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Highlights 

 

Permeability experiments were used to study hydrogen diffusion and trapping 

The trapping effect was less significant at a more negative charging potential 

The lattice diffusion coefficient of hydrogen was measured 

The densities of reversible hydrogen trap sites was ~ 2 × 1018 sites cm-2  
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Abstract 

Permeability experiments were used to study hydrogen diffusion and trapping in dual phase 

(DP), and quenched and portioned (Q&P), advanced high strength steels. The measured 

reversible hydrogen trap densities indicated that (i) trapping was less significant at a more 

negative potential, and (ii) the lattice diffusion coefficient of hydrogen could be measured 

from the partial transients at the most negative potentials. The densities of reversible 

hydrogen traps evaluated from complete decays from -1.700 VHg/HgO were ~ 2 × 10
18

 sites 

cm
-2

, and were a factor of two higher than those from partial decay transients between -1.700 

VHg/HgO and -1.100 VHg/HgO. 

 

Keywords: A. Steel, B. Hydrogen permeation, C. Potentiostatic    

 

1.  Introduction 

1.1 Advanced high strength steels (AHSS) 

Advanced high strength steels (AHSS) were developed, and have been adopted, for 

auto components to reduce vehicle weight and to increase vehicle safety [1-4]. This paper 

characterises hydrogen trapping in some AHSS and thereby adds to the knowledge base 

regarding AHSS.  

The AHSS include Dual Phase (DP) steels, Complex-Phase (CP) steels, Ferritic-

Bainitic (FB) steels, Martensitic (MS) steels, Transformation-Induced Plasticity (TRIP) steels, 

Hot-Formed (HF) steels, and Twinning-Induced Plasticity (TWIP) steels [3].  

DP steels have a microstructure of ferrite and martensite. The soft, continuous, ferrite 

matrix produces good formability. The hard martensitic phase is dispersed in the ferrite 

matrix and contributes to the high strength, and high strain hardening. As a result, vehicle 

components made from DP steels have a high capacity to absorb energy [5]. DP steel 

components may be galvanised for corrosion protection in service.  

Transformation induced plasticity (TRIP) steels have a microstructure of a ferrite 

matrix, islands of retained austenite, and dispersed bainite. Martensite is also commonly 

present. Transformation of retained austenite to martensite causes the transformation induced 

plasticity, and also causes an increased strain hardening rate at higher strain levels [6]. TRIP 

steel components also have a good ability to absorb energy [5].  
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Quenching and partitioning (Q&P) is a new heat treatment to produce TRIP steel. The   

microstructure [7] contains more retained austenite at room temperature [8, 9], resulting in a 

greater TRIP effect. As a result, their ductility, formability and strain-hardening rate are 

greater than other steels with comparable strength. Q&P steels are thus third generation 

AHSS with high strength and high-ductility [10].  

 

1.2 Hydrogen sources in service 

Hydrogen embrittlement (HE) can occur in AHSS [11, 12]. The hydrogen can be 

liberated by corrosion of the steel of the car body in service. In neutral and alkaline solutions, 

the hydrogen evolution occurs by the following cathodic partial reaction [13]: 

H2O + M + e   MHads+ OH
- 
                                                                                       (1)      

where M represents the metal surface and MHads represents hydrogen adsorbed on the metal 

surface. The atomic hydrogen may be desorbed by the desorption reaction given by Eq. (2), 

through which two adsorbed hydrogen atoms combine to a molecule of hydrogen that leaves 

the metal surface, or by the electrochemical desorption reaction given by Eq. (3).                                                                                                     

2MHads   H2 + 2M                                                                                                       (2) 

MHads + H2O + e   H2 + OH
-
 + M                                                                               (3)                                                                                                 

Some of the adsorbed hydrogen enters the metal, MHabs, by the following equilibrium 

reaction:  

MHads   MHabs                                                                                                             (4)                                                                                                                               

The hydrogen in the steel, in combination with an applied stress, can cause hydrogen 

embrittlement (HE), which is of particular concern for high-strength steels [14], such as the 

AHSS.  

