Accepted Manuscript

Parameters of low back pain chronicity among athletes: Associations with physical and mental stress

Jahan Heidari, Tobias Mierswa, Jens Kleinert, Ida Ott, Claudia Levenig, Monika Hasenbring, Michael Kellmann

PII: S1466-853X(16)00032-8

DOI: 10.1016/j.ptsp.2016.03.003

Reference: YPTSP 713

To appear in: Physical Therapy in Sport

Received Date: 27 August 2015

Revised Date: 29 January 2016

Accepted Date: 3 March 2016

Please cite this article as: Heidari, J., Mierswa, T., Kleinert, J., Ott, I., Levenig, C., Hasenbring, M., Kellmann, M., Parameters of low back pain chronicity among athletes: Associations with physical and mental stress, *Physical Therapy in Sports* (2016), doi: 10.1016/j.ptsp.2016.03.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

MANUSCRIPT DRAFT

Parameters of low back pain chronicity among athletes:

Associations with physical and mental stress

Jahan Heidari^a, Tobias Mierswa^a, Jens Kleinert^b, Ida Ott^b, Claudia Levenig^c, Monika Hasenbring^c, Michael Kellmann^{a, d}

^a Unit of Sport Psychology, Faculty of Sport Science, Ruhr University Bochum, Germany

Postal address: Gesundheitscampus Nord Nr. 10, 44801 Bochum, Germany

^b Section Health & Social Psychology, Institute of Psychology, German Sport University Cologne, Germany

Postal address: Am Sportpark Muengersdorf 6, 50933 Cologne, Germany

^c Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Germany

Postal address: Universitaetsstrasse 150, 44780 Bochum, Germany

^d Schools of Human Movement Studies and Psychology, The University of Queensland, Australia

Postal address: Blair Drive, St Lucia QLD 4072, Australia

Email addresses (in order of authors):

jahan.heidari@rub.de, tobias.mierswa@rub.de, kleinert@dshs-koeln.de, i.ott@dshskoeln.de, Levenig@medpsych.ruhr-uni-bochum.de, Hasenbring@medpsych.ruhr-unibochum.de, Michael.Kellmann@rub.de;

ACCEPTED MANUSCRIPT

Corresponding author:

Jahan Heidari

Unit of Sport Psychology, Faculty of Sport Science, Ruhr University Bochum

Gesundheitscampus Nord Nr. 10, 44801 Bochum, Germany

Email address: jahan.heidari@rub.de

1 **REVISED MANUSCRIPT DRAFT**

2

4

- **3 Parameters of low back pain chronicity among athletes:**
 - Associations with physical and mental stress

6	Abstract
7	Objective: In the general population, physical and mental stress factors are linked to
8	chronic low back pain (LBP). The aim of the present study was to examine this
9	association among athletes.
10	Design: Longitudinal study with a six-month interval between measurements.
11	Setting: Questionnaires were filled out at home, either in paper-pencil version or online.
12	<i>Participants</i> : Eighty-two male and 57 female athletes ($N = 139$, $M_{Age} = 32.24$) who
13	exercise on a competitive ($n = 102$) or recreational level ($n = 37$), with a weekly training
14	volume of at least three hours.
15	Main Outcome Measures: At T ₀ , stress parameters were assessed via the Recovery-
16	Stress Questionnaire (RESTQ-Basic-48) and the Screening Scale of the Trier Inventory
17	for the Assessment of Chronic Stress (TICS-SSCS). At T_0 and T_1 , different
18	chronification indicators were measured. Based on these assessments, the sample was
19	split into a chronification and no-chronification group.
20	Results: ANCOVAs were used to conduct group comparisons with regard to stress
21	levels. The chronification groups showed higher stress values for all chronification
22	indicators. For the variables Physical Complaints and Overall Stress-TICS, the group
23	differences became significant ($p < .05$).
24	Conclusion: A relationship between stress parameters and LBP chronification was
25	demonstrated among athletes for the first time.

- *Keywords*: psychological stress; low back pain; chronification; athletes

29

INTRODUCTION

30 Low back pain in athletes

Athletes are frequently confronted with physically challenging tasks. The performance
of uncontrollable and demanding movements (e.g., body checking in ice hockey) is part
of the training and competition routine in both contact and noncontact sports. As a
result, athletes repeatedly suffer from persistent strains, especially in the lower back
(Foss, Holme, & Bahr, 2012).
Trainor and Trainor (2004) summarized etiologic data from different studies comparing
athletes' low back pain (LBP) prevalence rates. Several factors (e.g., age, type of sport)

38 seem to affect the development of LBP. Bahr et al. (2004) demonstrated that endurance

39 athletes in sports like rowing or cross-country skiing revealed a higher rate of LBP

40 compared to nonathletic control groups. Their findings suggest that LBP appears to be a

41 considerable burden across the abovementioned disciplines, with lifetime prevalence

42 rates ranging between 51 % and 65 %. Specifically, a regular hyperextension of the back

43 (e.g., figure skating, tennis) can cause injuries in the spine region and back-related

44 problems (Bono, 2004; Hoskins, 2012; Schmidt et al., 2014).

45 Furthermore, a transition from acute LBP into a chronic condition may lead to several

46 detrimental consequences. An ongoing chronification of LBP can result in diminished

47 performance, injuries, and muscular deficits with regard to strength and flexibility

48 (Ashmen & Swanik, 1996; de Jonge & Kramer, 2014; Nadler et al., 2002). Persistent

49 LBP may even lead to a dropout of affected athletes and under elite conditions, to a loss

50 of their main occupation (Hopkins & White, 1993; Maffulli, Longo, Gougoulias,

51 Loppini, & Denaro, 2010). Approaches to cope with chronic LBP in athletes are

52 primarily based on biomechanical and anatomical theories, as the development of

53 chronic LBP in athletes is largely explained by these physiological approaches (Bahr et

