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Abstract 

The inflation and propagation of a localized instability in elastic tubes shares the same mathematical features with a 
range of other localization problems, including buckling propagation in long metal tubes under external pressure. 
Recent research into origami-inspired tubular geometries has suggested that geometric texturing is able to 
significantly improve metal pipe resistance to propagation buckling failures, with an increase in critical and 
propagation pressures. This paper aims to investigate whether texturing generates a similar improvement in 
hyperelastic tubes under axial loading and internal pressure, with elastomer origami structures of recent interest for 
use as soft actuators and robots. A new fabrication method with 3D printed moulds in a dip process was first 
developed to enable fabrication of textured tube samples. An experimental study was then conducted on inflated 
smooth and textured latex tubes, with instability formation observed at a 1ms resolution. Comparative numerical 
models with a Mooney-Rivlin material were able to provide a good prediction of experimentally-observed 
behaviours up to and slightly past the critical pressure and bulge formation. A parametric numerical study is then 
conducted to show that the number of divisions in the axial direction and circumferential direction have no and 
modest effects on critical pressure, respectively. The experimental and numerical investigations both showed that 
the critical pressure of the textured tube was increased compared to the smooth tube, however the degree of 
increase was a modest 8% and so unlikely to be of significant practical benefit. This work can provide reference and 
guidelines for future investigations of tubular inflatable origami structures. 
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1. Introduction 

1.1 Inflation of Elastic Tubes 

Elastic tube inflation shares the same mathematical and mechanical features as a variety of other strain localization 

phenomena in engineering structures and materials, such as propagating buckling in long metal tubes under external 

pressure [1], propagating necks [2], stress-induced phase transformation [3], and deformation of aneurysms in 

human arteries [4]. The inflation of stressed cylindrical tubes is therefore a classic subject of mechanics study, as it 

provides a good illustration of the phenomenon of initiation and propagation of a localized instability. The instability 

of rubber tubes and balloons under fluid pressure was first described using a linear material model by Mallock [5]. 

Subsequent development of finite-elasticity theory [6-8] enabled Kydoniefs and Spencer [9] to obtain the exact 

solution for an inflated membrane tube using a Mooney-Rivlin model for non-linear rubber material behaviour.  

Some studies are devoted to the understanding of tube behaviour under axial loading [10], a description and  strain 

energy function for tube kink-wave type bulging [11], and the bifurcation of the uniform state of thin-walled and 

thick-walled tubes [12-13]. Chater and Hutchinson [14] presented two examples to illustrate the propagation of 

bulges and buckles under quasi-static, steady-state conditions, which was used to calculate the propagation pressure 

of air-inflated rubber tubes [15] and to study the effect of geometric imperfections and material properties on the 

initiation and propagation of the localized bulging instability [16]. More recent studies of tube instability and 

localized bulging include application of the Gent rubber model to analyse deformation [17-18], experimental and 

numerical study of the finite deformation of rubber-like material tubes [19-20], the use of a bifurcation and an 

energy stability condition to determine the bulge initiation pressure and limit pressure [21], and experimental 
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studies using a high speed camera and data acquisition (DAQ) system [22]. The effect of an initial extension ratio on 

snap-through instability in tubes was studied in [23], which may occur in elastomeric actuators and artificial muscles. 

1.2 Origami-Inspired Tubular and Elastomeric Structures 

In recent years origami folding, a traditional artistic form of paper folding, has been of increasing interest to 

mathematicians and engineers who are finding that traditional geometry and folding can be readily applied to the 

development of new structures and devices. Numerous works have shown that origami-inspired tubular structures 

can possess favourable structural behaviours. Origami crash boxes have been shown to have up to a 57% increase in 

energy absorption over an equivalent square thin-walled tube [24-25]. Tubular origami for deployable membrane 

space structures have been investigated and shown to have favourable packaging efficiency and deployment 

mechanisms [26-27]. Foundational origami science literature proposed the pseudo-cylindrical concave polyhedral  