 

1.3 Hydrogen trapping 

Hydrogen diffusion is often studied using the permeation technique of Devanathan 

and Stachurski [15]. This permeation method can provide quantitative information, such as 

the effective hydrogen diffusion coefficient, Deff, the hydrogen concentration, CH, and the 
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hydrogen trapping site density. This permeation technique was used in the present research to 

study hydrogen diffusion and trapping in DP and Q&P AHSS.   

Hydrogen atoms are located in interstitial sites and are trapped by microstructure 

features such as voids, dislocations, grain boundaries, carbide interfaces, and impurities [16-

18]. These hydrogen traps play an important role in the transportation and distribution of 

hydrogen in the steel [18]. Hydrogen traps are characterized as irreversible traps and 

reversible traps [19-21]. Irreversible traps are sites with a high trap activation energy, and 

thus the trapped hydrogen is considered as non-diffusible. Examples of irreversible traps are 

carbide interfaces, incoherent precipitates, and high-angle grain boundaries. In contrast, 

hydrogen de-trapping is easier from trap sites with lower activation energy. These sites are 

characterized as reversible traps. Examples are dislocations, low-angle grain boundaries, 

coherent precipitates and twin boundaries. Hydrogen trapped in reversible hydrogen trap sites 

is diffusible. These reversible hydrogen traps influence hydrogen diffusion and have an 

influence on the hydrogen embrittlement of the steel [22].    

Hydrogen trapping can be characterised by the parameters: the hydrogen-trap binding 

energy, Eb, and the density of trap sites, Nt. Hydrogen trapping was incorporated into a 

kinetic diffusion model by McNabb and Foster [23]. This model was reformulated by Oriani 

[24] using the assumption that there is a local equilibrium between trapped hydrogen atoms 

and mobile hydrogen. Based on the Oriani [24] model, Dong et al. [25] proposed that the 

number of hydrogen-trap sites per unit volume, Nt, could be evaluated from:         

ln (
  

    
  ) = ln

  

  
 + 

  

  
                                                                                          (5) 

where, DL is the lattice diffusion coefficient for hydrogen, Deff is the effective diffusion 

coefficient for hydrogen in the presence of traps, NL is the density of the interstitial sites in 

the steel, Eb is the hydrogen-trap binding energy, R is the gas constant, and T is the absolute 

temperature. This model is designated as the Oriani-Dong model in this paper.  

Hydrogen trapping can be minimized by successive partial permeation rise transients 

after which the following permeation rise transients are controlled by lattice diffusion, 

because all the hydrogen traps are full [26, 27].  

Permeation decay transients, in contrast, are sensitive to the de-trapping of hydrogen, 

and can be used to evaluate the amount of reversibly trapped hydrogen [27-29], as illustrated 

in Fig. 1, adapted from Liu and Atrens [29]. The area under the experimental desorption 

permeation curve corresponds to the total amount of diffusible and trapped hydrogen. The 

area under the corresponding theoretical permeation decay curve, evaluated using the lattice 
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diffusion coefficient, DL, corresponds to the amount of diffusible hydrogen. By subtraction, 

the area difference between the two curves, as illustrated by the shaded part in Fig. 1, 

represents the amount of reversible trapped hydrogen. This method is called the permeation 

curve method herein. 

The permeation curve method indicates that the density of reversible hydrogen traps, 

designated as   
  , is given by [27, 29]: 

              
  = 

            

 
                                                                                                          (6) 

where s is the difference in area between the experimental decay curve and the theoretical 

decay curve evaluated using the lattice diffusion coefficient, DL, and L is the thickness of the 

specimen. Eq. (6) assumes that there is only one type of reversible trap for hydrogen, and that 

each trap holds one hydrogen atom.  

The concentration of the trapped hydrogen is given by [29]:   

               
  = 

  
 

  
                                                                                                                         (7) 

where    is the Avogadro constant with value of 6.02 × 10
23

 mol
-1

.   

This permeation curve method was applied by Zakroczymski [27] to Armco iron. 

Complete decay transients, where complete discharge was allowed, indicated that the 

reversibly trapped hydrogen corresponded to 98% of the total amount of absorbed hydrogen. 

