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Abstract: Extreme weather events pose major challengesiéodelivery of safe drinking water, especially in a
country like Australia. As a consequence, a paditiry Bayesian Network modelling approach was used
develop a risk assessment tool for estimating, ran#ting, water quality-related health risks asgeciavith
extreme weather events. The model was developed farge dam supplying a water treatment plant éavN
South Wales, Australia. This methodological apphoaddresses challenges associated with fragmeatiad d
(for model parameterisation) and parameter unceytdiy eliciting and integrating quantitative andafjtative
data (including expert opinions) into a single feamork. Key-stakeholders were engaged in developimdy
then refining separate conceptual models aroundhtee critical parameters of turbidity, water agl@and
Cryptosporidium spThese three conceptual models were then combimiedhisingle conceptual model, which
then formed the basis for the Bayesian Network ok final risk assessment tool was able to dfyatite
sensitivity of the water treatment plant’s effica@pility to supply high quality potable water) iesponse to
different extreme event scenarios. Overall, lapdsdlated events were the most concerning for watiatity-
related health risks, but an emergent outcome wasthe scenarios were ranked quite differently depeg on
the group, and expertise of the stakeholders’ opmiused to run the model. Such tool can assistlstéders

for an effective long-term water resource managemen
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1 INTRODUCTION
1.1 Extreme weather events and water supply maragem

Extreme weather events pose a major threat to conities; weather-related disasters have alreadytentea
significant challenges for organisations in recggdrs. For instance, the California drought du20d2-2014
caused water use restrictions and a quick reductidhe available groundwater (Famiglietti, 20143, well as
an increased number of wildfires (Yoon et al., 2018 Brazil, a combination of rainfall deficienckigher-
than-average temperatures, increased populationvatet consumption resulted within a few monthsdweere
drought conditions that left the main reservoirsha Sdo Paulo region with storage levels lowen &% of the

full capacity (Nobre et al., 2016).

A country particularly vulnerable to extreme weathgents is Australia. Recent examples includentgon-
wide Millennium drought from 1997 to 2008 (Heberg2®11), the 2011 Brisbane floods (van den Honedt a
McAneney, 2011), cyclone Yasi in northern Queertlan2011 (Beeden et al., 2015) and the 2009 “black
Saturday” bushfires of Victoria (Cruz et al., 201Zhese events have reduced the ability of watétieg to
supply high quality potable water to consumerspttrer bulk water clients due to the short- and {@rgn
impacts of extreme events on the water qualityo#th lpre- and post-treatment points in the systanaddition,
extreme events are projected to change in magnimdiefrequency over this century (IPCC, 2014),hkeirt
exacerbating the pressures on water quality managermhere are also large uncertainties associaitixdthe
timing and nature of specific future events and timcertainty is a major contributor to the challemnf water

management.

In this research study, the effects of these exdresather events on key health-related water guaditameters
were modelled for a large reservoir in New SoutHe&gNSW), Australia. Stakeholders from the watdity
were involved in selecting the critical water qtiafparameters to be modelled, namely water coloubjdity,
andCryptosporidium spThe choice of this case study is motivated byféloe that the reservoir supplies one of
the largest cities in Australia, and Australia litse one of the countries mostly vulnerable torerte weather
events; however, the applied methodology can besteared to other case-studies provided enough idata

available.
1.2 Water colour, turbidity and Cryptosporidium

Water colour is one of the key parameters in drigkivater reservoirs as it can affect the physiodllaiological

properties of a whole lake or reservoir (Hakansid93), as well as creating discolouration of the weater



redirected to the WTP. The colour of raw watemifuenced by a particular low molecular weight rotuilic
fraction of the dissolved organic matter (DOM), ehnis generally recalcitrant to removal by coagatatlf not
removed in the coagulation/filtration stages ohtneent, it is of potential health concern as itl walact with
chlorine in the disinfection process leading to fleemation of potentially carcinogenic trihalometies
(THMs), one of the over 600 disinfection by-producurrently reported in drinking water (Hrudey, 9D0
However, the biggest issue with water colour isremeased coagulation demand, thus exacerbatitgrinthe

risk of filter failure at the WTP and breakthroudgading to a direct health risk.

Water turbidity is proportional to the quantitysaflids suspended in the water. These solids mayisenclay,
silt, inorganic/organic matter, plankton and oth@croscopic organisms (EPA, 1999). Suspended sakdls
provide food and protection from UV light for patems (Sinclair et al., 2012), and if not removéuytcan
reduce the disinfection efficiency of chlorine, i@ase the persistence of pathogens and promoterdigeowth
in the distribution system, elevating the risk cfterborne disease outbreaks (EPA, 1999; Tinkel.,e2@08).
Higher turbidity levels are therefore pathogen fasétors (Khan et al., 2013), typically associaégth higher
levels of disease-causing microorganisms such @sipas, viruses and some bacteria, which can caaseps,
diarrhoea, headache and nausea (Sarai, 2006).cAsfEamation, turbidity has been shown to be carted to
contamination withGiardia andCryptosporidium(LeChevallier et al., 1991) and serves as a sateomeasure

for risk of contamination by these pathogens (BespR005).

