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Highlights 

 Gelatin was isolated from Pacific cod skin, seafood processing byproduct. 

 Two bioactive peptides GASSGMPG (662 Da) and LAYA (436 Da) were purified. 

 Peptides showed potent ACE inhibition with IC50 values of 6.9 and 14.5 M. 

 Molecular mechanism of peptides and ACE was conducted by computational docking. 

 Peptides could be used as functional ingredients for improving cardiovascular health. 
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ABSTRACT 

Angiotensin- I- converting enzyme (ACE) is crucial in the control of hypertension and the development of type- 2 diabetes and 

other diseases associated with metabolic syndrome. The aim of this work was to utilize Pacific cod skin to purify ACE inhibitory 

peptides. First, gelatin was extracted from Pacific cod skin and hydrolyzed with several enzymes (pepsin, papain, α-chymotrypsin, 

trypsin, neutrase, and alcalase). The pepsin hydrolysate showed the strongest ACE inhibitory effect and was further fractionated into 

different ranges of molecular weight (<1, 1–5, 5–10, and >10 kDa) using ultrafiltration (UF) membranes. The peptic hydrolysate 

below 1 kDa resulted in two potent ACE inhibitory peptides, GASSGMPG (662 Da) and LAYA (436 Da), with IC50 values 

(concentration required to decrease the ACE activity by 50%) of 6.9 and 14.5 M, respectively. Moreover, to explore the interaction 

between the peptides and ACE molecule, the tertiary structure of ACE and docking simulation to the peptides were predicted using 

Docking Server. Pacific cod peptides can be used as functional food ingredients to prevent hypertension and its related diseases. 

Keywords: Antihypertension; bioactive peptides; functional ingredients; molecular docking; Pacific cod skin; ultrafiltration 

membrane. 
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1. Introduction 

The global burden of chronic diseases such as cardiovascular diseases (CVDs), diabetes, obesity, and cancer is increasing rapidly. 

High blood pressure is an independent risk factor for CVDs and is responsible for most preventable deaths worldwide [1,2]. Human 

angiotensin- I- converting enzyme (ACE) is crucial in the control of hypertension and electrolyte homeostasis by converting 

angiotensin I to angiotensin II (vasoconstrictor) and by annulling the potent vasodilator bradykinin to its inactive fragments [3,4]. 

Synthetic ACE inhibitors such as captopril, lisinopril, and enalapril, although used extensively, are responsible for adverse side effects 

such as coughing, taste disturbances, skin rashes, dizziness, headache and angioedema [5]. Therefore, it is necessary to discover ACE 

inhibitors from naturally available sources without side effects. 

The seafood processing industry produces a large amount of by-products that usually consist of bioactive materials such as 

proteins, enzymes and fatty acids. Ultrafiltration (UF) membrane bioreactors can effectively produce bioactive components of 

desirable molecular weight (MW) such as bioactive peptides from seafood processing by-products [6,7]. Marine bioactive peptides 

exhibit biological activities such as antihypertensive, antioxidant, antimicrobial, anticancer, mineral-binding, antithrombotic and 

hypocholesterolemic effects [8-10]. ACE inhibitory peptides can prevent hypertension by binding to the ACE molecule. 

In recent years, computational (in silico) docking has minimized the time-consuming process of molecular analyses for selecting a 

suitable ligand, and it has been used to predict the interaction between protein and small molecules such as bioactive peptides [11,12]. 

Therefore, computational approaches can be used for studying inhibitory mechanisms as an assistant tool and designing novel enzyme 
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inhibitors. Increasingly more studies have focused on the quantitative structure- activity relationship and the mechanism of peptide 

binding with ACE using computational simulation, and current software include Discovery Studio, AutoDock and Docking Server 

[13,14]. 

