S8. GO enrichment results on the ECS dataset (Supplementary Table S8: two sheets).  
 
Sheet name Description of results 
Enrich_27_OVER GO terms over-represented in six phyletic groups 
Enrich_27_UNDER GO terms under-represented in six phyletic groups 

 
 
 
Table S9. GO enrichment results on the BA dataset (Supplementary Table S9: ten sheets). 
 
Sheet name Description of results 
E_S_o GO terms over-represented, E. coli and Shigella grouped 

separately 
E_S_u GO terms under-represented, E. coli and Shigella grouped 

separately 
Ecoli_o GO terms over-represented, Shigella genomes removed 
Ecoli_u GO terms under-represented, Shigella genomes removed 
Shigella_o GO terms over-represented, E. coli genomes removed 
Shigella_u GO terms under-represented, E. coli genomes removed 
No_E_S_o GO terms over-represented, E. coli and Shigella genomes 

removed 
No_E_S_u GO terms under-represented, E. coli and Shigella genomes 

removed 
ES_combined_o GO terms over-represented, E. coli and Shigella combined 

into one group 
ES_combined_u GO terms under-represented, E. coli and Shigella combined 

into one group 
 
 
 
Table S10. Enrichment test results of BA dataset (Supplementary Table S10: three sheets). 
 
Sheet name Description of results 
Enrich_143_L2_OVER GO terms over-represented, genomes grouped by phylum 
Enrich_143_L3_OVER GO terms over-represented, genomes grouped by class 
Enrich_143_L3_UNDER GO terms under-represented, genomes grouped by class 
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Section 4. Supplementary material for Gene Ontology enrichment tests 
 
Section 4.1 GO:0006414 translational elongation: 35 genes affected by LGT in BA dataset 
 
  2 ABC transporter ATP-binding protein 
  1 alanyl-tRNA ligase (synthetase) 
  2 leucyl-tRNA ligase (synthetase) 
  2 valyl-tRNA ligase (synthetase) 
  4 elongation factor G 
21 elongation factor Tu 
  3 GTP-binding protein LepA 
 
Rivera et al. [1] identified as “informational” genes as those functioning in translation (including 
tRNA synthetases), transcription and (DNA) replication, as well as homologs of vacuolar ATPases 
and GTPases. The following year the same group [2] included almost the same categories (omitting 
replication), and pointed to the translational and transcriptional complexes as examples. In the 
former they identified initiation, elongation (EF-Tu, EF-Ts, EF-G) and termination factors, 
ribosomal proteins, rRNAs, tRNAs and mRNAs, as well as “nongene products such as ions, small 
molecules such as GTP, GDP, etc., and membranes”.  
 
These informational genes were considered less-susceptible to LGT [2]. This idea has persisted, 
although one subsequent study found no LGT bias between informational and operational genes [3], 
and another study found the bias limited to the “translation, ribosomal structure, and biogenesis” 
category once correction was made for connectivity bias [4]. Another study found translational 
genes to be the functional category for which within-bacteria LGT is the MOST frequent [5]. 
Functional category J (translation, ribosomal structure and biogenesis) shows strong net-like 
relationships among some although not all bacteria [6, Figure 4J]. 
 
Not all informational genes are “resistant” to LGT. Genes encoding aminoacyl-tRNA ligases 
(synthetases) are well-known to be susceptible to LGT [5,7,8], specifically including the three types 
we found: alanyl [9], leucyl [5,10,11] and valyl [5,7,12,13] ligases. 
 
ABC transporter subunits, including the ATP-binding protein, are likewise well-known to be 
susceptible to LGT [14-17]. 
 
By contrast, the “core” elongation factors EF-G and EF-Tu are often considered resistant to LGT 
because the deeper branches of their phylogenetic trees agree with the corresponding 16S rRNA 
tree. However, recent studies have added quite a lot of nuance to this generalisation. Two large 
systematic studies of evolutionary dynamics in the EF-G protein family [18,19] identify four [19] or 
five [18] classes of EF-G paralogs, several of which have been affected by gene duplication, LGT 
and loss. Using somewhat different data, these authors identified about 14 instances of ancestral or 
more-recent LGT of EF-G paralogs involving a-, b- and g-proteobacteria, actinomycetes, 
cyanobacteria and spirochaetes; other LGT events were considered possible. Some LGT events 
turned up in both studies [18,19]; others were supported by presence/absence of indels [19]. Using 
TF-IDF, we infer that EF-G genes in four genomes (of 143 in our BA dataset) have accepted LGT: 
one Staphylococcus aureus, one Streptococcus, one chlamydia (all transferred from Proteobacteria) 
and Deinococcus (transferred from high-G+C Firmicutes); see Table S4 below. The latter genome 
has been particularly accepting of LGT [5,20,21]. 
 
Using TF-IDF, we infer that 21 EF-Tu genes in 18 of these 143 genomes have been affected by 
LGT. In two g-proteobacterial genomes (Haemophilus influenzae and Vibrio parahaemolyticus), 
both copies of EF-Tu are inferred to have accepted LGT from the Low-G+C Firmicutes, while both 
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copies in Deinococcus have accepted LGT from Proteobacteria. In all, our 21 inferred LGT events 
involve transfer from the low-G+C Firmicutes into g- (four) or e-proteobacterial genomes (one), or 
from Proteobacteria into a low- (seven) or a high-G+C Firmicute, or a member of Chlamydia, 
Cyanobacteria, Deinococcus or Fusobacteria (Table S11). The involvement of Firmicutes in all but 
four of these 21 inferred events is notable, and recalls the results of Ke et al. [22] with 17 species of 
the low-G+C firmicute Enterococcus: in all 11 species with two copies of EF-Tu, the tufB copy had 
arisen laterally, likely in a single event, whereas there was no evidence of LGT in the six species in 
which EF-Tu is single-copy. Ke et al. [22] mention potentially similar situations in the low-G+C 
firmicute Clostridium, and in the high-G+C firmicute Steptomyces. We also note evidence for 
homologous recombination affecting the EF-Tu ortholog EF-1a in archaea [23], and for LGT being 
responsible for the distribution of the EF-1a-like factor EFL among eukaryotes [24]. 
 
Finally, our list also includes the highly conserved “fourth EF”, leader peptidase A (LepA), which is 
present in bacteria and almost all eukaryotes, but absent from archaea. We are aware of only a 
single report examining its phylogeny [25]. No evidence was found for inter-kingdom LGT; taxon 
sampling within Bacteria was limited and bootstrap support modest (and/or not shown), but the 
topology of the LepA branch gives no reason to suspect the involvement of LGT. 
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Table S11. Recipient genomes and donor groups for elongation factors inferred for our BA dataset. 
 
EF-G 
Staphylococcus aureus [Low-G+C Firmicutes] from Proteobacteria 
Streptococcus [Low-G+C Firmicutes] from Proteobacteria  
Chlamydophila [Chlamydiae] from Proteobacteria 
Deinococcus from High-G+C Firmicutes 
 
EF-Tu 
Haemophilus [Gamma-proteobacteria] (two species) from Low-G+C Firmicutes 
Pseudomonas [Gamma-proteobacteria] (two copies in one genome) from Low-G+C Firmicutes 
Vibrio [Gamma-proteobacteria] (two copies in one genome) from Low-G+C Firmicutes 
Yersinia [Gamma-proteobacteria] from Low-G+C Firmicutes 
Campylobacter [Epsilon-proteobacteria] from Low-G+C Firmicutes 
Bacillus [Low-G+C Firmicutes] (two species) from Proteobacteria 
Listeria [Low-G+C Firmicutes] from Proteobacteria 
Oceanobacillus [Low-G+C Firmicutes] from Proteobacteria 
Staphylococcus [Low-G+C Firmicutes] (three strains in two species) from Proteobacteria 
Bifidobacterium [High-G+C Firmicutes] from Proteobacteria 
Prochlorococcus [Cyanobacteria] from Proteobacteria 
Fusobacterium [Fusobacteria] from Proteobacteria 
Chlamydia [Chlamydiae] from Proteobacteria 
Deinococcus (two copies in one genome) from Proteobacteria 
 
LepA 
Bifidobacterium [High-G+C Firmicutes] from Thermus-Deinococcus 
Lactococcus [Low-G+C Firmicutes] from Proteobacteria 
Deinococcus from High-G+C Firmicutes 
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Section 4.2 GO:0006412 translation: 964 genes in Dataset 2a (EB dataset)  
 
Ribosomal proteins = 583 
Translation elongation factors = 40 
Translation initiation factors = 40 
Translation miscellaneous (probably non-core) = 6 
tRNA synthetases / ligases = 130 
Metabolic/operational & other non-core-translational = 165 
 
See Section 4.1 (above) for an introduction to the “complexity hypothesis”.  Here we consider the 
over-enrichment of genes annotated with GO:0006412 in the EB dataset under three different 
groupings: 64 E. coli (EC) and Shigella (S) genomes combined into a single group (Dataset 2a), all 
ECS genomes removed, or only these S genomes removed. When these EC and S genomes are 
included but grouped separately, genes annotated with GO:0006412 translation become under-
represented (see text). 
 
The numbers below refer to TF-IDF inference on Dataset 2a (all ECS combined in a single group) 
at the default (mean value) IDF threshold. Of the 964 “translational” genes inferred as potentially 
lateral (Table S12), 130 encode tRNA synthetases/ligases, i.e. are well-known to be susceptible to 
LGT [1-3]. A further 165 encode metabolic/operational or other biological processes, and as such 
are not suspected of being LGT-resistant. Manual examination of a subset confirmed that the 
annotation is not in error, although the connection with translation can be indirect, e.g. as part of a 
specialised regulatory mechanism.  
 
This leaves genes encoding 583 ribosomal proteins, 40 elongation factors, 40 initiation factors and 
six miscellaneous proteins. 
 
Elongation factors have been discussed in Part 3.1 above. For the 40 EFs we identify as having 
accepted LGT, the breakdown is: EF-2 (6 instances), EF-G (22), EF-P and related (10), EF-Ts (1) 
and EF-Tu (5). 
 
Jain et al. [4] included initiation factors 1, 2 and 3 among the translational apparatus components 
whose genes should be less-susceptible to LGT. For the 40 IFs we identify as having accepted LGT, 
the breakdown is: IF-1 (13), IF-2 (18) and IF-3 (9). We do not know of prior reports of LGT 
involving these genes. 
 
