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Symmetry fractionalization in the topological phase of the spin-1
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Using density-matrix renormalization-group calculations for infinite cylinders, we elucidate the properties of
the spin-liquid phase of the spin- 1

2 J1-J2 Heisenberg model on the triangular lattice. We find four distinct ground
states characteristic of a nonchiral, Z2 topologically ordered state with vison and spinon excitations. We shed
light on the interplay of topological ordering and global symmetries in the model by detecting fractionalization
of time-reversal and space-group dihedral symmetries in the anyonic sectors, which leads to the coexistence of
symmetry protected and intrinsic topological order. The anyonic sectors, and information on the particle statistics,
can be characterized by degeneracy patterns and symmetries of the entanglement spectrum. We demonstrate the
ground states on finite-width cylinders are short-range correlated and gapped; however, some features in the
entanglement spectrum suggest that the system develops gapless spinonlike edge excitations in the large-width
limit.
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Introduction. Topological phases [1–3] are an intriguing
form of quantum matter, which have been challenging theorists
for the last two decades. Before then, it was believed that
Landau symmetry-breaking theory [4] can explain ordering
and phase transitions of matter through (spontaneous) breaking
of a Hamiltonian symmetry. However, topological phases can
preserve all symmetries and still acquire a finite energy gap.
Topological phases fall into two broad categories, “intrinsic
topological order” [3] on D � 2 dimensional lattices, and
“symmetry protected topological” (SPT) [5,6] order, which
can also exist in one dimension (1D). For the former phase,
there is no local unitary transformation to smoothly deform
the state into a product state without passing through a phase
transition, regardless of the existence of symmetries. The
canonical example of an intrinsic topological order is the Z2

ground state of the toric code [7]. On the other hand, SPTs
are undeformable into product states only if protected by a
symmetry. The best studied example is surely the Haldane
phase of odd-integer spin chains [5,6], including the ground
state of the exactly solved Affleck-Kennedy-Lieb-Tasaki
(AKLT) [8] model. A key breakthrough was the realization that
anyonic statistics associated with intrinsic topological order
corresponds to fractionalization of symmetry. Therefore, when
intrinsic topological order is coupled with lattice symmetries,
the symmetries themselves fractionalize and lead to SPT
ordering [9–11], which is readily detectable in many numerical
methods.

In 1973, Anderson [12] conjectured that the spin- 1
2

triangular Heisenberg model (THM) with antiferromagnetic
nearest-neighbor (NN) bonds should stabilize a resonating-
valence-bond (RVB) ground state. The failure of analytic and
numerical studies [13–16] to find such a state motivates the
search for a minimal extension that increases the frustration
with a next-nearest-neighbor (NNN) term. The Hamiltonian is
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defined as

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where 〈i,j 〉 (〈〈i,j 〉〉) indicates the sum over all NN (NNN)
bonds. We set J1 = 1 as the unit of the energy henceforth.
Previous numerical studies using a range of techniques
[15,17–23] have suggested a spin-liquid [1,3] (SL) region,
with phase boundaries in the range of J low

2 ≈ 0.05 [18] up to
J

high
2 ≈ 0.19 [17]. Employing finite-size density-matrix renor-

malization group (DMRG) [24,25] and using fixed aspect-
ratio scaling of magnetic order parameters, we find phase
boundaries of 0.101(4) � J2 � 0.136(4), the calculation of
which will be described in more depth in a future work [26].
In this Rapid Communication, we focus on the properties
of the SL phase itself. For classical spins, the model has
a phase transition at J2 = 0.125 between two magnetically
ordered phases [14]. This point roughly coincides with the
center of the spin-liquid region for the quantum model, and
in this work we focus on J2 = 0.125. While there is nothing
forbidding the coexistence of spontaneous symmetry breaking
and topological order, the Hastings-Oshikawa-Lieb-Schultz-
Mattis theorem [27] in two dimensions (2D) states that the
absence of symmetry breaking in a spin- 1

