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Abstract 

A solid oxide fuel cell (SOFC) is a promising energy device that can generate electricity by converting 

chemical energy of nearly all types of fuels with very high efficiency. However, its high operating 

temperature (> 850°C) is the main impediment to deploying this technology, because high 

temperature can lead to sealing issues, slow start-up/shut-down procedures, poor thermal cycling 

stability, poor fuel cell durability, as well as high material and operational cost. Lowering the 

operating temperature down to intermediate temperature (IT, 500 °C – 750 °C) is an effective and 

significant strategy to solve these issues, but it makes the kinetics of electrolyte and electrodes 

especially the cathode sluggish. Despite slow kinetics of electrolyte have been significantly alleviated 

by using novel electrolyte materials and thin film fabrication technology, low electroactivity of IT-

SOFC cathode still remains a major challenge. Besides, the susceptibility of cathodes containing 

alkaline-earth elements to CO2 is another concern on long-term cathode stability, especially at low 

temperature. Therefore, developing a robust cathode material with high electroactivity is significant 

for commercialising SOFC technology, and have received growing research interest and efforts in 

recent years.  

This thesis is mainly focused on developing highly active and stable cathode materials based on 

SrCoO3-δ perovskite oxide for IT-SOFC. The factors affecting catalysis on oxygen reduction reaction 

(ORR), and the CO2-poisoning mechanisms on the SrCoO3-δ-based cathodes at intermediate 

temperature were investigated. In this thesis, we developed and evaluated SrCoO3-δ doped with high-

valence elements such as P, Nb, and Ta as cathodes for SOFC by studying their crystal structures, 

compositions, microstructures and electrochemical properties as well as electroactivity in ORR at 

intermediate temperature. 

In the first part of the experimental chapters, we mainly worked on developing SrCoO3-δ-based 

cathode materials and studying the effects of high fixed valence dopants (P, Ta, and Nb) on SrCoO3-

δ perovskite cathode for IT-SOFC. We successfully doped P and Ta into SrCoO3-δ oxide separately, 

and found these dopants at certain doping level can stabilise the beneficial perovskite structure at both 

room temperature and intermediate temperature. The study on P-doped SrCoO3-δ reveals that the 

stabilising effect of P is a result of the high-valence that prevents oxygen vacancy ordering and phase 

distortions. The electrical conductivity of SrCoO3-δ can be enhanced by small amount of P or Ta (≤ 5 

mol%) due to the stabilized perovskite structure and high valence of P and Ta, but can be adversely 

affected for higher doping level as shown in study on SrCo1-xTaxO3-δ. Additionally, SrCoO3-δ doped 

with <20 mol% Ta shows superior electroactivity on ORR at IT, with a cathode polarisation resistance 

as low as 0.089~0.11 Ω·cm2 at 550°C for SrCo0.95Ta0.05O3-δ. However, the high fixed valence can 



 

II 

 

decrease oxygen vacancy content, so high doping level (e.g. 40mol%) of Ta can seriously deteriorate 

cathode electroactivity at intermediate temperature.  

In the second part, we investigated other non-geometry factors that have an effect on cathode 

electroactivity. We doped 20mol% of Nb and Ta separately into SrCoO3-δ oxides, and compared their 

ORR-related properties. The reason we chose Nb and Ta as dopants is that these dopants have the 

same valence state and very similar ionic radii. These similarities allow us to explore other factors 

that may affect ORR activity by constraining their geometry factor. This comparative study shows 

that lower electronegativity of Ta than Nb can reduce the average valence of neighbouring Co, thus 

creating more oxygen vacancies and leading to higher electroactivity. Moreover, we developed a 

highly active ORR catalyst by co-doping Nb and Ta into SrCoO3-δ, showing a remarkably low 

polarisation resistance of ~0.16 Ω·cm2 at 500 °C. The outstanding cathode performance is likely 

attributed to an optimised balance of oxygen vacancy content, oxygen ionic mobility and surface 

electron transfer ability. 

The focus of the third part of experimental chapters is to address the susceptibility of SrCoO3-δ-

derived cathode materials to CO2 at intermediate temperature. We incorporated Sm-doped ceria (SDC) 

into SrCo0.85Ta0.15O3-δ cathode by either mechanical mixing or wet impregnation, and significantly 

improved the CO2 tolerance of SrCo0.85Ta0.15O3-δ by over 5 times in the presence of 10% CO2 at 

550 °C as compared to pure SrCo0.85Ta0.15O3-δ. The CO2 resistance improvement of SDC is a result 

of the low CO2 reactivity and adsorption on SDC. More importantly, this strategy prevails for other 

cathode materials containing alkaline-earth elements, such as benchmark IT-SOFC 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ. 
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 Introduction 

 Background 

In recent years, direct energy conversion through fuel cells has become a significant and interesting 

topic for electrochemical research and technology development.1 Fuel cell is a device that generates 

electricity by converting chemical energy in fuels directly into useful electrical energy and heat via 

electrochemical reactions.2 Fuel cells have higher chemical to electricity efficiencies and much lower 

pollutions than conventional electricity generators such as heat engines, because their electrochemical 

reaction can inherently avoid the efficiency-limiting combustion step (the Carnot cycle). For most of 

fuel cells such as polymer electrolyte fuel cells, relatively pure hydrogen is the only direct fuel that 

can be applied to anode.3 However, the formidable challenges for large-scale hydrogen production 

and storage significantly impede the deployment of most of the fuel cells. Nevertheless, a solid oxide 

fuel cell (SOFC) shows a good compatibility with commercially available hydrocarbon fuels, with an 

outstanding system efficiency due to its oxygen-ion-conducting electrolyte and high operating 

temperature. Therefore, SOFC appears to be a promising fuel cell technology that can use the 

currently available hydrocarbon resources and deliver high fuel efficiency and low pollutants at the 

same time. 

A SOFC is an all-solid device that can convert nearly all types of fuels with higher efficiency and 

less pollution as compared to other conventional electricity generators. The SOFC electrolyte is a 

dense solid ceramic film that renders oxygen ions possible to transport in a solid-state conduction 

way. The solid dense electrolyte can also completely prevent fuels and air from cross-over, thereby 

making SOFC possible to apply different fuels including natural gas, methanol, jet fuel, and “dry” 

hydrocarbons. Other fuels, such as coal, diesel, and ethanol, can also be applied into SOFC by being 

pre-converted into syngas (H2 and CO). Besides the fuel adaptability of SOFC, another reason SOFC 

stands out is its higher efficiency as compared to the commercialized technologies based on 

hydrocarbon infrastructures: a sole SOFC application can achieve an efficiency of 45~65%  based on 

low heating value (LHV) ,4 and an efficiency over 85 % LHV can be achieved if SOFC is integrated 

with combined heat and power (CHP)5. 
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Figure 1-1 The fuel cell issues affected by the operating temperature with H2 as the fuel.6 LHV or HHV 

accounts for theoretical efficiency based on lower heating value or higher heating value respectively.  

The high operating temperature brings both advantages and challenges to SOFC technology. Figure 

1-1 summarises temperature-related performance for a H2-fueled fuel cell. High-temperature SOFCs 

(HT-SOFCs) work at temperature from 850 °C to 1000 °C. The high operating temperature is 

beneficial for improving the electrode reaction kinetics, reducing the electrolyte ohmic resistance, 

and improving fuel adaptability. On the other hand, high temperature results in high system cost, poor 

sealing, slow start-ups/shutdown procedures and poor long-term performance degradation. These 

challenges become the main obstacles hindering the SOFC development and practical deployment. 

Additionally, the ceramic-made configuration of HT-SOFC required to withstand high temperature 

significantly lowers the volumetric power density, and renders the HT-SOFC impossible for portable 

applications, such as micro combined heat and power (CHP) unit and auxiliary power unit (APU). As 

a consequence, lowering the operating temperature into intermediate-temperature (IT) range (500 °C 

~ 750 °C)7 is considered as an effective approach to address these challenges, and attracts immense 

research interests these years.   

However, low temperature results in slow kinetics of SOFC’s electrolyte and electrodes, where 

thermally activated processes occur to facilitate fuel cell operation. Accordingly, there are two main 

routes to achieve sufficient power at reduced temperature: one is to apply novel electrolyte materials 

or thinner electrolyte to reduce ohmic resistances; the other is to enhance the kinetics of electrodes, 

especially the cathode, to decrease electrode polarisation resistances. Given significant progress that 

have been achieved on electrolyte improvement, the sluggish kinetics of oxygen reduction at cathode 

becomes the controlling step for the overall fuel cell performance at intermediate temperature. What 

is more, low operating temperature makes the cathode materials, especially those cathodes containing 

alkaline earth elements, susceptible to CO2 poisoning in the air.  
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There are still challenges hitherto in improving the cathode electroactivity and stability at IT range. 

Therefore, the development of robust cathode materials with high electro-catalytic activity towards 

ORR is significant to pave the way for commercialization of fuel cells and make contributions to a 

dispersed and robust energy infrastructure.  

 Scope and research contributions 

This project is focused on developing a robust cathode material showing high ORR activity for IT-

SOFCs, and on studying catalysis mechanisms on ORR and CO2 poisoning. Correspondingly, the 

objectives to be achieved by this project are specified as follows: 

 To develop stable and high-performance cathode materials based on SrCoO3-δ (SC) perovskite 

oxide for IT-SOFC by doping highly charged elements in to cobalt sites. 

 To investigate the effects of highly charged dopants on electroactivity of single-doped SC 

cathodes by studying their properties related to ORR activity, such as crystallography, oxygen 

defects, conductivities and etc. 

 To develop novel SC-based perovskite oxides by co-doping highly-charged elements, and to 

investigate the effects of co-doping on ORR through studying their ORR-related properties 

and calculating their electronic structures using first principles. 

 To improve the tolerance of SC-based cathodes against CO2 at reduced temperature, and to 

probe mechanisms behind the CO2 poisoning effects on these cathode materials. 

SC has been proved to be one of the most promising candidates for IT-SOFC cathodes. Therefore, in 

this thesis we worked on the development and evaluation of cathodes using SC as the parent oxide, 

and investigated the effects of dopants on cathode performance at the same time. Investigations on 

CO2 poisoning were also conducted, and strategy was explored in attempt to improve CO2 tolerance 

of the IT-SOFC cathode. Based on the specific objectives as listed above, the thesis consists of nine 

chapters. The results and discussions of the research are presented in chapter 4-8, some of which have 

been published or submitted for journal publications. 

 Structure of thesis 

Chapter 1 provides some background of IT-SOFCs, and describes the scope and specific research 

objectives of this thesis. 

Chapter 2 provides an overview of SOFC and recent progress on cathode development for IT-SOFCs 

in different aspects such as their crystallography, factors affecting ORR activity, specific cathode 

materials developed, and the strategies to address cathode instability in the presence of CO2.  
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In chapter 3, we summarize the general methods used in this project to develop and evaluate cathode 

materials for IT-SOFC, including sample syntheses, sample preparations, powder characterization, 

electrochemical measurements and first principle calculations. 

In chapter 4, a phosphorus-doped perovskite, SrCo0.85Fe0.1P0.05O3-δ (SCFP) was evaluated as a 

cathode for IT-SOFCs. It is found that the dopant P can stabilize the benign perovskite phase of Sr 

(Co, Fe) O3-δ and suppress oxygen vacancy ordering mainly because of its high valence. The area 

specific resistance (ASR) of SCFP is about 0.097 Ω·cm2 at 589°C, which is comparable to the 

benchmark cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF). Besides, the performance stability SCFP is also 

significantly improved by the incorporation of the P dopant. 

A comparative study of SrCo1-xTaxO3-δ (x=0.05-0.4) was conducted in chapter 5 to investigate the 

effects of Ta5+ on the electrocatalytic activity on oxygen reduction. It is found that not only the 

beneficial perovskite phase of SrCoO3-δ can be stabilized by doping Ta, but the cathode performance 

can be further improved for relatively small content of Ta dopant, which may arise from the optimised 

cobalt ions induced by the Ta5+ that enhances the oxygen surface exchange kinetics. 

Chapter 6 is focused on studying the non-geometry factors on catalyzing activity of cathodes. We 

designed two isostructural SrCoO3-δ-based cathodes doped with same level of Nb5+ and Ta5+, which 

are in very similar ionic size but different electronegativity. By comparing the activity-related 

properties between these two cathodes, we found that relatively lower electronegativity imparted by 

Ta5+ will slightly reduce the cobalt oxidation state and the work function, which will enhance the 

charge-transfer process of the surface exchange, and therefore improve the cathode performance. 

Chapter 7 introduces a novel perovskite cathode SrCo0.8Nb0.1Ta0.1O3-δ that was developed and 

exhibited superior electrochemical activity in reducing oxygen with the lowest ASR ever reported of 

~0.16 and ~0.68 Ω·cm2 at 500 °C and 450 °C respectively. The outstanding activity is proved to be 

related to the improved oxygen-ion migration in the lattice and the oxygen surface exchange as a 

result of the co-doping Nb and Ta. We believe this co-doping will be a promising strategy to design 

next-generation of cathodes for IT-SOFCs.  

Chapter 8 mainly works on improving cathode resistance against CO2 poisoning. Therefore, 

Sm0.2Ce0.8O2-δ (SDC) was introduced into our previously studied SrCo0.85Ta0.15O3-δ (SCT15) through 

mechanical mixing and infiltration method. The stability of the composite cathode in the presence of 

CO2 is improved by over 4 times as compared to pure SCT15 mainly because of the high tolerance 

of SDC. 
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In chapter 9, the findings from all the work as presented in the previous chapters are summarized, and 

also some future directions are recommended. 
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 Literature review 

In this review, working principles and components of SOFC are briefly introduced, followed by a 

review on reaction mechanisms and crystal structures of the IT-SOFC cathode. This chapter is mainly 

focused on recent advances in developing IT-SOFC cathodes, with an emphasis on the development 

of single-phase cathode materials and research progresses on the susceptibility of cathodes to CO2.  

 Overview of the SOFC 

 

Figure 2-1 A schematic of working principles on a typical SOFC.1 

A solid oxide fuel cell has three main components: two porous electrodes sandwiching a dense 

electrolyte. Figure 2-1 shows the working mechanisms of a typical SOFC based on oxygen-ion 

conducting electrolyte. Fuels such as H2 and CO are applied to the anode and oxidized to produce 

water and CO2; oxygen in air is reduced to O2- at the cathode and transported to the anode via the 

electrolyte; the liberated electrons from oxidation reaction at the anode do useful electrical work when 

they travel to the cathode through an external circuit. Obviously, there is no fuel combustion in the 

SOFC, so that the Carnot cycle can be inherently prevented, which is why SOFC has higher electricity 

efficiency than conventional power generators.  

The electrolyte, anode and cathode of a SOFC are made of different types of materials, so an overview 

is given as follows on the typical materials for these three components.  

 Electrolyte materials 

An electrolyte is an oxygen-ion conductor with low electronic conductivity, and is responsible for 

both transporting oxygen ions and preventing cross-over of electrons and gases. The internal ohmic 

resistance of a SOFC cell is mainly contributed by the electrolyte.  

Zirconia (ZrO2)-based materials are one of the widely used electrolyte materials especially for HT-

SOFC, such as yttria-stabilised or scandia-stabilised zirconia (YSZ or ScZ respectively) due to their 

high ionic conductivity and high mechanical and thermodynamic stability at elevated temperature. 
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The ScZ shows higher ionic conductivity than YSZ at lower temperature.2, 3 However, at high 

temperature a highly resistant secondary phase can be formed between zirconia and lanthanide or 

strontium from cathode, so a barrier is normally required to prevent such unwanted chemical 

interactions. 

δ-phase Bi2O3 (a fluorite-type structure) is another promising electrolyte material showing high ionic 

conductivity of ~1 S/cm at 800°C.4 The challenge concerning this material is its structure instability: 

the δ-phase is only stable between 730°C and 804°C, which is its melting point. Therefore yttria5  or 

erbia6 was incorporated into bismuth oxide to partially substitute Bi to stabilise its δ-phase. However, 

the instability for stabilised bismuth oxides under anode conditions, due to the susceptibility of Bi to 

being reduced, still remains to be resolved. 

(La,Sr)(Ga,Mg)O3-δ (LSGM) is a perovskite-structured electrolyte suitable for IT-SOFC. Though the 

substitutions of Sr and Mg increase the concentration of oxygen vacancies, they also reduce Ga 

valence and lead to formation of unwanted secondary phases under reducing environment.7-9 

Chemical incompatibility with Ni is also another challenge for LSGM electrolyte10. 

The Gd or Sm stabilised ceria are regarded as one of the most promising electrolyte materials for IT-

SOFC because of its high oxide ionic conductivity and compatibility with cobalt-based electrodes.  

There are two main challenges for ceria-based electrolyte: one is their poor sinterability; the other is 

their high electronic conductivity under reducing conditions especially at high temperature.11-13 

Numerous approaches have been developed to improve the sinterability, such as doping ideal 

elements or introducing sintering aids. For example, researchers improved the electrolyte 

performance by incorporating Mg14 or Y15 into Gd-doped ceria, and Y16 into Sm-doped ceria.  Some 

sintering aids, such as transition metal oxides can lower the maximum temperature for electrolyte 

densification. For instance, 1% of cobalt oxide can decrease the densification temperature of 

Ce0.9Gd0.1O1.95 down to 950 °C.17 

Goodenough et al.18-20 developed new electrolyte materials based on Sr (Si,Ge)O2.9 that also show 

superior oxygen-ion conductivity at IT range. Meanwhile, the techniques such as slurry coating were 

also explored to fabricate electrolyte with reduced thickness in order to boost the fuel cell 

performance at reduced temperature.21-25 The thin electrolyte film can shorten the oxygen-ion travel 

distance, thereby lowering ohmic resistance at low temperature. By applying the electrolyte materials 

with superior ionic conductivity through novel thin film fabrication technique, it is possible to achieve 

the target ionic conductivity (~0.01 S/cm)26 for sufficient fuel cell power output at intermediate 

temperature.  
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 Anode materials 

An anode is an electrocatalyst to oxidise the fuels electrochemically, and a good IT-SOFC anode 

should have: 

 High electronic (typically ~100S/cm) and ionic conductivity 

 High electrocatalytic activity  

 High stability in reducing and oxidising environment at high temperature 

 Good chemical and thermal compatibility with other contacting components 

The conventional anode is a cermet of a metal that is percolated in a porous electrolyte material. This 

anode structure allows electrons travel through the electrolyte matrix, and optimises the active three 

phase boundaries, where the electrochemical reaction takes place. 

Ni/YSZ cermet meets most of the anode requirements due to its high electronic conductivity, relative 

high ionic conductivity and high activity on hydrogen oxidation. The cermet can be easily fabricated 

by co-sintering YSZ and NiO, followed by reduction by hydrogen. Little chemical interaction occurs 

between YSZ and NiO.27 The doped zirconia can also be replaced with other electrolyte materials 

such as ceria-based electrolyte. However, there are challenges for such kind of anode: Ni can be 

adversely affected by sulphur in the fuel, and carbon choking when the fuel is hydrocarbon. One 

approach to prevent carbon choking is to tune water content in the fuel or to reduce the operating 

temperature. Another way is to replace Ni with less active transition metals such as Cu, which does 

not catalyse carbon deposition.  

Recently, oxides with mixed electronic and ionic conductivities under reducing environment have 

been found to possess higher catalytic activity than ceria for fuel oxidation. Therefore, researchers 

studied different oxide structures as SOFC anodes, and perovskite oxides were reported to show better 

performance than other structures.28 The perovskite anodes that are widely studied are titanates and 

chromites because of their high stability in reducing atmosphere. Unfortunately, no promising 

material has been found so far showing comparable performance to Ni, regarding to hydrogen 

oxidation and hydrocarbon reforming.  
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 Cathode materials 

 

Figure 2-2 A schematic of active region for electrochemical oxygen reduction for (a) single phase pure 

electronic conductive cathode such as (La,Sr)MnO3 (LSM) and (b) single phase cathode with mixed 

conductivities and (c) composite cathodes with mixed conductivities.29  

The function of a cathode is to catalyse the ORR electrochemically. Conventional cathodes for HT-

SOFC are usually sole electronically conductive materials, such as (La, Sr)MnO3 (LSM). The lack of 

ionic conductivity of cathodes limits the active regions for ORR only to the three phase boundaries 

(TPBs) among cathode, electrolyte and gaseous oxygen (Figure 2-2 (a)), which results in a drastic 

increase of cathode polarization resistance at intermediate temperature. Consequently, improving 

both electronic and ionic conductivities (MIECs) of a cathode can extend the active sites throughout 

the cathode surface and significantly improve the electro-activity of cathode at IT range. One 

principal strategy is to design a single-phase material with MIECs, such as (La,Sr)(Co,Fe)O3-δ (LSCF) 

as shown in Figure 2-2 (b) ; another is to develop a composite cathode by combining the electronically 

and ionically conductive phases together (Figure 2-2 (c)). In addition to sufficient ORR activity, a 

good cathode for IT-SOFC should also have matched thermal expansion coefficients, good chemical 

compatibility with electrolyte and current collectors, high long-term durability at elevated 

temperature, and high tolerance against contaminants such as Cr, B and CO2. Though plenty of 

materials have been developed and evaluated as IT-SOFC cathodes, it still remains challenging to 

develop a suitable cathode candidate that meets all the requirements. The sluggish kinetics and 

instability of cathode are currently major challenges limiting the development of IT-SOFC 

technology. For this reason, the research advances on developing cathode materials are reviewed in 

the following sections. 
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 Reaction mechanisms of SOFC cathode 

 

Figure 2-3 A simplified diagram for a few mechanisms considered to dominate ORR in cathodes. α, β 

and γ stand for electronic phase, gas phase and ionic phase respectively. a) Oxygen molecule is directly 

incorporated into the electronic phase bulk if α is mixed conductive; b) oxygen is adsorbed and/or 

partially reduced on the electronic phase surface; c) the partially reduced oxygen or d) the reduced 

oxygen transport to α/γ interface through surface or bulk respectively; e) Charge transfer of O2- or f) 

partially reduced oxygen across the α/γ interface; g) one or multiple mechanisms wherein electroactive 

oxygen species are generated and transported at electrolyte. 29  

A typical SOFC cathode is a porous solid electrocatalyst applied onto a solid electrolyte membrane, 

and its function is to electrochemically catalyse ORR as described as follows: 

 
2

2

1
( ) 2

2
O g e O    (2.1) 

To achieve such function, a high quality cathode is required to possess (a) sufficient electronic 

conductivity (ideally > 100 S cm-1 in air); (b) optimized microstructure that allows easy oxygen 

diffusion to the cathode surface; (c) high electroactivity on ORR; (d) high stability for long-term 

SOFC operation; and (e) a matched thermal expansion coefficient (TEC) and chemical compatibility 

with other components such as electrolyte and current collectors.  

Figure 2-3 introduces a few ORR mechanisms that might dominate the ORR rate in cathodes. In 

general, the O2 molecules are adsorbed onto one or multiple solid surfaces, and subsequently are 

completely or partially reduced into electroactive species. Simultaneously, the oxygen species are 

traveling through the surface, interface or inside the cathode bulk into the electrolyte to form the 

electrolytic O2-. Unfortunately, there is no single mechanism that is suitable for all the cathode 

materials, and the cathode performance are also significantly affected by the material types, 

microstructures, cathode fabrication processes, and cathode testing conditions.  

The conventional cathode for high-temperature SOFC, such as (La,Sr)MnO3, is typically a good 

electronic conductor but with negligible oxygen ion conductivity, so that  the ORR is restricted at the 

TPBs. Such ORR active region confinement is generally considered to be the main reason for the 

slow ORR of conventional cathodes at reduced temperature. Ionic conducting phases can be 

incorporated into the conventional cathodes to increase the size of TPBs and therefore enhance 

cathode electroactivity at intermediate temperature.30-33 Another strategy is to replace these pure 

electronic conductive cathodes with single-phase materials with MIECs that can extend the ORR 
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active region throughout the cathode surface, thereby improving cathode performance at reduced 

temperature. There are many structures of materials having mixed conductivities, such as 

Ruddlesden-popper type structure, double perovskite structure, and perovskite structures. Among 

those structures, perovskite structured materials (ABO3) receive immense research interest mainly 

because of their relatively high mixed conductivities at intermediate temperature. Therefore, a 

discussion mainly on the mixed conductivities of perovskite structure is presented in the following 

section. 

 Electronic conductivity    

As illustrated by the ORR equation, electrons are directly involved in the electrochemical reduction 

of adsorbed oxygen species, so electronic conductivity is important for electroactivity of cathode. 

More specifically, the electronic conduction facilitates the availability of electrons at cathode surface 

for the surface exchange process, thereby of significance for the surface exchange kinetics.34  

In the ABO3 perovskite oxide, where B-site cations are usually reducible trivalent transition metals 

(TMs), the oxygen octahedral symmetry for B-site cations is beneficial for high electronic 

conductivity due to a semiconducting or metallic band structure brought about by the B-site cations. 

The couples of TMs with different valences (e.g. TM3+/TM4+) at B-sites can serve as hopping sites 

for electrons or holes, which are the charge carriers for the n-type or p-type electronic conduction 

respectively. In certain cases, such hopping sites can be generated by incorporating aliovalent cations 

into the oxides. For example, La0.4Sr0.6Co0.2Fe0.8O3-δ has relatively higher electrical conductivity than 

La0.6Sr0.4Co0.2Fe0.8O3-δ at lower temperature: the charge imbalance due to partial doping divalent Sr2+ 

into La3+-sites can be easily compensated by transformation of B-site Co/Fe from +3 to +4 at lower 

temperature, and these TM+3/TM+4 couples provide additional sites for hopping holes.35 Charge 

disproportionation of B-site cations can also increase the hopping sites, and this defect reaction is 

driven by entropy and depend on the stability of electron configuration.36 Sr doped LaFeO3-δ is one 

example: Fe4+ cations can separate into Fe3+/Fe5+ couples, which can increase the electronic 

conductivity. 

 

Figure 2-4 Schematic diagram for covalent bonds between the oxygen ion pπ-orbitals and B-cation t2g 

(d) orbitals.37 
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For many perovskite cathodes, hopping mechanism dominates the electronic conduction. The 

covalence bond of B-cations with oxygen should be closely related to the electronic properties of the 

oxides. Figure 2-4 shows a schematic graph of the interaction between an oxygen ion and a B-site 

cation. The pσ of the anion strongly interact with the cationic one, which is the major part of the B-O 

covalent bond and forces the t2g orbitals towards anionic pπ orbitals. As a result, overlap between t2g 

and pπ may exist to allow the transfer of t2g electrons to the neighbouring t2g orbitals through the pπ 

orbitals, therefore leading to mobility of electrons or holes along B-O-B bond.37  

 

Figure 2-5 Potential map of perovskite oxides.37 

Kamata et al.37 categorized the electronic conduction behaviour of perovskite oxides into two main 

types: itinerate electrons and localised electrons. (Figure 2-5) In the potential map, Z and r refer to 

cation’s valence and the Shannon’s radius respectively. Lowering both values of the two variables 

(ZA/rA and ZB/rB) can increase the itinerant electrons of the perovskite oxides because low values of 

Z/r means low Coulomb-potential, which causes spread and overlap of the orbitals. Therefore, the 

electrical properties of the perovskite can be tuned by changing the integral overlap of the orbitals.  

Taking advantage of the potential map, one can evaluate the electrical conductivity of any simple 

perovskite oxide. For relatively complicated perovskite oxides, the potential Z/r can be gained as a 

weighted average. Besides the potential of the cations, the degree of the distortion from ideal 

perovskite structure also affects the overlap of orbitals, and the tilting of the structure is reported to 

narrow the conduction band and enlarge the band gap.38 

 Ionic conductivity 

As another significant property of IT-SOFC cathode, ionic conduction of most perovskite oxides is 

normally driven by oxygen vacancy gradient. For some materials such as Ruddlesden-Popper 

structured oxides39-41, oxygen mobiles through an interstitial mechanism. In the vacancy-driven cases, 
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an oxygen ion hops from an occupied oxygen site to the neighbouring vacancy site. Through 

interstitial mechanism, the oxygen ion at one interstitial site migrates to a neighbouring interstitial 

site. Since oxygen vacancy mechanism is more common and effective for oxygen ion conduction, 

this review attempts to mainly summarize the progress of the understanding on vacancy-driven 

oxygen ionic conduction. 

Formation of oxygen vacancy 

Oxygen vacancy is important in the vacancy mechanism, and its concentration affects the ionic 

conducting kinetics. The oxygen vacancy is a result of temperature (intrinsic defects) or impurities 

and/ or partial substitution of other cations (extrinsic defects). Taking (La, Sr) (Co, Fe) O3-δ as an 

example, the charge neutrality can be ionically compensated by forming oxygen vacancies especially 

at higher temperature.35 Low-valence dopant are found effective in lowering the oxygen vacancy 

formation energy especially in fluorite-structured ceria or MgO because they can lower the energy of 

unpaired electrons at the oxygen vacancies by creating a hole at the top of valence band to let the 

unpaired electrons to fill in.42 Besides the cationic valence, the size of dopant also has an impact on 

the energy of vacancy formation. For instance, doping Ba2+ into Sr (Co, Fe) O3-δ reduces the oxygen 

vacancy formation energy by 0.3 eV likely due to the relatively large size of Ba2+ that causes lattice 

expansion and thereby leads to formation of lower-valence Co. What is more, higher density of state 

of B-site cations close to the fermi level is also beneficial for oxygen vacancy formation due to its 

ease of valence transformation. For this reason, a higher level of Co in (Ba, Sr) (Co, Fe) O3-δ leads to 

a lower oxygen vacancy formation energy as compared to the analogues with more Fe content.43, 44  

However, the oxygen vacancy formation usually accompanies with diminishing charge carriers due 

to the following reaction as denoted using Kroger-Vink notation: 

 2

1
2 2

2
B O O BB O V B O        (2.2) 

Where “ ” and “ / ” stands for unit positive and negative charge respectively, and “” represents 

neutrality. Therefore, the electronic conductivity can be negatively affected by the increasing level of 

oxygen vacancies.  On the other hand, too large oxygen deficiency may destabilize the perovskite 

structure: distortion of cubic perovskite structure or formation of brownmillerite-type structure with 

ordering oxygen vacancies can severely deteriorate the ionic conductivity.45, 46 

Oxygen vacancy mobility 
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Figure 2-6 A schematic illustrating (a) a transition state of an oxygen O* migrate through the “saddle 

point” formed by one B-site cation (B*) and two A-site cations A* and A’* in a perovskite oxide; 44 (b) 

the critical radius for the saddle point configuration.47  

Geometry also influences the ionic conductivities. Higher symmetry usually facilitates faster ionic 

conduction because it allows oxygen vacancies migrate isotropically to the neighbouring equivalent 

sites. During the transport along the edge of octahedral BO6, oxygen ions have to pass through a space 

established by two A-site cations and one cation at B-site. That space is normally called as “saddle 

point”. (Figure 2-6) Larger space of saddle point makes it easier for oxygen ion migrate through. 

Critical radius crr  is the parameter, derived from a rigid hard-sphere model, that characterises the size 

of saddle point, which is defined as:47 
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where 0a  is the lattice constant of the pseudo cubic structure, and t  is the tolerance factor. Critical 

radius crr  can be increased by increasing B-site ionic radius Br  and/or decreasing A-site cation radius 

Ar .  

However, typical crr for perovskite oxides is normally less than 1.05 Å,48 much smaller than an 

oxygen ion, with an ionic radius of 1.4 Å, making it impossible for an oxygen ion to travel through. 

