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Abstract 

Exotic pine plantations have replaced large areas of the native forests for timber 

production in the subtropical coastal Australia. To evaluate potential impacts of 

changes in vegetation on local groundwater discharge, we estimated groundwater 

evapotranspiration (ETg) by the pine plantation using diurnal water table fluctuations  

for the dry season of 2012 from August 1st to December 31st. The modified White 

method was used to estimate the ETg, considering the night-time water use by pine 

trees (Tn). Depth-dependent specific yields were also determined both 

experimentally and numerically for estimation of ETg. Night-time water use by pine 

trees was comprehensively investigated using a combination of groundwater level, 

sap flow, tree growth, specific yield, soil matric potential and climatic variables 

measurements. Results reveal a constant average transpiration flux of 0.02 mm hr-1 

at the plot scale from 23:00 to 05:00 during the study period, which verified the 

presence of night-time water use. The total ETg for the period investigated was 259.0 

mm with an accumulated Tn of 64.5 mm, resulting in an error of 25 % on 

accumulated evapotranspiration from the groundwater if night-time water use was 

neglected. The results indicate that the development of commercial pine plantations 

may result in groundwater losses in these areas. It is also recommended that any 

future application of diurnal water table fluctuation based methods investigate the 

validity of the zero night-time water use assumption prior to use.  

Key words 

Pine plantation; diurnal water table fluctuations; White method; depth-dependent 

specific yield; night-time water use  
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Introduction 

Increased attention has been given to the use of diurnal water table fluctuations to 

quantify vegetation evapotranspiration from groundwater (ETg) within the last 

decade. The method’s simplicity and cost-effectiveness have made it a popular tool 

to quantify ETg in phreatophytic ecosystems compared to other more complex 

methods, such as eddy covariance that has its limitations in heterogeneous 

landscape (e.g. riparian corridors) (Drexler et al., 2004).  

White et al. (1932) proposed a method for estimating daily ETg from diurnal water 

table fluctuations assuming constant daily groundwater inflow to the point of 

measurement. In recent years the method has been further developed to account for 

variations in diurnal groundwater inflow and enabling sub-daily estimates of ETg 

(Gribovszki et al. 2008; Loheide, S. P. 2008). Several studies have applied the 

methods in a variety of ecosystems ranging from wetlands (Mazur et al. 2013; 

McLaughlin & Cohen 2013), savannah (Miller et al. 2010) and forests (Vincke & Thiry 

2008) to riparian corridors where most studies have been conducted (Butler Jr. et al. 

2007; Schilling 2007; Lautz 2008; Martinet et al. 2009). One of the main assumptions 

behind the method is that groundwater inflow from the background to the point of 

measurement representative for the inflow at both day and night can be calculated 

from predawn behaviour in the groundwater water table, commonly defined from 

midnight to 4 am when vegetation water use is assumed negligible (Loheide, S.P. et 

al. 2005).   

Night-time water use (Tn) has generally been assumed negligible due to stomata 

closure, as a response to deficiency in photosynthetically active radiation at night 

(Daley & Phillips 2006). Recent advances in technology have enabled more accurate 
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and detailed measurements of vegetation water use and led to an increased 

awareness, that Tn occurs in a range of ecosystems (Caird et al. 2007; Zeppel et al. 

2013).  Tn can be a result of both water up-take used to re-saturate storages in 

vegetation, as well as transpiration. Several studies have reported Tn rates to 

account for 1% to 30 % of daily water use (Snyder et al. 2003; Bucci et al. 2004; 

Daley & Phillips 2006; Dawson et al. 2007; Novick et al. 2009; Zeppel et al. 2010) 

and Daley and Phillips et al. (2006) found that Tn occurred in many different 

vegetation types. 

A range of studies suggest that the dominant controller of Tn is vapour pressure 

deficit (VPD) (Herzog et al. 1998; Benyon 1999; Oren et al. 2001; Fisher et al. 2007; 

Kavanagh et al. 2007; Zeppel et al. 2010), but this can vary between species, as 

other factors such as soil water and nutrient availability, genetics, stomatal density, 

CO2, etc. also play a role (Caird et al. 2007). A study by Daley and Phillips (2006) 

found Tn in red maple to be negligible and contributed this to the species’ drought 

and shade tolerance, highlighting the complexity of inter-species Tn. 