Cryptosporidiumis an intestinal protozoan pathogen that infeaisndns, domestic animals and wildlife
worldwide, and has caused many waterborne outbrefiksyptosporidiosis (i.e. typically a short-temaute
infection affecting the intestineCryptosporidium spoocysts are often excreted in large amounts thigh
faeces of infected humans and animals (GraczykFaiet, 2007), and can enter surface waters diremtly
through effluents and runoff from fields polluted $ewage sludge or manure (Graczyk et al., 200819\ al.,
2009) resulting in pollution of receiving watermgortantly, these oocysts can remain infectivenfimnths in
environmental waters and are highly resistant ttorotated disinfectants (Betancourt and Rose, 2004)
Therefore, microbial contamination is a growing cem for water suppliers, causing widespread oakw®f
these diseases (Putignani and Menichella, 2010)example is provided by the 1993 waterborne outbrda
cryptosporidiosis in Milwaukee, where an estimatB,000 residents became ill following an inadeguat
removal of Cryptosporidiumoocysts in one of two municipal water treatmerdnpd due to an ineffective
filtration process (Mac Kenzie et al., 1994) anddiag to almost $100 million of estimated medicasts and

investment losses (Corso et al., 2003). Anothemgta is provided by the Walkerton incident in Caanadn



estimated 2,300 people became seriously ill andrseied from exposure to microbially contaminateididng
water in May 2000 (Hrudey et al., 2003). In the #alkan context, high concentrations Gfyptosporidium
along withGiardia, were detected in the water supply system of @radetropolitan Sydney during the 1998
Sydney water crisis (McClellan, 1998), althouglwvés not possible to determine the infectivity of thocysts
and zero cases of cryptosporidiosis were recorted, representing an example of contamination ertidbut

not disease outbreak.

Determining the predictors of these three watelityusdicators in a lake or reservoir is not sgfatforward
because of the complexity of the interactions betwémnological and meteorological variables, ahd t

different ranges of scale involved.
1.3 The effect of rainfall and drought on coloturrbidity and Cryptosporidium

For water colour, Hakanson (1993) shows that tlaeeea large number of factors involved in deterngnits
level, some of which change on a daily or seasbaals (e.g. temperature, precipitation), while hare
related to the catchment characteristics (e.g. l&®] lake morphometry). Generally, water colouydserned
by the amount of dissolved and particulate matesiath as algae or carbon. Previous studies foigstlded
organic carbon (DOC) and water colour to be higidgrelated (e.g. Pace and Cole 2002). Colour an@ b&n
be typically found in low concentrations in larggés having a high residence time, however fordakih
extensive wetlands and peatlands the loadings sually higher: in fact, soil is the largest terriedtcarbon

pool (Hughes et al. 2013).

Rainfall is an important determinant of DOC andoewlin surface water. Low rainfall periods are tgdly
characterised by low colour. However, periods advyerainfall act to raise the colour levels throwggveral
mechanisms. The decrease in reservoir residence tioring extreme precipitation events shortens the
‘processing time’ of the DOC, leading to higherraatic compounds levels reaching the WTP (Ritsoal.et
2014). Rainfall also affects the inflow conditionshich increases DOC loading into the lake after thin
infiltrates into the lower depths of the soil oethatchment (Hughes et al 2013). During extremaakj new
water pathways can be created leading to interactith soil layers usually not heavily affected tynoff
(Hongve et al., 2004). Therefore, high rainfall mteefollowing an extended dry period will tend @use high
DOC concentrations in lakes. For the scenario @ltlee dry period coincides with a reduced storagame
(often as a result of low inflow conditions), th€OD entering the lake will be more concentrated iwitihe

lake/reservoir.



Rainfall-generated runoff and sediment resuspenagithin the lake contribute to increased suspersbatiment
loads over a short period of time (Bloesch, 199%mdabucco and Rafferty, 1998) leading to elevatebidity
(Goransson et al., 2013). Additionally, in caséneévy rainfall events, the likelihood of landslidegjacent to
the reservoir will be higher, thus leading to higlsediment loads and associated high turbiditythm;
stratified reservoirs can (at least partially) dixing heavy rainfall events thus leading to eledaurbidity in
the epilimnion, where the water is typically of teetquality and thus drawn from (Bertone et al.120
Interestingly, high correlations between flow, fdity and Cryptosporidiumhave been revealed after rainfall-
runoff events in a multi-use catchment (Swaffealet 2014), which supports the hypothesis thatidifypcan
provide shelter for pathogens (EPA, 1999). Stuitiethe Three Gorges Reservoirs also confirmed higiter

Cryptosporidiunconcentrations are recorded during the flood se@sia et al., 2013).

Rainfall events can cause damage and/or failuteaosportation, electrical and communication inftasture
(Standford et al., 2014). If the resilience of thater supply system is limited, especially in sntalichments,
then it would be more prone to negative water duaihpacts. Furthermore, heavy rainfall could ldada
number of sewer overflow events, leading to poavater quality downstream (Khan et al., 2014). Again
resilience and preparedness of the water supptersyis a key-factor in limiting the negative effedue to wet
weather events. In the event that a superstorrh, @si@ tropical cyclone or low pressure systers,thi area of
the water supply system, additional negative effeatist be added to those associated to heavy Itanfg.
These are mainly related to the very strong wimdgsch can cause damage to the infrastructure, edpethe
electrical and transmission parts (Liu et al., 2088o0per maintenance and the presence of backugraers

are essential to guarantee resilience and limitanalbility.
1.4 The effect of fire

