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HIGHLIGHTS 

 DiffusionKit has a full pipeline for (pre-)processing and visualization of diffusion MRI 

data. 

 DiffusionKit has cross-platform support and a small installation size without 3rd party 

dependency. 

 DiffusionKit has both a GUI interface and command-line functions that enable easy 

operation and batch processing. 

 

Abstract (250 words limit) 

Background: Diffusion magnetic resonance imaging (dMRI) techniques are receiving 

increasing attention due to their ability to characterize the arrangement map of white matter in 

vivo. However, the existing toolkits for dMRI analysis that have accompanied this surge 

possess noticeable limitations, such as large installation size, an incomplete pipeline, and a 

lack of cross-platform support.  

New Method: In this work, we developed a light, one-stop, cross-platform solution for dMRI 

data analysis, called DiffusionKit. It delivers a complete pipeline, including data format 

conversion, dMRI preprocessing, local reconstruction, white matter fiber tracking, fiber 

statistical analyses and various visualization schemes. Furthermore, DiffusionKit is a 

self-contained executable toolkit, without the need to install any other software.  

Results: The DiffusionKit package is implemented in C/C++ and Qt/VTK, is freely available 

at http://diffusion.brainnetome.org and https://www.nitrc.org/projects/diffusionkit. The 

website of DiffusionKit includes test data, a complete tutorial and a series of tutorial 

examples. A mailing list has also been established for update notification and questions and 

answers.  

Comparison with Existing Methods: DiffusionKit provides a full-function pipeline for dMRI 

data analysis, including data processing, modeling and visualization. Additionally, it provides 

both a graphical user interface (GUI) and command-line functions, which are helpful for 

batch processing. The standalone installation package has a small size and cross-platform 

support.  

Conclusions: DiffusionKit provides a complete pipeline with cutting-edge methods for dMRI 

data analysis, including both a GUI interface and command-line functions. The rich functions 

for both data analysis and visualization will facilitate and benefit dMRI research. 

 

Keywords: Diffusion MRI; DTI; HARDI; Anatomical connectivity; DiffusionKit 

http://diffusion.brainnetome.org/
https://www.nitrc.org/projects/diffusionkit
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1. Introduction 

Brain network studies have become a significant approach for understanding how 

different functional parcellations of the brain interact with each other. Currently, there are two 

critical methods to inspect brain networks, functional networks and anatomical networks 

(Jiang, 2013), in which the anatomical networks consist of the neural bases and physical 

connections for the functional networks (Sporns et al., 2005). To date, diffusion magnetic 

resonance imaging (diffusion MRI, also known as dMRI) has been recognized as an 

irreplaceable technique to investigate the anatomical connectivity of the brain in vivo, and 

based on the data collected by dMRI, mathematical models have been applied to characterize 

the distribution of the water molecules constrained by the white matter microstructure (Zuo et 

al., 2012).  

The brain connectivity and network analyses based on dMRI data consist of a series of 

image processing and modeling steps (Sotiropoulos et al., 2013). First, each separate volume 

of the diffusion-weighted imaging (DWI) series is corrected for the distortions induced by 

eddy-current and susceptibility, both of which are potential sources of off-resonance field, and 

for head motion, which blurs the images and affects the image alignment (Le Bihan et al., 

2006). Additionally, to avoid processing of the area outside of the brain tissue, a skull 

stripping step is strongly recommended. Second, for each of the voxels, the diffusion model is 

estimated from the DWI series. According to the sampling scheme in the q-space, there are a 

variety of estimation strategies to dissect the white matter propagation within a voxel. The 

most traditional and popular strategy is diffusion tensor imaging (DTI) (Basser et al., 1994; 

Le Bihan et al., 2001). Recently, for the deciphering of crossing fibers, the 

decomposition-based spherical polar Fourier imaging (SPFI) method and the 

deconvolution-based constrained spherical deconvolution (CSD) method have emerged as 

two representative families of high angular resolution diffusion imaging (HARDI) techniques 

(Xie et al., 2015). Thus, voxel-based analysis and tract-based spatial statistics (TBSS) (Smith 

et al., 2006) can be performed, such as for fractional anisotropy (FA), mean diffusivity (MD), 

relative anisotropy (RA) (Assaf and Pasternak, 2008; Le Bihan et al., 2001). Third, once maps 

of white matter distribution within voxels are obtained, the white matter fiber connections can 

be tracked by a number of tractography approaches (Mori and van Zijl, 2002). Finally, to 

construct the connectivity between two brain areas, specific attributes can be derived from the 

connecting fiber bundles, such as the mean fractional anisotropy (FA), mean diffusivity (MD), 

number of fibers, and volumes occupied by the fiber bundles (Sporns, 2011; Sporns et al., 

2005). The researchers who want to implement the entire pipeline should be acquainted with 

corresponding algorithms and proficient in programming.  

Meeting the requirements of researchers from multidisciplinary backgrounds, a large 

number of toolkits have been developed, including data preprocessing (FSL; SPM) and 

diffusion tensor or orientation distribution function modeling (FSL; MRtrix; TrackVis), fiber 

tracking and visualization (DTITool; TrackVis). However, these tools have mainly focused on 

specific steps, and they do not provide a full set of components, consisting of data conversion, 

data (pre-)processing, fibertracking, network construction, image/fiber view and visualization. 