This size mismatch can be ascribed to the hard-sphere model that the crr is defined upon neglecting 

the effects from lattice relaxation. Consequently, Cherry et al. took the lattice relaxation into account 

to study the oxygen ion migration in the perovskite oxides, and suggested that an evenly distributed 

relaxation among cations while oxygen ion is migrating through the saddle point is important for 
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lowering the energy barriers for oxygen ion migration.49  In addition, smaller activation energy for 

oxygen ion migration is reported for materials with higher lattice polarizability.50  

 

Figure 2-7 Relationship between activation energy for ionic conduction in perovskite oxides as a 

function of free volume.51 

Lattice free volume Vf, which defined as the volume unoccupied by the ions in the unit cell, is also 

considered to influence the oxygen ion migration. A significant correlation as shown in Figure 2-7 

was reported by Cook et al. between activation energy for oxygen ion migration and the free volume: 

larger Vf makes it easier for the migration of oxygen ions. Hayashi et al.52 introduced a more universal 

parameter- the specific free volume (i.e. lattice free volume divided by total unit cell volume)- for 

easier comparison of different perovskite oxides.  However, some exceptions were also reported such 

as La0.9Sr0.1M0.9Mg0.1O2.9 (M=Al3+, Ga3+, Sc3+, In3+)53 : the oxide containing In3+ is predicted to be 

the optimal for oxygen conduction but the highest ionic conductivity is observed for Ga3+ containing 

oxide. Mogensen et al. argued the importance of lattice strain and structural distortion from cubic 

structure to the oxygen ionic conductivity, and claimed that a stress-free structure with cubic 

symmetry plays a significant role in fast oxygen migration.48 Further experiment results also 

demonstrated that the deviation from such ideal perovskite phase degrades ionic conductivity.54  

Moreover, the ionic conductivity can also be improved by lowering down the bonding strength 

between cation and oxygen.54, 55 It is easy to understand that weak bonding strength of cations to 

oxygen ions renders easier oxygen ion migration. For perovskite oxides, this bond strength can be 

characterized by the average metal-oxygen bond energy (ABE) as given by50: 

    2 2

1 1

12 2 6 2m n x yA O A B O BO O

n y
ABE m H m H D x H x H D

   
            

   
 (2.5) 
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Where 
m nA OH and 

x yB OH refer to the heats of formation for m nA O and 
x yB O respectively; AH and 

BH stand for the heats of sublimations of A and B metals respectively; 
 2O

D is the dissociation 

energy of the O2. The activation energy of oxygen-ion migration was found for certain perovskite 

ionic conducting materials correlates linearly with their calculated ABEs.50 

Unfortunately, designing optimal material for cathode of SOFC usually ends up with making 

compromise. For example, substitution of aliovalent cations can increase oxygen vacancies but 

sometime sacrifices the symmetry of the structure and number of charge carriers. The valence state 

of the B-cations should be minimised to achieve low average metal-oxygen bonding energy, but the 

concentration of the charge carriers is consequently reduced so that deteriorate electronic conductivity. 

Though no approaches are perfect for cathode material design, the aforementioned factors more or 

less provide us some hints for IT-SOFC cathode development. 

 Controlling steps for ORR 

 

Figure 2-8 A schematic of possible pathways for incorporation of O2 into perovskite oxides, with red 

standing for the rate-controlling step, green for fast process and dotted grey for slower step than other 

alternative step. Main mechanism for (a) perovskite oxides with few oxygen vacancies and (b) 

perovskites with high vacancy content.56 

Recognizing which process that determines the ORR kinetics is significant for understanding the 

cathode reaction mechanism as well as for cathode activity improvement for IT-SOFC. For different 

cathode materials, the rating-controlling step may be different. An example is presented in Figure 2-8, 

the rate-determining step is the oxygen incorporation process for perovskite oxides containing very 

few oxygen vacancies such as (La, Sr)MnO3 because of the scarce of vacancy on the surface. 

Interestingly, it is the vacancy that reaches the adsorbed oxygen species due to the observed high 

migration energy barrier for adsorbed oxygen species (~ 2 eV).56 Nevertheless, the ORR kinetics of 

perovskites with sufficient oxygen deficiency, such as (La, Sr) (Co, Fe) O3-δ and (Ba, Sr) (Co, Fe) O3-
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δ, are usually controlled by the oxygen dissociation step where oxygen vacancy gets involved. The 

rate of this vacancy-involved dissociation is limited by the encounter between the surface vacancy 

and the adsorbed oxygen molecules. Because of the adequate amount of movable vacancies, the 

oxygen reduction is no more limited by the oxygen incorporation step and the ORR activity is 

relatively high at lower temperature.  

Electronic versus ionic conductivity 

As mentioned in previous sections, mixed electronic and ionic conductivities are required especially 

for single-phase cathode materials for IT-SOFC, but these two conductivities cannot get along well 

with each other in most cases: increasing ionic conductivity can degrade the electronic conductivity 

mainly because oxygen vacancies can diminish charge carriers for electronic conduction. 

Consequently, which conductivity dominating the ORR catalytic rate has to be understood to optimize 

the cathode performance at reduced temperature.  

 

Figure 2-9 (a) Effective rate constant k of several perovskite oxides with mixed conductivities as a 

function of electronic conductivity under 1 bar oxygen partial pressure at 750 °C; (b) rate constants 

for bulk samples (circles for k*; triangles for k* = kchem/wo from chemical relaxation experiment where 

wo = 0.5 (∂ ln pO2 / ∂ ln cO)) and dense films (diamond for kq) against ionic conductivity under similar 

condition.56 

Correlations between ORR rate constant and the conductivities are given in Figure 2-9, and it is 

obvious in Figure 2-9(a) that the electronic conductivity has little impact on cathode electroactivity, 

though electron transfer is involved in the reaction. For example, poor electronic conductor 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ shows much higher effective rate constant than that of La0.74Sr0.18MnO3-δ 
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which has higher electronic conductivity. In contrast, however, a clear trend can be seen for rate 

constants versus ionic conductivity: faster ionic conduction leads to higher oxygen exchange rate. 

(Figure 2-9(b)) Maier et al. also found that the content and mobility of oxygen vacancies are both the 

key factors for the oxygen incorporation process on the (Ba, Sr) (Co, Fe) O3-δ surface.57 Besides, an 

obvious relationship is also recognised between oxygen surface exchange coefficient and oxygen 

bulk diffusivity by many researchers.34, 57-59 This correlation can be ascribed to the oxygen vacancies 

that is involved in both the rate-determining steps in surface exchange and the bulk oxygen ion 

conduction. A linear free enthalpy relationship derived by Maier et al.59 also provides a quantified 

basis for such correlation. In addition, higher surface exchange kinetics are also reported for electron-

rich materials than electron-poor materials with similar diffusivity, implying certain significance of 

electron conducting for the oxygen surface exchange.34 However, the ionic conductivity is still the 

factor more important than electronic conductivity limiting the ORR activity.  

Oxygen p-band center 

 

Figure 2-10 (a) The area specific resistance (ASR) of perovskite cathode materials from experiments as 

a function of O p-band centre; (b) a schematic illustration of relationship between ORR energetics and 

the O p-band centre based on the rigid band model.60 

Ease of adding and removing an oxygen ion was also considered to be a vital limiting factor for 

cathode electroactivity. Morgan et al. used O p-band center to quantify this property and claimed that 

this variable can be a universal predictor for ORR activity, which is supported by the strong 

correlation of experimental ORR-related properties (including polarization resistance, surface 

exchange coefficient and B-site oxygen adsorption energy) versus the O p-band center.60 (Figure 2-10) 

This clear trend can be explained by the number of electrons moving between Fermi level and the 

oxygen O p band when oxygen is added or removed as illustrate in Figure 2-10(b): the lower O p-

band center, the easier for the electron interchange and thereby faster for oxygen addition and removal.  
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 Conclusions of Section 2.2 

In summary, the cathode materials such as perovskite oxides with both electronic and ionic 

conductivity exhibit higher electroactivity towards ORR at intermediate temperature, because such 

mixed conductivities help extend the reaction active region throughout the cathode surface. For 

electronic conduction, the charge carriers usually hop among reducible transition metal couples (e.g. 

TM3+/TM4+) via the overlaps between pπ and t2g orbitals, so increasing the hopping sites or enlarging 

the orbital overlaps can improve the electronic conduction. For ionic conduction, high concentration 

and high mobility of oxygen vacancies are both important. The oxygen vacancy formation energy 

can be reduced by lowering the valence of B-site cations or increasing the density of states close to 

the Fermi level. The oxygen mobility can be affected by factors such as lattice geometry, lattice 

relaxation and strength of metal-oxygen bond. In many cases, increasing the ionic conductivity has 

to sacrifice the electronic conductivity due to the decreased amount of electrons when oxygen 

vacancies are formed. As compared to electronic conductivity, ionic conductivity is the major factor 

limiting the ORR activity, though electronic conduction shows somehow indirect positive effects on 

the surface exchange kinetics when comparing samples with similar oxygen diffusivity.  

 Crystallography of cathode materials 

Crystallography is vital for a SOFC cathode because it usually determines the electroactivity and 

stability of the cathode. There are many types of crystal structures that have the potential to be cathode 

candidates for IT-SOFC, such as perovskite oxides, Ruddlesden-Popper oxides, double perovskite 

oxides, pyrochlore-type oxides and tetrahedrally coordinated materials.  The following provides a 

very brief introduction about the perovskite oxides, Ruddlesden-popper oxides and double perovskite 

oxides because they are common candidates for IT-SOFC cathodes. 

 Ruddlesden-popper (RP) oxides 

 

Figure 2-11 A schematic structure of a Ruddlesden-popper oxide containing n ABO3 perovskite phases 

inserted between two AO rock-salt phase layers, and the oxygen atoms highlighted by the arrow are 

oxygen in equatorial (Oeq) , apical (Oap) and interstitial site (Oi).61 
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A typical RP structure is presented in Figure 2-11, and materials in this structure has a general formula 

given as An+1BnO3n+1 (typically n=1,2,3), wherein several consecutive ABO3 perovskite layers are 

alternated  with AO rock-salt layers which stacks along c-axis. The RP structure is mainly in a 

tetragonal symmetry belonging to I4/mmm space group, with rare-earth or alkaline-earth cations at 

A-sites and transition metal elements at B-sites. For SOFC applications, RP materials for n=1 such 

as Ln2NiO4+δ (Ln = lanthanides) are alternative cathode materials due to their relatively high ionic 

conductivity, 62-64 and are also usually named as K2NiF4 structured materials.  

The ionic conduction in RP lattice is generally considered to undergo an interstitial mechanism, where 

an oxygen accommodated at an interstitial site in the AO layers65 jumps to other neighbouring 

interstitial site.39 Interstitial oxygen ions can be formed by oxygen intercalation, accompanying with 

oxidisation of the lattice, as illustrated by: 

 2

1
2

2
iO O h   (2.6) 

Where iOand h stand for an interstitial oxygen ion and a hole respectively. This oxygen intercalation 

can be realized chemically or electrochemically,66-68 and the intercalated oxygen is located in a double 

tetrahedron consisting four Oap and four A-site cations in  the A2O2 layers. Though distortion of BO6 

octohedra occurs due to adding interstitial oxygen ions especially for La2NiO4+δ, it is found more 

favourable for lattice relaxation by intercalating oxygen ions as compared to the stoichiometric one, 

where orthorhombic distortion is required to reduce lattice strain caused by parameter mismatch 

between different layers.69 

The oxygen ions were found to diffuse anisotropically in the RP lattice: the conduction along the a-b 

plane is much faster than that along c axis. For example, the oxygen diffusivity (~ 10-7 cm2 s-1 at 

900°C) of La2CuO4+δ in the a-b plane is 100 times higher than that along the c- axis.70  Similarly, a 

La2NiO4+δ film shows faster oxygen-ion diffusion (by three orders of magnitude) and surface 

exchange kinetic (by two orders of magnitude) as compared to those along c-axis.71 The anisotropic 

ionic conduction behaviour arises from the layered structure of RP: a-b plane (i.e. A2O2) has higher 

content of interstitial sites for oxygen and lower migration activation energy as compared to c-axis.70 

Lattice relaxation, atomic volumetric change and oxygen polarizability were found to play significant 

roles in the interstitial oxygen migration,69 but the charge transfer has a negligible effect on the 

migration. 69, 72 
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 Perovskite 

 

Figure 2-12 An atomic structure of a basic cubic perovskite oxide ABO3 with an oxygen vacancy.29  

A perovskite-structured oxide, as shown in Figure 2-12, is typically in a cubic structure with a general 

formula ABO3. A-site cations are relatively larger cations with 12-fold coordination, such as rare-

earth or alkaline-earth elements, and B-site cations are usually 6-fold coordinated cations in smaller 

size such as TMs like Mn, Fe, Co or Ni. The perovskite structures can be influenced by the sizes of 

A and B cations: the degree to which the structure deviates from the ideal perovskite can be measured 

by tolerance factor (t) as given by the following equation73: 

 
 2

A O

B O

r r
t

r r





 (2.7) 

where r stands for the ionic radius of A, B and oxygen ions. Different t values can point to different 

crystal structures as summarized in Table 2-1.  

Table 2-1 The effects of cations on Goldschmidt factors and the corresponding possible crystalline 

structures to different values of Goldschmidt factors. 

Tolerance 

Factor 
Effects Possible structures 

t>1 
The cations at A-sites are too 

large to stay at their interstices. 
Hexagonal perovskite polytypes. 

t=0.9~1 Cations and anions fit their sites. Cubic structure 

t=0.71~0.9 
The cations at A-sits are too 

small. 
Orthorhombic or rhombohedral 

t<0.71 
The size of A-cations is the 

same to B-cations 

Some close-packed structure including 

corundum structure, ilmenite structure, and 

etc. 

The radii of the ions were also studied by Goldschmidt73, Zacharisasen74, Pauling75, Ahrens76, and 

Shannon, 77-79 but the results differ from each other. Nowadays, the set of radii given by Shannon is 

widely accepted for the calculation of the tolerance factor since Shannon took into account the effect 

of coordination numbers on the radii of the ions. Though the perovskite phase still exist even when 

the calculated tolerance factor is not close to unity (for example La1-xSrxCoO3-δ
80), Goldschmidt’s 
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tolerance factor is an easy and practical tool to roughly predict perovskite formation and the crystal 

structure evolution as a function of concentration changes of the constituent ions. 

Based on the type of B-site cations, the perovskite cathodes can be mainly categorized into Mn-based 

(e.g. LSM), 81-83 Fe-based (e.g. SrFeO3-δ), 
84-94  Ni-based (e.g. LaNiO3-δ), Co-based (e.g. (La, Sr)CoO3-

δ), 
95-99 or mixed-TMs-based (e.g. La(Ni, Fe)O3-δ and Sr(Co, Fe)O3-δ )

100-104 materials. As compared 

to other crystal structures, perovskite is relatively stable tolerating high level oxygen vacancies, 

thereby rendering fast bulk oxygen-ion conduction. The oxygen octahedral symmetry around 

reducible TMs usually makes it possible for rapid electron conduction. More details on the mixed 

conductivities are discussed in previous sections. (see Section 2.2.1 and 2.2.2) Because of their 

outstanding mixed conductivities, perovskite materials are regarded as one of the most promising 

candidates for the IT-SOFC cathodes.  

 Double perovskite  

 

Figure 2-13 A schematic of (a) A-site cation ordering double perovskite oxide AA’B2O5+δ,105 and (b) B-

site cation ordering double perovskite oxide A2BB’O5+δ with a rock-salt type B-cation sublattice.106  

Another type of mixed conductor under wide investigations for SOFC applications is the double 

perovskite structured oxides. Double perovskite materials are a group of perovskite-related materials 

containing either ordered A-site (AA’B2O5+δ) or B-site cations (A2BB’O5+δ). (Figure 2-13) For an A-

site ordering double perovskite, cations at A- and A’- sites are normally rare and alkaline earth 

elements respectively, and B-site cations are transition metals. A-site cation ordering is a result of the 

significant size difference between the two different A-site cations (A and A’).61 For double 

perovskite oxides with ordered B-site cations, the crystallographic ordering, such as the common 

rock-salt ordering, is dominated by charge (primary factor) and size difference (secondary factor) of 

the B-site cations, and it is found that ordering B-cation sublattice is favoured when charge difference 

is larger than two.107  Besides difference of cations at the same sites, the A/B cation mismatch also 
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has an impact on the cation sublattice arrangement and phase stability, which can be characterises by 

the tolerance factor as defined by Eq (2.7).107 

Some double perovskite oxides also show fast kinetics of oxygen surface exchange and diffusivity at 

reduced temperature, such as LnBaCo2O5+δ (Ln = Pr, Nd, Sm and Gd) and PrBa0.5Sr0.5(Co, Fe) 

O5+δ.
108-111 For example, GdBaCo2O5+δ shows an oxygen exchange coefficient of 2.8 × 10-7 cm s-1 

and diffusivity of 4.8 × 10-10 cm2 s-1 at 575 °C, with the respective activation energy of 0.81(4) eV 

and 0.60(4) eV, which are even lower than those of some benchmark simple perovskite cathodes such 

as (La, Sr) (Co, Fe) O3-δ.
108 Far higher ionic conductivity (by orders of magnitude) was also observed 

for double perovskite GdBaMn2O5+δ when compared with simple perovskite Ga0.5Ba0.5MnO3-δ,which 

is ascribed to the reduced oxygen bonding strength by the ordering GaO and BaO planes and the 

disorder-free trajectories for oxygen ion migration.112 Similarly, Kim and Liu et al studied A-site 

ordering PrBa0.5Sr0.5(Co, Fe) O5+δ double perovskite material using DFT simulations, and reported 

that pore channels in the lattice, especially the zigzag path through CoO plane, are the reason for its 

enhanced oxygen surface exchange and diffusion processes.109 

 Conclusions of Section 2.3 

In conclusion, crystallography plays an important role in facilitating ORR-beneficial mixed 

conductivities. There are several types of mixed conductors having the potential to become IT-SOFC 

cathode, such as Ruddlesden-popper type, double perovskite and perovskite oxides. Most of these 

materials are composed of rare /alkaline earth elements, transition metals and oxygen ions. The 

structures of these materials are significantly affected by the sizes and electronic configurations of 

the cations. Mechanisms for these materials are different: interstitial mechanism dominates the ionic 

conduction in RP-type materials, and vacancy mechanism drives ionic conduction for the other two 

structures. Materials in simple perovskite structure are regarded as one of the most promising 

candidates for IT-SOFC cathodes, and some benchmark cathodes such as (La, Sr) (Co, Fe) O3-δ, 

Sm0.5Sr0.5CoO3-δ and (Ba, Sr) (Co, Fe) O3-δ, are simple perovskite oxides. Therefore, this review also 

attempts to summarize the progress on developing some key perovskite cathode materials for IT-

SOFC applications in the following section. 

 Materials for perovskite cathodes 

As aforementioned in Section 2.2, the sluggish kinetics of conventional HT-SOFC cathode materials 

at intermediate temperature can be enhanced by either being replaced with single-phase mixed 

conductors or incorporated other phases with high ionic conductivity and enhanced redox properties. 

Correspondingly, this section attempts to give a review on recent advances in developing single-phase 

and composite perovskite cathode materials. More details are discussed on the perovskite cathode 
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materials based on SrCoO3-δ parent oxide, since this group of materials are recently reported to exhibit 

outstanding ORR electroactivity at very low temperature.   

 Single perovskite cathode materials based on different B-site cations 

Depending on the B-site cation types, the perovskite oxides can be categorized into Mn-based, Co-

based, Fe-based, Ni-based and mixed transition metal-based cathodes. As B-site cation is a dominant 

factor affecting the cathode performance, a brief review on these types is given as follows: 

 Manganese-based perovskite oxides  

Perovskite-related manganites, such as (La, Sr) MnO3, are a sort of materials that have the potential 

to be cathodes at high operating temperature (> 800 °C) because of their high electronic conductivity, 

fast kinetics towards ORR and relative low TEC that is compatible with commonly used electrolyte, 

such as yttria-stabilised zirconia (YSZ). 113 

Most of LnMnO3-based cathodes are electronic conductors with very low oxygen ion conductivity. 

The insufficiency of oxygen vacancies is the main reason for the slow ionic conduction in Mn-based 

materials. Doping divalent alkaline-earth elements is not an effective way to create oxygen vacancies 

in the Mn-based lattice28, 114 because the introduced charge imbalance by divalent dopants result in 

formation of more Mn4+, which provides more holes for the electronic conduction.115  Nevertheless, 

doping cations with fixed valence, such as Sc3+, into B-site was found helpful in promoting oxygen 

vacancies and thus improve their cathode performance.116, 117    

Another challenge of manganite cathodes is the reactivity of A-site cations with YSZ at high operating 

temperature. The formed secondary phases formed at cathode-YSZ interface, such as SrZrO3 and 

La2Zr2O7, are electronically insulated, leading to high polarisation resistance and high ohmic loss of 

cathodes by hindering surface diffusion of electrochemically active oxygen to TPBs and the formation 

of activated oxygen. 118 However, the chemical compatibility of Mn-based materials can be improved 

by creating A-site deficiency, doping low content of alkaline earth elements or Al3+ or reducing the 

size of lanthanide. 119-123 Although perovskite manganite oxides especially for (La, Sr) MnO3 are still 

considered to be state-of-the-art cathode materials for HT-SOFC, they fail in meeting the 

requirements for an IT-SOFC cathode due to its inherent poor ionic conduction. 

Iron-based perovskite oxides 

Iron-based perovskite oxides, such as SrFeO3-δ, have been extensively studied and evaluated as 

cathode alternatives for IT-SOFC cathodes because they are more cost effective exhibit higher 

electroactivity in oxygen reduction than conventional Mn-based cathodes.124-126 For instance, 

Petitjean et al. compared the bulk oxygen tracer diffusivity between La0.8Sr0.2MnO3 and 
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La0.8Sr0.2FeO3-δ, and observed that the bulk oxygen diffusion of the latter is faster than the former by 

nearly six orders of magnitude.127 The better catalytic activity of Fe-based perovskite is primarily 

ascribed to its available oxygen vacancies and therefore high ionic conduction. As compared to Co-

based perovskite cathodes, iron-based perovskites stand out with having better matched thermal 

expansion coefficient with commonly used electrolytes such as doped ceria and doped zirconia at 

elevated temperature.124, 128, 129 

Perovskite oxides derived from LaFeO3-δ are widely studied as IT-SOFC cathodes. However, LaFeO3-

δ itself has poor electronic and ionic conductivity due to few oxygen vacancies and the absence of 

Fe3+/Fe4+ hopping sites.128 Therefore, doping divalent cation (eg. Sr2+, Ba2+) can improve both the 

electronic and ionic conductivity by creating anion vacancies and Fe4+ in the lattice.130-132 Partial B-

site cation substitution can improve the ORR-related properties of (La, Sr)FeO3-δ. For example, 

partially replacing Fe with Nb5+ can increase the electrical conductivity and thereby the electroactivity 

on ORR at IT range.133  Cu is also a dopant that can improve the activity towards ORR at intermediate 

temperature, which may be attributed to the enhanced oxygen ion mobility by Cu and the optimised 

microstructure by lowering the cathode fabrication temperature.134, 135 Moreover, replacing La with 

other rare earth elements such as Sm, Pr and Nd also show promising ORR activity, with an ASR of 

0.085, 0.05 and 0.071 Ω·cm2 at 700 °C for Ln0.5Sr0.5Fe0.8Cu0.2O3-δ (Ln = Sm, Pr and Nd) 

respectively.136-138 Xia et al. studied Bi3+ -doped LaFeO3-δ as cathode for IT-SOFC, and found that 

the cathode performance is significantly improved as a result of more oxygen vacancies promoted by 

Bi3+.139  

SrFeO3-δ is also a common parent oxide for Fe-based perovskite cathodes due to its sufficient oxygen 

vacancies for ionic conduction.140 However, the structure of the SrFeO3-δ is not stable, and phase 

transformation occurs at different temperature, and sometimes several phases coexist such as cubic 

perovskite structure and vacancy-ordering phases.140, 141 Doping is an effective to stabilize the 

beneficial perovskite structure of SrFeO3-δ. For example, a cubic perovskite structure can be achieved 

by doping Bi3+ into Sr2+ site of SrFeO3-δ,
91, 126, 142 and the polarisation resistance of (Sr, Bi) FeO3 is 

greatly improved at reduced temperature, owing to the low ABE, increased oxygen vacancy content 

and high ionic mobility brought by Bi3+.126 Substitution of Ba2+ is also found beneficial for stabilizing 

the cubic perovskite phase and enhancing cathode performance, and an example is the a polarisation 

resistance of 0.137 and 0.23 Ω·cm2 were achieved by Ba0.5Sr0.5Fe0.8Cu0.2O3-δ and 

Ba0.5Sr0.5Fe0.8Zn0.2O3-δ at 750 °C, respectively.143, 144 Besides, B-site cation substitution is another 

effective strategy to improve cathode electroactivity. Doping Ti, Nb, Mo and co-doping Sc and Nb 

are reported to stabilize the perovskite structure of SrFeO3 and good for activity enhancement on 

oxygen reduction at lower temperature.145-148 
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Nickel-based perovskite oxides 

LaNiO3-δ-based perovskite cathodes are also common cathodes for IT-SOFC. A phase transition is 

easy to occur from perovskite phase to a K2NiF4-type structure (i.e. La2NiO4+δ) at temperature over 

~ 850 ºC. Correspondingly, Chiba et al. evaluated LaNiO3-δ oxide doped with different B-site dopants, 

such as Al, Cr, Mn, Fe, Co and Ga, as SOFC cathode, and observed that doping Fe is effective in 

stabilizing the perovskite phase and increasing the electronic conductivity up to 580 S cm-1 at 800 °C 

for LaNi0.6Fe0.4O3-δ.
149 LaNi0.6Fe0.4O3-δ shows the highest electrochemical activity, with an ASR value 

of 5.5 Ω·cm2 at 600 ºC, which is a result of increased ionic conductivity brought by Fe.150 However, 

LaNiO3-δ-based cathodes are chemically incompatible with YSZ electrolyte at temperature over 1000 

ºC, and the formed electronically insulating La2Zr2O7 can lead to detriment of  cathode performance. 

Another challenge for La (Ni, Fe) O3-δ is its susceptibility to volatile Cr species coming from the 

metallic components of fuel cell stack. It is found that Cr can be gradually incorporated into the lattice 

and expel nickel out of the lattice, thereby degrading the electronic conductivity and cathode 

performance especially at higher temperature.151 

Cobalt-based perovskite oxides 

The perovskite cathodes containing Co usually exhibit high electronic and ionic conductivities, and 

superior electrocatalytic activity towards ORR at intermediate temperature. For this reason, Co-based 

perovskite oxides receive enormous research interest and work in IT-SOFC cathode development. 

Perovskite cathodes derived from SrCoO3-δ are one of the most promising candidates for high 

performance IT-SOFC. Several benchmarked cathode materials are developed based on SrCoO3-δ 

such as (Sm, Sr) CoO3-δ, (La, Sr) (Co, Fe) O3-δ, and Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Recently, a few novel 

SrCoO3-δ-based cathodes have been developed, showing superior electroactivity at very low 

temperature. For instance, a highly active cathode material SrSc0.125Nb0.025Co0.8O3-δ shows an ASR 

as low as 0.11 Ω·cm2 at 550 °C. One of the challenges for SrCoO3-δ-based perovskite cathodes is their 

mismatched TEC with commonly used electrolyte materials (like doped ceria). Taking 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ for an example, it has a TEC of 24 ×10-6 K-1 that is over twice higher than that 

of the electrolyte, and the mismatched thermal expansion can cause thermal stress in the cathode.152 

The high TEC is normally related to the reduction of cobalt ions, where the electrons in d-orbitals 

change from low-spin stats to high-spin states at elevated temperature.153 However, the mismatched 

TEC can be effectively alleviated by mixing Co-containing perovskite cathodes with low-TEC 

electrolyte materials. Besides, the Co-based cathodes containing alkaline-earth elements are also 

susceptible to the acidic contaminates in the air, such as CO2, boron and volatile Cr species, and the 

cathode performance can be severely deteriorated by these contaminates. As this project mainly 
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focuses on developing high-performance cathode materials based on SrCoO3-δ, a review with more 

details is given in the following section. 

 SrCoO3-δ-based perovskite oxides 

The reason for using pristine SrCoO3-δ as a parent oxide is its potential of high mixed conductivities 

as demonstrated by the observed high permeability of La1-xSrxCo1-yFeyO3-δ oxygen permeation 

membranes when the composition approaches pure SrCoO3-δ.
154 The oxygen vacancies are likely 

formed to compensate the charge imbalance introduced by the low valence of Sr, so ionic conductivity 

can be enhanced by these oxygen vacancies. However, the crystal structure of SrCoO3-δ is not stable: 

the SrCoO3-δ at below 900 °C is in an ordered 2H-type BaNiO3 structure, showing oxygen 

permeability over 5 times lower than that of SrCoO3-δ in the disordered cubic perovskite phase at 

above 900 °C.155 Partially doping cations into A-sites or/and B-sites turns out effective to stabilize 

the benign perovskite structure at reduced temperature, and also to improve the electrode activity and 

stability of SrCoO3-δ cathode. Therefore, in the following discussion, we focus on the advances of the 

doped SrCoO3-δ perovskite cathode materials, particularly the cathode activity and stability. 

A-site doping on SrCoO3-δ perovskite 

Improved cathode performance can be achieved by creating cation deficiency or by doping A-site of 

SrCoO3-δ perovskite with other similar size cations such as rare-earth and other alkaline-earth 

elements.  

 

Figure 2-14 Relationship between the highest level of A-site deficiency and the average B-O bond 

energy. 1. La1/3TaO3; 2. La1/3NbO3; 3. Na0.25WO3; 4. La2/3(Ti4+
0.5Ti0.5

3+)O3-δ; 5. La0.2Sr0.6Ti0.8Nb0.2O3; 6. 

