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Highlights 
 

 tribology and rheology properties of cooked swollen starch granules (ghosts) characterised 

 maize granule ghost suspensions reduce friction compared to water 

 bell-shaped tribology curves due to particle entrainment for maize granule ghosts 

 limited friction reduction for potato ghosts due to break-up under tribological contact 

 potato granule ghost suspensions also break up under steady shear  
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Abstract 

The tribological properties of suspensions of cooked swollen starch granules are characterised for 

systems based on maize starch and potato starch.  These systems are known as granule ‘ghosts’ due 

to the release (and removal) of polymer from their structure during cooking.  Maize starch ghosts are 

less swollen than potato starch ghosts, resulting in a higher packing concentration and greater 

mechanical stability.  In a soft-tribological contact, maize ghost suspensions reduce friction 

compared to the solvent (water), generate bell-shaped tribological profiles characteristic of particle 

entrainment and show a marked concentration dependence, whereas potato ghost suspensions exhibit 

lubrication behaviour similar to water. Microscopy analysis of the samples following tribological 

testing suggests that this is due to the rapid break-up of potato ghosts under the shear and rolling 

conditions within the tribological contact. A reduction in the small deformation moduli (associated 

with a weak gel structure) is also observed when the potato ghost suspensions are subjected to steady 

shear using parallel plate rheometry; both microscopy and particle size analysis show that this is 

accompanied by the partial shear-induced breakage of ghost particles. This interplay between particle 

microstructure and the resultant rheological and lubrication dynamics of starch ghost suspensions 

contributes to an enhanced mechanistic understanding of textural and other functional properties of 

cooked starches in food and other applications. 

 

Keywords: starch; granule ghosts; maize; potato; tribology; rheology 
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1. Introduction 

Although most carbohydrate energy in higher plants is stored as semi-crystalline starch granules, the 

desirable physical properties of starch in food and industrial applications occur following a granule 

gelatinization process associated with loss of crystalline order. After heating in excess water with 

limited shear, starch granules swell to several times their initial size and release some low molecular 

weight soluble polymers particularly amylose (an essentially linear glucose polymer). However, the 

granules do not dissolve completely and can persist in a highly swollen state that is effectively a 

„ghost‟ of its original swollen form (termed granule ghosts) (Prentice, Stark, & Gidley, 1992). The 

major difference between a “gelatinized starch granule” and a “granule ghost” is that solubilised 

polymers are absent from the granule ghost. This difference is not often recognized in the starch 

literature. Whilst granule ghosts are not commonly referred to, a majority of studies on the rheology-

structure of gelatinized starch pastes are in fact on starch ghost pastes (Evans & Haisman, 1980; 

Evans & Lips, 1992; Lagarrigue & Alvarez, 2001). Generally, these highly deformable ghost 

particles are thought to play an important role in many of the characteristic physical properties of 

starch pastes, solutions, or gel networks such as viscosity, texture, and rheology (Evans & Lips, 

1992; Lagarrigue & Alvarez, 2001; Steeneken, 1989). For example, the presence of dilute or highly 

packed granule ghosts in some semi-solid starch-containing foods such as soups, dressing, custards 

and sauces leads to „short‟ texture, thick appearance and sometimes creamy mouthfeel (Stokes, 

2011). 

 

Granule ghosts isolated from normal starches such as maize and potato are enriched in amylopectin 

(a highly branched glucose polymer) with less than 10% of amylose (Zhang, Dhital, Flanagan, & 

Gidley, 2014). Recently, we found that the ghost remnants after amylase digestion only contain less 

than 1% of single/double helices, and concluded that the ghost „skin‟ originates from physical 

entanglements of highly branched and large molecular size amylopectin molecules (Zhang, Dhital, 
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Flanagan, & Gidley, 2014). Fisher, Carrington, and Odell (1997) reported that the potato ghost skin 

could support about 4000 mN/m tensile stress, approximately 1000 times higher than the yield stress 

of a red blood cell membrane. Starch components other than amylopectin (e.g., amylose, surface 

lipids and proteins, minerals et al.) also play a role in restricting the extent of swelling (Debet & 

Gidley, 2006; Han & Hamaker, 2002), which varies depending on the botanical origins of the starch 

(Obanni & BeMiller, 1996). Shear and heat stability of ghost particles can be modified through 

certain chemical/physical methods, e.g., chemical cross-linking (to strengthen the wall structure and 

achieve high shear resistance) and pre-gelatinization (to increase the heat sensitivity). 