Recently, to address the these drawbacks, a few integrated tools have been developed, such as 

PANDA (Cui et al., 2013), ExploreDTI (Leemans et al., 2009), MedInria (Toussaint et al., 
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2007), Dipy (Garyfallidis et al., 2014) and MIPAV (MIPAV). For a more detailed survey, 

please see the Table. 1. However, these new tools have their own limitations. First, some of 

them are MATLAB (The Mathworks, Inc.) based. MATLAB, an interpreted language, will 

execute more slowly than complied languages (Chapman, 2015) and is not powerful enough 

in rendering surface of the brain and numerous fibers. Second, a large number of third-party 

dependencies for installation can result in a large software size. Third, there is no complete 

pipeline or cross-platform support.  

In this work, we developed a light but comprehensive solution, called DiffusionKit, for 

dMRI data (pre-)processing and visualization. The remainder of the manuscript is organized 

as follows. In the Material and methods section, we introduce the overall design of 

DiffusionKit and the functions of the main modules with explanations of the principles and 

implementations. Then, results and some examples are presented in the Results and discussion 

section to validate the given functions. In the Conclusions section, the main modules and 

features are summarized, and comparisons with existing tools are also tabulated. 

 

2. Material and methods 

2.1 Overall design 

The overall design framework is illustrated in Fig. 1. DiffusionKit was developed as a 

cross-platform framework, using C/C++ for computation, VTK (VTK) for visualization, and 

Qt for graphical user interface (GUI) design. Both GPU and CPU computing have been 

implemented to achieve a high frame rate for rendering complex scenes, particularly 

whole-brain tractography. The project was managed using the compiler-independent CMake 

(CMake), which is compatible with a variety of compilers, such as GCC/G++ and MS Visual 

Studio. Fig. 2 shows the main entry page of DiffusionKit, which consists of two core modules: 

Processing and Visualization. Each function is standalone, and the main features are simply 

organized by the GUI. Such a design fully facilitates batch processing for large datasets by 

means of scripting, and it also supports future enrichment of functions of the pipeline. 

2.2 Data preprocessing 

Before modeling the distribution function within voxels, the DWI images are corrected 

and aligned for precise modeling. First, for the convenience of processing in DiffusionKit, the 

raw data are converted from DICOM images to a single 4D NIFTI image (to save storage 

space, DiffusionKit uses files in zipped format, e.g., nii.gz, by default). This step utilizes 

dcm2nii, developed by Dr. Chris Rorden (MRIcron), which is fast and stable and has been 

well tested within the community (Jenkinson et al., 2012). Occasionally this program fails to 

extract the gradient table from the DICOM image series (some MRI scanners or the 

associated PACS systems use specific techniques to arrange the keyword dictionary of the 

DICOM), so we have provided a temporary amendment using Matlab code on the FAQ 

section of the Web site: http://diffusion.brainnetome.org. Hence, three files are generated: one 

is the 4D DWI volume series, and the other two are the b-value table and gradient direction 

table. These three files are used in several subsequent steps.  

http://diffusion.brainnetome.org/
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The DWI volume series (as a 4D zipped NIFTI file) are then corrected for the distortions 

induced by off-resonance field and the misalignment caused by subject motion. The 

off-resonance effects are usually caused by the eddy currents of switching the diffusion 

encoding gradients and the susceptibility distribution of the imaged subjects, resulting in the 

deterioration of images due to blurring, spatial distortion, local signal artifacts, etc. The 

motion effects also cause image blurring and geometric misalignment (Andersson and 

Sotiropoulos, 2016; Bernstein et al., 2004). Advanced correction mechanism for 

susceptibility-induced distortion when data acquisition with different phase-encode 

parameters is becoming increasingly popular. To include the correction method using different 

phase-encode information, we have exported the functions of topup, applytopup, eddy and 

eddy_combine from FSL (Andersson and Sotiropoulos, 2016; Andersson et al., 2003; Smith et 

al., 2004), compiled them on both Linux and Windows platforms, and packed the executable 

files into the latest version of DiffusionKit. Unfortunately, most clinical acquisitions do not 

currently meet the requirement (two or more acquisitions where the parameters are different 

so that the mapping fields for distortion correction are different.) of topup. To handle this 

issue, we implemented a function called bneddy to correct eddy-current induced distortion 

and head movements efficiently. bneddy applies rigid and affine registrations to amend the 

distortions and misalignment, using a strategy similar to the eddy_correct in FSL (Jenkinson 

et al., 2012). The implementation of this step utilizes the module of NiftyReg, and it harnesses 

a multi-scale-based block-matching strategy to estimate the location displacements between 

images (Ourselin et al., 2001). Subsequently, a transformation model is also applied for the 

gradient table by the bnrotate_bvec function. If the DWI dataset contains multiple reference 

images (namely b0 images), one can specify which one is the target image during the 

correction and alignment.  

Because the image content outside the brain tissue is irrelevant, the next step strips this 

part of the image from the brain tissue using a deformable model evolved to locate the brain's 

surface (Smith, 2002). Although this step is not compulsive for DiffusionKit, it is always 

recommended to save computation time on these irrelevant data. 

It is necessary to check the results for each step during medical image processing and 

hence the GUI of DiffusionKit provides a handy check tool in each step (by the checkbox). 

This design also applies to the sequential modeling and tracking steps. 