This method was also used to measure the density of reversible hydrogen traps influencing 

hydrogen diffusion between cathodic charging potentials of −1.700 VAg/AgCl and 

−1.100 VAg/AgCl for a 3.5NiCrMoV medium strength steel [29]. The density of reversible 

traps was ~10
18

 sites cm
−3

. In this case the total amount of trapped hydrogen was not 

measured.  

These techniques have not been applied to advanced high strength steels (AHSS) to 

measure the density of hydrogen traps.       

 

1.4 Scope of current research 

The current work (i) studies hydrogen diffusion in DP and Q&P grades of AHSS 

using permeability experiments, (ii) evaluates the density of reversible hydrogen traps that 

influence the hydrogen diffusion under these charging conditions using (a) the Oriani-Dong 

model and (b) the permeation curve method, and (iii) evaluates the total density of reversible 

hydrogen trap sites from complete permeation decay curves.  
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2. Experimental Methods 

2.1 Materials 

The DP and Q&P steels were commercial steels, supplied as rolled sheets, and were 

designated as follows: 980 DP, 980 DP-GI (650 MPa YS), 980 DP-GI (700 MPa YS), 1200 

DP-GI, and 980 QP. The average sheet thicknesses were 1.35 mm for 980 DP and 1200 DP-

GI, 0.95mm for 980 DP-GI (650 MPa YS), 0.99 mm for 980 DP-GI (700 MPa YS), and 1.93 

mm for 980 QP. Table 1 presents the chemical composition and mechanical properties as 

provided by the steel supplier.  

The microstructures of the DP and Q&P steels were examined using a light 

microscope (LM), and using a scanning electron microscope (SEM), after metallographic 

polishing to 1 µm and etching with a nital solution. The volume fraction of each phase was 

evaluated using the point counting method, as described in ASTM E562 [30]. The grain size 

were estimated by the linear intercept method [31, 32] for DP steels, and using the 

microscope calibration bar for Q&P steels.   

 

2.2 Permeability experiments 

Fig. 2 presents the double cell, permeability apparatus, which was based on that of 

Devanathan and Stachurski [27], and was similar to that of Liu and Atrens [29]. The two cells 

were separated by the test specimen in the form of a flat sheet, which was the working 

electrode for each cell. Each cell also contained a 0.1 M NaOH solution, a Pt wire as the 

counter electrode, and a Luggin capillary connected to an Hg/HgO, KOH (20%) reference 

electrode, the potential of which is +0.098 VSHE. Experiments were carried out at room 

temperature of 23 ± 2 ℃. 

The specimen side exposed to left-hand-side cell was polished to 3 µm. The left-hand-

side cell was the hydrogen entry side.  Hydrogen was liberated on the left-hand-side surface 

of the specimen by a negative potential applied using a MP 81 potentiostat.  

The right-hand side was the hydrogen exit side. The 0.1 M NaOH solution was 

deaerated on this side to ensure a low background current density. N2 was bubbled 

throughout the whole experiment to remove oxygen, which would contribute to the oxidation 

current density. The exit side background current density was lower than 0.2 μA cm
-2

 before 

cathodic charging commenced on the hydrogen entry side. On the right hand side, a 
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PARSTAT 2273 potentiostat maintained a potential of +300 mVHg/HgO to oxidise the 

emerging hydrogen, and the corresponding current measured the amount of permeated 

hydrogen.  

The hydrogen exit side of the specimen was plated with palladium to prevent 

oxidation of the steel. The processes for palladium (Pd) plating was as follows: the specimen 

was ground to 1200 grit SiC paper on the side to be Pd coated; cleaned for 15 min at 80 ℃ in 

an oil-removal aqueous solution, containing NaOH 16 g L
-1

, Na2CO3 15 g L
-1

, 

Na3PO4·12H2O 15 g L
-1

 and detergent 2 ml L
-1

; washed with distilled water, dried with 

flowing air, and weighed. The non-palladium-plating side was masked with an adhesive 

sticker and a conductive wire was attached to the edge of the specimen. The specimen was 

pickled in 32% HCl solution for 5 s and thoroughly washed with distilled water; electroplated 

in a solution consisting of 5 g PdCl2 in 1 L of 25 wt% ammonia, at a current density of 2-3 

mA cm
-2

 for 5 min with stirring during the whole plating time; rinsed immediately with 

ethanol, dried with flowing air and weighed. The increase in weight was used to calculate the 

thickness of the Pd coating, which was typically about 0.5 µm. 