In the present study, ACE inhibitory peptides were purified via enzymatic digestion of Pacific cod (Gadus macrocephalus) skin 

gelatin using UF membranes (10, 5, and 1 kDa), fast protein liquid chromatography (FPLC, anion-exchange column and gel filtration 

column), reversed-phased high-performance liquid chromatography (RP-HPLC) and quadrupole-time-of-flight (TOF) liquid 

chromatography (LC)/mass spectroscopy (MS) /MS mass spectrometer. Moreover, the tertiary structure of the ACE molecule and 

docking simulation to the peptides were predicted using Docking Server to explore the binding mechanism including estimation of the 

free energy of binding, estimation of the inhibition constant, Van der Waals interaction force, hydrogen bonds, polar interaction, 

hydrophobic interaction, electrostatic interaction force, total intermolecular energy, frequency and interaction surface between the 

peptides and ACE molecule. 

 

2. Materials and methods 

2.1. Materials 

Pacific cod (G. macrocephalus) skin was collected from the Jagalchi fish market, Busan, South Korea. Captopril, papain, -

chymotrypsin, pepsin, trypsin, ACE (from rabbit lung), and hippuryl-histidyl-leucine (HHL) were provided by Sigma Chemical Co. 
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(St. Louis, MO, USA). Alcalase and neutrase were obtained from Novozymes Co. (Bagsvaerd, Denmark). UF membranes were 

procured from GE Healthcare Bio-Sciences Corp. (Westborough, MA, USA). All other chemicals used in the experiments were of 

analytical grade. 

 

2.2. Gelatin extraction and hydrolysis 

Gelatin was extracted as described in Ref. [15]. The collected gelatin was separately hydrolyzed with pepsin (pH 2, 37 °C), 

papain (pH 6, 37 °C), α-chymotrypsin (pH 8, 37 °C), trypsin (pH 8, 37 °C), neutrase (pH 8, 50 °C), and alcalase (pH 7, 50 °C) [16]. 

For each enzyme, the enzyme/substrate ratio was 1/100. The resulting mixture was stirred for 4 h and then heated at 100 °C for 10 min 

to inactivate the enzyme. The pepsin hydrolysate was desalted and separated into four ranges of MW (>10, 5–10, 1–5, and <1 kDa) 

using UF membranes of 10, 5, and 1 kDa, respectively (GE Healthcare Bio-Sciences Corp, Westborough, MA, USA). All fractions 

were desalted and lyophilized in a freeze dry system. The bioactive peptide was isolated from the peptic hydrolysate below 1 kDa via 

FPLC (AKTA, Amersham Bioscience Co., Uppsala, Sweden) on a HiPrep 16/10 diethylaminoethyl fast-flow (DEAE FF) anion-

exchange column (16 × 100 mm, Amersham Biosciences, Piscataway, NJ, USA) and a GE Healthcare Superdex™ Peptide 10/300 GL 

gel filtration column (10 × 300 mm). The purified peptide was desalted and then subjected to amino acid sequencing. 

 

2.3. Measurement of ACE inhibitory activity 
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The ACE inhibitory effect was measured by measuring the release of hippuric acid from the substrate HHL using the method 

proposed by Jimsheena and Gowda [15,17] with slight modifications. 

 

2.4. Computational docking 

The PDB files of human ACE metalloprotease (1O8A) and captopril were downloaded from RCSB (www.rcsb.org). In addition, 

the peptides were drawn and converted to PDB file format using the ChemBioOffice 2010 tool. The docking of the target protein and 

the ligands was simulated using Docking Server (http://www.dockingserver.com/web) [18]. 

Essential hydrogen atoms, Kollman united atom-type charges, and solvation parameters were added with the aid of AutoDock 

tools. Affinity (grid) maps of XXÅ grid points and 0.375 Å spacing were generated using the Autogrid program [19]. 

Docking simulations were performed using the Lamarckian genetic algorithm (LGA) and the Solis and Wets local search method 

[20]. The initial position, orientation, and torsions of the ligand molecules were set randomly. All rotatable torsions were released 

during docking. Each docking experiment was derived from 10 different runs that were set to terminate after a maximum of 250,000 

energy evaluations. The population size was set to 150. During the search, a translational step of 0.2 Å, and quaternion and torsion 

steps of five were applied. 