 

Starch granule pastes/gels subjected to gelatinization and/or retrogradation exhibit a typical non-

Newtonian and viscoelastic behavior, with a low yield stress and shear thinning behavior (Bagley & 

Christianson, 1982). The size, integrity and concentration (phase volume) of ghost particles within 

the matrix are important parameters which determine the viscosity and viscoelastic properties. Desse, 

Fraiseau, Mitchell, and Budtova (2010) reported strong deformation and solvent loss of individual 

swollen starch granules subjected to shear stress with the aid of a rheo-optical set-up. The 

morphological structure (e.g., size, shape and integrity) of starch ghost particles is influenced by their 

botanical origin, modification methods and processing conditions such as shear, cooking/storage 

temperature and time (Bagley & Christianson, 1982; Debet & Gidley, 2006). The viscosity of starch 

pastes is governed by the volume fraction of ghost particles in the dilute regime, whereas the particle 

rigidity (size, shape and deformability) is a decisive factor in the closely packed regime (Steeneken, 

1989). Steeneken (1989) further suggested that both ghost particle rigidity and volume fraction 

within starch pastes are important in a broad concentration range between these two limiting 

behaviors.  
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While the rheological behavior of starch pastes/gels has been extensively investigated both 

experimentally and theoretically (Evans & Haisman, 1980; Evans & Lips, 1992; Lagarrigue & 

Alvarez, 2001), the lubrication properties of granule ghost suspensions have not been investigated.  

Lubrication has long been considered to play a critical role in oral perception of liquid and semi-solid 

foods, including textural and mouthfeel attributes such as smoothness and creaminess (Stokes, 

Boehm & Baier, 2013).  However, only during the past decade have researchers attempted to 

quantify oral lubrication using soft-tribology as an in vitro technique, where elastomeric surfaces 

(e.g. polydimethylsiloxane, PDMS) are typically employed to mimic the low pressure contact 

between compliant oral surfaces (Bongaerts, Fourtouni, & Stokes, 2007). Lubrication behavior is 

inherently dependent on relative motion between the soft-contacts of the tribometer, which is 

classically presented as a Stribeck curve with three different regimes namely boundary, mixed and 

hydrodynamic lubrication. In the hydrodynamic regime, the high fluid (or hydrodynamic) pressure 

can fully support the applied load and separate the contacts. This normally occurs at higher speeds 

with increased friction coefficients and shear force, although not all fluids have a hydrodynamic 

regime. Boundary lubrication occurs at lower speeds, higher load or with a poor lubrication system, 

as the fluid is excluded from the contact area, resulting in insufficient fluid pressure to support the 

applied load. In the mixed lubrication regime, the load can be partially supported by fluid pressure 

and partially by contacting asperities, i.e. intermediate between boundary and hydrodynamic 

lubrication. The friction coefficient under boundary and mixed regime conditions is more associated 

with surface characteristics, whereas the hydrodynamic regime is controlled by bulk rheological 

properties (Stokes, Boehm, & Baier, 2013).  

 

Using these soft-tribological contacts, Selway and Stokes (2013) found that semi-solid foods (yogurt 

and custard) with similar viscoelasticity and flow behavior exhibit different frictional responses; 

hence probing the physical dynamics of complex soft systems at multiple length scales may provide 
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better insights into texture and mouthfeel perception. Textural attributes such as the grittiness and 

smoothness of microparticulate dispersions have been shown to depend on particle size, shape and 

elasticity (Guinard & Mazzucchelli, 1996; Singer & Dunn, 1990; Tyle, 1993). The lubrication 

behaviour of such systems is also strongly dependent on the particle size relative to the film 

thickness between tribological contacts (Wilson, Sakaguchi, & Schmid, 1994). It has been shown 

that soft hydrogel particles smaller than the film thickness or surface asperity height are entrained 

between the surfaces, whereas larger particles tend to be excluded from the contact zone (de Vicente, 

Stokes, & Spikes, 2006; Garrec & Norton, 2012). Particle elasticity and phase volume have also been 

shown to have a profound influence on the tribological properties of dispersions, where stiffer (less 

deformable) gelled particles and higher phase volumes generate lower friction coefficients due to a 

reduction in surface-surface contact (Garrec & Norton, 2013).  

 

Using maize and potato starches as exemplars, the first objective of the present study is to probe the 

lubrication properties of starch ghost suspensions over a range of concentrations to determine the 

influence of particle mechanics. The second objective of this study is to understand the viscosity and 

viscoelastic properties of starch ghost suspensions in both dilute and concentrated regimes. We 

report the small deformation oscillatory rheological behavior before and after repeated large 

deformation steady shear tests, combined with light microscopy of ghost particles before and after 

the test. The particle properties are discussed in terms of the observed differences in soft-tribological 

response between maize and potato ghost suspensions. 