La0.9(Mn4+
0.5Mn3+

0.5)O3+δ; 7. La0.55Sr0.4Co3+
0.2Fe3+

0.8O3; 8. LaNiO3-δ; 9. LaCoO3-δ.156  
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Introducing small amount of A-site deficiency can create more oxygen vacancies, and enhance the 

ionic conductivity. For example, 5 mol% of Sr deficiency increases the oxygen vacancy content of 

SrCo0.9Nb0.1O3-δ from 0.240 to 0.345, leading to a lower ASR of about 0.147 Ω·cm2 at 550 °C.157, 158 

Electroactivity improvement was also reported for (La or Pr, Sr) (Co, Fe) O3-δ cathodes with  

relatively low A-site  deficiency.159, 160  However, the electronic conductivity is sacrificed by 

introducing A-site deificency.44,45 The reduction in conductivity is likely caused by the additionally 

formed oxygen vacancies, which suppresses charge change of B-site cations and consequently 

reduces the hopping sites for charge carriers. The TEC can also be reduced by introducing deficiency 

at A-site. A TEC of 9.3×10-6 K-1 is achieved for 20 mol% of A-site deficiency for (Ba, Sr) (Co, Fe) 

O3-δ cathode, and the TEC value is much lower than that of the original one (27.5×10-6 K-1).161  

However, excessive A-site deficiency may lead to loss of B-site cations in the lattice, and therefore 

deteriorates the cathode activity.160 In order to probe the maximum possible A-site deficiency content, 

Konysheva et al. studied the relationship between maximum deficiency at A-site and the B-site bond 

energy with oxygen (Figure 2-14), and suggested a method to estimate the highest tolerable A-site 

deficiency in a perovskite compound by evaluating whether the B-O bond energy is close to -170 kJ 

mol-1.156 

What is more, the A-site can be substituted with other rare earth elements such as La and Sm. Tu et 

al. evaluated the SrCo0.8Fe0.2O3-δ cathodes doped with different lanthanide elements, and found that 

Nd-doped SC exhibit the best ORR activity.162 Sm-doped SC cathode also shows promising cathode 

performance,163 exhibiting an ASR of 0.085 Ω·cm2 at 700 °C.164 Doping lanthanide such as Pr into 

Sr can create more oxygen vacancies on the surface as compared to pure SC, thereby benefiting the 

oxygen surface exchange kinetics.164 However, studies on La1-xSrxCo0.2Fe0.8O3-δ (x ≤ 0.4) reveals that 

both overall oxygen vacancy content and electrical conductivity decrease as La content increases, 

owing to relatively high valence of La3+ that mitigates the ionic compensation  (good for oxygen 

vacancy formation) and suppresses the charge disproportion of B-site cations (good for forming 

polaron hopping sites).165 

Other alkaline earth elements such as Ba can also be incorporated into the A-site of SrCoO3-δ 

perovskite cathodes. There is enormous research work on the (Ba, Sr) (Co, Fe)O3-δ perovskite cathode 

because of its superior ORR activity at intermediate temperature, with an ASR of 0.055-0.071 Ω·cm2 

at 600 °C.43, 60, 166-168 A more detailed review on (Ba, Sr) (Co, Fe)O3-δ cathode was given by Shao et 

al.169, so a brief discussion is given in this section. The outstanding electrode activity of (Ba, Sr) (Co, 

Fe)O3-δ can be attributed to the fast oxygen exchange kinetics and high ionic conductivity.170, 171 The 

Ba dopant with < 70 mol% doping level can stabilize the beneficial cubic perovskite phase of 

SrCo0.8Fe0.2O3-δ.
167, 172 Lower valence states are more preferable for Ba-doped SrCoO3-δ-based 
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perovskite due to the relatively larger ionic radius of Ba than that of Sr.172 Such low valence B-site 

cation preference, however, is a main reason for the lower electrical conductivity for Ba-doped SC 

cathode.173 A major concern for the (Ba, Sr) (Co, Fe)O3-δ application is its structure instability at 

intermediate temperature: a slow phase transformation occurs from cubic perovskite phase to 

hexagonal phase with lower mixed conductivities, and the electrochemical performance is affected 

by this phase transition.174-176 The unwanted phase transition is likely caused by a gradual change of 

B-site valence that affects the ionic sizes of B-site and therefore makes tolerance factor larger than 

one.174 

B-site doping on SrCoO3-δ perovskite 

Reducible dopants 

In SC-based perovskite oxides, cobalt ions can be partially replaced with other reducible cations, such 

as Fe, Ni and Mn,177-180 and these materials can be also regarded as the aforementioned mixed TMs-

based perovskite cathode. Fe is one of the most common dopant that can be incorporated into SC 

oxide, and some benchmark IT-SOFC cathodes, such as LSCF181 and BSCF166, 169, are based on the 

Fe-doped SC. Doping Fe can stabilize the cubic perovskite phase of SC182-186 and is effective in 

reducing the very high TEC of SrCoO3-δ cathodes181, 187 For some materials such as SrCo0.8Fe0.2O3-δ 

(SCF20), however, a phase transition occurs from cubic perovskite phase to brownmillerite structure 

with very low ionic conductivity at below 800 °C especially under low oxygen partial pressure.155, 

188-190 Therefore, other cations, such as Cr191, Zr192 and P193, are also doped into SCF20 to suppress 

such unwanted phase deformation by retarding too much oxygen loss from the lattice at high 

temperature.  Unfortunately, the electrical conductivity of materials like LSCF and BSCF can be 

degraded by the Fe dopant.194-196 Tai et al. attributed this electrical conductivity deterioration, 

particularly in La0.8Sr0.2Co1-yFeyO3-δ, to a charge carrier trapping effect induced by Fe: a portion of 

hopping polarons are trapped in the Fe-sites and need a long time to overcome the energy barrier to 

hop back to the neighbouring Co-sites, where most of the polarons are migrating.195 Besides, the 

charge compensation, as a result of the divalent Sr, is found more preferable on Fe (from +3 to +4) 

rather than on Co, and the charge disproportional ability of Co is also retarded by doping Fe, which 

also contributes to the lower conductivity for Fe-doped analogues.195 Doping Fe also has a negative 

effect on oxygen vacancies: higher Fe content results in less oxygen vacancies, 197 and the calculated 

energies for both oxygen vacancy formation and migration also increase with Fe doping level 

particularly for Ba0.5Sr0.5 (Co, Fe) O3-δ materials43.  

Fixed valence dopants 
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High valence cations with good solid solubility are also found effective in improving structure 

stability because of their high electrostatic repulsion between B cations.182  TMs, such as Sc3+,Sn4+, 

Ti4+, Nb5+, Sb5+ and Mo6+, are a group of elements with fixed valence and similar size of cobalt (which 

means good for the solubility).  Incorporating up to 20 mol% of these TMs into SrCoO3-δ is proved 

beneficial for SC structural stability by other researchers.186, 198-210  Moreover, some oxyanions such 

as phosphate, sulphate and silicate can also have some beneficial effect on stabilizing the cubic 

structure.193, 211, 212  For some of these dopants such as Sc3+, Mo6+ and Sb5+, the crystal structure of 

SrCoO3-δ at room temperature may be influenced by their substitution level202, 203, 206, 213: tetragonal 

structure (P4/mmm) is obtained if the doping content lower than 10 mol %; higher doping level will 

lead to the cubic perovskite structure.  

 

Figure 2-15 Electrical conductivity of SrCo1-yTiyO3-δ as a function of temperature.214  

The fixed valence dopant content also has an impact on SrCoO3-δ’s electrical conductivity. The 

electrical conductivity of SC is improved by small doping level of fixed valence dopants probably 

due to the stabilized perovskite phase, but is degraded by higher level of dopants, which may hamper 

the electron hopping process along the (Co, TM)-O- (Co, TM) bond due to their fixed valences.203 

Taking Sr (Co, Ti) O3-δ as an example, SC with 5 mol% Ti exhibits a maximum electrical conductivity 

of 430 S cm-1, which is more than 20 times higher than that of pure SC, but the electrical conductivity 

decreases with the concentration of Ti4+ when the doping level is over 5 mol%, shown as Figure 

2-15.214 Similar trend was also reported for SC doped with Sc213,  Nb201 and Mo203. Another property 

also affected by doping content is the oxygen vacancy, which is important to drive the ionic 

conduction. The oxygen vacancy will diminish with the substitutional content of high valence dopant 

for the reason that more oxygen ions are required to compensate the charge imbalance182, 202, and too 

high dopant content will seriously deteriorate the cathode performance.   
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Figure 2-16 Temperature dependence of Ba0.9Co0.7Fe0.2Mo0.1O3-δ (BCFM), PrBaCo2O5+δ (PBC), 

La0.6Sr0.4CoO3-δ (LSC), Ba2Bi0.1Sc0.2Co1.7O6-δ (BBSC), SrSc0.2Co0.8O3-δ (SSC), SrNb0.1Co0.9O3-δ (SNC) 

and SrSc0.175Nb0.025Co0.8O3-δ (SSNC) cathodes. 215  

Many SrCoO3-δ-derived cathodes doped with fixed valence TMs were reported to be highly active to 

reduce oxygen at intermediate temperature. For example, Shao et al. developed a Sc-doped SC 

cathode doped showing an ASR of 0.206 Ω·cm2 at 550 °C, 199 and another Nb-doped SrCoO3-δ with 

an ASR of 0.096 and 0.243 Ω·cm2 at 600 °C and 550 °C, respectively.198 Both of these cathodes also 

show relatively low TECs because of the dopants. What is more, a much higher ORR activity was 

then reported by Zhou et al.215 for the cathode composition SrSc0.175Nb0.025Co0.8O3-δ (SSNC), 

reducing the ASR down to 0.11 Ω·cm2 at 550°C. (Figure 2-16) The electrocatalytic activities of these 

materials are comparable to or even surpass that of the benchmark Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode 

especially at below 550 °C. 

Further cathode activity enhancement can be achieved by co-doping of Sc3+ and Nb5+, and the 

simulation results showed that such co-doping facilitates lattice migration of oxygen vacancy by 

significantly reducing the migration energy barrier for paths between dopant neighbouring cobalt 

octahedral.215  

One challenge to study the effects of these dopants on ORR is that the electrochemical oxygen 

reduction is a complex process involving different factors such as crystal structure, lattice geometry 

and cathode microstructure. For doped- SrCoO3-δ materials, the interruption especially from lattice 

geometry cannot be avoided because of different ionic sizes and valences of the dopants in the cathode 

composition. Moreover, there are still many dopants remaining unexplored to incorporate into 

SrCoO3-δ oxides for IT-SOFC cathode applications. 
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 Composite cathode materials 

Incorporating ionic conductors 

As aforementioned in Section 2.2, the cathode performance at reduced temperature can be improved 

by compositing the cathode materials. One strategy is to develop composite cathodes by taking 

advantages of the merits of different constituents. An introduction of ionic conducting phases to the 

conventional electronic conducting cathodes is macroscopically accepted to bestow the mixed 

conductivities that are benign for cathode performance, and is also usually accompanied by a 

remarkably increased oxygen surface exchange coefficient (k). One example is a cathode composed 

of La0.8Sr0.2MnO3 (LSM) with ~50 wt% of ionic conductor Gd0.2Ce0.8O2-δ (GDC) showing an 

improved electrocatalytic activity about 7-times higher than the pure LSM, and the better cathode 

performance is claimed to arise from the fast ionic conduction and surface exchange rate at GDC.33 

Another example is a nanostructured assembly of (La, Sr)MnO3-δ and highly ionic conductive 

Bi1.6Er0.4O3 (ESB) exhibiting an improved area specific resistance (ASR) of 0.078 Ω·cm2 at 600 °C 

thanks to the combination of both superior oxygen dissociative adsorption on (La, Sr)MnO3-δ and the 

excellent surface exchange kinetics on the ESB.32 Obviously, the authors for these examples both 

attributed the enhanced k to their ionic conducting phase, while some researchers believe that it is 

probably caused by a catalytic “spillover” effect30 from the electronic conductive constituent 

facilitating the injection oxygen ions into the ionic conductive one. The “spillover” effect is evidenced 

by the two-orders of magnitude k enhancement of partial coated GDC with La0.8Sr0.2Co0.2Fe0.8O3-δ 

(LSCF) as compared to the pure GDC.216  

Introducing nano-scale redox electrocatalysts 

 

Figure 2-17 A schematic of silver exsolving process from bulk to the surface.217  

Another effective route is to incorporate nano-scale redox catalysts. The reduced electrocatalyst 

dimensions will dramatically extend the ORR active TPBs due to an increase of interfaces between 

cathode and ionic conductors. There are many methods to achieve such nanostructured cathode, such 
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as wet impregnation218, 219, vapour deposition220-222, electrospinning223 and etc. A novel approach 

worth to be mentioned is the recently reported exsolving process, through which a nano-size Ag 

decorated Sr0.95Co0.9Nb0.1O3-δ (SCN0.95) was developed to exhibit extremely high cathode 

performance, with the lowest polarization resistances ever reported of 0.214 and 0.641 Ω·cm2 at 

550 °C and 450 °C.217 Figure 2-17 is a simple scheme illustrating the exsolution process: nano 

metallic Ag particles is exsolved by 1 h diluted 10% H2/Ar reduction at 320 °C from the original 

single-phase Sr0.95Ag0.05Co0.9Nb0.1O3-δ (SACN) as synthesized via solid state reaction with AgNbO3 

serving as the silver source.217 The superior ORR activity of such cathode is attributed to the fast 

oxygen surface exchange rate and the strong adhesion of Ag to the SCN0.95 backbone.217 

 

Figure 2-18 a) XRD profiles and b) a scanning electron microscopy (SEM) image of the Ag@CeO2 

core-shell nano spheres. c,d) Transmission electron microscopy (TEM) images and e,f) linear EDS 

scanning of the sample particles.224  

Particle coarsening, which results in loss of effective active sites, is a major concern for the nano-size 

ORR catalyst during high-temperature cathode sintering and long-term operation. An effective 

strategy addressing this issue is to use the ionic conducting constituent to suppress the particle 

agglomeration. The aforementioned nano dual-phase (La, Sr)MnO3-δ-ESB cathode is synthesized by 

in-situ assembling the LSM and ESB phases, and such dual phase structure is demonstrated to 

suppress the grain growth during sintering.32 Zhu et al. reported a highly active composite cathode 

by decorating the SrSc0.175Nb0.025Co0.8O3-δ cathode with Ag@CeO2 core-shell nano spheres (Figure 

2-18), where the CeO2 shell is found effective to prevent the Ag core from coarsening during 

treatment at 800°C, and high cathode performance stability was achieved at 600 °C.224 Moreover, the 
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particle growth is also effectively confined for the nanoscale cathode by co-loading LSM and YSZ 

nanoparticles.31 

In some situations, however, this compositing method seems to be ineffective, especially for the 

cathodes possessing sufficiently high MIECs itself such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), which is 

reported to deliver a higher power density than the one simply mixed with Sm0.15Ce0.75O2-δ (SDC).166 

Nevertheless, the cathode development strategy prevails in most cases, and will also be very effective 

in mitigating the usually mismatched TEC of most cobalt-containing cathodes.  

 Conclusions of Section 2.4 

In summary, cathode performance can be improved by using single phase perovskite cathodes with 

high mixed conductivities or/and developing composite cathodes combining advantages of different 

constitutes.  

Some main categories of single phase perovskite oxides based on Mn, Fe, Ni and Co are reviewed 

for IT-SOFC applications. More details on the development SrCoO3-δ – derived perovskite cathode 

materials are given in this section because of their superior electroactivity on oxygen reduction at low 

temperature relative to other perovskite materials. For these perovskite cathode materials, preserving 

the benign perovskite structure is of significance for achieving high ORR activity, doping different 

cations or deficiency into either A-site or B-site is effective not only in stabilizing the perovskite 

phase but also in promoting ORR-related properties such as mixed conductivity, surface exchange 

kinetics and oxygen diffusivities. Besides the structure stability, challenges also exist in the chemical 

and thermal incompatibility of cathodes with commonly used electrolyte materials such as YSZ and 

doped ceria. For example, Mn-based cathodes are easy to react with YSZ at high temperature, and 

cathodes containing Co show excessively high TEC when compared with doped ceria. However, the 

seriousness of these issues can be somehow alleviated by lowering the cathode operating temperature. 

The susceptibility of cathode materials containing alkaline earth elements to contaminates in air is 

another challenge for long-term operation of perovskite cathode materials. In the section 2.5, the 

corresponding research progress is reviewed. 

Developing composite cathode materials is one of the most common strategy for activity 

enhancement for intermediate temperature operation. Mechanically mixing ionic conducting 

materials (eg. electrolyte materials) with electronically conducting oxides (usually conventional 

cathodes) can bestow mixed conductivities, increase ORR active regions and therefore lower cathode 

polarisation resistance at low temperature. Recently, novel compositing approaches are developed to 

further improve the composite cathode activity by reducing the cathode particle dimensions and 

strengthening the contact between electronic and ionic conductors. Moreover, introducing efficient 
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redox electrocatalysts by impregnation, vapour deposition and exsolving are also proved effective in 

activity enhancement. Another advantage of a composite cathode is its significantly reduced TEC, 

which makes the Co-containing well match with the commonly used electrolytes. 

 Instability of SrCoO3-δ-based perovskite cathodes 

Applications are limited for some highly active SrCoO3-δ-based perovskite cathodes because of their 

crystal structural instability and/ or susceptibility to contaminates such as Cr, boron and CO2. As 

aforementioned, the BSCF perovskite phase is gradually transformed to the hexagonal phase that 

have lower mixed conductivities, and the oxygen flux performance degrades by nearly 50% for only 

240 hours operation at 750°C.225 Cr volatile species, which are from Fe-Cr alloy interconnects, can 

deposit on cathode surface and severely degrade the SrCoO3-δ-based cathode performance such as 

LSCF and BSCF at intermediate temperature.226-229 It is found that the Cr poisoning effect is related 

to the surface segregation of Sr and/or Ba, and SrCrO4, BaCrO4 and BaCr2O4 are easy to be formed 

at temperature higher than 500 °C.229 Moreover, the ORR kinetics and the microstructure of SrCoO3-

δ-based perovskite cathodes are also negatively affected by boron which comes from glass sealants.230-

232 The boron can deposit onto the cathode surface and lead to significant Ba and Sr surface 

segregation. However, higher tolerance to boron is observed for cathodes with low content of La3+ , 

which is likely due to higher activity La2O3 with boron than SrO and BaO.230, 232  

Since work on cathode instability in the presence of Cr and B have been extensively and profoundly 

done and reviewed, 233-237 the susceptibility to CO2 attack at intermediate temperature still remains 

challenging for AE-containing perovskite cathodes.  This review therefore attempts to review recent 

studies on addressing the susceptibility of most alkaline-earth-containing cathodes to even small 

content of CO2 in air (~ 300 ppm) at intermediate temperature (< 800 °C).  

 CO2 poisoning mechanisms 

In the presence of CO2, the oxygen surface exchange will be drastically slowed down for cathodes 

containing alkaline earth elements, such as (Ba, Sr) (Co, Fe) O3-δ
238-241 and (Sm, Sr) Co O3-δ

242. The 

susceptibility of cathodes to CO2 is mainly related to the basic surface as a result of their basic alkaline 

earth elements.242-244 CO2 and O2 were reported to compete for the limited active oxygen vacancies 

on the cathode surface,245 and long-term exposure to CO2 will lead to carbonate formation on the 

surface and further unrecoverable crystal structure damage down to the bulk.246 The alkaline earth 

cations usually play a significant role in the oxygen reduction catalysis, so reducing their 

concentration normally lowers the electrocatalytic activity on ORR in the absence of CO2. For this 

reason, two approaches seem to be useful to improve the CO2 tolerance without sacrifice of the 

superior electrocatalytic activity of the IT-SOFC cathodes: one is to improve ORR activity for 
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alkaline earth-free cathodes; another is to enhance the CO2 resistance for alkaline earth-containing 

cathodes by tuning their surface chemistry or other material properties.  Very recently, the former has 

been summarized and reviewed247, such as LaNiO3-δ, La2NiO4+δ and etc., so a brief discussion on the 

latter one will be given in this review. 

 Strategies to improve CO2 tolerance 

 Tuning single phase cathodes 

As aforementioned, it is mainly the basicity that makes the cathode easy to be poisoned by the acidic 

CO2. So by incorporating relatively acidic elements, the CO2 tolerance of the cathode will be 

improved. Cheng et al. studied the CO2 tolerance of Ba1-xSrxCo0.8Fe0.2O3-δ cathodes in exposure to 1% 

CO2/O2, and reported higher resistances against CO2 for cathodes with higher content of Sr, which is 

relatively more acidic than Ba. 243 Similarly, improved redox stability of SSNC relative to (Ba, Sr) 

(Co, Fe) O3-δ when exposed to CO2 was claimed to be partly related to the absence of Ba and relatively 

higher acidity of Nb than Fe.248 Moreover, incorporation of Ta into Sr(Co,Fe)O3-δ oxygen permeable 

membrane increases the material acidity, and therefore also significantly improves its performance 

stability in CO2-containing atmosphere.249  

Additionally, the alkaline earth phase segregation to the cathode surface is another issue related to 

the formation of carbonates on cathode surface and a heterogeneous phase near the surface.240, 246, 250 

Therefore, suppressing such segregation should be effective alleviating the CO2 poisoning of cathode. 

One way as proposed by Yildiz et al.251 is to restrain the alkaline earth segregation by reducing the 

size mismatch between dopant and host, so that a much more stable single cell performance was 

achieved by replacing Sr with smaller-size Ca into Pr (Ba, Sr)Co2O5+δ (PBSCO) layered perovskite 

cathode at 550 °C. 252 The alkaline earth phase segregation may be also promoted by the oxygen 

defects.251, 253, 254 For example, much less carbonates are formed on SrNb0.1(Co, Fe)O3-δ cathodes with 

smaller oxygen nonstoichiometry than the analogues with more oxygen defects.244 Moreover, the 

ABE is also recently regarded as an effective descriptor to predict the CO2 tolerance for alkaline 

earth-containing perovskite materials: the stronger ABE of cathode material, the higher resistance 

against CO2.
244, 248, 250 However, the electrocatalytic activity for ORR is usually sacrificed by the 

reduced level of oxygen vacancies or increase of ABEs. A trade-off still cannot be avoided between 

CO2 resistance and the ORR activity for the cathodes containing AEs.  
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Composite cathodes 

 

Figure 2-19 A schematic of the route to fabricate the dense hierarchical LN shell on BSCF surface.242  

An attracting advantage of composite cathodes is that they exhibit combined merits from different 

constituents. So the resistance of cathodes against CO2 attack can be improved by introducing an 

additional phase with high CO2 tolerance. An example is the BSCF cathode protected by a 

hierarchical shell developed from CO2-resistant La2NiO4+δ (LN), which does not only show enhanced 

cathode performance without CO2 but also complete resistance against CO2.
242 As shown in Figure 

2-19, a microwave-induced plasma technique was in use to facilitate the formation and densification 

of the hierarchical LN shell without any phase interactions between pristine BSCF and LN coating. 

The poor oxygen surface exchange kinetics of the original LN is enhanced due to the hierarchical LN 

morphology, which therefore further improve the ORR activity of (Ba, Sr) (Co, Fe) O3-δ.
242 Moreover, 

the dense shell, facilitated by the microwave plasma treatment, provides superior protection for 

pristine (Ba, Sr) (Co, Fe) O3-δ from CO2, such hybrid cathode showing nearly no redox deterioration 

resulted from CO2 and the ability to be fully recovered when CO2 is removed.242 However, one 

drawback for this method is the difficulties in applying the microwave plasma treatment in an 

industrial scale. Though very few work has been done in this field, we believe it is a very promising 

strategy to mitigating the susceptibility of alkaline earth-containing perovskite cathode while still 

maintaining or even enhancing its electrocatalytic activity in the absence of CO2. 

 Conclusions of Section 2.5 

To sum up, susceptibility of SrCoO3-δ-based perovskite cathode materials to the contaminates in the 

air such as Cr, boron and CO2 can detrimentally affect the cathode performance especially for long-

term SOFC operation. At lower temperature, the SrCoO3-δ-based perovskite cathodes becomes less 

tolerate against even very low content of CO2 in the air. The CO2 poisoning is mainly ascribed to the 

existence of basic alkaline earth elements, which play a significant role in efficiently catalyzing 

oxygen reduction for perovskite cathode materials. Strategies are explored to improve the resistance 
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of SrCoO3-δ-based cathode materials, such as increasing the global acidity of the oxides by doping 

more acidic cations or suppressing the surface segregation of the basic phases. Unfortunately, these 

approaches developed so far have to sacrifice the ORR activity of the cathodes in the absence of CO2. 

Another way is to introduce a CO2-resistant ORR catalyst hierarchical shell covering the whole 

surface of the pristine SrCoO3-δ-based perovskite cathode to prevent the contact between CO2 and the 

pristine cathode. Because only a few studies were carried out on cathode in exposure to CO2, more 

work require to be probe the CO2-poisoning mechanisms and explore effective ways to further 

improve cathode tolerance while still maintaining sufficiently high ORR activity at low temperature.  

 Summary 

In this chapter, an overview of the SOFC is provided, followed by a review on the progresses in 

understanding the reaction mechanisms for ORR as well as the development of cathodes for 

intermediate-temperature solid oxide fuel cells. At reduced temperature, conventional cathodes with 

poor ionic conductivity usually applied in high-temperature solid oxide fuel cells show very slow 

catalyzing kinetics mainly due to their very limited active regions for oxygen reduction. The cathode 

performance at low temperature can be improved by introducing ionic conductors to electronic 

conducting electrodes or by using single phase cathode materials with mixed electronic and ionic 

conductivities. The mixed conductivities can extend the reaction active regions throughout the whole 

cathode surface, thereby significantly lowering the cathode polarization resistance. 

For electronic conduction, the charge carriers (either electrons or holes) usually hop among reducible 

transition metal couples (e.g. TM3+/TM4+), so the electronic conductivity can be enhanced by 

increasing concentration of charge carriers or the overlap between orbitals of cations and oxygen ions. 

The mechanisms for oxygen ion conduction are different for different types of oxides. For example, 

interstitial mechanism dominates oxygen ion diffusion for Ruddlesden-popper oxides, and vacancy 

mechanism prevails for ionic conduction in perovskite and double-perovskite structured materials. 

The ionic conductivity can be improved by lowering the formation energy for oxygen vacancies or 

interstitial oxygen ions and/or increasing the oxygen ion mobility. The electronic and ionic 

conductivities show different functions in the ORR on cathode: electronic conductivity ensures that 

electrons are available on cathode surface for oxygen exchange processes; ionic conduction is 

involved in the limiting steps of oxygen reduction. For this reason, ionic conductivity is more 

dominant factor than electronic conductivity for cathode electroactivity.   

There are several types of mixed conducting oxides that have the potential to become alternative 

candidates for IT-SOFC cathodes, such as Ruddlesden-popper, perovskite and double perovskite 

oxides. The crystal structure of a cathode is very important for cathode activity, because it determines 
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the capability of tolerating defects such as oxygen vacancies and the mobility of the oxygen ions and 

electronic charge carriers. Among those structures, simple perovskite shows outstanding mixed 

conductivities and therefore regarded as one of the most promising candidates for IT-SOFC cathodes. 

For this reason, more details are discussed on single-phase perovskite cathode materials. SrCoO3-δ-

based perovskite cathodes show the most promising activity at reduced temperatures, and some 

benchmark cathodes are all derived from SrCoO3-δ. Developing composite cathode is also an effective 

way to enhance cathode performance at low temperature. Several novel approaches developed 

recently are reviewed. What is more, the mismatched TEC of SrCoO3-δ, as a result of significant 

increase of ionic size of Co when being reduced, can be effectively alleviated by compositing these 

cathodes with electrolyte materials. 

One of the challenges is the instability of perovskite phase at intermediate temperature under different 

conditions. Doping is an effective approach to stabilize the benign perovskite structure of SrCoO3-δ. 

Besides, doping strategies are also found useful to improve other properties related to cathode 

electroactivity, such as promoting oxygen vacancies for fast ionic conduction. However, great amount 

of work still requires to be carried out to study the specific effects of the dopant on electroactivity 

and how they interact with the pristine lattice, which is very important for rational design next 

generation of cathodes for IT-SOFC. Another challenge for SrCoO3-δ – based perovskite cathodes is 

their susceptibility to the poisoning from contaminates in the air such as volatile Cr species, boron 

and CO2. Only a few research investigated the CO2 poisoning on perovskite cathodes at intermediate 

temperature. Although some progresses have been achieved in understanding the CO2 – poisoning 

mechanisms and in improving resistance of alkaline-earth containing perovskite cathodes, it is still 

required substantial efforts for stability improvement on the highly ORR active cathodes based on 

SrCoO3-δ 
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 Experimental details 

 Sample syntheses 

The perovskite oxides can be synthesized through solid state reaction route. Generally, the first step 

is to weigh stoichiometric amounts of precursors (normally metal oxides), and then ball mill these 

precursors for a certain time in ethanol. For alkaline-earth elements as A-site cations, carbonates are 

normally used, and NH4H2PO4 is used as the source of P dopant. The second step is to pelletize and 

sinter the well-ground dry precursor mixtures at high temperature, the maximum of which normally 

does not exceed two thirds of the lowest melting point of the precursors. In most cases, an 

intermediate grinding using pestle and mortar is required for better dispersion of the precursors. An 

example of synthesizing SrCo0.8Ta0.2O3-δ is given as follows: 

Stoichiometric mixtures of SrCoO3 (≥ 99.9%, Aldrich), Co3O4((≥ 99.9%, ≤ 10µm, Aldrich), and 

Ta2O5 (≥ 99.9%, Aldrich) are ball-milled using ethanol as media for 24 h, followed by drying, 

pelletizing and sintering at 1200 °C for 10 h in stagnant air. Subsequently, the sintered pellets are 

ground into powders using pestle and mortar, and the following step is to pelletize the powders for 

1200 °C sintering for another 10 h. 

 Sample preparation 

Sample fabrication for four-probe dc electrical conductivity measurement 

 

Figure 3-1 A schematic of sample configuration for 4-probe dc electrical conductivity testing method. 

L is the length of effective length the sample, and A represents the cross section area of the bar. 

The targeted powder sample is first ball milled in ethanol media for 2 h at 400 rpm, and then dried 

and sieved to obtain the fine powder with similar grain sizes. The following step is to pelletize the 

powder into a bar, and sinter it to dense at high temperature for 5 h in stagnant air, and polish the bar 

when it is cooled down. Thereafter, the bar undergoes the density measurement, where the bar volume 

is tested using the Archimedes method: the bar, hung by a very fine thread, is placed into water, and 

the weight increase of the water system is actually the weight of water having the same volume to the 
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bar. Finally, the bar should be dried, and be applied with silver paste and wire as the current collectors. 

A schematic of the fabricated bar is shown in Figure 3-1.  

Symmetrical cell preparation 

 

Figure 3-2 A schematic of preparing a symmetrical cell using spray coating. 

A symmetrical cell is used for electrochemical impedance spectroscopy (EIS) testing. A symmetrical 

cell consists of a dense electrolyte disk and two layers of porous targeted cathode sample deposited 

on both sides of the electrolyte disk. (Figure 3-2) The dense electrolyte disk is prepared by pressing 

electrolyte powder into a disk, which is then sintered to dense at 1400 °C for 5 h. The porous cathode 

layer is fabricated by nitrogen-borne spray coating a cathode ink onto both sides of the dense 

electrolyte disk followed by calcination at high temperature for 2 h. The cathode ink is prepared by 

suspending the cathode powders in the solvent added with a binder to ensure good suspension. Finally, 

the silver paste is applied onto the cathode layer, and silver wires are attached onto both silver pastes 

for current collection. 

Anode-support single cell preparation 

The anode-support single cell can be fabricated by co-pressing the anode and electrolyte into a pellet 

and subsequently sintering it at high temperature until electrolyte is dense. Another way is to press 

the anode material into a pellet and sinter the pellet at relatively low temperature, followed by coating 

an electrolyte layer onto surface of the anode substrate and then sintering at high temperature. The 

anode material can be prepared by ball milling commercial NiO, electrolyte material and pore former 

in a weight ratio of 6:4:1, respectively, in the ethanol media. The cathode is fabricated onto the dense 

electrolyte following similar procedure as described in symmetrical cell, but the valid area is smaller 

than the anode substrate. Silver paste is applied onto both cathode and anode layers, and two silver 

wires are attached to each electrode. The completed button cell is then sealed onto an alumina tube 

using silver paste, which is then cured and densified at 260 °C for 2 h. 

 Powder characterizations 

We perform the thermogravimetric analysis (TGA) to study the oxygen content change as a function 

of temperature by measuring the mass change of the powder sample while gradually increasing the 

temperature. During the measurement, the moisture should be removed by keeping the sample at > 
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100 °C for a while before carried out TGA. The loss of mass at >200 °C is mainly due to the loss of 

oxygen from the lattice, so we can study the oxygen content change of the sample. The kinetics of 

oxygen surface exchange can be reflected by how fast the sample respond to change of oxygen partial 

pressure. Therefore, monitoring mass change of the sample after a sudden change of atmosphere (e.g. 

from air to N2) in the furnace is effective to characterize how fast oxygen is exchanged at the surface 

of sample. Moreover, the adsorption behavior and the reactivity of sample with CO2 can be studied 

using the TGA method. 