Another extreme event that represents one of thjerrttareats to lake water quality in many areasuiatbthe
world is the occurrence of wildfires. The duratimia fire, as well as the timing and magnitudehef following
precipitation events, is a key-factor which willtelenine how much the water quality will be impacted
(Canadian Water Network and Water Research Fowmnga&014). The negative effects of fire on watealiqy
(e.g. peaks in turbidity, DOM, and also heavy neetaid nutrients) might last for years, necessieditditional
and costly treatment capacity beyond that requivefbre the fire impacted (Canadian Water Networll an
Water Research Foundation, 2014). Smith et al. {0&nducted an extensive review of the literatetated to
the impacts of bushfires on water quality; one lné associated consequences with fire is an incriease

suspended solids and turbidity when high inflowrgseoccur after the fire event has occurred. Higtiew
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colour can also be an effect of bushfires due o ¥¢hen a storm occurs soon after a fire, ash shea into
streams and reservoirs, and contains high condiemsaof soluble inorganic material. The compositaf ash
is highly variable and depends on the type of \egigget burnt, the part of the plant burnt (bark, daw leaves),
soil type, climate, and combustion conditions (Ssiwear, 1996; Demeyer et al., 2001). However, organi
carbon has often been reported as a constituemhgier et al., 2001; Goforth et al., 2005). For #8393
bushfires in south-eastern Australia, Wasson e{(24l03) estimated that the amount of particulatgaoic
carbon entering the Corin reservoir for the firanénths after the fire was more than 5 times highan the

pre-fire rate.
15 Modelling environmental systems under highediainty

The risk of bushfires, extreme rainfall events oolpnged droughts is expected to increase in NSW tdu
climate change. Water quality management in thigeod requires a multi- and inter-disciplinary apgeh that
is both holistic and probabilistic, to develop apmiate management strategies. Strong support aticea
participation from practitioners within the wat&dustry, with experience of past extreme eventsdatdiled
understanding of the many facets of the systenmvaluable. Both qualitative and quantitative imf@tion
about the system is also required. Traditional imdeapproaches often deal poorly with such reguients

(Fenton and Neil, 2008).

When the system being modelled presents a highedemfruncertainty and complexity, such as in edesys
and environmental management, Bayesian Networks) (BiNe become an increasingly popular modelling
technique for risk assessment (Fenton and Neil3R00 different research fields, such as for théneation of
microbial risks for different end-uses of recycledter (Beaudequin et al., 2015), or sources ohigglin solil
irrigated with recycled water (Rahman et al., 201&) also the performance of manufacturing processe
(Nannapaneni et al., 2016). The importance andulreefs of BN have been acknowledged in differezitl§
such as artificial intelligence (Darwiche, 2009)daorobability calculus (Conrady and Jouffe, 201&)d in
general, BN have been recognised as “one of the ocwwsplete, self-sustained and coherent formaligeesl

for knowledge acquisition, representation and &aibn through computer systems” (Bouhamed, 2015).

BN are a type of statistical model, specificallgrababilistic graphical model, and in general, jdeva number
of advantages compared to other models. Firstgy #ire suitable for small or incomplete data sBté:can
easily handle missing or little data, and typicalgn yield good prediction accuracy even with alsssmple

size, provided that the model structure is welirtd (Uusitalo, 2007). Also, it is possible to cangbdifferent



sources of data: that is, where ‘hard’ data (surwegdel and/or monitoring data) is not availablelabilities
can manually be entered through expert knowleddpeis Thybrid sources of data (historical data andedxp
knowledge, or also other models’ outputs) can bedu® overcome historical data limitations (e.g.eveh
historical trends are not good predictors of futewents) or to enhance the model performance (&lasi2007).
As there is a growing need of incorporating comriyuind stakeholders perspectives in natural (eafhgci
water) resources management (Lynam et al., 2003te(lztti and Soncini-Sessa, 2007), BN provide itable
modelling tool to integrate expert opinions withntal data and potentially outputs from other misd BN
also represent a suitable support tool for decigiakers, as costs and risks associated to diffenanagement
strategies can be easily assessed; additionallymhdel simulation is typically extremely fast cargd to
some process-based models (Uusitalo, 2007). Edlyeiciahe water management sector, they are a good
for dealing with informal institutional arrangemsntsuch as different perceptions among stakeholders
(Henriksen et al., 2007). In fact, the inconsistes@nd attitudes found among different experts lmanin a

Bayesian approach, a direct indicator of poteméiaiedies (Hukkinen, 1993).

The choice of BN as a modelling tool also pressntse challenges. For instance, continuous variabesiot
easily integrated within BN using expert knowledgeparameterise it. This often leads to nodes #nat
discretised with only a few states, often with dfasive terms (e.g. “high” and “low”). The disadvage of this
approach is that the states might provide only arsm representation of the actual states for the ramd
qualitative terms can be difficult to define acdaha (Uusitalo, 2007). Additionally, it may be fidult to
convert experts’ opinions into probability distrttans, especially when many states and/or many sade
involved. It is important, for instance, to kee tAN simple, in order to restrict the amount of ditioning
factors, as it has been proven to be cognitivefficdit to think of conditional distributions wittseveral
conditioning factors (Morgan and Herion, 1990). Kwer, often experts’ opinions can be consideredbie
(Charniak, 1991). Finally, feedback loops, whichuldobe informative in understanding how the system
operates (Sahin et al., 2015) and which are préseahé original conceptual model of this projexr not easily
supported in BN. If they are extremely importanttiie modelled system, or they cannot be elimindtgd

changing the BN structure, then other model categaonust be explored (Uusitalo, 2007).