(PCCP) shell, which was developed following observations that the post-buckling shape of thin cylindrical shell under 

axial compression, gave a polyhedral surface that corresponded to a Yoshimura origami pattern [28]. A recent review 

of further elastic instability and buckling-inspired applications is given in [29]. The PCCP shell was shown to have a 

higher circumferential bending rigidity compared with a cylindrical shell [28]. This was applied to practical benefit to 

develop a metal textured subsea pipeline with an improved propagation buckling resistance. Compared to a 

cylindrical tube, the textured pipeline has a 76% increase in initiation pressure, a 127% increase in propagation 

pressure, and reduced sensitivity to imperfections [30-31].  

The majority of origami-inspired engineering research has focused on rigid geometries and materials, which can be 

folded with minimal deformation of component panels [32-33]. Investigations of elastomeric materials used for 

origami-inspired applications are relatively few, although increasing because of interest in self-folding and 

programmable sheets [34].  The potential and limitations of dielectric elastomers for such applications has been 

investigated [35-36]. Highly stretchable elastomers have been combined with a non-stretchable but easily bendable 

sheet and shown to be feasible and useful in soft actuators, machines, and robots [37]. In these experiments the 

elastomer origami actuators show a range of complex motions on pressurization, including extension, contraction, 

bending, and extension plus torsion. 

This study is motivated by the desire to investigate how behaviours of smooth cylindrical inflated hyperelastic tubes 

compare to origami-inspired textured tube geometries. It is set out as follows. Section 2 first develops a geometric 

definition and fabrication method for hyperelastic smooth and textured tubes. Section 3 presents an experimental 

investigation of instabilities in the inflated tubes and a material test for their constituent latex material. Comparative 

numerical models are then developed in Section 4, with finite element models developed to simulate the localization 

phenomenon using material constants obtained by nonlinear fitting method. Section 5 presents a discussion of the 

observed instability behaviour and undertakes a parametric numerical analysis of the textured tube so as to 

understand which parameters affect critical pressure. The present work is therefore able to act as a reference for the 

future application of tubular inflatable origami structures.  

2. Geometry and Manufacturing of textured tubes 

2.1. Geometry of the textured tube 

A parametric definition for a closed, smooth cylindrical tube requires two parameters: centreline radius R and tube 

length L, as shown in Fig. 1a. A textured tube requires a number of extra parameters to be defined, for example side 

lengths and edge angles. However, as the pattern is a developable and rigid-foldable origami pattern, there is a 

coupling between these additional parameters and those already defined. Several prior studies have already 

explored this geometric dependency in depth and this paper shall adopt the parameterisation for an Arc pattern, 

developed by the second author in [32]. The general form of the Arc pattern, shown in Fig. 1b, requires six 

independent parameters to be defined. These can be specified from any convenient parameters including volumetric, 

crease pattern, or angular parameters. The textured tube of interest in the present paper is a restricted 

configuration of the Arc pattern, in which the pattern is closed and one side length of the component quadrilateral 

panels is approximately zero, i.e. reduced to triangulated panels as shown in Fig. 1c. A closed textured tube can 

therefore be defined with four parameters: centreline radius R, tube length L, the number of divisions along the axial 

direction m, and the number of divisions in the circumferential direction, n. The two parameters m and n have been 

marked in circumferential and axial directions in Fig. 1b and 1c, respectively. 
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(a)   (b)   (c) 

Fig. 1. Parametric definition of (a) smooth cylindrical tube, (b) general form of Arc pattern, and (c) textured tube.  