A long-time uninterrupted cathodic pre-charging was found by Zakroczymski [27, 33, 

34] to stabilize the metal surface and minimized the surface effect. A similarly long-time pre-

charging was used in this study. Pre-charging, at –1.600 VHg/HgO, was (i) for 48 hour for 980 

DP-GI (650 MPa YS) and 980 DP-GI (700 MPa YS), and (ii) for 60 hour for 980 DP, 1200 

DP-GI and 980 QP.  

After the cathodic pre-charging, successive transients were measured, such as those 

from – 1.600 VHg/HgO to – 1.700 VHg/HgO, as well as a transient loop from – 1.700 VHg/HgO to – 

1.100 VHg/HgO and back to – 1.700 VHg/HgO. The potentials for the transient loop were: – 1.700 

VHg/HgO, – 1.600 VHg/HgO, – 1.400 VHg/HgO, – 1.200 VHg/HgO, – 1.100 VHg/HgO, and similarly 

back to – 1.700 VHg/HgO. 

After the permeation current density achieved steady state at – 1.700 VHg/HgO, the 

charging potential at the entry side was set to the open circuit potential (ocp) so that there was 

no hydrogen produced on the entry side, and a complete decay transient was measured.  

The same experimental sequence was carried out for each steel.  

The permeation transients have the following form [27, 35]: 

 

in = 
      

 

  
     

  = 
  

√   
∑        

         

   
  

                     (Rise transients)                    (8)                  
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in = 
      

 

  
     

  = 1 
  

√   
∑        

         

   
  

               (Decay transients)                 (9)                                       

where in is the normalized current, which increases from 0 to 1 for a rise transient, ip is the 

measured permeation current density at time t,   
  is the initial steady-state permeation rate at 

time t = 0,   
  is the new steady-state permeation current density, and L is the thickness of the 

steel sheet. For the first charging,   
  = 0, and for the complete decay   

 = 0. The experimental 

permeation curves were fitted to Eq. (8) or (9), to determine the diffusion coefficient, D. 

During the first few transients, there were empty traps, which would retard hydrogen 

diffusion, so that the fitted D values were considered as the effective diffusion coefficient, 

Deff. For subsequent transients, most of the traps were filled, and the evaluated D values were 

similar to each other and were close to the lattice value, especially for transients at more 

negative potentials with less trapping effect, and the lattice diffusion coefficient, DL, could be 

determined [26, 29].  

The lattice hydrogen concentration, CL, at the sub-surface on the cathodic side, was 

calculated from: 

CL = 
  
   

    
                                                                                                                   (10) 

and the total hydrogen concentration, CT, was evaluated from 

 

CT = 
  
   

      
                                                                                                                  (11) 

 

where F is the Faraday constant, L is the thickness of the membrane,   
   is the steady-state 

permeation rate, DL is the lattice diffusion coefficient of hydrogen in the specimen material, 

and Deff is the measured effective diffusion coefficient of hydrogen in the specimen material. 

The hydrogen concentration, C, was expressed in units of mol m
-3

, and was also converted to 

µg g
-1

, which represented the weight of hydrogen per gram of the steel.  

The density of reversible traps was evaluated using (i) the Oriani-Dong model and (ii) 

the permeation curve method, as outlined in the Introduction.    

  

3. Results  

3.1 Microstructure 
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Fig. 3(a) presents a SEM image of the typical DP steel microstructure, which 

consisted of the ferrite matrix, marked ‘F’, and martensite islands (M) embedded along ferrite 

grain boundaries. The martensite, as revealed by the nital etchant, consisted of a needle-like 

structure and appeared embossed. The ferrite appeared dark and smooth, and not as embossed 

as the martensite. Table 2 presents the relative amounts and grain sizes of the constituent 

phases in each steel. There was a decreasing amount of ferrite and an increasing amount of 

martensite for the DP steels in the following order 980 DP, 980 DP-GI (650 MPa YS), 980 

DP-GI (700 MPa YS) and 1200DP-GI. This correlated with the increasing yield strength. The 

ferrite and martensite grain sizes were comparable.  