Ribosomal proteins (r-proteins) comprise by far the greatest single component of this set. 
Collectively these sequences are considered to provide a conservative vertical central signal [4], and 
a subset of 16 r-proteins has been used to infer a three-Domain tree [5]. Individually, however, r-
proteins are short, compositionally biased within and across Domains [4], and difficult to align [6]. 
Moreover, topologies of the inferred trees depend strongly on how the poorly alignable sites are 
treated [6]. For many although not all r-protein families, further complication is provided by 
multiple gene losses, restricted phyletic distributions and/or the presence of potentially 
subfunctionalised paralogs [7]. Yutin et al. [4] identified paralogs in 536 of 995 analysed bacterial 
genomes. All divergent paralogs contain a zinc-binding motif (zinc ribbon) [4,8], opening a path for 
(true or false) detection of LGT based on presence or absence of this conservative motif. 
 
Keeping the above provisos in mind, LGT has previously been inferred for r-proteins S4 [8], S14 
[9,10], S18 [7], L16 [10], L22 [10], L23 [6], L27 [11], L28 [7], L31 [7], L32 [7], L33 [7] and L36 
[7]. Our list of r-proteins inferred by TF-IDF as affected by LGT includes most of these, and many 
others (S1 through S14, S16 through S21, L1 through L7, L9 through L11, L13 through L25, L25p, 
L27, L29, L30, L32 and L36). 
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Finally, in many bacteria and archaea, genes encoding many r-proteins occur adjacent to one 
another on the chromosome. Combined with the short length characteristic of r-protein genes, this 
means that an inferred lateral region that maps to the gene for one r-protein has an excellent chance 
of impinging on the gene for another. Given the overall weak gene-order conservation across and 
within many groups of Bacteria and Archaea, this “neighbour effect” is likely to affect r-proteins, 
hence the biological function translation, more than almost any other category.   
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Table S12. Details of gene types within GO:0006412 translation 
 
Ribosomal proteins = 583 
Ribosomal proteins (small subunit) = 289 
Ribosomal proteins (large subunit) = 294 
 
Metabolic/operational & other = 165 
ABC transporter ATP-binding protein = 2 
Acetyl-CoA carboxylase subunit beta = 6 
Aconitase hydrases & hydratases = 32 
Aspartate-ammonia ligase (asparagine synthetase A) = 1 
ATP-binding component of transport system (putative) = 2 
ATT-dependent RNA helicase DeaD = 13 
Carbamoyl-phosphate synthase large chain / large subunit = 35 
Cold-shock DEAD-box protein A = 2 
DEAD/DEAH box helicase domain protein = 8 
GTP-binding protein = 7 
GTP-binding protein TypA (includes TypA/BipA) = 9 
HF-I host factor = 1 
Host factor I for bacteriophage Q beta replication = 2 
Hypothetical proteins = 26 
Integration host factor beta subunit = 1  
N5-glutamine SAM-dependent methyltransferase = 1 
Peptide deformylase = 1 
Ribosome recycling factor = 1 
RNA chaperone /binding protein Hfq = 9 
RNA helicases = 4 
Short-chain dehydrogenase/reductase SDR = 1 
Sigma modulation protein (putative) = 1 
 
Translation miscellaneous (probably non-core) = 6 
Energy-dependent translational throttle protein EttA = 1 
GTP-binding elongation factor family protein = 2 
Peptide chain release factor 3 = 1 
Peptidyl-tRNA hydrolase = 1 
Release factor (putative) = 1 
 
Translation elongation factors = 40 
Translation elongation factor 2 = 2 
Translation elongation factor G = 22 
Translation elongation factor P = 9 
Translation elongation factor P – (R) beta lysine ligase = 1 
Translation elongation factor Ts = 1 
Translation elongation factor Tu = 5 
 
Translation initiation factors = 40 
Translation initiation factor 1 = 13 
Translation initiation factor 2 = 18 
Translation initiation factor 3 = 9 
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tRNA synthetases / ligases = 130 
Asparaginyl = 23 
Glutaminyl = 9 
Glycyl = 3 
Isoleucyl = 1 
Lysyl = 5 
Methionyl = 4 
Prolyl = 14 
Threonyl = 2 
Valyl = 69 
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Updates for Chapter 3 
 

The results of LGT detection on a variant of the EB dataset (Dataset 2b, page 83) showed that 

lowering the IDF threshold leads to more lateral events being inferred. So the IDF threshold can be 

set as a tunable parameter of TF-IDF. However, a lower IDF threshold does not guarantee the 

quality of detections, e.g. false positives may be inferred.  

Tuning the IDF threshold should be approached systematically, within an evaluation system in 

which the results generated at different threshold settings can be compared. In real applications, in 

which researchers need to detect LGT in empirical datasets, the quality of detections cannot be 

evaluated. So this much be approached by simulation. In addition, the TF component uses input 

from the IDF component, so the cooperation between the two must be taken into consideration. All 

these issues associated with performance tuning of the TF-IDF method will be discussed in future 

work. 

In the meantime, the IDF threshold can adjusted by the user by modifying the function called in the 

code at a point corresponding to Line 20 of the pseudocode, replacing the current function Avg(R). 
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Chapter 4 Finding genetic exchange communities 
 

In the proceeding chapters, I showed that the total number of LGT detections using TF-IDF is affected 

by k and gap size G. Particularly for the BA (bacterial and archaeal genome) dataset, the inferred 

LGT networks are not uniform, as each contains densely and sparsely connected regions. The densely 

connected regions represent potential communities of organisms that, over time, have exchanged 

genetic material amongst themselves. In 2011 Skippington and Ragan proposed that such genetic 

exchange communities (GECs) could be recognised as structures in an LGT network, and mentioned 

paths, transitively closed sets, cliques and near-cliques (paracliques) as possible graphical structures. 

In this chapter, I adopted clique (the most-densely connected of these structures) as the definition of 

a GEC, and inferred GECs using a data-driven approach. To do this I first built LGT networks from 

pairwise transfers inferred using TF-IDF; the nodes in these networks represent groups of sequences, 

and the edges represent inferred LGT. Recipient sequences were subsumed into the corresponding 

group, directionality of the edges was ignored, and incoming and outgoing edges connecting pairs of 

nodes were collapsed into a single edge. Then I used the software package GrAPPA (Graph 

Algorithms Pipeline for Pathway Analysis) to find maximum and maximal cliques in the network.  

Analyses of these networks demonstrates that not all nodes within an LGT network are equally 

involved in GECs. Further, some nodes (which were always associated with high counts of LGT 

events) persisted when k was increased, and as such were considered core nodes in the corresponding 

GEC. I extracted the lateral genes underpinning these GECs, and carried out enrichment tests on their 

Gene Ontology terms. A wide range of biological processes are over-represented among these 

annotations, in particular those having to do with cellular metabolism, regulation and transport. This 

research extends our understanding of microbial communities that share genetic material via lateral 

processes, and of the biological processes affected by this sharing. The methodology itself 

exemplifies a highly scalable approach to the systematic study of GECs in diverse environments, 

including potentially the entire microbial biosphere.  

This research chapter has been prepared as a manuscript. Supplementary material for this manuscript 

follows the main text. 
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Abstract 

Bacteria and archaea can exchange genetic material across lineages through lateral genetic transfer 

(LGT). Collectively, these exchange relationships can be abstracted as a network and analysed using 

concepts from graph theory. In particular, densely connected regions within an LGT network have 

been defined as genetic exchange communities (GECs). 

Here we apply the alignment-free method introduced in the previous chapters, TF-IDF, to study 

patterns of LGT among microbial genomes. We examine three empirical datasets (and selected 

variants of one of them) of different size (number of genomes) and phyletic breadth, varying k within 

limits identified earlier. We map the inferred lateral regions to genes in recipient genomes, and build 

networks in which the nodes are groups of genomes, and edges represent LGT. Finally we use the 

software package GrAPPA to find maximum and maximal cliques (i.e. GECs) in these graphs. 

In a 27-genome dataset of Escherichia coli and Shigella genomes, we recognise one clique that 

encompasses all six groups based on MLST type. For a dataset of 110 genomes of enteric bacteria, 

the inferred LGT network is largely driven by exchange among E. coli and Shigella genomes. 

Removing genomes from either E. coli or Shigella, we find cliques that involve the remaining genus 

plus Klebsiella and Salmonella. Yersinia is mostly silent to LGT, and not involved in any GEC. For 

a dataset of 143 genomes across bacteria and archaea, network structure depends on k, and on whether 

we delineate groups by phylum or by class. Four phyla (or six classes) are core members, i.e. present 

in the cliques across all investigated k. No cliques join bacteria and archaea. GECs inferred for these 

three datasets contain most of the lateral genes, i.e. most surviving lateral transfer has happened 

within these exchange communities. 

Gene Ontology enrichment tests demonstrate that biological processes associated with metabolism, 

regulation, and transport are often over-represented. This result is largely stable to change of k. 

4.1 Introduction 

Bacteria and archaea comprise much of the planet’s biodiversity. Although individually 

inconspicuous, communities of these organisms are responsible for key biological and geochemical 

processes including nitrogen fixation, aerobic and anaerobic digestion of biomass, and oxidative 

dissolution of minerals. Bacteria also cause a range of diseases in plants, animals and humans. Since 

1996, genome-sequencing technologies have been applied initially to study bacterial pathogenesis, 

and more-recently to understand environmental processes and explore biodiversity. Genome 

sequences are publicly available for more than 30,000 bacteria and archaea1, and large international 

projects2 are underway to sequence many thousands more. 
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Arguably, the two most-notable discoveries from the first two decades of microbial genomics have 

been the extent of strain-to-strain variation in gene content3-5, and the prevalence of lateral genetic 

transfer (LGT). It has long been known that bacteria can take up genetic material from their 

surroundings, incorporate it into their main genome (or maintain it on extrachromosomal elements) 

and transmit it to subsequent generations. More than 35 years ago, unexpected patterns of gene 

presence among bacterial taxa and anomalous topologies of phylogenetic trees inferred for bacterial 

proteins were attributed, somewhat controversially, to LGT6-9. In the last 10-15 years, large-scale 

analysis has revealed the surprising extent of LGT among bacteria and archaea, with many estimates 

in the range 10-40% or greater10. Thus while all organisms transmit genetic information vertically 

from parent to offspring, bacteria and archaea simultaneously operate an orthogonal genetics that 

links (important components of) their genomes with viruses, phage, plasmids and free environmental 

DNA in a vast web11-20. 

