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Abstract 

Higher brain function requires integration of distributed neuronal activity across large-scale 

brain networks. Recent scientific advances at the interface of subcortical brain anatomy and 

network science have highlighted the possible contribution of subcortical structures to large-

scale network communication. We begin our review by examining neuroanatomical literature 

suggesting that diverse neural systems converge within the architecture of the basal ganglia 

and thalamus. These findings dovetail with those of recent network analyses that have 

demonstrated that the basal ganglia and thalamus belong to an ensemble of highly 

interconnected network hubs. A synthesis of these findings suggests a new view of the 

subcortex, in which the basal ganglia and thalamus form part of a core circuit that supports 

large-scale integration of functionally diverse neural signals. Finally, we close with an 

overview of some of the major opportunities and challenges facing subcortical-inclusive 

descriptions of large-scale network communication in the human brain. 



 

1.1 Introduction 

Concepts of functional localization and specialization have shaped modern perspectives of 

neuroscience. These principles view the brain as a complex multi-scale system composed of 

specialized neural sub-systems that are themselves responsible for executing specialized 

neural computations and cognitive operations. Extensive evidence for the concept of 

functional specialization has been observed across multiple levels of spatial description from 

neuronal circuits through to large-scale neural systems, firmly cementing this principle in 

theoretical accounts of brain organization.  

 

However, the recent emergence of sophisticated methods for the acquisition and analysis of 

neuroanatomical data has led to an increasing recognition that functional specialization does 

not occur in isolation. Instead, higher brain function also requires the integration of 

distributed neuronal activity across specialized brain systems
1
 (Tononi et al., 1994; Mesulam, 

1998; Sporns, 2013). Indeed, accumulating evidence suggests that integration across 

distributed neural systems supports diverse cognitive processes including language (Friederici 

and Gierhan, 2013), visual recognition (Behrmann and Plaut, 2013), emotion (Pessoa, 2012), 

cognitive control (Power and Petersen, 2013) and learning (Bassett et al., 2011; Bassett et al., 

2015). The overall picture emerging from this work is that a dynamic and coordinated balance 

between functional integration and segregation is essential for the operation of distributed 

brain networks underlying cognition and adaptive behaviour (Tononi et al., 1994; Fox and 

Friston, 2012; Sporns, 2013).  

 

                                                        
1
 The principles of functional integration and segregation scale with brain organization. For instance, 

functional integration can be understood at the synaptic and cellular level through the temporal and 

spatial summation of incoming synaptic inputs. Equally, functional integration may be understood at 

the systems-level through „binding‟ of multimodal information (Mesulam, 1998) and communication 

across large-scale neural communities (Sporns, 2013). In this article, we examine functional integration 

and segregation at the systems-level. Although this discussion invariably requires consideration of 

mechanisms on the scale of cells and circuits, our primary focus will be on macroscopic neural systems. 



Grounding the theoretical principle of functional integration in a neuroanatomical framework 

has been of major neuroscientific interest over the past 30 years. Fundamental insights into 

cortical organization have been gained from detailed examination of tract-tracing data in 

experimental vertebrate organisms and neuroimaging data in humans. This body of work has 

demonstrated that the vertebrate brain is organized into a complex hierarchical network in 

which specialized neural communities communicate via putative transmodal convergence 

zones (Damasio, 1989; Mesulam, 1998; Sepulcre et al., 2012; Bell and Shine, 2015; Braga 

and Leech, 2015) and network hub regions [for review, see (van den Heuvel and Sporns, 

2013b)] (Glossary). 

 

Despite insights into cortical substrates underpinning systems-level integration in the brain, 

the subcortex has been underrepresented in prior descriptions of whole-brain anatomical 

connectivity (Pessoa, 2014). This omission may in part reflect a pervasive „corticocentric‟ 

view of higher brain function, in which the neocortex is considered the key structure for 

higher function, while deep gray-matter structures simply subserve cortical demands (Parvizi, 

2009). Contrary to this viewpoint however, cortico-subcortical circuits are linked to a diverse 

range of limbic, cognitive and motor control functions (Chudasama and Robbins, 2006; 

Pennartz et al., 2009). Furthermore extensive reciprocal and non-reciprocal circuits connect 

the cortex with the basal ganglia (BG), thalamus, cerebellum and brainstem (Alexander et al., 

1986; Shepard and Grillner, 2010). Thus, from both an anatomical and functional standpoint, 

a complete and accurate description of brain structure and function necessarily requires 

consideration of the extensive cortico-subcortical architecture. 

 

In this Review, we examine recent evidence suggesting that subcortical macrocircuits 

connecting the BG, thalamus and cortex are involved in large-scale functional integration. We 

begin by examining findings from anatomical work revealing that the BG and thalamus 

support the convergence of information arriving from cortical, subcortical and 

neuromodulatory systems. Following this, we discuss complementary results from recent 



literature that has adopted an explicit network perspective to examine structural brain 

organization. In synthesizing these findings, we arrive at a new view of the subcortex in 

which large-scale communication and information integration is a key computational priority. 