Overall, BN have been increasingly applied in tlstgwo decades for environmental modelling proklea
number of applications exist in the ecological niloig field (e.g. Marcot et al., 2001; Rowland ét, 2003;

Little et al., 2004) but also in the water sectag( Batchelor and Cain, 1999; Bromely et al., 2@Rigosi et al.,



2015) and often they are applied to investigatedtfiects of climate change (e.g. Gu et al., 199&ri&/and

Kuikka, 1997).

In this study, the authors also made use of agigatiory model-building approach in order to corioafise the
models. Participatory approaches have been afédgtiapplied in a number of studies (e.g. Figueiredad
Perkins, 2013; Kersten et al., 2015). Participatmgdelling aims at involving stakeholders in onenaore
stages of the modelling process, from data cofiacthrough to model construction and use (Hare,1201
Involving stakeholders increases the likelihoodleployment of the final developed decision suppmot and
involving experts for (conceptual) model developimaiso facilitates the identification of key pargere and
understanding of the system being modelled (Venh996). Participatory modelling has been appliedain
number of water management or climate adaptatiojegis (e.g. Pahl-Wostl and Hare, 2004; Danielhlet
2010; Richards et al., 2014). Those forms of pigdiory modelling supporting the development of aeptual
models for social learning purposes can also bectely adopted by water managers in order to igeov

support and aid future decision-making in the fdrptanning cycle (Hare, 2011).

Due to the proven ability of BN to deal with misgimuncertain, multidisciplinary data of differegpes, and the
growing importance of applying participatory approan the water resources management sector, detbup
participatory model building - Bayesian Networksdalhing approach was used for this study to rejigisedict
colour, turbidity andCryptosporidiumconcentrations in the water supply, and to raffledint combinations of

extreme events leading to unacceptable raw watditgu

2 MATERIAL AND METHODS

2.1 Research activities

The research activities were divided into a nundfestages listed below:

1. Problem scoping with the participanfdefining the problem/question, spatial domaimetiframe, key
issues); the objective is to gain a shared undetstg of the problem.

2. Parameters identification and definitiofpredictors); in this case, the objective is tanga shared
understanding of the components.

3. Elicitation of the expert knowledg@gnental models, cognitive maps) around the probiedicators
linked with Step 1; the objective is to establispaaticipatory (shared) understanding of theseesyst
based on the expertise. It includes collective tstdeding of the causal relationships and system

structure that might help to explain the dynamibasgour of the ‘system’ over time.



4, Coalescing of the individual conceptual models iatsingle modeln order to integrate the separate
models.

5. Transformation of the coalesced conceptual modi & BN structure— this is supplemented with
scientific knowledge (literature) to help addresseptial gaps in the model arising from flawed naént

models (systems theory).

6. Identification of data needs / data availabilfyr each node (expert vs monitored data).
7. Elicitation of conditional probabilitie$or the BN, either based on experts’ opinionsrapkiical data.
8. Model testing(sensitivity analysis to highlight potential maeagent leverage points, scenario testing

through top-down and bottom-up approaches).
Activities 1, 2, and 3 were conducted during atfagperts’ workshop. Activity 7 was completed thgbua

second workshop with a larger group of stakeholders
2.2 Project scoping and conceptual model developme

An initial stakeholder project workshop was heldoidler to define the case-study sites, the key maiality
parameters to be modelled and related level oficer(LoS), and to populate the preliminary concaptu
models. The first part of the workshop consistedimstructured interviews, where the experts wekedso
identify the parameters affecting the key-variabiesbe modelled, while the second part of the wiooks
consisted in “structured” interviews, meaning thia experts were asked to modify a preliminary eptuaal
model built based on the outcomes of the unstradtimterviews. The key-variables are mapped inusala

network and through the participatory learning psscthis can be easily updated (Jakeman et ab)200

The model was developed for a large (2,000 GL)agf@reservoir in NSW which is the main supply twader
treatment plant with treatment capacity of 3 GLAL mentioned before, Australia is one of the nvodterable
countries in terms of effects of extreme weathanésy. The specific reservoir was selected amongveter
bodies managed by the water utility part of thigjgct, based on its relevance for the communitypfowiding
safe drinking water: it is, in fact, the largessaevoir of the region, primary source of drinkingter for more
than two million consumers. The agreed LoS foritlitys, water colour andCryptosporidiumwere defined as:
40 NTU for turbidity, 60 CY™ for colour, and 10 IFA/10L adjusted for recoveoy €ryptosporidium.n the

following sections, by “LoS not satisfied” we reterthe ability to comply with the above thresholds

As a first step, a table was created listing a# thain factors directly affecting the three keyiahles.

Subsequently, by using a participatory approacfferéint stakeholders were engaged and consensus was



reached on the identification and definition of keaoput variable; this is an important outcome ofdal
building. The list of these variables is in the ®essection. Finally, three separate conceptualaisowere
developed, with the same participatory approachntalel the systems affecting turbidity, water coland
Cryptosporidium concentrations. Those three separate models werne merged together following the
completion of the first workshop. As previously rtiened, participatory modelling, especially in amcartain
system, is essential as it helps identify the aaitparameters and the main processes involveeisystem to

be modelled (Vennix, 1996).