2.3 Modeling within voxels 

To date, there have been a large number of modeling strategies for the distribution 

function within voxels. Considering the computational burden and the applicability to 

practical data collections, DiffusionKit adopts two typical modeling methods: one is the 

popular DTI method, and the other is the HARDI method (Xie et al., 2015).  

Generally, under a diffusion-weighted spin-echo EPI pulse sequence, the propagation of 

water molecules will be hindered by the white matter microstructures, and the detected DWI 

attenuated signal 𝑆𝑖(𝐪) is expressed as (Cheng et al., 2013; Descoteaux et al., 2006) 

𝑆𝑖(𝐪) = 𝑆0 ∫ 𝑃(𝐑)exp(−2𝜋𝑖𝐪𝐑)
ℝ3 d𝐑,      (1) 

where P(R) is the diffusion probability density function called ensemble average propagator 

(EAP) to describe the ensemble mean probability in the voxel that the water molecules move 
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with displacement R, S0 is the reference image collected without diffusion gradients, and q is 

the wave vector in q-space, which is dependent on gyromagnetic ratio, the i-th diffusion 

gradient vector, etc. When we simply assume a Gaussian distribution for the P(R), Eq. 1 can 

be simplified as (Alexander et al., 2007; Basser et al., 1994), 

𝑆𝑖 = 𝑆0 exp(−𝑏𝐠𝑖
𝑇𝐃𝐠𝑖),      (2) 

where b is the general diffusion weighting factor, usually called the b-value, gi is the i-th 

gradient direction, and the D is the diffusion tensor characterized by the following positive 

definite matrix (Alexander et al., 2007; Basser et al., 1994), 

𝐃 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧
𝐷𝑥𝑦 𝐷𝑦𝑦 𝐷𝑦𝑧
𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

],      (3) 

Tensor D is a direction-independent descriptor that is able to characterize the properties of 

white matter microstructures while avoiding the effects of the gradient directions. From the 

above tensor D, its eigenvalues can be readily drawn as 𝜆1, 𝜆2, 𝜆3. The details of calculate 

tensor D are included in the Supplementary Materials. 

This model is useful for extracting a series diffusion index, such as FA, MD and RA, as 

described by (Alexander et al., 2007) 
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where 𝜆𝑖(𝑖 = 1,2,3) indicate the eigenvalues of the diffusion tensor D and λ̅ is the mean 

eigenvalue. 

 Although, to solve Eq. 2, only 6 noncollinear gradient directions plus one b0 image are 

required, usually more than 6 gradient directions are recommended for a more robust solution. 

Additionally, in the ideal case, the diffusion attenuated signal 𝑆𝑖 should be strictly lower than 

the baseline image S0. However, due to various types of noise existing on DWI images, such 

as the eddy current and head motion, the above case will occasionally be violated, particularly 

in the cerebrospinal fluid (CSF) or outside the brain tissue; thus, these types of noised-signals 

will inevitably deteriorate the solution of Eq. 2. Different researchers have devised different 

methods to deal with this problem, which will be described in the Results and discussion 

section. 

For the HARDI method, DiffusionKit chooses two representative methods (Xie et al., 

2015): the decomposition-based SPFI method (Cheng et al., 2010a; Cheng et al., 2010d) and 

the deconvolution-based CSD method (Tournier et al., 2007). The SPFI estimates both the 

orientation distribution function (ODF) and ensemble EAP profile by representing the 

diffusion signal using the SPF basis; this process works well even for voxels with noise and 

low anisotropy. It also supports a multi-shell DWI data collection scheme.  

In SPFI method, which was first proposed by Assemlal et al.(Assemlal et al., 2009), the 
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diffusion signal attenuation can be represented by the spherical polar Fourier basis functions 

in Eq. 5 

𝐸(𝑞𝐮) =
𝑆𝑖(𝒒)

𝑆0
= ∑ ∑ ∑ 𝑎𝑛𝑙𝑚𝐺𝑛(𝑞)𝑌𝑙

𝑚𝑙
𝑚=−𝑙

𝐿
𝑙=0

𝑁
𝑛=0 (𝐮),   (5) 

𝐺𝑛(𝑞) = [
2𝑛!

𝜁3/2Γ(𝑛+3/2)
]
1/2

exp (−
𝑞2

2𝜁
) 𝐿𝑛

1

2 (
𝑞2

𝜁
),           (6) 

where, q=qu and u is the unit vector, 𝜁 is the scale factor, 𝛤 is the Gamma function, Y is the 

real spherical harmonic (SH) basis, and L is the generalized Laguerre polynomial (Assemlal 

et al., 2009; Cheng et al., 2010a; Cheng et al., 2010d). Furthermore, Cheng and his colleagues 

proposed an analytical solution for transforming the coefficients of E(q) to the coefficients of 

the diffusion ODF proposed by Wedeen et al. (2005) and the coefficients of EAP profile 

represented by the spherical harmonics basis. It was reported that the EAP profile usually had 

greater ability to characterize the main diffusion directions than ODF (Cheng et al., 2010d). 

The implementation of SPFI is provide in the Supplementary Materials. 

The CSD method assumes that multi-fiber distribution within voxels can be achieved by 

convolution between a single fiber response function and the fiber orientation density 

function (fODF/FOD). Furthermore, it is also assumed that all of the white matter regions of 

the brain share the same diffusion characteristics, except that different numbers of fibers are 

oriented with specified angles and weights. Hence, for one voxel, the measured DWI signal 

can be expressed as the convolution between the FOD and the general response function 

(Tournier et al., 2004). 