Finally, we conclude with an overview of the opportunities and challenges facing subcortical-

inclusive descriptions of large-scale network communication in the human brain. 

 

2.1 Integration in Basal Ganglia & Thalamic Circuits 

Interactions between the cortex and BG support goal-directed behaviours, including decision-

making, motor control, action selection, learning, and habit formation (Graybiel et al., 1994; 

Houk and Wise, 1995; Pennartz et al., 2009). These interactions take place throughout large-

scale anatomical loops that link the cortex, BG and thalamus (Alexander et al., 1986), and are 

essential for vertebrate forebrain function.  

 

2.1.1 Cortical–Basal Ganglia Loop Architecture  

Projections from the cortex terminate in the striatum, the major BG input structure. BG output 

is then channeled back to cortex via the thalamus; thereby completing the cortical–basal 

ganglia (CBG) „loop‟ architecture (Figure 1a). CBG circuits are organized according to a 

general functional topography, whereby limbic cortex projects to the ventral striatum, 

associative cortex projects to the ventromedial caudate, and motor cortex projects to the 

dorsolateral striatum (Alexander et al., 1986). This functional topography is also maintained 

in extra-striatal BG nuclei (i.e. pallidum and subthalamic nucleus) and thalamus, suggesting 

that a general topographic organization is preserved at all stations of the CBG loop 

(Alexander et al., 1986). The discovery of functional topography throughout the CBG loop 

architecture led to the segregated loop model, which proposed that functionally specialized 

information remains segregated throughout parallel „closed‟ CBG streams (limbic, associative 

and motor channels, respectively) (Alexander and Crutcher, 1990; Hoover and Strick, 1993).  

 

Figure 1 



 

Although the segregated loop model has proven a useful heuristic for understanding BG 

function, accumulating evidence over the past two decades suggests that BG and thalamic 

nuclei are not merely relay stations for propagating signals throughout isolated macrocircuits. 

Instead, CBG architecture represents a complex dual organizational system, supporting both 

segregated and integrative information processing across functional channels (Haber, 2010). 

In the following section, we review recent work highlighting the importance of CBG circuitry 

in the integration of information across distributed neural systems.  

 

2.1.2 Neural Systems Converge in CBG Architecture 

While corticostriatal projections terminate in the striatum according to a general functional 

topography (Figure 1a), there is also an intricate non-topographic organization. Tract-tracing 

work in non-human primates has demonstrated convergence between corticostriatal terminals 

projecting from functionally diverse cortical regions (Haber et al., 2006; Calzavara et al., 

2007; Averbeck et al., 2014). These converging terminals contravene the general striatal 

topography by crossing putative functional boundaries in the striatum (Haber et al., 2006; 

Calzavara et al., 2007; Averbeck et al., 2014), suggesting that the striatal complex may 

provide a neuroanatomical substrate for the integration of convergent input from limbic, 

associative and motor systems. In a recent tract-tracing study in non-human primates, 

Averbeck et al., (2014) quantified striatal projection zones from distinct injection locations in 

the prefrontal cortex. Results revealed that specific striatal regions receive highly convergent 

inputs from multiple functionally distinct prefrontal regions (Figure 1b), leading to the 

proposal that striatal convergence zones play a role in synchronizing information across 

multiple functional domains (Haber et al., 2006; Averbeck et al., 2014). Evidence for 

corticostriatal convergence zones has since been extended to humans using structural 

neuroimaging data (Draganski et al., 2008; Jarbo and Verstynen, 2015), however unlike 

histological approaches [e.g. (Averbeck et al., 2014)], limitations in the spatial resolution of 

MRI preclude the examination of synaptic terminal fields in humans. Intriguingly, striatal 



convergence zones share conceptual similarity with network hubs observed in large-scale 

cortical networks (Power et al., 2013; van den Heuvel and Sporns, 2013a), suggesting that 

systems-level integrative computations may not be exclusive to the cortex.  

 

Another intriguing feature of CBG organization is the progressive reduction of cell numbers 

throughout the BG. The striatum receives afferent inputs from a range of cortical areas, but 

has far fewer neurons (Wilson, 1995; Bar-Gad et al., 2003). In turn, striatal neurons project to 

an even smaller neuronal population in the pallidum (Bar-Gad et al., 2003). Previous authors 

have proposed that, by virtue of a progressive reduction in cell number throughout the CBG 

loop, synaptic terminals from adjacent fields come into contact as they are compressed into 

smaller and smaller structures (Bar-Gad et al., 2003). This organization may be particularly 

useful for integrating information at putative functional boundaries of BG nuclei where 

topographical overlap between different functional zones is most prominent (Haber, 2010; 

Haynes and Haber, 2013).  

