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ABSTRACT 

This study describes an integrative approach to product flow analysis of (waste) electrical and 

electronic equipment using trade statistics and consumer survey data. We demonstrate this 

approach with a case study of mobile phones. Using statistical and empirical data for Australia 

over 1997-2014, we have shown how different sources of information can be collated and cross-

checked to estimate the product in-use stocks and flows, product lifespan and lifespan structure, 

as well as to detail the product age structure in stock and at the end of life. 

From our results, the total number of mobile phones in in-use stocks in Australia has been 

estimated at 46 million at the end of 2014, or about 2 phones per capita. The proportion of 

phones kept in storage (not being in use) has been constantly rising, reaching 50% in 2012-2014. 

The average expected lifespan for a mobile phone sold in Australia decreased from about six years 

in the late 1990s to about five years in the early 2000s, and then stabilised at around four years 

(±0.5 years). The average time of active use for mobile phones was estimated in the range of 2.0-

2.6 years (which includes first use and reuse). The estimated lifespan profile for mobile phones in 

Australia has been confirmed to be relatively similar to that reported in Japan. 

While this methodology presented here provided meaningful results, the accuracy and relevance 

would be improved by better quality of original data. Therefore, in conclusion, we also highlight 

potential improvements in consumer surveys that would help to enhance the analysis. 

 

Keywords: mobile phone, recycling, product flow analysis, in-use stocks, product lifespan, 

consumer survey, Australia. 

1. Introduction 

Electronic products such as mobile phones, laptops, TVs and tablets utilise the physical properties 

of highly specialised and geochemically scarce metals to function. These metals (e.g. Ag, Au, In and 

many others) must be mined and refined, sometimes at significant environmental and social cost, 

to be integrated into these products. Yet many electronic products are wasted at the end of their 

useful lives, appearing in landfill or in some cases illegally exported to developing nations, 

fostering further economic, environmental and social problems for these countries (Balde et al., 

2015). The recovery of valuable components in electronic products has attracted significant 

interest in recent years as a means to reducing these risks (e.g. (Li et al., 2015; Pickren, 2014)), 
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particularly amidst growing environmental impacts and regulations facing the mining industry (e.g. 

(Mudd, 2010)). However, the economic recovery of metals from e-waste requires some 

understanding of the location, composition and volume of products available for future extraction, 

so that investments into recovery operations can be properly informed. Approximations and 

modelling are necessary to obtain such information in the absence of direct measurement and 

reporting.  

The materials in electronic products, and indeed all metals in society, whether active in use or 

dormant and not yet disposed of, are known as ‘in-use stocks’. In-use stocks have been indirectly 

or directly estimated through various approaches and methodologies, each with different 

emphases, for example in input-output accounts, national capital accounts, life-cycle assessments 

(LCA) and material flow analyses (MFA) (Pauliuk et al., 2015). Within the MFA studies, there are 

two primary approaches by which in-use stocks of products or their contained materials have 

historically been estimated: top-down and bottom-up. The top-down approach essentially entails 

the collection and analysis of data on material inputs and outputs for a specified system. The 

difference between inflows and outflows (e.g. imports plus domestic production minus exports) 

over a specified time period can indicate in-use stocks via mass balance. The bottom-up approach 

entails the collection of data on the number of products/commodities within a given area and 

summing these to estimate the total in-use stocks.  

Both the top-down and bottom-up approaches have advantages and disadvantages. For example, 

while bottom-up studies permit the spatial distribution of in-use stocks to be estimated, they are 

often temporally restricted to one year. Here, top-down studies can shed more light as they 

permit multi-year analyses and hence trends in stock accumulation, although they often rely on 

highly aggregated data that do not relate to specific products, and are further problematic to 

disaggregate spatially. These and other methodological uncertainties are described in numerous 

previous studies, e.g. (Chen and Graedel, 2015a; Gerst and Graedel, 2008; UNEP, 2010). 

The multi-year analyses under the top-down approach are referred to as Dynamic MFA (DMFA) 

and have been applied to describe historical material flows and stocks of various metal resources. 

Several DMFA studies have projected possible future developments and related resource flows at 

both national and global levels based on scenarios. Muller et al. (2006) and Wang et al. (2007) 

focused on the anthropogenic iron and steel cycle, Daigo et al. (2007) estimated both the in-use 

and the total steel stock, which includes hibernating stock in Japan, and Reck et al. (2008) analysed 

the nickel stock and flows at the national and global scale. While the above studies have focussed 

on specific metals, other MFA studies have emerged which focus on the flows of specific products. 