S(𝜃, 𝜙) = 𝐹(𝜃, 𝜙)⊗ 𝑅(𝜃),               (7) 

where R(𝜃) is the response function, which must be estimated from the well-aligned white 

matter regions (in practice, judged by the FA value), and F(𝜃, 𝜙) is the fiber orientation 

density function. When the response function is obtained, similar to the SPFI method 

described above, representing both 𝐹(𝜃, 𝜙) by spherical harmonic basis, we can utilize the 

deconvolution of  R(𝜃) from S(𝜃, 𝜙) to estimate the FOD. A reliable solution for Eq. 7 is 

obtained by including a constraint on the negative values of the FOD (Tournier et al., 2007). 

Because these two methods represent their results by SH basis, DiffusionKit unifies the 

coefficient alignment, as described in Table 2. This unification facilitates the following fiber 

tracking and visualization steps. 

2.4 Fiber tracking 

DiffusionKit currently provides a streamlined fiber tracking method for both DTI and 

HARDI modeling results. The DTI dataset contains eigenvector information that indicates the 

main directions within the voxels, resulting in the implementation of streamlined strategy that 

is straightforward (Basser et al., 2000; Conturo et al., 1999). For the HARDI dataset, the main 

directions should first be located across the entire ODF/FOD of each voxel. DiffusionKit 

applies hierarchical resolution for the ODF/FOD surface representation, enabling rapid, rough 

localization of the peaks as the initial positions and then precisely searching within the 

constrained local surface by the gradient descent algorithm. The illustration of this strategy is 

presented in Fig. 3. In panel A, the red ball indicates one of the local maxima after a global 

search of the entire ODF/FOD. Because such a search process in only for a rough triangulated 

mesh of the distribution, it is relatively rapid. In the current design of DiffusionKit, we 
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perform a discrete search on a coarse mesh (81 directions in a hemisphere from an icosahedral 

tessellation) to locate possible local maxima. Then, we remove the local maxima with values 

less than 1/4 of the maximal value among the 81 values. Henceforth, as shown in panel B of 

Fig. 3, we set the remaining maxima as initial points and perform a gradient descent search to 

update the maxima precisely along the continuous surface. Such a two-step design effectively 

avoids falling into nuisance local maxima aroused by noisy signals, while keeping a rapid and 

effective search. 

In seeking good compatibility with the existing toolkits in the literature, DiffusionKit 

adopted the TrackVis track file format (.trk) (Wang et al., 2007), whose header was adapted 

from the widely used NIFTI data format, including the voxel spacing parameters, orientation 

matrix, x/y/z flip flags, etc. Furthermore, we have enriched the “reserved section” using some 

pre-computed properties of fiber bundles, the version number of the current track format, the 

total number of fibers, the mean length/FA/MD of the fiber contained in this file and the 

whole volumes of the fiber bundles in float type (single precision). Additionally, the attributes 

(FA/MD and fiber length) of each fiber have also been stored in the extended section. These 

pre-computed statistical attributes of the fiber bundle, in fact, are by products of DiffusionKit 

during the fiber tracking process, which is also the case for all of the other implementations in 

the existing toolkits, so we saved these attributes in the “reserved section” both for visualizing 

the fiber bundle and for connectivity-based analysis of the brain network. All of the details of 

the data format for DiffusionKit are also detailed on the DiffusionKit Web site. 

2.5 Viewing and visualization 

The combination of the analysis steps and visualization steps is a critical feature of 

DiffusionKit. This combination facilitates both the results checking during processing and the 

visualization of the final results (e.g., white matter fibers). DiffusionKit is able to visualize 

several types of images, including 3D/4D NIFTI data sets, region of interest (ROI) overlays, 

DTI/ODF/FOD glyphs and fiber bundles. There are various configurations for the objects, 

such as colors, transparency, section transition, and hidden on/off.  

The input files for visualization are basically classified into four types -- background, 

ROI, fiber bundle and diffusion glyph (including diffusion tensor and FOD/ODF) -- and each 

type of files has its own specific attributes. The background images are usually volume 

images, such as T1/T2 or single DWI/fMRI volumes, and one of the important roles is to 

facilitate the location of the anatomical regions of interest, while for the 2D show panel, the 

software is also able to support multiple background image importation, which is used to 

compare different background layers. For example, it is able to validate whether the 

alignment of two images is sufficient. The 3D show panel supports only one active image at a 

time, and it supports surface/volume rendering, which is implemented by freely moving the 

intensity and opacity curve in the dedicated control panel. For the ROI images, there are 

switches to determine whether the specific ROI file will appear in the 2D/3D show panels. 

Additionally, there are also color and opacity settings for individual ROI files, which are 

utilized to adjust whether they are overlaid or specifically labeled. For the white matter fiber 

data, one can choose the rendering types as lines (faster rendering) or tubes (fancy but, in 

contrast, slower), the color mode (by the fiber directions or mono-color for individual fiber 

bundle) and the opacity factor for each fiber bundle. For the glyph images, including tensors 
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and FOD/ODF, it provides a versatile tool to validate whether the modeling results for the 

individual voxel are correct. One can choose the rendering resolution for each glyph 

(depending on the computer graphic card) and the coloring mode for the glyph (by directions 

or by pointing to the ODF origin distance). Specifically, one can overlay the main directions 

on the individual glyph, and the main directions for each voxel are computed by the 

bnSH2Direction function; please refer to the next section, Miscellaneous tools, and the 

DiffusionKit Web site for more information. 