 

In addition to corticostriatal terminals, the striatum also receives convergent subcortical 

innervation (Sesack and Grace, 2010). There is anatomical (French and Totterdell, 2002, 

2003) and electrophysiological (O'Donnell and Grace, 1995) evidence to suggest that single 

neurons in the ventral striatum receive convergent input from the hippocampus, amygdala and 

prefrontal cortex (O'Donnell and Grace, 1995; French and Totterdell, 2002, 2003). Previous 

investigators have proposed that, through connectivity with the amygdala and hippocampus, 

the ventral striatum provides a gateway for subcortical limbic drives to enter the BG system, 

and subsequently bias cognitive planning and motor control (Grace et al., 2007; Pennartz et 

al., 2009). Moreover, the striatal complex also receives convergent glutamatergic input 

directly from the thalamus (McFarland and Haber, 2002). Together, these findings emphasize 

the importance of the BG nuclei in orchestrating interactions between convergent cortical and 

subcortical systems.  

 



In addition to striatal mechanisms discussed above, there is also some evidence for systems-

convergence in the pallidum (Yelnik et al., 1984; Percheron and Filion, 1991) [but see 

(Selemon and Goldman-Rakic, 1991)], subthalamic nucleus (Bevan et al., 1997; Kolomiets et 

al., 2001; Haynes and Haber, 2013) and thalamus (Sherman and Guillery, 1996; McFarland 

and Haber, 2002; Sherman, 2007; Theyel et al., 2010), suggesting that integration occurs at 

multiple levels of the CBG loop. It is important to re-emphasize however, that functional 

integration is not the sole computational priority of CBG circuitry. Indeed, each level of the 

CBG loop also demonstrates a degree of functional specialization (Francois et al., 1994; 

Kolomiets et al., 2001; Middleton and Strick, 2002; Draganski et al., 2008; Averbeck et al., 

2014; Oh et al., 2014), a finding consistent with the dual processing model of the CBG loop. 

 

2.1.3 Neuromodulation in CBG Architecture 

Ascending neuromodulatory structures arising from the caudal brainstem also provide dense 

innervation of the striatum and thalamus. In particular, the striatal complex receives extensive 

dopaminergic input from ventral midbrain nuclei (Haber et al., 2000), which provides potent 

modulatory control over striatal activity (Surmeier et al., 2007). This arrangement enables a 

system in which convergent glutamatergic cortical and subcortical afferents are modulated by 

dopaminergic neurons from the midbrain. Such an organization has important functional 

properties. Phasic bursting firing from the dopaminergic midbrain provides instructive signals 

about reward seeking, engaging motivationally salient situations, or responding to alerting 

stimuli in the environment (Schultz et al., 1997; Bromberg-Martin et al., 2010). Overall, these 

dopamine signals provide moment-to-moment contextual information that enables the 

organism to flexibly adapt and learn in a dynamic environment (Schultz et al., 1997; 

Bromberg-Martin et al., 2010). Thus, the convergence of diverse cortical and subcortical 

afferents, combined with their common modulation by dopamine, has led to the proposal that 

the striatum provides a neuroanatomical substrate for the integration of dopaminergic signals 

about environmental context, with incoming information in limbic, cognitive and motor 

control circuits (Belin and Everitt, 2008; Haber and Knutson, 2010; Sesack and Grace, 2010; 



Aarts et al., 2011; Haber, 2014). At a more protracted time-scale, dopamine regulates 

activity-dependent neuroplasticity at corticostriatal synapses (Calabresi et al., 2007), which 

has been implicated in motor learning, cognition and reward processes (Wickens et al., 2003; 

Mahon et al., 2004). Thus, in addition to providing real-time signals about environmental 

context, dopamine may also influence systems-level integration by regulating long-lasting 

changes in corticostriatal synaptic connectivity.    

 

Further to the proposed role of dopamine in modulating activity of convergent glutamatergic 

afferents in the striatal complex, there have also been suggestions that the dopaminergic 

neurons may directly mediate interactions across limbic, associative and motor CBG streams. 

Originally discovered in rodents (Nauta et al., 1978; Ikemoto, 2007) and later in non-human 

primates (Haber et al., 2000), a cascade-like „spiraling‟ dopamine pathway links the ventral 

striatum with progressively more dorsal striatal areas via serial non-reciprocal connections 

with the ventral midbrain [see (Haber et al., 2000)]. Thus, based on the serial arrangement of 

this circuitry, it has been proposed that this spiraling dopaminergic cascade connecting the 

striatum and the ventral midbrain provides a substrate for the feed-forward integration of 

limbic, associative and motor signals across CBG macrocircuits (Haber et al., 2000). Placed 

into a behavioural framework, this hypothesis posits that the spiraling dopamine projections 

represent a possible mechanism for the serial flow of information from structures involved in 

reward and motivation to influence goal-directed cognition and subsequently drive motor 

output (Belin and Everitt, 2008; Haber and Knutson, 2010; Sesack and Grace, 2010; Aarts et 

al., 2011; Haber, 2014).  

 

While dopamine is currently the most widely studied biogenic amine neuromodulator, other 

ascending projection systems also provide intricate patterns of innervation to the BG and 

thalamus, along with more diffuse innervation of neocortical regions. Ascending serotonergic, 

cholinergic and noradrenergic projection systems provide a unique combination of interacting 

neuromodulators that influence neuronal excitability and synaptic transmission in the BG and 



thalamus. Thus, interacting dopaminergic and non-dopaminergic neuromodulatory inputs are 

likely to influence integrative computations within the CBG loop architecture.  