Oguchi et al. (2008) analysed the circulation of major consumer durables in Japan, Harper (2008) 

analysed global flows of tungsten-containing products, and Chen and Graedel (2015b) estimated 

in-use stocks of 91 products in the United States. 

Studies in MFA have additionally used monetary Input Output (IO) tables even for relatively small 

flows; an example is found in the work of Nakamura et al. (2007). IO analysis is one of the most 

widely used tools for describing economy-wide activities and their environmental implications 

(Suh et al., 2009). In IO based MFA models, for example, Waste IO-MFA analyses the compositions 

of the materials or substances in products and scrap. Nakamura and colleagues provided several 

studies on IO based MFA (Nakamura et al., 2008; Nakamura et al., 2009; Ohno et al., 2014). 

Nakamura et al. (2014) also provided a worthy methodological framework, MaTrace model to 

enable visual tracking of the fate of materials whether accumulated in in-use stocks or dissipated 

in waste streams. In addition, Wang et al. (2013) provided a detailed overview of different IO 

models used for product flow analyses and e-waste estimation. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

 

 

If elements of multiple MFA methodologies are applied to the same commodity under the same 

system boundaries, more can be revealed about the nature of that commodity. For example, both 

the spatial distribution of the commodity and potential trends over time in stock accumulation 

could be determined, and further the uncertainty associated with each method could be 

compared and interpreted. Very few studies have conducted multiple assessments, e.g. both top-

down and bottom-up assessments of the same commodity or product, with Hirato et al. (2009) 

being a notable example. This is likely due to the time taken to conduct MFA studies, and given 

that regardless of the specific MFA method employed, almost all MFA studies must contend with a 

lack of up to date and spatially relevant data. Indeed, it is relatively accepted that the contribution 

offered by an MFA study is that it synthesises available data to characterise the flows of a new 

commodity, and/or to represent previously un-studied spatial/temporal aspects, but not 

necessarily that it employs raw data collection. 

The limited data sources which are available for MFA studies can often be re-used through 

multiple generations of studies, which ultimately become less spatially and temporally relevant to 

the source data. For several electronic products including mobile phones, we have seen increases 

in value and utility, and considerable hoarding behaviour developed (ACMA, 2015; Read, 2015), 

which affects the in-use stocks and average lifespans of the products. There are therefore 

considerable uncertainties for future projections of e-waste volumes associated with using fixed 

product lifespan and distribution parameters (e.g. Weibull function) based on previous 

investigations. Furthermore, the limited number of studies currently used to inform in-use stock 

behaviour may provide source data that is spatially explicit (i.e. reflecting usage behaviour in a 

certain country), making them problematic to infer for other locations. 

Empirically collected data, which reflects the system boundaries of the MFA study itself, can assist 

in reducing these uncertainties, and hence this study focuses on how such data can be integrated 

into multiple methods of product in-use stocks and flows estimation. In the following sections we 

describe this approach in detail and demonstrate its application with the case study of mobile 

phones in Australia. 

2. Methodology description 

Estimating (waste) electrical and electronic equipment ((W)EEE) circulation is a difficult task due to 

often low quality and incomplete data,  meaning that multiple assumptions are required for input-

output modelling (Wang et al., 2013). The annual sales of EEE (in monetary value and units) are 

usually well recorded through national and international systems and institutions (e.g. UN 

Comtrade database), while the information on in-use stocks and end-of-life (EoL) products is not 

directly documented. To uncover the latter, detailed consumer (and institutional) surveys, 

information from professional associations and authorities (e.g. telecommunication regulatory 

bodies), recycling and waste management companies data, as well as special investigations are 

needed (Fig. 1). 
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Fig. 1. Illustration of in-use stocks and flows estimation across different product age groups in 

product flow analysis for (W)EEE. Note: the size of individual bars is for illustrative purposes and 

may not match the balance in total. 

The top-down approach in this study uses aggregated information at the country level. The 

modelling of in-use stocks and flows in this approach can be solely based on trade statistics. Using 

estimations of products average lifespans from previous studies allows an approximation of the 

overall circulation of (W)EEE in the economy (Balde et al., 2015). However, for many EEE 

categories the lifespans significantly differ over time and/or between countries. The up-to-date 

(dynamic) country/region based information derived from bottom-up approaches can significantly 

improve and/or help validate the modelling. 