54	al., 2004; Daniels, Pontius, El-Amin, & Gabriel, 2011). Nevertheless, many athletes
55	continue to suffer from pain and disability symptoms without underlying tissue
56	pathology (Iwamoto, Takeda, & Wakano, 2004). For athletes, Puentedura and Louw
57	(2012) recommend a biopsychosocial approach of LBP examination with a special focus
58	on psychosocial factors. Hoskins (2012) and Wiech, Ploner, and Tracey (2008) state that
59	psychological and stress-related factors can potentially be associated with a
60	chronification of LBP among athletes.
61	
62	Stress in the world of sport
63	Stress is a multifaceted and omnipresent phenomenon for athletes. External factors
64	influence an athlete's experience of stress, for example extensive travel times or a high
65	training volume. Several influences interact and require the athlete's physiological and
66	psychological resources (e.g., stamina, concentration) (Hanton, Fletcher, & Coughlan,
67	2005; Mellalieu, Neil, Hanton, & Fletcher, 2009). A subsequent stress response can
68	manifest on a physiological, emotional, social, or cognitive level (Buckworth, Dishman,
69	O'Connor, & Tomporowski, 2013). In case sufficient recovery fails to appear, chronic
70	stress can develop contributing to several detrimental outcomes (Kellmann, 2000,
71	2002). Dysfunctional stress patterns among athletes can generate health-related
72	problems that could lead to severe diseases. For example, they may affect the immune
73	system (Clow & Hucklebridge, 2001), the mental health (Hughes & Leavey, 2012), and
74	the musculoskeletal system (Brenner, 2007; Galambos, Terry, Moyle, Locke, & Lane,
75	2005).
76	For LBP, there is a paucity of studies examining the association with stress in sport
77	participants, although the relationship between acute and chronic LBP and different

78 facets of stress has been comprehensively studied in the general population (Linton,

79	2000; Pincus, Burton, Vogel, & Field, 2002). Identically, the role of stress has been
80	considered in thematically-related fields, such as injuries among athletes (Andersen &
81	Williams, 1999; Galambos et al., 2005; Laux, Krumm, Diers, & Flor, 2015; Williams &
82	Andersen, 2007). Only Galambos et al. (2005) emphasize the impact of mood and stress
83	factors for the prediction of back pain. The findings are in line with the assumptions
84	from other research in this field (Hoskins, 2012; Puentedura & Louw, 2012; Standaert,
85	Herring, & Pratt, 2004) and underline a potential association between stress and LBP in
86	sport samples.
87	For this reason, the purpose of the present study was to examine the role of stress in the
88	context of LBP chronification among athletes. Specifically, we investigated the
89	prediction of different facets of stress with regard to pain and disability indicators of
90	LBP chronification. It was hypothesized that athletes with higher physical and
91	psychological stress loads tend to show LBP chronification over time. To the best of our
92	knowledge, neither for the onset of LBP, nor for the chronification of LBP, stress-related
93	factors among athletes have been examined.
94	

METHOD

96 Participants

97 The a priori sample size calculation was carried out with the program G*Power 3.0 98 (Faul, Erdfelder, Lang, & Buchner, 2007). We used a conventional alpha of .05 and a 99 power of .80 with an allocation ratio of 1 regarding the groups. The smallest effect of interest was fixed at a medium to high level of d = 0.6 (Cohen, 1992). We followed the 100 101 guidelines suggested by Noordzij et al. (2010) to specify the parameters of the sample 102 size calculation. Finally, a total minimum sample size of 90 participants was required to 103 ensure the determined effect size. 104 The sample consisted of 139 athletes ($M_{Age} = 32.24$, $SD_{Age} = 11.32$). The distribution of 105 gender was relatively balanced, with 57 women in the athletic group. To note, the 106 athletic sample formed a subsample of a study of the X project in the context of X. 107 Basic inclusion criteria to be eligible for participation were: (a) at least 18 years old; (b) 108 the presence of nonspecific LBP, based on the self-assessment of the athletes; and (c) 109 the participation in some form of prescribed active exercise therapy (e.g., 110 physiotherapy) with a health care professional. Participants were excluded based on the 111 following conditions: (a) rheumatic diseases: (b) acute fractures: (c) infections: (d) 112 tumors; (e) diagnosed herniated disks with paresis; (f) pregnancy. The overall sample at 113 the first measurement point (T_0) included 267 participants with both an athletic and 114 nonathletic background, as a comparison between those two groups was anticipated in 115 the first place. At the six-month follow-up (T_1) , the sample consisted of 172 participants 116 (athletes and nonathletes), with 139 individuals being categorized as athletes. For the 117 classification as an athlete, individuals had to fulfill two minimum criteria: (a) a certain 118 competition level (at least recreational level); (b) weekly training volume (at least three 119 hours). If either the competition level or the training volume did not meet the required

120	benchmarks, the participant was not classified as an athlete in this study. Based on these
121	standards, participants were labeled as either competitive ($n = 102$) or recreational ($n =$
122	37) athletes. Athletes assigned to the competitive group engaging in competitions on a
123	national or even international level with a weekly training volume of at least five hours.
124	In contrast, athletes in the recreational group ($n = 37$) participated in regional
125	competitions and had to train at least three hours a week. The allocation criteria for the
126	athletic assignment were derived from basic definitions of an athlete and physical
127	activity (Haskell et al., 2007; Weineck, 2009).
128	
129	Materials
130	Chronification variables

131 Two pain characteristics and one comprehensive disability indicator targeting the 132 LBP region were measured with the scales Characteristic Back Pain in the Last Three 133 Months, Average Back Pain in the Last Three Months, and Disability Score in the Last 134 Three Months. The scales were gathered from the validated German version of the 135 Chronic Pain Grade (Klasen, Hallner, Schaub, Willburger, & Hasenbring, 2004) which was originally developed by Von Korff, Ormel, Keefe, and Dworkin (1992). We used 136 137 the validated translation of the scales to guarantee for the generalizability of the results. 138 For both pain and disability, a composite score can be created. The calculation 139 procedures are based on the German version of the Chronic Pain Grade (Klasen et al., 140 2004). This instrument entails the two factors Characteristic Back Pain Intensity and 141 Disability Score in the Last Three Months. Three different dimensions form the 142 Characteristic Back Pain Intensity factor, namely Average Back Pain Intensity in the 143 Last Three Months, Intensity of Back Pain in the Last Three Months, and Intensity of 144 Back Pain at the Moment. All pain items range from 0 (no pain) to 10 (pain as bad