Not accounting for Tn can potentially result in an underestimation of ETg by under 

predicting the inflow to the point of measurement. An example of this can be seen in 

Miller et al. (2010), where measurements of sap flow in a concurrent study (Fisher et 

al. 2007) showed Tn to be 10%-20 % of daily ETg and thereby violated the 

assumption of zero Tn conditions. A similar violation was also discovered for salt 

cedar by Gatewood et al. (1950). To the authors’ knowledge, not one study has 

directly investigated the implications from the assumption o f zero Tn, although it 

could have a significant effect on ETg estimations (e.g. monthly to seasonal time-

scales).    
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Large areas of the native banksia forests have been replaced by exotic pine 

plantations for timber production in the subtropical coastal Australia, which may exert 

important impacts on local groundwater discharge, especially ETg. The diurnal 

groundwater signal was thus investigated for a pine plantation forest situated on a 

shallow groundwater system to: (i) test the application of diurnal water table 

fluctuations to quantify ETg in such a subtropical coastal environment, and (ii) 

quantify the implications of Tn on ETg estimations. To achieve these objectives, a 

combination of high resolution measurements of groundwater level, sap flux density, 

tree diurnal swelling and shrinkage, specific yield, soil matric potential and climatic 

variables was used. 

Materials and Methods 

Site description 

The study site is located in the central part of Bribie Island, a 148 km2 sand barrier 

island in South-East Queensland, Australia (26°59´04´´S, 153°08´16´´E, 10 m above 

sea level). The climate is subtropical with a distinct wet summer and a dry winter. 

The annual rainfall is on average of 1605 ± 279 mm over a period of 40 years with 

77 % of annual rainfall occurring in the wet season (BOM 2013). The mean monthly 

temperature varies from 25.0 °C in January (summer) with an average relative 

humidity of 64% to 15.4°C in July (winter) with an average relative humidity of 59 % 

(BOM 2013). The surrounding native forests were largely dominated by wallum 

banksia (banksia aemula R.Br.), with an average tree height of 7.0 m and stand 

density of 370 trees per hectare. The exotic forest consisted of an 11 year old conifer 

hybrid plantation (Pinus elliottii Engelm var. elliottii x Pinus caribaea Morelet var. 
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hondurensis) with a height of approximately 13.0 m and a stand density of 840 trees 

per hectare.  

A 6 m thick unconfined aquifer is found at the site, separated from a deeper aquifer 

by a 12.5 m thick indurated sand layer with very low permeability (Harbison & Cox 

1998). The unconfined aquifer is situated in a beach ridge system consisting of fine 

to medium Aeolian sand deposits based on USDA soil classification system (Gerakis 

& Baer, 1999), with a homogenous vertical particle size distribution.  

Diurnal water table fluctuation method 

The original white method (White 1932) has performed with reasonable accuracy in 

environments with coarser sediments like sands and gravels (Loheide, S.P. et al. 

2005).  

                                 (Eq. 1) 

Where, Sy is the specific yield (-), r is the rate of water table rise at night-time (e.g. 

00:00 to 04:00) (mm hr-1), and s is the net change in water table level over the 24 hr 

period (mm). 

A slight modification to the original white method was applied considering the night-

time water use, where the net inflow rate to the point of measurement (i.e. well) at 

night was calculated from the day of interest and the following day (Loheide, S.P. et 

al. 2005).  

  24g yET S r s
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Water level monitoring and data processing 

Four monitoring wells were installed in the shallow sandy aquifer in a 50 m by 50 m 

square within the pine plantation forest using a hand auger to a depth of 2.0-2.5 m. 

Each well was constructed from a 50 mm (ID) PVC pipe screened over the entire 

subsurface length to ensure no storage effect from the well structure. Augered sand 

was used to backfill the annular space to 0.1 m below the surface and bentonite was 

put around the well casing to seal from surface water impacts.  Groundwater level 

monitoring was conducted using Level Troll 500 (In situ inc.) with a ventilation cable 

to avoid the measurement uncertainty from barometric corrections. The Level Troll 

500 was set to log at a 15 minute intervals. Water level dips were conducted on a 

monthly basis to quality control the groundwater level data. The logged water level 

data was processed using a median smoothing filter implemented by the MATLAB 

software to remove noise. Measurements from two wells along the diagonal line (i.e. 

W1 and W2) were selected for data analysis, as a complete data-set was available 

from these wells. Differences between the two wells were expected to be minimal, as 

the pine plantation forest was evenly distributed and little variation in topography was 

present at the site. 