In the Results and discussion section, some of these features will be demonstrated; please 

refer to the “-h” argument for help when you execute specific function and the Web site for 

more detailed descriptions. 

2.6 Miscellaneous tools 

To establish a complete pipeline for constructing the anatomical brain network, 

DiffusionKit delivers a series of tools that facilitate image and white matter fiber 

manipulations. The following content will describe some important functions of DiffusionKit, 

which have not been adopted in the GUI. 

2.6.1 Quality assurance 

Quality assurance is a comprehensive and significant issue in the area of diffusion MRI. 

Many factors and types of artifacts can degrade the quality of diffusion MRI image. Using 

diffusion MRI data with poor quality can negatively affect the results of studies, consequently 

leading to wrong conclusion (Oguz et al., 2014). We provide a preliminary strategy to 

facilitate quality control. We include the function bnQA in DiffusionKit which calculates the 

mean difference (𝑆𝑑𝑖𝑓𝑓−𝑚𝑒𝑎𝑛) between the measured DWI signal value and the estimated 

signal value based on the reconstructed tensor as defined in Eq. 8 and stores the values into a 

3D Nifti file. N is the number of gradient directions and 𝒈(𝑖) is i-th gradient direction. 𝑠0 is 

the signal without diffusion gradient and D is the diffusion tensor. This utility can help users 

find out some kinds of artifacts or noise efficiently as shown in Fig. 4. 

𝑆𝑑𝑖𝑓𝑓−𝑚𝑒𝑎𝑛 =
∑ |𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝒈(𝑖))−𝑠𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝒈(𝑖))|
𝑁
𝑖=1

𝑁
=

∑ |𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝒈(𝑖))−𝑠0∗𝑒
−𝑩𝑖𝑫|𝑁

𝑖=1

𝑁
,  (8) 

𝑩𝑖 = 𝑏(𝑖) ∙ [𝑔𝑥𝑔𝑥(𝑖)2𝑔𝑥𝑔𝑦(𝑖)2𝑔𝑥𝑔𝑧(𝑖)𝑔𝑦𝑔𝑦(𝑖)2𝑔𝑦𝑔𝑧(𝑖)𝑔𝑧𝑔𝑧(𝑖)],     (9) 

𝐃 = [𝐷𝑥𝑥𝐷𝑥𝑦𝐷𝑥𝑧𝐷𝑦𝑦𝐷𝑦𝑧𝐷𝑧𝑧]
𝑇

,                                   (10) 

2.6.2 Image processing 

Image registration is a critical step in image processing. DiffusionKit integrates a 

powerful and elegant toolkit, NiftyReg (Modat et al., 2010; Ourselin et al., 2001; Rueckert et 

al., 1999), as the registration module, where it implements a multi-scale-based 

block-matching strategy to measure the location displacements between images (Ourselin et 

al., 2001). It contains several key steps for the image registration process, including the initial 

rough rigid/affine transformation (the reg_aladin function), precise nonlinear registration (the 

reg_f3d function) and the operation of applying a deformation matrix (the reg_resample 
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function). The bncalc module implements some basic operations on images, such as the 

addition, subtraction, multiplication and division operations, and it creates ROIs given the 

coordinates defining the ROIs. The bnmerge/bnsplit pair merges a series of 3D volumes (such 

as DWI volumes or fMRI volumes) into an integrated 4D image, and vice versa. The 

bnroisplit function breaks the ROI definition file, such as an AAL template file, into a series 

of ROI files, each of which contains only one ROI, and the name is the ROI label given by the 

“-l” parameter. 

2.6.3 FOD/ODF data processing 

The bnSH2Direction function is used to compute the possible main directions given a 

FOD/ODF expression (the coefficients of spherical basis are stored as a NIFTI file, as in 

Table 2). 

2.6.4 Fiber manipulation 

Once we obtain the tractography of the desired regions, it is possible to construct an 

anatomical connectivity network of the brain. The fiber manipulation module is designed to 

prune/combine the generated white matter bundles by means of and/or/not logical operations. 

When one specifies a white matter bundle that connects two given ROIs, according to the 

existing anatomical knowledge, such a track should or should not go through another 

specified ROI, as illustrated in Fig. 5, and this requirement is able to be implemented easily 

by the fiber manipulation module, including bnfiber_end and bnfiber_prune. In Fig. 5, there 

are three ROIs, labeled A, B and C. If one wants to obtain the pink fiber bundle from the 

while brain fibers, then he or she can use “and B and C” to prune the original fibers. Similarly, 

if one wants to obtain the black bundle, then he or she can use “and A and C not B”, and if 

one wants to obtain all of the fibers, he or she can use “and A” or “or B or C”. 

The bnfiber_map function generates the fiber density map from the whole tractography 

(Calamante et al., 2010). 

2.6.5 Anatomical network construction 

The pruned fiber bundle is able to define the connectivity between two anatomical 

regions, and some critical attributes are stored in the reserved section of the .trk file, such as 

the total number of fibers, mean FA, mean MD, etc. However, DiffusionKit provides a 

comprehensive function, bnnetwork, to construct the connectivity network easily from the 

track results. 