2.2. Design and manufacture of hyperelastic textured tubes 

A new manufacturing process was developed in order to fabricate hyperelastic textured tube specimens for 

subsequent experimental investigation. The design and fabrication process is shown schematically in Fig. 2 and 

consists of three stages. First, the above parametrisation was implemented in MATLAB and used to generate the 

textured and smooth tube surfaces. Second, these surfaces were used to create an internal tube mould made of ABS 

material and 3D printed on the EDEN260V 3D printer from company Objet Geometries. This machine had a 

600x600x1600 dpi print resolution, with printed moulds shown in Fig. 3a. Finally, the moulds were used to make the 

hyperelastic tubes via a dip process at the Tianjin Rubber Industry Institute. The dip process simply involves dipping 

the moulds into a latex mixture, drying the coated moulds in an environmentally-controlled chamber, and 

demoulding, washing, and  drying once cured. Samples of the latex material were made with the same process and 

at the same time.  

Geometry design Moulds Specimens
3D printing

Smooth mould
Textured mould

Dip process

Smooth tubes
Textured tubes

Latex piece

(1) (2) (3)

 

Fig. 2. Manufacturing process of smooth and textured latex tubes. 

The manufactured tubes are shown in Fig. 3b. Both tubes were specified with R=5mm and L=200mm (L/R=40). The 

textured tube additionally had m = 40 and n = 9. Note that the above geometric parameterisation does not include 

material thickness, however, the thickness of both physical tubes were measured by thickness gauge to be 0.97 mm 

(R/t=5.15). The tube thickness was measured in two directions perpendicular to the tube axis by electronic digital 

display micrometer, and at three locations along the tube. The variation in thickness between locations was 

approximately 0.02mm. 

Smooth mould  Smooth tube  

Textured mould  Textured tube  

9 
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(a)                                                                                                                                 (b) 

Fig. 3. (a) 3D printed moulds and (b) manufactured smooth and textured latex tubes. 

3. Experimental study 

3.1. Experimental procedure 

An experimental investigation was conducted to investigate the instability of hyperelastic cylindrical tubes under 

axial loading and quasi-static inflation of compressed air. The experimental procedure is shown schematically in Fig. 

4. Axial load of 1.44N was applied with a constant hanging weight. This is followed by inflation of the tube at a 

constant rate using a pressure regulator and a flow valve. A high frequency pressure sensor was used to measure 

internal tube pressure, with the transducer output recorded synchronously with the image acquisition system. The 

image acquisition system includes a high speed camera, a cold light source, and a black backdrop, which enables 

continuous observation of the tube’s configuration as localized deformation initiates and propagates. In this study, 

the video is recorded at the rate of 1000 frames per second with suitable resolution (192x656 pixels). Finally, the 

Data Acquisition System was used to collect and store data at the 1ms frequency. 

The two tubes described in Section 2 were cyclically stretched to achieve the required material stability. The inflation 

system was then calibrated and used to inflate the two specimens. The inflation rate was controlled by a manual 

speed regulator and was maintained at a relatively low and constant speed during the experiments. As air was 

pumped into the tube, a bulge formed at some location along the tube with a corresponding sudden pressure drop 

at a critical value, Pcr. With continued inflation, the local bulge grew to a maximum value of radius and then started 

to gradually propagate along the length while the pressure stayed at a constant value, Pp. The test was terminated 

after this constant pressure was reached and before the local bulge reached either end of the specimen. 

F

Compressed air

Pressure sensor

Hyperelastic tube

High speed camera

Weight Computer

DAQ 

Bulge

Regulator 

 

Fig. 4. Schematic diagram of experimental setup. 

3.2. Experimental results 

Bulge formation and propagation occurred in both tube types as shown in Fig. 5. Frame numbers recorded in the 

figure correspond directly to recorded time shown on the bottom of the figure in milliseconds, with minus frame 

values due to the method of loop recording in the high speed camera. The position of the bulge was different 

between tube types, likely due to the effects of material and geometric imperfections. The states of the bulge 

formation in the smooth tube were consistent with that observed previously, that is the tube diameter increases 

uniformly until the critical pressure is reached, after which the diameter continues to grow at the bulge location but 

reduces elsewhere along the tube. Observation of the states of the textured tube shows that it follows the same 

process as the smooth tube. This is considered in depth as follows. 
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                      ①                  ②                ③                ④               ⑤                         ①                 ②                 ③                 ④               ⑤ 

(a)                                                                                                                          (b) 

Fig. 5. Bulge formation of the inflated tubes in the presence of axial loading. (a) Smooth tubes and (b) textured tubes. 