We and others13,15,16,21 have sought to abstract this web of genetic relationships as a network graph in 

which vertices represent observed entities that carry DNA (genomes, and in some applications also 

plasmids and phage), and edges the inferred transmission of genetic material between them. Precise 

definition of this mapping, however, turns out to be unexpectedly tricky. Two genomes that have 

descended only recently from a common ancestor are unlikely to differ greatly in sequence (through 

the accumulation of mutations) or gene content (through LGT and/or gene loss), and if they are to be 

accorded individual vertices, the edge between them will be dominated by vertical signal. To the 

extent that our network graph is intended to help us understand patterns of LGT, it makes sense to 

combine such genomes into a single vertex (node). As genomes diversify through time, it becomes 

increasingly useful to represent them as separate vertices, because doing so potentially increases the 

resolution at which LGT and gene loss can be inferred; but pairwise edges begin to represent a mixture 

of vertical and lateral signal. Moreover, older LGT (i.e. more-basal in the tree of vertical signal) 

becomes established in lineages and begins to be allocated among present-day genomes in 

hierarchical patterns that reinforce local vertical signal22,23. Thus by flattening the temporal (historical) 

dimension into the plane of the (present-day) network graph, we hide sequence diversity in the 

vertices and admix vertical and lateral signal in the edges. Although an optimal balance (or multiple 

locally optimal balances across the tree) can be sought, these issues remain.  

Until now, the nature of the edges has received most attention. All-versus-all sequence comparison 

of genes17,24-26 e.g. using BLAST27 yields a similarity matrix based on all matching signals, both 

vertical and lateral. This can be skewed toward lateral signal by requiring best BLAST hits to be 

reciprocal28,29, raising match thresholds17 and/or subtracting the edges implied by a trusted reference 

tree15,16. A converse strategy was employed by Clarke et al.30, who were interested only in the vertical 
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component. A similar concept underlies phylogenetically based approaches: a test tree (typically 

inferred for a putatively orthologous gene or protein family) is compared with a reference (genome 

or organismal) tree, and instances of topological incongruence are considered prima facie cases of 

LGT13,31-33. However, reconstructing the pathway of inferred LGT as shortest edit paths is 

computationally hard, and may not yield a unique solution, or any solution at all34. Popa et al.21 

employ a hybrid approach in which only genes assessed as having regions of anomalous G+C content 

are input into phylogenetic discordance analysis.  

Several objections have been raised to these approaches, both individually and collectively. We have 

repeatedly argued that as genes are not the actual units of LGT, gene families should not be the 

primary units of analysis35,36. Doolittle37,38 has argued that by using a reference tree external to the 

analysis, we impose a higher standard of evidence on rejecting the reference topology (and thereby 

inferring LGT) than on accepting (or failing to reject) it, thereby according the vertical paradigm a 

methodologically unfair and theoretically unjustified advantage (but see39). A way is needed to infer 

LGT directly, positively and fairly in large genome-scale datasets. 

In earlier chapters I introduced term frequency - inverse document frequency (TF-IDF) as an accurate, 

scalable approach to infer LGT among microbial genomes40,41. Using TF-IDF, edges represent lateral 

signal and can be inferred directly from whole genomes without first parsing them into individual 

genes. These edges are directional: transfers are inferred from a group of donor genomes to a single 

recipient genome. This may offer a partial solution to the issue of node heterogeneity; we return to 

this point below. No comparison with an external topology is required, although inference may be 

improved if the group structure reflects phylogeny (Chapter 3)41. 

Direct access to edges that represent only the lateral component of genetic relationships greatly 

simplifies interpretation of network graphs: these are natively LGT networks. In 2011, Skippington 

and Ragan42 defined a genetic exchange community (GEC) as a densely connected region of an LGT 

network. Recognising the limitations of existing methods and data, these authors operationally 

defined a GEC “as a set of entities, each of which has over time both donated genetic material to, and 

received genetic material from, every other entity in that GEC, via a path of lateral transfer”. These 

GECs do not exist a priori in nature, but rather are “actively fashioned (and continually refashioned) 

by the complex ongoing interplay among habitats, donors, vectors, recipients, mechanisms, sequences, 

population structures and selection”42. Biological problems that could be abstracted as involving 

dense edge sets in LGT graphs include the number, size, geospatial extent, taxonomic or habitat 

diversity of GECs in the microbial biosphere, and the role of vectors in mediating the exchange of 

pathogenicity, virulence or resistance factors among pathogens, primary hosts and secondary 

hosts17,21,42,43.    
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Skippington and Ragan42 further proposed that dense regions in LGT graphs might be described using 

concepts from graph theory, including cliques, paracliques (near-cliques), transitively closed sets, 

paths or walks, but were not in a position to recommend one of these over the others. My work in 

previous chapters makes it clear that edges, hence dense edge sets in LGT graphs and their biological 

interpretations, can be sensitive to the choice of TF-IDF parameters. Notably, precision and recall 

can be sensitive to the size of k (Chapter 2)40, and edge number to the structure and delineation of 

groups (Chapter 3)41. The three empirical genome-scale datasets studied in Chapter 3 now provide a 

solid foundation for addressing these issues. 

In this Chapter I examine (a) whether and how k affects these GECs; (b) whether there are core nodes 

(stable to variation of k) in different GECs; and (c) whether and how our biological process (functional) 

interpretation is consequently affected. More broadly, the approach pioneered in this Chapter will 

provide a framework for understanding the extent and biological significance of LGT in complex 

environments.  

4.2 Methods 

Since our TF-IDF method infers LGT from a donor group to a recipient sequence, the nodes (vertices) 

in our inferred networks are of two types: individual genomes when they are recipients of LGT, and 

groups of genomes when they are donors. Of course, members of a group may individually be (and 

often are) recipients. Edges are directional, so we depict them using an arrow from donor to recipient 

(Figure 4.1).  

We aim to delineate GECs, introduced above as sets of nodes that have both donated genetic material 

to, and received genetic material from, each other. However, it is difficult to extract these 

relationships when nodes are of two types, individual sequences and groups. For this reason we take 

only groups as nodes in our network analysis. Member genomes are subsumed into their own-group 

identity, and all directed edges into those sequences are merged into a single directed edge from the 

donor group to the recipient group. The integer on each edge gives the total number of LGT events 

which are inferred in this way between donor and recipient groups. 

As introduced above, GECs  might best be described as paths, transitively closed sets, paracliques or 

cliques42. The first two structures fail to capture the density of connectivity, and many such structures 

of nearly equivalent size or value can often be found in relatively highly connected graphs such as 

the LGT networks we derive below. Paracliques differ from the corresponding cliques in lacking a 

defined number (or fraction) of edges; in the absence of theory or practice with respect to an 

application area (e.g. discovery of GECs), this number would have to be optimised for each dataset, 

requiring intense computation. Constrained by these considerations, here we use the strictest yet 
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clearest definition of GEC, as a clique containing groups (nodes) which share (donate or receive) 

genetic material from other nodes within this clique. In this way we will focus on the most densely 

connected regions within an LGT network. 

 

 

 

 

 

 

Figure 4.1 Merger of LGT relationships from group-to-sequence into group-to-group. 

 

Discovery and analysis of GECs proceeds in four main steps:  

(a) construct LGT networks based on the results of TF-IDF; 

(b) collapse recipient genomes to recipient groups; 

(c) find GECs from the LGT network; and 

(d) carry out enrichment tests on biological processes underlying the GECs.  

The datasets we used in this chapter are identical to those in Chapter 3: ECS (27 Escherichia coli and 

Shigella genomes), EB (110 enteric bacterial genomes) and BA (143 genomes from Bacteria and 

Archaea). From Chapter 2 and Chapter 3, we know that k can strongly affect the detection of LGT, 

hence potentially the topologies of LGT networks. For that reason, here we explore different values 

of k to test the stability of GEC topology. In step (a), we explore values of k from 20 to 40, with gap 

size G fixed at 2k. The step size is 10 for the ECS and EB datasets, while for the BA dataset (where 

LGT signal is much weaker than in the other two) we set step size as 5 for improved resolution against 

k. In step (b), we construct the LGT network based on groups which contain sequences involved 

lateral events. 

To find GECs in a network (step (c)), we find cliques in the network. Finding cliques is known to be 

an NP-hard problem44, although a parameterised complexity approach is available45. To approach this 

problem, we use the Graph Algorithms Pipeline for Pathway Analysis (GrAPPA) software package46. 

GrAPPA integrates multiple graph-theoretical tools including those designed to find maximum, 

maximal and para-cliques. The algorithm for maximal clique enumeration is an implementation of 

the Bron-Kerbosh algorithm47; here we set the minimum node threshold as three. For finding a 
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maximum clique, GrAPPA employs a custom algorithm called Maximum Clique Finder (MCF)48, a 

branch-and-bound algorithm of MCQ designed by Tomita and Kameda49. It implements tools to 

extract patterns (including cliques) efficiently from networks, but can deal only with undirected and 

unweighted networks. For this reason, we reformulate our directed networks as undirected networks 

(i.e. disregard the arrowhead), delete all weight annotations (number of inferred LGT events) on each 

edge, and merge edges between pairs of nodes which are both donors and recipients. Such 

reformulation does not make full use of the LGT information (e.g. directionality) provided by TF-

IDF, but nonetheless preserves information sufficient for discovery of GECs as currently defined.  

In Step (d), we find which biological processes are enriched in GECs. As we see below (Results), the 

GECs inferred for the ECS and EB datasets encompass almost all the respective lateral genes, so the 

biological process enrichments are essentially the same as described in Chapter 3. Thus here I report 

biological process enrichment only for cliques inferred, at different values of k, for the BA dataset. 

As before (Chapter 3), as a first step I map the inferred lateral regions to genes; thus if a gene is 

overlapped by at least one lateral segment of at least ten k-mers (with any intervening gaps up to G = 

2k), the gene is considered lateral. These genes are extracted from the GenBank genome record using 

GI numbers and coordinates, and collected as a test set. All genes in each dataset form the reference 

set. The enrichment statistic is a Fisher’s exact test, for which I set FDR = 0.05 as the threshold for 

selecting over- and under-represented Gene Ontology50,51 terms. BA is the only dataset (among these 

three) for which LGT network topologies change greatly with k.  

4.3 Results 

Detailed results including LGT networks, maximum and maximal cliques, and gene lists are available 

as Supplementary Material (Supplementary Figures S1-S19, and Supplementary Tables S1-S31). 