 

3. Results and discussion 

The DiffusionKit package is implemented in C/C++ and Qt/VTK, is freely available at 

http://diffusion.brainnetome.org and https://www.nitrc.org/projects/diffusionkit. Table 3 lists 

the main functions of DiffusionKit, and the full manual and associated tutorials are available 

from the website: http://diffusion.brainnetome.org. The following results are obtained using 

DiffusionKit. 

http://diffusion.brainnetome.org/
https://www.nitrc.org/projects/diffusionkit
http://diffusion.brainnetome.org/
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3.1 Validations of diffusion tensor computing 

The diffusion tensor and its associate attributes (e.g., FA) calculations are basic functions 

of DiffusionKit. For this part, we adopted one subject DWI dataset acquired from a GE 

Discovery 750 3T MRI scanner at the University of Electronic Science and Technology of 

China. These data were also used in our previous study (Xie et al., 2015); for a self-contained 

description, the main parameters are repeated here: field-of-view (FOV) = 256 * 256 mm2, 

matrix size = 128 * 128, slice = 75, voxel size = 2 * 2 * 2 mm3 and without a slice gap. The 

current work used the dataset with b-value = 1000 s/mm2 on 64 noncollinear diffusion 

gradient directions. For impartial validation, the raw data, which are available through the 

DiffusionKit Web site, were pre-processed using existing software, dcm2nii and FSL 5.0.6 

(eddy_correct + bet2). Then, the processed data were fed into the software to generate the FA 

results. 

It should be noted that we did not conduct statistical analysis of a cohort of subjects 

because the comparisons of the voxel-wise attributes were conducted in the native DWI space, 

and the inter-object alignment required by the group comparisons would inevitably have 

introduced unexpected errors that would have deteriorated the nature of the comparisons.  

Herein, the comparisons are conducted between the DiffusionKit (abbr. DK) and two 

other well-known packages: FSL/FDT (abbr. FSL) (Jenkinson et al., 2012) and Diffusion 

Toolkit (abbr. DT) (Wang et al., 2007). Fig. 6 shows the FA discrepancy separately for DK vs. 

FSL (panel A), DT vs. FSL (panel B) and DK vs. DT. Figs. 6-8  are all shown by MRIcron 

(MRIcron). The non-colored regions indicate that the differences between the two software 

programs are negligible (the absolute value is less than 1.0e-6). Fig. 6 shows that, in the white 

matter regions, there is nearly no significant difference between DK and FSL, and the 

differences in panels B and C also approach 0. For a zoom-in check of these difference, in Fig. 

7, the color window is set as [0.0005, 0.025], and this setting removes most of the error 

regions in Fig. 6, indicating that the errors among these three groups of comparisons are not 

confined to the white matter regions. Similarly, in Fig. 8, the first eigenvector of the tensor is 

compared for the three groups, and it also shows the identical error patterns as in Figs. 6 and 7. 

It should be emphasized that, compared to the FSL, DK and DT have similar error patterns, 

which remain in the non-white matter regions. Actually, in these non-white matter regions, 

such as the CSF areas, the collected DWI signal usually are not stable, resulting Si (the 

measured signal value of the i-th diffuson-weighted volume) > S0 (the measured signal value 

of the non-diffusion-weighted volume) for those voxels. Although some methods have been 

proposed to handle with suchlike ill-posed equations, different researchers have not reached a 

consensus yet in the literature (Veraart et al., 2013), so in current stage, DiffusionKit does not 

use any weights to solve the problems.  

3.2 Validations of the FOD computing  

Because the analytical SPFI method was proposed by our group (Cheng et al., 2010a; 

Cheng et al., 2010d), and it has been adopted in other papers (Cheng et al., 2013; Xie et al., 

2015), it is not necessary to compare its implementation to others. Hence, we only conducted 

the comparisons for the FOD computing between the DiffusionKit and MRtrix (Tournier et al., 

2012). Fig. 9 shows the FOD reconstruction results based on the DWI data described above, 
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with b=2000 s/mm2, which was the recommended protocol in Xie et al (2015), and the same 

fiber crossing region, the centrum semiovale. The two columns of Fig. 9 separately indicate 

the left and right centrum semiovale, with row A from DiffusionKit and row B from the 

MRtrix package, while row C is voxel-wise absolute angle difference of the main directions 

between rows A and B. Visual inspection of rows A and B did not show significant difference; 

furthermore, row C showed that the angular difference between rows A and C were no larger 

than 8 degrees, which is a reasonable error because it is in agreement with the mesh precision 

for searching in Fig. 3.  

3.3 Fiber tracking of different methods in DiffusionKit 

This section shows several modeling and fiber tracking results implemented by 

DiffusionKit. The dataset with 2000 s/mm2 was from the “Fiber Cup”, the intention of which 

is to evaluate the performance of different modeling and tracking approaches (Fillard et al., 

2011). Figs. 10 and 11 show the modeling and tractography results, respectively, by 

DTI/SPFI/CSD. The DTI method failed to distinguish the crossing fibers (see Fig. 11D), 

while the SPFI and CSD methods were successful, in agreement with what has been reported 

in the literature. The details and source script for how to estimate the tensor/ODF/FOD and 

track the fibers are included in the Supplementary Materials and are also available on the 

DiffusionKit Web site.  