 

2. Materials and Methods 

2.1 Materials 

Maize starch was purchased from Penford Australia Ltd. (Lane Cove, NSW, Australia), and potato 

starch was from Sigma-Aldrich. (St. Louis, MO, USA). Other chemicals used were obtained from 
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Sigma-Aldrich. All water used was deionized. 

 

2.2 Preparation of granule ghosts 

Granule ghosts were prepared by following a method reported previously (Debet & Gidley, 2007; 

Zhang, Dhital, Flanagan, & Gidley, 2014). Starch (200 mg) was suspended in a small amount of cold 

water and then poured into hot water (95 °C, 40 mL) with gentle mixing (250 rpm with magnetic 

stirrer bar) to prevent sedimentation. The dilute suspension (0.5% w/v starch) was cooked at 95 °C 

for 30 min to ensure the maximum swelling capacity was achieved and then centrifuged (30 °C, 2000 

g for 15 min). The supernatant was removed, and the spun ghosts were washed twice by 

resuspension in hot water (90 °C, 100 mL) with gentle manual stirring followed by centrifugation. 

The fresh ghost particles were finally resuspended in water (room temperature) at weight 

concentrations of 0.01%, 0.1%; and 0.87% (close packing limit, recovered directly from 

centrifugation) for potato ghost (PG) suspensions, and 0.01%, 0.1%, 1%, 2%, and 3% (close packing 

limit, recovered directly from centrifugation ) for maize ghost (MG) suspensions, for tribological and 

rheological measurements. Ghost particles were freshly prepared immediately prior to tribological 

and rheological measurements in order to minimize any retrogradation effects. The continuous phase 

of ghost suspensions was separated after centrifugation at 4000 g for 15 min. 

 

2.3 Dry Weight Measurement 

The solid content of ghost samples was determined in triplicate by drying the samples in a vacuum 

oven at 105 °C overnight. The solid content is calculated from the ratio of sample weight measured 

before and after drying.  

 

2.4 Tribological / lubrication measurements 

The friction measurements for all starch ghost suspensions and their continuous phases (20 mL) were 
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obtained at a controlled temperature of 35 °C on a Mini Traction Machine (MTM2, PCS Instruments 

Ltd., UK), following the methods of Bongaerts, Rossetti, and Stokes (2007) and Selway and Stokes 

(2013).  The tribometer was equipped with a PDMS smooth ball with a radius of 9.5 mm and a flat 

PDMS disc with a radius of 23 mm and a thickness of 4 mm (PCS Instruments Ltd., UK), which 

form the rubbing contact.  PDMS was selected due to its well-defined mechanical properties and 

surface chemistry, and suitably low elastic modulus to mimic the low pressure contact typical in 

biolubrication processes. Prior to the experiments, the PDMS tribopairs were cleaned in an ultrasonic 

bath with 1% sodium dodecyl sulphate solution, followed by rinsing with de-ionized water. The 

friction force (Ff) was determined as a function of the applied entrainment speed (U) over a range 

between 1 and 1000 mm/s under the ball-on-disc configuration. The entrainment speed is defined as 

the average surface speed of ball and disc, i.e., U = (U ball - U disc)/2, where U ball and U disc are the 

surface speeds of the ball and disc, respectively. The applied load (W) was set to 1 N for all tests, and 

the friction coefficient (µ) can be calculated as the friction force divided by applied load, i.e, µ = Ff / 

W; the slide-to-roll ratio (SRR) was fixed at 50% to provide a mixed sliding and rolling motion. 

While the friction coefficient (μ) was measured both for decreasing speed from 1000 to 1 mm/s and 

followed by increasing speed from 1 to 1000 mm/s, only data obtained from the decreasing speed 

step are discussed in the main text for clarity. Results are expressed as means with standard 

deviations of at least five measurements.  