 

2.1.4 Role of the Thalamus within the CBG loop 

The thalamus is highly heterogeneous structure, composed of up to 50 discrete nuclei (Jones, 

2012). The thalamic complex forms extensive bidirectional connections with visual, 

sensorimotor, limbic and associative neocortical regions as well as other subcortical structures 

including the striatum (Oh et al., 2014). In recent years, an abundance of evidence from 

rodents though to primates has supported the concept that transthalamic pathways are critical 

for actively orchestrating information flow throughout cortico-cortical networks (Guillery, 

1995; Sherman, 2007; Sherman and Guillery, 2011; Saalmann et al., 2012; Oh et al., 2014). 

Indeed, the thalamus is now believed to enable large-scale inter-regional cortical 

communication via non-reciprocal cortico-thalamo-cortical pathways. These pathways are 

formed by the non-reciprocal arrangement of projection fibers in which thalamic nuclei 

receive afferent input from different cortical areas (and different cortical layers) to which they 

project, enabling feed-forward inter-areal information flow [see (Sherman and Guillery, 

2011)]. Furthermore, recent evidence in slice preparations has demonstrated that thalamic 

silencing can block communication between distinct cortical areas (Theyel et al., 2010). Thus, 

it is clear that the transthalamic conduit provides an important channel for large-scale flow of 

information between distributed cortical areas and distinct cortical layers (Sherman and 

Guillery, 1996; McFarland and Haber, 2002; Sherman, 2007; Theyel et al., 2010; Saalmann et 

al., 2012). 

 

2.1.5 Summary of Convergence in the CBG Architecture 

The anatomical connectivity of the BG and thalamus implies central involvement of these 

structures in systems-level integration – whereby converging cortical and subcortical signals 

are integrated under potent neuromodulatory control. Together the above findings are 

consistent with a dual processing model of the CBG loop in which coordinated behaviour can 



be maintained and focused (through parallel CBG circuitry), but also flexibly modified 

(through integrative CBG networks) in response to dynamic environmental cues (Haber and 

Calzavara, 2009; Haber and Knutson, 2010).  

 

Although the above work provides insights into the convergent organization of specific 

projection systems within the CBG architecture, consideration of how the CBG system is 

embedded within the global brain network requires an alternative approach. The following 

section will discuss findings from recent network-analytic studies that have begun to shed 

light on the how the CBG system is embedded within the global brain network. 

 

2.2 Subcortical Membership in the ‘Rich-Club’  

2.2.1 Introduction to the Science of Brain Networks 

The search for fundamental organizational principles in anatomical brain networks has a long 

history in the neuroscience literature (Goldman-Rakic, 1988; Damasio, 1989; Felleman and 

Van Essen, 1991; Mesulam, 1998). However, the recent application of quantitative data-

driven tools, adopted from a branch of mathematics known as graph theory, has 

revolutionized the study of large-scale brain organization. Network models of brain 

organization provide an abstract representation of brain connectivity in which discrete neural 

elements (nodes) and their connections (edges) are represented in the form of a connectivity 

graph (see Glossary & Figure 2). The collective structure of interconnected nodes and edges 

defines the topology of the network (Glossary), which can be further examined using a range 

of quantitative metrics to mathematically describe elements of the local and global 

connectivity profile [see (Bullmore and Sporns, 2009)]. 

 

Quantitative network tools have been applied to invasive tract-tracing data in mammalian 

model organisms and noninvasive neuroimaging data in humans, providing unprecedented 

insights into brain organization. This literature has revealed that a prominent organizational 

feature of vertebrate cortical networks is the presence of community and hub structure (van 



den Heuvel and Sporns, 2013b). Network communities represent densely interconnected 

neural elements in which local computations are highly segregated, whereas network hubs 

connect communities, enabling information integration (Sporns, 2013) (see Glossary & 

Figure 2). These organizational principles are thought to balance the specialization of 

function with the integration of information (Tononi et al., 1994; Sporns, 2013), and this 

balance gives rise to complex neural dynamics that span multiple spatiotemporal scales 

(Breakspear and Stam, 2005).  

 

In this section, we will examine recent evidence suggesting that the topological embedding of 

the BG and thalamus place these regions among an exclusive collection of putative network 

hubs. The rich connectivity structure of these subcortical hubs suggests their involvement in 

large-scale integration of diverse and global neural signals. These findings dovetail with work 

reviewed above (Section 2.1) suggesting the convergent CBG architecture supports 

integration across multiple neural systems. Finally, the implications of these findings along 

with the major opportunities and challenges of studying subcortical contributions to large-

scale network communication are discussed. 