2 system on even-
width cylinders implies that the ground state is a SL with either
gapless (algebraic) excitations, or gapped with degenerate
ground states and anyonic excitations. Thus the absence of
symmetry breaking is a sufficient (but not necessary) condition
for a SL. Previous DMRG studies [20,21] have argued for
a gapped Z2 toric-code SL, and have obtained two possible
ground states by the presence (absence) of free spins near
the boundaries of finite cylinders. However, the properties
of these states are unclear, since, depending on the sector
chosen, the state may develop chiral order [21], or breaking
of C6 rotational symmetry [20,21,28], leading to a nematic
SL. Recent studies [11,29,30] focused on the kagome lattice
show that the time-reversal symmetric Z2 SL can be fully
characterized by the symmetry properties of lattices on tori
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FIG. 1. Visualization of the triangular lattice on an infinite YC
structure. The size and color of the spheres indicate the long-range
correlation with the principal (gray) site. The color of the bonds
indicates the strength of the NN correlations. The average of NN
correlation is subtracted from each bond to highlight the anisotropy
pattern.

or infinite cylinders via the projective symmetry group (PSG)
classifications [1,11,29,31,32].

Method. We consider a triangular lattice structure that is
wrapped around an infinite cylinder. We employ the infinite
matrix product states (iMPS) [25,33,34] ansatz, via the
infinite DMRG (iDMRG) algorithm [25,33] with single-site
optimization [35] and utilizing SU (2) symmetry to obtain
translationally invariant variational ground states on an infinite
cylinder. We keep up to m = 5000 states, approximately
equivalent to 15 000 states of a U (1)-symmetric basis. We use
the so-called YC structure, where the infinite-length cylinder
has a circumference equal to the number of sites in the Y

direction, Ly . The mapping of the MPS chain on the cylinder
is set to minimize the one-dimensional range of NN and NNN
interactions. The setup is shown in Fig. 1, indicating also
the correlations of a typical ground state. Bipartite quantities,
e.g., reduced density matrix (ρr ) and entanglement entropy
[28], are measured by defining a Y -direction cut through the
cylinder without crossing any vertical bond. The framework
of iDMRG is a natural candidate for calculating symmetry
properties, since excitations can be introduced at cylinder
edges by manipulating the symmetries of the wave function.
Unlike the case for finite systems, the “edges” are effectively
at infinity, so they do not affect the translation symmetry
of the wave function. The Z2 SL of the RVB type carries
vison excitations, and bosonic and fermionic spinons [36].
We control the even/odd parity of spinon flux in the ground
state by setting SU (2) quantum numbers (global spins, S)
to be either integers (even sector—no spinon) or odd half
integers (odd sector—with spinons) at the unit cell boundary.
We cannot directly control the vison flux through the cylinder,
so we can only obtain two ground states for each cylinder
geometry. However, for finite-Ly cylinders the degeneracy is
expected to be lifted, and fortunately we find that the ground
states for different width cylinders also give the vison and
nonvison sectors, allowing us to obtain all four combinations
of even/odd spinons and the presence/absence of a vison flux.
We note that Metlitski and Grover [37] and Kolley et al. [38]
established the observation of a tower of states (TOS) in the
low-lying part of the entanglement spectrum (ES) [38,39] as
a “smoking gun” evidence for the existence of magnetically
ordered states (carrying Nambu-Goldstone excitations). We
confirm the nonmagnetic nature of the phase by the absence

of TOS in the ES, regardless of the anyon sector (see below
and also Ref. [26]).

We obtain a structure of four anyon sectors of the Z2 toric-
code-type topological order [40] that comprises the identity
î anyon (carries no spinon or vison flux), a bosonic spinon b̂
anyon (carries a S = 1

2 spin), a v̂ anyon (carries a vison and
has a π flux threading the cylinder, equivalent to possessing
antiperiodic boundary conditions in the Y direction), and
finally a fermionic spinon f̂ anyon (a composite excitation,
which carries both a S = 1

2 spin and a π flux). In this
Rapid Communication, we work in a minimally entangled
states (MES) [41,42] basis introduced in Refs. [11,30] for the
four-dimensional ground-state manifold and preserves SPT
ordering. For even-Ly cylinders, each unique MES state [11]
corresponds to threading an anyonic flux in the long direction
and creating a particle/antiparticle pair of â at infinity, namely,
|Ua/ã

Ly
〉 (also denoted as the YCLy-â sector). Given a particular

MES, the action of a global symmetry group (ḡ) member �g

on the state can be considered as two independent actions
on each anyon, i.e., �g|Ua/ã