Very large or detailed Supplementary Figures are also available for download in high resolution at 

http://bioinformatics.org.au/tools-data/ as “TF-IDF network diagrams.zip”. 

4.3.1 ECS dataset 

We divide the ECS dataset (20 Escherichia coli and 7 Shigella genomes) into six groups according 

to multi-locus sequence type (MLST) 43,52. In an earlier analysis of this dataset 43, lateral events 

identified by topological incongruence between trees inferred from putative orthogroups and an MRP 
53 reference were shown to be biased more by phylogeny than by environment or lifestyle; concern 

was also expressed that defining GECs as cliques or paracliques might be too rigorous a standard. 

Here, we use our TF-IDF method to infer LGT networks (Figure 4.1). At k = 30 or 40, topologies of 

the two networks are identical (as before: 41), although there are fewer detections on each edge at k = 

40. At k = 20 we find three additional edges, from group D to group B2 (257 transfers), from B2 to S 
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(443 transfers) and from B2 to E (3574 transfers). For all k examined here, all six phyletic groups 

belong to a single clique. Summary information of the LGT networks can be found in Table 4.1. 

Table 4.1 Numbers of lateral genes, LGT network edges and nodes inferred for the ECS dataset at k 
= 20, 30 or 40. 

k # of LGT events # of edges # of nodes in GECs 

20 58076 25 6 

30 64071 22 6 

40 70849 22 6 

 

 
 

Figure 4.2 LGT networks for ECS. (a) k = 20, and (b) k = 30. At k = 40, connectivity is the same as 

in (b), although values on the edges are larger (see Chapter 3, Figure 3.2). 

 

Although the topology of the GECis stable for 20 £ k £ 40, the total number of lateral genes in each 

GEC increases with k (Figure 4.3). This increase might appear to contradict our earlier finding that 

when k increases, the total number of detections and detection length should remain the same or 

decrease (at G = 2k). However, when k is small, more short segments tend to be detected as lateral 

(Supplementary Table S1). For example, at k = 20, 26% of lateral segments are ³ 500 nt in length, 

our threshold for selecting the segments for mapping to genes. This proportion increases to 31% at k 

= 40. Thus, we infer more lateral segments ³ 500 nt at k = 40, which leads to more lateral genes being 

found. 
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Figure 4.3 Total number of lateral segments of length ³ 500 k-mers (i.e. not only those mapping to 

genes), and total number of lateral genes, within the (maximum) clique inferred for the ECS dataset, 

as a function of k. 

 

4.3.2 EB dataset 

The enteric bacteria dataset contains 110 genome sequences from five genera: Escherichia, Shigella, 

Salmonella, Klebsiella and Yersinia. Because the delineation of groups affects the detection results 

(Chapter 3), we infer LGT networks and extract GECs from five variants of this dataset: all genera 

present (referred to as EB-1); all genera except Shigella (EB-2) or alternatively, all except Escherichia 

(EB-3); with Escherichia and Shigella combined into a single group (EB-4); and with both 

Escherichia and Shigella removed (EB-5). These are five of the six variants examined earlier, in 

Chapter 3. 

If we keep all 110 sequences and group them by genus (EB-1 dataset), the GEC topologies change as 

k steps from 20 to 30 to 40. At k = 20, Escherichia, Shigella, Klebsiella constitute a single GEC. At 

k = 30, we find two GECs, one consisting of Escherichia and Shigella, the other Escherichia and 

Klebsiella. At k = 40 only one GEC is found, consisting of Escherichia and Shigella. We infer many 
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more LGT events between Escherichia and Shigella than between any other pair of genera. As 

Escherichia and Shigella are present in the GEC across the examined range of k, we can say that they 

are the core nodes of this GEC.  

Because genomes from Escherichia and Shigella share many more identical k-mers than do other 

groups, the IDF values (elements of the R matrix) for these genomes are much higher than for the 

others (Chapter 2). This pushes up the IDF threshold, with the consequence that few lateral events 

are detected involving the other genera. To explore this effect, we removed the Shigella genomes 

from the dataset while retaining those from Escherichia, thereby eliminating the effect of Shigella 

(EB-2 dataset). We now infer additional LGT events between Escherichia and Salmonella, 

Escherichia and Klebsiella, and Salmonella and Klebsiella. All these node-pairs exchange genetic 

material bidirectionally, and we find a GEC composed of Escherichia, Klebsiella and Salmonella 

which remains stable as k increases from 20 to 40. We find the same when we instead retain Shigella 

sequences while removing those of Escherichia (EB-3 dataset). We also infer LGT events between 

Klebsiella and Yersinia in EB-3, but Yersinia cannot reach Salmonella and Shigella, so the GEC is 

restricted to Shigella, Klebsiella and Salmonella. In EB-4 we combine Escherichia and Shigella into 

a single group (ES) to test whether this grouping affects the topology of the GEC; more LGT events 

were inferred from Salmonella to ES, but membership of the GEC remained ES, Salmonella and 

Klebsiella. Lastly, to eliminate the effects of Escherichia and Shigella on LGT inference, we use only 

Klebsiella, Salmonella and Yersinia as input. At k = 20, the sole GEC contains all three genera, but 

at k = 30 or 40, the previous GEC is split into two GECs, one containing Klebsiella and Salmonella 

and the other Klebsiella and Yersinia. Details are provided in Table 4.2. 

Table 4.2. Lateral genes and cliques inferred for variants of the EB dataset at k = 20, 30 or 40. 

Datase

t 

k 

size 

Nodes in clique Number of 

lateral genes 

in cliques 

Number of 

lateral genes in 

network 

Proportion 

(%) 

EB-1 20 Escherichia, Shigella, Klebsiella 29527 29527 100% 

 30 Escherichia, Shigella 29258 29264 99.9% 

 30 Escherichia, Klebsiella 6 29264 0.1% 

 40 Escherichia, Shigella 16968 16968 100% 
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EB-2 20 Escherichia, Klebsiella, 

Salmonella 

23964 23970 99.9% 

 30 Escherichia, Klebsiella, 

Salmonella 

10840 10840 100% 

 40 Escherichia, Klebsiella, 

Salmonella 

7420 7426 99.9% 

EB-3 20 Klebsiella, Salmonella, Shigella 15290 15290 100% 

 30 Klebsiella, Salmonella, Shigella 6473 6501 99.5% 

 40 Klebsiella, Salmonella, Shigella 3869 3909 98.9% 

EB-4 20 ES, Klebsiella, Salmonella 24806 24811 99.9% 

 30 ES, Klebsiella, Salmonella 10762 10762 100% 

 40 ES, Klebsiella, Salmonella 7951 7952 99.9% 

EB-5 20 Klebsiella, Salmonella, Yersinia 6721 6721 100% 

 30 Klebsiella, Yersinia 123 2586 4.8% 

 30 Klebsiella, Salmonella 2463 2586 95.2% 

 40 Klebsiella, Yersinia 140 1559 9% 

 40 Klebsiella, Salmonella 1419 1559 91% 

 

4.3.3 BA dataset 

The BA dataset consists of 143 genome sequences across Bacteria and Archaea. We group these 

genomes into fifteen phyla or, alternatively, into 31 classes. With more nodes than in the two previous 

datasets, there is potential for inferred LGT networks to be more complex. On the other hand, 

sequences are more dissimilar across the BA dataset, so fewer k-mers are shared and fewer instances 

of LGT are inferred. These detections are also greatly affected by change of k (Chapter 3).  
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When groups are delineated by phylum, the number of total LGT detections decreases significantly 

as k increases. The decrease is sharp, which causes edges in the LGT network to vanish and the GECs 

to shrink. At k = 20 six GECs are found, each with five phyla. Five of these GECs contain the High 

G+C Firmicutes, Proteobacteria and Low G+C Firmicutes, which together contain 14797 lateral 

genes, 95.5% of the total inferred over the entire network. Thus these phyla form the core of inter-

phylum GEC. We also observe a community of Nanoarchaeota, Euryarchaeota and Crenarchaeota; 

although only ten LGT events are inferred between these nodes, it is notable for showing potential 

GECs among Archaea. In addition, the Thermus/Deinococcus phylum contributes 244 lateral events, 

1.5% of the total; as our dataset contains only one strain in this phylum, this particular genome appears 

to be more LGT-active than many other bacterial genomes. 

The number of detections drops sharply at k > 20, the total detections continues to fall with increasing 

k, to 34 at k = 40. Recall that the simulation studies in Chapter 2 indicate potential false positives at 

k £ 20, presumably due to identical k-mers shared between sequences and groups simply by 

coincidence. As LGT detections decrease in number, some edges in the LGT network vanish but the 

core component of the GECs – the High G+C Firmicutes, Low G+C Firmicutes and Proteobacteria – 

persists unchanged. Thermus/Deinococcus also remains active in sharing LGT with Proteobacteria 

for all investigated k. 

When the BA genomes are alternatively grouped by class, the LGT networks are more complex. All 

but one of the 31 classes are involved in LGT at k = 20, with 30696 genes inferred to have received 

one or more lateral segments. These genes are distributed over 169 edges, mostly (77.7%) in the 

Actinomycetales (5377 genes), Bacillus/Clostridium (2277), Alpha-proteobacteria (5944), Beta-

proteobacteria (7322) and Gamma-proteobacteria (8596). We observe 23 maximal cliques (≥ 3 nodes) 

in this network. The Actinomycetales, Bacillus/Clostridium, Alpha-, Beta- and Gamma-

proteobacteria all form part of the core, each being present in 17 cliques (≥ 5 nodes) and in the 

maximum clique (largest GEC).  

Since the sequences within BA are relatively dissimilar from each other, many fewer k-mers are 

shared between sequences than in other two datasets. The LGT detections are very sensitive to k size: 

when k is increased from 20 to 30 and 40, the numbers of LGT events drop sharply from 30696 to 

1239 and 373 respectively. Gamma-proteobacteria, Beta-proteobacteria, Actinomycetales and 

Bacillus/Clostridium are hubs and play key roles in most GECs at k = 30; at k = 40, fewer LGT are 

inferred and only the Beta- and Gamma-proteobacteria remain as the core of GECs.   
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Deinococcus is active in exchanging genetic material with Beta- and Gamma-proteobacteria for 20 £ 

k £ 40. Other lateral events are also inferred between Deinococcus and Actinomycetales, and between 

Deinococcus and Chlorococcales at k < 40.  