 

2.2.2 Network Hubs in Cortical Brain Networks 

Examination of mammalian cortical networks has revealed the existence of an exclusive 

collection of putative hub regions that act to link specialized communities (Glossary & 

Figure 2c). The topological embedding of network hubs renders them important candidates 

for supporting integration and distribution of diverse and global signal traffic (van den Heuvel 

and Sporns, 2013b). Intriguingly, network hubs appear to be arranged into a topological core 

(Hagmann et al., 2008; Modha and Singh, 2010; Markov et al., 2013b) or rich-club (Zamora-

López et al., 2010; Harriger et al., 2012; van den Heuvel et al., 2012; Collin et al., 2013; van 

den Heuvel and Sporns, 2013a; Ball et al., 2014; Grayson et al., 2014) (Glossary & Figure 

2d). Rich-club nodes are more densely interconnected than predicted on the basis of their 

degree of topological connectivity alone (Colizza et al., 2006), and rich-club organization acts 



to further enhance the influence of its exclusive members by facilitating interactions between 

them (Colizza et al., 2006; van den Heuvel and Sporns, 2013b). Compelling evidence for the 

importance of cortical rich-club nodes in efficient global integrative processing has been 

provided by recent empirical and computational modeling work (van den Heuvel et al., 2012; 

van den Heuvel and Sporns, 2013a; van den Heuvel and Sporns, 2013b; Senden et al., 2014; 

Mišić et al., 2015). Such work has shown that a fundamental property of rich-club nodes is 

that they act to cross-link specialized large-scale functional systems (Zamora-Lopez et al., 

2010; van den Heuvel and Sporns, 2013a), providing a high-capacity backbone for systems-

level integration in the brain (van den Heuvel et al., 2012).  

 

2.2.3 Subcortical Hubs: ‘Rich’ Contributions to Large-Scale Integration  

Although prior network-analytic work has largely focused on cortico-cortical topology – 

possibly in part due to technical limitations inherent in studying connectivity of subcortical 

nuclei (see Section 3.2.1) – recent examples in the literature have incorporated subcortical 

nodes into their analysis of rich-club patterning in human structural tractography data (van 

den Heuvel and Sporns, 2011; McColgan et al., 2015; Owen et al., 2015). Results from these 

studies reveal that the striatum and thalamus form part of the neural „rich-club‟ (van den 

Heuvel and Sporns, 2011; McColgan et al., 2015; Owen et al., 2015) and are in-line with 

findings from tract-tracing work in Macaque monkeys demonstrating that striatal and 

thalamic nuclei belong to an integrated core circuit (Modha and Singh, 2010) (Figure 1c). 

Furthermore, recent analysis of the complete mesoscopic mouse connectome has shown that 

the striatum and thalamus belong to a subset of neural regions that participate in multiple 

neural communities (Rubinov et al., 2015). Taken together, these data suggest that the 

topological embedding of these deep gray-matter nuclei endows them with exclusive access 

to global information arriving from multiple neural communities (van den Heuvel et al., 

2012). Although the above findings lack the spatial resolution required to examine the 

specific geometric patterns of terminal field overlap in deep nuclei [as seen in histological 



work (Averbeck et al., 2014), see Figure 1b], they do highlight the topological centrality of 

the striatum and thalamus within the macroscopic connectome. 

 

2.2.4 Network Fragmentation in ‘Subcortical Hub-opathy’ 

A complementary paradigm used to examine the functional significance of brain hubs has 

been to observe the consequences of hub lesions on network topology in both clinical 

disorders and in silico models. Mounting evidence suggests that lesions to cortical network 

hubs result in profound network disruption (Honey and Sporns, 2008; Alstott et al., 2009; 

Stam, 2014; Warren et al., 2014; Fornito et al., 2015) and hub lesions are associated with 

more severe and widespread neuropsychological impairments relative to non-hub lesions 

(Warren et al., 2014). Thus, converging findings from clinical, computational and 

neuroanatomical data suggest that network hub regions are essential for large-scale network 

communication. 

 

Although scarce at present, a small number of studies have begun to incorporate subcortical 

nodes in network descriptions of disease pathology. In particular, a recent meta-analytic study 

has provided an initial indication of the clinical consequences of subcortical hub pathology 

across multiple brain disorders. In this study, Crossley et al., (2014) mapped the location of 

gray-matter lesions associated with a total of 26 different brain disorders onto a common 

„disorder-general‟ map. Results revealed that pathological gray-matter lesions were 

concentrated in hub regions (in particular, rich-club hubs) (Crossley et al., 2014). 

Interestingly, the striatum and thalamus were among the most significantly affected hub 

regions, suggesting that subcortical hubs represent key pathological foci across multiple brain 

disorders (Crossley et al., 2014). Empirical findings linking subcortical pathology to brain 

disorders have been supported by recent modeling studies that have begun to incorporate 

subcortical nodes into their computational models (Iturria-Medina et al., 2008; Irimia and 

Van Horn, 2014). Data from this computational work indicates that simulated attack on 

striatal and thalamic nodes and their direct connections substantially alters global network 



topology in silico (Iturria-Medina et al., 2008; Irimia and Van Horn, 2014). Although the 

relationship between subcortical hub pathology and brain disorders awaits validation with 

more direct and causal evidence, the above findings suggest that subcortical dysfunction may 

contribute to profound fragmentation of network structure (Glossary) and breakdown in 

large-scale network communication.  