 

2.5. Statistical analysis 
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The results of the analyses were presented as mean ± standard deviation from three independent experiments. Statistical 

comparisons between different treatments were done using Student’s t-test. Differences with a value of p <0.05 were considered 

significant. 

 

3. Results and discussion 

3.1. ACE inhibitory activity of enzymatic hydrolysates using UF membranes 

To release ACE inhibitory peptides, gelatin was separately hydrolyzed using different enzymes such as pepsin, α-chymotrypsin, 

trypsin, papain, alcalase, and neutrase. Among them, at 1 mg/ml concentration, the pepsin- hydrolysate showed the strongest ACE 

inhibitory effect of about 91% (Fig. 1A). The ACE inhibitory activity of the hydrolysate varied with the MW distribution, and the 

MW distribution of the desired functional peptide can be controlled by using a UF membrane bioreactor system [21,22]. Therefore, 

the peptic hydrolysate was further fractionated into different MWs using UF membranes of 10, 5, and 1 kDa. Four fractions with 

different MWs of >10, 5–10, 1–5, and <1 kDa were obtained. As shown in Fig. 1B, VW, a commercial drug, was used as the positive 

control, which showed the strongest ACE inhibitory activity. Meanwhile, the peptic hydrolysate <1 kDa showed the strongest ACE 

inhibitory effect of 70% at 500 g/ml (Fig. 1B). This result is consistent with previous studies of ACE inhibitory peptides, in which 

the low-MW peptides had more potent ACE inhibitory activity than the high-MW peptides. Ko et al. [23] found that the marine 

ellipsoidea protein hydrolysate can be fractionated into three fractions (>10, 5–10, and <5 kDa) by UF according to MWs, and the 
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fraction below 5 kDa showed the strongest ACE inhibitory activity. Ngo et al. [24] separated skate (Okamejei kenojei) skin gelatin 

hydrolysate using an UF membrane (1 kDa), and the fraction below 1 kDa exhibited the highest ACE inhibitory activity. Thus, the 

peptic hydrolysate below 1 kDa was selected for further purification. 

 

3.2. Purification of ACE inhibitory peptides 

To obtain active peptides with ACE inhibitory activity, the peptic hydrolysate below 1 kDa was further separated into three 

fractions using the FPLC technique (Fig. 1C), and the resultant fractions were also analyzed for their ability to inhibit ACE. At 250 

μg/ml concentration, fraction 1 exhibited a strong effect on the ACE inhibitory property of about 81% (Fig. 1C). Therefore, fraction 1 

was further purified. 

FPLC fraction 1 was subjected to a GE Healthcare Superdex™ Peptide 10/300 GL gel filtration column (10 × 300 mm) analysis, 

and five fractions were obtained (Fig. 1D). All five fractions were analyzed for their potency in inhibiting ACE. As shown in Fig. 1D, 

at 100 μg/ml concentration, fraction 1 (FI-1) showed a strong effect on the ACE inhibitory activity of about 96%. The purity of FI-1 

was further confirmed by re-chromatographing using RP-HPLC (data not shown). 

The peptides were collected and identified as GASSGMPG (Fig. 2A) and LAYA (Fig. 2C) using a hybrid Q-TOF LC/MS/MS 

mass spectrometer (AB Sciex Instruments, Redwood City, CA, USA) coupled with an electrospray ionization (ESI) source. The 

structure of GASSGMPG is composed of eight amino acids (three glycine, two serine, one alanine, one methionine, and one proline) 
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with MW 662 Da, isoelectric point (pI) 5.60, net charge 0, hydrophobicity +12.24 kcal/mol, extinction coefficient
1
 0 M 

-1
/cm, and 

extinction coefficient
2
 0 M 

-1
/cm (Fig. 2B). The structure of LAYA is composed of four amino acids (two alanine, one leucine and one 

tyrosine) with MW 436 Da, isoelectric point (pI) 5.57, net charge 0, hydrophobicity +6.94 kcal/mol, extinction coefficient
1
 1490 M 