The desorption behavior of a sample can be characterized using temperature-programed desorption 

method. This technique uses a mass spectroscopy to monitor the amount of specific molecules such 

as O2 and CO2 coming out from samples while the sample is being heated up. Helium is usually the 

sweep gas to carry the desorbed gas from sample to the mass spectroscopy. 

Powder x-ray diffraction (XRD) and neutron powder diffraction (NPD) can study the crystalline 

structures of the samples at room temperature. XRD investigations are conducted in Centre for 

Microscopy & Microanalysis (CMM), and XRD scans the powder sample from 10° to 90° at rate of 

2°/min, using Cu as radiation source, with a voltage of 40 kV, current of 40 mA and step size of 0.1°. 

Dr. Vanessa K. Peterson at ANSTO helped us with performing the NPD analysis and refinement. 

High resolution NPD data were collected using ECHIDNA1 at the ANSTO with a neutron wavelength 

of 1.6219(2) Å, determined using the La11B6 NIST standard reference material 660b. NPD data were 

collected from samples in a 6 mm vanadium can for 6 h over the angular range (2θ) 4 to 164°. GSAS-

II2 was employed to perform Rietveld analysis of the NPD data using a 𝑃𝑚3̅𝑚 cubic perovskite 

starting structure.3 High-resolution electron transmission microscopy (HR-TEM, Tecnai F20) in 

conjunction with selected area electron diffraction was also used for phase identification. 

We also studied the surface chemistry and compositions of the samples. Dr. Barry Wood in CMM 

helped us analyze the binding energies of dopants at the surface of the doped SrCoO3-δ samples using 

high resolution scanning of x-ray photoelectron spectroscopy (XPS). The binding energies of the 

dopants can reflect the oxidation states of the dopants. Energy-dispersive X-ray Spectroscopy (EDS) 

of SEM and TEM were also performed to identify the compositions of the samples. 

 Electrochemical characterizations 

 Electrical conductivity test 

We performed the four-probe dc conductivity technique to measure the electrical conductivity of 

samples using a PGSTAT302 Autolab workstation. During the test, the bar samples as prepared 

following the procedures described in Section 3.2 were connected with the four electrodes of 

workstation. The workstation scanned the sample from V  V to 0 V at a rate of 0.01V/s, and 
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measured the current I  going through the sample. Therefore, the conductivity  can be calculated 

using the following equation: 

 
I L

V A
    (3.1) 

Where L and A are the dimensions of the bar sample as indicated in Figure 3-1. 

Surface exchange coefficient and diffusivity test 

We measured the surface exchange coefficient and bulk diffusivity of samples using electrical 

conductivity relaxation (ECR) method. The ECR is conducted by recording the changes of the 

electrical conductivity with time after a step change in the ambient atmosphere with O2 from 0.21 to 

0.0998 atm. The change of the electrical conductivities against time were fitted using ECRTOOL4 to 

obtain these two parameters. 

Oxygen permeability test 

Oxygen permeability of a membrane can indicate how fast the oxygen ion conducts in the sample. 

Following similar steps for dense bar preparation, dense membranes of samples can be fabricated. 

The membrane is thereby sealed onto one end of the alumina tube using silver paste as the sealant, 

which is subsequently cured at 260 °C for 1 h. The following step is to heat the membrane up to high 

temperature, while helium being applied as sweep gas into the alumina tube and flowing air outside 

the alumina tube. The oxygen will permeate from the side exposed to air to the side swept by helium, 

and the exit helium gas mixture is analysed by a gas chromatograph. The recorded oxygen 

permeability can be converted into overall resistance to oxygen permeation using the following 

equation: 
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Where R stands for real gas constant, F for Faraday constant, S for valid permeable area of the 

membrane, 
2OJ for oxygen permeation flux, 

2OP for partial pressure near the side of membrane 

exposed to air and 
2OP for the oxygen partial pressure at the other side. By assuming that bulk ionic 

conduction dominates the overall oxygen membrane permeation, we can estimate the ionic 

conductivity of the sample by: 
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Where L represents the thickness of the membrane. 

Cathode polarisation resistance measurement 

We measured cathode polarisation resistance by using electrochemical impedance spectroscopy (EIS) 

method. The targeted cathodes are evaluated in a configuration of symmetrical cell under open circuit 

condition. A Nyquist plot is obtained during EIS test, and the intercept difference of the arc with the 

real axis is the combined polarisation resistance cR  of cathodes on both sides of electrolyte disk. The 

ASR is calculated by: 

 
2

c

A
ASR R   (3.4) 

The ORR mechanism was studied by fitting the EIS impedance spectra at different pO2 to the Re 

(R1CPE1) (R2CPE2) equivalent circuit model by using the LEVM software. Re represents the ohmic 

resistance of the electrolyte; (R1CPE1) and (R2CPE2) stand for the two ORR processes at high 

frequency and low frequency respectively. The physical meaning of the ORR processes are 

determined by a m  parameter given as follows5: 
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  (3.5) 

Where pR is the polarisation resistance of different ORR processes, and 
2OP is the oxygen partial 

pressure of the atmosphere in which we measure the polarisation resistance of the cathode. 

Single cell test 

We sealed the single button cells onto one end of the alumina tube with silver paste, with the cathode 

side outside the tube, and densified the silver paste at 260 °C. Subsequently, the sealed single cell 

was heated in a tube furnace up to 600 °C, followed by reducing the anode with flowing hydrogen. 

After the reduction is completed, we used the linear sweep voltammetry potentiostatic to obtain the 

i-V curve with scanning rate of 0.1V s-1 to determine its power density by: 

 
i V

P
A


  (3.6) 

Where P stands for the power density of single cell and A for valid area of the single cell. 

Meanwhile, we can also study resistances arising from electrolyte and electrodes through EIS method. 

A Nyquist plot can be achieved, and the first intercept of arc with real axis indicates the ohmic 

resistance of the single cell, which is mainly contributed by the electrolyte. The intercept difference 

between the two intercepts of arc with real axis reflect the overall polarization resistance of electrodes.   
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Long-term stability test on single cell can be carried out by measuring either current with applied 

constant voltage or voltage while applying constant current as a function of time.  

 First-principles calculations 

Prof. Mingwen Zhan in Shan Dong University helped us with the simulations to probe ORR 

mechanisms of our targeted cathode materials. The first-principles calculations were performed with 

the Vienna ab initio simulation package (VASP)6, 7 using density-functional theory (DFT). Ion-

electron interactions were treated using projector-augmented-wave potentials8 and a generalized 

gradient approximation (GGA) in the form of Perdew-Burke-Ernzerhof was adopted to describe 

electron-electron interactions.9 The GGA+U calculations were performed with the simplified 

spherically-averaged approach applied to d electrons, where the coulomb (U) and exchange (J) 

parameters are combined into the single parameter Ueff (Ueff = U - J). Electron wave functions were 

expanded using plane waves with an energy cut-off of 520 eV. The Kohn-Sham equation was solved 

self-consistently with a convergence of 10-5. The stoichiometry of the simulated systems was set to 

SrCo0.75Nb0.25O3, SrCo0.75Ta0.25O3, and SrCo0.75Nb0.125Ta0.125O3 respectively due to computational 

limitation, and the Nb and Ta in SCNT are regarded as ordered instead of randomly distributed for 

simplification.  
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 P-doped SC perovskite cathode for IT-SOFC 

Introduction 

As mentioned in Section 2.4.2 and Section 2.6, the instability of perovskite phase limits the 

application of the SrCoO3-δ derivatives as IT-SOFC cathodes, because the phase deviations result in 

the degradation of ionic conductivity (Section 2.2.2) and thereby cathode performance especially for 

long-term operation. Some researchers reported that doping some non-metal ions such as P, S and Si 

can stabilize the perovskite structure of SrCoO3-δ at elevated temperature. Therefore, we 

systematically studied a P-doped Sr (Co, Fe) O3-δ perovskite oxide as a cathode for IT-SOFC, and 

attempted to probe the effects of P dopants on the properties related to ORR. 

Contribution 

We successfully incorporated 5 mol% of P into the Sr (Co, Fe) O3-δ oxide, and found that P dopant 

can stabilise the perovskite structure at both room and elevated temperature. The stabilizing effect of 

P is mainly due to its high valence state, which can slow down the rate of oxygen loss from lattice 

and prevent oxygen vacancies from becoming ordered, especially in the atmosphere at low oxygen 

partial pressure. High valence state of P is also beneficial for electronic conduction even at low 

oxygen partial pressure by increasing electronic holes for hopping process. Because of the 

improvement brought by P dopant, the P-doped Sr (Co, Fe) O3-δ shows improved ORR activity and 

cathode stability. From our experimental results, we concluded that high valence is beneficial for 

electroactivity and stability of perovskite cathode at intermediate temperature.  We published this 

work in the Journal of Material Chemistry A: Li, M.; Zhou, W.; Xu, X.; Zhu, Z., SrCo0.85 Fe0.1 P0.05 

O3-δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Materials 

Chemistry A 2013, 1, (43), 13632-13639. 
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SrCo0.85Fe0.1P0.05O3-δ Perovskite as a Cathode for Intermediate Temperature Solid 

Oxide Fuel Cell 

Mengran Li, Wei Zhou*, Xiaoyong Xu and Zhonghua Zhu* 

Abstract: In this chapter, phosphorous doped perovskite, SrCo0.85Fe0.1P0.05O3-δ (SCFP), is evaluated 

as the cathode for intermediate temperature solid oxide fuel cells. It is observed that the phosphorous 

as dopant can prevent Sr-Co-Fe-O system from oxygen vacancy ordering and stabilise the crystallite 

structure of the oxide at 3C perovskite phase at high temperature as proved by XRD, TGA, O2-TPD 

and electrical conductivity characterizations. The SCFP shows excellent chemical compatibility with 

Sm0.2Ce0.8O1.9 (SDC) electrolyte even at 1200 °C. The oxygen reduction reaction (ORR) activity is 

investigated on a dense SDC pellet in a symmetrical cell configuration, and the area specific 

resistances (ASRs) of SCFP is as low as 0.097 Ω·cm2 at 589 °C, which is comparable to the 

performance of the benchmark cathode BSCF.  The stabilised structure for SCFP also improves the 

stability of the ORR activity at high temperature. 

Keywords: SOFC; cathode; perovskite; ORR; stability 

 Introduction 

Intermediate temperature solid oxide fuel cells (IT-SOFCs) are of great interest these years due to 

their relatively low temperature (500~750 °C)1, making it possible for enhanced durability, rapid 

start-up, and improved sealing and the utilization of cheap metallic interconnectors2. However, 

lowering the operating temperature may result in slow kinetics of oxygen reduction at the cathodes.3-

6 Perovskite oxide is regarded as one of the most promising cathode materials7 mainly due to its high 

rate of ionic and electronic conductivity and its fast kinetics of oxygen reduction reaction (ORR).8 

Among this kind of materials, a series of promising cathodes based on strontium cobaltite (SrCoO3-

δ) were developed because of SrCoO3-δ's high oxide ionic conductivity at intermediate temperature9. 

The crystallite structure of SrCoO3-δ varies with different conditions of the synthesis such as oxygen 

partial pressure, temperature and preparation methods.10-14 

In order to stabilise its phase at cathode-preferable 3C perovskite structure, doping into SrCoO3-δ has 

been tested and SrCo0.8Fe0.2O3-δ was reported to exhibit high performance as cathode for IT-SOFC.15 

However, this material was found to be still unstable in its phase, and unwanted oxygen vacancy 

ordering was observed during a phase transition from cubic to a brownmillerite-type structure at high 

temperature below 800°C with low oxygen level (pO2<0.1atm).16-20 
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In order to improve the stability of SrCo0.8Fe0.2O3-δ, some research demonstrated that partial 

replacement of Co on B-sites or Sr on A-sites would preserve the perovskite cubic phase. For 

example, low level of chromium doped SrCo0.85Fe0.1Cr0.05O3-δ could keep cubic phase at low oxygen 

partial pressure (10-3~10-5 tm) due to the stabilization of oxygen octahedral of Cr4+ cations.21 Certain 

level of zirconium as dopant can suppress oxygen losing at high temperature and thus stabilize the 

phase.22 The substitution of strontium on A-site by cations with relative large ionic radii like Ba23 can 

also enhance the phase stability. 

Recently, it was reported that the partial substitution of cations at B-sites with phosphorus, boron, 

silicon, and sulphur may boost the performance of cobaltite and manganite perovskite cathodes, 

including the enhancement on stability, electrical conductivities, tolerance to CO2 and 

electrochemical performance.24-26 Hancock et al reported that the phosphorus doped SrCo0.8Fe0.2O3-

δ
25 has enhanced a beneficial effect on electrical conductivity. In addition, it was also found that the 

phosphorus doped in BaIn2O5 could prevent oxygen vacancies from being ordered.27, 28 It can be noted 

that phosphorous seems to be another effective alternatives to solve stability issue of SrCo0.8Fe0.2O3-

δ as a cathode for IT-SOFC. 

Herein, the incorporation of phosphorous in SCFP perovskite as the cathode was demonstrated. The 

stability of SCFP was studied by focusing on the effect of phosphorous on oxygen vacancy ordering 

at high temperature. The ORR activity and the corresponding stability of SCFP cathode was evaluated 

on a symmetrical cell configuration with Sm0.2Ce0.8O1.9 as its electrolyte. 

 Experimental 

SCFP was synthesized by a solid-state reaction method using SrCoO3 (≥99.9%, Aldrich), Co3O4 

(≤10μm, Aldrich), NH4H2PO4 (≥98%, Sigma-Aldrich) and Fe2O3 as raw materials which were first 

weighed according to the stoichiometry of the oxide and ball milled at rate of 350 rpm for 1 hour. 

The powders were then pelletized to be sintered at 1200 ºC in air for 12h, followed by ball milling 

and then pelletizing to sinter for at 1200 °C another 12 h. SrCo0.85Fe0.15O3-δ (SCF0.15) and 

SrCo0.85Fe0.1O3-δ (SCF0.1) were synthesized through the same procedure as SCFP. The samples for 

the structure determination at 600 °C were prepared by quenching the powders to room temperature 

after calcination at 600ºC 24h. SCFP and SCF0.15 bars (18 mm×5mm×1.6mm) were prepared for 

the electrical conductivity test. These bars were sintered to dense at 1150 °C in air for 5h. Thereafter, 

silver pastes were used as electrodes printed onto the bars. The SCFP or SCF0.15 powders were made 

into ink by mixing with ethanol, terpineol and ethyl cellulose via ball milling. Symmetrical cells were 

fabricated by spraying SCFP or SCF0.15 ink followed by calcination at 1000 °C or 850 °C in air for 

2 h. Then the silver paste was painted onto electrodes as the current collectors.  
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X-ray diffractometer (XRD) was utilized to identify the crystallite structure of synthesized powders 

at room temperature. Scanning electron microscopy (SEM) was used to characterize the 

microstructures of the prepared electrodes. The electrical conductivity test was carried out by 4-probe 

dc technique using silver paste as the electrodes. An oxygen programmed desorption (O2-TPD) 

technique was used to study the oxygen desorption properties of the prepared powders with 

temperature ramping from 25 °C to 900 °C at a rate of 5 °C/min; the oxygen released was monitored 

by BelMass mass spectroscopy. Iodometry titration technique was used to determine the non-

stoichiometry of SCFP and SCF0.15 at room temperature. Thermogravimetric analysis (TGA) was 

used to investigate oxygen desorption of the samples and to grab the oxygen non-stoichiometry of 

SCFP and SCF0.15 at high temperature. PGSTAT302 Autolab workstation was used to test the 

conductivity tests and the electrochemical impedance spectroscopy (EIS) of the cathode, where all 

the flows of gas are at a rate of 80 mL/min. 

 Results and discussion 

 Powder properties 

 

Figure 4-1 (a) X-ray diffraction profiles of SCFP, SCF0.15 and SCF0.1 at room temperature; (b) 

difference of XRD profiles of SCFP and SCF0.15 at room temperature for clarity. 
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Figure 4-2 Electron dispersion spectroscopy (EDS) spectra for SCF0.1, SCFP and SCF0.15  

Table 4-1 Comparison of cation ratios of samples calculated from EDS 

 Sr Co Fe P 

SCF0.1 1 0.88 0.12 0 

SCFP 1 0.83 0.10 0.08 

SCF0.15 1 0.85 0.16 0 

Figure 4-1(a) shows the XRD patterns of SCFP, SCF0.15 and SCF0.1 at room temperature. The 

structure parameters of SCFP and SCF0.15 are obtained by Le Bail refinement, revealing that SCFP 

has a 3C cubic perovskite structure belonging to a space group Pm-3m with a=3.86559Å, while the 

pattern of SCF0.15 is indexed in a I4mm tetragonal structure with a=b=10.94329 Å, c=7.73222 Å.  

The difference between SCFP and SCF0.15 is shown in Figure 4-1(b). 

SCF0.1 was also synthesized to study whether the phosphorus was indeed incorporated into SCFP. 

The possibility that SCFP may be a B-site nonstoichiometric perovskite can be excluded by the XRD 

patterns of SCF0.1, which differs from SCFP structure. The composition of SCFP obtained by EDS 

is similar to the target material as prepared, which further proves the incorporation of phosphorus 

(Figure 4-2 and Table 4-1). The difference of stoichiometry may be due to the uncertainty of EDS 

and the possibility that some of Sr and Co may evaporate away during calcination at high temperature.  
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Figure 4-3 O2-temperature programmed desorption (TPD) of SCFP with Ar as the sweep gas. 

 

Figure 4-4 Thermogravimetric analysis profile and nonstoichiometry δ as a function of temperature 

under flowing N2. 
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Figure 4-5 X-ray diffraction profile of SCFP and SCF0.15 quenching in N2 at 650 °C. 

The oxygen desorption properties of SCFP and SCF0.15 were studied through O2-TPD under Argon 

from room temperature to 900 °C as shown in Figure 4-3. Oxygen started to desorb at approximately 

400 °C from both samples. However, the oxygen was observed to release SCFP until 900 °C, while 

in SCF0.15 the oxygen release rate was found to decrease rapidly and a plateau was formed at the 

baseline of the signal at 600 °C. This indicates that a phase-transition may occur in SCF0.15 from 

oxygen vacancy disordered structure to ordered brownmillerite-type oxide at that temperature, which 

is quite similar to the results obtained in literature.29 In comparison, the ordering was prevented by 

the incorporation of phosphorous at high temperature and low oxygen atmosphere, which can be 

proved by the XRD profiles exhibited in Figure 4-5. It is likely that this stabilization effect may be 

ascribed to the high valence state of the phosphorous (+5). High valence state may hinder the loss of 

oxygen anions in the lattice at high temperature to balance the charge in the structure, and this was 

further demonstrated by the results of TGA indicating that more loss of weight occurring in SCF0.15 

than SCFP.  Another effect of high valence state of phosphorous is to raise the electrostatic repulsion 

at B-sites and thus destabilize the formation of hexagonal phases with face-shared oxygen octahedral. 

The cubic structure was consequently remained at high temperature for SCFP. Several research 

groups also reported that the substitution of Nb5+ and Sb5+ into B-sites have the similar effect to Sr-

Co-O based materials. 30, 31 

An estimate of the concentration of oxygen vacancies (or non-stoichiometry of oxygen, denoted by 

δ) was carried out based on TGA. The results of TGA (Figure 4-4) indicates that the δ values of both 

materials start to increase at approximately 400 °C, which is consistent well with the results of O2-

TPD discussed above. The estimated non-stoichiometry of SCF0.15 at about 650 °C reaches ~ 0.5, 

which is similar to that of brownmillerite structure of SrCo0.8Fe0.2O2.5 
32, implying that SCF0.15 

become oxygen-vacancy-ordered at N2 atmosphere at 650 °C. 
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Figure 4-6 TGA profile of SCFP and SCF0.15 in flowing air. 

The properties of releasing oxygen of the ceramic materials in air were also investigated. A slight 

flattened curve for SCF0.15 was observed after ~750 °C (Figure 4-6), indicating that the oxygen 

releasing rate was slowed down. It may be ascribed to the formation of oxygen ordering structure at 

the surface of SCF0.15 particles, which slows down oxygen ionic conduction in the lattice and 

therefore decreases the rate of oxygen release. 

 

Figure 4-7 XRD profiles of SCFP and SCF0.15 with or without quenching at 600 °C after 24 h and the 

peaks denoted by arrows belong to brownmillerite-type structure. Higher angles are not shown for 

clarity. 

The structure of the cathodes at typical working temperature for IT-SOFCs (~ 600 °C) in air 

atmosphere was then investigated by quenching the powders annealed at 600 °C for 24 h to retain 

their structure at high temperature. As can be seen from the results of XRD (Figure 4-7), the peaks of 

both materials shifted to lower 2θ values, implying that cell parameters of both materials increased 

as a result of the reduction of cobalt and iron cations and/or increased cation-cation repulsion caused 

by the removal of bridging oxygen ions. SCFP structure still remained at cubic phase at 600 °C in air, 

but the patterns of XRD for SCF0.15 shows the formation of ordering oxygen vacancy phase. 
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Therefore, it can be concluded that a transition from cubic to brownmillerite-type structure 

(Sr2Co1.6Fe0.4O5) will occur in SCF0.15 in the atmosphere with or without oxygen at 600 °C, and 

incorporating certain level of phosphorus could stabilize its phase, thus preventing the oxygen 

vacancy from being ordered. 

 Compatibility with electrolyte 

 

Figure 4-8 XRD profiles of SCFP, SDC and SCFP with SDC (mixture ratio 1:1) sintered at 1200 °C for 

2 h.  

The chemical compatibility of SCFP and SDC electrolyte was also investigated. As shown in Figure 

4-8, in comparison to the patterns of SCFP and SDC, there are no extra peaks or any changes of peak 

positions observed in SDC and SCFP mixture calcined at 1200 ºC for 2 h, implying that SCFP can be 

chemically well compatible with SDC at a temperature higher than the temperature (1000 ºC) used 

for the cathode fabrication. Therefore, it can be concluded that little reaction between SCFP and SDC 

will occur during the cathode fabrication process. 



Chapter 4 P-doped SC perovskite cathode for IT-SOFC 

74 

 

 

Figure 4-9 SEM micrograph of the cross section of SCFP cathodes with SDC electrolyte calcined at (a) 

1000 °C and (c) 850 °C; micrograph of SCF0.15 cathodes with SDC electrolyte calcined at (b) 1000 °C 

and (d) 850 °C. 

The SEM images show the cross section of the interface between cathode and electrolyte after being 

calcined at 1000ºC or 850ºC, revealing the adherence of cathodes to SDC electrolyte is similar for 

the cathodes fabricated at 850ºC and 1000ºC (Figure 4-9). However, better interconnection between 

particles was found in the cathodes with higher temperature calcination. 

 Electrochemical performance 

 

Figure 4-10 Electrical conductivity of SCFP and SCF0.15 as a function of temperature in air. 

It is shown from the Figure 4-10 that the electrical conductivities of both SCFP and SCF0.15 decrease 

with increasing temperature in a range of temperature from 400 °C to 900 °C. Jung et al.33 studied 

systematically the effects of temperature and oxygen partial pressure on the electrical conductivity of 

Ba0.5Sr0.5CoxFe1-xO3-δ (0 ≤ x ≤ 1) and concluded that the decreasing conductivity at over 673 K with 

pO2 ≥ 0.01atm resulted from the reduction of p-type carriers due to the loss of oxygen at high 
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temperature. The results of O-TPD and TGA have shown that the formation of oxygen vacancy 

started in both SCFP and SCF0.15 at about 400 °C, and electrons were generated according to the 

equation as follows33: 

  2

1
2

2
O OO V e O g     (4.1) 

Meanwhile, additional amount of Co3+ and Fe3+ were formed at B-sites, both decreasing the 

concentration of p-carriers and thus lowering the conductivity. The conductivity of SCFP was 

enhanced as compared with SCF0.15, and the difference becomes larger at lower temperature. Firstly, 

the high valence of P, as discussed before, may suppress the loss of oxygen and therefore mitigate 

the adverse effects on p-type conduction. Meanwhile, the valence 5+ is beneficial for the hopping 

process. 

 

Figure 4-11 Electrical conductivity of SCFP and SCF0.15 as a function of time at 600 °C in air for 5 h, 

and subsequently replace air with N2 for a certain time, and then change the gas back to air. The point 

denoted by the arrow is the time when N2 is replaced by air. 

Further study was carried out on the changes of conductivities of these composites at 600 °C when 

being fed with N2 instead of air after heating in air for 5 h, and the then switching nitrogen to air after 

conductivities reaching steady state in N2. As shown in Figure 4-11, the electrical conductivity of 

both samples remained nearly unchanged in air for 5h, and decreased with the time because of the 

loss of oxygen from the perovskite lattice. This confirms that the two materials belong to p-type 

conductors.  

It was observed that the conductivity of SCF0.15 dropped immediately to about 32 S cm-1 in only 4 

min after the nitrogen was fed in, while a gradual decrease of the conductivity was shown in SCFP, 

taking about 20min to reach the bottom of the conductivity with a value of around 98 S cm-1. However, 

when N2 is replaced by air, it is found that the conductivity of SCFP increased more quickly than 
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SCF0.15. Furthermore, the conductivity of SCF0.15 is only recovered by half of its initial 

conductivity.  

 

Figure 4-12 XRD pattern of SCF0.15 quenching in N2 after 5 min exposure to N2 at 600 °C. 

The steep conductivity decrease for SCF0.15 may be ascribed to either the fast oxygen surface 

exchange rate or the phase transition to ordered structure. The XRD result of SCF0.15 in Figure 4-12 

indicates that the structure of SCF0.15 has been transformed into ordered structure during 5 min of 

being fed with N2 at 600 °C, which implies that structure transformation, rather than fast surface 

exchange, is the cause of the fast decrease of electrical conductivity. Moreover, the formation of 

brownmillerite phase in SCF0.15 leads to the decrease of conductivity to a much lower level which 

is similar to the values obtained for ordered SrCo0.8Fe0.2O3-δ at the same temperature.18 The slow 

recover of SCF0.15 conductivity provides another evidence for the change of structure in SCF0.15. 

In contrast, however, the incorporation of P will suppress such structure distortion, and improve the 

electrical conductivity of SCFP at high temperature in a reducing atmosphere.  

 

Figure 4-13 TGA profiles of SCFP and SCF0.15 as a function of time at 600 °C in air, then in N2 and 

finally in air. 
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Furthermore, TGA was conducted at similar conditions to the conductivity test discussed above. It is 

observed from Figure 4-13 that the weight of SCF0.15 drop fast in the first 5min but then reach the 

plateau with a very slow rate. In contrast, SCFP gradually decreases its weight until steady state, but 

the time they spent are about the same as denoted in the figure. Combined with the result shown in 

Figure 4-12, the fast weight drop of SCF0.15 can be attributed to the formation of brownmillerite-

type structure, which results in higher oxygen escaping rate. Once most of SCF0.15 changed their 

structure, the oxygen releasing rate became very slow. The different oxygen releasing profile from 

the decreasing conductivity behaviour in Figure 4-11 for SCF0.15 further proves that the initial fast 

conductivity drop of SCF0.15 is due to the formation of ordered structure. When the flowing gas was 

switched back to air, it can be seen from Figure 4-13 that SCFP increases its weight more quickly 

than SCF0.15, and nearly recovers back to initial weight in air at 600 °C. The XRD patterns of both 

samples after TGA analysis are also presented in Figure S4-1, and indicate that SCFP is still in a 

cubic phase while SCF0.15 has been distorted to ordered structure. This suggests again that P benefits 

the stabilization of 3C perovskite phase thus a relative high electrical conductivity was achieved under 

low oxygen partial pressure. 

 

Figure 4-14 Temperature dependence of the area specific resistances for SCFP and SCF0.15 cathodes 

fabricated at 1000 °C and 850 °C. 

Figure 4-14 presents the ASR values of the SCFP and SCF0.15 cathodes at various temperatures. The 

ASR value corresponds to the difference between the intercepts of high and low frequency impedance 

spectra achieved from EIS.  The ASRs of the SCFP cathode, as determined by two-electrode 

impedance method, are 0.097 and 0.255 Ω·cm2 at 589 °C and 540 °C respectively, in contrast to 0.19 

and 0.7 Ω·cm2 for SCF0.15. The lower ASR value reflects higher ORR activity of the cathode. The 

ASRs of SCFP cathode are enhanced by over 50% especially at low temperatures (< 550 °C) as 

compared to SCF0.15. The better performance of SCFP is a result of a combination of factors 

including stable cubic structure, high electrical conductivity and smaller grain sizes as shown in 

Figure S 4-2. What is more, the activity of SCFP is much higher than those of Sr-Co-Fe-O system 
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doped with La34, and Sr-Co-O with dopants as Sb31, Mo34 and Ce35 at B-site. Moreover, its good 

performance is comparable to BSCF cathode23, which is currently one of the most promising cathodes 

for IT-SOFC.  

The ORR activity of the cathodes calcined at 850 °C was also studied. It can be shown from the 

Figure 11 that the activation energies of both cathodes fabricated at 850 °C are higher than the 

corresponding ones fabricated at 1000ºC. The high activation energy is probably due to the poor 

connection among particles of cathodes as shown by the SEM images in Figure 4-9 which leads to 

the poor performance at lower operating temperatures (< 600 °C). Furthermore, even in the case of 

low fabrication temperature, the performance of SCFP is still better than that of SCF0.15 at the same 

operating temperatures. 

 

Figure 4-15 Nyquist impedance spectra for SCFP and SCF0.15 operated at 600 °C temperature before 

and after 40 h with fabrication temperature of 850 °C. 

 

Figure 4-16 Difference of XRD patterns of SCFP and SCF0.15 quenching in air after heating at 600 °C 

for 40 h, and peaks denoted by arrows belong to brownmillerite-type structure. 
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The stabilities of the cathodes were also investigated. Figure 4-15 shows the comparison of 

performance of ORR at 600 °C before and after 40 h operation for SCFP and SCF0.15 cathodes in 

symmetrical cell configuration. There is nearly no deterioration of performance for SCFP after 40 h 

operation, but the ASR of SCF0.15 increases by about 20% after 40 h operation at 600 °C, indicating 

the much better stability of ORR performance was achieved by SCFP compared with SCF0.15 at the 

same condition. As discussed above, a partial phase transition may occur to brownmillerite structure 

with ordering oxygen vacancies, which hinders oxygen ion conduction, in the cathode of SCF0.15 

during long time operation in air at 600 °C. This partial phase transition is demonstrated by the XRD 

results of SCFP and SCF0.15 quenched in air after heating at 600 °C for 40 h, which are presented in 

Figure 4-16.  In contrast, P dopant can suppress this phase transition, thus renders SCFP maintain a 

stable ORR performance at 600 °C for a long time. Figure S 4-2 shows the topographies of SCF0.15 

and SCFP cathodes before and after 40h heat treatment at 600°C in air, and slight grain coarsening 

can be observed for both of materials; therefore it is believed that the grain coarsening has 

insignificant impacts on the performance degradation with comparison to the phase transformation in 

SCF0.15. 

 Conclusions 

SrCo0.85Fe0.1P0.05O3-δ and SrCo0.85Fe0.15O3-δ were prepared using the conventional solid state reaction. 