 

It is also of clinical interest that neurodegenerative disorders that are characterized by early 

and selective CBG neuropathology – such as Parkinson‟s disease and Huntington‟s disease – 

are associated with a severe and pervasive clinical impairments that extend across affective, 

cognitive and motoric domains (Chaudhuri et al., 2006; O'Callaghan et al., 2014; Ross et al., 

2014). Furthermore, network analyses of clinical neuroimaging data has demonstrated that 

these pathological conditions are associated with fragmentation of global network topology in 

early-stage disease (Dubbelink et al., 2014; Harrington et al., 2015; Luo et al., 2015; 

McColgan et al., 2015; Sang et al., 2015), and network topology continues to deteriorate with 

disease progression (Dubbelink et al., 2014; Harrington et al., 2015; McColgan et al., 2015). 

Although neuropathology in these clinical disorders is not exclusively confined to subcortical 

circuits, the major focus of neuropathology resides within CBG structures, particularly in 

early-stage disease (Vonsattel et al., 1985; Braak et al., 2003). Thus, examples of network 

fragmentation in disorders characterized by severe and early subcortical pathology provide 

further, albeit indirect evidence, for a role of the subcortex in systems-integration.  

 

3.1 Synthesis: Subcortical Contributions to Large-Scale Network Communication 

Studies reviewed above suggest that the BG and thalamus support convergence of diverse 

afferents from the neocortex, subcortex and neuromodulatory brainstem (Section 2.1). 

Furthermore, the topological embedding of these subcortical structures within the global 

connectivity network suggests that they belong to an exclusive rich-club circuit (Section 2.2). 

Taken together, these findings emphasize a new view of the BG and thalamus, in which 

communication across large-scale systems is a key computational priority. This framework 



may have important clinical implications, as emerging data suggest that subcortical insult (i.e. 

„subcortical hub-opathy‟) is associated with fragmentation of large-scale communication and 

multi-domain clinical sequelae. Although, many outstanding questions face the study of 

large-scale integration, subcortical-inclusive descriptions of brain connectivity will be an 

important step in advancing whole-brain descriptions of spatiotemporal dynamics in health 

and disease. 

 

3.2 Outstanding Questions & Future Directions 

The inclusion of subcortical projection systems into models of whole-brain connectivity 

“dramatically alters the computational landscape of the brain” (Pessoa, 2014) and will be 

critical for advancing models of brain structure and function. Below, we provide a succinct 

overview of some of the opportunities and challenges facing the study of subcortical-inclusive 

connectomics in the human brain. Specifically, we discuss technical challenges associated 

with human subcortical neuroimaging, and how the development of more sensitive 

neuroimaging methods will enable increasingly detailed characterization of human 

subcortical topology and geometry. We also consider the importance of capturing dynamic 

(time-varying) aspects of brain connectivity in future studies examining the neurobiology of 

integration and segregation within the human brain. 

 

3.2.1 Technical Challenges of Subcortical Connectomics 

Much of our understanding of human connectomics has come from analyses of data acquired 

using Magnetic Resonance Imaging (MRI). Indeed, the possibility of noninvasively 

examining brain connectivity and network organization in vivo has ignited immense interest 

across disciplines of cognitive and clinical neuroscience. Despite the impact of MRI, several 

noteworthy limitations currently render the anatomical analysis of human deep nuclei 

challenging. For instance, detailed examination of the multinuclear structure of subcortical 

anatomy has been limited by the spatial resolution of MRI. To further compound this issue, 

MR signal is often extracted from group-averaged anatomical templates, which can result in 



signal blurring across spatial boundaries as a consequence of inter-individual variability in 

subcortical morphology (Keuken et al., 2014), as well as a side-effect of analysis protocols 

including spatial smoothing and normalization (de Hollander et al., 2015). These issues may 

be particularly problematic in the context of small subcortical nuclei with neighboring regions 

that reside in close proximity [i.e. the „subcortical cocktail problem‟ (de Hollander et al., 

2015)], where high spatial precision is required for accurate signal localization. Similarly, 

reconstruction of white matter pathways that traverse subcortical structures is difficult, as a 

high density of white matter bundles pass through close-proximity subcortical nuclei, 

rendering accurate reconstruction of subcortical white-matter architecture challenging.  

 

Despite these limitations, recent developments in data acquisition at ultra-high resolution, MR 

acquisition protocols and automated analytical protocols for MR-data segmentation hold 

promise for circumventing many of these contemporary challenges. In addition, the 

application of analytic tools from network science to gold-standard invasive quantitative 

tract-tracing represents a powerful complementary method for non-human mammalian 

connectome mapping – and has been recently applied to Macaque monkeys (Modha and 

Singh, 2010; Markov et al., 2013a; Markov et al., 2013b; Markov et al., 2014; van den 

Heuvel et al., 2015) and other mammalian model organisms (Scannell et al., 1995; Zamora-

Lopez et al., 2009; Zamora-López et al., 2010; Oh et al., 2014; Bota et al., 2015). The 

incorporation of cortico-subcortical and subcortico-subcortical fiber systems into tract-tracing 

connectome mapping [e.g. (Modha and Singh, 2010; Rubinov et al., 2015)] and MR 

neuroimaging studies, will also help to develop and advance subcortical-inclusive 

representations of the mammalian connectome. 