4.3.4 Enrichment test on biological processes within GECs 

In addition to the topologies, we are also interested in what biological processes are enriched in GECs. 

This can help us better understand how the biological processes are represented in genetic exchange, 

and contribute to construction of GECs.  

From analyses of LGT networks in the ECS and EB datasets, we find that more than 90% of the 

inferred lateral genes in each dataset are represented in the corresponding GEC. In the ECS dataset, 

all vertices are in the GEC. There is no need to carry out enrichment tests on such GECs: biological 

processes contributing to GEC formation will be indistinguishable from those of the whole networks 

to which the GECs belong, hence from the total LGT edge sets (Chapter 3). 

For the BA dataset, however, GEC topologies change significantly with k. Few LGT events are 

detected at k > 30, particularly when sequences are grouped by phylum (Table 4.3). For optimal 

comparison, enrichment tests were applied on lateral genes of maximum cliques in each LGT network 

at 20 ≤ 𝑘 ≤30 with genomes grouped by phylum and by class.  

Table 4.3 Number of LGT genes in the BA dataset at 20 £ k £ 40, analysed at the level of phylum or 
class. 

k size # LGT detected at phylum level # LGT detected at class level 

20 12880 28628 

25    686   3043 

30    167   1076 

35      69    576 

40       0    310 

 

The enrichment tests identify biological processes related to metabolism, transport and regulation as 

over-represented when sequences are grouped by phylum at 20 ≤ 𝑘 ≤30. The term translational 

elongation (GO:0006414) ranks in first position at k = 20, and seventh at k = 25, among over-

represented terms. The most significantly under-represented biological processes relate to 
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transposition and to RNA modification at k = 20. At k = 25, the under-represented terms relate to 

RNA processing and biosynthetic process. The only term under-represented at k = 30 describes the 

modification of macromolecules.  

When the genomes are grouped by class, the main categories of GO terms significantly over-

represented remain those describing metabolism, transport and regulation. Terms most under-

represent terms relate to transposition, RNA metabolisms and regulation at k = 20 and 25; at k = 30, 

processes of protein modification are found to be under-represented. 

In general, the patterns of over-representation are similar between analyses at phylum and class levels. 

Interestingly, translation elongation is significantly over-represented at phylum level, but much less 

so at class level. Transposition (GO:0032196) is significantly under-represented in most cases. 

4.4 Discussion and conclusion 

Here I inferred LGT networks for three datasets of different phyletic breadth (hence evolutionary 

depth). For the ECS dataset, the entire LGT network is inferred to form a single GEC encompassing 

all nodes, consistent with previous research43 There is, however, interplay with the IDF threshold, as 

seen in the EB dataset and its variants. For the full EB dataset (EB-1), the LGT signal between 

Escherichia and Shigella is much stronger than that of any other pairwise comparison and dominates 

the lateral signal, with the result that the only community that can be found is Escherichia and Shigella. 

If we remove Escherichia or (alternatively) Shigella, or combine them into a single group, we now 

detect LGT events from (and/or to) Klebsiella and Salmonella. This reveals a wider GEC containing 

either Escherichia or Shigella, plus Klebsiella and Salmonella (Supplementary Figures S2-5). By 

contrast, Yersinia is relatively silent to LGT, and contributes little to the community.  

Particularly in the BA dataset, we see that some parts of the LGT network are sensitive to change of 

k. As discussed elsewhere, when k is small (here k = 20) many k-mers are shared by chance, resulting 

in many false positive inferences. Edges supported by large numbers of lateral events (e.g. with high 

weights) will tend to persist, whereas those representing smaller numbers of events may disappear as 

k increases. Even so, when the sequences are grouped by phylum, the High-G+C Firmicutes, Low-

G+C Firmicutes and Proteobacteria are found in all GECs inferred across the investigated range of 

parameter values (Supplementary Figures S6-10, Table S2-11). For this reason we identify them as 

core nodes of the GEC for the BA phyla. Although it does not contribute many LGT events, 

Thermus/Deinococcus is also a member of most communities.   

When the BA dataset is grouped into 31 classes, many more clique structures are found. The Alpha-, 

Beta-, Gamma-subdivisions of Proteobacteria, the Actinomycetales and Bacillus/Clostridium are 

always present in (at least one) GEC (Supplementary Figures S11-15, Tables S12-S21), i.e. are core 
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nodes. By contrast, the Epsilon-proteobacteria appear relatively silent to LGT, with fewer inferred 

events per genome (Supplementary Table S22). In the class-level LGT network, the sole Deinococcus 

genome is also involved in many GECs, linked through a lateral edge with subdivisions from 

Proteobacteria. More LGT events might be expected if more sequences from Deinococci and its 

immediate relatives were included in this dataset. 

Although many fewer instances of LGT are inferred involving archaea, we nonetheless recognise one 

GEC among them. The low frequency of inferred LGT events may arise because these genomes are 

relatively diverse in gene content and phylogenetically distant from each other, and/or because in 

reality these genomes have exchanged little genetic material13,21. In the former case TF-IDF should 

find instances of LGT but the pairwise values may not pass the IDF threshold, whereas in the latter 

case there would be little true-positive LGT to be found and lowering the IDF threshold would lead 

only to false-positive inferences. Comparing the results of TF-IDF with those of classical alignment-

based methods may help distinguish between these alternative explanations.  

Enrichment tests on the BA data reveal that a wide range of biological processes are over-represented 

in the LGT events that underpin the GECs identified. As expected54,55, metabolic processes, gene 

regulation, and trans-membrane and intracellular transport are broadly represented. For example, with 

genomes grouped by class and k = 25, 30 of the 50 most over-represented processes describe 

metabolism. Terms associated with transposition or antibiotic resistance are not seen: these genes are 

usually transferred within-phylum or within-class (or indeed more narrowly), and often occur on 

plasmids, which are not represented in the genome files we used. As expected, few terms describing 

processes of transcription, translation or DNA replication54,55 are overrepresented. 

Fewer biological process terms are under-represented among the LGT events that underpin the BA 

GECs. The term transposition (GO:0032196) is very significantly under-represented. A similar result 

was also found in the ECS dataset (Chapter 4 Supplementary Table S4). From previous research, we 

know that genes annotated with this term are widespread in the ECS dataset, making it difficult for 

genes annotated with this term to pass the TF threshold for detection. In the BA dataset, genomes of 

E. coli and Shigella are a major source of genes associated with transposition; as these are members 

of the same group (Gamma-proteobacteria), they are not detected by TF-IDF. In the EB dataset, when 

Escherichia and Shigella are not treated as separate groups, transposition is not significantly under-

represented (Chapter 4 Supplementary. Table S5). Thus TF-IDF is not blind to such mobile biological 

processes, but the way groups are delimited limits their discovery. 

This work represents the first systematic exploration of the sensitivity of GECs to choice of parameter 

values in an alignment-free framework. The results confirm the promise of this approach, but 

important challenges remain.  
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As the network analysis software package GrAPPA46 can process only undirected and unweighed 

networks, for the analyses reported in this Chapter all edges were rendered undirected (with merger 

of incoming and outgoing edges) and weights were ignored. These steps represent a classic pre-

processing on a directed network56. Other strategies have been introduced to find cliques in directed 

network; all of them involve weakening he edges, and do not guarantee a better interpretation of 

properties of the original directed network57,58. Comparing these strategies is a problem in graph 

theory beyond the scope of this project. The current operation has made it difficult to extract 

biological information from the graphs, e.g. directionality and relative magnitudes of inferred lateral 

exchange across environments. Nonetheless, some features of the role played by LGT in the evolution 

of microbes are still accessible, e.g. the frequent exchange among Escherichia and Shigella contrasted 

with the relative isolation of Yersinia.   

Here we have defined GECs as cliques, a rigorous graph structure that maps particularly well onto 

biological concepts of the sharing of genetic information via LGT. In introducing the mapping of 

GECs onto LGT graphs, Skippington & Ragan42 expressed concern that missing data might make 

clique too rigorous a definition; we share their concern, but find no criterion by which to select (much 

less optimise) the number or proportion of “missing” edges (paraclique), while for the analyses 

presented here, maximal paths would be numerous yet not particularly informative biologically.  
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Figure S1. LGT networks for EB-1 dataset at different values of k.  
 
 
 
   

  
Figure S2. LGT networks for the EB-2 dataset at different values of k. 
 

Yersinia

E.coli

5

Salmonella

3972

Klebsiella

997

9616

1180

3911

4289

Shigella

E.coli

243924866

Klebsiela

1 5

Shigella

E.coli

124384530

E.coli

Yersinia

6

Salmonella

1634

Klebsiella

415

3908

140

826

497

k = 20 k = 30 k = 40 

k = 20 k = 30 k = 40 

Salmonella

E.coli

5223

Klebsiella

252

2392

463

1262

1248

Yersinia

E.coli

5

Salmonella

3972

Klebsiella

997

9616

1180

3911

4289



 
 

141 

Salmonella

Shigella

1641

Klebsiella

636

1544

253

1592

807

Yersinia

28

Klebsiella

Yersinia

4

Salmonella

860

Shigella

520

36 419

1034

200

836

 

  

 
Figure S3. LGT networks for the EB-3 dataset at different values of k. 
 
 
 

 

 

 
 
Figure S4. LGT networks for the EB-4 dataset at different values of k. 
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Figure S5. LGT networks for the EB-5 dataset at different values of k. 
 

 

 
Figure S6. LGT network for the BA dataset: genomes grouped by phylum, k = 20.  
 

Klebsiella

Yersinia

24

Salmonella

4701

39

16

1941

Klebsiella

Yersinia

95

Salmonella

158428 879

Klebsiella

Yersinia

104

Salmonella

86136 558

Crenarchaeota

Euryarchaeota

1

Nanoarchaeota

5

3 1

High_GC_Firmicutes

214

Low_GC_Firmicutes

10

Cyanobacteria

44

Bacteroidetes

4

Proteobacteria

4529

Chlamydiales

2

Chlorobi

65

Thermus_Deinococcus

208

25

Aquificales

13 273

46

1639

55

4

Spirochaetales

191

Thermotogales

82

26

86

2

118

2

22

2

8

1

20

2

1

4646

1324

405

89

45

253

76

629

4

7

5

1

44

2

131

36

21

3

60

11

161

12

1

Planctomycetes

7

k = 20 k = 30 k = 40 



 
 

143 

 
Figure S7. LGT network for the BA dataset: genomes grouped by phylum, k = 25. 
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Figure S8. LGT network for the BA dataset: genomes grouped by phylum, k = 30.  
 