It is observed that the incorporation of phosphorous can prevent Sr-Co-Fe-O perovskite from oxygen 

vacancy ordering at temperature higher than 600 °C both in air and atmosphere with lower oxygen 

level. An enhancement of electrical conductivity was noticed by around 150 S cm-1 in SCFP at 400 °C 

when compared with SCF0.15. ASRs of both cathodes implied that SCFP is better than SCF0.15 

especially at low operating temperature with a value of 0.097 Ω·cm2 at 589 °C, while SCF0.15 only 

has 0.19 Ω·cm2 at the same temperature. These results indicate that the incorporation of phosphorus 

helps stabilize 3C perovskite phase both at room temperature and high operating temperature, and 

thus improve the ORR activity and the stability of cathode for IT-SOFC. 
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 Supplementary Information 

 

Figure S 4-1 XRD profiles of SCFP and SCF0.15 powders after TGA measurement at 600 °C first 

being in flowing air, and subsequently in N2 and finally in air. 

 

Figure S 4-2 SEM images of the microstructures of (a) SCF0.15 and (c) SCFP cathodes before and (b) 

SCF0.15 (d) SCFP cathodes after annealing at 600 °C for 40 h in air. 
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 The comparative studies on Ta-doped SC perovskite 

cathode with different doping levels 

Introduction 

In Chapter 4, we found that high valence of dopant can improve cathode’s ORR activity and stability 

at intermediate temperature. As a B-site dopant in high valence, Nb5+ is widely incorporated into 

perovskite oxides (Section 2.4.2) and reported beneficial for perovskite cathode of IT-SOFC. 

However, Ta5+ still remains unexplored as dopant for IT-SOFC cathode, though Ta has very similar 

ionic radius and valence to Nb5+. For this reason, this chapter tends to develop perovskite cathodes 

based on Sr(Co, Ta)O3-δ , and to study the effects of Ta on cathode electroactivity and stability. 

Contribution 

In this chapter, we successfully synthesized SrCoO3-δ perovskite oxides doped with different content 

of Ta, and evaluated them as cathode for IT-SOFCs. Ta can stabilize the cubic perovskite structure 

of SrCoO3-δ, but doping < 5 mol% of Ta can result in a tetragonal structure at room temperature. The 

Ta content is found to influence the electrical conductivity: small content (5 mol%) of Ta increases 

electrical conductivity, which is similar to effect of P; Ta content higher than 5 mol% degrades the 

electrical conductivity likely by blocking the hopping process. Besides, the high valence of Ta 

increases overall positive charge of cations, thereby decreasing the content of oxygen vacancies. 

Containing 5mol% ~20 mol% of Ta, the doped SrCoO3-δ cathodes show stable and promising ORR 

activity that can be comparable to some of the state-of-the-art cathodes. The remarkably improved 

cathode performance can be explained by the enhanced oxygen surface exchange kinetics. This work 

has been published in the ChemElectroChem: Li, M.; Zhou, W.; Zhu, Z., Comparative Studies of 

SrCo1−xTaxO3−δ (x=0.05–0.4) Oxides as Cathodes for Low-Temperature Solid-Oxide Fuel Cells. 

ChemElectroChem 2015, 2, (9), 1331-1338. 
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The Comparative Studies of SrCo1-xTaxO3-δ (x=0.05-0.4) Oxides as Cathodes of 

Low-temperature Solid Oxide Fuel Cells 

Mengran Li, Wei Zhou*, and Zhonghua Zhu* 

Abstract: To address the sluggish ORR kinetics of cathodes has become of great interest and 

significance for the deployment of the solid oxide fuel cells (SOFCs) operated at lower temperatures. 

A series of Sr (Co, Ta) O3-δ oxides with multi-level substitutions of tantalum ions have been studied 

as cathodes of SOFCs, in terms of their crystal structures, electrochemical properties and durability. 

The effects of doping tantalum on oxygen reduction reaction (ORR) have been explored and 

discussed. Not only can the crystallite structures of SrCoO3-δ be stabilized by incorporating Ta5+ at 

elevated temperatures, but also the activities towards ORR are significantly enhanced by doping 

relatively small amounts of Ta5+ (≤ 20%mol), which is probably due to the improved oxygen surface 

exchange by the positive effects of Ta5+ dopants on oxidation states of cobalt ions. 

Keywords: Cathode; Perovskite; LT-SOFC; Tantalum; Oxygen reduction reaction 

 Introduction 

Solid oxide fuel cells (SOFCs) are the unique devices that are capable of converting chemical energy 

of nearly all types of fuels directly into electricity with very high efficiency.1, 2  However, its high 

operating temperature is the key issue that prohibits the widespread deployment of this technology, 

because high operating temperature results in poor stability, high system and operational costs and 

lower theoretical fuel cell efficiencies.3 Therefore, lowering the operating temperature of SOFCs is 

of great interest and significance in recent years. The main challenge for low-temperature SOFCs 

(LT-SOFCs) is to address the polarization losses of the components of SOFCs at low temperatures, 

especially of the cathodes which are responsible for catalyzing the oxygen reduction reaction (ORR). 

4-6 

Intensive research has been conducted over the last two decades exploring cathode materials with 

high activities and stabilities.7-14 It is widely accepted that the materials with mixed electronic and 

ionic conductivities (MIECs) are one of the most promising candidates for the next generation of 

cathodes of LT-SOFCs.6, 15 Among these MIEC materials, SrCoO3-δ (SC) with cubic perovskite 

structure has been reported to exhibit relatively high ORR activities at intermediate temperature range 

(600-800ºC) because of its high mixed conductivities.16 Unfortunately, undesired phases were 

reported to exist in SC below 800ºC and varying ambient atmospheres.17-20 Several studies 

demonstrate that the substitution of cations with high valence states into B-sites (where Co cations 

stay) is an effective way to stabilize SC’s cubic perovskite structure21-26. What is more, low level of 
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dopants with high valence states can also enhance SC’s cathode performance by enhancing its 

electrical conductivities.21, 25 

Recently, Nb5+ is widely doped into different parent perovskite cathode materials to stabilize the 

cathode-favoured cubic structure and even give a boost to the ORR activities of the cathodes.9, 26-30 

For example, Zhou et. al.13 reported a highly active cathode of SOFC at temperatures below 600ºC 

by substituting Nb5+ into Sr(Sc,Co)O3-δ perovskite oxide, and many researchers also substituted Nb5+ 

into the milestone cathodes such as (La,Sr)(Co,Fe)O3-δ
28 and (Ba,Sr)(Co,Fe)O3-δ

27. What is more, a 

few researchers also studied the cathode materials substituted by Ta5+ cations, which share very 

similar ionic radii and oxidation state with Nb5+.25 It is also reported that doping 10% mol of Ta5+ 

into SC can suppress the crystal structure deformation, and increase the electrical conductivities.25, 31 

However, it remains unknown to date about the effects of incorporating Ta5+ ions into SC as a cathode 

of SOFCs. Therefore, we aim to evaluate the potential of SrCo1-xTaxO3-δ (x=0.05, 0.1, 0.15, 0.2, 0.4) 

(SCT5-SCT40) as cathodes for LT-SOFCs and the effects of Ta5+ by varying its substitution levels 

on the activity over ORR. 

Herein, the incorporation of Ta5+ cations into SC perovskite oxides with different concentrations was 

demonstrated as cathodes of SOFCs. The effects of Ta5+ on the cathode performance were evaluated 

mainly regarding the oxygen vacancies, electrical conductivities, structure stabilities and the activities 

towards ORR of the doped SC perovskite cathodes. 

 Experimental 

The syntheses of SCT5-40 were performed via conventional solid state reaction. For this purpose, 

stoichiometric amounts of SrCO3 (≥99.9%, Aldrich), Co3O4 (≤10µm, Aldrich) and Ta2O5 (>99.9%, 

Aldrich) were ball milled for 24 hours, followed by pelletizing and sintering in stagnant air at 1200ºC 

for 10 hours. Thereafter, the sintered pellets were well ground and then sintered at 1200ºC for another 

10 hours. 

The electrical conductivities of the samples were measured in the flowing air (~200 ml/min) by the 

DC four-probe method. The dense bars of the materials were prepared by pressing the cathode 

powders into bars, followed by sintering at 1200ºC in air for 5 hours and subsequently polishing the 

bar into similar dimensions. Silver paste was used as the current and voltage electrodes. The 

measurement of the electrical conductivities was carried out by an Autolab PGSTAT30 electrical 

workstation. 

The concentration of oxygen vacancies and the average cobalt oxidation states of SCT5-40 at room 

temperature were obtained by iodometric titration method32 according to the principles as briefly 

introduced below: 
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The SrCo1-xTaxO3-δ system only contains CoZ+ ions that can be reduced by I- ions. When the m g 

sample is dissolved in hydrochloric acid solution with excess KI, a reaction occurs: 

    2

22 0.5 1ZCo Z I Co Z I        (5.1) 

Z  represents the average oxidation states of Co ions in the sample. Ta5+ cannot be dissolved in 

hydrochloric acid, so it will come out of the solution system in the form of Ta2O5. The liberated I2 

can be titrated by a solution of sodium thiosulfate with a known concentration C: 

 2 2 2 3 2 4 62 2I Na S O NaI Na S O    (5.2) 

If V mL of sodium thiosulfate is consumed for the titration, the average oxidation state of cobalt ions 

can be determined by the following equations: 

The molecular weight of the sample is given by: 

              1 3 1 3x xM SrCo Ta O M Sr x M Co xM Ta M O          (5.3) 

 can be determined according to charge neutrality: 

    2 3 2 1 5x Z x      (5.4) 

  2 2.5 0.5 1x x Z      (5.5) 

Therefore, the molecular weight and the oxygen vacancies of the sample are only a function of Z. Z 

can be determined by equation provided below: 

 
   1 3 1 2x x

m
CV

M SrCo Ta O x Z 


 

 (5.6) 

In the Eq.4, the only variable unknown is the value of Z (oxidation state of Co), and therefore Z can 

be calculated using this equation. Once the value of Z is determined, the oxygen vacancy content can 

be obtained using Eq. 3. So it can be seen that the equations will not only help determine the oxygen 

vacancy content of the sample, but also the average oxidation states of CoZ+ ions in the sample. 

The titration experimental procedures are as described as follows: 

First of all, 0.1 M sodium thiosulfate solution was prepared by weighing and dissolving Na2S2O3 

(≥99.99%, Sigma-Aldrich) in the boiled deionized water, which is followed by adding small amount 

of sodium carbonate to help keep the pH of the solution above 7 and therefore slow down thiosulfate 

decomposition. Subsequently, the solution was standardized against potassium iodate, and the 

standardization process was repeated over three times, and the concentration of prepared sodium 

thiosulfate is about 0.0999 M. The following step is to use the freshly prepared sodium thiosulfate 

solution, which has been standardized, for the titration of SCT5-40 samples. Every sample (~0.1 g) 

was exactly weighed and dissolved in 1 M HCl solution (100mL) containing an excess of KI (over 

2g). As a result, the Co3+ and Co4+ will be reduced to Co2+ by I-, and iodine was formed. Meanwhile, 

small amount of white substances will be precipitated from the solution because Ta2O5 cannot be 
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dissolved into HCl solution. However, these precipitates are found insignificantly interfere the 

identification of titration end point because of their small content and white colour. The formed iodine 

was titrated by the prepared thiosulfate solution, using starch solution (1%) as the indicator. About 

5mL of starch solution was added just before the end point. The end-point was detected visually as 

the blue colour disappeared and the solution turned to a pink colour. In order to prevent oxidation of 

the reductant by dissolved oxygen, the solvent of HCl solution was freed from dissolved solution by 

boiling the deionized water for several hours. The titration was carried out in an air-tight cell and 

repeated at least 3 times and the final oxygen content and the oxidation states of cobalt were the 

average of the test results. 

Thermogravimetric (TG) was responsible for monitoring the oxygen vacancies changes of powderous 

specimens in a function of temperature in flowing air with a flow rate of 20ml/min. The powderous 

samples were first treated by pelletizing at high pressure in order to ensure similar grain sizes of the 

specimen. The samples were first held at 100°C for 2 hours to remove the moisture inside the samples, 

and then gradually heated up to 850°C. It can be easily observed from the TGA results that there is 

nearly no change of weight of all the samples at temperatures below 200ºC. Therefore, it is reasonable 

to assume that the oxygen vacancy level at room temperature, which is estimated using titration 

method, remains nearly the same at 100ºC. When the temperature is over 200ºC, the decreasing 

weight is a result of oxygen coming out from the lattice. Therefore, the corresponding oxygen vacancy 

at different temperature can be estimated using the following equation according to mole balance: 

  
   

0

0 0 0

T

T

m m
n sample

M M M O 
 

 
 (5.7) 

Where n(sample), m0, M0 and 𝛿0 are the moles of sample, the initial mass, molecular weight and 

oxygen vacancy content as determined using titration respectively, and mT and 𝛿𝑇 are the mass and 

oxygen vacancy content at T temperature respectively, and mT is the mass monitored by TG. It can 

be seen from the equation that 𝛿𝑇  is the only variable unknown, so the 𝛿𝑇  can thereby be easily 

calculated. 

The oxidation states can be obtained using the following equation derived from Eq.2 according to 

charge neutrality: 

 
4 2 5

1

x
Z

x

 



 (5.8) 

The electrochemical impedance spectroscopy (EIS) was performed to test the activities of the 

specimen towards ORR in a configuration of symmetrical cells. The Autolab PGSTAT30 is 

responsible for the EIS test, and the flow rate of the air that the symmetrical cells are exposed to 

during the test is around 200mL/min. The symmetrical cells were fabricated by spraying the ink of 

cathode materials onto both sides of the dense Sm0.2Ce0.8O1.9 (SDC) electrolyte disks on the hot plate. 
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The ink of the cathode material was prepared by well suspending the targeted cathode material in 

isopropyl alcohol. Subsequently, the sprayed symmetrical cells were calcined at 1000ºC for 2 hours 

under an air atmosphere. Silver paste was used as current collector. 

X-ray Diffractometer (XRD) was used to characterize the crystallite structures of the targeted 

materials. Le Bail refinement was used to determine the space group and lattice parameters of the 

SCT5-SCT40 using DIFFRACplus Topas 4.2 software. During the refinements, general parameters, 

such as the scale factor, background parameters, and the zero point of the counter, were optimized. 

The microstructures of the cathodes were studied by scanning electron microscopy (SEM). 

 Results and discussion 

 

Figure 5-1 X-ray diffraction (XRD) patterns for SCT5-40 at room temperature. The small peaks 

indexed by # are peaks indicating the tetragonal phase. 

The XRD patterns at room temperature as shown in Figure 5-1 suggest that the stabilization of a 3C 

perovskite phases is achieved in the SCTx system with substitution levels higher than 10 % mol, but 

SCT5 and SCT10 exhibit tetragonal structures belonging to P4/mmm space group. Similar crystal 

structure changes of SC were also reported with different B-site dopant concentrations, such as Mo4+ 

and Sb5+: SC possessing low contents of Mo6+ or Sb5+ are in a tetragonal P4/mmm space group, but 

higher concentration of dopants leads to a cubic perovskite phase of SC at room temperature. 22, 33 

Nagai et al34 studied the effects of different dopants on the stability of SC-based perovskite structure, 

and pointed out that the structure stability can be improved by doping B-site cations with high valence 

states because higher valence state not only increases the electrostatic repulsion among B-site cations, 

but also suppress too much oxygen loss from the lattice.34  Therefore, the stabilization of SC’s 

structure is also likely to be ascribed to the high valence state of the substituted Ta (+5). 
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Table 5-1 Crystal structural constants of SCTx materials derived from refining XRD patterns at room 

temperature. 

 a (Å) b (Å) c (Å) 

SCT5 3.8657 3.8657 7.7652 

SCT10 3.8711 3.8711 7.7779 

SCT15 3.8856 3.8856 3.8856 

SCT20 3.8927 3.8927 3.8927 

SCT40 3.9231 3.9231 3.9231 

Moreover, the substitution of Ta5+ is also found to affect the sizes of the unit cells of SC. Table 5-1 

shows lattice constants of the SCTx, which were calculated by refining the XRD results at room 

temperature by using Le Bail method. We observed that the unit cell expands with the concentration 

of Ta5+, which is also reflected by the shifts of all Bragg peaks of SC with more Ta5+ substituted to 

lower values of diffraction angle. This can be explained by the larger ionic radii of Ta5+ as compared 

to most cobalt ions in the oxides35. 

 

Figure 5-2 Changes of (a) weight percentages and (b) the oxygen vacancies (δ) of SCTx materials at 

different temperatures. 

As aforementioned, high mixed conductivities of the materials is one of the requirements for the good 

potential cathodes of LT-SOFC. It is widely accepted that the ionic conduction in the perovskite 

occurs via vacancy mechanism. In general, the more disordered oxygen vacancies are, the higher the 

ionic conductivity will be. Hence, the Thermogravimetric Analysis was utilized to estimate the 
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concentrations of the oxygen vacancies (oxygen non-stoichiometry δ) against temperature by 

measuring the weight changes of the specimens in flowing air. The initial oxygen vacancy 

concentrations of the samples at room temperature were obtained through iodometric titration method: 

the δs of SCT5-SCT40 are approximately 0.47, 0.39, 0.25, 0.16 and 0.04 respectively. It is noted that 

there is nearly no change of weight for SCT5-40 at temperature lower than 200 °C, indicating that 

there is negligible amount of oxygen released from the sample below 200 °C. Therefore, it is 

reasonable to assume that the oxygen vacancy content estimated at room temperature using 

iodometric titration can be used as the initial levels oxygen vacancy at 100 °C. At temperature over 

200 °C, the oxygen vacancy concentration of the sample is obtained according to (5.5) provided in 

the experiment part.  The results are presented in Figure 5-2(a) and (b). It is observed that more 

oxygen vacancies are formed at rising temperature because of its more reducing atmosphere, and the 

level of oxygen vacancies decreases with increasing doping concentrations of Ta5+, illustrating that 

the incorporation of Ta5+ crimps the oxygen vacancy level in SC oxide. This can be explained by the 

high fixed oxidation state of Ta5+, which increases the overall charges of the cations, and thus more 

oxygen ions are required to compensate the charge balance. 

 

Figure 5-3 Estimated average oxidation states of cobalt ions in SCTx materials at room temperature 

against substituting concentrations of Ta5+ using iodometric titration method. 

The effects of the tantalum dopants on cobalt cations were also investigated at room temperature. The 

average oxidation states of the cobalt in the oxides were also estimated through the same iodometric 

titration procedure. The average oxidation states of Co ions in SCT5-40 are estimated to be 2.96, 3.02, 

3.24, 3.35 and 3.21 separately at room temperature. The results were shown in Figure 5-3. It is found 

that the average oxidation states of the cobalt ions increase with the incorporating levels of Ta5+ below 

20% mol, while it drops to +3.21 for SCT40, which is even lower than that of SCT15. There are two 

main factors that affect the oxidation states of cobalt ions: one is the tendency to maintain their 
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crystallite structures, and the other is the overall charge balance. For the low doping levels of Ta5+ (≤ 

20% mol), the cobalt ions need to expand their size (lower down the oxidation state) to maintain their 

present structures: the lower concentration of Ta5+ is, the larger size of the cobalt will become. 

However, when the amount of dopants with larger ionic radii is enough to support the perovskite 

crystallite structure, the charge balance factor will dominate: the cobalt ions have to reduce its valence 

to ensure the overall charge balanced. 

 

Figure 5-4 Changes of Co oxidation states of SCT5, SCT20 and SCT40 against time at 500°C in 

response of gas switch from N2 to air. (b) The changing rates of the cobalt oxidation states, which are 

derived from results shown in (a). 

In order to further investigate the effects of the dopants on the oxidations states of cobalt, we 

monitored the weight change of the specimen after quickly switching the flowing nitrogen to air at 

500 °C. Figure 5-4a shows the changes of the oxidation states of cobalt ions, which are determined 

from the change of samples’ weight. The weight change of the sample is a result of loss or intake of 

oxygen because of different oxygen partial pressures in the ambient atmosphere. Hence the oxygen 

vacancy content can be easily calculated from the weight change as compared to the weight of the 

original sample, and the initial levels of oxygen vacancies determined via iodometric titrations (5.5). 

Because there is a relationship existing between oxygen vacancy concentration and the oxidation 
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states of Co ions as provided by the 5.6 in the experimental part, we can finally be capable of convert 

the weight change into the average oxidation states of the Co ions using 5.6. As shown in Figure 4a, 

the cobalt ions begin to be oxidized with time after the change of ambient atmosphere due to the rise 

of partial pressure of the oxygen. However, it is worth noting that the SC doped with more Ta5+ are 

faster to reach equilibrium in comparison to analogues with lower levels of Ta5+. The changing rates 

as provided in Figure 5-4b also clearly show that the cobalt cations in SCT40 are the fastest to respond 

to the sudden change of oxygen partial pressure, and it takes the longest time (over 2 min) for the 

states of cobalt ions in SCT5 to become stable. The high changing rate of the materials is likely to be 

related to the fast oxygen exchange process. Therefore, it is concluded that incorporation of Ta5+ 

makes it faster for cobalt ions to change their states in response to oxygen level changes, and thus 

probably improve the kinetics of the oxygen surface exchange. 

 

Figure 5-5 Electrical conductivities of SCT5-SCT40 specimen along temperatures studied by four-

probe method. 

Figure 5-5 presents the electrical conductivity of SCTx system at different temperatures. The 

electrical conductivity decreases with temperature for SCT5-SCT20, following a typical metallic 

behaviour at temperature higher than 400 °C. The SCT40 sample, however, shows semiconductor 

behaviour: the electrical conductivity becomes higher at higher temperature. In addition, it has been 

reported that the electrical conductivity of the un-doped SC is around 5-20 S/cm at temperature lower 

than 800 °C and ~200 S/cm at temperature above 800 °C.36 In comparison to SC, small amounts of 

Ta5+ dopants have benign effects on the electrical conductivity, especially for SCT5, whose electrical 

conductivity reaches up to about 590 S/cm at 400 °C. The enhancement of the electrical conductivity 

can be explained by the increased concentration charge carriers provided by the dopants and the 

stabilised structure with high symmetry. Other researchers also reported the similar improvement of 

electrical conductivities of SC doped with low contents of cations with high oxidation states, such as 
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Sb22, Ti37, P21, Nb26 and Mo.  This is probably due to their P4/mmm structures, which was also 

reported by Zhu. et al38. 

Moreover, it is worthy to be mentioned that the electrical conductivities of SCTx system drop with 

increasing Ta contents, indicating that more doped Ta5+ will reduce the electrical conductivities. The 

deterioration of the electrical conductivities with higher Ta doping level is probably because of the 

inhibition of the electrons hopping along the (Co, Ta)-O-(Co, Ta) bonds and the reduced 

concentration of the hopping sites (lower concentrations of cobalt cations). Similar phenomena were 

also observed for SC doped with Sb33 and Mo23. 

 

Figure 5-6 The XRD results of SCT5-40 powders well mixed with SDC electrolyte materials pre-

treated at 1000°C for 2 hours. 

We also checked the compatibility of the SCT5-SCT40 with electrolyte SDC by mixing the 

powderous SDC with the targeted specimen (1:1 wt%) followed by sintering at 1000 °C for 2 h in the 

stagnant air. The XRD was used to determine their crystallite structures. It is shown from Figure 5-6. 

that there are no extra peaks observed for the mixed powders, which implies that there are negligible 

chemical interactions between the SCT5-SCT40 cathode materials and SDC at 1000 ºC, which is the 

fabrication temperature for the symmetrical cells. 
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Figure 5-7 Scanning electron micrograph of cross sections of SCT5-SCT40 cathodes. 

SEM images as presented in Figure 5-7 show that the porous cathodes of the all the samples are well 

attached to the surface of the SDC surface. Therefore, it is demonstrated that all the tantalum doped 

SC cathode materials all adhere well to the electrolyte. In addition, it is found from the SEM images 

that the particles of the samples with more Ta5+ are smaller than those with lower levels of tantalum, 

which will be beneficial to the ORR performance. Notably, similar thicknesses of the cathodes are 

achieved by controlling the fabrication processes. 

 

Figure 5-8 The ASR values of SCT5-SCT40 cathodes against temperature from 450°C to 700°C as 

determined by EIS in a configuration of cathode |SDC |cathode symmetrical cells under open circuit 

conditions. 

EIS was used to study the ORR activity of the samples. Area specific resistance (ASR) was the 

parameter to describe the performance of SOFC cathodes: the lower is the value of the ASR, the more 

active the cathode will be over ORR. Figure 5-8 shows the ASR values of as-prepared cathodes as a 

function of temperature. We observed that the SCTx with low concentrations of Ta5+ exhibit similar 

outstanding cathode performance, which can be even comparable to some benchmark cathode 

materials, such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ
12 and PrBaCo2O5+δ

39.  For example, the SCT5 cathode 
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reaches an ASR as low as 0.11-0.089 Ω·cm2 at 550ºC, showing a quite similar ORR activity to the 

other Ta5+-doped analogues. The very low ASR values of SCTx with low concentrations of Ta5+ are 

mainly attributed to their more oxygen vacancies and stabilized perovskite structures. Moreover, the 

cathodes of SCTx with relative high contents of Ta5+ (≤ 20% mol) show slightly better performance 

compared to the ones with lower levels of Ta5+, which can be explained by the smaller grain sizes of 

SC with more Ta5+ as shown in Figure 5-7 and the faster kinetics of oxygen surface exchange as 

determined by TGA results.  

The SCT40, however, shows much higher ASR values in comparison to other tantalum analogues. 

The sluggish performance of SCT40 cathode can be ascribed to its significantly lower electrical 

conductivity and less oxygen vacancies for ionic conductions than others as proved, even though the 

particle sizes of SCT40 are much smaller than others as shown in the SEM images.  

We also noted that the activation energies of the cathodes become smaller with increasing amount of 

Ta5+, and the activation energy of SCT40 is as low as around 93 kJ/mol. The results indicate that the 

incorporation of Ta5+ can reduce the activation energy for oxygen reduction 

 

Figure 5-9 SCT5-SCT40 cathode ASR values of two processes at high frequencies (HF) presented in 

(a), and low frequencies (LF) shown in (b), which are obtained by fitting the cathode impedances from 

EIS to two-process equivalent circuits. 
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The impedance spectra of the SCTx cathodes were also fitted to the equivalent circuits including two 

dominant processes (Figure S 5-1): one is the process related to the charge transfer to the absorbed 

oxygen species, and the other corresponds to the process where atomic oxygen gets involved.40 The 

observed impedance arcs of the cathodes consist of two main arcs, and the arc at high frequencies 

corresponds to the former process and the one at low frequencies represents the latter one. The ASR 

values for the two processes along the SCTx system are shown in Figure 5-9. It is observed that 

SCT5-SCT20 exhibit relatively low resistances, but SCT40 show much higher resistances than others 

on both processes. The poor activity of SCT40 is due to its relatively small concentrations of oxygen 

vacancies in the lattice and very low conductivities. Moreover, the Ta itself is inert for oxygen surface 

exchange processes, so it can be concluded that it is the tantalum that improve the redox ability of 

cobalt and therefore enhance their ORR activities.   

The activation energies of all the cathodes were also calculated for the two processes. It is found that 

the SCT cathodes doped with higher contents of Ta (15-20% mol but not including 40%) generally 

show higher activation energies than those with less Ta (5-10% mol) for the process corresponding 

to charge transfer.  However, lower activation energies, in terms of the process at low frequencies, 

are noted for SCT cathodes with high contents of Ta (15-40% mol). Providing much higher 

resistances are noted at low frequencies, the dominant step for ORR is the process getting atomic 

oxygen involved on the surface. Therefore, we believe that the incorporation of tantalum improves 

the ORR activity through enhancing the kinetics of the process where atomic oxygen is involved at 

lower temperatures. 

 It is also interesting to note that the SCT40 shows very low activation energies for both processes, 

which is likely to be a result of its fast oxygen surface exchange as determined by the aforementioned 

TGA results. It suggests that SCT40 could be a good decorator material for ORR. The related 

experiment is ongoing in our group. 
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Figure 5-10 XRD results of SCT5-40 powders after treatment at 600°C for 45 hours, followed by 

cooling down to room temperature. 

The crystallite structure stabilities of the SCTx were studied by treating the cathode powders at 600 

ºC under stagnant air for 45 h, and then cooled down in air. The crystallite structures of these pre-

treated cathode materials were characterized by XRD. It is observed from Figure 5-10 that SCT5-

SCT40 still preserves their structures after 45-hour annealing at 600 °C. Thus it is demonstrated that 

the incorporation of Ta5+ can stabilize the structure of the SC after staying at 600 °C for 45 h. 

 

Figure 5-11 The impedances of SCT5-SCT20 cathodes of symmetrical cells before and after sintering 

at 600°C for 45 hours under open circuit conditions. 

Further stability test was carried out by keeping the symmetrical cells at 600ºC for 45 h and measuring 

the ORR performance of the SCT5-SCT20 cathodes. The results are shown in Figure 5-11. We 

observed that there is nearly no performance change for SCT5-SCT20 cathodes. As discussed, the 
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substitutions of Ta5+ help stabilize the crystallite structure of SC, and therefore improve the stabilities 

of SCT10-SCT20 cathodes. 

 

Figure 5-12 Topographies of SCT5-SCT20 cathodes before (a) and after (b) heating at 600°C for 45 h. 

Furthermore, the particle coarsening was also checked by characterizing the topographies of the 

cathodes after annealing at 600 ºC for 40 h. The SEM images of the topographies of the cathodes are 

shown in Figure 5-12. There is nearly no change in the particle sizes of the cathodes of all the samples. 

Therefore, the crystallite phase deformation of SCT5 mainly contributes to the degradation of the 

cathode performance during the heat treatment. 

 Conclusions 

To sum up, a series of Ta5+ doped SC with different contents (5%-40% mol) were prepared and 

evaluated as cathodes of SOFCs. Firstly, the incorporations of Ta5+ into SC oxides with slightly high 

contents (15-40% mol) are demonstrated to stabilize the cubic perovskite structure of SC at room 

temperature, and a tetragonal structure is observed for doped SC with less Ta5+ (5-10% mol). 

Secondly, the substitution of Ta5+ into SC reduces the concentrations of oxygen vacancies in the 

lattice, and high level of Ta (> 5mol %) deteriorates the electrical conductivities. Thirdly, the 

oxidation states of cobalt ions in SC doped with more Ta5+ are easier to change in response to a 

sudden change of oxygen partial pressure in ambient atmosphere, reflecting faster oxygen surface 

exchanges. Fourthly, SCT5-SCT20 cathodes exhibit similar high ORR activities at low temperatures 

because of their high mixed conductivities and enhanced kinetics of process where atomic oxygen is 

involved at the surface, but SCT40 cathode is far more sluggish than the rest of analogues due to its 

low conductivities. Finally, the tantalum doped SC shows high crystallite structural stability at 

elevated temperatures, and therefore no ORR performance degradation is observed for SCT5-SCT20 

cathodes for at least 45 h. 
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Figure S 5-1 The impedance pattern of SCT10 cathode at 550 ºC in flowing air and the fitted pattern 

using an equivalent circuit model with two dominant processes. 
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 Effect of non-geometry factors on ORR activity of Nb or Ta 

doped SC perovskite cathodes 

Introduction 

As discussed in Section 2.4.2, one of the challenges to study the effects of dopant on ORR is the 

complexity of oxygen reduction reaction that involves different factors such as crystal structure, 

lattice geometry and cation valence. Section 2.3 shows that lattice symmetry and structure is related 

to the ionic radii of cations, so similar structure and geometry can be achieved if the dopants have 

similar ionic radii and valence. Nb5+ and Ta5+ are such cations that are in the similar ionic radii and 

valence. As mentioned in the previous chapters, these two dopants can both stabilize the perovskite 

structure of SrCoO3-δ, and renders the doped cathodes more active on catalyzing oxygen reduction 

reaction at intermediate temperature. Accordingly, we developed SrCoO3-δ doped with Nb and Ta 

separately, examined their lattice similarity, and studied the non-geometric effects of these dopants 

on oxygen reduction reaction. 