 

3.2.2 Subcortical Hub Discovery 

In this review, we have focused on the BG and thalamus as major subcortical sites of large-

scale communication – given the substantial body of supportive empirical evidence reviewed 

above. With future development of more sensitive methods for estimating the topology and 



geometry of subcortical nuclei, it will be interesting to see whether other subcortical 

projection systems display similar integrative capacities. Indeed, previous authors have 

proposed that the hippocampus (Mišić et al., 2014) and amygdala (Pessoa, 2014) may 

possibly also play important roles in functional integration across large-scale neural systems, 

however direct empirical data for these claims are currently limited. Thus, characterizing the 

details of subcortical connectivity with greater spatial precision will be an important area for 

future neuroanatomical investigation.  

 

3.1.3 Dynamics of Functional Integration and Segregation 

While anatomical descriptions of brain connectivity provide a necessary initial framework for 

grounding neurobiological accounts of functional integration and segregation, higher brain 

functions such as perception and cognition depend upon dynamic coordination of neuronal 

activity operating at multiple timescales (Voytek and Knight, 2015). Thus, understanding 

information exchange requires, not only detailed knowledge of structural connectivity, but 

also an understanding of time-varying spatiotemporal patterns of neural activity that unfold 

within the anatomical scaffold. 

 

Recent scientific innovations in the acquisition and analysis of noninvasive functional brain 

imaging data have enabled researchers to examine time-varying patterns of synchronous 

oscillatory activity, termed functional brain networks [see (Hutchison et al., 2013; Calhoun et 

al., 2014)]. These studies have shown that dynamic reconfigurations in large-scale functional 

network assemblies accompany changes in learning (Bassett et al., 2011; Bassett et al., 2015), 

cognitive task (Fornito et al., 2012; Cole et al., 2014; Krienen et al., 2014; Braun et al., 

2015), cognitive load (Kitzbichler et al., 2011; Hearne et al., 2015), and also occur 

spontaneously in the absence of exogenous stimuli or task demands (Zalesky et al., 2014; de 

Pasquale et al., 2015; Laumann et al., 2015). Furthermore, transient reconfigurations in 

functional network architecture have been observed following noninvasive stimulation of 

human cortical networks (Dayan et al., 2013) and pharmacological manipulation of 



neuromodulatory systems (Achard and Bullmore, 2007; Schaefer et al., 2014a). Together, 

these data suggest that the brain exists in a continuous state of flux, in which large-scale 

spatiotemporal patterns of neural activity are shaped, not only by the underlying structural 

scaffolding (Honey et al., 2009; Shen et al., 2015), but also by moment-to-moment 

fluctuations in the external and internal state of the organism (Sporns, 2012; Bargmann and 

Marder, 2013; Deco et al., 2015). Thus, from a relatively „static‟ structural connectome 

emerges a dynamical repertoire of large-scale context-dependent functional networks that are 

critical for flexible cognition and behaviour.  

 

Through the study of large-scale network dynamics it is possible to examine how segregated 

and integrated information exchange is supported by a temporally evolving functional 

architecture (Calhoun et al., 2014; Deco et al., 2015). While large-scale cortico-cortical 

communication dynamics remain poorly understood at present, even less understood are the 

contributions of subcortical structures to dynamic information flow. However, recent 

advances in human neuroimaging and computational modeling have made probing subcortical 

contributions to large-scale functional network dynamics increasingly more tractable. Indeed, 

several recent functional MRI (fMRI) studies have begun to include subcortical nodes in their 

descriptions of network dynamics (Allen et al., 2012; Schaefer et al., 2014b; Zalesky et al., 

2014; Shine et al., under review), providing a promising avenue for noninvasive examination 

of subcortical contributions to large-scale functional integration in the human brain. Beyond 

purely descriptive methods, causal mechanistic insights can be obtained by „perturb and 

measure‟ approaches (Dayan et al., 2013) in which subcortical circuitry can be 

experimentally manipulated while brain activity is measured using noninvasive neuroimaging 

methods. Such approaches could perturb subcortical activity through pharmacological 

manipulation of neurotransmitter systems [e.g. (Achard and Bullmore, 2007; Kelly et al., 

2009; Bell et al., 2015)] or via electrical stimulation of subcortical grey matter structures in 

patient cohorts that have undergone neurosurgical implantation of subcortical electrodes for 



symptom management (Kringelbach et al., 2007; Kahan et al., 2014; van Hartevelt et al., 

2014).  