Additionally, using the ROIs defined in Wakana et al’s paper (2007), we further validated 

the tractography module of DiffusionKit. Fig. 12 shows the tractography results using the 

same data as in Figs. 6-8 (b = 1000 s/mm2, DTI modeling) from the part of the corticospinal 

tract (panel I) and the cingulate gyrus (panel II), which are in agreement with the Figs. 4 and 

2 in (Wakana et al., 2007), respectively. 

3.4 Construction of an anatomical network 

Here, we demonstrate how DiffusionKit constructs an anatomical brain network based on 

DWI image series. As a short example, the diffusion data of one subject from HCP Q1 release 

(#100307) (Van Essen et al., 2013) were adopted, containing multi-shell collections of 

b=1000, 2000 and 3000 s/mm2, and this was also to validate the ability of SPFI on the 

reconstruction based on multi-shell data. The whole brain fiber tracks were pruned by ROI 

pairs from the AAL template (only the cerebral part), which defined the start and end regions 

connected by the resulting fibers. Fig. 13 shows the connectivity network derived from the 90 

ROIs weighted by the number of fibers (indicated by the color bars), which demonstrated 

strong similarity to the results of Li et al (see Fig. 2 in (Li et al., 2009)), which used an 

averaged binarized network. The details and source script concerning how to construct the 

network are described in the Tutorial section on the website of DiffusionKit. 

 

4. Conclusions 

In this work, we developed a light, one-stop package called DiffusionKit for diffusion 

MRI data analysis, which included all of the required steps from the original DICOM images 

to brain anatomical network construction and user-friendly operation and visualization. Along 
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the entire pipeline, various types of visualization schemes dedicated to different results were 

also provided.  

In contrast with the existing toolkits in the literature, DiffusionKit has comparable 

features and merits. In Table 2, popular tools in the community that have similar functions are 

listed and compared with DiffusionKit. This comparison is specifically focused on brain 

anatomical network construction and image/fiber visualization, which are the main features of 

DiffusionKit. Table 2 demonstrates that DiffusionKit has a complete pipeline for dMRI data 

analysis and visualization, with a small installation size and cross-platform support.  

In summary, DiffusionKit provides an all-in-one solution for researchers to perform 

dMRI studies, especially for those who are not acquainted with corresponding algorithms and 

proficient in programming. For both expert and non-expert users, the installation is rapid and 

convenient. The self-contained installation package is approximately 50 M (<15 M for MS 

Windows). The users do not require any other software to perform a complete dMRI data 

analysis pipeline, including data format conversion, preprocessing, local modeling and 

reconstruction, fiber tracking, fiber statistics and visualization. DiffusionKit was designed for 

interaction via a GUI or command-line window. The GUI interface delivers most of the basic 

tools and parameters for configuration necessary to run the whole pipeline. For advanced 

users who are able to use scripts, command-line calling can be used to perform batch 

computing for large datasets. The toolkit can serve as a standalone image viewer for 

T1/dMRI/DTI/HARDI images as well. 
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Figure Legends 

Figure 1. The overall design framework and the main modules of DiffusionKit. 

 

Figure 2. The main interface of DiffusionKit, which has two core modules shown in the top-right 

panel: Processing and Visualization. 

 

Figure 3. Illustrations of how to search for the main directions from the FOD/ODF mesh. Panel A is a 

sparse mesh (81 directions in a hemisphere from an icosahedral tessellation) for rough localization, 

and Panel B is for a precise search constrained in a local area by the gradient descent algorithm. 

 

Figure 4. The example of bnQA for two subjects. The “DWI” column is the original DWI image and 

the “QA” column is Sdiff-mean for Subject1 and Subject2. The green arrows indicate the regions 

affected by artifact or noise and these regions cannot be detected when you checking the original 

DWI images visually. 

 

Figure 5. Illustrations of how to extract a specific fiber bundles from entire brain tractography, which 

will utilize logical operations by bnfiber_prune function, including “and”, “or” and “not” 

operations. 

 

Figure 6. Comparisons of FA results among three toolkits: DiffusionKit (Leemans et al.), FSL 

(Jenkinson et al., 2012) and Diffusion Toolkit (DTITool) (Wang et al., 2007). Each panel was 

generated by the MRIcron (MRIcron), and the absolute errors less than 1.0e-6 were assumed to be 

not colored. Panels A, B and C separately show pair-wise error maps. 

 

Figure 7. Similar results as Fig. 6, except that the errors less than 0.0005 are not shown.  

 

Figure 8. Comparisons of main direction results among the three toolkits: DiffusionKit (Leemans et 

al.), FSL and Diffusion Toolkit (DTITool). The display pattern is exactly the same as in Fig. 6. 

 

Figure 9. Validations for the FOD implementation of DiffusionKit. The left and right centrum 

semiovales are used to reconstruct the FOD separately by DiffusionKit (Row A) and MRtrix 

(Tournier et al., 2012) (Row B). Row C shows the total angle errors for up to 3 main directions for 

each voxel.  

 

Figure 10. Validations for the voxel-wise distribution reconstructions of DiffusionKit for the “Fiber 

Cup” phantom. The first row (A-C) shows the overall views of the DTI tensor (panel A), SPFI ODF 

(panel B) and CSD FOD (panel C). The second row (D-F) shows the zoom-in views of the first row. 

 

Figure 11. Illustrations for the tractography results based on the voxel-wise reconstructions in Fig 10. 