145	<i>could be</i>). The reliability analysis yielded a good internal consistency score of $\alpha = .83$ at
146	T ₀ . Identically, the <i>Disability Score in the Last Three Months</i> can be formed. The
147	disability parameter is operationalized via three different statements, which refer to the
148	previous three months: (a) the number of days with disability; (b) disability-related
149	interference with daily activities; (c) changes within the work, social and leisure time
150	setting due to a perceived disability. Again, the scales range from 0 (no interference) to
151	10 (unable to carry on any activities). Based on the disability points obtained from these
152	data, an overall Disability Score in the Last Three Months can be calculated. A
153	Cronbach's alpha of $\alpha = .87$ described the internal consistency of the disability scale.
154	Validity analyses by Klasen et al. (2004) produced moderate statistical associations
155	between the pain and disability scales and other clinical variables and measures.
156	Stress variables
157	For this study, the Overall Stress dimension of the German version of the Recovery-
158	Stress Questionnaire Basic with 48 items was utilized (RESTQ-Basic-48; Kallus, 2016).
159	An Overall Recovery factor also exists. In the context of this study, only the Overall
160	Stress scales have been considered, as the current research mainly focused on stress-
161	related parameters.
162	The Overall Stress dimension entails seven scales, with each scale consisting of four
163	items. These scales are General Stress, Emotional Stress, Social Stress,
164	Conflicts/Pressure, Fatigue, Lack of Energy, and Physical Complaints. Participants have
165	to specify the frequency of certain events within the time frame of three days on a
166	Likert-type scale with values ranging from 0 (<i>never</i>) to 6 (<i>always</i>). For each scale, an
167	average value is calculated. For this sample, all scales at least show acceptable internal
168	consistencies ranging from $a = 67$ to $a = 90$ Moreover the PESTO Basic has

168 consistencies, ranging from $\alpha = .67$ to $\alpha = .90$. Moreover, the RESTQ-Basic has

169	demonstrated its discriminant and convergent validity with several psychological and
170	physiological instruments within multiple populations (Kallus, 2016).
171	As a second measure of stress, the participants had to fill out the Screening Scale of the
172	Trier Inventory for the Assessment of Chronic Stress (TICS-SSCS; Schulz, Schlotz, &
173	Becker, 2004). The TICS-SSCS consists of 12 items, which include the stress domains
174	of Chronic Worrying, Work-Related Overload, Social Overload, Excessive Demands,
175	and Lack of Social Recognition. This screening instrument assesses the frequency of
176	self-perceived overall stress in the last three months. For clarification, the overall stress
177	measured with the TICS-SSCS is labeled as Overall Stress-TICS. The scales range from
178	0 (never) to 4 (very often) and in the end, an average score can be calculated. The
179	internal consistency for the TICS-SSCS was $\alpha = .91$ for this sample. Validity
180	examinations of the questionnaire were performed under discriminant and convergent
181	aspects. Data were assessed with different samples and thematically related instruments
182	regarding acute stress, chronic stress, and psychological constructs (Schulz et al., 2004).
183	
104	

184 <u>Procedure</u>

185 The participants were asked to complete a questionnaire package comprising sections 186 for the social, pain, activity, and stress anamnesis. Data were assessed via a longitudinal 187 approach at two time points, with a six-month interval between the measurements (T_0 ; 188 T_{1).} Participants for the study were recruited in two different ways. First, 189 physiotherapists, sport therapists, and chiropractors from **X** were contacted. They 190 informed clients with LBP about the study. Interested individuals participated in a 191 telephone survey and were screened for the abovementioned inclusion and exclusion 192 criteria. All participants gave their written consent before they took part in the survey. 193 After that, the suitable participants received the entire questionnaire package in paper-

194 pencil form. The second approach was via an online delivery of the questionnaire 195 package using the software EFS Survey by Questback GmbH. A link to this online 196 version was launched on different websites of German sport federations (e.g., regional 197 and national base camps) together with basic information about the study. A great 198 variety of federations was originally contacted to allow for a diverse sample of athletes 199 gathered from disciplines like archery, volleyball, hockey, or soccer (see Table 1). 200 Inclusion and exclusion criteria were checked at the beginning of the online 201 questionnaire. For their informed consent, participants had to click on a button on the 202 first page of the online version. At the end of the study, the participants were 203 compensated with a 10 Euro voucher and received feedback about general outcomes of 204 the study. The study was approved by the Medical Ethic Committee of the X. 205 206 Data analysis 207 A response pattern check of the answers was performed with the entire dataset. Several 208 researchers scanned the dataset and looked for irregularities in the data input. This 209 process was conducted with regard to the range of the items and with regard to logical 210 errors in combined items. Three invalid cases were identified and subsequently 211 excluded. As a next step of the data preparation, an outlier analysis was performed 212 based on the guidelines summarized by Iglewicz and Banerjee (2001). Next, 213 chronification indices for relevant variables were determined by calculating the 214 differences between the chronification values of the two measurements $(T_1 - T_0)$. 215 Subsequently, two dichotomous groups were formed (chronification/no-chronification). 216 The athletes with a positive or zero value were assigned to the chronification group, as 217 these values were equivalent to an increase of chronification or a steady chronic level of 218 LBP. Athletes with negative values were allocated to the no-chronification group, as

219	negative values reflected a reduction of the chronification. This procedure was
220	performed for the variables Characteristic Back Pain in the Last Three Months, Average
221	Back Pain in the Last Three Months and Disability Score in the Last Three Months in an
222	identical manner.
223	Statistically, eight one-way ANCOVAs were conducted for each of the three
224	chronification indices. The two groups of each chronification variable were separately
225	examined for differences in the stress parameters. To control for potential biasing
226	differences at T_0 , the respective chronification value of each chronification group at T_0
227	was included as a covariate (e.g., Characteristic Back Pain in the Last Three Months at
228	T_0). Due to the high number of group comparisons via ANCOVAS, adjustments for
229	multiple testing via the Bonferroni method are frequently recommended. Nevertheless,
230	we refrained from applying this procedure as it would have led to a considerable
231	increase of type II errors (i.e., the probability of accepting the null hypothesis when the
232	alternative is correct). Another pitfall of the Bonferroni adjustment refers to the
233	interpretation of the findings. According to Perneger (1998), the outcomes highly
234	depend on the number of other tests performed. In this study, we approach a rather new
235	field of research and therefore conduct plenty of group comparisons in an explorative
236	way.
237	Finally, all assumptions for applying ANCOVAs as statistical procedure were checked
238	with a preliminary analysis. The main prerequisites regarding sample size, measurement
239	level, normality, homogeneity of regression slopes, and homogeneity of variances were

240 satisfactorily met. All analyses were conducted using SPSS Version 22.0 (SPSS, Inc.,

241 Chicago, IL).

0	Λ	0
7	4	-

RESULTS

One hundred and thirty-nine individuals have been classified as athletes based on the inclusion criteria, but the group sizes in the analyses varied due to missing data regarding some parts of the questionnaire battery. Presumably, this occurred because some participants did not fill in the questionnaires with sufficient thoroughness. Central characteristics of the investigated sample are portrayed descriptively in Table 1.