 

 

2.5 Rheological measurements 

The rheological measurements were carried out on an advanced controlled-stress rheometer (Haake 

Mars 3, Thermo Fisher Scientific, Karlsruhe, Germany) with a heat adjustable Peltier element and 

temperature controlled hood at a temperature of 35 °C. A 60 mm diameter parallel plate geometry 

was used to measure steady state flow and viscoelastic properties of aqueous starch ghost 
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suspensions. The gap was set at 200 µm for all experiments in order to avoid any slip or artifact due 

to the larger particulates, as the sizes of starch ghost particles as estimated from light micrographs 

were 15 – 35 µm for maize ghosts and 50 – 150 µm for potato ghosts (Zhang, Dhital, Flanagan, & 

Gidley, 2014). The gap between parallel plates was always zeroed at a normal force of 4 N before 

each test, and gap error for this set of experiments was typically around 15 µm, calculated using the 

mathematical method of Davies and Stokes (2005). Prior to the tests, an oscillatory stress sweep test 

at a frequency of 1 rad/s was performed in order to determine the linear viscoelastic region of 

samples over a stress range from 0.001 to 100 Pa. To characterize the effect of shear force on the 

viscoelastic modulus of ghost suspensions (0.87% PG, 1%, 2% and 3% w/w MG), an oscillatory 

frequency sweep test was performed to determine storage (G‟) and loss moduli (G”) (step 1), 

followed by a steady shear viscosity measurement (step 2). The sample was then subjected to another 

oscillatory frequency sweep test (step 3) followed by a steady shear viscosity measurement (step 4), 

and a final oscillatory frequency sweep test (step 5). The oscillatory frequency sweep test was run at 

a stress within the linear viscoelastic region in the range of 0.01 to 10 rad/s, and the steady shear 

measurements were performed for shear rates ranging from 1 to 10,000 s
-1

. Results were expressed 

as means with standard deviations of at least duplicate measurements. For the ghost suspensions at 

dilute concentrations (0.01%, 0.1% w/w PG and MG), only steady shear measurements were 

performed for shear rates ranging from 1 to 10,000 s
-1

. 

 

2.6 Light microscopy 

Light microscopy was performed using a Zeiss Axio microscope (Oberkochen, Germany). One drop 

of fresh ghost suspension was diluted and stained with 2% iodine solution, before being recorded by 

a Zeiss CCD camera (AxioCam ERc5s, Oberkochen, Germany). 

 

2.7 Particle size distribution 
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Particle size analysis was performed on a Mastersizer Hydro 2000MU (Malvern Instruments Ltd., 

Malvern, UK) following the method of Zhang, Dhital, Flanagan, and Gidley (2014). A refractive 

index of 1.34 was used for size calculation of ghost particles. The starch samples were added to 

circulating water until an obscuration of >10% was recorded. Each measurement was repeated three 

times with an accuracy of about 0.5%. 

 

3. Results and Discussion 

3.1 Tribological characterization of starch ghost suspensions 

The tribological properties of starch ghost suspensions and their corresponding continuous phases 

were investigated across a wide range of concentrations. For clarity, only data obtained from 

decreasing speed steps are plotted in Figure 1 (data for increasing speed steps are shown in 

Supporting Information Figure S1). The friction curves of all ghost suspensions (Figure 1 A, B) 

suggest that lubrication is occurring in the boundary and mixed regimes, with a thin film of lubricant 

and surface characteristics being dominant. Figure 1A shows that the lubrication properties of maize 

ghost suspensions are highly dependent on their particle concentration in the fluid. With decreasing 

values of entrainment speed from 1000 mm/s, all tribological profiles including the water control 

show a gradual increase in friction coefficient to a maximum occurring at a speed of 40 mm/s. It is 

observed that this maximum friction coefficient decreases to below that of water with increasing 

weight concentration (0.01%, 0.1% and 1% w/w) of maize ghost suspensions, indicating that ghost 

particles are entrained into the contact zone. These entrained particles provide a boundary layer 

which prevents direct contact between the opposing PDMS surfaces; hence increasing the number of 

particles entrained reduces the friction coefficient.  However, no further reduction in friction 

coefficient is observed for higher concentrated maize ghost systems (i.e., 1%, 2%, and 3% w/w). 

This could be explained by considering that once a threshold concentration is reached, where a layer 

of particles provides a complete barrier to surface contact, further increasing the number of particles 
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does not have a marked influence on the friction coefficient; this has been observed for hard glass-

particle suspensions in soft tribological contacts (Yakubov, Branfield, Bongaerts, & Stokes, 2015). 

For the most dilute and concentrated (i.e., 0.01% and 3% w/w) maize ghost suspensions as well as 

water, there is a plateau in tribological profiles at low speeds between 1 and 40 mm/s. For other 

concentrations of maize ghost samples, an increase in friction coefficient with speed is observed in 

this region (1 – 40 mm/s), possibly due to the deformation or breakdown of the elastomeric ghost 

particles in the direct contact (Selway & Stokes, 2013). Furthermore, a hysteresis is observed 

between the decreasing speed steps and increasing speed steps, with the hysteresis extent being 

concentration dependent (Supporting Information Figure S1). This hysteresis phenomenon has been 

observed in other soft fluid gels such as agarose (Gabriele, Spyropoulos, & Norton, 2010). 