-

1
/cm, and extinction coefficient

2
 1490 M 

-1
/cm (Fig. 2D). GASSGMPG, LAYA, and captopril exhibited ACE inhibitory effect with 

IC50 values (the concentration required to decrease the ACE activity by 50%) of 6.9, 14.5, and 0.38 μM, respectively. Most of the 

reported ACE inhibitory peptides are usually low-MW peptides that can cross the intestinal barrier [25]. The ACE inhibitory activity 

of GASSGMPG (662 Da, IC50 6.9 μM) was higher than that of ASL (289 Da, IC50 102.15 μM) from silkworm pupa (Bombyx mori) 

protein [26], PVNNPQIH (919 Da, IC50 206.7 μM) from small red bean Phaseolus vulgaris [27], GDLGKTTTVSNWSPPKYKDTP 

(2482 Da, IC50 11.28 μM) from tuna frame protein [28], and AHEPVK (679 Da, IC50 63 μM) from edible mushroom Agaricus 

bisporus [29]. Indeed, the present study showed that the ACE inhibitory peptides GASSGMPG (662 Da) and LAYA (436 Da) have 

MW of <1 kDa. Therefore, it can be assumed that purified peptides are easily absorbed in the digestive tract and exert biological 

effects. Both peptides can be incorporated into functional foods as novel ACE inhibitors. 

 

3.3. Molecular docking of the purified peptide on the ACE binding site 
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In order to explore the molecular mechanism of the interactions between the peptides and ACE molecule, the docking simulation 

was performed using Docking Server. The docking simulation of the ACE–ligand complexes was well-performed between ACE and 

the peptides or captopril. The interaction energy of captopril and the peptides binding to ACE is presented in Table 1A. 

Molecular docking of ACE with GASSGMPG was investigated. According to the results (Table 1), GASSGMPG bound to ACE 

with estimation free energy of binding –5.16 kcal/mol, estimation inhibition constant (Ki) 166.21 M, hydrogen bond energy –4.67 

kcal/mol, electrostatic energy –1.38 kcal/mol, total intermolecular energy –6.05 kcal/mol, frequency 50% and interaction surface 

667.21. The inhibitor combined with the residues of ACE via the main interaction forces of hydrogen bonds, polar, hydrophobic 

interactions, and Van der Waals and electrostatic forces. The interaction force of hydrogen bonds was crucial [30,31]. The most 

stabilized pose of GASSGMPG bonding with ACE was determined, and its three-dimensional (3D) and two-dimensional (2D) 

structures are shown in Fig. 3a (supplementary document) and Fig. 3b (supplementary document), respectively. The interaction 

between GASSGMPG and ACE was simulated and depicted in a hydrogen bond plot (Fig. 3c) (supplementary document). The 

binding site of GASSGMPG on ACE was observed at residues of Asn72, Thr74, Glu76, Ile80, Gly347, and Glu349, involving three 

hydrogen bonds, six polar, three hydrophobic, and 12 other interactions (Table 1B). 

The molecular docking of ACE with LAYA was also determined. As shown in Table 1A, LAYA bound to ACE with binding 

energy –4.88 kcal/mol, Ki 262.90 M, hydrogen bond energy –4.67 kcal/mol, electrostatic energy –1.48 kcal/mol, total intermolecular 

energy –6.16 kcal/mol, frequency 20% and interaction surface 501.331. The most stabilized pose of LAYA bonding with ACE was 
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obtained, and its 3D and 2D are exhibited in Fig. 4a (supplementary document) and Fig. 4b (supplementary document), respectively. 

The interaction of LAYA and ACE was simulated and depicted in a hydrogen bond plot (Fig. 4c) (supplementary document). The 

docking study of the ACE–LAYA interaction revealed the binding site at residues of Asn72, Asp346, and Arg348, involving one 

hydrogen bond, eight polar, and 22 other interactions (Table 1C). 