249 Table 1

Variable of Interest	Mean ±	SD/Number o	of response	2 <mark>8</mark> .
LBP Duration	9	14.4 ± 1505.4	days	6
Type of Sport	Archery $(n = 13)$	Hockey (1	<u>ı = 10)</u>	Volleyball (<i>n</i> = 10)
Sport as Profession	Yes $(n = 14)$			No (<i>n</i> = 125)

250 Selected Characteristics of the athletic sample

- 251 *Note.* Only the three most frequent types of sports are listed.
- 252
- 253 The subsequent group comparisons are organized with respect to the chronifcation
- 254 categories of pain and disability. Characteristic Back Pain in the Last Three Months and
- 255 Average Back Pain in the Last Three Months represent the pain scales, whereas
- 256 Disability Score in the Last Three Months described disability.
- 257 The ANCOVA for the *Characteristic Back Pain in the Last Three Months* variable
- 258 yielded significant results for two dependent variables. As a covariate, the
- 259 Characteristic Back Pain in the Last Three Months levels at T₀ were included. Physical
- 260 *Complaints* significantly differed between the groups, F(1,134) = 6.03, p = .015, η_p^2
- 261 = .04, with the covariate also showing a significant influence, F(1,134) = 44.37, p
- 262 < .001, $\eta_p^2 = .25$. Furthermore, the athletes differed in their *Overall Stress-TICS* levels,
- 263 $F(1,125) = 5.40, p = .022, \eta_p^2 = .04$. Again, the covariate also became significant,
- 264 F(1,125) = 10.25, p = .002, $\eta_p^2 = .08$. The remaining dependent variables did not reveal
- any significant group differences for chronification (Table 2).
- 266

- 267 The ANCOVAs for chronification vs. no-chronification regarding Average Back Pain in
- 268 the Last Three Months included the covariate Average Back Pain in the Last Three
- 269 *Months* at T₀. A statistically significant group difference was found for *Physical*
- 270 *Complaints*, F(1,134) = 3.99, p = .048, $\eta_p^2 = .03$. In this ANCOVA, the covariate also
- showed a significant impact, F(1,134) = 35, p < .001, $\eta_p^2 = .21$. For Overall Stress-
- 272 *TICS*, the groups also differed, F(1,125) = 8.07, p = .005, $\eta_p^2 = .06$. A comparable result
- 273 was identified for the covariate, F(1,125) = 16.33, p < .001, $\eta_p^2 = .12$. The descriptive
- values are listed in Table 2.

275

CER MAR

276 Table 2

277 Descriptive Group Comparisons for Characteristic Back Pain and Average Back Pain

278 *in the Last Three Months*

		Chronification group		No-chronification group	
Dependent Variables	<mark>Cronbach's α</mark>	Characteristic Back Pain $(n = 44/40)^{a}$	Average Back Pain $(n = 60/57)^{a}$	Characteristic Back Pain $(n = 93/88)^{a}$	Average Back Pain $(n = 77/71)^{a}$
General Stress	<mark>α = .88</mark>	1.62 (1.18)	1.54 (1.10)	1.31 (1.12)	1.30 (1.18)
Emotional Stress	$\alpha = .75$	1.70 (0.78)	1.63 (0.81)	1.54 (0.91)	1.57 (0.92)
Social Stress	$\alpha = .90$	1.85 (1.15)	1.77 (1.13)	1.74 (1.12)	1.78 (1.14)
Conflicts/ Pressure	<mark>α = .67</mark>	2.20 (0.95)	2.20 (1.01)	1.99 (1.01)	1.95 (0.97)
Fatigue	$\alpha = .79$	2.19 (1.12)	2.13 (1.14)	2.06 (1.09)	2.08 (1.10)
Lack of Energy	<u>α =.68</u>	1.87 (1.14)	1.80 (1.01)	1.84 (0.91)	1.89 (0.96)
Physical Complaints	$\alpha = .73$	2.34 (1.17)*	2.20 (1.12)*	2.00 (1.01)	2.03 (1.03)
Overall Stress-TICS	<u>α = .91</u>	1.78 (0.84)*	1.73 (0.76)**	1.53 (0.66)	1.51 (0.69)

- Note. The values in the columns show the mean and standard deviation of each stress parameter in the
- respective group.
- ^aThe second *n*-value in the brackets refers to the distribution of the *Overall Stress-TICS*.
- 282 *p < .05. **p < .01.
- 283

284 No statistically significant result was obtained for the disability measure *Disability*

- 285 Score in the Last Three Months.
- 286

287	DISCUSSION
288	The aim of the present study was to examine stress parameters in athletes with regard to
289	different indicators of LBP chronification. It was hypothesized that the individuals with
290	an increase or steady level of chronification between T_0 and T_1 should show higher
291	stress levels at T_0 , compared to the athletes with a decline of chronification.
292	To a certain extent, the outcomes support the initial hypothesis that higher stress levels
293	are associated with a chronification of LBP. Group differences occurred for two stress
294	variables (Overall Stress-TICS, Physical Complaints) with regard to the pain
295	chronification indicators (Characteristic Back Pain in the Last Three Months, Average
296	Back Pain in the Last Three Months).
297	No statistically significant relationships between stress parameters and the disability
298	measure were yielded. Notably, all mean values of the reported stress variables were
299	higher in the chronification group compared to the no-chronification group across all
300	chronifcation indicators.
301	
302	Interpretation of the outcomes
303	The findings of the Overall-Stress-TICS scale suggest that individuals with a higher
204	strage level within the previous three months of T reported on increase of LDD between