The first row (A-C) shows the global tractography results and the last row shows the crossing fiber 

bundles constrained by the ROI pairs, red balls and green balls, in the middle row (panel G). The 

tract based on DTI fails to show the two branches of the crossing region (panel D). 
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Figure 12. Validations for the tractography results. Panel I and panel II show two fiber bundles 

separately constrained by ROI pairs (two groups of A and B, corresponding to Fig. 4 and Fig. 2, 

respectively, in (Wakana et al., 2007), and both the ROI definitions and fiber tract are extremely close 

to the paper of Wakana et al (2007). 

 

Figure 13. An anatomical connectivity network constructed by DiffusionKit. The color bar indicates 

the numbers of fibers connecting the ROI pairs (AAL template) separately along x- and y-axis labels. 
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Table 1. Comparisons between DiffusionKit and other toolkits freely available on the internet. The √ and × indicate “yes” and “no” separately. 

 

Package DiffusionKit 

FSL 

(Jenkinson 

et al., 2012) 

CMTK 

(Daducci 

et al., 

2012) 

PANDA 

(Cui et al., 

2013) 

MRtrix 

(Tournier 

et al., 

2012) 

MriStudio 

(Jiang et al., 

2006) 

TrackVis 

(Wang et al., 

2007) 

Camino 

(Cook et 

al., 2006) 

DSI Studio 

(Yeh et al., 

2013) 

ExploreDTI 

(Leemans et 

al., 2009) 

MedInria 

(Toussaint et 

al., 2007) 

DiPy 

(Garyfallid

is et al., 

2014) 

Programming language C/C++ C/C++ Python MATLAB C/C++ C/C++ C/C++ Java C/C++ MATLAB C/C++ Python 

Cross platform (Linux/Win)* √ × √ √ × × √ × √ √ √ √ 

Installation size (MBytes)** 15-50 >300 15 10 1.5 1.8 28 15 54 159 47 5 

Standalone √ √ × × √ √ √ √ × × √ × 

GUI √ √ √ √ × √ √ × √ √ √ × 

Command-line √ √ √ √ √ × √ √ √ √ × √ 

Preprocessing √ √ √ √ × √ × √ × √ √ √ 

Modeling DTI √ √ √ √ √ √ √ √ √ √ √ √ 

HARDI √ √ √ × √ × √ √ √ √ × √ 

Fiber tracking √ √ √ √ √ √ × √ √ √ √ √ 

Fiber statistics √ √ √ √ √ √ √ √ √ √ √ √ 

Visualization Slice/Volume √ √ × × √ √ √ × √ √ √ √ 

Tensor/ODF/FOD √ × √ × √(2D) × × × √ √ × √ 

Fiber √ × √ × √ √ √ × √ √ √ √ 

* indicates that it is able to support at least two operating systems, such as Linux and MS Windows 

**indicates a rough size that usually varies across different operating systems, so the installation size in this row is only for reference; it should be noted that some tools, 

such as FSL and MedInria, integrate other functions than those for dMRI processing. Moreover, some toolkits, such as CMTK and PANDA, only provide script pipeline 

which requires 3rd party software (FSL, MRtrix, etc) for computing. 
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Table 2. The coefficient alignment of the ODF/FOD estimation results on the SH basis. 

 

[0] [1] [2] [3] [4] [5] [6] [7] … 

Y(0,0) ReY{(2,2)} ReY{(2,1)} Y(2,0) ImY{(2,1)} ImY{(2,2)} ReY{(4,4)} ReY{(4,3)} … 
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Table 3. List of main functions of the DiffusionKit. 

 

Functions Called Names Description (“-h” for more information) 

Preprocess dcm2nii Convert DICOM to unified 4D NIFTI files 

bneddy Correct eddy current induced distortion and head motion 

topup/eddy 
Correct eddy current and susceptibility induced distortion and head 

movements 

bet2 Extract brain tissue (Smith, 2002) 

bnsplit/bnmerge Split the 4D image along the 4th dimension and the opposite side 

Modeling bndti_estimate Estimate tensor model, output FA, MD, tensor, etc. 

bnhardi_ODF_estimate 
Estimate ODF by the SPFI method (Assemlal et al., 2009; Cheng et 

al., 2010d) 

bnhardi_FOD_estimate Estimate FOD by the CSD method (Tournier et al., 2007) 

Tracking bndti_tracking Track white matter fiber based on the tensor model 

 bnhardi_tracking Track white matter fiber based on ODF/FOD 

Visualization bnviewer Visualize various data, e.g., image/ODF/FOD/ROI/fiber 

Tools bncalc/bnroisplit Calculation, e.g., add/subtract/multiply/divide and ROI generation 

bninfo Show the head information of DICOM and NIFTI files 

reg_aladin/reg_f3d 
Inter/intra-image registration across multiple modalities (Modat et al., 

2010; Ourselin et al., 2001) 

reg_resample/reg_transform 
Resample and apply transformation matrix (Modat et al., 2010; 

Ourselin et al., 2001) 

bnfiber_end/bnfiber_prune 
Prune fiber bundle, logical and/or/not based on ROIs, to generate the 

connectivity bundle for specified ROIs 

bnfiber_stats Export attributes of fiber bundles, e.g., fiber number, length, FA, etc. 
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bnfiber_map 
Generate the fiber density going through each voxel (Calamante et 

al., 2010) 

 bnnetwork 
A unified function to construct the anatomical network for given 

ROIs from the whole brain tractography 

   

 

 

 