Molecular docking of ACE with captopril can facilitate good energy level calculations suitable for drug modeling of the ligand. As 

shown in Table 1A, captopril bound to ACE with binding energy –3.81 kcal/mol, Ki 1.61 mM, hydrogen bond energy –4.90 kcal/mol, 

electrostatic energy –0.02 kcal/mol, total intermolecular energy –4.92 kcal/mol, frequency 50% and interaction surface 436.008. The 

most stabilized pose of captopril bonding with ACE was obtained, and its 3D and 2D structures were shown in Fig. 5a (supplementary 

document) and Fig. 5b (supplementary document), respectively. The molecular docking of captopril on the ACE-binding site revealed 

that captopril was enveloped by a hydrophobic pocket that was formed by the electron cloud of hydrophobic interactions [32,33]. The 

interaction of captopril and ACE was simulated and depicted in a hydrogen bond plot (Fig. 5c) (supplementary document). The ACE–

captopril interaction study showed interaction among six amino acid residues (Trp67, Asn68, Thr71, Asn72, Met340, and Arg348), 

involving two polar, four hydrophobic, and 14 other interactions (Table 1D). 

The binding sites of GASSGMPG and captopril on ACE were observed to be the same at the Asn72 residue. The binding sites of 

LAYA and captopril on ACE were also observed to be almost the same at residues including Asn72 and Arg348. 
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The signaling cascade molecules in hypertension must be analyzed computationally to determine better ligands. Molecular 

docking is an ideal tool for drug design at initial stages. In the present study, the simulation of the protein–ligand chemistry, binding 

and dissociation energy were the focus. The energy and interaction details were developed using Docking Server. The free energy of 

ACE–GASSGMPG, ACE–LAYA and ACE–captopril bindings are –5.16, –4.88, and –3.81 kcal/mol, respectively, which is in good 

agreement with the physiological protein–ligand (hormones, and enzymes) interaction range of –2.00 to –6.00 kcal/mol [34]. In 

addition, the Ki values of the ACE–GASSGMPG, ACE–LAYA, and ACE–captopril complexes are 166.21 M, 262.90 M, and 1.61 

mM, respectively. These results suggest the potential candidates for ACE–ligand interaction, which can lead to the development of 

novel ACE inhibitors. 

Other factors such as Van der Waals force and hydrogen bonds of molecules also stabilize the ligand–protein interaction in 

docking studies, which indicates good protein–drug interaction. The binding site of GASSGMPG on ACE at the six residues of Asn72, 

Thr74, Glu76, Ile80, Gly347, and Glu349 shows precise conformity. Three hydrogen bonds and the electrostatic force obtained in the 

results are significant enough for strong bonding in the case of ACE–GASSGMPG interaction. Furthermore, the abundance of polar, 

hydrophobic, and other interactions in the docking study of ACE–GASSGMPG leads to a further more stable association. The ligand 

GASSGMPG interacted well with the protein ACE in the docking grid. 

The docking results of the ligand LAYA with ACE revealed the binding site at residues of Asn72, Asp346 and Arg348, which also 

shows precise conformity. Despite the presence of a single hydrogen bond, the electrostatic force is significant enough for strong 
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bonding in the case of ACE–LAYA interaction. Moreover, the abundance of polar and other interactions greatly contributed to the 

combinative stabilization. LAYA interacted well with the ACE in the docking grid. These findings indicated that the blockades of the 

Pacific cod peptides on the ACE molecule might contribute to the development of bioactive food ingredients for preventing 

hypertension and its related diseases. 

Information on the molecular mechanisms of the interactions between the ACE molecule and ACE inhibitory peptides has many 

potentially favorable consequences for further design and synthesis of their derivatives. Ngo et al. [35] reported that MVGSAPGVL 

(829 Da, IC50 3.09 µM) and LGPLGHQ (720 Da, IC50 4.22 µM) from skate skin gelatin could interact with ACE residues Asn72, 

Thr74, Glu76, Thr77, Asp346, and Arg348. Li et al. [36] showed that ACLEP (531 Da, IC50 126 µM) from pistachio hydrolysates 

could interact with ACE residues His387, Glu384, Arg522, Asp358, Ala356, and Asn70. Jia et al. [37] reported that KHV (382 Da, 

IC50 12.82 µM) could interact with ACE residues Asn277, Gln281, Thr282, His383, Asp415, Lys454, Ser526, Phe527, and Gln530. 