Specific yield 

During the selected monitoring period, the water table was positioned within 0.4 m to 

1.2 m from the soil surface. Within this interval specific yield (Sy) cannot be assumed 

constant (Loheide, S.P. et al. 2005). Sy values were thus determined at 0.1 m 

intervals from 0.1 m to 2.0 m below the soil surface using a combination of drainage 

experiments (Cheng et al. 2013) and numerical modelling (Shah & Ross 2009).  
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Two undisturbed soi l columns were excavated from the site using 0.8 m stainless 

steel pipes with an inner diameter of 150 mm. Each column was fully saturated and 

drained simultaneously layer by layer using 8 evenly spaced taps along one side the 

columns (4 replicate runs). Specific yield was then calculated for each layer using 

the drained water volume recorded by an electronic balance (Ohaus Scout-Pro 

balance: 0.01 g resolution). Sy was estimated for the midpoint between two drainage 

levels. 

HYDRUS 1D software (Simunek et al., 2005) was also used to simulate drainage 

using in-situ measurements of layered soil water retention characteristics (i.e. 0.2 m 

intervals) fitted with the van Genuchten-Mualem constitutive relationship (Mualem, 

1976; M. Th. van Genuchten, 1980). The initial water table depth was set at 0.1 m 

above the bottom of the column and the initial pressure distribution for all simulations 

was set as hydrostatic. In all eight simulations, the upper boundary condition was set 

as a zero flux boundary, while a gravitational drainage boundary condition (i.e. 

seepage) was defined at the bottom of the soil column. Each simulation was run until 

the model reached a steady state.  

Estimated Sy values from both drainage experiments and numerical modelling are 

presented in Fig. 1, where D1 and D2 represent a local Sy measurement close to W1 

and W2, respectively. 

Fig.1 

The drainage experiments were only able to estimate Sy down to 0.8 m due to the in-

situ sampling process and high water table conditions. Sy values from drainage 

experiments were thus used from 0.4 m to 0.8 m and numerical modelling estimates 

from 0.8 m to 2.0 m.  As seen in Fig. 1, the simulated values of Sy corresponded well 
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with the experimentally measured values, especially at the 0.7 m to 0.8 m interval. 

The simulated Sy values were therefore expected to be able to represent actual Sy 

values at depths greater than 0.8 m. Sy for finer sediments is usually time 

dependent, but in coarser grained sediments, like the sandy sediment on Bribie 

Island, it is generally expected  less dependent on time (Healy & Cook 2002).  

Sap flux density measurements 

Sap flux density (SFD) was measured using the commercially available heat ratio 

method (HRM) sap flow sensors (ICT International Pty Ltd, Armidale, Australia). A 

total of 6 trees were instrumented with HRM at  breast height within a 50 m x 50 m 

plot with two HRM sensors per tree (i.e. North and South cardinal direction), each of 

these having 2 measurement points located at 12.5 mm and 27.5 mm into the 

sapwood given a total 24 measurement points. Measurements from two of the six 

trees closest to W1 and W2 (i.e. T1 and T2) were selected for further analysis in this 

study. Two sensors at two depths per tree have been shown to give a reasonable 

result, as compared to a benchmark of 24 measurement points in this particular 

conifer species (Guyot et al. 2015). The external temperature effect on sensors was 

limited under the canopy cover, but sensors were covered with foam insulating as a 

precaution. Measurements were corrected for the wounding effect following Burgess 

et al. (2001) based on the wound width determined from dummy probes installed 

simultaneously with SFD measurements. Wound width was determined from colour 

distinction and was measured after one month, six months and twelve months. The  

average wound width was 2.5 ± 0.3 mm and did not seem to increase over the study 

period after its initial stabilisation (i.e. one month). It was therefore assumed constant 

over the study period and between trees, although small variations between dummy 
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probes were observed. Measurements of the gravimetric sapwood moisture content 

were conducted during wet conditions (i.e. February 2012) and during the transition 

to dry conditions (i.e. November 2012). Each time a total of 10 samples was 

collected. Gravimetric sapwood moisture content was found not to vary significantly 

between dry and wet conditions with an average value of 0.98 ± 0.18 kgw ater kgdry-

wood
-1. A constant value of 0.98 kgw ater kgdry-wood

-1 was used with a dry wood density of 

520 ± 8 kg m-3 for correction following Vandegehuchte & Steppe (2012c). 

Furthermore, each measurement probe was corrected for offset (i.e. probe 

misalignment) by examining the SFD at night when VPD and wind speed were close 

to zero. Zeppel et al. (2010) found no significant difference in offset correction when 

using this method compared to cutting the sapwood below and above the 

measurement probes.  