 

In the case of potato ghosts with various weight concentrations, all tribological profiles (Figure 1 B) 

starting from high speeds show a gradually increasing friction coefficient in the mixed regime and 

then a boundary plateau at lower speeds (< 30 mm/s). Compared with the water control, only a slight 

reduction of friction coefficient is observed over the full range of entrainment speeds. It is 

noteworthy that the behavior of the potato ghost suspension is independent of weight concentration, 

suggesting that the potato ghost particles are excluded from or degraded by the soft-contacts. There 

is a negligible hysteresis observed for potato ghost suspensions and all continuous phase samples 

(data not shown). The continuous phase of all ghost suspensions (Figure 1 C, D) shows similar 

tribological profiles with friction coefficient being close to the water control, consistent with few 

starch polymers being present in the continuous phase.     

 

 Maize ghost particles have approximately spherical appearance with relatively small sizes (around 

20 - 35 μm), whereas potato ghosts are ellipsoidal and have larger particle sizes (50 - 150 μm) with 

some apparent fragmentation occurring during the isolation process (Figure 2, before rheology or 
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tribology test). In a previous study, we reported that potato ghosts expand about ca. 4 fold in 

diameter compared with the parent granule with skins being thinner, more fragile and sensitive to 

shear force, compared with maize ghosts which increase ca. 2 times in diameter cf. parent granules 

as estimated by microscopy (Zhang, Dhital, Flanagan, & Gidley, 2014). Maize ghosts subjected to 

the tribology test only resulted in slightly reduced integrity in morphology, whereas potato ghosts 

show a significant amount of granule fragments (Figure 2).  

 

We also assessed the particle size of maize ghosts by laser light scattering, the results of which are 

presented in Figure 3 and Table 1. It is not appropriate to assess particle size of potato ghosts using 

the Mastersizer instrument, since microscopy analysis showed that shear degradation occurs during 

measurement at the circulating impellor speed of 2000 rpm (data not shown). Following tribology 

and rheology tests, the presence of an additional small particle component was seen by both light 

scattering (Figure 3) and microscopy (Figures 2 and 6).  The laser scattering technique makes 

assumptions that granule ghosts are spherical and homogeneous in order to calculate particle sizes, 

resulting in an overestimate compared with apparent sizes from microscopy, particularly for the 

volume weighted mean diameter as shown in Table 1 which emphasizes larger particles within the 

distribution.  Although the laser scatting technique overestimates the actual size of maize ghosts, the 

presence of a small size fraction led to a slight reduction in calculated values of volume weight mean 

diameter (d4,3) for maize ghosts after tribology and rheology tests with greater effects at higher ghost 

concentrations (Table 1) in agreement with light microscopic measurements. 

 

3.2 Rheological characterization of starch ghost suspensions after steady shear treatments 

The rheology of the dilute starch ghost suspensions is shown in Figure 4.  Steady shear viscosity 

measurements are performed at shear rates of up to 10,000 s
-1

, which is of similar order to the shear 

rate present in the tribological contact (Selway & Stokes, 2013; Stokes, Macakova, Chojnicka-



14 | P a g e  
 

Paszun, de Kruif, & de Jongh, 2011).  Figure 4 shows that dilute (0.01% and 0.1%) maize ghost 

suspensions and 0.01% potato ghost suspension are Newtonian (relatively constant viscosity with 

shear rate) and measured to have a similar viscosity to the solvent, water, but a 0.1% w/w potato 

ghost suspension is shear thinning. As their viscosities are all similar, the observed differences in the 

tribological behavior shown in Figure 1 between the dilute suspensions (≤0.1 %w/w) of maize and 

potato starch ghost granules is likely to be associated with differences in ghost particle mechanics 

(e.g. particle modulus) and/or their surface properties. In more concentrated conditions, maize ghost 

suspensions exhibit a similar maximum friction coefficient (~0.5) at entrainment speeds of around 40 

mm/s, presenting a clear particulate lubrication behavior. In contrast, potato ghost suspensions do not 

show this peak that is common to particle suspensions (Yakubov, Branfield, Bongaerts, & Stokes, 

2015; G. E. Yakubov, Zhong, Li, Boehm, Xie, Beattie, et al., 2015).  We propose that this is due to 

the disintegration of the potato ghosts which are entrained within the tribometer gap, as suggested by 

the observation in Figure 2 of potato ghost granule fragments after the tribology test, whereas maize 

ghosts were mostly intact.   