Contribution 

In this chapter, SrCoO3-δ perovskite oxides doped with Nb and Ta separately were prepared and 

evaluated as cathode for IT-SOFC. Similar perovskite structure and lattice constants are confirmed 

for these two perovskite oxides. We observed that oxygen vacancy content is higher in Ta-doped 

oxides as compared to Nb-doped one due to the lower electronegativity of Ta. As a result, the ORR-

related properties of Ta-doped cathode, such as surface exchange kinetics, oxygen diffusivity and 

cathode electroactivity, are both higher than those of the Nb-doped analogue. This is the first time to 

probe the enhancing mechanism of Ta by constraining the lattice geometric factors, and 

electronegativity is first demonstrated to be another factor affecting cathode performance of IT-SOFC. 

We published this work in the Journal of Material Chemistry A: Li, M.; Zhou, W.; Peterson, V. K.; 

Zhao, M.; Zhu, Z., A comparative study of SrCo0.8Nb0.2O3-δ and SrCo0.8Ta0.2O3-δ as low-temperature 

solid oxide fuel cell cathodes: effect of non-geometry factors on the oxygen reduction reaction. 

Journal of Materials Chemistry A 2015, 3, 24064-24070.   
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A Comparative Study of SrCo0.8Nb0.2O3-δ and SrCo0.8Ta0.2O3-δ as Low-

Temperature Solid Oxide Fuel Cell Cathodes: Effect of Non-Geometry Factors on 

the Oxygen Reduction Reaction 

Mengran Li, Wei Zhou*, Vanessa K. Peterson, Mingwen Zhao and Zhonghua Zhu* 

Abstract: The oxygen reduction reaction (ORR) activity of cathodes has to be improved to realize 

the low-temperature operation of solid-oxide fuel cells (SOFCs). Whilst geometric factors are 

conventionally accepted to influence the ORR activity of perovskite cathodes, other factors may also 

contribute and therefore need to be explored. Here, we substituted 20% niobium and tantalum which 

have similar ionic radii into strontium cobaltites to obtain the two perovskite oxides SrCo0.8Nb0.2O3-

δ (SCN20) and SrCo0.8Ta0.2O3-δ (SCT20), respectively. Our study of the isostructural SCN20 and 

SCT20 allows geometric effects to be separated from other factors, and we observe better cathode 

performance of SCT20 cathode, which may be related to the lower electronegativity of Ta5+, thus 

resulting in higher oxygen surface exchange kinetics and diffusivity as compared with Nb5+. 

 Introduction 

Solid-oxide fuel cells (SOFCs) are energy devices that convert various fuels into electricity with high 

efficiencies. Lowering the operating temperature of SOFCs is of importance and interest1, because 

this facilitates the use of low-cost construction materials, accelerates start-up/shutdown procedures, 

and improves the long-term durability of the system.2 However, the polarization losses of the SOFC 

electrodes, especially those arising from the slow kinetics of the oxygen reduction reaction (ORR) at 

the cathodes still remain as the major challenge for low temperature SOFC.3-5 

It is widely accepted that the ORR occurs when oxygen is absorbed and diffuses towards the triple 

phase boundary (TPB), where the cathode (electronic conductor), electrolyte (ionic conductor), and 

gaseous phase meet, followed by charge gain and diffusion into the electrolyte.6-8 Therefore, the 

oxygen surface-exchange coefficient (k) and oxygen bulk-diffusion coefficient (D) are regarded as 

key parameters affecting the ORR, with larger values promoting a faster ORR. The parameters k and 

D are enhanced by high mixed ionic and electronic conductivities (MIECs).9 The mixed 

conductivities of a cathode will extend the active sites throughout the cathode surface, therefore 

enhancing the ORR. 

Efforts have been devoted to develop cathode materials for low-temperature solid-oxide fuel cells 

(LT-SOFCs)10-18, and perovskite oxides with high MIECs are regarded as one of the most promising 

candidates for catalyzing the ORR at low temperature.19 It is well known that perovskite structures 
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are stable to extensive compositional modification, with such strategy useful in tuning properties for 

target application.20 Amongst the MIEC materials, perovskite-structure strontium cobaltites show 

high mixed conductivities21, and are therefore of great interest for application as LT-SOFC cathodes. 

However, the perovskite phase of strontium cobaltite is unstable at the operating temperature of 

SOFCs.22-24 Strategic doping with high valence-state cations such as P5+, Nb5+ and Sb5+, were found 

to be of benefit, i.e. stabilizing the perovskite structure at high temperature.25-28 

Furthermore, researchers also explored the strategic design of next-generation LT-SOFC cathodes by 

examining  approaches such as the use of the octahedral factor29 or the Goldschmidt tolerance factor30, 

31 in an effort to predict perovskite structures with favourable electrochemical activities9, 32. For 

example, cathode performance  is  enhanced by disordered oxygen vacancies, increasing structural 

symmetry, critical radius33 and lattice free volumes32, as well as lowering metal-oxygen bonding 

energies. However, such factors may co-exist, and are usually affected by the crystal structural 

geometry. The determination of their independent contribution to cathode performance remains a 

challenge. To this end, geometric factors should be constrained in a study of other factors. It is well 

known that Nb5+ and Ta5+ share the same ionic radii (0.64 Å for both)34, 35 and fixed high valence-

states (5+) at high temperature in an oxidizing environment, but they are different in electronegativity. 

The Pauling electronegativity of Nb5+ (1.87) is larger than that of Ta5+ (1.8)36, 37 Electronegativity is 

the tendency of an atom or group to attract electrons,38 and is therefore expected to influence the 

electrochemical performance of SOFC cathodes.  

Herein, we compared the properties of SrCo0.8Nb0.2O3-δ (SCN20) and SrCo0.8Ta0.2O3-δ (SCT20) 

including their crystal structures, conductivities, k and D values, as well as their ORR activities. The 

similar ionic radii of Nb and Ta are expected to promote similar geometry factors, enabling the 

contributions from non-geometry factors such as electronegativity on the ORR to be separated from 

that arising from geometrical factors. 

 Experimental 

Phase-pure SCN20 and SCT20 powders were synthesized through solid-state methods. 

Stoichiometric mixtures of SrCoO3 (≥ 99.9%, Aldrich), Co3O4((≥ 99.9%, ≤ 10µm, Aldrich), and 

Nb2O5 (≥ 99.9%, Aldrich) or Ta2O5 (≥ 99.9%, Aldrich) were ball-milled for 24 h, followed by 

pelletizing and sintering at 1200 °C for 20 h in stagnant air. 

Thermogravimetric analysis (TGA) was performed to estimate the oxygen content of SCN20 and 

SCT20 at different temperatures by annealing powder samples from room temperature to 850 °C at 

1 °C/min. The samples were pre-treated by pelletizing at the same pressure to ensure similar grain 

size and baking at 200 °C for 2 h to remove absorbed moisture. Weight changes of SCN20 and SCT20 
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were recorded when the flowing gas was changed from pure N2 to air, and the samples were first 

heated at 460 °C (furnace temperature 500 °C) until the weight reach equilibrium in flowing pure N2. 

The initial oxygen contents of samples were obtained from the Rietveld refinement results of NPD 

patterns, and double checked by the titration method as described in our previous work.18 The 

oxidation state (Z) changes of Co were then estimated according to the change in oxygen non-

stoichiometry (δ): 

 
3 2

0.8
Z


  (6.1) 

Symmetrical cells for impedance studies were fabricated by nitrogen-borne spraying the cathode 

powders, which were suspended in isopropyl alcohol, onto both sides of a Sm0.2Ce0.8O1.9 (SDC) 

electrolyte disk, and then calcining at 1000 °C in stagnant air for 2 h. Silver mesh was used as current 

collectors of the symmetrical cells, which were attached to both sides of the cell using silver paste. 

The samples for electrical conductivity and electrical conductivity relaxation (ECR) tests were dense 

bars with dimension 0.65 cm x 0.2 cm x 0.1 cm. The cathode powder was ball milled at 400 rpm for 

3 h, pelletized at 400 MPa, and then sintered at 1200 °C for 10 h. Both SCN20 and SCT20 have 

densities > 95% relative to their theoretical densities as confirmed by Archimedes method. The bars 

were well polished and attached with silver leads as electrodes using silver paste. 

The anode-supported single cells were fabricated by co-pressing the anode and SDC electrolyte into 

pellets, and sintering at 1350 °C for 3 h. The anode material was prepared by ball milling commercial 

NiO, SDC, and Dextrin pore former in a weight ratio of 6:4:1, respectively, for 24 h in ethanol. The 

cathode material was sprayed onto the SDC electrolyte, followed by calcination at 1000 °C for 2 h. 

The ORR performance of the target cathode materials was evaluated using electrochemical 

impedance spectroscopy (EIS) in a symmetrical-cell configuration. The mechanism of the ORR was 

analysed by using LEVM software. A four-probe dc method was used for electrical conductivity 

measurements. The surface-exchange coefficient (k) and oxygen bulk-chemical diffusivity (D) of the 

cathode materials were obtained using ECR performed by recording the changes of the electrical 

conductivity with time after a step change in the ambient atmosphere with O2 from 0.21 to 0.0998 

atm. The change of the electrical conductivities against time were fitted using ECRTOOL39 to obtain 

k and D. A PGSTAT302 Autolab workstation was used for the electrochemical measurements 

including EIS, electrical conductivity, and ECR. 

The crystal structures of the cathode materials were studied using X-ray powder diffraction (XRD) 

and neutron powder diffraction (NPD). X-ray photoelectron spectroscopy (XPS) was used to examine 

the binding energies of dopants in the sample at room temperature. High resolution NPD data were 
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collected using ECHIDNA40 at the  ANSTO with a neutron wavelength of 1.6219(2) Å, determined 

using the La11B6 NIST standard reference material 660b. NPD data were collected from samples in a 

6 mm vanadium can for 6 h over the angular range (2θ) 4 to 164°. GSAS-II41 was employed to perform 

Rietveld analysis of the NPD data using a 𝑃𝑚3̅𝑚 cubic perovskite starting structure.42 Scanning 

electron microscopy (SEM, Philips XL30) was also used to characterize the cathode microstructure. 

The first-principles calculation were conducted with the Vienna ab inito simulation package 

(VASP)43, 44 using density-functional theory (DFT). Ion-electron interactions were treated using 

projector-augmented-wave potentials45 and a generalized gradient approximation (GGA) in the form 

of Perdew-Burke-Ernzerhof was adopted to describe electron-electron interactions.46 The GGA+U 

calculations were performed with the simplified spherically-averaged approach, where the Ueff 

(Ueff=U - J) is applied to d electrons. Electron wave functions were expanded using plane waves with 

an energy cut off of 520 eV. The Kohn-Sham equation was solved self-consistently with a 

convergence of 10-5. The stoichiometry of the simulated systems was set to SrCo0.75Nb0.25O3, 

SrCo0.75Ta0.25O3 due to computational limits. 

 Results and Discussions 

 

Figure 6-1 (a) Rietveld refinement plot of SCN20 (top) and SCT20 (bottom) powders at room 

temperature using NPD. Data are shown as black dots, the calculation as a red line, and the difference 

between the two as a green line. For SCN20 the weighted profile R-factor (Rwp) = 4.53%, the 

integrated intensity R-factor (RF
2) = 3.46%, and goodness of fit (χ2)= 2.48. For SCT20 Rwp = 5.29%, 

RF
2 = 4.13%, and χ2 = 3.42. (b) X-ray diffraction patterns of SCN20 and SCT20 at room temperature. 
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(c) X-ray photoelectron spectroscopy profile of Nb and Ta cation in SCN20 and SCT20 respectively at 

room temperature. 

Table 6-1 Crystallographic details of SCN20 and SCT20 obtained from Rietveld refinement using NPD 

data at room temperature. 

The NPD results reveal that SCN20 and SCT20 both exhibit cubic perovskite structures in 𝑃𝑚3̅𝑚 

space-group symmetry at room temperature, with similar lattice parameters of a = 3.8971(1) Å for 

SCN20 and a = 3.8978(2) Å for SCT20 (Figure 6-1(a) and Table 6-1). Broad, small reflections were 

noted in the NPD data that were unindexed in Pm3̅m and these were excluded from the structure 

refinement. XPS results in Figure 6-1(c) shows that the binding energy (B.E.) of Nb 3d5/2 (206.69 

eV) can be assigned to Nb5+ [ref. 47], and B.E. of Ta 4f7/2 (25.64 eV) to Ta5+ [ref. 48], indicating the 

same 5+ charge on both Nb and Ta cations in SCN20 and SCT20 respectively. The isostructural 

nature of the SCN20 and SCT20 is expected, given the similar ionic radii of Nb5+ and Ta5+, which 

ensured similar-sized unit-cells. NPD results indicate a refined oxygen-stoichiometry (3-δ) of SCN20 

of 2.898 (18), which is higher than that obtained for SCT20 of 2.843(15). The average valence state 

of cobalt in both samples can be obtained according to the charge balance: the average oxidation-

state of cobalt cations in SCN20 is +3.44(6), which is larger overall but the same within 1 estimated 

standard deviation of the +3.33(6) for SCT20.  Considering the similar lattice geometries and doping 

level of SCT20 and SCN20, the different cobalt oxidation-state may be explained by the different 

electronegativity of the dopants. A dopant with higher electronegativity will draw electron density 

from neighbouring cobalt, resulting in increased positive charge on the cobalt. Given the higher 

electronegativity of Nb5+ than Ta5+, it is understandable that the average cobalt oxidation-state is 

slightly higher in SCN20 in comparison to SCT20.  

Further, we studied the atomic-orbital-resolved electron density of states (PDOS) projected onto the 

Co close to Nb or Ta through first-principles calculations. From the PDOS results (Figure S6-1), Co-

PDOS peak broadening is noticeable in SCT20 relative to SCN20, suggesting a weaker localisation 

of Co d states or less ionic character of Co in SCT20 than that in SCN20.49, 50 Therefore, the Co 

surrounding Ta presents slightly lower charge, which leads to a higher level of oxygen vacancy as 

Samples 
𝐏𝐦𝟑̅𝐦  space group 

Lattice parameter (Å) 
Atom Site x y z Occupancy 

SCN20 3.8971(1) 

Sr 1b 0.5 0.5 0.5 1.000 

Co 1a 0 0 0 0.79(1) 

Nb 1a 0 0 0 0.215(9) 

O 3d 0.5 0 0 0.966(6) 

SCT20 3.8978(2) 

Sr 1b 0.5 0.5 0.5 1.000 

Co 1a 0 0 0 0.79(1) 

Ta 1a 0 0 0 0.21(1) 

O 3d 0.5 0 0 0.947(5) 



Chapter 6 Effect of non-geometry factors on ORR activity of Nb or Ta doped SC perovskite cathodes 

110 

 

compared with Nb. Similar Co-PDOS peak broadening also occurs in Ba0.5Sr0.5Co0.8Fe0.2O3-δ with 

relatively more oxygen vacancies51, further confirming that the higher oxygen vacancy level in 

SCT20 is related to the relatively lower charge of neighbouring Co because of Ta’s lower 

electronegativity. 

 

Figure 6-2 (a) Weight change (obtained from TGA) and oxygen vacancy content (δ) of SCN20 and 

SCT20 powders with temperature using a ramp rate of 1 °C/min and 2 h hold at 200 °C. (b) Change in 

the estimated oxidation-state of Co  with time on exposure to pure N2, then air, at 462 °C. 

Approximately 4.9 min is taken for the oxidation state of Co to reach equilibrium in SCT20 and 7.5 

min in SCN20. 

TGA was conducted to study the oxygen vacancy content (δ) in SCN20 and SCT20 at different 

temperatures in flowing air, based on the room-temperature oxygen vacancy content derived from the 

NPD results. The initial oxygen vacancy contents (δ), calculated from the Rietveld refinement results 

of NPD in Table 6-1, are around 0.102 in SCN20 and 0.157 in SCT20. While the δ values from 

titration method also confirms a lower oxygen vacancy level of SCN20 (0.14) than SCT20 (0.17).  

Figure 6-2(a) shows that both samples keep decreasing in mass with increasing temperature. These 

weight losses mainly stem from oxygen release, so the oxygen vacancy contents in both samples 

increase with temperature. More vacancies are observed in SCT20 than SCN20 at the same 
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temperature. In addition, SCN20 decreases its weight slightly faster at temperature over ca. 780°C, 

implying that it is a little easier for SCN20 to form oxygen vacancies at high temperature. 

Because Nb5+ and Ta5+ have fixed oxidation states, the intake or release of oxygen strongly relies on 

the change of the Co oxidation state. The Co oxidation states are therefore monitored to estimate how 

quickly the cobalt responds to the change of oxygen pressure. Both SCN20 and SCT20 powders were 

prepared for TGA by pressing and crushing in a procedure ensuring similar grain sizes (Figure S6-2) 

and BET surface area (1.038m2/g for SCT20 and 1.186m2/g for SCN20). It is observed from Figure 

6-2(b) that Co takes a shorter time (~4.9 min) in SCT20 to reach equilibrium than in SCN20 (~7.5 

min). The quicker response of Co in SCT20 implies a faster oxygen surface-exchange process 

compared with SCN20. 

 

Figure 6-3 SCN20 and SCT20 (a) oxygen surface-exchange coefficient (k) and (b) oxygen diffusivity 

(D) as a function of temperature obtained from ECR. 

The oxygen surface-exchange coefficient (k) and the bulk-chemical diffusivity (D) are key factors 

affecting the catalytic activity of a cathode to reduce oxygen. Electrical conductivity relaxation (ECR) 
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was performed to study these two parameters as a function of temperature. Figure 6-3 compares k 

and D of SCN20 and SCT20. We note that oxygen diffuses slightly faster in bulk SCT20 than in 

SCN20. Further, SCT20 exhibits a higher activity in terms of the surface exchange of oxygen and has 

a lower activation energy than SCN20, resulting in a higher level surface-exchange coefficient at 

lower temperature. The faster oxygen intake of SCT20 than SCN20 at low temperature (462 °C) as 

discussed in Figure 6-2(b) is consistent with this observation. 

Given the similar geometries and electrical conductivities of SCN20 and SCT20 (Figure S6-3), it is 

likely that the higher oxygen surface-exchange rate for SCT20 mainly result from the lower 

electronegativity of the tantalum, leading to increased oxygen vacancies. 

To the best of our knowledge, studies on the effects of electronegativity on the ORR at room 

temperature have been very limited. Enhanced oxygen chemisorption onto ORR catalysts was 

achieved by Yang et al.52 by doping boron with low electronegativity, into carbon nanotubes. The 

increased positive charge on boron was thought to play a significant role in the capture of oxygen. 

According to the electronegativity theory of Sanderson53, the effective electronegativity of atoms is 

equal to the geometric mean of the initial atom electronegativity due to electron distribution. 

Therefore, the global electronegativity of SCN20 will be slightly higher than that of SCT20. Low 

electronegativity leads to a decrease in work function, which significantly affects charge exchange 

and represents a barrier for adding or removing electrons in a solid.54 Therefore, the process of charge 

exchange with oxygen during the oxygen surface-exchange reaction is probably improved as a result 

of the relatively-lower level work function in SCT20. Of more significance to the ORR is the higher 

level of oxygen vacancies that arises from the lower-electronegativity of tantalum. To the best of our 

knowledge, electronegativity has never been considered to be a factor that may influence the 

concentrations of oxygen vacancies in perovskite oxides. Figure S6-6 further shows that SCT20 has 

a higher ionic conductivity than SCN20, with such difference increasing at lower temperature. The 

higher ionic conductivity of SCT20 arises from the higher oxygen vacancy content, which may be 

attributed to the lower electronegativity. 
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Figure 6-4 Average area-specific resistance (ASR) of SCN20 and SCT20 within a cathode | SDC 

|cathode symmetrical cell in flowing air. 

The ORR electrochemical activities of SCN20 and SCT20 were investigated using EIS in 

symmetrical cells with SDC electrolyte. The area-specific resistance (ASR), derived from the 

impedance spectra, is the key variable characterizing the cathode performance, and a low ASR results 

in a high ORR activity. Figure 6-4 presents the ASR of SCN20 and SCT20 as a function of 

temperature between 500 and 700 °C. The ASR of SCT20 is lower than SCN20, being 0.092-0.097 

Ω·cm2 and 0.21-0.24 Ω·cm2 at 550 °C, respectively. The lower ASR of SCT20 implies that the SCT20 

cathode is more favourable for catalyzing the ORR. Additionally, SCT20 cathodes also exhibit a 

lower activation energy (104 kJ/mol) for the ORR than SCN20 (118 kJ/mol). 
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Figure 6-5 Scanning electron microscope (SEM) images of topography and cross sections of SCN20 

and SCT20 cathodes in a configuration of symmetrical cell. 

Given the similar microstructures as indicated by SEM (Figure 6-5) and good compatibility with 

electrolyte (Figure S6-4) of the two cathodes, the better ORR performance of SCT20 is likely 

attributable to the higher oxygen surface-exchange coefficient and faster bulk-oxygen diffusion. It is 

likely that the low electronegativity plays an important role in improving the ORR activity in the case 

of SCT20 and SCN20. 

Impedance spectra of SCN20 and SCT20 were fitted to an equivalent circuit involving two processes: 

charge transfer and non-charge transfer (Figure S6-7-S6-11). The resistance of SCT20 corresponding 

to these processes are both lower than those of SCN20 (Table S6-1). The lower ASR of both processes 

in SCT20 compared with SCN20 indicates that low global electronegativity can significantly improve 

both charge transfer and non-charge transfer processes in the ORR. The observed improvement can 

be reconciled with the relatively-lower work functions of SCT20 as a result of lower global 

electronegativity. 
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Figure 6-6 The power densities of anode-supported single cell with SCN20 and SCT20 as cathode 

respectively. 

Accordingly, single-cell performance tests (Figure 6-6) show a peak power density of ~1.22 W/cm2 

for SCT20 at 600 °C, higher than that of ~0.95 W/cm2 for SCN20. The better performance is a result 

of the higher ORR activity of SCT20 when compared with SCN20 as cathodes of the single cells. 

 Conclusions 

The effects of non-geometry factors on the ORR activity of cathodes for SOFCs was investigated by 

comparing the SCN20 and SCT20 materials, where the two different dopants (Nb5+ and Ta5+) share 

similar ionic radii but different electronegativity. Given the similar lattice geometries of the two 

materials, the lower electronegativity of Ta5+ in comparison to Nb5+ is revealed to induce a slightly 

lower valence of cobalt, resulting in a higher concentration of oxygen vacancies. Lower global 

electronegativity is also suggested to reduce the work function of the sample, enhancing the charge-
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transfer processes during the oxygen surface-exchange process. As a result, SCT20 was found to have 

a better ORR performance than SCN20 at lower temperature as SOFC cathode. Our findings indicate 

that electronegativity is another factor besides geometry affecting the ORR activity of the perovskite 

materials, and provide new effective strategies to design novel high-performance MIEC materials. 

Acknowledgement 

The authors appreciate the technical support from Centre for Microscopy and Microanalysis at the 

University of Queensland. 

This work is financially supported by Australian Research Council (DP130102151) and author 

Mengran Li acknowledges additional financial support from the top-up assistance program (TUAP) 

scholarship and the scholarship from China Scholarship Council. 

 Supplementary Information 

 

Figure S 6-1 Atomic orbital resolved electron density (PDOS) projected on the nearest Co atoms to Nb 

or Ta in (a) SCN20 and (b) Ta respectively. 
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Figure S 6-2 SEM images of the SCT20 and SCN20 powders following TGA. 

 

Figure S 6-3 Electrical conductivities of SCN20 and SCT20 as a function of temperature ranging from 

375 to 850 °C. 

 

Figure S 6-4 XRD (Cu Kα) patterns of SCN20, SCT20, and SDC at room temperature, and SCT20 and 

SCN20 well mixed with SDC respectively followed by pelletising and sintering at 1000 °C for 2 hours. 
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Figure S 6-5 SEM cross sectional images of membranes for oxygen permeability tests, showing relative 

dense samples for both SCN20 and SCT20, and slight larger grain size of SCN20 (~4μm) than 

SCT20(~3μm). 

 

Figure S 6-6 Comparison of ionic conductivities for SCN20 and SCT20 estimated by studying the 

oxygen permeability against temperature. 

The ionic conductivity of SCN20 and SCT20 was determined by studying the oxygen permeation of 

both materials as a function of temperature between 700 and 850 °C. The overall resistance to oxygen 

permeation through the ceramic membrane can be obtained from the following equation55: 
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R - the ideal gas constant 
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F - the Faraday constant 

S - the valid area of the membrane 

𝐽𝑂2
- the oxygen permeation flux 

𝑃𝑂2

′  - The oxygen partial pressure at the side of membrane exposed to air 

𝑃𝑂2

′′  - the oxygen partial pressure at the sweep side 

 

If the oxygen permeation process is dominated by the bulk diffusion, the resistance from ionic 

conduction will become the major contribution to the overall permeation resistance. Therefore, the 

overall resistance is controlled by ionic conduction and ionic conductivity can be estimated by the 

following equation: 

 
1 1

ionic

ionic overall

S S

R L R L
      (6.3) 

Where 𝐿 is the thickness of the membrane. 

The thickness of the membrane is far larger than the characteristic length Lc, which is the ratio 

between the oxygen diffusivity and the surface exchange coefficient. Lc, obtained from the results of 

ECR experiments, is around 0.0084-0.0178 cm for SCN20 and 0.016-0.022 cm for SCT20, while the 

thickness of both membranes is 0.069 cm. Therefore, it is reasonable to assume that bulk diffusion is 

the predominate process of the oxygen permeation. 

 

Figure S 6-7 An example of equivalent circuit fitting of EIS data for SCN20 and SCT20 cathodes at 

550 °C. 
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Table S 6-1 ASR values corresponding to different processes (low frequency = LF, high frequency = 

HF). 

Temperature(°C) 
SCN20 (Ω·cm2) SCT20(Ω·cm2) 

ASR-HF ASR-LF ASR-HF ASR-LF 

500 0.36 0.41 0.12 0.14 

550 0.092 0.15 0.036 0.057 

600 0.017 0.07 0.014 0.021 

650 0.0065 0.029 0.006 0.011 

 

Figure S 6-8 . ASR values of the SCN20 cathode corresponding to the process at low frequencies at 

different temperatures against the oxygen partial pressure. 

 

Figure S 6-9 ASR values for the SCN20 cathode corresponding to the process at high frequencies at 

different temperatures against the oxygen partial pressure. 
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Figure S 6-10 ASR values for the SCT20 cathode corresponding to the process at low frequencies at 

different temperatures against the oxygen partial pressure. 

 

Figure S 6-11 ASR values for the SCT20 cathode corresponding to the process at high frequencies at 

different temperatures against the oxygen partial pressure. 

The mechanism of ORR was studied by measuring the resistances of target cathode materials at 

different oxygen partial pressures over the temperature range 450 -550 °C. Electrical impedance 

spectra were fitted to the Re(R1Q1) (R2Q2) equivalent circuit model using LEVM software, where 

Re represents the ohmic resistance of the SDC electrolyte, and the two series connected elements 

(RQ) correspond to two ORR processes: the R is the resistance and Q is the constant phase element. 

The parameter that usually determines the ORR is the slope of electrode resistance against the 

temperature as provide by the following relationship56: 
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As shown in the above figures, the slope of ASR at low frequencies (ASR-LF) is 0.14-0.19 for SCN20 

and 0.17-0.22 for SCT20, while the slope of ASR at high frequencies (ASR-HF) is 0.35-0.4 for 

SCN20 and 0.44-0.56 for SCT20. The slope of the ASR-HF for both of SCN20 and SCT20 is close 

to 0.25, implying that the first step was limited by the following process56: 

 2,ads 2 O OO e V O     (6.5) 

2,adsO denotes an oxygen molecule absorbed onto the cathode surface; 

e is an electron; 

OV  represents an oxygen vacancy with a double positive charge; 

OO
is an oxygen occupying an oxygen lattice site with a neutral charge. 

The slope for the second process for both of cathodes is close to 0.5, which indicates that non-charge 

transfer dominates. 
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 A Nb and Ta co-doped perovskite cathode for IT-SOFC 

Introduction 

The sluggish kinetics of cathode on reducing oxygen at lower temperature is one of the major 

challenges for the deployment of IT-SOFC technology. As reviewed in Section 2.4.2, co-doping 

dopants is possible to synergistically improve the cathode performance by optimising the oxygen 

migration in the lattice. In Chapter 5 and 6, we found that doping Ta can significantly lower the 

cathode polarisation resistance at reduced temperature. Nb is also an effective dopant for cathode 

performance enhancement. Besides, Ta and Nb ions have very similar ionic size and valence, so they 

should be compatible well with each other when doping into SrCoO3-δ, and the possible synergistic 

effects of co-doping could be easily studied through restraining the geometric differences of single-

doped and co-doped samples. Therefore, we prepared a novel cathode material by co-doping Nb and 

Ta into SrCoO3-δ, and investigated the possible synergistic effects on oxygen reduction. 

Contribution 

In this chapter, we designed a novel perovskite composition based on SrCoO3-δ by co-doping Nb and 

Ta. This cathode shows remarkably high electroactivity on ORR especially below 500 °C, with an 

area specific resistance as low as 0.16 Ω·cm2 at 500 °C, which is lower than other highly active single-

phase ORR catalysts reported by far. More importantly, a synergistic effect of Nb and Ta was found 

to improve the surface exchange process, ionic conduction and the ORR activity at low temperature. 

This work has been submitted to Nature Communications.  
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A Niobium and Tantalum Co-Doped Perovskite Cathode for Solid Oxide Fuel 

Cells Operating Below 500 °C 

Mengran Li, Mingwen Zhao, Feng Li, Wei Zhou*, Vanessa K. Peterson, Xiaoyong Xu, Zongping 

Shao, Ian Gentle, Zhonghua Zhu* 

Abstract: The slow activity of the cathode is one of the most significant barriers to realizing the 

operation of low-temperature solid oxide fuel cells (LT-SOFCs) below 500 °C. Here, we report the 

novel niobium and tantalum co-substituted perovskite SrCo0.8Nb0.1Ta0.1O3-δ (SCNT) as a LT-SOFC 

cathode which exhibits notably high oxygen reduction reaction (ORR) activity at low temperature. 