2.3 Bayesian Network development

BN are directed acyclic graphs wherein each vagigbpresented as a node. Nodes that have inpoections
from other nodes (“parents”) are labelled as “chilbdes. The strength of a connection (also known a
conditional dependence) between a child node awmdpdrent node(s) is quantified through probability
distributions. There is one probability distributiper each combination of possible values of thenqta. These
probabilities are defined in the Conditional PrabgbTables (CPTs) for each child node. The CPTeath
node is a depiction of the associated uncertaidigr¢ot et al., 2001), i.e. the higher the uncetigithe wider
the probability distribution; however, when mordoimation/data (evidence) is available and uncetyai
decreases, the probability distribution is updabstoming narrower and the knowledge of the trueevaf the
node increases. Populating the CPTs is one of tiw delicate parts of BN development, but at theestime
the most important and powerful feature comparetidoe soft decision support systems tools (Hennileteal.,
2007). Evidence is entered into the BN by substiguthe a priori belief with observations (hard or soft
evidence) or scenarios’ values for a number of ad@en and Pollino, 2012). Interactions betweetakbes
are clearly displayed and users can easily intatmthe reasoning behind the model output, thusigirg a
more transparent approach when compared to othacKiox” modelling techniques such as artificiaural

networks (Chen and Pollino, 2012).

The comprehensive conceptual model developed esudt of the first workshop represented the fouodafor
developing a BN that would be used to assess skeofiimpact of different extreme events on the Lolse BN
model structure was defined using the methodolb@iasnework of Chen and Pollino (2012), balancingdal
parsimony against model accuracy. This balanceaddsessed by (1) identifying and retaining onlyuential
variables (influential on the key nodes) and (XigrEing a maximum of three states to those nodgsineg

expert opinion for parameterisation. The lattempaissists with producing CPTs that are relatiwshall and

10



therefore more easily populated by expert knowledde BN was developed with the software Netica85.1
(Norsys Software Corp.). Maodifications from the ceptual model were performed to allow for a simpler

structure, avoidance of feedback loops, and (géyeteactable CPTs.

After the structure of the BN was defined, a secstatkeholder workshop was organised to refine thetsire
and populate the CPTs. Ten experts in differefddiée.g. water quality, water treatment, microbigk, system
configuration, risk management, operations manag®mettended the workshop and each was invited to
populate all of the CPTs that underlie the BN gtreee This activity took about 5 hours, following2ahour
introduction. Subsequently, wherever availabletdnisal data were used to populate the CPTs. Nwalkdata
were available mainly for the environmental nodethe BN. Due to different frequencies of data &lae for
different nodes, the posterior probabilities weaéalated separately for each parent-child nodéerysbased
on the available empirical data, on Microsoft Exdde numbers were then transferred into the Netiodel.

For those nodes where historic numerical data wexe available, expert opinions were kept for CPTs

population.
3 RESULTS AND DISCUSSION
3.1 Input variables and conceptual model

Table 1 lists the main input variables affectingavacolour, turbidity andCryptosporidium which were agreed
during the first workshop. The correlation is ptif an increase in the input value implies acr@ase in the

turbidity, colour and/oCryptosporidium(i.e. a decrease in the water quality).

Table 1— Nature of correlations between water quality jteds and colour, turbidity an@ryptosporidiumas

identified during the first stakeholder workshop

Correlation with Correlation with Correlation with
Input
turbidity colour Cryptosporidium
Spill + + +
Avoidance capacity - - -
Use of alternative reservoirs - - -
Ashes + + NA

11



Runoff + + +

Cryptosporidiunrunoff NA NA +
Swamp runoff NA + NA
Landslip events + NA NA

Storage level - - -

Firstly, there is Spill: if the dam is spilling (due to the storage leerteeding the full capacity), then the water
quality is expected to deteriorate as the avoidaapacity is reduced due to the water moving froentiottom

to the top of the dam wall (assuming the inflow @ognas an underflow); the main factor affectingcasgible
spill is the storage leveAvoidance capacitgn the other hand is linked to the presence nfstiance, of multiple
gates allowing the selection of the optimal intalepth from the dam. These structures reduce theofis
delivering raw water with very poor quality featsre the WTP after, for instance, an extreme weather
event. However, its usefulness is limited duringelairculation periods (e.g. winter turnovers) he tvater
quality is uniform throughout the water columi similar management option was suggested to beiskeof
alternative reservoirsconnected to the same water filtration plantyted the water quality is better than in
the main reservoir, this option provides a temppsaiution in case of unacceptable water qualityhe main
reservoir. Factors affecting the use of altermatizservoirs were identified as asset failure amdamination.
An important natural factor which was identifiedsmhie presence afshesash originating from bushfires and
subsequently washed into the reservoirs througbffuvill cause increased levels of colour and tdityi in the
reservoir. Factors affecting their amount are nyainé presence of a fire in forested areas arcnedatchment
and rainfall events following the fire. Also, inmggral, following a high rainfall event, increasedoff will
bring sediments and organic matter which will irse the levels of turbidity and colour in the reser In
particular circumstances, the amount @fyptosporidiumwill also increase. It was decided, for modelling
purposes, to create two different variables (ruawidl Cryptosporidium runojfas the runoff affecting turbidity
and colour is mainly influenced by the amount oihfial, but in order for the runoff to generate hig
Cryptosporidiumlevels, other inputs (e.g. the presence of intenixestock, onsite sewage, grazing, and the
possibility of a sewage treatment plant overflowh glay an important role. Another special caseuabff,
which would increase colour levels only, was idiéedi as beingSwamp runoffAlso, another indirect effect of

rainfall events, which would increase the turbidéyels in the reservoir, is the occurrence afadslip event.
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Finally, storage levelwas deemed to be an essential input variable.ca@ilpj a higher storage level implies
more water column stability, more dilution, and gelly a better water quality. It increases theidance
capacity (i.e. increased optimal intake depth sielecoptions), but increases the risk of spill.idtaffected

mainly by runoff and direct rainfall.