Ly
〉 = ϒg|Ua

Ly
〉 ⊗ ϒg̃|Uã

Ly
〉, where

ϒg’s are unitary operators acting on a single anyon |Ua
Ly

〉.
Anyons can fractionalize [11,29,30,32] the symmetry ḡ by
factorizing an identity member of the group (square root of ḡ).
ḡ is always a linear representation (it is describing a physical
symmetry), but ϒg’s can now form a nontrivial PSG, which
is a central extension of the original group [1]. In the MPS
representation of the ground state, the ϒg can be expressed
as operators acting on the “auxiliary” basis, i.e., the basis
of the entanglement Hamiltonian − ln(ρr ) on a bipartite cut.
Thus the existence of a PSG through measurements of ϒg’s
implies 1D SPT ordering [11], by considering rings as single
“supersites” (global symmetries along the Y direction are now
internal symmetries when viewed as a 1D chain), which is
straightforward to detect using iMPS techniques [43].

Ground-state energies. We present ground-state energies
of anyonic sectors in Fig. 2. Energies are extrapolated to the
thermodynamic limit of basis size m → ∞, using a linear fit
against the energy variance per site (see Ref. [28] for details).
We suggest that fitting against variances is the most accurate
method for extrapolating energies in DMRG (more reliable
than extrapolation with respect to the DMRG truncation error).
The different topological sectors are expected to acquire
slightly different energies on finite-width cylinders. Depending
on Ly , we find that the actual ground state in the even/odd
sectors varies as to whether or not it contains a π vison
flux. In some cases, especially for smaller widths, we have
been able to construct variational wave functions in the
other sectors by manipulating the wave function (i.e., to
force a particular symmetry state), but the resulting states
are rather unstable and have considerably higher energies.
However, the overall behavior of energies indicates that the
difference between energy of even and odd sectors is rapidly
decreasing with increasing Ly . This is consistent with having a
degenerate ground state in the thermodynamic limit Ly → ∞.
Interestingly, there is an energy crossover between even/odd
sectors already for YC10, which makes it unreliable to estimate
an energy for the Ly → ∞ limit. We note that our energies
per site for larger system widths are somewhat lower than
previously published results.
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FIG. 2. Ground-state energies at J2 = 0.125 against inverse
cylinder width. Our results for infinitely long cylinders with ex-
trapolation to zero variance are in blue. Dashed lines are guides
to the eye. Red shaded symbols are finite-size DMRG results from
Ref. [21]. Brown symbols are variational quantum Monte Carlo
(VQMC) results on L × L tori with the horizontal line indicating
an L → ∞ extrapolation, from Ref. [22].

Symmetry group measurements. We present our main
symmetry group measurements on different anyonic sectors
and system sizes in Table I. Considering the time-reversal
symmetry τ , we find that |〈τ 〉| is very close to 1.0 in all
sectors, indicating that time-reversal symmetry is not broken
and therefore the ground state is nonchiral. A state carrying a
spin- 1

2 spinon flux can be realized by the action of τ on the
auxiliary basis, in the form of C[τ 2] = ϒτϒ

∗
τ . For b̂ and f̂

sectors, one expects 〈ϒτϒ
∗
τ 〉 = −1, antisymmetric under time

reversal, which is precisely what we observe (these SPTs are
also protected by parity reflection [28]). A state that carries
a π vison flux can be detected by the action of the cylinder
dihedral symmetry group DLy

in the Y direction. The elements
of the group are generated by reflection around a site or
bond [28] Ry and a translation by one lattice site Ty . The
linear and projective representations can be distinguished by

the commutation between Ry and a π rotation, T π
y = (Ty)

Ly

2 .
Visons fractionalize DLy

, acquiring an effective antiperiodic
boundary condition in the Y direction, whereby reflection

TABLE I. Summary of topological invariants for Ly × ∞
cylinders at J2 = 0.125. |〈Ry〉|, |〈Ty〉|, and |〈τ 〉| are close to 1.0
in all cases [28].