An image of the localized instability obtained by the high speed camera is shown in Fig. 6. The bulge is assumed to be 

symmetric and the location along the tube axis at the widest point of the bulge is termed point O. The initial 

diameter of the tube is D=2R=10mm and the diameter of bulge at point O is defined as d which is shown in Fig. 6. 

The radial displacement of the bulge then defined as Dis and calculated as (d-Dinitial)/2, where Dinitial is diameter of the 

tube after axial load is applied but prior to inflation. The high contrast between the white tube and the black 

background enabled MATLAB’s image processing tools to be used to quantify the radial displacement for every 

captured image, i.e. in 1ms increments. For processing, each row of pixels was scanned to obtain a first and last 

‘white’ pixel location. The largest difference between pixel locations was taken as the bulge diameter and converted 

from pixels to mm by using a conversion factor calculated from the known width of the suspended weight at the 

bottom end of the tube specimens. This method was also used to calculate Dinitial as 9.68mm. 

Axial Force Internal pressure O Diameter of tubed  

Fig. 6. Loading diagram and deformation of the bulge. 

The measured pressure and displacement values are plotted against time in Fig. 7, with the entire test period shown 

in Fig. 7a and the local 200ms time period for bulge formation shown in Fig. 7b. Nine sequential images of the bulge 

formation and corresponding bulge profiles are shown in Fig. 8. They correspond to 20ms increments denoted with 

blue star marks in Fig. 7. The critical pressure was found to be 0.0625 MPa at time 14989 ms. The bulging period 

then followed from 15420 ms to 15580 ms, with the diameter of the tube increasing by 156.6% at the bulge and 

decreasing by 41.9% in the section away from the bulge. Fig. 8b shows that the bulging speed, i.e. rate of radial 

displacement is nonlinear, and that the sequential profiles all intersect at one point. This implies that there is a 

common solution during formation of the bulge. 
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(a)                                                                                                                                   (b) 

Fig. 7. Pressure-time history of the smooth tube. (a) The entire test and (b) the region of the instability. 
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Fig. 8. Experimental smooth tube bulge configurations (top) and profiles (bottom) under different pressures. 

A similar image processing was conducted on the textured tube sample, with results shown in Fig. 9 and Fig. 10. The 

critical pressure was found to be 0.0679 MPa at time 13077 ms. The bulge formation follows in the period of 13420 

ms to 13580 ms, with the diameter of the tube increasing by 180% at the bulge location and decreasing by 49.6% in 

the section away from the bulge. The initial volume of the textured tube is slightly less than that of the cylindrical 

tube, hence under similar inflation rate for both, less time is needed to reach initiation in the textured tube. Fig. 10 

shows sequential images and bulge profiles at 20 ms increments corresponding to blue points marked on Fig. 9. The 

nonlinear bulging speed is again exhibited along with sequential bulge profiles with a single common intersection 

point. The pressure and radial displacement relationship for both tubes are plotted in Fig. 11. Note that the pixelated 



7 

appearance of the plot is due to the pixel measure method used to obtain displacement, rather than from graph 

quality. 
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(a)                                                                                                                                (b) 

Fig. 9. Pressure-time history of the textured tube. (a) The entire test and (b) the region of the instability. 
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Fig. 10. Experimental textured tube bulge configurations (top) and profiles (bottom) under different pressures. 
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Fig. 11. Measured experimental normalized pressure-displacement curves of smooth and textured tubes. 