304 stress level within the previous three months of T₀ reported an increase of LBP between 305 the measurements. Pain which is related to chronification was therefore predicted by 306 elevated chronic stress stemming from different factors (e.g., work, leisure time). A 307 constant stress burden may have led to changes in the pain perception and the awareness 308 of pain in the lower back area in athletes. Research shows that stress-induced chronic 309 pain can stimulate alterations in neuronal networks with attentional shifts towards pain 310 (Simons, Elman, & Borsook, 2014; Standaert et al., 2004; Wiech et al., 2008). Neural 311 and muscular structures in the lower back reveal a higher proneness to chronic pain

312 (Punnett et al., 2005; Wheeler, Schneck, Talavera, Halsey, & Berman, 2014). Over time, 313 a vicious circle of pain-stress reactivity establishes, because ongoing pain fosters 314 stressful experiences for the affected athletes (Gatchel, Peng, Peters, Fuchs, & Turk, 315 2007; Melzack, 2005). Although studies report a higher pain tolerance and more 316 adaptive pain coping for athletes (Daniels et al., 2011), the current results indicate that heavy stress may generate an increase of LBP for athletes in this sample. Another 317 318 interpretation of the findings suggests that the quality of pain leading to a chronifcation 319 might have produced more stress for the affected athletes. Nevertheless, the significant 320 differences for the *Physical Complaints* scale underline the role of stress, which is 321 related to physical sensations. A higher overall stress burden may have manifested in 322 physical stress and physical problems (e.g., other musculoskeletal disorders), which promote a chronification of LBP (Ramond-Roquin et al., 2015). Physical stress can be 323 324 characterized as a predominantly sport-related phenomenon, presumably related to the 325 anatomical region of the LBP (Apostolos, 2013; Trainor & Trainor, 2004). As athletes 326 typically have to deal with exceptionally high physical demands and strains, higher 327 somatic stress loads can result. Maladaptive mental and physiological processes might 328 be stimulated that favor the development of LBP. Without sufficient recovery, these 329 physical problems may lead to detrimental outcomes, such as overtraining (Angeli, 330 Minetto, Dovio, & Paccotti, 2004; Hausswirth et al., 2014; Main, Dawson, Grove, 331 Landers, & Goodman, 2009), injuries (Ivarsson, Johnson, Lindwall, Gustafsson, & 332 Altemyr, 2014; Laux et al., 2015; Storheim & Zwart, 2014), or a persistent pain-related 333 LBP burden in the current sample. 334 Notably, significant associations between stress parameters and a LBP chronification

335 were only found for pain-related chronification indicators, but not for the disability

336 measure. A possible reason for this outcome might be that athletes are unaware of their

337	stress levels, which may play an indirect role by initiating physiological processes that
338	increase pain. Stress therefore modifies the development of pain. With disability, the
339	athletes in the chronification group did not show a higher stress level than those in the
340	no-chronification group. Possibly, stress did not have an impact on the perceived
341	disability, because athletes are constantly confronted with challenging situations. They
342	are used to deal with external and internal stressors without feeling limited by them.
343	Another explanation targets the role of pain and disability with regard to back pain. The
344	review of Wiech et al. (2008) states that the relationship of pain and disability is
345	mediated by several factors. For example, psychological stress mediates the effect of
346	pain on disability. The direction of this mediation could have been different in this
347	sample of athletes, with pain mediating the effect between stress and disability
240	
348	associated with LBP.
348 349	associated with LBP. In the context of this study, athletes displayed pain chronification together with higher
349	In the context of this study, athletes displayed pain chronification together with higher
349 350	In the context of this study, athletes displayed pain chronification together with higher stress levels at T_0 , both for the overall stress and the physical component.
349350351	In the context of this study, athletes displayed pain chronification together with higher stress levels at T ₀ , both for the overall stress and the physical component. Within the general population, several studies have identified a considerable association
349350351352	In the context of this study, athletes displayed pain chronification together with higher stress levels at T ₀ , both for the overall stress and the physical component. Within the general population, several studies have identified a considerable association between psychological stress and chronic LBP (Linton & Shaw, 2011; Scholich,
 349 350 351 352 353 	 In the context of this study, athletes displayed pain chronification together with higher stress levels at T₀, both for the overall stress and the physical component. Within the general population, several studies have identified a considerable association between psychological stress and chronic LBP (Linton & Shaw, 2011; Scholich, Hallner, Wittenberg, Hasenbring, & Rusu, 2012). Nevertheless, a relationship between a
 349 350 351 352 353 354 	 In the context of this study, athletes displayed pain chronification together with higher stress levels at T₀, both for the overall stress and the physical component. Within the general population, several studies have identified a considerable association between psychological stress and chronic LBP (Linton & Shaw, 2011; Scholich, Hallner, Wittenberg, Hasenbring, & Rusu, 2012). Nevertheless, a relationship between a chronification of LBP and increased stress levels has not been precisely studied among
 349 350 351 352 353 354 355 	 In the context of this study, athletes displayed pain chronification together with higher stress levels at T₀, both for the overall stress and the physical component. Within the general population, several studies have identified a considerable association between psychological stress and chronic LBP (Linton & Shaw, 2011; Scholich, Hallner, Wittenberg, Hasenbring, & Rusu, 2012). Nevertheless, a relationship between a chronification of LBP and increased stress levels has not been precisely studied among

358 The chronification measurements were conducted at two time points, whereas the stress

- 359 parameters were exclusively assessed at T_0 . This procedure was in line with other
- 360 studies in the context of LBP chronification (Hampel & Moergel, 2009; Mehling et al.,
- 361 2011; Waddell, 2006). Nevertheless, the findings from the measurement design of this

362 study only provide partial support for chronification over time. With the included 363 measures, the picture of the last three months with regard to LBP pain and disability 364 was considered. Referring to this data, it cannot be stated how the individual level of 365 LBP chronification was between the time points. Variations might have occurred with 366 regard to the stress levels, which were solely assessed at T_0 . 367 Moreover, a random group allocation of the participants or an experimental examination 368 of the influence of stress did not occur. Future designs should include baseline 369 measurements and interventions for the assessment of causal relationships (e.g., a 370 comparison between athletes and nonathletes via a stress reduction program). This 371 approach is suggested by Bongers, Ijmker, van den Heuvel, and Blatter (2006) as well 372 as Reese and Mittag (2013). 373 Finally, due to the study design and heterogeneous sample of athletes, the results and 374 conclusions of this study cannot be generalized. Hence, the association of the group 375 comparisons is relatively weak considering the respective effect sizes, which ranged

between $\eta_p^2 = .03 - .06$. In line with the literature, these effect sizes can be characterized

as small with respect to the practical interpretability (Ferguson, 2009; Vacha-Haase &