Three separate conceptual models were developezhébr parameter, i.e. turbidity, colour &wyptosporidium
(Figure 1) using the expertise and experience ef wlorkshop participants and a review of the pentine
literature. Connections and nodes were definectc@or@ance to Table 1 and to the meaning and belnawio
the variables reported above; these connectorbaam either a positive (i.e. when an increaseeénput value
implies an increase in the target parameter) ortidg (i.e. when an increase in the input valueliespa
decrease in the target parameter) polarity. Addtily, these connectors are blue when an increatieeiinput
value would imply a final lower risk of high levetsf the key-parameters, and red in case it impidmal
higher risk. The three separate models were subsdgunerged together in a single, larger concdphaael.

A feature of the models is that the main factofeaing water quality (as selected by the partiostpawere not
only environmental (e.g. rainfall, drought, firelsiit also related to the facilities of the waterlityti(e.qg.
variables such as avoidance capacity, alternatgervoirs, asset failure), land use (e.g. agricailtareas,
forested areas, farms, grazing, intensive livegtamhkd even extreme human actions (such as intetion

contaminations).

Subsequently, the conceptual model was converteal BN according to the methodology discussed in the

Materials and Methods section. CPTs were elicitathd the second stakeholders’ workshop.
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Figure 1 — The three separate conceptual models develap@thdhe first workshop

3.2 Bayesian Network development and analysis

The final BN structure is presented in Figure 2sth, a colour coding was used to cluster varighblgo
different groups, such as environmental (i.e. lslades), land-related (pink), management-relatetht(ijreen),
targeted variables (dark green), or miscellanedgsmentioned previously, numerical (empirical) datere
available for most of the environmental (blue) radehereas the other nodes required experts’ apsnio
Importantly, an auxiliary node “stakeholder” wasated so that the model can be run according to the
probabilities provided by each of the workshop ipgrénts, or by a group of them based on theiredéit
expertise. Four different groups were created faalysis purposes, based on a list of personal &zper
provided by each stakeholder: (1) “Overall’, wheach stakeholder is assigned the same weightw@ef

treatment”; (3) “science and water quality”; andl ‘(shanagement”.
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Figure 2 — Final BN structure

A sensitivity analysis was performed for the depeld BN in order to identify the variables that amest
influential on the risk of having LoS not guaramteln Figure 3, the BN was simplified in order tghtiight the
two most sensitive paths of the net. Overdllryptosporidiur is the node that mostly affects the LoS (17.1%
of the variance); “Coagulation” (i.e. how well tloeagulation process is performed; affected by cobmd
turbidity levels) follows at 5.9%. Importantly howey, the “Stakeholders” node, despite not beingaty a

variable of the modelled system, has a great infteg8.7%).
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Runoff
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| Swamp_runoff | I Colour_runoff | | Colour | | Coagulation

Low 6.3 1 high 56.9  Low 115 | 1 good  54.6
High 13.7m | | low  43.1 High 885 bad 454

Figure 3 —BN’s most sensitive paths
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By applying a bottom-up approach and going backht parentless nodes, it can be seen how the akigin
trigger for high risk of poor LoS risks is rainfall whether abundance or lack of. Thus bushfire jrfstance,

seems to play a less relevant role compared tonsteince, flood-related events in deterioratirgltbS.

mCrypto mColour = Turbidity WLOS

e
“

(=]

.6

bhbbhhik

High 12-monthsHigh 12-months  Bushfire Rain after fire Landslip event Landslip event, Landslip event, High 12-months

=]
n

=3
F'SS

(=]
W

Relative Risk of unacceptable levels
=3

(=]
—

Rainfall+  Rainfall + East large runoff,  large runoff, Rainfall +
Heavy rain Coast Low low storage low storage ~ Heavy rain+
level level, winter ~ low storage

level
Extreme event
Figure 4 —Relative risk of unacceptable levels@dyptosporidium Colour and Turbidity in relation to types of

extreme events

As a confirmation, Figure 4 represents the quanaiion of the relative risk associated to differemtreme
events; this was assessed by running the BN tabl aifferent initial input configurations. By rela¢ risk, we
refer to the probability of delivering raw watertlwvhigher-than-threshold levels of the variablesidered (i.e.
colour, turbidity, orCryptosporidiun), as defined in Section 2.2. It can be seen hdwshfire, despite creating
a quite high risk of elevated colour levels, woplgsh the relative risk of LoS not being satisfiecdbhly 0.158
(Table 2). Among the eight different scenarios wsedl, a bushfire represents the least dangerousmext
event, in terms of risk of delivering water whiched not guarantee the predefined LoS. If instea@jnfall
event occurred after a fire, then the relative a6k.oS not being guaranteed would climb to 0.1Gwaver, it
would be still a lower risk than those implied bher kinds of extreme events. This can be consitlerdine
with existing studies, which have found how the amipof bushfire on water quality can be highly shtée
(Smith et al., 2011) and in some cases very srhalhges in e.g. turbidity were noticed (Sheridaal €t2007).
Flooding conditions instead would typically leadhigher turbidity andCryptosporidiumlevels compared to a
bushfire + rain event, and thus would create adrgisk for the water treatment. This is also mmeliwith