3.3. Material tensile tests 

A flat piece of latex was made with the same process and at the same time as the tube samples. One of the 

dumbbell-shaped latex specimens, shown in Fig. 12a, was cut from this sheet and tested under tensile loading as 

shown in Fig. 12c. Samples were marked with two black dots at a spacing of 25 mm. The stretch ratio was measured 

with a non-contact method and the ~ E curves were obtained as shown in Fig. 14a. In these curves, E  is /F A , 

where F is axial loading and A was the initial cross sectional area. The extension ratio is ( ) /   L L L , 

where L is the change in length  and L  is the initial length. Five samples were tested and the average ~ E

curve is obtained as shown in Fig. 14a. 

 25mm

 6mm 

                                                     

                                             (a)                                                         (b)                                                                             (c) 

Fig. 12. Latex material tests. (a) Dumbbell-shaped specimen marked with dots, (b) pneumatic fixture used to clamp sample, and (c) tensile test. 

4. Numerical analysis 

4.1. Finite element models  

A comparative numerical model was developed to simulate the behaviour observed in experiments and understand 

the nonlinear behaviour of the smooth and textured tubes. Finite element models were thus developed with 

commercial software ABAQUS. Models used S4R shell elements for discretization and a Riks solution method. 

Material properties are as discussed in the next section. Boundary conditions were applied at both ends of the tube. 

At one end, all nodal displacements were fixed. At the other end, all nodal displacements except for the axial degree 

of freedom were fixed. A constant weight (1.44 N) was maintained at this end before and during inflation. A mesh-

sensitivity analysis was conducted to obtain a converged mesh size with 6138 nodes and 6107 elements in smooth 

model, and 7992 nodes and 8424 elements in the textured model. The two models are shown in Fig. 13, with the 

same geometric features as discussed previously: initial length L = 200 mm, initial thickness t = 0.97 mm, initial radius 

R = 5 mm and for the textured tube m = 40 and n = 9. 



9 

        

(a)                                                                                                                  (b) 

Fig. 13. Finite element models of hyperelastic (a) smooth and (b) textured tubes. 

4.2. Material properties 

As discussed in Section 2, both tubes were manufactured using a dipping process with commercial natural latex. This 

material was assumed to be isotropic, homogeneous, incompressible and hyperelastic. According to the principle of 

complete recoverability after deformation, the strain energy density function can be described by the principal 

stretches 1 , 2 and 3 or by the strain invariants 1I , 2I  and 3I , which is  

1 2 3 1 2 3( , , ) ( , , )W W W I I I     (1) 

where W  is the strain-energy function that is usually used to describe the hyperelastic material. The relationship 

between the principal stretches and the strain invariants is given by 

2 2 2

1 1 2 3I      , 
2 2 2

2 1 2 2 3 1 3( ) ( ) ( )I         , 
2

3 1 2 3( )I     (2) 

Because of the very small volume changes of rubber-like materials, the incompressibility is usually taken into 

consideration, so we obtain 1 2 3 1    . 

There are several models developed to describe the mechanical behaviour of elastomers and soft tissues under large 

strains such as Neo-Hookean [38], Mooney-Rivlin [39], Ogden [40], and Gent [18]. We will select the model proposed 

by Mooney and Rivlin as it is widely used in numerical analysis and in the studies of finite deformation of 

hyperelastic materials. The Mooney-Rivlin model contains two material constants 1C and 2C  that are obtained from 

the material stress-strain behaviour. 

1 1 2 2( 3) ( 3)W C I C I     (3) 

The relationship between the engineering stress E  and extension ratio   in the tensile direction can be derived 

as 
3

2 1

3

2( )( 1)
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(a)                                                                                                                 (b) 

Fig. 14. (a) Material testing results of axial load as a function of extension ratio. (b) Material constants obtained by nonlinear fitting method. 