Spin- 1
2 Degeneracy

Structure boundary of ES 〈C[DLy
]〉 〈C[τ 2]〉 Sector

YC6 Even Twofold − 0.999996 1 ± 10−11 v̂
YC6 Odd Twofold 0.9999998−1 ± 10−14 b̂
YC8 Even Nondegenerate 0.99998 1 ± 10−10 î
YC8 Odd Fourfold − 0.999990 −1 ± 10−11 f̂
YC10 Even Nondegenerate 0.9996 1 ± 10−9 î
YC10 Odd Twofold 0.9998 −1 ± 10−9 b̂

and π rotations anticommute, RyT
π
y = −T π

y Ry . Thus one

expects C[DLy
] = 〈ϒRy

ϒT π
y
ϒ

†
Ry

ϒ
†
T π

y
〉 = −1 for the v̂ and f̂

sectors, i.e., DLy
fractionalizes into a PSG with an invariant

gauge group [1,11] of Z2. Combined, the measurements of
C[τ 2] and C[DLy

] give distinct topological invariants for
the four sectors, and imply fusion rules [28,40] of a Z2 SL.
Furthermore, this gives information about the self-statistics, in
particular, the obtained topological invariants are incompatible
[30] with the double-semion topological order [44], since the
semion and antisemion are time-reversal partners, but here
the two spinon sectors have different PSGs so they cannot
be interchanged under τ . We also present a more compre-
hensive list of symmetry observables in the Supplemental
Material [28].

Entanglement spectrum. The ES, set of {λi}’s, is a way of
presenting the eigenvalues of the entanglement Hamiltonian
analogous to a set of energy levels. λi can be labeled by
any global symmetry of the system as long as it is preserved
in the bipartite cut. In this case, we choose SU (2) spin S

(preserved explicitly in the calculations), and DLy
, which is

not preserved exactly, but it is straightforward to diagonalize
Ty to obtain the momentum-resolved ES. In the absence of
a π vison flux, the allowed Y momenta (kn’s) are arranged
with a spacing of kn = 2πn

Ly
. The key difference in the vison

sectors is a shift of a half spacing, kn = 2π
Ly

(n + 1/2), due to the
π flux causing an effective antiperiodic boundary condition.
Because each anyonic sector corresponds to a unique set of
symmetry group measurements that cannot smoothly deform,
sectors have a uniquely identifying ES (such a unique form
of ES on infinite cylinders was originally observed in the
honeycomb Haldane model [45]). In general, it is a nontrivial
task to interpret highly populated ES levels, but the overall
degeneracy patterns are signatures of SPT ordering, when
viewing the cylinder as an infinite chain [6,11,46]. That is,
in the presence of SPT, every ES state has a multiple of n-fold
degeneracy, where n is determined by the symmetry properties
of the state. In particular, the î-sector ES has no degeneracy, the
b̂ sector has twofold degeneracy associated with half-integer
spins (Kramers degeneracy from C[τ 2] = −1), the v̂ sector
has twofold degeneracy associated with PSGs of DLy

, and the
f̂ sector has fourfold degeneracy combining Kramers and PSG
of DLy

.
In Fig. 3, we present the ES of even-boundary topological

sectors for various width cylinders. The v̂ sector on YC6 has an
exact (up to numerical accuracy) twofold degeneracy arising
from ±k momenta, which is not shared by the î sector (the
k = 0 and k = π states are nondegenerate), which is a proof for
the π flux. The low-lying structure is a deformed two-spinon
continuum, most easily seen for the larger-width lattices.
We suggest this general pattern [manifested in Fig. 3(c)]
is characteristic of even sectors and presumably persists in
large-Ly limit.

ES results for odd-boundary topological sectors are pre-
sented in Fig. 4. The f̂ sector for YC8 has (nearly) fourfold
degeneracy and momenta are shifted by π

8 , which indicates
both a spinon and vison π flux. The ES of the b̂ sector
for YC6 or YC10 is (nearly) twofold degenerate due to the
odd-half-integer spin boundaries, indicating spinons but no π
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FIG. 3. The momentum-resolved ES of the even-boundary
topological sectors for different cylinder circumferences Ly , in
the spin-liquid region at J2 = 0.125. The topological sectors are
(a) YC6-v̂, (b) YC8-î, and (c) YC10-î.

flux. Again, the overall pattern of the low-energy structure is
consistent between vison and nonvison sectors, and appears to
be converging to a well-defined large-Ly limit. Intriguingly,
the low-energy structure for the odd sector is reminiscent of
a Fermi arc [47], appearing as an excitation mode that only
covers a subset of the Brillouin zone.