The result in this study showed that the binding mode might be different from the previously studied ACE inhibitory peptides. 

Molecular docking indicated that the purified peptides from Pacific cod skin gelatin could effectively interact with the active site of 

ACE. 

 

4. Conclusion 
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Bioactive peptides derived from fish by-products are natural resources that can be used in health and food products. In this study, 

two peptides, GASSGMPG (662 Da) and LAYA (436 Da), were purified from Pacific cod (G. macrocephalus) skin gelatin by pepsin 

hydrolysis. Both bioactive peptides showed potent ACE inhibitory activity. Furthermore, molecular docking of ACE with ligands 

GASSGMPG and LAYA when conducting docking analysis using Docking Server, predicted an in silico result with free energy of 

bindings. This result was in line with the physiological range for protein–ligand interaction, indicating the potential of these peptides 

as ACE inhibitors. Accordingly, ACE inhibitory peptides from Pacific cod skin gelatin can be used in functional food preparations 

targeted at lowering the blood pressure and reducing the risk of CVDs. 
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Table legends 

Table 1: Estimation free energy of binding, estimation inhibition constant, Van der Waals interaction force, hydrogen bonds, polar 

interaction, hydrophobic interaction, electrostatic interaction force, total intermolecular energy, frequency, and interaction surface 

between the ACE molecule and the ligands GASSGMPG, LAYA, and captopril (A). Interaction table of residues and atoms between 

the ACE molecule and the ligands GASSGMPG (B), LAYA (C), and captopril (D). 



27 

 

 

Figure legends 

Figure 1. Purification profiles of novel ACE inhibitory peptide from Pacific cod skin gelatin. (A) ACE inhibition of enzymatic 

hydrolysates (pepsin, papain, alcalase, neutrase, -chymotrypsin, and trypsin) from Pacific cod skin gelatin. (B) ACE inhibition of 

pepsin hydrolysates (>10, 5–10, 1–5 and <1 kDa) using UF membranes and VW (valine–tryptophan) as the positive control. (C) 

FPLC of pepsin hydrolysate below 1 kDa using a HiPrep™ 16/10 DEAE FF anion-exchange column (upper panel). ACE inhibitory 

activity of each FPLC fraction is shown in the lower panel. (D) FPLC of fraction 1 using a GE Healthcare Superdex™ Peptide 10/300 

GL column (upper panel). ACE inhibitory activity of each fraction is shown in the lower panel. Results are the mean ± SD of three 

independent experiments, and significance was determined at (∗) 0.01 < p < 0.05, (∗∗) 0.001 < p < 0.01 and (∗∗∗) p < 0.001. 

Figure 2. Mass spectrum and amino acid sequence of the purified peptide GASSGMPG (A). The structure and properties of the 

purified peptide GASSGMPG (B) derived from Pacific cod skin gelatin. Mass spectrum and amino acid sequence of the purified 

peptide LAYA (C). The structure and the properties of the purified peptide LAYA (D) derived from Pacific cod skin gelatin. 
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Figure 1A. Ngo et al (2016) 
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Figure 1B. Ngo et al (2016) 
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Figure 1C. Ngo et al (2016)   Figure 1D. Ngo et al (2016) 
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Figure 2A. Ngo et al. (2016) 
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Figure 2B. Ngo et al. (2016)  
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Figure 2C. Ngo et al. (2016) 
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Figure 2D.Ngo et al. (2016) 
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Tables 

Table 1A: Ngo et al. (2016) 

Ligand  Rank 

Est. free 

energy of 

binding 

(kcal/mol) 

Est. 