The material constants were fitted with the average data from the material test experiments, shown in Fig. 14a, and 

the theoretical relation (4). The fitted curve is shown in Fig. 14b, with the strain energy function (3) and nonlinear 

fitting method was used to obtain material parameters. The constants are obtained as 1C  = 0.10313 MPa, 2C  = 

0.08878 MPa, and shear modulus μ is 2 ( 1C + 2C ). 

4.3. Numerical simulation of experimental tubes 

Shown in Fig. 15 is the relationship between internal pressure and the maximum radial displacement as obtained 

from numerical models. Numerical models both exhibit the bulge formation and propagation as expected, with 

critical pressures of 0.0615 MPa and 0.0667 MPa for smooth and textured tubes, respectively. The stages of bulge 

formation and measured Von Mises stress are shown in Fig. 16. During the uniform deformations from configuration 

① to ②, the stress distribution is uniform in the smooth tube but non-uniform in the textured tube. 
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Fig. 15. The normalized pressure-displacement curves of numerical smooth and textured tubes. 

 

(a)                                           ①                                    ②                                   ③                                          ④ 

 

(b)                                           ①                                    ②                                   ③                                          ④ 

Fig. 16. Sequence of deformed configurations for (a) smooth tube and (b) textured tube. 

5. Discussion  

5.1. Comparison of numerical and experimental results 

The experimental and numerical results show that the localization occurred in both types of hyperelastic tubes. With 

inflation, the internal pressure reaches a limit point and the tube stiffness decreases, after which the internal 

pressure decreases sharply as the bulging forms and the diameter of unloading section decreases. Values from 

numerical and experimental results are summarised in Table 1 and Fig. 17a and b. There is good agreement for both 

critical pressure and the corresponding maximum change of radial displacement until the onset of bulging, with the 
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difference between experimental and numerical critical pressures as 1.6% for smooth tube, and 1.8% for textured 

tube. The critical pressure of the textured tube is seen to be higher than the smooth tube, but only by a modest 8%.  

This a much smaller effect to that observed previously for comparisons of elastic-plastic smooth and textured tubes 

[30-31]. This can be understood with observation of the central cross section configurations of smooth and textured 

tubes, shown in Fig. 17c and d.  Initial and critical configurations correspond to the indicated pressure points in Fig. 

17a. The reduced effect of the textured tube is attributed to the large radial deformation that the hyperelastic 

textured tube undergoes prior to instability formation. This acts to reduce the dihedral angles θ of adjacent plates 

and thus ‘smooths’ the textured tube shown in Fig. 17d. This differs from results previously reported for the 

improved buckling response of metallic textured tubes [31], as dihedral angles were present during instability 

formation, which caused an increased second moment of area and shell stiffness, and thus an increased critical 

pressure. It can also be seen that textured effect on stress development prior bulge formation is small. 

Finally, a large numerical-experimental discrepancy is seen in the equilibrium paths occurring after instability 

formation, with numerical models undergoing much larger displacements. This is likely due to assumptions in the 

material model. It is probable that the Mooney-Rivlin material model is not quite suitable for modeling bulge 

propagation, since that the pressure versus volume curve does not have a minimum, and so a Maxwell state 

corresponding to steady propagation cannot be reached [41].  

 

Table 1. Comparison between experimental and numerical results of critical pressure 

Specimen Experimental value Numerical value Difference 

Smooth tube 0.0625 (MPa) 0.0615 (MPa) 1.6% 

Textured tube 0.0679 (MPa) 0.0667 (MPa) 1.8% 

Strengthen 7.4% 8.5%  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

s2
t2

 Smooth tube_EXP

 Textured tube_EXP

 Smooth tube_FEM

 Textured tube_FEM

P
/u

Dis/D

EXP

FEM

s1,t1

    

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 

 

P
/

d/D

 Smooth tube_EXP

 Textured tube_EXP

 Smooth tube_EXP

 Textured tube_EXP

 

(a)                                                                                                                        (b) 

s1

Inflations2

                               

Inflation

t1

t2

θ 

 

  (c)                                                                                                  (d) 



12 

Fig. 17. Comparison of experimental and numerical pressure-displacement curves of smooth/textured tubes. (a) The entire test and (b) the 
region of the instability, and (c) the numerical configurations at center section of smooth tube, and of textured tube (d). 