 

To gain insight into how shear affects the structure and rheology of granule ghost suspensions, a 

series of dynamic and steady shear rheology experiments were performed. The viscoelastic moduli 

(G‟ and G”) (step 1) and steady shear viscosity (step 2) of ghost suspensions at relatively high 

particle concentrations (i.e., 0.87% w/w potato ghost suspension (approximating to maximum 

volume occupancy), 1%, 2% and 3% w/w maize ghost suspensions) are presented in Figure 5 as 

average and standard deviation of duplicate measurements. For the first frequency sweep step (i.e. 

subjected to no pre-shear), the maize ghost suspensions behave as a weak gel with the storage 

modulus exceeding the loss modulus and relatively constant with frequency (Figure 5, A, C, E).  As 

the weight concentrations of maize ghost suspensions increases, storage modulus increases.  For the 

concentrations of ghost particles recovered directly from centrifugation (0.87% w/w potato ghost 
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suspension and 3% w/w maize ghost suspension), maize ghosts  (Figure 2) have higher storage 

modulus and viscosity values than the more swollen potato ghosts (Figure 5 E - H), consistent with a 

previous report on starch pastes (Steeneken, 1989).  In contrast to ≤0.1% concentrations, it was 

found that all ghost suspensions at these higher concentrations have typical non-Newtonian shear 

thinning flow behavior (i.e., viscosity decreases as a function of increasing shear rate).  

 

The second and third small-amplitude oscillatory shear measurements (step 3 and 5) characterize 

viscoelastic properties immediately after one and two shear rate sweeps (steps 2 and 4) respectively.  

After being sheared for one cycle, the ghost granule suspensions display a marked decrease in 

storage and loss modulus, but still behaved as a weak gel with storage modulus higher than loss 

modulus over the frequency range (Figure 5 A, C, E, F). In addition, the differences between the 

storage modulus and the loss modulus after steady shear rate sweep are smaller, especially for 1% 

w/w maize and 0.87% w/w potato ghost suspensions. After two cycles of steady state shear 

treatment, further decrease of viscoelastic moduli can be seen, but not as great as the differences 

caused by the first cycle (Figure 5 A, C, E).   

 

After the five-step rheological measurements, maize ghosts at concentrated regimes show reduced 

integrity in morphology as judged by microscopy (Figure 6 A - C), consistent with small differences 

in the corresponding particle size distribution (Figure 3) and volume weight mean diameter (d4,3) 

data (Table 1). Almost all potato ghost particles subjected to two-rounds of steady shear treatment 

show significant amounts of small rod-like fragments (Figure 6), consistent with rheoscope 

observations of elongated particles under high shear force (Desse, Fraiseau, Mitchell, & Budtova, 

2010). It is interesting that the fragments from potato ghosts after steady shear treatment are  

different in morphology to potato ghosts after the tribology test (Figure 2); we suggest that the more 
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rounded fragments in the latter result from both rolling and shear effects between soft-contacts in the 

tribometer. 

 

4. Conclusions 

This paper has reported for the first time the lubrication and rheology of aqueous suspensions of 

isolated swollen starch granule ghosts over a wide range of concentrations, using maize and potato 

starches as exemplars. Although all suspensions show boundary and mixed lubrication, there are 

clear differences in tribology and rheology between maize and potato starch swollen granule ghosts. 

Subjecting the smaller size and more robust maize ghosts to tribology or rheology tests only resulted 

in slightly reduced integrity in morphology, whereas large and fragile potato ghosts showed 

significant amounts of granule fragments after testing. A markedly decreased maximum friction 

coefficient point at an entrainment speed of 40 mm/s with increasing concentration (from 0.01% to 

1% based on weight) of maize ghost suspensions was observed, while the apparent friction 

coefficient is concentration independent for potato ghosts although this is likely to be due to 

disintegration of fragile potato ghosts under tribological contact. We conclude that soft-tribological 

properties of starch ghost suspensions can be due to either particulate (e.g. maize ghosts) or 

polymeric (particularly for potato ghosts) forms, the balance between which could potentially 

contribute to the perception of starch-containing food in the mouth and the properties of starches as 

processed and used in a wide range of technological applications.  

 

AUTHOR INFORMATION 

Corresponding Author 

Email: m.gidley@uq.edu.au (M. J. Gidley). Phone: +61 7 3365 2145; Fax: +61 7 3365 1177. 