 

Finally, whole-brain computational modeling approaches offer important tools for 

understanding emergent macroscopic network dynamics in the human brain. Generative 

whole-brain computational models which are constrained by neuroanatomical connectivity 

data can be used to probe dynamics of integration and segregation in the brain [for 

comprehensive discussion, see (Deco et al., 2015)]. These whole-brain computational models 

combine empirical neuroanatomical connectivity data with neurodynamic models of brain 

activity to simulate and predict dynamic large-scale network behaviour (Honey et al., 2009; 

Cabral et al., 2014; Mišić et al., 2015). Furthermore, such models can be used to test specific 

hypotheses about mechanisms underpinning large-scale network dynamics by systematically 

tuning model parameters and altering local connectivity. Given that the inclusion of 

subcortical neuroanatomy is likely to drastically alter the neuroanatomical connectivity 

landscape of in silico models, future subcortical-inclusive computational models may provide 

new information into the dynamics of integration and segregation in the brain. 

 

4.1 Conclusion 

A review of recent work operating at the interface of network science, cognitive science and 

brain anatomy suggests a new view of the subcortex, in which the BG and thalamus form part 

of a core circuit that supports large-scale integration of functionally diverse neural signals. 

Subcortical-inclusive descriptions of brain connectivity will be important for refining our 

understanding of large-scale network communication in health and disease.  
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Glossary 

Connectome: A term used to describe the complete description of the structural connections 

between neural elements in the brain. 

 

Topology: Graph-theory is a branch of mathematics that is concerned with describing 

properties of complex networks. A graph is described as a set of nodes (neural elements) 

linked by edges (connections). The arrangement of the graph defines its network topology 

(Figure 2a).  

 

Community: Communities refer to densely interconnected sets of nodes that support the 

segregation and specialization of information processing (Figure 2b).  

 

Hub: A highly connected node, topologically central node that connects different neural 

communities, thereby enabling the integration and dissemination of information across 

specialized systems (Figure 2c).  

 

Rich-Club Organization: Rich-club organization of a network is characterized by a level of 

inter-connectivity between hub nodes above what can be predicted by chance (Colizza et al., 

2006). Rich-club nodes are therefore a unique subclass of network hubs, defined by their high 

degree interconnectivity (Figure 2d).  

 

Centrality: A measure of the relative importance of a node in a topological network based on 

its pattern and extent of connectivity. Various measures for centrality exist, the most common 

including; degree centrality, betweenness centrality and eigenvector centrality. 

 

Network Fragmentation: Splitting of the network into subsets of nodes leading to impaired 

communication between nodes and neural communities.   



Figure 2 

Figure Legend 

Figure 1a – Schematic illustration depicting the general organization of the cortico-basal 

ganglia (CBG) loop architecture (Alexander et al., 1986). The connections between the 

cerebral cortex and the basal ganglia (BG) form a series of parallel macrocircuits conveying 

limbic (red), associative (yellow) and motor (blue) information. Cortical projections terminate 

in the striatum, which represents the major input structure of the BG. BG output is 

subsequently channeled via subthalamic and pallidal BG nuclei towards the thalamus, which 

then projects to the back to the cortex completing the CBG „loop‟. Pointed arrowheads denote 

excitatory projections, circular arrowheads represent inhibitory projections. Figure 1b – Areas 

of Corticostriatal Terminal Overlap in the Striatum. Figure denotes the number of distinct 

prefrontal cortical regions (i.e., vmPFC, OFC, dACC, dPFC, vlPFC) that converge at each 

site across the topography of the striatal complex based on data from an invasive tract tracing 

experiment in rhesus macaques (Averbeck et al., 2014). Colour on each section indicates 

voxels that receive projections from 0 - 5 distinct prefrontal cortical regions. For illustrative 

purposes we present only a representative sample of the striatal slices originally published by 

(Averbeck et al., 2014). Striatal slices: (i) 7.2mm, (ii) 4.2mm, and (iii) 1.8mm, anterior to the 

anterior commissure respectively. Figure 1b adapted from (Averbeck et al., 2014) with 

permission. Abbreviations: GP, Globus pallidus; STN, subthalamic nucleus; vmPFC, 

ventromedial prefrontal cortex; OFC, orbitofrontal cortex; dACC, dorsal anterior cingulate 

cortex; dPFC, dorsal prefrontal cortex; vlPFC, ventrolateral prefrontal cortex. Figure 1c – 

Schematic representation of a hypothetical connectome. Subcortical-inclusive connectome 

mapping has demonstrated that the striatum and thalamus form part of an integrated core 

circuit of tightly interconnected brain hubs. The topological embedding of cortical (blue) and 

subcortical (green) hubs renders them attractive candidates for integration and distribution of 

diverse and global signal traffic. The subcortex is positioned to support the convergence and 

distribution of diverse cortical and subcortical afferents, as well as abundant ascending 

neuromodulatory (dopaminergic and non-dopaminergic) signals from the brainstem (red).  



 

Figure 2. Schematic illustration depicting graph-theory concepts. The arrangement of a 

graphs nodes and edges defines the network topology (Figure 2a), which is comprised of 

network communities (Figure 2b), network hubs (Figure 2c) and rich-club ordering (Figure 

2d). See Glossary for further elaboration of these network concepts.  
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