5.2. Parametric numerical analysis of textured tubes 

An aspect of tube performance that could not be explored experimentally was the effect of additional textured tube 

parameters m and n. As the numerical model for the textured tube was seen to provide good prediction of the 

critical pressures observed in experimental models, a parametric numerical study was conducted to see how this was 

affected by these two parameters.  

The effect of parameter n was first studied with eight numerical models with values of n between 7 and 29. Other 

parameters were the same as used previously. Values are summarised in Table 2 and it can be seen that the 

instability is still observed in all tubes, with critical pressure decreasing with the increase of n. It is noted that there is 

a critical n value (n = 17) at which the textured tube has an approximately equivalent critical pressure to the smooth 

tube (0.0615 MPa). Below this point, the reduction in n increases the degree of texturing present in the tube, which 

acts to enhance the critical pressure since the second moment of area and circumferential bending stiffness of the 

tube was changed, consistent with that observed in [31]. Above this point, the increase in n generates a large 

number of the ridgelines between facets which act as an imperfection to lower the critical loading below that 

observed in the smooth tube. Since localized bulging is a subcritical bifurcation phenomenon [21], these 

imperfections can lower the initiation pressure below that of the smooth tube, and so numerical results are 

consistent with that reported in [42].  

 

Table 2. Parameter n and corresponding critical pressure 

Parameter n 7 9 11 13 17 21 25 29 

Critical pressure (MPa) 0.0731 0.0667 0.0645 0.0629 0.0614 0.0604 0.0598 0.0593 
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Fig. 18. Influence of the parameter n on the critical pressure of textured tube. 

The effect of parameter m was also studied with six models with values of m between 10 and 60. Other parameters 

were held constant. Critical pressure values are summarised in Table 3 and results plotted in Fig. 19. It can be seen 

that the critical pressure remains almost constant and so the effect of parameter m on the instability is minimal. This 

is attributed to the initial axial loading causing an extension in the tube and corresponding reduction in the degree of 

texturing, i.e. a smoothing, between adjacent panels.  

 

Table 3. Parameter m and corresponding critical pressure 

Parameter m 10 20 30 40 50 60 

Critical pressure (MPa) 0.062853 0.06290 0.06290 0.06288 0.06298 0.06305 

 

 

smooth tube 
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Fig. 19. Influence of the parameter m on the critical pressure of textured tube. 

6. Conclusion 

This paper has studied the nonlinear behaviour of cylindrical hyperelastic tubes that have smooth and origami-

inspired textured structures. It is the first investigation of this kind and has demonstrated several key findings of 

benefit in future development of tubular inflatable origami structures. First, it was shown that effect of the textured 

geometry on critical pressure was limited, having only an 8% improvement compared to a smooth tube. This 

behaviour in hyperelastic material instabilities is different to that previously reported for instabilities in elastic-plastic 

textured tubes and was attributed to the large radial displacement undergone by textured hyperelastic tubes prior 

to instability formation. Second, for the selected tubular geometry, it was shown that the parameter n plays an 

important role on instability but m has little impact on critical pressure. Finally, a novel manufacturing method using 

3D printed moulds and a dipping process was shown to enable straightforward manufacture of textured tubes and 

thus the analyses conducted in the paper. This can be applied to other tubular geometries for investigation of 

potential novel mechanical properties, for example further instability behaviours or deployment mechanisms in 

fields such as soft robotics.  
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Highlights 

 A new process for manufacture of latex origami-inspired textured tubes 

 Bulge formation and critical pressure experimentally investigated at 1ms resolution 

 Textured geometry has only a slight increase in critical pressure compared to smooth tube 

 Parametric numerical study showed slight or no effect of textured tube parameters on critical pressure 