Hu et al. [21] presents ES (not momentum resolved) for two
nearly degenerate, YC8 ground states (see Hu et al.’s Fig. 5,
corresponding to the î and f̂ sector). Reference [21]’s f̂-sector
ES is consistent with our Fig. 4(b), however, there is no match
between the î-sector spectra. We suggest Ref. [21]’s î-sector
spectra corresponds to a chiral state.

Discussion. Using SU (2)-symmetric iDMRG, we have
provided a robust demonstration of the properties of the
spin-liquid phase of the THM on infinite cylinders, obtaining
four ground states and their ES degeneracy patterns, which we
have classified according to their symmetry fractionalization
properties, consistent with theoretical predictions (e.g., see
Ref. [11]). We observe dihedral symmetry fractionalization in
the model, which shows that the low-lying structure of the
THM carries nonchiral Z2 toric-code-type topological order.

While our calculations are always in the limit of infinite
aspect ratio (we do not address directly the nature of the 2D
limit), we suggest that the degeneracy of the ground states
is robust. We are not yet able to directly measure the energy
gap to excited states, however, the iMPS ansatz does readily
provide the correlation length, which in all cases is rather small
[28], implying a finite gap for finite Ly . However, low-lying
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FIG. 4. The momentum-resolved ES of the odd-boundary
topological sectors for different cylinder circumferences Ly , in
the spin-liquid region at J2 = 0.125. The topological sectors are
(a) YC6-b̂, (b) YC8-f̂, and (c) YC10-b̂.

structures in the ES contain some interesting features, such
as a Dirac cone (Fig. 3), which will become gapless in the
thermodynamic limit. According to edge-ES correspondence
for Z2 topological states enriched by global symmetries [48],
the system is likely to have gapless edge states. It is unclear
if this would also lead to gapless bulk states, hence we are
unable to rule out the possibility that the system is algebraic
SL in the 2D limit.

In agreement with Hu et al. [21], we observe anisotropic
(C6-symmetry breaking) correlations for the odd sectors only,
while the even sectors appear to get isotropic as the width is
increased. We were unable to detect the expected topological
entanglement entropy of − ln(2) due to the limited accuracy
of the obtained entropy, and relatively small Ly , which is
an inherent difficulty with the DMRG procedure [28]. If the
system is gapless in the 2D limit, then there will be logarithmic
corrections that make the fit almost impossible to perform for
numerically accessible system sizes.

Irrespective of the nature of the state in the 2D limit, we
have shown that finite-width YC structures have short-range
correlations and are gapped. A long, narrow cylinder is a
plausible geometry for a quantum-engineered device, and there
are recent proposals for the construction of the fermionic
Hofstadter-Hubbard model on a cylindrical optical lattice [49].
Candidate materials that could be realizations of the Z2 RVB
SL are κ-(BEDT-TTF)2Cu2(CN)3 [50] (with no indication
of gapless spin excitations) and EtMe3Sb[Pd(dmit)2]2 [51]
(recognized as a gapless state).

121111-4



RAPID COMMUNICATIONS

SYMMETRY FRACTIONALIZATION IN THE TOPOLOGICAL . . . PHYSICAL REVIEW B 94, 121111(R) (2016)

Acknowledgments. The authors would like to thank Jason
Pillay, Henry Nourse, Michael Zaletel, Yin-Chen He, Wen-Jun
Hu, and Shou-Shu Gong for useful discussions. The authors
would also like to thank Ben Powell for some startup ideas
and useful discussions in the early stages of the project.

This work has been supported by the Australian Research
Council (ARC) Centre of Excellence for Engineered Quantum
Systems, Grant No. CE110001013. I.P.M. also acknowledges
support from the ARC Future Fellowships Scheme No.
FT140100625.

[1] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[2] X.-G. Wen, Quantum Field Theory of Many-Body Systems:

From the Origin of Sound to an Origin of Light and Electrons,
Oxford Graduate Texts (Oxford University Press, Oxford, UK,
2007).

[3] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82, 155138
(2010).

[4] L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937); V. L.
Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950);
English versions are available in L. D. Landau, Collected Papers
(Elsevier, Amsterdam, 2013).

[5] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
[6] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa,

Phys. Rev. B 81, 064439 (2010); F. Pollmann, E. Berg, A. M.
Turner, and M. Oshikawa, ibid. 85, 075125 (2012).