Notes 

The authors declare no competing financial interest. 

mailto:m.gidley@uq.edu.au


17 | P a g e  
 

 

ACKNOWLEDGMENTS 

We thank Dr. Heather Shewan and Dr. Polly Burey for rheometer training and fruitful discussions. 

This work was supported by the Australian Research Council Centre of Excellence in Plant Cell 

Walls and a scholarship to BZ from the China Scholarship Council and The University of 

Queensland. 

 

ABBREVIATIONS 

MG, maize ghost suspension; PG, potato ghost suspension;  

 

  



18 | P a g e  
 

References 

Bagley, E. B., & Christianson, D. D. (1982). Swelling capacity of starch and its relationship to 

suspension viscosity - Effect of cooking time, temperature and concentration. Journal of 

Texture Studies, 13(1), 115-126. 

Bongaerts, J. H. H., Fourtouni, K., & Stokes, J. R. (2007). Soft-tribology: Lubrication in a compliant 

PDMS-PDMS contact. Tribology International, 40(10-12), 1531-1542. 

Bongaerts, J. H. H., Rossetti, D., & Stokes, J. R. (2007). The lubricating properties of human whole 

saliva. Tribology Letters, 27(3), 277-287. 

Davies, G. A., & Stokes, J. R. (2005). On the gap error in parallel plate rheometry that arises from 

the presence of air when zeroing the gap. Journal of Rheology, 49(4), 919-922. 

de Vicente, J., Stokes, J. R., & Spikes, H. A. (2006). Soft lubrication of model hydrocolloids. Food 

Hydrocolloids, 20(4), 483-491. 

Debet, M. R., & Gidley, M. J. (2006). Three classes of starch granule swelling: Influence of surface 

proteins and lipids. Carbohydrate Polymers, 64(3), 452-465. 

Debet, M. R., & Gidley, M. J. (2007). Why do gelatinized starch granules not dissolve completely? 

Roles for amylose, protein, and lipid in granule "ghost" integrity. Journal of Agricultural and 

Food Chemistry, 55(12), 4752-4760. 

Desse, M., Fraiseau, D., Mitchell, J., & Budtova, T. (2010). Individual swollen starch granules under 

mechanical stress: evidence for deformation and volume loss. Soft Matter, 6(2), 363-369. 

Evans, I. D., & Haisman, D. R. (1980). Rheology of gelatinized starch suspensions. Journal of 

Texture Studies, 10(4), 347-370. 

Evans, I. D., & Lips, A. (1992). Viscoelasticity of gelatinized starch dispersions. Journal of Texture 

Studies, 23(1), 69-86. 



19 | P a g e  
 

Fisher, L. R., Carrington, S. P., & Odell, J. A. (1997). Deformation mechanics of individual swollen 

starch granules. In P. J. Frazier, A. M. Donald & P. Richmond (Eds.), Starch structure and 

functionality,  (pp. 105-114). Cambridge, UK: The Royal Society of Chemistry. 

Gabriele, A., Spyropoulos, F., & Norton, I. T. (2010). A conceptual model for fluid gel lubrication. 

Soft Matter, 6(17), 4205-4213. 

Garrec, D. A., & Norton, I. T. (2012). The influence of hydrocolloid hydrodynamics on lubrication. 

Food Hydrocolloids, 26(2), 389-397. 

Garrec, D. A., & Norton, I. T. (2013). Kappa carrageenan fluid gel material properties. Part 2: 

Tribology. Food Hydrocolloids. 

Guinard, J. X., & Mazzucchelli, R. (1996). The sensory perception of texture and mouthfeel. Trends 

in Food Science and Technology, 7(7), 213-219. 

Han, X. Z., & Hamaker, B. R. (2002). Association of starch granule proteins with starch ghosts and 

remnants revealed by confocal laser scanning microscopy. Cereal Chemistry, 79(6), 892-896. 

Lagarrigue, S., & Alvarez, G. (2001). The rheology of starch dispersions at high temperatures and 

high shear rates: a review. Journal of Food Engineering, 50(4), 189-202. 

Obanni, M., & BeMiller, J. N. (1996). Ghost microstructures of starch from different botanical 

sources. Cereal Chemistry, 73(3), 333-337. 

Prentice, R. D. M., Stark, J. R., & Gidley, M. J. (1992). Granule residues and ghosts remaining after 

heating A-type barley-starch granules in water. Carbohydrate Research, 227, 121-130. 

Selway, N., & Stokes, J. R. (2013). Insights into the dynamics of oral lubrication and mouthfeel 

using soft tribology: Differentiating semi-fluid foods with similar rheology. Food Research 

International, 54(1), 423-431. 