The overall approach to estimating the circulation of mobile phones in this study is presented in 

Fig. 2. Most individual parts of this approach are generic and can be applied to any EEE, however 

the integration of top-down and bottom-up components is permitted by the available data, which 

is an uncommon feature in MFA. The system boundaries for this study are limited by EoL products 

generation, although the (historic) consumer surveys also indicate the likely pathways for mobile 

phones at the end of life. 

Year n-3 
and earlier 

  
Year n-2 

  

Year n-1 

Year n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

Export 

Official recycling 

Landfill 

Other 

active use  

(first use and reuse) 

In-use stocks  End-of-life products Historic sales 

Total In active use 

In 

storage 

Total EoL 

storage  

 
product lifespan 

Trade statistics  

(e.g. UN Comtrade  

database) 

Surveys (e.g. consumer and 

institutional surveys) 
Collection and recycling 

statistics, special investigations, 

and customer surveys 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

 

 

 

Fig. 2. Using empirical data to model in-use stocks and flows of mobile phones in this study. 

Our methodology first requires the compilation of two major datasets: sales and in-use stocks, 

based on trade statistics and consumer surveys accordingly. The information on mobile services 

subscriptions can be used for comparative purposes to support the mobile phones in active use 

estimation. The number of EoL phones (outputs) can be estimated via mass balance between 

inputs (phone sales) and in-use stocks for every respective year. 

Second, the product lifespan is estimated by different methods and cross-checked. Different 

scopes of a product or commodity circulation within the economic system can be used to define 

the lifespan. Murakami et al. (2010) and Oguchi et al. (2010) provided a detailed overview of 

lifespan scopes and classified different methodologies for estimating the lifespan distribution. The 

product lifespan which we use in this study can be referred to total lifespan for consumer durables 

in the classification by Murakami et al. (2010), and is measured by the following techniques: 

• Average lifespan estimation based on the Leaching model. The input-output data from 

the previous step allows the use of the Leaching model (assuming that the product has 

reached the market saturation level). The average lifespan can be estimated as the total 

stock divided by the EoL products generation (Wang et al., 2013). 
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• Average lifespan estimation based on consumer surveys. The consumer survey data, 

namely information regarding expected time of use for a new mobile phone (and/or time 

of use for the previous phone) and expected destiny for this phone after use (and/or 

destiny for the previous phone), are used to reconstruct the average lifespan of a phone. 

• Lifespan distribution estimation based on the use of the Weibull function. The models 

above provide estimation of average lifespan only, while statistical functions such as the 

Weibull function also determine the lifespan distribution. The use of lifespan range (limits) 

allows for optimizing the search for suitable distribution function parameters.  

Finally, the Weibull distribution parameters can be used to reconstruct the product age structure 

for the in-use stocks and EoL flows. 

The use of a Weibull function provides better results for modelling stocks and flows of EEE 

products than other statistical functions (Wang et al., 2013). In general, the estimation of 

distribution parameters requires detailed information, not only on the number of devices coming 

into and being in stock, but also on the age structure of products (in stock and/or at the end of 

life). Without the latter, there is still a possibility to find suitable parameters, however there may 

be multiple solutions satisfying the requirement of matching the inflows and stocks (and/or 

inflows and outflows). As shown in Fig. 2, we suggest a possible way to resolve this issue by 

limiting the lifespan range, based on findings from other methods for product lifespan estimation, 

while searching for the best-fit Weibull function parameters. This drastically decreases not only 

the number of required iterations but also the number of satisfactory solutions. The non-linear 

regression analysis along with the solver function in MS Excel can help to define the best-fit 

parameters for Weibull distribution (Wang et al., 2013). However, there is still a possibility that the 

solution does not exist or does not provide an adequate result; in this case the original data needs 

to be checked for possible errors and/or alternative statistical distributions considered. 

3. Case study – mobile phones in Australia 

In this section, we demonstrate the application of the developed methodology to mobile phones 

in Australia. First, the existing trade statistics and consumer survey data are compiled to estimate 

the number of mobile phones in stock and at the end of life. Second, the average lifespan for a 

mobile phone is estimated by different methods, including the Leaching model, survey based 

approach, and Weibull distribution fitting. Third, the Weibull distribution parameters are used to 

reconstruct the in-use stocks and EoL product flows age structure. Finally, the adequacy of the 

data and the reliability of results are discussed, including suggestions for improvement. Most data 

in this investigation are represented on a one-year basis, approximated to the end of the year 

where applicable (also see supplementary document for details). 