[7] A. Yu. Kitaev, Ann. Phys. 303, 2 (2003); A. Kitaev and C.
Laumann, arXiv:0904.2771.

[8] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.
Lett. 59, 799 (1987); Commun. Math. Phys. 115, 477 (1988).

[9] A. Mesaros and Y. Ran, Phys. Rev. B 87, 155115 (2013);
M. Barkeshli, M. Bonderson, M. Cheng, and Z. Wang,
arXiv:1410.4540.

[10] Y.-C. He, D. N. Sheng, and Y. Chen, Phys. Rev. B 89, 075110
(2014).

[11] M. P. Zaletel, Y.-M. Lu, and A. Vishwanath, arXiv:1501.01395.
[12] P. W. Anderson, Mater. Res. Bull. 8, 153 (1973).
[13] D. A. Huse and V. Elser, Phys. Rev. Lett. 60, 2531 (1988);

Th. Jolicoeur and J. C. Le Guillou, Phys. Rev. B 40, 2727(R)
(1989); R. Deutscher and H. U. Everts, Z. Phys. B 93, 77 (1993);
B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Phys.
Rev. B 50, 10048 (1994); L. Capriotti, A. E. Trumper, and S.
Sorella, Phys. Rev. Lett. 82, 3899 (1999); S. R. White and A. L.
Chernyshev, ibid. 99, 127004 (2007); D. J. J. Farnell, O. Götze,
J. Richter, R. F. Bishop, and P. H. Y. Li, Phys. Rev. B 89, 184407
(2014).

[14] Th. Jolicoeur, E. Dagotto, E. Gagliano, and S. Bacci, Phys. Rev.
B 42, 4800(R) (1990); A. V. Chubukov and Th. Jolicoeur, ibid.
46, 11137 (1992).

[15] P. H. Y. Li, R. F. Bishop, and C. E. Campbell, Phys. Rev. B 91,
014426 (2015).

[16] S. N. Saadatmand, B. J. Powell, and I. P. McCulloch, Phys. Rev.
B 91, 245119 (2015).

[17] L. O. Manuel and H. A. Ceccatto, Phys. Rev. B 60, 9489
(1999).

[18] R. V. Mishmash, J. R. Garrison, S. Bieri, and C. Xu, Phys. Rev.
Lett. 111, 157203 (2013).

[19] R. Kaneko, S. Morita, and M. Imada, J. Phys. Soc. Jpn. 83,
093707 (2014).

[20] Z. Zhu and S. R. White, Phys. Rev. B 92, 041105(R) (2015).

[21] W.-J. Hu, S.-S. Gong, W. Zhu, and D. N. Sheng, Phys. Rev. B
92, 140403(R) (2015).

[22] Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and F. Becca,
Phys. Rev. B 93, 144411 (2016).

[23] A. Wietek and A. M. Läuchli, arXiv:1604.07829.
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V. Alba, Phys. Rev. B 88, 144426 (2013).
[39] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).
[40] A. Kitaev, Ann. Phys. 321, 2 (2006).
[41] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A.

Vishwanath, Phys. Rev. B 85, 235151 (2012).
[42] H.-C. Jiang, Z. Wang, and L. Balents, Nat. Phys. 8, 902 (2012).
[43] F. Pollmann and A. M. Turner, Phys. Rev. B 86, 125441 (2012).
[44] M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang,

Ann. Phys. 310, 428 (2004).
[45] L. Cincio and G. Vidal, Phys. Rev. Lett. 110, 067208 (2013).
[46] A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B 83, 075102

(2011).
[47] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,

Phys. Rev. B 83, 205101 (2011).
[48] W. W. Ho, L. Cincio, H. Moradi, D. Gaiotto, and G. Vidal,

Phys. Rev. B 91, 125119 (2015).