378 Thompson, 2004).

379 In future studies, it is necessary to investigate the relation between stress parameters, 380 LBP chronification, and sport activity to challenge or affirm the findings of this study 381 (Kovacs, Abraira, Zamora, & Fernández, 2005). The impact of stress should be studied 382 among athletes whose chronification stage can be characterized as subacute, in order to 383 observe the influence of stress patterns for a transition into a chronic state. Besides, 384 potential differences between different sport types should be examined, as every sports 385 discipline requires a specific profile with respect to the athletes' psychological and 386 physiological capacities.

387 <u>Conclusions</u>

- 388 This study enhances the understanding of the genesis of chronic LBP among athletes,
- 389 with a special focus on the stress concept. Somatic aspects of stress were more
- 390 pronounced for athletes with an ongoing chronification process, compared to emotional
- 391 or social facets of stress. The present results might serve as a starting point for further
- investigations with regard to the stress load of athletes and the development of injuries,
- 393 chronic diseases, and LBP. Clinicians and coaches could equally benefit from the
- 394 findings under a practical perspective. With the knowledge of psychological stress
- 395 contributing to a detrimental LBP development, preventive steps could be pushed ahead
- 396 via the diagnosis and monitoring of recovery and stress states of athletes.
- 397

398 <u>Funding</u>

- 399
- 400 The present study was initiated and funded by the German Federal Institute of Sport
- 401 Science (IIA1–080102B/11–14). The research was realized within MiSpEx The
- 402 National Research Network for Medicine in Spine Exercise.

404	<u>REFERENCES</u>
405	Andersen, M. B., & Williams, J. M. (1999). Athletic injury, psychosocial factors and
406	perceptual changes during stress. Journal of Sports Sciences, 17(9), 735-741.
407	doi: 10.1080/026404199365597
408	Angeli, A., Minetto, M., Dovio, A., & Paccotti, P. (2004). The overtraining syndrome in
409	athletes: a stress-related disorder. Journal of Endocrinological Investigation,
410	27(6), 603-612. doi: 10.1007/bf03347487
411	Apostolos, S. (2013). Why are elite athletes suffering from low back pain? Biology of
412	Exercise, 9(2), 5-7.
413	Ashmen, K. J., & Swanik, C. B. (1996). Strength and flexibility characteristics of
414	athletes with chronic low-back pain. Journal of Sport Rehabilitation, 5(4), 275-
415	286.
416	Bahr, R., Andersen, S. O., Loken, S., Fossan, B., Hansen, T., & Holme, I. (2004). Low
417	back pain among endurance athletes with and without specific back loading – a
418	cross-sectional survey of cross-country skiers, rowers, orienteerers, and
419	nonathletic controls. Spine, 29(4), 449-454.
420	Bongers, P. M., Ijmker, S., van den Heuvel, S., & Blatter, B. M. (2006). Epidemiology
421	of work related neck and upper limb problems: psychosocial and personal risk
422	factors (part I) and effective interventions from a bio behavioural perspective
423	(part II). Journal of Occupational Rehabilitation, 16(3), 279-302. doi:
424	10.1007/s10926-006-9044-1
425	Bono, C. M. (2004). Low-back pain in athletes. The Journal of Bone and Joint Surgery,
426	86(2), 382-396.
427	Brenner, J. S. (2007). Overuse injuries, overtraining, and burnout in child and
428	adolescent athletes. Pediatrics, 119(6), 1242-1245. doi: 10.1542/peds.2007-0887

429	Buckworth, J., Dishman, R. K., O'Connor, P. J., & Tomporowski, P. (2013). Exercise
430	Psychology (2nd ed.). Champaign, IL: Human Kinetics.
431	Clow, A., & Hucklebridge, F. (2001). The impact of psychological stress on immune
432	function in the athletic population. Exercise Immunology Review, 7, 5-17.
433	Cohen, J. (1992). A power primer. <i>Psychological Bulletin</i> , 112(1), 155.
434	Daniels, J. M., Pontius, G., El-Amin, S., & Gabriel, K. (2011). Evaluation of low back
435	pain in athletes. Sports Health, 3(4), 336-345. doi: 10.1177/1941738111410861
436	de Jonge, M. C., & Kramer, J. (2014). Spine and sport. Seminars in Musculoskeletal
437	Radiology, 18(3), 246-264. doi: 10.1055/s-0034-1375568
438	Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible
439	statistical power analysis program for the social, behavioral, and biomedical
440	sciences. Behavior Research Methods, 39(2), 175-191.
441	Ferguson, C. J. (2009). An effect size primer: a guide for clinicians and researchers.
442	Professional Psychology: Research and Practice, 40(5), 532.
443	Foss, I. S., Holme, I., & Bahr, R. (2012). The prevalence of low back pain among
444	former elite cross-country skiers, rowers, orienteerers, and nonathletes: a 10-year
445	cohort study. American Journal of Sports Medicine, 40(11), 2610-2616. doi:
446	10.1177/0363546512458413
447	Galambos, S. A., Terry, P. C., Moyle, G. M., Locke, S. A., & Lane, A. M. (2005).
448	Psychological predictors of injury among elite athletes. British Journal of Sports
449	Medicine, 39(6), 351-354. doi: 10.1136/bjsm.2005.018440
450	Gatchel, R. J., Peng, Y. B., Peters, M. L., Fuchs, P. N., & Turk, D. C. (2007). The
451	biopsychosocial approach to chronic pain: scientific advances and future
452	directions. Psychological Bulletin, 133(4), 581-624. doi: 10.1037/0033-
453	2909.133.4.581