3.1 Estimating in-use stocks and end-of-life products 

The export-import statistics for every country can be obtained from the UN Comtrade database. 

The mobile phones are represented by the code 851712, Harmonised System, “Telephones for 

cellular networks/for other wireless networks, other than line telephone sets with cordless 

handsets”. There is no known production or assembly of mobile phones in Australia, and the 

domestic EEE sector is relatively small overall (IBISWorld, 2015). Therefore, in this study we 

assume imports being equal to sales of mobile phones. There is an uncertainty on how to interpret 

the export data, which forms up to 10% of imports of mobile phones (by the number of units). By 

comparing average prices between imported and exported devices, it can be concluded that a 
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significant part of mobile phone exports may be represented by old devices for resale and reuse 

overseas (Fig. 3); this issue was also highlighted by Wang et al. (2012) for EEE in general. 

 

Fig. 3. Import and export statistics for mobile phones in Australia. Data source: (UN Comtrade, 

2015). 

In Australia, the consumer surveys on mobile phone possession and use have been regularly 

performed by Mobile Muster, the Australian mobile phone industry's official product stewardship 

program (Read, 2015). The Mobile Muster’s reports also provide data to similarly estimate the 

number of phones in active use (see supplementary materials to this article for details), which can 

be further compared with mobile phone subscriptions statistics from the Australian 

Communication and Media Authority (ACMA). Since 2009, there has been a growing disparity 

between the estimated, based on surveys, number of phones in active use versus the number of 

mobile subscriptions, which has reached about 8% (or two million units) in the last three years 

(Fig. 4). This could be explained by the presence of mobile phones supporting two SIM cards at the 

same time. However, there is also a growing number of children owning mobile phones, which is 

not covered by current consumer surveys focusing primarily on adults (at least 15+ years old). For 

example, the recent investigation initiated by Telstra in Australia highlighted that the average age 

to receive the first mobile phone was 12 in 2014 (SMH, 2015). 

 

Fig. 4. Number of mobile phones in Australia. Data sources: (ACMA, 2015; Read, 2015). 
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The numbers of phones in active use and in storage equate to the total number of phones in in-

use stocks; comparing the latter with annual sales allows us to estimate the number of EoL phones 

(Fig. 5). The mobile phone annual sales in Australia were in the range from 10 to 13 million units in 

2008-2014, peaking at 13.1 million in 2010 (Fig. 5). The total number of mobile phones in in-use 

stocks had been increasing until 2012, and stabilised at around 46 million units or about 2 phones 

per capita (or 5.1 per household). The mobile phones not in use (kept in storage) form a significant 

part of the total in-use stocks, in the last three years they accounted for about 50% of all phones 

hold by Australian households (Fig. 4). The generation of EoL phones has reached parity with new 

phone sales, and estimated at 12 million units in 2014 (Fig. 5). 

 

 

Fig. 5. Stocks and flows of mobile phones in Australia. 

3.2 Estimating product lifespan 

3.2.1 Leaching model 

The Leaching model provides an adequate estimate of lifespan if the product has reached the 

market saturation level (Wang et al., 2013). The mobile phones have been widely introduced to 

the market in the second half of 1990s. By the mid-2000s the product penetration level, based on 

mobile subscriptions, has reached 100% in Australia, on average covering every person aged 15+ 

(ACMA, 2006). 

Using the number of mobile phones in stock and at the end-of-life from the previous section, the 

average lifespan has been estimated and presented in Fig. 6. In 2008-2014, it was fluctuating 
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Fig. 6. Average lifespan of a mobile phone in Australia (Leaching model). 

3.2.2 Consumer surveys based approach 

The consumer surveys can provide invaluable insights into estimating the life of electronic devices 

in the society. These include patterns of ownership and use, hoarding behaviours, awareness and 

attitudes of recycling, and ways of disposing. The data from such surveys can be used to estimate 

product in-use stocks and lifespan. When performed regularly, the survey data also allow the 

temporal analysis of patterns. In this study, Mobile Muster’s consumer survey data from 2006 to 

2015 (Read, 2015) were used to estimate mobile phone lifespan and its changes over time.  