121111-5

http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://arxiv.org/abs/arXiv:0904.2771
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1007/BF01218021
http://dx.doi.org/10.1007/BF01218021
http://dx.doi.org/10.1007/BF01218021
http://dx.doi.org/10.1007/BF01218021
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://arxiv.org/abs/arXiv:1410.4540
http://dx.doi.org/10.1103/PhysRevB.89.075110
http://dx.doi.org/10.1103/PhysRevB.89.075110
http://dx.doi.org/10.1103/PhysRevB.89.075110
http://dx.doi.org/10.1103/PhysRevB.89.075110
http://arxiv.org/abs/arXiv:1501.01395
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1103/PhysRevLett.60.2531
http://dx.doi.org/10.1103/PhysRevLett.60.2531
http://dx.doi.org/10.1103/PhysRevLett.60.2531
http://dx.doi.org/10.1103/PhysRevLett.60.2531
http://dx.doi.org/10.1103/PhysRevB.40.2727
http://dx.doi.org/10.1103/PhysRevB.40.2727
http://dx.doi.org/10.1103/PhysRevB.40.2727
http://dx.doi.org/10.1103/PhysRevB.40.2727
http://dx.doi.org/10.1007/BF01308811
http://dx.doi.org/10.1007/BF01308811
http://dx.doi.org/10.1007/BF01308811
http://dx.doi.org/10.1007/BF01308811
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevB.89.184407
http://dx.doi.org/10.1103/PhysRevB.89.184407
http://dx.doi.org/10.1103/PhysRevB.89.184407
http://dx.doi.org/10.1103/PhysRevB.89.184407
http://dx.doi.org/10.1103/PhysRevB.42.4800
http://dx.doi.org/10.1103/PhysRevB.42.4800
http://dx.doi.org/10.1103/PhysRevB.42.4800
http://dx.doi.org/10.1103/PhysRevB.42.4800
http://dx.doi.org/10.1103/PhysRevB.46.11137
http://dx.doi.org/10.1103/PhysRevB.46.11137
http://dx.doi.org/10.1103/PhysRevB.46.11137
http://dx.doi.org/10.1103/PhysRevB.46.11137
http://dx.doi.org/10.1103/PhysRevB.91.014426
http://dx.doi.org/10.1103/PhysRevB.91.014426
http://dx.doi.org/10.1103/PhysRevB.91.014426
http://dx.doi.org/10.1103/PhysRevB.91.014426
http://dx.doi.org/10.1103/PhysRevB.91.245119
http://dx.doi.org/10.1103/PhysRevB.91.245119
http://dx.doi.org/10.1103/PhysRevB.91.245119
http://dx.doi.org/10.1103/PhysRevB.91.245119
http://dx.doi.org/10.1103/PhysRevB.60.9489
http://dx.doi.org/10.1103/PhysRevB.60.9489
http://dx.doi.org/10.1103/PhysRevB.60.9489
http://dx.doi.org/10.1103/PhysRevB.60.9489
http://dx.doi.org/10.1103/PhysRevLett.111.157203
http://dx.doi.org/10.1103/PhysRevLett.111.157203
http://dx.doi.org/10.1103/PhysRevLett.111.157203
http://dx.doi.org/10.1103/PhysRevLett.111.157203
http://dx.doi.org/10.7566/JPSJ.83.093707
http://dx.doi.org/10.7566/JPSJ.83.093707
http://dx.doi.org/10.7566/JPSJ.83.093707
http://dx.doi.org/10.7566/JPSJ.83.093707
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.93.144411
http://dx.doi.org/10.1103/PhysRevB.93.144411
http://dx.doi.org/10.1103/PhysRevB.93.144411
http://dx.doi.org/10.1103/PhysRevB.93.144411
http://arxiv.org/abs/arXiv:1604.07829
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1103/PhysRevLett.84.1535
http://dx.doi.org/10.1103/PhysRevLett.84.1535
http://dx.doi.org/10.1103/PhysRevLett.84.1535
http://dx.doi.org/10.1103/PhysRevLett.84.1535
http://dx.doi.org/10.1103/PhysRevLett.93.140402
http://dx.doi.org/10.1103/PhysRevLett.93.140402
http://dx.doi.org/10.1103/PhysRevLett.93.140402
http://dx.doi.org/10.1103/PhysRevLett.93.140402
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1209/epl/i2005-10046-x
http://dx.doi.org/10.1209/epl/i2005-10046-x
http://dx.doi.org/10.1209/epl/i2005-10046-x
http://dx.doi.org/10.1209/epl/i2005-10046-x
http://link.aps.org/supplemental/10.1103/PhysRevB.94.121111
http://dx.doi.org/10.1103/PhysRevB.91.100401
http://dx.doi.org/10.1103/PhysRevB.91.100401
http://dx.doi.org/10.1103/PhysRevB.91.100401
http://dx.doi.org/10.1103/PhysRevB.91.100401
http://dx.doi.org/10.1103/PhysRevLett.114.077201
http://dx.doi.org/10.1103/PhysRevLett.114.077201
http://dx.doi.org/10.1103/PhysRevLett.114.077201
http://dx.doi.org/10.1103/PhysRevLett.114.077201
http://dx.doi.org/10.1103/PhysRevB.84.094419
http://dx.doi.org/10.1103/PhysRevB.84.094419
http://dx.doi.org/10.1103/PhysRevB.84.094419
http://dx.doi.org/10.1103/PhysRevB.84.094419
http://dx.doi.org/10.1103/PhysRevB.87.104406
http://dx.doi.org/10.1103/PhysRevB.87.104406
http://dx.doi.org/10.1103/PhysRevB.87.104406
http://dx.doi.org/10.1103/PhysRevB.87.104406
http://arxiv.org/abs/arXiv:0804.2509
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://arxiv.org/abs/arXiv:1008.4667
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://arxiv.org/abs/arXiv:1112.5166
http://dx.doi.org/10.1103/PhysRevB.88.144426
http://dx.doi.org/10.1103/PhysRevB.88.144426
http://dx.doi.org/10.1103/PhysRevB.88.144426
http://dx.doi.org/10.1103/PhysRevB.88.144426
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevB.85.235151
http://dx.doi.org/10.1103/PhysRevB.85.235151
http://dx.doi.org/10.1103/PhysRevB.85.235151
http://dx.doi.org/10.1103/PhysRevB.85.235151
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1103/PhysRevB.86.125441
http://dx.doi.org/10.1103/PhysRevB.86.125441
http://dx.doi.org/10.1103/PhysRevB.86.125441
http://dx.doi.org/10.1103/PhysRevB.86.125441
http://dx.doi.org/10.1016/j.aop.2004.01.006
http://dx.doi.org/10.1016/j.aop.2004.01.006
http://dx.doi.org/10.1016/j.aop.2004.01.006
http://dx.doi.org/10.1016/j.aop.2004.01.006
http://dx.doi.org/10.1103/PhysRevLett.110.067208
http://dx.doi.org/10.1103/PhysRevLett.110.067208
http://dx.doi.org/10.1103/PhysRevLett.110.067208
http://dx.doi.org/10.1103/PhysRevLett.110.067208
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.91.125119
http://dx.doi.org/10.1103/PhysRevB.91.125119
http://dx.doi.org/10.1103/PhysRevB.91.125119
http://dx.doi.org/10.1103/PhysRevB.91.125119