Estimating tree stand transpiration flux 

To upscale the whole tree transpiration flux to stand  transpiration flux (Tflux), a linear 

relationship (R2=0.92, p=0.03) between tree trunk diameter at breast height (DBH) 

and sapwood area (Asapflow) in the pine plantation was established at the plot based 

on 11 cut stem samples (Fig. 2). The SFD measurements were upscaled to a 50 m x 

50 m plot in this study. 

Fig.2 

Based on the developed linear relationship between DBH (cm) and sapwood area 

(cm2) in Fig. 2, estimates of Tf lux (mm hr-1) can be calculated from:  

 


  
1

9.0 38.6
n

sapwood i

i

A DBH     (Eq.2) 
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410

avg sapwood

flux

plot

SFD A
T

A
     (Eq.3) 

where n is the number of trees within the 50 m x 50 m plot, SFDavg is the average 

area-weighted SFD (mm hr-1) from the 6 monitored trees based on the positions of 

the radial measurement points, and Aplot is the area of the study plot (m2).  

Tree swelling and shrinkage  

Point dendrometres were installed on the trunk at a height of 1.0 m above soil 

surface on the western tree side (Zweifel et al. 2006), so as to prevent from affecting 

sap flux measurements on the north and south sides. Stainless steel threaded rods 

anchored the instrument into the centre of the tree, while a temperature and 

insensitive carbon-fibre frame held the sensing rod against the tree at a 

perpendicular angle following Zweifel & Zeugin (2008). A major portion (i.e. 3 - 6 

mm) of the outermost bark was removed with a rasp prior to installation, to minimise 

abiotic changes in diameter. A minimal layer of phloem (i.e. 1 - 2 mm) was retained 

to prevent any wound responses in the tree. Stem radius was measured at 10 

minute intervals using a Campbell Science CR800 logger. The high-resolution point 

dendrometres (Zweifel Consulting, ZN-11-T-WP) had a temperature sensitivity of 

less than 0.28 micrometres per degree Celsius and a minimum resolution of 0.4 

micrometres (Zweifel et al. 2006; Zweifel and Zeugin 2008). In addition to the robust, 

weather-resistant design of mounting hardware and dendrometre, a custom built two 

tiered plastic shelter was installed to shield from the effects of solar heating or 

rainwater wetting, while still enabling air circulation. 
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Soil matric potential 

To obtain water content conditions in the unsaturated zone, soil matric potentials 

were monitored at depths of 0.2, 0.4, 0.6, and 0.8 cm by pF meters (GeoPrecision 

GmbH, Karlsruhe, Germany). Two soil matric potential profiles were installed 0.5 m 

away from the tree trunks of T1 and T2, respectively. 

Micrometeorology  

At the 50 m by 50 m plot, micrometeorological data, including air temperature and 

relative humidity (HMP155 sensor, Vaisala, Finland), net radiation (Rn) (CNR4 net 

radiometer, Kipp & Zonen, Delft, The Netherlands), wind speed and direction (03002 

wind sentry set, RM Young, USA) were continuously measured at 1 min intervals 

and stored at 15 min intervals using a automatically recording datalogger (CR3000, 

Campbell Scientific, USA). Measurements were conducted 2 m above the forest 

canopy using a 15 m mast (Clark Mast, Belgium). Daily vapour pressure deficit 

(VPD) was calculated from air temperature and relative humidity, and reference 

evapotranspiration (ET0) was estimated using the FAO Penman–Monteith equation 

(Allen et al., 1998). 

Results 

Seasonal variability 

The study period covered the dry season of 2012 from August 1st to December 31st. 

Rainfall events did occur during the dry season with the largest event of 52 mm on 

November 18th (Figure 3a).  
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Fig.3 

The atmospheric forcing on evapotranspiration from Rn and VPD strengthened from 

winter to summer (Figure 3b). A small data gap was present in the atmospheric 

dataset from the end of November to early December. Generally, the depth to 

groundwater table dropped from approximately 0.4 m to 1.2 m below the surface 

over the study period. However, obvious recharge from rainfall events occurring in 

September, October and November can be observed in the groundwater level signal, 

with the largest rise in November corresponding to the largest rainfall event on 

November 18th. The rainfall events in December were not detected in the 

groundwater level signal (Figure 3c). Days with more than 5 mm rise in groundwater 

level abruptly after rainfall events were excluded from the data analysis. 