Mobile Muster has conducted consumer surveys on mobile phone use and recycling every year 

since 2006. The survey respondents were selected randomly from an online panel, who were 15 

years old or older and owned a mobile phone (Read, 2015). The sample size for each survey 

ranged from 600 to 1100 people. The survey questions include those about the current phone 

ownership and use patterns, the length of the actual and expected time period consumers use 

their phones, when and why they get a new phone, what they are doing with old phones, and how 

they recycle their phones. Read (2015) provided a detailed description of the survey methods. The 

data on the destiny of consumers’ previous mobile phones, and their expected period of use for 

new phones from the surveys were used to reconstruct the structure of mobile phone lifespan. 

The expected lifespan of mobile phones (L) can be calculated as the sum of three components: 

time of the first use (TF), time of reuse (TR), and storage time (TS). 

� = ������	
�� + ���
�� + ������� 

Mobile Muster’s surveys divided the length of the use of new mobile phones into 6 groups (or 

time intervals): < 6 months, 6-11 months, 12-18 months, 19-24 months, 2+ years and “don’t 

know”. The time of the first use and time of storage after the first use can be estimated by 

multiplying percentages of respondents and average values of time intervals for the first 

use/storage, based on the survey data. The average value of a time interval is defined as its middle 

point. For example, if a time interval is from 12 to 18 months, the average value of the time 

interval would be equal to 15 months (or 1.25 years). For the time interval of 2+ years, the middle 

point is set as 2.5 years. The percentage of people who answered “don’t know” is added to the 

answers for the “2+ years” group. 

There is no available information for estimating a phone’s reuse time and storage time after reuse. 

Therefore, we applied the estimates of first use (storage) with additional 0.8 ratio, assuming that 
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second hand phones are of less value for consumers, and thus the average time of reuse and 

following storage is likely to be shorter compared to a new phone. 

The estimated results are presented in Fig. 7. It is interesting to note that the estimated average 

expected lifespan for a mobile phone did not fluctuate much in the period 2005-2014, namely 

from 3.6 to 3.8 years. This could be partly explained by mobile phones reaching the saturation 

level and maturity in the market, but may also be due to some inaccurate or unreliable answers 

from the surveys. In this investigation, while assuming that available data are reliable, we also 

cross-checked the results using different approaches to the lifespan estimation. The results from 

the previous section (Fig. 6), while being slightly higher, generally align closely with the estimation 

presented in Fig. 7. 

 

Fig. 7. Expected lifespan for a mobile phone in Australia (based on consumer surveys). 

As it can be seen in Fig. 7, the period of active use of mobile phones (first use plus reuse) typically 

comprises about two thirds of the life of a mobile phone. This should result in a similar ratio 

between mobile phones in active use and in storage (i.e. two to one). However, the consumer 

surveys have showed that this proportion is about one to one (Fig. 4). A possible explanation to 

this could be that people tend to underestimate the expected time of mobile phone storage after 

use (and the number of phones stored after use), and/or overestimate the expected time of new 

phone use (i.e. replacing phones more often than originally expected).   
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mobile phone. There is also a lack of details about the behaviour of consumers who prefer 
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different pattern, e.g. would a mobile phone be more likely to be reused/resold rather than stored 

if replaced more often? 
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3.2.3 The use of Weibull function distribution 

The Weibull distribution has been demonstrated as the most suitable function to describe the 

obsolescence of consumer durables, including mobile phones. The generation of EoL products can 

be estimated with the use of a cumulative function, while product’s average lifespan is 

represented by the mean value of Weibull distribution (Oguchi et al., 2008; Polák and Drápalová, 

2012). 

The lifespan estimates from previous sections can be used as limits in non-linear regression 

analysis to define the best-fit parameters for Weibull distribution, with the use of solver function 

in MS Excel (Wang et al., 2013). The following limits have been applied to average lifespan (mean 

value): 3.5-4.5 year range over 2005-2014, and extended to 3.5-7 years over 1997-2004 (no survey 

data are available for this period). Additionally, parameter α (shape) of a Weibull function has 

been limited to values from 0.7 to 3.1 based on the range of values for this parameter defined in 

previous studies for different EEE (Oguchi et al., 2008; Wang et al., 2013); we believe that this can 

representatively cover different potential rates of ageing for mobile phones. 