RAPID COMMUNICATIONS

S. N. SAADATMAND AND I. P. MCCULLOCH PHYSICAL REVIEW B 94, 121111(R) (2016)

[49] M. Lacki, H. Pichler, A. Sterdyniak, A. Lyras, V. E. Lembessis,
O. Al-Dossary, J. C. Budich, and P. Zoller, Phys. Rev. A 93,
013604 (2016).

[50] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito,
Phys. Rev. Lett. 91, 107001 (2003); Y. Kurosaki, Y. Shimizu, K.
Miyagawa, K. Kanoda, and G. Saito, ibid. 95, 177001 (2005);

M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, N. Yoneyama,
N. Kobayashi, S. Fujimoto, T. Shibauchi, and Y. Matsuda,
Nat. Phys. 5, 44 (2009).

[51] T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato,
J. Phys.: Condens. Matter 19, 145247 (2007); Phys. Rev. B 77,
104413 (2008).

121111-6

http://dx.doi.org/10.1103/PhysRevA.93.013604
http://dx.doi.org/10.1103/PhysRevA.93.013604
http://dx.doi.org/10.1103/PhysRevA.93.013604
http://dx.doi.org/10.1103/PhysRevA.93.013604
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.95.177001
http://dx.doi.org/10.1103/PhysRevLett.95.177001
http://dx.doi.org/10.1103/PhysRevLett.95.177001
http://dx.doi.org/10.1103/PhysRevLett.95.177001
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1088/0953-8984/19/14/145247
http://dx.doi.org/10.1088/0953-8984/19/14/145247
http://dx.doi.org/10.1088/0953-8984/19/14/145247
http://dx.doi.org/10.1088/0953-8984/19/14/145247
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1103/PhysRevB.77.104413