454	Hampel, P., & Moergel, M. F. (2009). Schmerzchronifizierung bei
455	Rückenschmerzpatienten in der stationären Rehabilitation: zur Validität des
456	Mainzer Stadienmodells der Schmerzchronifizierung [Staging of pain in patients
457	with chronic low back pain in inpatient rehabilitation: validity of the Mainz Pain
458	Staging System of pain chronification]. Schmerz, 23(2), 154-165. doi:
459	10.1007/s00482-008-0743-8
460	Hanton, S., Fletcher, D., & Coughlan, G. (2005). Stress in elite sport performers: a
461	comparative study of competitive and organizational stressors. Journal of Sports
462	Sciences, 23(10), 1129-1141. doi: 10.1080/02640410500131480
463	Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A.,
464	Bauman, A. (2007). Physical activity and public health: updated
465	recommendation for adults from the American College of Sports Medicine and
466	the American Heart Association. Medicine and Science in Sports and Exercise,
467	39(8), 1423-1434. doi: 10.1249/mss.0b013e3180616b27
468	Hausswirth, C., Louis, J., Aubry, A., Bonnet, G., Duffield, R., & Le Meur, Y. (2014).
469	Evidence of disturbed sleep and increased illness in overreached endurance
470	athletes. Medicine and Science in Sports and Exercise, 46(5), 1036-1045. doi:
471	10.1249/mss.00000000000177
472	Hopkins, T. J., & White, A. A. (1993). Rehabilitation of athletes following spine injury.
473	Clinics in Sports Medicine, 12(3), 603-619.
474	Hoskins, W. (2012). Low back pain and injury in athletes. In Y. Sakai (Ed.), Low back
475	pain pathogenesis and treatment (pp. 41-69). Rijeka: InTech.
476	Hughes, L., & Leavey, G. (2012). Setting the bar: athletes and vulnerability to mental
477	illness. The British Journal of Psychiatry, 200(2), 95-96. doi:
478	10.1192/bjp.bp.111.095976

- 479 Iglewicz, B., & Banerjee, S. (2001). A simple univariate outlier dentification procedure.
- 480 Paper presented at the proceedings of the annual meeting of the American481 Statistical Association, Atlanta, GA.
- 482 Ivarsson, A., Johnson, U., Lindwall, M., Gustafsson, H., & Altemyr, M. (2014).
- 483 Psychosocial stress as a predictor of injury in elite junior soccer: a latent growth
- 484 curve analysis. Journal of Science & Medicine in Sport, 17(4), 366-370. doi:
- 485 10.1016/j.jsams.2013.10.242
- 486 Iwamoto, J., Takeda, T., & Wakano, K. (2004). Returning athletes with severe low back
- 487 pain and spondylolysis to original sporting activities with conservative
- 488 treatment. Scandinavian Journal of Medicine & Science in Sports, 14(6), 346-
- 489 351. doi: 10.1111/j.1600-0838.2004.00379.x
- 490 Kallus, K. W. (2016). Chapter 2: RESTQ-Basic: the general version of the RESTQ. In
- 491 K. W. Kallus & M. Kellmann (Eds.), *The Recovery-Stress Questionnaires: User*
- 492 *manual* (pp. 49-85). Frankfurt: Pearson.
- 493 Kellmann, M. (2000). Psychologische Methoden der Erholungs-Beanspruchungs-
- 494 Diagnostik [Psychological methods for the assessment of recovery and stress].
- 495 *Deutsche Zeitschrift für Sportmedizin*, 51(7,8), 253-258.
- Kellmann, M. (2002). Underrecovery and overtraining: different concepts similar
 impact? In M. Kellmann (Ed.), *Enhancing recovery: Preventing*
- 498 *underperformance in athletes* (pp. 3-24). Champaign, IL: Human Kinetics.
- 499 Klasen, B. W., Hallner, D., Schaub, C., Willburger, R., & Hasenbring, M. (2004).
- 500 Validation and reliability of the German version of the Chronic Pain Grade
- 501 questionnaire in primary care back pain patients. *GMS Psycho-Social-Medicine*,
- 502 1, 1-12.

503	Kovacs, F. M., Abraira, V., Zamora, J., & Fernández, C. (2005). The transition from
504	acute to subacute and chronic low back pain: a study based on determinants of
505	quality of life and prediction of chronic disability. Spine, 30(15), 1786-1792.
506	Laux, P., Krumm, B., Diers, M., & Flor, H. (2015). Recovery-stress balance and injury
507	risk in professional football players: a prospective study. Journal of Sports
508	Sciences, 33(20), 2140-2148. doi: 10.1080/02640414.2015.1064538
509	Linton, S. J. (2000). A review of psychological risk factors in back and neck pain. Spine,
510	25(9), 1148-1156.
511	Linton, S. J., & Shaw, W. S. (2011). Impact of psychological factors in the experience of
512	pain. Physical Therapy, 91(5), 700-711. doi: 10.2522/ptj.20100330
513	Maffulli, N., Longo, U. G., Gougoulias, N., Loppini, M., & Denaro, V. (2010). Long-
514	term health outcomes of youth sports injuries. British Journal of Sports
515	Medicine, 44(1), 21-25. doi: 10.1136/bjsm.2009.069526
516	Main, L. C., Dawson, B., Grove, J. R., Landers, G. J., & Goodman, C. (2009). Impact of
517	training on changes in perceived stress and cytokine production. Research in
518	Sports Medicine, 17(2), 121-132. doi: 10.1080/15438620802689757
519	Mehling, W. E., Gopisetty, V., Acree, M., Pressman, A., Carey, T., Goldberg, H.,
520	Avins, A. L. (2011). Acute low back pain and primary care: how to define
521	recovery and chronification? Spine, 36(26), 2316-2323. doi:
522	10.1097/BRS.0b013e31820c01a6
523	Mellalieu, S. D., Neil, R., Hanton, S., & Fletcher, D. (2009). Competition stress in sport
524	performers: stressors experienced in the competition environment. Journal of
525	Sports Sciences, 27(7), 729-744. doi: 10.1080/02640410902889834
526	Melzack, R. (2005). Evolution of the neuromatrix theory of pain. The Prithvi Raj
527	Lecture: presented at the third world congress of World Institute of Pain,