For the computation of stocks and flows with the use of a Weibull function, we applied the 

midpoint values for every year (e.g. 0.5 for year #1, 1.5 for year #2 etc.), similar to the approach 

used by Wang et al. (2013). We also believe that this is more relevant for products with shorter 

lifespan, i.e. a certain part of product sales is accounted for the EoL flows starting with the first 

year. The results from estimating the best-fit parameters for Weibull distribution over 1997-2014 

are presented in Table 1, and also compared with estimations by other methods in Fig. 10. 

Table 1.  

The best-fit parameter values of Weibull distribution for mobile phones in Australia. 

Year Weibull parameters Average lifespan 

(mean value), years α (shape) β (scale) 

1997 3.10 7.17 6.41 

1998 2.99 6.85 6.12 

1999 2.97 6.41 5.72 

2000 3.05 6.02 5.38 

2001 3.06 5.55 4.96 

2002 3.10 5.10 4.56 

2003 2.03 5.14 4.56 

2004 0.97 4.94 5.01 

2005 2.38 3.95 3.50 

2006 1.57 3.90 3.50 

2007 1.28 3.78 3.50 

2008 2.87 3.93 3.50 

2009 1.65 4.00 3.58 

2010 3.10 3.91 3.50 

2011 1.82 4.01 3.57 

2012 3.10 4.11 3.68 

2013 2.66 3.94 3.50 

2014 3.05 4.05 3.62 
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Fig. 8. Comparison of estimated average lifespans for mobile phone by different methods. 

The estimated parameters for the Weibull distribution (Table 1) show a constant decrease in 

parameter β until stabilising at around 4.0 since 2005, while there is a significant fluctuation in 

parameter α – from 1.03 to 3.10 (within the applied limits of 0.7-3.1). This may be caused by 

potential inconsistencies in the original data. It can also be explained by the fitting process itself, 

i.e. there may be several solutions (combinations of Weibull parameters values) that meet the 

requirements within the applied limits. For comparability with other studies, we suggest to 

average the parameters in Table 1 over the 5-year period. The lifespan distribution curves for 

mobile phones in Australia, averaged for 2001-05 and 2010-14, are compared with the results 

from studies in other countries in Fig. 9 (a) and (b). 

 
(a)           (b) 

Fig. 9. Comparison of Weibull lifespan distribution curves for mobile phones from this study 

(average for Australia in 2001-05 and 2010-14) with previous estimations in Japan, Netherlands, 

and Czech Republic: a) annual EoL product rate; b) accumulated EoL product rate. 

The proportion of mobile phones reaching the EoL status earlier has increased in Australia over 

time: in 2001-05 about 37% of mobile phones were expected to reach the end of life within 3.5-

year time versus about 50% in 2010-14 (Fig. 9b). Based on the shape of curves, the lifespan 
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distribution in Australia is relatively close to that from the Japanese study for 2003, while the 

results for the Netherlands in 2005 and Czech Republic in 1996-2008 are standing apart (Fig. 9).  

The Czech study was based on the analysis of the EoL mobile phones’ age structure in 2008 

derived from the official collection systems and special campaigns (Polák and Drápalová, 2012). 

This could result in a bias due to the fact that a significant number of EoL phones can be exported 

for reuse, end up in landfills, and/or go through unofficial collection and recycling systems (see 

also Fig. 1 for details on possible destinations for the EoL products). The use of only one source of 

information (i.e. official collection systems) and only one selected year in reconstructing the age 

structure of EoL products would not provide an adequate result in the lifespan modelling for 

mobile phones, thus has to be avoided. 

The lifespan estimate in the Dutch study (Wang et al., 2013) shows a relatively high EoL product 

rate in the first two years followed by a drastic decrease resulting in about 30% of mobile phones 

being in stock even 10 years later after purchase (Fig. 9b). One of possible explanations for this 

rather unusual result could be that it is based on the consumer surveys. These surveys often 

indicate the expected time of use for new bought phones, but usually detail only the first 2-3 

years. Another important point for analysing the consumer survey results is that the first use of 

mobile phone is not equal to its total lifespan, which also includes the reuse and storage 

components. 

3.3 Estimating product age structure for in-use stocks and end-of-life products 

The lifespan distribution parameters allow the modelling of the product age structure for mobile 

phones in stock and at the end of life. Similar to section 3.2.3, the Weibull distribution fitting can 

be applied to define the age structure of mobile phones in active use (see supplementary 

document for details). Subtracting the latter from the total stocks would indicate the age structure 

of mobile phones kept in storage. The results are summarised and presented in Fig. 10. 