Soil matric potentials at 0.2 m and 0.4 m depths continued to increase from 0 to 

1000 KPa over the study period, which indicated that the water content of upper soil 

layers declined from near-saturated to super dry conditions due to increasing soil 

evaporation and tree water uptake. However, decreases in soil matric potentials can 

also been seen from Figure 3c, following soil water replenishment by scattered 

rainfall events. Soil layers at 0.6 m and 0.8 m depths were saturated before 

November due to the high water table, but they stared to get drier as the water table 

dropped 1.0 m below the surface. 

Diurnal water table signal 

A clear diurnal signal was detected in both W1 and W2 (Figure 4). The time of 

decline in water table elevation corresponded with increase in SFD. Similarly, a rise 

in water table elevation in the afternoon was seen when SFD reduced. This 
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suggested that the detected diurnal signal was a result of evapotranspiration from 

the groundwater. The magnitude of the diurnal signal between the two wells was 

slightly different, but small variations can be expected, as they both represented a 

local measurement of the unconfined aquifer. 

Fig.4 

Night-time observations 

Night-time SFD varied between the presented days (Fig. 4) and was close to zero on 

the 3rd and 5th of August. However, T1 and T2 exhibited values that were close to 

zero at different times during those two days. On the other hand, SFD was found to 

be 20 to 40 mm hr-1 for the remaining days in which the SFD was not zero, which 

verified the presence of night-time water use, as it was considerably higher than the 

SFD equipment error up to 5 mm hr-1. Measurements of diurnal shrinking and 

swelling of the tree trunk (Fig. 5) also verified the presence of Tn. Swelling occurred 

in the very late afternoon near sunset for both T1 and T2 when the evaporative 

demand decreased considerably (Fig. 5a and Fig. 5b). The swelling continued 

throughout the night and was replaced by shrinkage following an increase in 

evapotranspiration demand during the daylight hours. A time lag of approximately 2 

hours from sunrise to shrinkage was found for both T1 and T2, which indicated that 

shrinkage started to occur at relatively higher evapotranspiration demands. The 

diurnal signal of SFD and cumulative radial growth of T1 and T2 clearly suggested 

that night-time water use happened in this particular conifer species. This can be a 

result of water storage in the tree trunk or transpiration.  

Fig.5 
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Upscaled measurements of SFD from August to December showed a constant 

average transpiration flux (Tflux) of 0.02 mm hr-1 at the plot scale from 23:00 to 05:00 

with the lowest Tflux occurring between 00:00 and 04:00 (Fig.6). This was in line with 

the original recommended time frame where White (1932) assumed Tn to be zero. 

For the purpose of this study an average Tflux from 00:00 to 04:00 for each day was 

used to test the implications from assuming Tn to be zero during this period of time. 

Fig.6 

Estimation of ETg 

The modified White method was applied from August 1st to December 31st except on 

days where recharge from rainfall was occurring. Daily ETg fluxes varied between 

0.3 and 4.6 mm day-1 and ETg was found to gradually decrease with the increasing 

depth to the groundwater table (Fig. 7). The lowest ETg estimate was found in 

December where groundwater level was at its lowest value (Fig. 3c), even though 

the highest values of Rn and VPD were observed in December. 

Neglecting Tn can result in underestimation of daily ETg, as r in reality will be larger 

than that when the night-time water use is present. Based on the average hourly Tflux 

from 00:00 to 04:00 for each day, the daily error on ETg from neglecting Tn varied 

from 0.14 mm day-1 to 1.28 mm day-1 (Fig.7) with an average error of 0.50 mm day-1. 

The total ETg for the period investigated was 259.0 mm with an accumulated Tn of 

64.5 mm, resulting in an error of 25%.  

Fig.7 
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Comparing daily ETg with daily values of Tflux from the site revealed a trend of ETg 

underestimating Tflux when Tn was not taken into account (Fig. 8a), except for 

shallow groundwater depths of 0.4 m to 0.6 m. When Tn was taken into account, a 

more evenly distributed relationship between ETg and Tflux was achieved (Fig. 8b). A 

strong linear relationship between ETg and Tflux was though not expected, as the 

trees water source could vary over time depending on soil moisture in the 

unsaturated zone.     