This cathode has an area specific resistance as low as ~ 0.16 and ~ 0.68 Ω·cm2 in a symmetrical cell 

and peak power densities of 1.2 and 0.7 W cm-2 in a Gd0.1Ce0.9O1.95 (GDC)-based anode-supported 

fuel-cell at 500 and 450 °C, respectively. The high performance of the SCNT cathode is attributed to 

an optimal balance of oxygen vacancies, ionic mobility and surface electron transfer ability as 

promoted by the synergistic effects of the niobium and tantalum. Therefore, we demonstrate that the 

SOFC operating temperature can be reduced to 450 °C by simply using this new SrCo0.8Nb0.1Ta0.1O3-

δ perovskite cathode, which also points to an effective strategy in the design of LT-SOFC cathodes.    
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 Introduction 

A low-temperature solid oxide fuel cell (LT-SOFC) is a durable energy device that can be deployed 

to convert the chemical energy stored in various types of fuels into electricity with high efficiency, 

ease of sealing and reduced system and operational costs.1-3 However, the low operating temperature 

(450-600 ºC) typically leads to sluggish kinetics of the oxygen reduction reaction (ORR) at the 

cathode, with this being a major limitation to LT-SOFC performance.4-9 

Intensive research has been carried out in an effort to explore novel cathode compositions suitable 

for operation at low temperature.4, 6, 7, 10-15 Oxides offering high mixed ionic and electronic 

conductivities (MIECs) are considered to be some of the most promising candidates for the next 

generation of SOFC cathodes due to their extended active sites for the ORR compared with purely 

electronic conducting materials.16, 17 Several cathodes with high MIECs that exhibited relatively low 

cathode polarization  resistance below 600 ºC have been reported recently.11 For example, the in-situ 

co-assembly of La0.8Sr0.2MnO3 (with a very low O2 dissociative energy barrier) and Bi1.6Er0.4O3 (with 

fast O2 incorporation kinetics) leads to a high-performance cathode with a low polarisation resistance 

of ~0.078 Ω·cm2 at 600 °C.11 Choi et al.12 developed the novel MIEC cathode 

PrBa0.5Sr0.5Co1.5Fe0.5O5+δ, which exhibits polarization resistance as low as ~0.056 Ω·cm2 at 600 °C 

under open circuit conditions, and the NdBa0.75Ca0.25Co2O5+δ material also exhibits outstanding ORR 

activity at reduced temperature.7 Another MIEC cathode composition, Ba0.9Co0.7Fe0.2Mo0.1O3-δ, was 

also reported to have enhanced cathode performance showing a polarization resistance of ~0.28 

Ω·cm2 at 500 °C.18 

Some of the most popular MIEC cathode materials currently under investigation are the stabilized 

SrCoO3-δ (SC) perovskite oxides, such as Sm0.5Sr0.5CoO3-δ
19, (La,Sr)(Co,Fe)O3-δ,

20, 21 and 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ
4, 22, which are claimed to exhibit high ORR activity in the intermediate 

temperature range 600 -750 ºC due to their relatively high mixed conductivities.23, 24 The perovskite 

structure favoured for LT-SOFC cathodes is usually stabilized by partial B-site substitution with high 

oxidation-state cations25, such as Nb,26, 27 Mo,28 Sb,29, 30 and P31, 32, which lead to a low area specific 

resistance (ASR) for the ORR.27-29, 31, 33, 34 Further, Zhou et al.10 developed a highly active perovskite 

cathode material for operation below 550 ºC featuring partial replacement of Co ions with both Sc3+ 
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and Nb5+, where these dopants induce a remarkably-high ORR activity at 550 °C. To the best of our 

knowledge, few studies report the possible synergistic effects of co-doping highly charged dopants 

on catalyzing the ORR in LT-SOFC cathodes.  

Herein, we report studies of the synergistic effects of two highly-charged B-site dopants on the 

performance of our novel perovskite LT-SOFC cathode SrCo0.8Nb0.1Ta0.1O3-δ (SCNT), with this 

cathode exhibiting outstanding and stable electrochemical performance below 500 ºC. A very low 

ASR of ~ 0.16 and ~0.68 Ω·cm2 was achieved at 500 °C and 450 °C, respectively, by the SCNT 

cathode in a symmetrical cell configuration under open circuit conditions. A LT-SOFC with a pure 

SCNT cathode exhibited exceptionally good performance of ~1.2 and ~0.7 W/cm2 at 500 and 450 °C, 

respectively. Our results show that through the co-substitution of Nb5+ and Ta5+ can lead to an 

optimised balance of the oxygen vacancies, ionic mobility and efficient surface electron transfer 

ability, which are potentially related to beneficial effects on ORR catalysis.  

Experimental 

 Sample syntheses 

The SCNT material was synthesized through a solid state reaction route by ball milling stoichiometric 

amounts of SrCO3 (≥ 99.9%, Aldrich), Co3O4 (≥ 99.9%, Aldrich), Nb2O5 (≥ 99.9%, Aldrich), and 

Ta2O5 (≥ 99.9%, Aldrich) for 24 h, before pelletizing and sintering the mixture in stagnant air at 1200 

ºC for 10 h. Subsequently, the sintered pellets were well ground and re-sintered for another 10 h at 

1200 ºC. SrCo0.9Nb0.1O3-δ (SCN10), SrCo0.8Nb0.2O3-δ (SCN20), SrCo0.9Ta0.1O3-δ (SCT10), 

SrCo0.8Ta0.2O3-δ (SCT20), and Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) were also prepared through a similar 

synthesis route. 

 Structure characterization 

The crystal structures of cathode materials were studied by X-ray powder diffraction (XRD) and 

neutron powder diffraction (NPD). High-resolution NPD data were collected using ECHIDNA, the 

high-resolution neutron powder diffractometer at the Australian Nuclear Science and Technology 

Organization (ANSTO),35 with a neutron wavelength of 1.6219(2) Å, determined using the La11B6 

NIST standard reference material 660b. NPD data were obtained from SCNT within a 6 mm 
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vanadium can for 6 h in the 2θ angular range 4 to 164° with a step size of 0.125°. GSAS-II36 was 

employed to perform Rietveld analysis of the high-resolution NPD data, using 𝑃𝑚3̅𝑚  cubic 

perovskite33 as the starting structure. The structure was refined against both the XRD and NPD data, 

with atomic displacement parameters for the Co, Nb, and Ta, fixed to 0.01. High-resolution electron 

transmission microscopy (HR-TEM, Tecnai F20) in conjunction with selected area electron 

diffraction was also used for phase identification.  

 Conductivity and thermogravimetric analysis 

A DC 4-probe method was used to measure electrical conductivity of the specimen in flowing air 

(200 mL/min). The samples for the conductivity measurement were dense bars, which were prepared 

by pressing the cathode powders followed by sintering at 1200 ºC for 5 h. Following this, samples 

were polished and silver leads were attached as the current and voltage electrodes. Electrical 

conductivity was measured using an Autolab PGSTAT20 workstation. 

Ionic conductivities were estimated from oxygen permeability tests carried out by gas 

chromatography (GC).37 Membranes were fabricated by pelletizing cathode powders (milled for 2 h 

in alcohol at 400 rpm), followed by sintering at 1200 °C for 10 h and polishing. The relative densities 

of all samples were over 95%. Subsequently, the dense pellets were sealed in an alumina tube using 

silver paste. The effective areas of membranes were ~ 65 mm2 with thicknesses of 0.07 cm. Helium 

was applied at one side as the sweep gas with a rate of 100 mL/min and the other side was exposed 

to air. The overall resistance to oxygen permeation was calculated from the following equation: 
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 (7.1) 

R - ideal gas constant 

F - Faraday constant 

S - valid area of the membrane 

2OJ - oxygen permeation flux 
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2OP - oxygen partial pressure at the side of membrane exposed to air 

2OP - oxygen partial pressure at the sweep side 

It was assumed that bulk ionic conduction dominated the oxygen permeation process because of the 

relative thickness of the membranes, and therefore Roverall is roughly equal to Rionic. Hence, the ionic 

conductivity of the sample was estimated according the following equation: 

 
1 1

ionic

ionic overall

S S

R L R L
      (7.2) 

Where L is the thickness of the membrane 

Thermal gravimetric analysis was performed to monitor the weight change of SCNT, SCT20, and 

SCN20 during the abrupt change of atmosphere from flowing air to nitrogen to instrumental air at 

500 ºC. Specimen were pelletized and ground using mortar and pestle to ensure similar grain sizes 

before the test. Samples were first gradually heated to 200 °C and held for 1 h to remove absorbed 

moisture. The temperature was then increased at a rate of 1 °C/min to 500 °C in flowing air (20 

mL/min). Subsequently, the flowing gas was abruptly switched to nitrogen, and this condition 

remained for 2 h until the sample weight stabilized. Then, the atmosphere was switched back to air 

and the weight change recorded until equilibrium was reached. The rate of weight change was 

estimated by: 

 t t tm m
rateofweightchange

t

 



 (7.3) 

Where tm  is the weight of the sample at time 𝑡, and t is the time interval between two recorded 

adjacent points. 

 ORR characterization 

Cathode polarization resistance was characterized in a cathode | Sm0.2Ce0.8O1.9 (SDC, from Fuel Cell 

Materials) |cathode symmetrical cell configuration using electrochemical impedance spectroscopy 

(EIS) carried out using an Autolab PGSTAT20. The symmetrical cells were fabricated by spraying 

nitrogen-borne cathode slurries onto both sides of SDC dense disks, followed by calcination at 
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1000 °C for 2 h in stagnant air. Cathode slurries were prepared by suspending powder cathodes in 

isopropyl alcohol. The thicknesses of cathodes were controlled to be around 10 μm, and the active 

area of each cathode was ~ 1.15 cm2. Silver paste was subsequently painted onto both cathode sides 

as current collector.  

We evaluated the performance of the LT-SOFC using anode-supported button-like single cells. The 

anode powders were prepared by ball milling the NiO, Ga0.1Ce0.9O1.95 (GDC, Aldrich) or SDC, and 

dextrin (pore former) with a weight ratio of 6:4:1 for 20 h in ethanol. The anode-supported single 

cells were fabricated by spin coating the GDC slurry onto the surface of the anode disks, which were 

fabricated by pressing anode powders into disks and sintering at 900 °C for 5 h. The GDC slurry for 

drop coating was prepared by suspending the GDC powders in terpineol and ethanol. The coated 

disks were subsequently sintered at 1400 °C for 5 h. The fuel cell for SDC-based cell stability test 

was fabricated using co-press method4. The cathode fabrication was carried out following similar 

steps to those for producing the symmetrical cell. The mechanism of the SCNT ORR was studied by 

fitting the EIS impedance spectra at different pO2 to the Re (R1CPE1) (R2CPE2) equivalent circuit 

model by using the LEVM software. The results are presented in the Figure S 7-13. Re represents the 

ohmic resistance of the electrolyte; (R1CPE1) and (R2CPE2) stand for the two ORR processes at high 

frequency and low frequency respectively. The physical meaning of the ORR processes are 

determined by a parameter 𝑚 given as follows38: 
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pR is the polarisation resistance of the corresponding ORR processes. 

 First-principles calculations 

The first-principles calculations were performed with the Vienna ab initio simulation package 

(VASP)39, 40 using density-functional theory (DFT). Ion-electron interactions were treated using 

projector-augmented-wave potentials41 and a generalized gradient approximation (GGA) in the form 

of Perdew-Burke-Ernzerhof was adopted to describe electron-electron interactions.42 The GGA+U 

calculations were performed with the simplified spherically-averaged approach applied to d electrons, 
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where the coulomb (U) and exchange (J) parameters are combined into the single parameter Ueff (Ueff 

= U - J) which was set to 0.8 eV in these calculations. Electron wave functions were expanded using 

plane waves with an energy cut-off of 520 eV. The Kohn-Sham equation was solved self-consistently 

with a convergence of 10-5. The stoichiometry of the simulated systems was set to SrCo0.75Nb0.25O3, 

SrCo0.75Ta0.25O3, and SrCo0.75Nb0.125Ta0.125O3 respectively due to computational limitation, and the 

Nb and Ta in SCNT are regarded as ordered instead of randomly distributed for simplification. The 

Brillouin zone was sampled using a 3×3×3 k-point grid. The minimum energy pathway for VO 

migration was determined using a climbing image nudged band method.43, 44 

  Results & discussion 

 Structure and cation arrangement of SCNT 

 

Figure 7-1 Joint Rietveld refinement plot of SCNT powders at room temperature using both neutron 

powder diffraction (a) and X-ray powder diffraction (b). Data are shown as black dots, the calculation 

as a red line, and the difference between these two as a green line. (c) High-resolution transmission 

electron microscopy bright field images of SCNT with selected area electron diffraction patterns 

shown as insets, in the [01-1] direction on the left and the [011] direction on the right. 

Table 7-1 Crystallographic details of SCNT obtained from joint Rietveld refinement against both 

neutron and X-ray powder diffraction data. 
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Atom Site x y z Occupancy Uiso (Å2) 

Sr 1b 0.5 0.5 0.5 1.000 0.012(7) 

Co 1a 0 0 0 0.831(4) 0.01 

Nb 1a 0 0 0 0.097(5) 0.01 

Ta 1a 0 0 0 0.069(5) 0.01 

O 3d 0.5 0 0 0.944(5) 0.0278(3) 

a = 3.9066(1) Å, wR = 2.44% , Reduced chi squared = 1.76 

Joint Rietveld analysis of neutron and X-ray powder diffraction data (Figure 7-1(a) and (b)) revealed 

that the SCNT at room temperature exhibits a cubic perovskite structure with 𝑃𝑚3̅𝑚 space-group 

symmetry and a lattice constant of 3.9066(1) Å (Table 7-1). High-resolution transmission electron 

microscopy (HRTEM) combined with selected area electron diffraction (SAED) (Figure 7-1(c)) 

confirms this structure. Moreover, the binding energy of Nb 3d5/2 (206.76 eV) and Ta 4f 7/2 (25.58 

eV) in SCNT, as shown in X-ray photoelectron spectroscopy (XPS) profile, indicates that the dopants 

are both in 5+ valence.45, 46(Figure S 7-2) The cubic structure of SC is maintained by the co-doping 

of Nb5+ and Ta5+ at the Co-site because of their high oxidation states.25 Rietveld refinement results 

show Nb and Ta cation doping levels of 9.7(5) and 6.9(5) mol % respectively in SCNT and an oxygen 

site that is 5.6(5) mol % deficient. Both the cubic perovskite structure and oxygen deficiency are 

beneficial for oxygen-ion conduction, which is critical for the cathode especially for LT-SOFC 

application. The former makes oxygen vacancies migrate freely among lattice equivalent oxygen 

sites47, while the latter facilitates ionic conduction48, 49. 

ORR activity in symmetrical and single cells 
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Figure 7-2 (a) Thermal evolution of the ASR of SCNT, SrCo0.9Nb0.1O3-δ (SCN10), SrCo0.9Ta0.1O3-δ 

(SCT10), SrCo0.8Nb0.2O3-δ (SCN20), SrCo0.8Ta0.2O3-δ (SCT20), and Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) 

cathodes as prepared and studied under the same conditions. Electrochemical impedance spectroscopy 

(EIS) results using a Sm0.2Ce0.8O1.9 (SDC)-based symmetrical cell. (b) Performance of an anode-

supported SCNT | GDC(~14μm) | GDC+Ni single cell at 450, 500, and 550 ºC with H2 at the anode and 

flowing air at the cathode. (c) Example Nyquist plots for the SCNT symmetrical cell and the 

corresponding fitted impedance spectra using a two-process equivalent circuit model. 

We determined the ORR activity of SCNT in a symmetrical cell configuration between 450 and 700 

ºC using electrochemical impedance spectroscopy (EIS). The ASR, calculated from the intercept 

difference of EIS impedance with the real axis, is the key variable characterizing the ORR activity, 

with low ASR indicating high activity. The compatibility of SCNT with Sm0.2Ce0.8O1.9 (SDC) and 

Gd0.1Ce0.9O1.95 (GDC) electrolytes was examined by comparing the X-ray diffraction patterns of a 

50:50 wt.% powder mixture of the SCNT and electrolyte after heated at the cathode fabrication 

temperature of 1000 ºC for 2 h (Figure S 7-3(a)). The results revealed no obvious changes to the 

SCNT after heating with electrolyte, indicating good chemical compatibility between the two. Since 

the silver current collector does not significantly affect cathode performance50 and the cathode 
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thickness (~10 μm) proves to be sufficient (Figure S 7-5 (b)), our measured ASRs reflect the ORR 

activity of the SCNT. Figure 7-2(a) shows that the SCNT cathode exhibits notably high ORR activity 

at low temperature, with an ASR as low as 0.061-0.086, 0.16-0.23, and 0.68-0.80 Ω·cm2 at 550, 500, 

and 450 ºC, respectively. The SCNT cathode outperforms the other reported cathode compositions at 

below 500 °C.( Table S 7-1)7, 10, 18, 50-52 For example, the ORR activity of SCNT cathode is nearly 

twice that of the highly active SrSc0.175Nb0.025Co0.8O3-δ 
10 at 500°C, and is also higher than that of 

Ba0.9Co0.7Fe0.2Mo0.1O3-δ 
18 at 450 °C. 

When examined against other cathodes under our investigation, the SCNT cathode performance was 

also  found to be higher than that of the SrCo0.9Nb0.1O3-δ (SCN10), SrCo0.9Ta0.1O3-δ (SCT10), 

SrCo0.8Nb0.2O3-δ (SCN20), and SrCo0.8Ta0.2O3-δ (SCT20) cathode materials having ASRs of 0.476 ± 

0.009, 0.353 ± 0.001, 0.63 ± 0.0853, and 0.25 ± 0.02153 Ω·cm2 respectively at 500 °C. Additionally, a 

lower activation energy (103.1 ± 0.8 kJ/mol) of SCNT was observed relative to that of SCN10 (105.3 

± 1.6 kJ/mol), SCT10 (105.3 ± 0.5 kJ/mol), SCN20 (108.5 ± 0.3 kJ/mol), and SCT20 

(105.8±1.5kJ/mol), implying its suitability for catalyzing oxygen reduction at low temperature. 

The performance of the SCNT cathode in an LT-SOFC was examined using Ni-SDC|SDC (~ 20 μm) 

|SCNT (~ 10 μm) (Figure S 7-6) and Ni-GDC|GDC (~ 14 μm)| SCNT (~ 10 μm) fuel cells (Figure 

7-2(b)). At 550, 500, and 450 °C, power densities of 1.13, 0.77, and 0.37 W/cm2 were achieved 

respectively in the former single cell with ohmic resistances of ~ 0.072, 0.113, and 0.193 Ω·cm2, 

which mainly arise from the electrolyte. An electrode polarization resistance (the sum of cathode and 

anode ASRs) of ~ 0.059, 0.132, and 0.271 Ω·cm2
 was achieved at the respective temperature. Given 

that SCNT has reasonable chemical compatibility with GDC (Figure S 7-3(b)) and a similar ORR 

activity with both GDC and SDC electrolyte (Figure S 7-5), GDC was also used in button single cells 

due to its ease of coating. The button cell was found to generate a peak power density as high as 1.75, 

1.22, and 0.7 W/cm2 at 550, 500, and 450 ºC, respectively, this being significantly higher than that of 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) of ~ 0.97, 0.52, and 0.316 W/cm2 separately (Figure S 7-7). With a 

thinner GDC electrolyte, the fuel cell ohmic resistance is reduced to 0.033, 0.049, and 0.083 Ω·cm2 

at these temperatures, less than half of that for the SDC (~ 20 μm)-based fuel cell. However, the 

electrode resistance of the GDC cell is only slightly lower than that of the SDC-based cell, being 
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0.056, 0.116, and 0.242 Ω·cm2 at these respective temperatures. Taking into consideration the ease 

and low-cost of the ceramic fabrication processes involved in the necessary scale-up5, GDC 

electrolyte fuel cells were fabricated to a thickness of ~10-14 μm, though further reduction in GDC 

thickness is expected to boost the single cell performance by lowering its ohmic resistance.6, 9 Overall, 

the performance of the SCNT-based fuel cell surpasses the target of 500 mW/cm2 for SOFCs54, 

suggesting the possibility of practical operation even below 450 °C. 

 Synergistic effects of Nb and Ta on the ORR 

Notably, SCNT shows higher ORR activity when compared with the iso-structural SCN20 and 

SCT20 materials sharing similar lattice constants, with values of 3.9066(1) Å for SCNT (Table 7-1) , 

3.8978(2) Å for SCT20, and 3.8971(1) Å for SCN20 obtained from the analysis of the NPD in our 

previous work53. The oxygen vacancy content of SCN20, SCT20 and SCNT as determined from NPD 

refinement at room temperature is 0.102±0.02, 0.159±0.15 and 0.168±0.15, respectively, reflecting 

that SCNT and SCT20 have similar oxygen vacancy contents, which are both significantly higher 

content of oxygen vacancies than that of SCN20. Thermal gravimetric analysis also shows higher 

oxygen vacancy contents in SCNT and SCT20 than SCN20 at elevated temperature. (Supplementary 

Fig. S9) Provided the fixed valence of dopants, the valence of reducible Co is likely the main reason 

for oxygen vacancy concentration difference, so we calculated average valence of cobalt of samples 

from element contents as determined by the refinement. The average valence of Co is 3.44, 3.33 and 

3.41 for SCN20, SCT20 and SCNT, respectively. The lower Co valence in Ta-doped samples can be 

ascribed to the lower electronegativity of Ta than Nb.55  In addition, our first-principles calculation 

result also show that oxygen formation energy are 1.539 eV, 1.456 eV, and 1.512 eV for the Nb-, Ta-, 

and Nb/Ta-doped models, respectively, which further supports the observed higher oxygen deficiency 

in SCNT as induced by Ta. Therefore, we can conclude that doping Ta into Nb-doped oxide can lower 

the average valence of Co, thereby creating more oxygen vacancies. However, it seems insufficient 

to explain the better performance of SCNT than SCT20 by their oxygen vacancy content difference. 

Given the similar particle size (Figure S 7-4) but slightly less electrical conductivity (Figure S 7-10) 

of SCNT relative to SCN20 and SCT20, the outstanding performance of SCNT as an LT-SOFC 
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cathode is likely go arise from the enhanced ORR-related properties such as bulk oxygen ionic 

conductivity and oxygen exchange kinetics.  

 

Figure 7-3 (a) Estimated ionic conductivities of SCN20, SCT20, and SCNT membranes with similar 

dimensions determined by oxygen permeability testing.(b) A schematic of the minimum energy 

migration pathway for an oxygen vacancy (VO) in SrCo0.75Nb0.125Ta0.125O3-δ, where dopants are shown 

by coloured balls and Co along the pathway are inside the octahedrons. Other Co and Sr ions are not 

drawn in the schematic for clarity 

Hence, we estimated ionic conductivity of the SCN20, SCT20, and SCNT by studying the oxygen 

permeability of dense membranes with similar dimensions from 600 to 475 °C. The higher ionic 

conductivity (Figure 7-3(a)) of SCNT over SCN20 and SCT20 can be explained by the more oxygen 

vacancies in SCNT relative to SCN20. Ionic conductivity is known to be significantly affected by 

lattice geometry, critical radius,56 and  lattice free-volume available for oxygen ions to pass through.57 

Because these three materials have similar lattice dimensions, the faster ionic conduction in SCNT 

stems from the synergistic effects of Nb and Ta co-doping at the Co site, which potentially decreases 

the energy barrier for oxygen migration between neighbouring octahedral CoO6 vacancies, as 

reported for Sc3+ and Nb5+ by Zhou et al.10 In order to confirm this hypothesis, we investigated the 

pathways for an oxygen vacancy migration through first-principles calculations. It is found that the 

three models have the same minimum energy pathways, as shown in Figure 7-3(b), but different 

energy barriers. The highest energy barriers along the pathway are 0.433 eV, 0.638 eV, and 0.572 eV 

for Nb-, Ta-, and co-doped models, respectively, (Table S 7-2), indicating a higher vacancy mobility 

of Nb/Ta co-doped model as compared to Ta-doped one. Although SCNT and SCT20 have similar 
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oxygen vacancy levels, the higher ionic conductivity of SCNT than SCT20 is likely a result of the 

incorporation of Nb dopant that can enhance ionic mobility in the lattice.  

Additionally, slightly lower electrical conductivity, including both electronic and ionic conductivity 

with the electronic one dominating, is observed for SCNT compared to SCN20 and SCT20 (Figure S 

7-10). The lower electrical conductivity is caused by more oxygen vacancies in SCNT that can 

diminish the charge carriers for hopping process. By extending the oxygen reduction active region 

and enhancing the ORR kinetics49, 58, the higher oxygen vacancy content and improved mobility of 

SCNT imparted by the co-doping are likely to be more significant factor than electronic conductivity 

for the outstanding ORR performance of SCNT. 

The oxygen surface exchange kinetics were investigated by comparing the O2-intake time of each 

sample in response to the atmosphere change from N2 to air at 500 °C. The SCNT mass equilibrates 

faster (~ 188 s) in than SCN20 (~ 245 s) and SCT20 (~ 217 s), suggesting a faster oxygen surface 

exchange of SCNT at lower temperature (Figure S 7-11). Therefore, the Nb and Ta together could 

also synergistically enhance the surface exchange process by creating more oxygen vacancies and 

improving ionic mobility. 

Table 7-2 Comparison of the ASR at both low frequency (LF) and high frequency (HF) for SCNT, 

SCT20, and SCN20, and those estimated from impedance spectra in a symmetrical cell in flowing air 

using an equivalent circuit model with two processes. 

Temperature (°C) 
ASRHF (Ω·cm2) ASRLF (Ω·cm2) 

SCNT SCT20 SCN20 SCNT SCT20 SCN20 

450 0.14(7) 0.40(4) 0.62(1) 0.53(7) 0.50(4) 1.57(1) 

500 0.05(3) 0.12(1) 0.149(2) 0.11(2) 0.13(1) 0.400(2) 

550 0.007(7) 0.036(8) 0.057(1) 0.054(1) 0.057(1) 0.123(1) 

600 0.003(2) 0.014(6) 0.021(1) 0.022(3) 0.020(8) 0.063(1) 

650 0.002(2) 0.007(3) 0.016(1) 0.012(5) 0.010(4) 0.021(1) 
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Figure 7-4 Atomic-orbital-resolved electron density of states (PDOS) projected onto the nearest 

neighbouring (NN) Co atoms (left column) and the next nearest neighbouring (NNN) of Co atoms 

(middle column) of (a), (b) SrCo0.75Nb0.25O3-δ, (d), (e) SrCo0.75Ta0.25O3-δ and (g),(h) 

SrCo0.75Nb0.125Ta0.125O3-δ perovskite oxides, and the corresponding schematic of unit cells (right 

column). The energy at the fermi level is set to zero. 

We also fitted the impedance spectra of SCNT, SCN20, and SCT20 cathodes to an equivalent circuit 

model consisting of two dominant reaction processes in order to further probe the mechanisms. An 

example of the fitting result is presented in Figure 2(c). The arc at high frequencies (HF) is related to 

the charge transfer  and the one at low-frequencies (LF) to non-charge transfer according to 

Supplementary Fig. S13 and our previous work53.  

 2, O oO 2 Oads e V      (7.5) 

Where 2,O ads stands for an adsorbed oxygen molecule on cathode surface, e for an electron, OV  for 

an oxygen vacancy and oO  for an oxygen occupying an oxygen lattice. Table 7-2 summarizes the 
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polarization resistance of these two processes. SCNT exhibits significantly lower ASRs for the 

charge-transfer process than either SCN20 or SCT20, and nearly half of the resistance of SCN20 but 

with similar activity for the non-charge transfer process. The fast kinetics for charge transfer can be 

partly attributed to the proved high oxygen content of SCNT brought by Ta, since oxygen vacancy 

plays an important role in the charge-transfer process as shown in (7.5). 

On the other hand, since Nb5+ and Ta5+are inert to oxygen surface redox processes due to their fixed 

valence, Co atom plays a vital role in catalysing oxygen reduction. Therefore, we calculated the 

atomic-orbital-resolved electron density of states (PDOS) projected onto the Co atom in Nb, Ta, and 

Nb/Ta co-doped strontium cobalt oxides using first-principles calculations. As shown in schematic 

models (Figure 7-4 (c), (f)  for Nb or Ta single-doped models and Figure 4(i) for co-doped model), 

There are two categories of cobalt atoms: one is the nearest neighbour (NN) Co to the dopant, 

including Co1, Co2 for single-doped model and Co1, Co2, Co3 for co-doped model; the other is the 

next nearest neighbour (NNN) Co to the dopants, including Co3 for single-doped model and Co4 for 

co-doped one. The NN-Co atoms have very similar density of states (DOS) near the Fermi level for 

these three models. For the NNN-Co atoms, Ta-doped model exhibits only 60% of DOS of Nb-doped 

model near the Fermi level, indicating that Nb is more favourable to increase the DOS of the NNN-

Co near the Fermi level. Due to the beneficial effect from Nb, the DOS of NNN-Co near Fermi level 

for the co-doped model shows ~ 98% that of Nb-doped model. The enhanced DOS at Fermi level can 

make electron transfer more efficient,59 and thereby contribute to an improved charge-transfer process. 

Therefore, it is likely that the higher DOS of NNN-Co ions near Fermi level as induced by Nb is the 

reason for the higher kinetics of charge-transfer steps of SCNT than that of SCT20, in spite of their 

similar concentration of oxygen vacancies. 

Our experimental and calculation results reveal that the superior electroactivity of SCNT is a result 

of optimised balance of oxygen vacancy content, oxygen ion mobility and enhanced electron transfer 

processes, which are imparted by co-doping Nb and Ta.  
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 Stability tests 

 

Figure 7-5 (a) ASRs of SCNT in a symmetrical cell under open circuit conditions at 600 ºC for 200 h 

(b) current density of a SCNT | SDC (~ 20 µm) | Ni + SDC single cell under 0.7 V polarization in air at 

450 °C for 150 h. 

The durability of the cathode was investigated in both symmetrical and single cell configurations, as 

shown in Figure 7-5. The ASR of SCNT within a symmetrical cell was tested under the open circuit 

condition for approximately 200 h. The ORR activity was relatively stable at ~ 0.033 Ω·cm2 with an 

ASR increase of ~0.06% /h during the testing period. The slight increase of ASR during the stability 

test is likely to arise from the densification and the reduced porosity of the silver current collector, 

which degrades the overall cathode performance during this testing timeframe.60-62  Another short-

term stability evaluation of the SCNT cathode in a single cell configuration with ~ 20 μm thick SDC 

electrolyte also showed that the SCNT is stable under 0.7 V polarization for at least 150 h at 450 ºC 

in air. The low current density noted in the stability testing arises from the electrolyte thickness, which 

leads to high ohmic resistance. The stable ORR activity of SCNT is expected given its stable 

perovskite lattice (Figure S 7-12). 
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 Conclusions 

In summary, the novel perovskite composition SrCo0.8Nb0.1Ta0.1O3-δ (SCNT) has been synthesized 

and exhibits the highest reported activity for the reduction of oxygen in an LT-SOFC by far, with an 

ASR of only ~ 0.16 and ~0.68 Ω·cm2 at 500 and 450 ºC respectively in a symmetrical cell 

configuration. High power density is therefore achieved using a pure SCNT cathode as a result of its 

outstanding ORR performance. A performance comparison amongst iso-structural SCNT, 

SrCo0.8Nb0.2O3-δ (SCN20), and SrCo0.8Ta0.2O3-δ (SCT20) cathodes reveals enhancement of the bulk 

oxygen ionic-conductivity achieved through co-doping of Nb5+ and Ta5+. Our experimental results 

and density functional theory calculations both show that co-doping can result in an optimised balance 

of oxygen vacancy content, ion mobility and surface electron transfer ability, which is consistent with 

the higher performance of the co-doped SCNT cathode at lower temperature. Therefore, our highly 

active perovskite cathode not only presents a simple solution to address sluggish cathode kinetics 

below 500 °C, but also provides an effective doping strategy for the design of mixed-conducting 

materials for SOFC and oxygen-ion transport membrane applications at low temperature. 

Acknowledgement  

The authors appreciate the technical support from the Centre for Microscopy and Microanalysis at 

the University of Queensland, and neutron scattering study at ANSTO. 

This work is financially supported by Australian Research Council (DP130102151) and author 

Mengran Li acknowledges additional financial support from the scholarship from China Scholarship 

Council. Prof. Zhu acknowledges the Open Funding from State Key Laboratory of Material – oriented 

Chemical Engineering (No. KL15-04). 



Chapter 7 A Nb and Ta co-doped perovskite cathode for IT-SOFC    

145 

 

 Supplementary Information 

 

Figure S 7-1 X-ray (CuKα) diffraction patterns of SCNT, SCN20, SCT20, SCN10 and SCT10 at room 

temperature. 