 

Fig. 10. Estimated in-use stocks and flows across different product age groups for mobile phones 

in Australia in 2014. 
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About one quarter of all mobile phones in stock were brand new (less than a year old) at the end 

of 2014, but these phones form close to a half (45%) of mobile phones in active use (Fig. 10). 

Similarly, the mobile phones less than 2 years old cover about 50% of total in-use stocks, and more 

than 70% of phones in active use. At the same time, relatively old phones (dated 2011 and earlier), 

while representing 29% in stock, account for only 13% of mobile phones in active use, but 46% of 

phones in storage. About 56% of EoL mobile phones in 2014 were also represented by old phones. 

The visual representation of product stocks and flows (Fig. 10) can help to better understand the 

circulation of different EEE in the economy, informing the development of appropriate policy 

measures to increase the collection rates and improving the accuracy for estimating the value 

associated with recycling of EoL products. If statistical and empirical data allow, the analysis can be 

extended further for specific brands and/or models of electronic devices. 

4. Conclusion 

The use of empirical data in modelling the product in-use stocks and flows can help overcome 

inconsistency and reduce uncertainties attributed to a lack of official information sources and 

statistics. The key novelty of the developed methodology in this article is the combination of top-

down and bottom-up approaches, based on trade statistics and consumer survey data 

respectively, to assess the product lifespan, in-use stocks and flows, including reconstructing the 

product age structure if this information is not available from primary sources. It has been 

successfully demonstrated with the case study of mobile phones in Australia over 1997-2014. 

The total number of mobile phones in in-use stocks in Australia has been estimated at 46 million, 

or about 2 phones per capita, being relatively stable since 2012. The proportion of phones not 

being in use (kept in storage) has been constantly rising, accounting for about 50% of all phones in 

Australian households in 2012-2014. The generation of EoL phones has reached 12 million units, 

being equal to new phone sales and indicating the saturation level in the market. 

The average lifespan of a mobile phone in Australia in 2005-2014, estimated by different methods, 

is in the range between 3.5 and 4.5 years, with a consensus estimate of 3.8 years for the last five-

year period from 2010 to 2014. The estimated Weibull distribution shows that the average 

lifespan has been shortening over time – from about six years in late 1990s to five years in early 

2000s, and then stabilised at around 3.6 years which further supports the fact that mobile phones 

have reached the market saturation level. The comparison with previous studies in other countries 

revealed that the lifespan distribution profile for mobile phones in Australia is relatively close to 

results reported in Japan, while the available European studies are inconsistent with each other 

and standing apart from our results. 

Based on existing customer surveys for 2005-2014, a mobile phone’s average expected lifespan 

includes 2.1 years (55%) of first use, 0.5 years (12%) of reuse, and 1.2 years (35%) of being in 

storage. The use of the Weibull function for modelling the lifespan distribution indicated a slightly 

different result. The average time of active use for mobile phones was estimated at about two 

years (which includes first use and reuse) (56%), while the storage time was about 1.6 years (44%). 

The estimation of stocks and flows across different product age groups showed that the mobile 

phones less than 2 years old cover about 70% of all phones in active use, and 50% of total in-use 

stocks. At the same time, relatively old phones (4+ years old) account for only 13% in active use, 

but 46% of kept in storage and about 56% of EoL mobile phones in 2014. 
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The analysis of existing consumer survey data revealed a lack of details regarding potential 

differences in consumers’ decisions towards previous mobile phones depending on how often 

phone is replaced. This would help to verify the Weibull function distribution, namely higher/lower 

EoL products generation in the first (and second) year due to higher/lower rates of phones resale, 

reuse, or temporal storage. An additional question regarding how long the consumers were 

actually using their previous phone (apart from what happened to it) would also be helpful to 

verify the lifespan of a mobile phone. 

Mobile phones contain a significant recovery value compared to other electronic devices, thus the 

consumers’ hoarding behaviour in Australia means an accumulation of significant potential 

resources for future (metal) recovery. A better collection and recycling system would help capture 

this value. On the other hand, the facilitation and wider enabling of mobile phone reuse can help 

mitigate the shortening of the lifespan of these devices, while minimising the overall 

environmental impacts over the product life cycle. 
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