 

 
Figure S9. LGT network for the BA dataset: genomes grouped by phylum, k = 35. 
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Figure S10. LGT network for the BA dataset: genomes grouped by phylum, k = 40. 
 

 

 

 
Figure S11. LGT network for the BA dataset: genomes grouped by class, k = 20. 
 

 
 
 

 
Figure S12. LGT network for the BA dataset: genomes grouped by class, k = 25. 
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Figure S13. LGT network for the BA dataset: genomes grouped by class, k = 30. 
 

 
 

  
Figure S14. LGT network for the BA dataset: genomes grouped by class, k = 35. 
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Figure S15. LGT network for the BA dataset: genomes grouped by class, k = 40. 
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Table S1. Distributions of lengths of inferred lateral segments in the ECS dataset at different k. 
Length of lateral segment (nt) k = 20 k = 30 k = 40 
0-100 41587 37297 27972 
100-200 21620 26318 23783 
200-300 13343 17161 16043 
300-400 8890 11240 11333 
400-500 6189 8394 8510 
500-600 4656 6261 6235 
600-700 3674 4814 5148 
700-800 2971 3824 3926 
800-900 2281 2894 3286 
900-1000 1929 2449 2614 
1000-1100 1634 2037 2187 
1100-1200 1417 1644 1845 
1200-1300 1264 1215 1539 
1300-1400 970 1074 1354 
1400-1500 917 1018 1106 
1500-1600 736 824 991 
1600-1700 659 701 844 
1700-1800 625 789 722 
1800-1900 581 488 563 
1900-2000 452 449 598 
2000-2100 399 432 504 
2100-2200 413 414 460 
2200-2300 359 335 424 
2300-2400 320 358 379 
2400-2500 314 283 342 
2500-2600 255 272 267 
2600-2700 260 216 275 
2700-2800 218 159 236 
2800-2900 224 225 214 
2900-3000 190 171 213 
3000-3100 210 166 182 
3100-3200 182 143 153 
3200-3300 157 142 157 
3300-3400 153 121 138 
3400-3500 179 136 165 
3500-3600 123 126 119 
3600-3700 125 85 104 
3700-3800 121 87 98 
3800-3900 91 87 109 
3900-4000 86 82 81 
4000-4100 68 73 78 
4100-4200 80 44 66 
4200-4300 52 44 82 
4300-4400 77 67 72 
4400-4500 72 65 45 
4500-4600 63 65 56 
4600-4700 71 40 51 



 
 

149 

4700-4800 65 50 51 
4800-4900 50 58 51 
4900-5000 44 34 31 
5000+ 1164 858 868 

 
 
 

Table S2. BA dataset grouped by phylum, k = 20; maximum clique as the GEC. 
1 2 3 4 5 
Spirochaetale
s 

Chlamydiale
s 

High_GC_Firmicute
s 

Low_GC_Firmicute
s 

Proteobacteri
a 

 
 
 

Table S3. BA dataset grouped by phylum, k = 20; maximal cliques as the GECs. 
1 2 3 4 5 
High_GC_Firmic
utes 

Proteobacteri
a 

Low_GC_Firmicut
es 

Chlamydiale
s 

Bacteroidete
s 

High_GC_Firmic
utes 

Proteobacteri
a 

Low_GC_Firmicut
es 

Chlamydiale
s Chlorobi 

High_GC_Firmic
utes 

Proteobacteri
a 

Low_GC_Firmicut
es 

Chlamydiale
s 

Spirochaetal
es 

High_GC_Firmic
utes 

Proteobacteri
a 

Low_GC_Firmicut
es 

Cyanobacter
ia 

Bacteroidete
s 

High_GC_Firmic
utes 

Proteobacteri
a 

Low_GC_Firmicut
es 

Cyanobacter
ia 

Spirochaetal
es 

High_GC_Firmic
utes 

Proteobacteri
a 

Thermus_Deinococ
cus 

Bacteroidete
s 

Cyanobacter
ia 

High_GC_Firmicutes      Proteobacteria      Thermus_Deinococcus     Chlorobi 
Nanoarchaeota             Euryarchaeota        Crenarchaeota 

 
 
 

Table S4. BA dataset grouped by phylum, k = 25; maximum clique as the GEC. 
1 2 3 4 
Thermus_Deinococcus Cyanobacteria High_GC_Firmicutes Proteobacteria 

 
 
 
Table S5. BA dataset grouped by phylum, k = 25; maximal cliques as the GECs. 

1 2 3 4 
Proteobacteria Low_GC_Firmicutes High_GC_Firmicutes Cyanobacteria 
Proteobacteria     Low_GC_Firmicutes           Bacteroidetes 
Proteobacteria     Low_GC_Firmicutes           Chlamydiales 
Proteobacteria     Low_GC_Firmicutes           Spirochaetales 
Proteobacteria Chlorobi Thermus_Deinococcus High_GC_Firmicutes 
Proteobacteria Thermus_Deinococcus Cyanobacteria High_GC_Firmicutes 
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Table S6. BA dataset grouped by phylum, k = 30; maximum clique as the GEC. 

1 2 3 
Thermus_Deinococcus High_GC_Firmicutes Proteobacteria 

 
 
 

Table S7. BA dataset grouped by phylum, k = 30; maximal cliques as the GECs. 
1 2 3 
Proteobacteria High_GC_Firmicutes Chlorobi 
Proteobacteria High_GC_Firmicutes Cyanobacteria 
Proteobacteria High_GC_Firmicutes Thermus_Deinococcus 
Proteobacteria Low_GC_Firmicutes Cyanobacteria 
Proteobacteria Low_GC_Firmicutes Spirochaetales 

 
 
Table S8. BA dataset grouped by phylum, k = 35; maximum clique as the GEC. 

1 2 3 
High_GC_Firmicutes Thermus_Deinococcus Proteobacteria 

 
 
Table S9. BA dataset grouped by phylum, k = 35; maximal cliques as the GECs. 

1 2 3 
Proteobacteria Thermus_Deinococcus Cyanobacteria 
Proteobacteria Thermus_Deinococcus High_GC_Firmicutes 
Proteobacteria Spirochaetales Chlamydiales 

 
 
Table S10. BA dataset grouped by phylum, k = 40; maximum clique as the GEC. 

1 2 
Thermus_Deinococcus Proteobacteria 

 
 
Table S11. BA dataset grouped by phylum, k = 40; maximal cliques as the GECs. 

1 2 
Proteobacteria Chlorobi 
Proteobacteria Cyanobacteria 
Proteobacteria High_GC_Firmicutes 
Proteobacteria Low_GC_Firmicutes 
Proteobacteria Thermus_Deinococcus 
Chlamydiales Spirochaetales 

 
 

Table S12. BA dataset grouped by class, k = 20; maximum clique as the GEC. 
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1 2 3 4 5 6 7 8 
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Prochlo
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s 
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ubdivisio
n 

alpha_su
bdivision 

Actinom
ycetales 

gamma_s
ubdivisio
n 

Bacillus_C
lostridium 

beta_su
bdivisio
n 
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Table S13. BA dataset grouped by class, k = 20; maximal cliques as the GECs. 
1 2 3 4 5 6 7 8 

beta_su
bdivisio
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gamma_s
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Bacillus_
Clostridiu
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Actinom
ycetales 

alpha_su
bdivision 

Chroococc
ales 

Prochloro
phytes 
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Clostridiu
m 
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phytes 
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ae 
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Chlamydi
aceae 

Porphyro
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ae 

   

beta_su
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gamma_s
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Clostridiu
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Actinom
ycetales 

Chlamydi
aceae 
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ubdivision 

Bacillus_
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Chlamydi
aceae 
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Spirocha
etaceae 

Chlamydi
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beta_su
bdivisio
n 
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Deinococc
us 

Actinom
ycetales 

alpha_su
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Chroococc
ales 

Prochloro
phytes 

Porphyro
monadace
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Deinococc
us 

Actinom
ycetales 
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Chroococc
ales 

Prochloro
phytes 

epsilon_su
bdivision 
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bdivisio
n 

gamma_s
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Deinococc
us 

Actinom
ycetales 

alpha_su
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Chlorobial
es 
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beta_su
bdivisio
n 
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ubdivision Planctomycetales     
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beta_su
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Halobacte
riales Actinomycetales     

Aeropyr
um 

Nanoarch
aeum 

Thermoco
ccales Methanopyrales    

Aeropyr
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aeum Methanobacteriales     
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aeum Methanococcales     

Leptosp
iraceae 
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Clostridiu
m 
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Actinomycetales  
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iraceae 

Bacillus_
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n 
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Spirochaetaceae  

 
 

Table S14. BA dataset grouped by class, k = 25; maximum clique as the GEC. 
1 2 3 4 5 6 
Deinococ
cus 

Actinomycet
ales 

Chroococca
les 

beta_subdivis
ion 

alpha_subdivi
sion 

gamma_subdivi
sion 

 
 
 
 
 

 

 

 
Table S15. BA dataset grouped by class, k = 25; maximal cliques as the GECs. 
1 2 3 4 5 6 
gamma_subdi
vision 
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idium 

alpha_subdiv
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beta_subdivisi
on 

Bacteroidac
eae   
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idium 
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on 

Chroococcal
es   

gamma_subdi
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Bacillus_Clostr
idium 
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epsilon_subdi
vision     

gamma_subdi
vision 

Bacillus_Clostr
idium 

Chlamydiace
ae       

gamma_subdi
vision 

Bacillus_Clostr
idium Nostocales Chroococcales beta_subdivi

sion   

gamma_subdi
vision 

Bacillus_Clostr
idium Nostocales Chroococcales Prochloroph

ytes   

gamma_subdi
vision 

Bacillus_Clostr
idium 

Prochlorophy
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epsilon_subdi
vision     

gamma_subdi
vision 

Bacillus_Clostr
idium 

Leptospirace
ae       
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gamma_subdi
vision Chlorobiales alpha_subdiv

ision 
Actinomycetal
es 

beta_subdivi
sion Deinococcus 

gamma_subdi
vision 

Actinomycetale
s 

Chroococcale
s 

beta_subdivisi
on 

Deinococcu
s 

alpha_subdiv
ision 

gamma_subdi
vision 

Actinomycetale
s 

Chroococcale
s 

Prochlorophyt
es     

 
 
Table S16. BA dataset grouped by class, k = 30; maximum clique as the GEC. 