previous studies showing dramatic increase€ryptosporidium(e.g. Kistemann et al., 2002) or presence of
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intense turbidity currents (e.g. Gelda et al., 90d@ring extreme wet weather events. The three astEn
analysed in this case are ranked from number 4itoTable 2, with relative risk of not satisfactdrpS of,
respectively, 0.19, 0.182 and 0.175. A prerequisiteld be a very wet year prior to the extremefedirevent,
as this would imply a saturated catchment and thush higher runoff. In addition, a low storage levsy
reducing avoidance capacity, would even exacerthateisk; however, due to the assumed wet yeairgad
the event, it is unlikely that the reservoir volumeuld be very low. Interestingly, the most critiextreme
events for a water treatment management point eWvwvould be associated to the occurrence of large
landslides. This is with agreement with a numbestoflies arguing that landslides can represenptimeary
factor dominating the turbidity of reservoirs orais (e.g. Jordan, 2006; Sobieszczyk et al., 200 farticular,
the most critical event was found to be very heaamy leading to (1) large runoff and (2) the ocenge of a
landslip, occurring in winter (i.e. limiting the aiance capacity), with a low storage level (iieiting
avoidance and dilution capacities). The large rliteélf is a source of turbidity since it can le@dthe scouring
of the fine sediment fraction at the bottom of tkservoir (Lin et al., 2011). This scenario woufdply a

relative risk of the LoS to be not satisfied of 072

A landslip would create very high risk of elevatedbidity, which would become the leading critigalrameter
along with colour. It can be noticed thatyptosporidiumrisk is always much lower, but the impact of high
Cryptosporidiunrisk on the LoS would be higher due to the impurtaof this node, as discussed in relation to
the sensitivity analysis. Importantly, it must lzedsthat the effectiveness of the coagulation pgsde nonlinear
in relation to turbidity and colour; that is, acdimg to the stakeholders, raw water with both Higtbidity and
high colour might be easier to treat than raw watiéh high colour only (since the flocs are morabé¢) and

thus leading to lower risk of poor LoS.

Table 2 —Extreme events ranking in relation to relative gk oS to be not satisfied.

Rank | Rank | Rank Rank Event description Relative risk LoS
colour Tb crypto not satisfied
1 1 1 1 Landslip event, large runoff, low storageel, winter 0.277
2 2 2 2 Landslip event, large runoff, low storageel 0.276
3 8 6 7 Landslip event 0.204
4 3 3 3 High 12-months Rainfall, Heavy rain, lowragge level 0.190
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5 4 4 4 High 12-months Rainfall, East Coast Low 0.182

6 5 5 5 High 12-months Rainfall, Heavy rain 0.175
7 7 7 6 Rain after fire 0.170
8 6 8 8 Bushfire 0.158

Regarding water management strategies aimed atingdisuch risks, apart from the use of alternative
reservoirs (which surely would avoid drawing, aiigmpting to treat, poor quality raw water, but Wbhave
operational and economic issues to be better axbesbe preferred option for the stakeholders tedsave a
high avoidance capacity. This is typically guaradt¢hrough the potential of selecting the optimédke depth
according to the monitored raw water quality: tytlig, in the case of high turbidity, colour Gryptosporidium
levels, it is possible to find a better depth witkver concentrations of those key contaminants. &l in
case of low storage level (i.e. only few intakeegatinder water, less options), lake circulatioriggier (i.e.
uniform lake water quality), or spill (i.e. posshlnderflow of water moving from bottom to the laketop of
the dam wall, creating uniform water quality ndee gates), the avoidance capacity can be quickiyced and
the risks for water treatment are perceived to ig&dr. On the other hand, the importance of maanea,
which could reduce the risk of failure of criticdsets, was somehow considered less relevanthbaratiable
intake depth option, with a typical risk reductiohonly 0.1% in case of high maintenance plannéahil&ly,
other options such as grazing education, whichcceukntually reduce the risk @fryptosporidiumdetection,
had a lower influence on the final risk of poor L.@S the land-use and management nodes of the nkettad a
lower influence to the BN outputs, when comparecmwironmental variables (as proven by the seritsitiv

analysis).
3.3 Stakeholder effect on model results

These results presented so far are based on th@ioaal probabilities elicited from the overall gloof experts
involved in the workshop process and supplementechimerical data. However, the sensitivity analysis
indicated that the area of expertise of a stakednoldas also a strong determinant of BN model behavi

(Figure 5).

Stakeholders with a water treatment (WT) backgrooadsistently provided probabilities leading to Heg
risks. The authors hypothesise that, due to their everyday working activities and experience, they more

concerned and more aware of the consequencesrefrexevents. Managers (M) also typically providaghér
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than average probabilities of poor water qualitgyaver in some cases (landslip-related eventsethese
lower than what was provided by the other stakedrsldnterestingly, managers would take flood-selatvents
as the most threatening for the reliable operatibthe WTP, with also bushfire-related events hgvinore
impact than landslide-related ones. Science andrvepiality (SWQ) experts provided conditional prioiites
that reflected a more conservative approach, aaddhbulting probabilities were usually close to dwerall
(OV) average. As suggested by Hukkinen (1993) ptlesence of such inconsistencies among differgmerex
can be a direct indicator of potential remediesisttbetter communication and knowledge-sharing eetw
different stakeholders is recommended to improeectimsistency of water treatment and decision-ngakind
to eventually devise more specific, targeted irgation strategies. It is in fact accepted that ipgetory
modelling can be a support tool for the type ofigolearning currently being promoted for watera@ses
management (Ridder et al., 2005). Moreover, a liteoktuch process is the enhancement of commuaicat

between different stakeholders, researchers andrtiaer community (Jakeman et al., 2006).