 

Figure S 7-2 X-ray photoelectron spectroscopy profile of Nb and Ta of SCNT at room temperature. 
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Table S 7-1 Comparison of ASR values between SCNT and other highly active cathode compositions in 

literatures. 

Cathode Material Compositions Area specific resistance (Ω·cm2) Reference 

SrCo0.8Nb0.1Ta0.1O3-δ 
~0.16 @500°C 

~0.68 @450°C 
This work 

Ba2Bi0.1Sc0.2Co1.7O6-δ ~1.50 @ 500°C 51 

SrSc0.175Nb0.025Co0.8O3-δ ~0.32 @500°C 10 

NdBa0.75Ca0.25Co0.25Co2O5+δ ~0.67 @500°C 7 

Ba0.9Co0.7Fe0.2Mo0.1O3-δ 
~0.28 @500°C 

~1.09 @450°C 
18 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ ~0.50 @500°C 50 

SrSc0.2Co0.8O3-δ ~0.45 @500°C 52 

 

Figure S 7-3 X-ray diffraction data of (a) pure SCNT, SDC, and a 50:50 wt% SCNT/SDC mixture 

after 2 h sintering  at 1000 ºC; (b) pure SCNT, GDC, and a 50:50 wt% SCNT/GDC mixture after 2 h 

sintering  at 1000 ºC. The mixture was made by mechanically mixing the powders SCNT and SDC (or 

GDC) at room temperature. 



Chapter 7 A Nb and Ta co-doped perovskite cathode for IT-SOFC    

147 

 

 

Figure S 7-4 Cross sectional SEM images of SCNT, SCN20, and SCT20 cathodes in a symmetrical cell 

configuration. 

 

Figure S 7-5 ASRs of the SCNT cathode in SDC and GDC-based symmetrical cells as a function of 

temperature. (b) ASRs of SCNT cathodes with different cathode thicknesses based on SDC electrolyte 
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Figure S 7-6 Single-cell performance of a SCNT| SDC (~20μm)| Ni+SDC cell. 

 

Figure S 7-7 Single cell performance of a BSCF|GDC(~14μm) | Ni+GDC cells showing a performance 

that is similar to that reported for BSCF-based SOFCs.50, 63 
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Figure S 7-8 SEM image of (a) an anode-supported single cell with GDC electrolyte (~ 14 μm) and 

SCNT cathode and (b) the SCNT-based single cell after stability testing (electrolyte thickness ~ 20 μm). 

 

Figure S 7-9 Mass and oxygen nonstoichiometry change of SrCo0.8Nb0.2O3-δ (SCN20), SrCo0.8Ta0.2O3-δ 

(SCT20) and SrCo0.8Nb0.1Ta0.1O3-δ (SCNT) as a function of temperature in the flowing air with a flow 

rate of 20mL/min 
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Figure S 7-10 Electrical conductivity of SCN20, SCT20, and SCNT samples using 4-probe DC method 

as a function of temperature. 

 

Figure S 7-11(a) Percentage weight change and (b) the corresponding rate of weight change, of SCN20, 

SCT20, and SCNT heated to 500 °C during a change of atmosphere from flowing nitrogen to flowing 

air . The weight change is a result of the intake of oxygen into the sample from the ambient air, with 

SCNT reaching equilibrium in the shortest time (~ 188 s) compared with SCN20 (~ 245 s) and SCT20 

(~ 217s). 

Table S 7-2 The energy barriers of an oxygen vacancy migrating along the pathway with minimum 

energy barriers 

 ①-② ②-③ ③-④ ④-⑤ 

SrCo0.75Nb0.25O3-δ 0.433 0.322 0.406 0.433 

SrCo0.75Ta0.25O3-δ 0.638 0.442 0.525 0.638 

SrCo0.75Nb0.125Ta0.125O3-δ 0.572 0.323 0.437 0.228 
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Figure S 7-12 XRD patterns of SCNT before and after heat treatment at 450 °C for 150 h. 

 

Figure S 7-13 ASR values of SCNT cathode corresponding to processes at (a) high frequencies and (b) 

frequencies as a function of pO2 from 550°C to 450 °C. The slope m for -ln(ASRHF)~ln(pO2) is 0.28-

0.32, which is close to 0.25, indicating that the process at high frequencies is related to charge-transfer 

process to the absorbed oxygen species. The slope for low frequencies is 0.53-0.57, suggesting non-

charge-transfer process.38 
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 Improvement on CO2 tolerance of Ta-doped SC cathode by 

incorporating Sm-doped ceria 

Introduction 

Despite the potential high ORR electroactivity of SrCoO3-δ-based perovskite cathodes, their 

susceptibility to CO2 impedes practical application of these highly active cathodes onto IT-SOFCs. 

As discussed in Section 2.5, there are only a few research studying CO2 poisoning mechanism and 

exploring the strategies to make them more tolerant against CO2 poisoning. Among these strategies, 

what proves effective to improve CO2 resistivity is to introduce an additional CO2 resistant material 

to protect the pristine SrCoO3-δ-based cathode. In Section 2.4.3, researchers have incorporated 

electrolyte materials into cobalt-containing perovskite to mitigate the thermal expansion mismatch. 

Consequently, we developed a Sr (Co, Ta)O3-δ perovskite cathode hybrid with SDC protective layer 

in order to improve cathode stability in the presence of CO2. The reason we used Sr(Co, Ta)O3-δ as 

pristine cathode is because of its high ORR activity and good compatibility with SDC as demonstrated 

in Chapter 5. 

Contribution 

In this chapter, we found that incorporating SDC into Sr(Co, Ta)O3-δ cathode by mechanically mixing 

or/and wet impregnation can significantly improve cathode tolerance against CO2. The stability 

improvement of cathode in the presence of CO2 is likely attributed to the SDC’s low CO2 adsorption, 

low reactivity with CO2, and stable ionic conduction in the CO2 containing atmosphere. Additionally, 

our experiment results show that this simple strategy is also effective in increasing CO2 tolerance of 

other alkaline-earth-containing perovskite cathode materials. This work is in preparation for ACS 

Applied Materials & Interfaces. 
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A Highly CO2 Tolerant Cathode for Intermediate Temperature Solid Oxide Fuel 

Cells: Sm-doped Ceria Protected SrCo0.85Ta0.15O3-δ Hybrid 

Mengran Li, Wei Zhou*, Zhonghua Zhu* 

Abstract 

Susceptibility to CO2 is one of the major challenges for long-term stability of most of the alkaline-

earth containing cathodes in intermediate-temperature solid oxide fuel cells. In this work, we 

incorporated Sm stabilized ceria (SDC) into SrCo0.85Ta0.15O3-δ cathode by either mechanical mixing 

or wet impregnation method, and evaluated their cathode performance stability in the presence of 10% 

CO2 air with 21% O2. We found that such hybrid cathode shows an enhancement of CO2 tolerance 

by nearly over 5 times as compared to pure SCT15 at 550 °C, which likely arises from low CO2 

adsorption and reactivity of SDC protective layer as demonstrated by thermogravimetric analysis, 

energy dispersive spectroscopy and four probe electrical conductivity measurement. 

 Introduction 

A solid oxide fuel cell (SOFC) is a promising energy option for the future due to its direct conversion 

from hydrogen and hydrocarbons into electricity in a clean and very efficient way. Lowering down 

the operating temperature is of great significance for the SOFC commercialization because low 

temperatures (<600°C) will lead to significant cost reduction, easier sealing, prolonged system 

lifetime and etc.1, 2 However, the electrodes, especially the cathode, become very inactive at low 

temperatures, which is one of the demanding issues for the low-temperature SOFC (LT-SOFC) 

development.3, 4 Consequently, efforts were devoted to explore novel materials to enhance the activity 

over oxygen reduction reaction (ORR) at low temperature.5-8 SrCoO3-δ (SC)– based perovskite oxides, 

including some milestone cathodes such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)3 and 

SrSc0.175Nb0.025Co0.8O3-δ 
8, are regarded as one of the most promising candidates as the LT-SOFC 

cathode and under wide investigation in recent years. For example, the Ta-stabilized SC were also 

recently evaluated, and exhibit very low polarization resistances (~ 0.1 Ω·cm2 at 550 °C) at low 

temperature.9, 10 
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However, one of the drawbacks for these SC-based perovskite oxides is their susceptibility to the CO2 

attack due to the alkaline-earth metal ions (Sr2+ or Ba2+) compositions11-16, which are easy to adsorb 

and interact with CO2 especially at low temperature (below 700°C), resulting in slow oxygen surface 

exchange kinetics and therefore degraded cathode performance17, 18. CO2 will compete against O2 for 

the limited active oxygen vacancies on the cathode surface19, and prolonged exposure to CO2 also 

prompts carbonate formation and cathode structure deformation starting from the surface down to the 

bulk, resulting in unrecoverable structural damage.20 One example is the SrCo0.8Sc0.2O3-δ high-

performance ORR catalyst, which degraded by ~ 12 times after only 5 min exposure to 10 vol% CO2 

atmosphere at 600°C.15 The CO2 poisoning effect is plausibly related to the cathode basic surface 

contributed from the basic alkaline-earth cations and surface defects21, such as the oxygen vacancies. 

The interaction between cathode and CO2 is regarded as a reaction between a basic and acid according 

to the Lewis acid-base theory. Therefore, a trade-off normally exists between the ORR activity and 

the CO2 resistivity because the alkaline earth species and oxygen vacancies play an important role in 

efficient oxygen reduction.15, 22   

To enhance the cathode CO2 resistance, one of the effective strategies is to protect the highly active 

ORR cathodes from CO2 by covering a protective layer that is at least oxygen conductive and has to 

be inert to CO2. By adopting this strategy, a BSCF cathode structured with densified La2NiO4+δ (LN)-

coned shell has been developed, which significantly improves the ORR activity under CO2 exposure 

thanks to the MIEC and high CO2 resistance of LN15, but unconventional treatment microwave-

induced plasma has to be used to prevent unwanted phase interaction between BSCF and LN.  

On the other hand, most SC-based perovskite cathodes are chemical compatible with doped ceria 

electrolyte materials such as Sm-doped ceria (SDC), exhibiting a high ionic conductivity at lower 

temperature.23 The SDC also shows stable oxygen permeability when exposed to CO2.
24, 25 Moreover, 

the thermal expansion mismatch of SC-based cathodes can also be minimized by mixing the cathode 

with SDC to form composite cathode. Herein, the SrCo0.85Ta0.15O3-δ (SCT15) – SDC composite 

cathodes were evaluated with respect to their tolerance to 10% CO2 – containing gas mixtures with 

21% O2, and a systematic investigation was also presented on the influence of SDC on the cathode 

ORR activity and stability when exposed to 10% CO2. 
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 Experimental 

The SCT15 was synthesized through the solid-state route: stoichiometric mixtures of SrCoO3-δ (≥ 

99.9%, Aldrich), Co3O4 (≥ 99.9%, Aldrich) and Ta2O5 (≥ 99.9%, Aldrich) were wet ball milled for 

24 h, followed by pelletizing and sintering at 1200 °C for 20 h in stagnant air. The SDC (~30m2/g) is 

a commercial product of the Fuelcellmaterials. Ba0.5Sr0.5Co0.8Fe0.2O3-δ was prepared through EDTA-

citric acid route.3 

Symmetrical cells for electrochemical impedance studies were fabricated by nitrogen-borne spraying 

the cathode ink, which was prepared by ball milling the cathode powders in isopropyl alcohol and 

terpineol, onto both sides of the Sm0.2Ce0.8O1.9 (SDC, from Fuel Cell Materials) electrolyte dense 

disk, and subsequently calcined at 1000 °C in stagnant air for 2 h. The SCT15+SDC composite 

cathodes were prepared through two main routes. One is to mechanically mix SCT15 and SDC 

powders (60:40 wt %) using ball mill for 2 h to form ink, and the subsequent steps are same to those 

for single-phase cathode fabrication. The other is to infiltrate 10 μL (4.2 wt% SDC) or 20 μL (8.4 

wt% SDC) of the Sm and Ce nitrates ethanol solution (0.001 mol/mL) with 10 wt% citric acid into 

the SCT15+SDC composite backbone before another calcination at 900 °C for 5 h. These two hybrid 

cathodes through infiltration are named as SCT15+SDC+4.2% loading and SCT15+SDC+8.4% 

loading, respectively. Silver paste was painted onto the cathode, serving as the current collector. The 

specimens for electrical conductivity test were fabricated by pressing the SCT15 and SDC powders 

into pellets, and sintering at 1200 °C and 1400 °C respectively until dense, and then polishing into 

similar shape, with a dimension of roughly 0.75 cm × 0.2 cm × 0.1 cm. 

We performed thermogravimetric analysis (TGA) to probe the interactions between the specimen and 

gas mixture (10% CO2, 69% N2 and 21% O2) from 500 to 650°C by monitoring the weight change of 

the TGA samples in response to the immediate gas change from instrumental air to 10% CO2-

containing air, as well as the weight change when the atmosphere changed back to air. The 10% CO2 

gas mixture contains 69% N2, 21% Air and 10% CO2, and is purchased from the Coregas. The TGA 

samples were first pelletized at the same pressure and crushed to ensure similar grain sizes before the 

TGA test.  

Electrochemical impedance spectroscopy (EIS) was used to study ORR activity of the cathodes in a 

symmetrical cell configuration and also to evaluate the cathode polarization resistance stability under 
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exposure to 10% CO2. The electrical conductivity measurement was conducted in a 4-probe dc 

method. PGSTAT302 Autolab workstation was used for these electrochemical tests, including EIS, 

single cell measurement and the electrical conductivity test. 

The crystal structures of the samples were characterized by using X-ray powder diffraction (XRD), 

and scanning electron microscopy (SEM, JEOL JSM-7100F) was used to study the microstructures 

of the samples. Tecnai 20 Feg transmission electron microscopy (TEM) was used to perform energy 

dispersive X-ray analysis on different spots of SCT15 particles before and after CO2 treatment. 

 Results and discussion 

 

Figure 8-1 Room-temperature X-ray powder diffraction patterns of SCT15, SDC, the mixture of both 

treated at 1000 ºC for 2 h, 9 and SCT15 infiltrated with SDC precursor followed by 5 h 900 °C 

treatment.  

The compatibility of SCT15 with SDC has been studied from our previous work (Figure 8-1 

(a)(b)(c)). SCT15 is proved to be chemically compatible with SDC below 1000 °C, as no apparent 

additional phases between SCT15 and SDC phases are detected from the X-ray diffraction (XRD) 

profiles of SCT15+SDC mixtures (50:50 wt %) after 1000°C treatment for 2h.9 Besides, we also 

analyzed the crystal structures of the SCT15 powder infiltrated with 10 wt% of SDC. As presented 

in Figure 8-1(d), the major phases are similar to those of the SCT15+SDC mixture, implying that the 

SDC phase is formed, but some small additional peaks as indicated with asterisks suggest that small 

quantity of unknown phases were formed during the calcination. 



Chapter 8 Improvement on CO2 tolerance of Ta-doped SC cathode by incorporating Sm-doped ceria 

162 

 

23  

Figure 8-2 Weight percentage changes of (a) SCT15 and (b) SDC as a function of time when the 

atmosphere changed from air to 10% CO2 gas at different temperatures. 

 

Figure 8-3 HADDF images of SCT15 before and after 10 h 10% CO2 treatment at 510 ºC and the 

corresponding energy dispersive X-ray analysis. 

The effects of CO2 on SCT15 and SDC materials are studied using thermal gravimetric analysis 

separately. Figure 8-2 shows that both the SCT15 and SDC mass increase in response to the feed of 

10% CO2 at different temperatures because of the CO2 adsorption. These two samples adsorb more 

CO2 in 10% CO2 at higher temperature relative to lower temperature. Meanwhile, more oxygen 
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vacancies are also formed at higher temperature in air.9 As more oxygen vacancies are formed at 

higher temperature9, it is likely that the higher levels of oxygen vacancies, which act as CO2 effective 

adsorption sites, are responsible for the more CO2 captured at temperature range 510 – 650 °C.  

Similar phenomenon was also observed for Ba0.5Sr0.5Co0.8Fe0.2O3-δ material that exhibits higher 

interaction with CO2 at rising temperature.26 

However, SCT15 and SDC show different weight change profile reacting to CO2. For example, 

SCT15 shows an almost linear behaviour in adsorbing CO2 especially at 510 °C, but the CO2 

adsorption process is faster on SDC during the first 5 min but gradually slows down until nearly 

equilibrium. The continuous CO2 adsorption process on SCT15 may arise from the Sr segregation 

from the bulk onto the surface to react with CO2 due to its high basicity, which can be demonstrated 

by TEM-EDX results as shown in Figure 8-3. TEM-EDX was conducted to do the elemental analysis 

at the surface and bulk of SCT15 particles with and without treatment in 10% CO2 for 10 h 

respectively. From the EDX analysis results, SCT15 free of CO2 treatment has similar cation content 

levels at both spot 1 and spot 2, but the specimen with CO2 treated exhibits a much higher level of Sr, 

which is likely in a form of carbonate, near the surface as compared with Co and Ta cations. Therefore, 

it can be concluded that the CO2 is one of the major reasons for the Sr segregation, and the continuous 

weight increase of SCT15 in CO2 is a result of the continuous diffusion of Sr to the surface to form 

carbonate. Similar Sr or other alkaline-earth elements segregation phenomena were also reported in 

previous work when exposed to CO2 -containing air but with different oxygen content.19, 20, 27 In the 

contrary, SDC nearly stops increasing its weight after 20 min at 510 °C, revealing a different CO2 

adsorption process: CO2 is adsorbed on the SDC surface until reaching the equilibrium, where all the 

effective adsorption sites are saturated with CO2. The difference may arise from the lack of basic 

elements such as Sr in SDC, so that no further increase of adsorbed CO2 occurs. 
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Figure 8-4 The weight percentage changes of SCT15 and SDC as a function of time when the 

atmosphere switched from 10% CO2 to air at 60 min. 

When the CO2 is removed from the atmosphere at 510 °C, most of CO2 desorbs from the SDC in the 

first 30 min, but SCT15 shows a different response to the CO2 removal: nearly no CO2 that is captured 

during the first 60 min CO2 treatment escapes from SCT15. (Figure 8-4) This is a sign suggesting 

that the CO2 adsorption process on SCT15 is irreversible at 510 °C and is not sensitive to the CO2 

concentration change. The slight weight gain after flowing gas switched in SCT15 is ascribed to the 

remained CO2 in the furnace chamber. Meantime, part of CO2 is becoming carbonate, which is also 

another main reason for the no release of CO2 from SCT15 after the CO2 partial pressure is 

significantly lowered. In contrast, however, SDC shows a reversible CO2 adsorption probably and 

very low reactivity with CO2 due to its relatively lower basic surface, so that the weight of SDC nearly 

decreases to the original weight level after CO2 flux removed. 
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Figure 8-5 Electrical conductivities of SDC and SCT15 in exposure to 10% CO2 at 500°C for 167 min 

after stabilized in air. 

The electrical conductivity stability of SCT15 and SDC in the presence of 10% CO2-containing air 

was studied using 4-probe dc method at 500 °C respectively. The electrical conductivity of these two 

materials consists of electronic and ionic conductivity: electronic conductivity dominates in SCT15, 

but ionic conductivity dominates in SDC. From Figure 8-5, negligible electrical conductivity changes 

are found for both SCT15 and SDC, indicating that 10% of CO2 in the atmosphere does not have 

significant adverse effects on the electronic conductivity of SCT15 and the ionic conductivity of SDC. 

 

 

Figure 8-6 SEM micrographs of cross sections of SCT15, SCT15+SDC and SCT15+SDC with different 

SDC loadings cathodes under investigations. 



Chapter 8 Improvement on CO2 tolerance of Ta-doped SC cathode by incorporating Sm-doped ceria 

166 

 

  

Figure 8-7 SEM micrographs of microstructures of SCT15, SCT15+SDC, SCT15+SDC with different 

SDC loadings cathodes under investigations.  

The microstructures of the cathodes under investigation are studied using SEM. As shown in Figure 

8-6, the cathodes all attach well with SDC surface, and are in a similar cathode thickness. Figure 8-7 

shows that SCT15 cathode is covered by the small SDC particles with ~ 0.5 μm sizes for SCT15 + 

SDC cathode, and is additionally covered by nano-sized SDC particles for infiltration-loaded 

SCT15+SDC.  

 

Figure 8-8 Area specific resistances (ASRs) of cathodes as a function of temperature in the flowing air. 
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The ORR activity of the cathodes in air is tested by electrochemical impedance analysis in a 

configuration of the SDC-based symmetrical cell from 500 °C to 700 °C. The area specific resistance 

(ASR), calculated from the impedance spectra, characterizes the cathode performance, with a lower 

value reflecting a higher activity over ORR. As shown in Figure 8-8, the pure SCT15 exhibits the 

lowest ASRs at the 500-700 °C temperature range among all the cathodes under study. The 

introduction of SDC will result in performance degradation of the pure SCT15 both in ASR values 

and the activation energy mainly because of the lower electrical conductivity of SDC in comparison 

to SCT15. Further additional infiltration of SDC also makes it slightly less active in oxygen reduction 

especially above 600 °C than SCT15+SDC cathode, but the activation energy is noticeably lowered 

down to 96-97 kJ/mol even comparable with the pure SCT15 cathode at ~102 kJ/mol. The enhanced 

activation energy may arise from the increase of three phase boundaries among SCT15, SDC and the 

air, which results from the additions of nano SDC particles by infiltrations as shown in Figure 8-7. 

 

Figure 8-9 (a) Relative and (b) real ASR value changes with time for the studied cathodes when the 

flowing air is replaced by flowing 10% CO2- containing air at 550 °C. (c) ASR change of 

SCT15+SDC+42% loading cathode as a function of time in the presence of 10% CO2 at 600 °C and 

650 °C. The slopes shown in the figure are the estimated slopes of linearly increasing ASR profile as a 

function of time, especially after 5 min exposure to 10% CO2.  
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The cathode tolerance against CO2 was evaluated in terms of ASR change in the presence of 10% 

CO2, and Figure 8-9 (a) shows the relative ASR change as a function of time after 10% CO2 is 

introduced. 0 min is the time when the 10% CO2 gas mixture is fluxed in. We found that the 

electroactivity of SCT15 degrades dramatically by nearly 18 times in the first 5 min, and linearly 

degrades by 22 times after 1 h CO2 exposure. The increasing rate of polarization resistance of SCT15 

is about 0.012 Ω·cm2/min after ~5 min exposure to 10% CO2. The observed significant ORR 

deterioration as a result of CO2 mainly arises from the competition for active adsorption sites between 

O2 and CO2
26, 28, as well as the formed carbonation that inhibits the oxygen exchange process on 

cathode surface.18 However, for cathode hybrid with SDC the poisoning effect is significantly 

alleviated. For example, ASR of the SCT15+ SDC cathode increases by 5 times after 1 h exposure to 

10% CO2, and an ASR increase by only ~3 times occurs for SCT15+ SDC cathode with 8.4 wt% 

SDC loading at 550 °C. It is important to note from Figure 8-9(b) that the ASRs are also significantly 

decreased as compared to the pure SCT15 when the amount of SDC increases, though the ASRs of 

these composite cathodes are not as low as the pure SCT15 in the absence of CO2. Moreover, the 

ASR increasing rate (time > 5min) is significantly reduced when the cathode is infiltrated with SDC: 

e.g. the SCT15+SDC+4.2% loading degrades at a rate of ~0.0055 Ω·cm2/min, which is less than half 

the rate of pure SCT15 cathode. Additionally, the polarization resistance of cathode infiltrated with 

4.2 wt% SDC remains below 0.1 Ω·cm2 at 650 °C when exposed to 10% CO2 for 48 min, showing 

an acceptable cathode performance in CO2-containing atmosphere. (Figure 8-9(c)) Consequently, the 

incorporated SDC particles can serve as a discontinued protective layer against CO2 for the SCT15 

cathode mainly because of the aforementioned relatively low CO2 adsorption and reactivity of SDC, 

as well as its unaffected ionic conductivity in the CO2- containing atmosphere. 
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Figure 8-10 Comparisons of (a) BSCF and (b) BSCF+SDC cathode impedance profiles in response to 

~30 min 10% CO2 treatment. 

Additionally, we also applied this strategy onto Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) cathode, which one 

of the benchmark cathodes for intermediate-temperature SOFCs but susceptible to CO2, by simply 

mechanical mixing the BSCF cathode with SDC before fabricated onto the electrolyte. The CO2 

tolerance is also evaluated in a similar way with SCT15 at 550 °C. Figure 8-10 provides the 

impedance spectra of both BSCF and BSCF-SDC cathodes in a configuration of symmetrical cell 

before and after 30 min 10% CO2 treatment. It is obvious that when the pure BSCF is exposed to 10% 

CO2, the ASR increases by ~ 46 times after only 32 min exposure, but the ASR only goes up by 6 

times for BSCF+ SDC cathode. Therefore, it can be concluded that the CO2 tolerance of doped SC 

can be significantly enhanced by introducing SDC protective layer into the cathode. 

 Conclusions 

Samarium doped ceria is introduced onto SrCo0.85Ta0.15O3-δ cathode through both mixing and 

infiltration methods in order to enhance the resistivity of SCT15 cathode against CO2 attack. Our 

study reveals different CO2 adsorption mechanisms between SCT15 and SDC at SOFC operating 

temperatures, and that much higher reactivity of SCT15 with CO2 as compared to SDC. Because of 

the stability of SDC in the CO2 - containing atmosphere as a result of its low CO2 reactivity and 

adsorption, the SCT15 with SDC protective layer is found to be far less susceptible when exposed to 
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10% CO2 as compared to pure SCT15. This strategy is also found to be effective to improve the CO2 

tolerance of other promising cathode materials containing alkaline-earth metals. 
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 Conclusions and recommendations 

 Conclusions  

In summary, this project tends to develop robust cathode materials based on SrCoO3-δ perovskite 

oxide with high electroactivity on reducing oxygen at intermediate temperature (500 °C ~ 750 °C) 

even in the presence of CO2, and to study factors that affect cathode performance and stability. From 

the studies presented in the thesis, conclusions can be drawn as follows. 

Firstly, dopants in fixed high valence, such as P5+, Ta5+ and Nb5+, can be incorporated into SrCoO3-δ 

oxide, and are helpful to stabilize the ORR beneficial perovskite structure ( 3Pm m ) of SrCoO3-δ both 

at room temperature and intermediate temperature, which arises from their high valence state that 

prevents oxygen vacancy ordering and some phase distortions. Because of this phase stabilization 

effect, these dopants can significantly enhance cathode performance stability. The content of these 

dopants especially Ta5+ can influence the crystal structure of cathode material: less than 5 mol% Ta5+ 

doping makes SrCoO3-δ a tetragonal structure ( 4 /I mmm ), but over 5 mol% doping results in cubic 

perovskite structure at room temperature. Moreover, the cubic perovskite structure of SrCoO3-δ is still 

maintained when Ta5+ doping level reaches 40 mol%. 

Secondly, the substitution level of Ta5+ has an impact on the mixed electronic and ionic conductivities 

of SrCoO3-δ. Low doping content (< 5 mol%) can increase the electronic conductivity, because 

dopants can both stabilize high-symmetry structure that is good for hopping and increase the 

concentration of charge carriers. However, high doping content (> 5 mol%) can deteriorate the 

electronic conductivity likely due to the increasing inhibition of (Co, dopant)-O- (Co, dopant) bonds 

onto the hopping process. Moreover, the high valence of dopants increases the overall charges of 

cations, so oxygen vacancies of these doped materials have to decrease to compensate the charge 

imbalance.  

Thirdly, fixed valence dopants can influence the cathode electroactivity of SrCoO3-δ in an indirect 

way. The valence of Co in SrCoO3-δ doped with more Ta5+ is easier to change in response to change 

of oxygen partial pressure. As a result, doping Ta5+ can enhance the oxygen exchange processes, 

particularly the steps involving atomic oxygen, therefore significantly lowering the cathode 
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polarization resistance down to 0.089 ~ 0.11 Ω·cm2 at 550 °C (SrCo0.95Ta0.05O3-δ for example). What 

also needs to mention is that low electronegativity of dopant is beneficial for improving cathode 

electroactivity by increasing oxygen vacancy content. 

Fourthly, a new robust perovskite cathode has been developed with superior cathode performance by 

co-doping Nb5+ and Ta5+ into SrCoO3-δ oxide. This cathode material exhibits an area specific 

resistance of ~ 0.16 Ω·cm2 and ~ 0.64 Ω·cm2 at 500 °C and 450 °C, respectively. The remarkably 

high cathode activity is likely ascribed to a synergist effect of Nb5+ and Ta5+ that leads to an optimized 

balance between oxygen vacancy content, ionic mobility and surface electron transfer process, which 

have a positive effect on ORR. 

Finally, compositing Ta-doped SrCoO3-δ cathodes with Sm-doped ceria can significantly improve 

cathode tolerance against CO2 at intermediate temperature. The enhanced resistivity against CO2 can 

be attributed to the chemical stability and low adsorption of SDC in exposure to CO2. More 

importantly, this strategy is also effective for other alkaline-earth containing perovskite cathodes, 

such as BSCF, in alleviating deterioration of cathode performance due to CO2 poisoning. 

In summary, the SrCoO3-δ perovskite oxide doped with high fixed valence dopants such as P, Nb, and 

Ta shows promising electroactivity and stability on electrochemically catalyzing oxygen reduction at 

intermediate temperature. The ORR activity enhancement can be achieved by these dopants in two 

main ways:  

 fixed and high valence dopants can stabilize the beneficial cubic perovskite structure due to 

their high valence states;  

 these dopants can also indirectly enhance the ionic conductivity and/or oxygen surface 

exchange processes by optimizing the neighboring Co ions.  

Moreover, a simple compositing strategy has also been developed in this project to significantly 

alleviate the susceptibility of SrCoO3-δ-based perovskite cathodes against CO2 at intermediate 

temperature. 
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 Recommendations 

Based upon the research that has been done, the following recommendations are made for the future 

work. 

Cathode synthesis route needs to be optimised to further improve cathode performance. For the 

conventional solid-state reaction, high temperature (normally >1000 °C) is necessary to facilitate the 

reaction, but high temperature normally results in serious particle agglomeration and losses of catalyst 

surface area. Nevertheless, some novel material synthesis routes, such as in-situ co-assembly1, 

exsolving process2 and solid-state reactive sintering (SSRS)3, could be possible to reduce particle 

sizes of cathodes through lowering the synthesis temperatures, thereby optimising cathodes’ 

microstructures and improving cathode electroactivity towards ORR. 

Designing novel cathode fabrication techniques is also important for IT-SOFC cathode development 

because the fabrication process can significantly affect the cathode microstructures and the sizes of 

TPBs. For example, the traditional high-temperature cathode fabrication process usually limits the 

choice of cathode compositions and microstructures. Therefore, lowering the cathode-fabrication 

temperature by using novel techniques, such as microwave-induced plasma technique4, makes it 

possible for novel microstructures and reduced cathode particle size, which both could further exploit 

the electrocatalysis potential of existing cathodes.  

The synergistic effects of co-doping on cathode electroactivity are still required to investigate for 

dopants in different valence, sizes, and doping contents. Understanding these mechanisms could 

contribute to doping strategies for cathode design, and is significant in understanding how dopants 

work in improving ORR activity.   

Further improving CO2 resistance without sacrificing ORR activity is still challenging, but is highly 

required for IT-SOFC cathodes. Incorporating protective phase into highly active cathode materials 

proves to be effective, but methods to further optimise the interfaces between protective phases and 

cathodes still need to be explored and studied. Besides, understanding the mechanisms behind 

adsorption of CO2 on cathode surface could be very helpful in developing strategies to improve the 

cathode stability in the presence of CO2. 
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