Fig.8 

Discussion 

An apparent diurnal signal was observed in the shallow g roundwater table below the 

pine plantation forest. Only Vincke and Theiry (2008) have discovered a similar 

signal for Pinus sylvestris L. in Belgium. The winter and early spring generally 

showed higher values of ETg, although the highest Rn and VPD were recorded in the 

summer, indicating that the depth to the groundwater table played an important role 

in governing evapotranspiration. This trend could potentially be a result of estimation 

uncertainties of Sy, as it is known to introduce large errors in ETg estimates if not 

determined properly (Loheide, S.P. et al. 2005). As depth-dependent Sy was 

determined vertically from in-situ drainage experiments, it was not expected to affect 

the ETg estimation at different depths to groundwater table.  

The progressive decline in ETg with the increasing depth to the groundwater table 

also suggested that the pine root zone was restricted to approximately the first meter 

of the soil column under shallow groundwater conditions. Moreover, the majority of 

active roots were expected to be in the top 0.6 m of the soil column, as the soil 

matric potentials at depths of 0.6 m and 0.8 m (Fig. 3c) were still around 1 kPa in 
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December, indicating that the water content was above the field capacity. A similar 

extinction coefficient of 1.0 m below the soil surface was also suggested for pine 

trees and native vegetation on Bribie Island (Harbison & Cox 1998; Fan et al, 2014). 

Tn was found to occur in this particular pine species, and assuming it to be zero at 

night-time can potentially introduce an error of 25% in the total ETg estimation over 

the study period. The highest daily error was found to be 1.24 mm day-1. It is 

important to note that night-time water use may not only be a case of groundwater 

use, but could also be from soil water. The error was therefore considered as a 

potential maximum. In this case, it was expected to primarily be a case of 

groundwater use, as limited recharge occurred during the study period (Fig. 3c). 

Therefore, groundwater will be the primary source of water use by pine forests 

during the driest periods. The results indicate that the development of the 

commercial pine plantation may result in groundwater losses in these areas. 

Previous studies have shown that Tn varied between species (Caird et al. 2007) and 

assuming it to be negligible without prior investigation can lead to significant 

underestimation of daily water use. Tn will most likely vary depending on climate 

zones, vegetation types and water availability. The experienced error at this site is 

likely to be different between sites and species. Therefore, a local and species 

specific knowledge of night-time water use is recommended prior to applying any 

diurnal water table methods. The sap flow technique can be useful tool to validate 

the assumption of zero night-time water use. 

An absolute comparison between Tn and Tflux was not possible, but the relationship 

between ETg +Tn and Tflux showed that ETg +Tn overestimated Tflux during high water 

table conditions. This was expected as soil evaporation and transpiration from 
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shallower scrubs was not included in the Tflux, whereas it was less likely to occur at 

deeper water table conditions. The overestimation of Tflux under dry conditions can 

be a result of the trees using water from the unsaturated zone instead of 

groundwater following the smaller rainfall events occurring in December. These 

rainfall events have not been detected in the groundwater signal, as the available 

water storage indicated by the high antecedent soil matric potentials (100 - 1000 

KPa), hence the unsaturated zone had large capacity to absorb all infiltrated rainfall. 

Plants’ capability of redistribution of soil water from wetter soil areas (e.g. capillary 

fringe or groundwater) to drier parts through hydraulic lift also has to be taken into 

account (Warren et al. 2007; Domec et al. 2010). This could support the higher Tflux 

during conditions with deeper groundwater tables, as redistribution of groundwater to 

the unsaturated zone will affect the calculation of the night-time slope similar to Tn. 

Although the depth-dependent Sy was properly determined in this study, Sy can be 

still dependent on time, which may also result in uncertainty in ETg estimates.  

Conclusions 

The modified White Method with Tn correction was applied for the dry season of 

2012 in the subtropical coastal climate at Bribie Island. Looking at the overall 

potential of the diurnal water table method in this environment, it is clear that it is 

capable of capturing the dynamics of ETg. However, the subtropical coastal 

environment experiences a distinct wet season normally starting in early summer 

and continuing through spring, which limits the application of the White method, as 

groundwater recharge will conceal the diurnal water table signal for the majority of 

days (i.e. only possible to apply on 36% of the days in 2012). 
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Neglecting night-time tree water use was found to introduce an error of 25% on the 

estimate of accumulated evapotranspiration from groundwater when using a 

modification of the original diurnal water table fluctuation method. It is recommended 

that future application of any ETg methods based on diurnal water table fluctuations 

assuming zero night-time water use investigates the validity of this assumption prior 

to use.  

Moreover, the spatial representation is often based on a few discrete measurements 

(i.e. limited number of wells). As root distribution can vary significantly spatially, this 

method is more likely to be used in areas where a multiple-well network is available 

as part of a groundwater monitoring system to inform water balance models.   
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