1 2 3 4 5 6 
Deinococ
cus 

Actinomycet
ales 

alpha_subdivi
sion 

beta_subdivis
ion 

Chroococca
les 

gamma_subdivi
sion 

 
 
Table S17. BA dataset grouped by class, k = 30; maximal cliques as the GECs. 
1 2 3 4 5 6 
gamma_subdiv
ision Chroococcales beta_subdivi

sion 
Actinomycetale
s 

alpha_subdivi
sion 

Deinococ
cus 

gamma_subdiv
ision Chroococcales beta_subdivi

sion 
Bacillus_Clostri
dium     

gamma_subdiv
ision Chroococcales Nostocales Bacillus_Clostri

dium     

gamma_subdiv
ision Chroococcales Nostocales Prochlorophytes     

gamma_subdiv
ision Chlorobiales Actinomycet

ales 
beta_subdivisio
n 

alpha_subdivi
sion   

Chlamydiaceae Bacillus_Clostri
dium 

beta_subdivi
sion       

 
 
Table S18. BA dataset grouped by class, k = 35; maximum clique as the GEC. 

1 2 3 4 5 
Actinomycetale
s 

Deinococcu
s 

alpha_subdivisio
n 

gamma_subdivisio
n 

beta_subdivisio
n 

 
 
Table S19. BA dataset grouped by class, k = 35; maximal cliques as the GECs. 
1 2 3 4 5 
beta_subdivisio
n 

gamma_subdivisio
n alpha_subdivision Deinococcus Chroococcales 

beta_subdivisio
n 

gamma_subdivisio
n alpha_subdivision Deinococcus Actinomycetale

s 
beta_subdivisio
n 

gamma_subdivisio
n alpha_subdivision Chlorobiales   

beta_subdivisio
n 

gamma_subdivisio
n 

Bacillus_Clostridiu
m 

Chroococcale
s   

 
 

Table S20. BA dataset grouped by class, k = 40; maximum clique as the GEC. 
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1 2 3 4 
Deinococcus gamma_subdivision Chroococcales beta_subdivision 

 
 
Table S21. BA dataset grouped by class, k = 40; maximal cliques as the GECs. 
1 2 3 4 
Chroococcales beta_subdivision gamma_subdivision Deinococcus 
Chroococcales beta_subdivision Bacillus_Clostridium 
Chroococcales Prochlorophytes gamma_subdivision 
alpha_subdivision beta_subdivision gamma_subdivision 
alpha_subdivision beta_subdivision Actinomycetales 

 
 

Table S22. Lateral events inferred involving Proteobacteria. In-degree, number of genes affected by 
lateral events; out-degree, number of LGT events originating from this node. Nodes in the network 
represent classes; k = 25, G = 2k. 

Class name In-degree Out-degree  Total degree Number of 
sequences 

Number of 
LGT events 
per genome 

Alpha- 560 729 1289 9 143 

Beta- 1246 1182 2428 8 303 

Gamma- 1128 1154 2282 33 69 

Epsilon- 11 6 17 5 3 
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Chapter 5 General conclusions and future work 

 

With the development and uptake of next-generation DNA-sequencing technologies over the past 

decade, more and more sequence data are becoming available not only to support the study of LGT 

in diverse natural and artificial environments, but also to begin to discern a global picture of 

evolutionary processes in microbes. How to process and analyse such large, dynamic data poses a 

significant challenge for bioinformaticians. My PhD project aimed to develop an approach to the 

inference of LGT in multi-genome datasets that does not depend on the computationally hard steps 

of multiple sequence alignment, inference of phylogenetic trees, and topological comparison of test 

and reference trees. To accomplish this I took an alignment-free approach.  

In recent years, alignment-free methods have gradually been used in several areas of bioinformatics 

including phylogenetic inference. Alignment-free methods do not analyse a set of sequences per se, 

but instead decompose them into fixed-size segments (k-mers) and then analyse these segments. 

Typically, distributions of k-mers are compared to generate a matrix of pairwise distances among the 

sequences. This matrix then serves as input into a distance method, usually neighbour-joining. Other 

variants have been explored, but tend not to be as scalable1,2. Compared with alignment-based 

methods, alignment-free methods are much faster in processing large datasets, and can show 

comparable accuracy3. 

In contrast to phylogenetic inference per se, for which around ten alignment-free methods have been 

published3,4, only two such methods are currently available for the computational inference of LGT: 

ALFY5,6 and the so-called purity measure7. ALFY computes a phylogenetic tree of sequences based 

on Kr
8 and identifies subtrees topologically incongruent with the reference tree as lateral transfers. 

The purity measure approach finds the less-repeated segments in a sequence (those with “high purity”) 

and identifies them as lateral transfers. Both methods infer the existence and locations of LGT events, 

but not their directionality; and ALFY retains the computationally hard topology-comparison step. 

To better address these problems, I designed and implemented a new alignment-free method, as 

discussed in Chapter 2, modifying and repurposing the concepts term frequency and inverse document 

frequency (TF-IDF). 

5.1 TF-IDF for LGT detection 

The TF-IDF method, as developed in Chapter 2, infers lateral segments by comparing matches of k-

mers between donor groups and recipient sequences. If a segment contains k-mers infrequent in its 

own group, but frequent in other groups, then that segment is judged as lateral. The direction of the 

inferred LGT events is from the external (donor) group to the recipient sequence.  
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In Chapter 2, I demonstrated that the TF-IDF method can identify regions of lateral origin efficiently. 

Its time complexity is O(nLlogU) where n is the number of sequences, L the average length of 

sequences, and U the number of unique k-mers within a dataset. Such time complexity guarantees 

that TF-IDF will be scalable on large genome-scale datasets. Based on extensive simulations, we 

understand that TF-IDF can infer LGT events with high accuracy and recall under a range of 

biologically relevant situations e.g. long evolutionary distances between groups (substitution rate i.e. 

probability of change per site ≥ 0.1), close similarity of sequences within each group (substitution 

rate ≤ 0.02), modest diversification following lateral transfer (substitution rate ≤ 0.01), and variable 

rates of deletion post-LGT (rate £ 0.1); details are given in Chapter 2. 

Although TF-IDF offers significant advantages for the inference of LGT, it has certain limitations. 

Its performance depends on the size of k (and to a much lesser extent on G, the maximum spacing 

allowed between k-mers that are merged to form an inferred lateral region), and on how groups are 

delineated. From computational simulations and the study of empirical datasets, k = 40 was identified 

as a good default value in most cases, balancing precision and recall. However, this did not extend to 

cases where the sequences under investigation are short (£ 1000 nt in the simulations) or very 

dissimilar (³ 70% of the 12-mers are different). The former case is to some extent a consequence of 

the simulation strategy: the lengths of the added LGT segments are distributed around a mean value 

proportional with length of the target sequence. This was nonetheless valuable in showing that short 

segments (£ 40 nt) can be ignored by TF-IDF. In the latter case, there can be too few identical 40-

mers between sequences. If possible, the size of k should be matched to the specific dataset under 

investigation, and I presented an alignment-free way to carry out this matching (Chapter 4). 

TF-IDF requires sequences to be arranged into groups, and the way this is done can play an important 

role in how the method performs with a particular dataset. If the sequences are grouped randomly, 

many fewer (ECS dataset) or no (simulated datasets) lateral events may be detected. Grouping the 

sequences by evolutionary relationship (i.e. on a phylogenetic tree) was, in general, found to yield 

good results. As a main aim of alignment-free approaches is to avoid computationally complex steps, 

this tree should be available in advance: indeed, comprehensive trees are available for bacteria and 

archaea9,10, and groups can be formed simply by excising subtrees at the desired resolution (Chapter 

3). Alternatively, an alignment-free approach could be used to generate this reference tree3,11. Where 

investigated, the use of known taxonomic labels (genus, class, phylum) was usually a good proxy for 

a phylogenetic grouping, although it may not be a coincidence that the two genera that so greatly 

elevated the IDF threshold, Escherichia and Shigella, are widely considered to be one and the same 

phylogenetic genus12,13. Within-genus, MLST (Multi Locus Sequence Typing) data can serve as a 

useful basis for grouping, if the feature genes have been defined in advance; but MLST types have 
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been defined for relatively few bacteria and no archaea (or eukaryotes). Alternatively, features of 

lifestyle of ecology of the organisms might be used to delineate groups, depending on the specific 

research aim. 

The current version of our TF-IDF method is implemented using in-memory computing for the core 

k-mer extraction and comparison. This makes the program run much faster than would be the case if 

data were swapped onto hard disk, but requires much more RAM. With the development of flash 

memory (1-TB RAM servers have been deployed on many computational clusters), such a memory 

requirement becomes affordable. In favourable cases (low overall dissimilarity among genomes), TF-

IDF can process about 600 bacterial genomes using 1 TB of memory. Another option would be to 

use the MapReduce architecture14 to store and process k-mers over a cluster, i.e. to take advantage of 

the memory and CPU resources of a number of computers rather than only one. This can be 

implemented on the Hadoop platform15, an open-source framework for distributed storage and 

processing on big data that has been deployed (for instance) by Yahoo! to analyse and index bodies 

of text > 5 PB in size. 

In the TF part of the current method, the mean value of the counts of all k-mers within a group is used 

to assess the “popularity” of lateral segments within that group, while in the IDF part, the mean of 

occurrences of k-mers shared between the recipient sequences and donor groups is taken as the 

threshold for existence of LGT events. In the applications reported in this thesis, we encountered no 

disadvantage arising from the use of the TF mean. In the IDF part, by contrast, the mean serves as a 

threshold on the number of k-mers that a sequence must share with a donor group before it is further 

processed by the TF part. Thus sequences containing only a few lateral events will be ignored. As 

shown by the simulations (Chapter 2), combining the two thresholds helps to ensure the performance 

(precision and recall). While the TF-IDF method as devised gives useful results, there is still some 

scope for improvement. We observed that the IDF and TF thresholds are selected to be self-tuning to 

the dataset, which is reasonable. However, they can be sensitive to divergence between and within 

groups, so better results might be obtained if we were to manually control these thresholds to some 

extent. This may have the effect of enabling the user to detect more-ancient transfers, or conversely 

to reduce the number of false positives. The effects of tuning the IDF or TF thresholds cannot be 

evaluated on empirical datasets, because there is no gold standard database with all true LGT events 

known. Rigorous simulations are required to understand how these thresholds affect the performance 

of TF-IDF in different phylogenetic situations, before they can be adopted and used safely as 

parameters of the method.  This issue can be approached through computational simulation, and 

remains for future work. 
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Furthermore, the method detects LGT without ascribing a strength or confidence level to these 

detections. One way by which confidence could be assessed would be to construct a single statistic 

for each segment, combining the TF and IDF values in some way. It might then be possible to use 

resampling methods such as bootstrapping to gain an idea of the significance of each detection. 