Singer, N. S., & Dunn, J. M. (1990). Protein microparticulation: The principle and the process. 

Journal of the American College of Nutrition, 9(4), 388-397. 



20 | P a g e  
 

Steeneken, P. A. M. (1989). Rheological properties of aqueous suspensions of swollen starch 

granules. Carbohydrate Polymers, 11(1), 23-42. 

Stokes, J. R. (2011). Rheology of industrially relevant microgels. Microgel Suspensions: 

Fundamentals and Applications, 327-353. 

Stokes, J. R., Boehm, M. W., & Baier, S. K. (2013). Oral processing, texture and mouthfeel: From 

rheology to tribology and beyond. Current Opinion in Colloid & Interface Science, 18(4), 

349-359. 

Stokes, J. R., Macakova, L., Chojnicka-Paszun, A., de Kruif, C. G., & de Jongh, H. H. J. (2011). 

Lubrication, Adsorption, and Rheology of Aqueous Polysaccharide Solutions. Langmuir, 

27(7), 3474-3484. 

Tyle, P. (1993). Effect of size, shape and hardness of particles in suspension on oral texture and 

palatability. Acta Psychologica, 84(1), 111-118. 

Wilson, W. R. D., Sakaguchi, Y., & Schmid, S. R. (1994). A mixed-flow model for lubrication with 

emulsions. Tribology Transactions, 37, 543-551. 

Yakubov, G., Branfield, T. E., Bongaerts, J. H. H., & Stokes, J. R. (2015). Tribology of particle 

suspensions in rolling-sliding soft contacts. Biotribology, 3, 1-10. 

Yakubov, G. E., Zhong, L., Li, M., Boehm, M. W., Xie, F. W., Beattie, D. A., Halley, P. J., & 

Stokes, J. R. (2015). Lubrication of starch in ionic liquid-water mixtures: Soluble 

carbohydrate polymers form a boundary film on hydrophobic surfaces. Carbohydrate 

Polymers, 133, 507-516. 

Zhang, B., Dhital, S., Flanagan, B. M., & Gidley, M. J. (2014). Mechanism for starch granule ghost 

formation deduced from structural and enzyme digestion properties. Journal of Agricultural 

and Food Chemistry, 62(3), 760-771. 

 

  



21 | P a g e  
 

FIGURE CAPTIONS  

Figure 1. Friction coefficient as a function of entrainment speed for starch granule ghost suspensions 

(A, B) and their continuous phases (C, D) at different concentrations. (MG, maize starch ghost 

suspension; PG, potato starch ghost suspension; CP, continuous phase) 

 

Figure 2. Light micrographs of starch granule ghost suspensions before and after being subjected to 

tribology test. Arrows show starch ghost fragments present after tribology test. (MG, maize starch 

ghost suspension; PG, potato starch ghost suspension; tribo, tribology test) 

 

Figure 3. Particle size distributions of 3% maize ghost suspension before and after being subjected to 

tribology or rheology test. (MG, maize starch ghost suspension; tribo, tribology test; rheo, rheology 

test) 

 

Figure 4. Steady state viscosity of dilute starch granule ghost suspensions. (MG, maize starch ghost 

suspension; PG, potato starch ghost suspension) 

 

Figure 5. Five-step rheology for concentrated starch granule ghost suspensions after sequential small 

amplitude oscillatory (Steps 1, 3 and 5) and steady shear (Steps 2 and 4) measurements: (A, C, E, G) 

storage modulus and loss modulus as a function of frequency (step1, 3 and 5); (B, D, F, H) steady 

state viscosity as a function of shear rate (step 2 and 4). (MG, maize starch ghost suspension; PG, 

potato starch ghost suspension) 

 

Figure 6. Light micrographs of starch granule ghost suspensions after being subjected to five-step 

rheology test. Arrows show starch ghost fragments present after five-step rheology test. (MG, maize 

starch ghost suspension; PG, potato starch ghost suspension; rheo, rheology test) 
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Figure 4. 
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Figure 6. 
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Table 1. Calculated values for volume weighted mean diameter (d4,3) in µm of maize starch granule 

ghost suspensions (MG) before and after being subjected to tribology and rheology tests.  

sample d4,3 sample d4,3 

MG 47.60 ± 0.12   

1% MG after tribo 47.36 ± 0.14 1% MG after rheo 46.50 ± 0.53 

2% MG after tribo 46.71 ± 0.20 2% MG after rheo 46.23 ± 0.85 

3% MG after tribo 46.14 ± 0.09 3% MG after rheo 45.84 ± 0.05 

 