528	Barcelona 2004. Pain Practice, 5(2), 85-94. doi: 10.1111/j.1533-
529	2500.2005.05203.x
530	Nadler, S. F., Moley, P., Malanga, G. A., Rubbani, M., Prybicien, M., & Feinberg, J. H.
531	(2002). Functional deficits in athletes with a history of low back pain: a pilot
532	study. Archives of Physical Medicine and Rehabilitation, 83(12), 1753-1758.
533	doi: 10.1053/apmr.2002.35659
534	Noordzij, M., Tripepi, G., Dekker, F. W., Zoccali, C., Tanck, M. W., & Jager, K. J.
535	(2010). Sample size calculations: basic principles and common pitfalls.
536	Nephrology Dialysis Transplantation, 25(5), 1388-1393. doi:
537	10.1093/ndt/gfp732
538	Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. British Medical
539	Journal, 316(7139), 1236-1238.
540	Pincus, T., Burton, A. K., Vogel, S., & Field, A. P. (2002). A systematic review of
541	psychological factors as predictors of chronicity/disability in prospective cohorts
542	of low back pain. Spine, 27(5), 109-120.
543	Puentedura, E. J., & Louw, A. (2012). A neuroscience approach to managing athletes
544	with low back pain. <i>Physical Therapy in Sport, 13</i> (3), 123-133. doi:
545	10.1016/j.ptsp.2011.12.001
546	Punnett, L., Pruss-Utun, A., Nelson, D. I., Fingerhut, M. A., Leigh, J., Tak, S., &
547	Phillips, S. (2005). Estimating the global burden of low back pain attributable to
548	combined occupational exposures. American Journal of Industrial Medicine,
549	48(6), 459-469. doi: 10.1002/ajim.20232
550	Ramond-Roquin, A., Pecquenard, F., Schers, H., Van Weel, C., Oskam, S., & Van
551	Boven, K. (2015). Psychosocial, musculoskeletal and somatoform comorbidity
552	in patients with chronic low back pain: original results from the Dutch

- 553 Transition Project. Family Practice, 32(3), 297-304. doi: 554 10.1093/fampra/cmv027 555 Reese, C., & Mittag, O. (2013). Psychological interventions in the rehabilitation of 556 patients with chronic low back pain: evidence and recommendations from systematic reviews and guidelines. International Journal of Rehabilitation 557 Research, 36(1), 6-12. doi: 10.1097/MRR.0b013e32835acfec 558 Schmidt, C. P., Zwingenberger, S., Walther, A., Reuter, U., Kasten, P., Seifert, J., ... 559 560 Stiehler, M. (2014). Prevalence of low back pain in adolescent athletes - an 561 epidemiological investigation. International Journal of Sports Medicine, 35(8), 562 684-689. doi: 10.1055/s-0033-1358731 563 Scholich, S. L., Hallner, D., Wittenberg, R. H., Hasenbring, M. I., & Rusu, A. C. (2012). The relationship between pain, disability, quality of life and cognitive-564 565 behavioural factors in chronic back pain. Disability and Rehabilitation, 34(23), 566 1993-2000. doi: 10.3109/09638288.2012.667187 Schulz, P., Schlotz, W., & Becker, P. (2004). TICS - Trierer Inventar zum chronischen 567 Stress [Trier Inventory for Chronic Stress]. Göttingen: Hogrefe. 568 Simons, L. E., Elman, I., & Borsook, D. (2014). Psychological processing in chronic 569 570 pain: a neural systems approach. Neuroscience and Biobehavioral Reviews, 39, 571 61-78. doi: 10.1016/j.neubiorev.2013.12.006 572 Standaert, C. J., Herring, S. A., & Pratt, T. W. (2004). Rehabilitation of the athlete with 573 low back pain. Current Sports Medicine Reports, 3(1), 35-40. 574 Storheim, K., & Zwart, J.-A. (2014). Musculoskeletal disorders and the Global Burden 575 of Disease Study. Annals of the Rheumatic Diseases, 73(6), 949-950. doi:
- 576 10.1136/annrheumdis-2014-205327

- 577 Trainor, T. J., & Trainor, M. A. (2004). Etiology of low back pain in athletes. *Current*578 *Sports Medicine Reports*, 3(1), 41-46.
- 579 Vacha-Haase, T., & Thompson, B. (2004). How to estimate and interpret various effect
 580 sizes. *Journal of Counseling Psychology*, *51*(4), 473.
- 581 Von Korff, M., Ormel, J., Keefe, F. J., & Dworkin, S. F. (1992). Grading the severity of
 582 chronic pain. *Pain*, 50(2), 133-149.
- 583 Waddell, G. (2006). Preventing incapacity in people with musculoskeletal disorders.

584 British Medical Bulletin, 77-78(1), 55-69. doi: 10.1093/bmb/ldl008

- 585 Weineck, J. (2009). *Optimales Training [Optimal training]* (16 ed.). Balingen: Spitta
 586 Verlag.
- 587 Wheeler, A. H., Schneck, M. J., Talavera, F., Halsey, J. H., & Berman, S. A. (2014).
- Low back pain and sciatica: Pathophysiology. Retrieved March 19, 2015, from
 http://emedicine.medscape.com/article/1144130-overview#aw2aab6b3
- 590 Wiech, K., Ploner, M., & Tracey, I. (2008). Neurocognitive aspects of pain perception.
- 591 *Trends in Cognitive Sciences, 12*(8), 306-313. doi: 10.1016/j.tics.2008.05.005
- 592 Williams, J. M., & Andersen, M. B. (2007). Psychosocial antecedents of sport injury
- and interventions for risk reduction. In G. Tenenbaum & R. C. Eklund (Eds.),
- 594 Handbook of sport psychology (pp. 379-403). Hoboken, NJ: John Wiley & Sons,
- 595

Inc.

- 596
- 597

Acknowledgements

The present study was initiated and funded by the German Federal Institute of Sport Science (IIA1–080102B/11–14). The research was realized within MiSpEx – The National Research Network for Medicine in Spine Exercise.

ACCEPTED MANUSCRIPT

Highlights for article

Parameters of low back pain chronicity among athletes:

Associations with physical and mental stress

- Low back pain (LBP) chronification is associated with stress in athletes
- Physical stress plays a predominant role for athletes' perceived pain
- The findings pronounce the value of biopsychosocial approaches for LBP in athletes
- Monitoring of athletes' stress seems to be important to prevent chronic LBP