5.2 Exploring LGT among microbes using TF-IDF 

In Chapter 3, I applied the TF-IDF method to three empirical datasets: ECS (twenty E. coli and seven 

Shigella genome sequences), EB (110 enteric bacterial genomes) and BA (143 genomes across 

Bacteria and Archaea). Two of these datasets were examined previously using alignment-based 

approaches9,16, providing reference LGT sets for comparison. I examined the effect of two TF-IDF 

parameters, k and G, on LGT inference. k is the size (length) of k-mers, and G a threshold for merging 

two lateral segments into one. I showed that the number of detections decreases when k increases, 

whereas changing G does not greatly affect the total detection lengths when the lateral segments are 

not densely distributed (as in the EB and BA datasets). If the LGT segments are densely distributed 

on a genome, however, high values of G will cause many undetected regions to be merged into 

detected ones, subsequently affecting the performance of TF-IDF. In most cases, k = 40 and G = 2k 

(i.e. 80) were the optimal parameter settings.  

Details of the biological relationships play an important part in assessing the frequencies of LGT 

events. In Chapter 3 I found that closely related phyletic groups (e.g. those in ECS or EB compared 

with BA) share many more LGT events than distantly related ones. Similar results have been seen 

previously17-19 and arise in part from increased ease of homologous recombination20,21. No LGT was 

inferred between bacteria and archaea using TF-IDF. This does not mean that there has been no LGT 

between bacteria and archaea; it could be the case that regions of genetic material transferred across 

domains are shorter, or were transferred a much longer time ago, than between lower-level phyletic 

groups, causing the former to fall beneath the IDF threshold and thereby be ignored by TF-IDF. As I 

demonstrate in Chapter 3, one possible solution is to manually lower the IDF threshold, but this may 

open the analysis to an unacceptable level of false positive detections. 

It has long been considered that individual genes might have accepted LGT from two or more donors, 

and in Chapter 3 I examined this possibility. A gene (or other region) inferred to have multiple lateral 

origins may indeed have accepted LGT from different donors; but another explanation might be that 

there was a single ancient transfer, and subsequent divergence of the daughter lineages of the ancient 

donor have led to a situation where one part of the lateral region shares k-mers with one donor group 

(one daughter lineage) and a different part shares k-mers with another donor group. The latter scenario 

might be favoured if the regions in question are adjacent (or nearly so) in the recipient lineage, and 
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the inferred donor groups are close relatives in a phylogenetic sense. In Chapter 3 I presented evidence 

for LGT from multiple donor groups into single genes; and in the first systematic analysis addressing 

these alternative scenarios,  I was able to estimate that 28.5% of the genes with exactly two inferred 

donor groups can be interpreted as the result of a single ancient transfer. Instances of multiple (more 

than two) inferred donors could likewise be examined, ideally using datasets larger than these. TF-

IDF is unique in enabling such innovative exploration of the vertical and lateral origins of genes and 

genomes.  

Inferred lateral genes were also mapped to Gene Ontology (GO) terms for enrichment testing. These 

tests showed that LGT affects a wide range of biological processes in all three empirical datasets; the 

most-enriched terms describe metabolism, regulation, cellular and trans-membrane transport, and 

(often) energetics. These processes are “operational” in the sense of Lake and colleagues22,23 and are 

often found to be affected by LGT24-26 . 

A direct implication of results in this Chapter is that the extent of genetic exchange is not uniform 

across genomes; some phyla, classes, genera and MLST types have exchanged genetic material 

frequently (and the exchanged material has persisted), whereas others have done so much less-often 

(and/or the material has not persisted in its new hosts). As a consequence, LGT networks will have 

both densely and sparsely connected regions. The former are potential genetic exchange communities 

(GECs). I explore these patterns in the next chapter. 

5.3 Constructing GECs in LGT networks 

In Chapter 4 I inferred LGT networks for the ECS, EB and BA datasets, and identified GECs within 

these networks. For this work, I defined GECs as cliques in LGT networks, although other definitions 

are possible27. 

All the ECS genomes and groups are connected by LGT and give rise to a single clique, which I 

interpret as a GEC. The corresponding organisms span a variety of environmental strains as well as 

human and animal commensals, and pathogens as well as non-pathogens. The TF-IDF analysis shows 

that genetic material has flowed among all groups, i.e. across environmental and lifestyle boundaries. 

In the EB dataset, Escherichia and Shigella have been strongly involved in LGT, contributing many 

lateral events to all inferred GECs. Salmonella and Klebsiella are seen as LGT-active within GECs 

from which either Escherichia or Shigella is excluded (or both are excluded), while Yersinia is 

relatively silent to LGT, contributing almost no lateral genetic material in any GEC. Thus even among 

the enteric bacteria and their immediate relatives (all of them Gamma-proteobacteria), not all genera 

have contributed to GECs. This presumably reflects multiple underlying mechanisms including 
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natural competence, host ranges of plasmids and phage, efficacy of intracellular defence mechanisms, 

mechanisms of genetic integration and recombination, and subsequent population dynamics27. 

I grouped genomes in the BA dataset alternatively by phylum or class for discovery of cliques in the 

LGT networks. In the analysis at phylum level, it is clear that some microbial genomes and phyla 

have donated and/or accepted many regions, whereas others have been relatively inactive, at least 

when the IDF threshold is set by mean value (see above). The Proteobacteria, High-G+C Firmicutes 

and Low-G+C Firmicutes comprise the core of the GECs in this dataset. As the value of k is increased 

the number of inferred lateral genes decreases, but the core structure of the GECs remains stable.   

When the sequences are instead grouped by class, i.e. at finer granularity, we see that genera within 

a phylum do not necessarily all exchange genetic material with equal frequency. For example, 

genomes in the Alpha-, Beta- and Gamma subdivisions of Proteobacteria exhibit many more lateral 

events than do those in the Epsilon subdivision, whether assessed by total number of lateral events or 

by average number of events per genome (Chapter 4, Supplementary file, Table S22).  As the 

genomes are of similar mean size, normalising by genome size would scarcely change this conclusion. 

These classes have previously been identified as linked by “highways of gene sharing”9. 

Gene Ontology enrichment tests showed that the biological processes underpinning GECs inferred 

for the BA dataset strongly resemble those inferred earlier (Chapter 3) for LGT in this dataset more 

broadly, with processes of metabolism, transport and regulation strongly over-represented.  

5.4 Future directions 

The results of TF-IDF can be sensitive to properties of the data being analysed. In Chapter 3, 

sequences were simulated on a tree and we saw that TF-IDF can infer LGT with high precision and 

recall if the sequences are highly similar (but not identical) within-group while substantially 

dissimilar between-group. Although we did not extend the simulations to consider the balance or 

distribution of group sizes, there is the suspicion that TF-IDF will work best if groups are not 

immensely dissimilar in size. In real-life applications, however, we may not have control over these 

features: the empirical datasets in Chapter 4 ranged from a narrow phyletic range (ECS) up to nearly 

the entire span of prokaryotic diversity (BA). Groups were intrinsically unbalanced: even apart from 

sampling bias, Proteobacteria are numerous (and many have been sequenced), whereas only a few 

dozen species have been described within Thermus/Deinococcus. To ensure that parameter settings 

(especially k) are matched as well as possible to features of the data, an LGT detection pipeline based 

on alignment-free methods could incorporate efficient (perhaps alignment-free) methods for e.g. 

calculating the evolutionary distance among sequences, optimising group size, balancing the tree and 

removing outlier sequences. 
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As originally defined27, GECs involve a relationship among sets of sequences. The TF-IDF method 

as developed here is best applied to sequences that are organised into groups, as this leads to better 

and more-stable values for the TF and IDF thresholds. LGT is inferred from donor groups to recipient 

sequences; the latter are of course also members of a group, but the inference is actually carried out 

from group to sequence. In the LGT networks in Chapter 4, recipient sequences were then collapsed 

into the respective recipient group, such that all nodes are groups rather than individual sequences. 

Information is lost in this process, and (as we saw in Chapter 4) the resulting simplification can make 

the resulting network less interesting from both biological and graph-theoretical points of view. There 

are, however, types of graphs in which nodes can be contained within other nodes (power graphs28,29) 

and it could be interesting to explore whether such frameworks might have advantages in representing 

GECs inferred using the TF-IDF method. 

The edges inferred using TF-IDF are directed and weighted. In the process (described in the previous 

paragraph) of subsuming recipient sequences into groups, detail (of individual recipient sequences), 

edge weight and directionality are all lost, and with them much of the potential power of TF-IDF to 

inform about biology. Graph theory extends to densely connected groups where edges are directed 

and/or weighted30,31 but to my knowledge, these methods have not so far been applied in the molecular 

biological sciences, and are not computationally scalable. The application of such methods to 

delineate GECs may nonetheless represent another possible direction for future research.  

5.5 Thesis summary 

Recognising genetic exchange communities within LGT networks is a way to systematically analyse 

LGT between organisms. To achieve this, detecting LGT in big sequence datasets is the cornerstone. 

Current methods for LGT detection, however, are not scalable to big datasets. In this thesis I describe 

the development, testing and application of a new alignment-free approach, based on TF-IDF, for 

detection of LGT in synthetic and empirical genome-scale datasets. This is the first time the TF-IDF 

idea has been used to detect LGT, and indeed (to our knowledge) its first application to any biological 

problem. Rigorous tests have shown that it can be efficient and effective. Applying this method to 

three empirical datasets, I inferred LGT, built LGT networks and found genetic exchange 

communities (as cliques) among them. This is the first time that the GEC concept has been applied 

on large empirical datasets. These GECs reveal how groups of microbes interact through LGT, 

including donor-recipient pairs and biological process enrichment. TF-IDF expands the bioinformatic 

toolkit of alignment-free methods and can be incorporated into LGT workflows to infer GECs in 

much larger genome datasets in the future.  
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