Often the posterior probabilities calculated frompérical historic data were quite different fronosie provided

by a number of stakeholders, due to possible migptions of the likelihood of a certain event. kwstance,
the probability of having an East Coast Low on enser day in the Sydney area is, historically, ob$%;
despite realizing the unlikelihood of such everanmstakeholders assigned a probability betweeasdsl 0%,
which is considerably higher than the actual. Tduald also mean that there was not a clear undwlisig of

the definition of certain nodes. One of the majdfiallties that the authors encountered during sieeond
workshop was the need for a large amount of time (@ the high number of nodes and CPTs to populate
dedicated for a thorough explanation and definittbeach variable, and thus this represents orkeoturrent
limitations of the developed tool. However, the &ftrof such approach is that is a continuousatiee process
and thus the CPTs can be updated in the futuret tiraBayesian approach allows is to insert evidea it

comes available, thereby updating the posteriogmal probabilities over time.
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Figure 5 —RelativeRisk of LoS to be not satisfied for different sth&kers’ expertise: WT = water treatment;

OV = overall; SWQ = science and water quality; Mhanagers.

In conclusion, despite a few issues with elicitexperts-based CPTs, from a systems perspective the
structure of the system that is important (inclgdpolarity of cause-effect relationships). Undardtag the
structure of the system provides an understandirtgeosystem behaviour (over time), which was cagutun
the conceptual model. Furthermore, the concepyisiém structure was used as the basis of develdap:BN
structure, with the difference being the removalhe temporal (i.e. feedback) component, thus pingi a
snapshot in time tool. Importantly, although the T€Pmight need further refinement, the BN structure,
evolution of the conceptual models defined in adaace to the stakeholders’ input through the ppetory
approach, is solid and comprehensive, and an impbdutput of this study. CPTs can be updated aistage
thanks to the flexible Bayesian approach. In chseGPTs were good but the structure was not, upglatie
structure would imply updating the CPTs too; howeupdating the CPTs does not require updating the

structure.

4 CONCLUSIONS

A risk assessment tool was developed to understamd, and manage the effects of extreme events, or
combination of them, on the ability of a water treant plant to deliver high quality water to congum A
participatory modelling approach was applied andBayesian Network was developed around the key

parameters of turbidity, water colour a@dyptosporidium as they also have potential negative health &ffec
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for water consumers. The conceptual model was basded on experts’ input, and the BN was populatial
posterior probabilities based on historical empiritata, and elicited from stakeholders wherevéa dere not
available. Results show how a large runoff eveadileg to landslides during times of limited avoidan
capacity would result in the most concerning setarfditions for the water treatment plant. Howewertain
specific groups of stakeholders indirectly rankbd extreme events differently: for instance, manzge
people were more concerned about flood-relatedtevanbushfires. In terms of water managementesiias,
the preferred option for reducing the risks frontreme events was found to be the retention of higiidance
capacity (i.e. the potential for optimal intake ttepelection from the storage reservoir), whicheisted to a
high storage volume, and to limited water circaatibecause of climate change (leading to increalsgd
periods and thus more frequent low storage voluraed, increased extreme rainfall events bringindhérig
turbulence and mixing of the lake waters) the azo@d capacity might be, on average, much lower ithaime

past, which would require water managers to deatsptation strategies to compensate for this.

The applied methodology proved to be effectivetfos water management application. It addresseditijie
levels of uncertainty and data limitations in thedalled system, and the engagement of a numbeeyf k
stakeholders in defining and populating the modwsle the risk assessment tool more credible and likaty

to be implemented within the organisation. Sigaifity, remarkable discrepancies were observed leetlee
opinions of different groups of stakeholders; alifjo this can be partially explained by misundeditags
about the definition of certain nodes, it is coesa that improved communication and knowledgetsbar
between these groups of people could be extrematefizial for a more consistent routinely watematneent
operation and management. Participation in thigeptoactually served to facilitate improved comnuation
between groups, particularly since there were ipleltbpportunities for information sharing througbrisshops

and repeated rounds of consultation during modetidpment.

The developed tool can be transferred and adapisity ¢o other water supply systems. Such toolsstgport
and provide guidance to water utility managers twn most effective, scientifically based long-tertang for

drinking water treatment operations under changlimyate and exacerbation of extreme events.

Future work will focus on transferring and readagtihe BN inputs to build a System Dynamics modid @0
numerically assess the magnitude and frequencylol turbidity andCryptosporidiumover-the-threshold
events in the long-term and with different sceraraf population growth, water source selections and
magnitude of extreme events. Also, further stak@diwlengagement would allow for a refinement of the

previously filled CPTs leading to a more consis@Ntthat can rely more heavily on expert informatio
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Paper highlights

A risk assessment tool for health-related water quality risks was created
The model was developed for alarge dam supplying a water treatment plant
* A participatory Bayesian Network modelling approach was used

» Extreme weather events are ranked based on the estimated risks