inhibition 

constant (Ki) 

vdW + Hbond + 

desolv energy 

(kcal/mol) 

Electrostatic 

energy 

(kcal/mol) 

Total 

intermolec. 

energy 

(kcal/mol) 

Frequency 
Interact. 

surface (%) 

GASSGMPG 1 -5.16 166.21 µM -4.67 -1.38 -6.05 50 667.21 

GASSGMPG 2 -4.24 782.82 µM  -4.00 -1.77 -5.77 10 540.487 

GASSGMPG 3 -4.01 1.15 mM  -3.06 -1.81 -4.88 10 565.22 

GASSGMPG 4 -3.93 1.31 mM  -3.54 -1.36 -4.90 10 519.459 

GASSGMPG 5 -3.57 2.40 mM  -2.99 -1.35 -4.34 10 472.717 

GASSGMPG 6 -3.51 2.69 mM  -3.07 -1.34 -4.41 10 370.465 

         LAYA 1 -4.88 262.90 µM  -4.67 -1.48 -6.16 20 501.331 

LAYA 2 -4.80 300.68 µM -4.56 -1.38 -5.94 10 513.863 

LAYA 3 -4.21 820.25 µM -4.88 -0.63 -5.51 20 560.199 

LAYA 4 -4.12 947.61 µM -3.76 -1.62 -5.38 10 520.964 

LAYA 5 -4.08 1.02 mM -3.43 -1.83 -5.26 20 425.046 

LAYA 6 -3.90 1.38 mM -3.50 -1.71 -5.21 10 513.763 

LAYA 7 -3.34 3.59 mM -2.98 -1.64 -4.62 10 426.157 

         Captopril 1 -3.81 1.61 mM -4.90 -0.02 -4.92 50 436.008 

Captopril 2 -3.45 2.98 mM -3.98 -0.09 -4.07 20 367.300 

Captopril 3 -3.05 5.80 mM -4.07 -0.01 -4.08 10 419.764 

Captopril 4 -3.02 6.10 mM -4.20 -0.06 -4.26 20 391.592 
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Table 1B: Ngo et al. (2016) 

GASSGMPG-ACE interaction table 

Hydrogen bonds Polar Hydrophobic 

O () – THR74 N () – ASN72 CB () – ILE80 

(CD1) [3.33] (CB, CG2, G1) [3.76] (ND2) [3.34] 

N () – GLY347 O () – GLU76 CA () – ILE80 

(CD1) [2.92] (O) [3.22] (OE2) [3.55] 

N () – GLU349 O () – GLU349 C () – ILE80 

(CD1) [2.57] (CB, CD, OE1) [3.75] (OE1) [3.87] 

   

1H () – GLU349  

   

[2.93] (OE1) 

   

2H () – GLU349  

   

[1.67] (OE1, OE2) 

   

3H () – GLU349  

   

[2.80] (OE1) 
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Table 1C: Ngo et al. (2016) 

LAYA-ACE interaction table  

Hydrogen bonds Polar 

N () – ASP346 N () – ASN72 

[2.58] (CG, OD1, OD2) [3.41] (ND2) 

 OXT () – ASN72 

[3.52] (ND2) 

 H () – ASN72 

[3.10] (ND2) 

 1H () – ASP346 

[3.57] (OD1) 

 2H () – ASP346 

[2.25] (OD1, OD2) 

 3H () – ASP346 

[2.47] (OD1) 

 O () – ASP346 

[2.99] (OD1, OD2) 

 H () – ASP346 

[1.98] (OD1, OD2) 
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Table 1D. Ngo et al. (2016) 

Captopril-ACE interaction table 

Polar Hydrophobic 

O2 () – TRP67 C9 () – TRP67 

[3.84] (NE1) [3.57] (CD1) 

H1 () – THR71 C4 () – TRP67 

[2.83] (OG1) [3.54] (CE2, CZ2) 

 C3 () – TRP67 

[3.38] (CZ2) 

 C3 () – MET340 

[3.37] (CB) 

 

 