Fig. 3(b) presents a typical microstructure of the 980 QP steel viewed with a light 

microscope. The microstructure consisted of ferrite, bainite and retained austenite. The ferrite 

appeared yellow. The bainite appeared brown. The retained austenite appeared as the small 

white blocks dispersed in the ferrite and the bainite. Table 2 indicates that the volume fraction 

of ferrite, bainite and retained austenite was 39%, 53% and 8%, respectively. The grain sizes 

of ferrite and martensite were similar and were significantly larger than that of the retained 

austenite.      

 

3.2 Cathodic pre-charging 

Fig. 4 presents the hydrogen permeation current density versus time for the four DP 

steels and the Q&P steel during long-time pre-charging in the 0.1 M NaOH solution at -1.600 

VHg/HgO, which was started after the background current density in the right hand cell 

decreased to less than 0.2 μA cm
-2

. The breakthrough time was about 315 s, 1235 s, 1503 s, 

1184 s and 810 s for 980 DP, 980 DP-GI (650 MPa YS), 980 DP-GI (700 MPa YS), 1200 

DP-GI, and 980 QP, respectively. Thereafter, the current density increased significantly, 

reached a maximum for 980 DP-GI (650 MPa YS) and 980 DP-GI (700 MPa YS) and 

decreased somewhat for these steels. The significant increase in permeation current density 

with cathodic pre-charging time was consistent with the literature [33, 34], and is attributed to 

a stabilisation of the steel surface due to (i) the reduction of some of the air-formed oxide, 

which increased the surface coverage of hydrogen, and (ii) the weakening of the bonding 

force between the adsorbed hydrogen and the steel, which facilitated hydrogen absorption by 

reaction (4). The subsequent decrease of the permeation current density at longer charging 
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times is attributed to the formation of surface products such as iron oxy-hydroxide, which 

provide some hindrance of the entry of adsorbed hydrogen into the steel.  

The maximum current density indicated approximately steady-state hydrogen 

charging conditions.  These conditions were reached for 980 DP-GI (650 MPa YS) and 980 

DP-GI (700 MPa YS) in about 33 hour, at which time the steady-state current density was 23 

μA cm
-2

 and 13 μA cm
-2

, respectively. For 980 DP, 1200 DP-GI and 980 QP steels, reaching 

steady state required about 60 hour, at which time the steady-state current density was 32 μA 

cm
-2

, 21 μA cm
-2

 and 7 μA cm
-2

, respectively.  

Pre-charging was carried out for the subsequent experiments for 48 hour for the 980 

DP-GI (650 MPa YS) and 980 DP-GI (700 MPa YS) steels, and 60 hour for the other steels, 

so that there would be a similar surface state.  

 

 3.3 Permeation Transients 

 Fig. 5(a) presents two typical subsequent partial rise transients. These were identical, 

indicating that the long-time pre-charging had filled the reversible traps. Fig. 5(b) shows 

corresponding decay transients. The second decay transient was slower, indicating that it took 

longer time for the hydrogen to permeate through the steel sheet specimen to reach steady 

state, due to the retardation of hydrogen diffusion by trapping.       

Table 3 presents values of the diffusion coefficient, evaluated by fitting Eq. (8) and (9) 

by Matlab to each experimental permeation transient, obtained from successive transients and 

from the transient loop. The values of diffusion coefficient were similar for the first two rise 

transients from -1.600 VHg/HgO and – 1.700 VHg/HgO after long time pre-charging, and these 

values of the diffusion coefficient are identified as the lattice diffusion coefficient, DL. The 

diffusion coefficients measured for the subsequent decay transients gave decreasing values of 

Deff. Thereafter the partial rise transients gave values of the effective diffusion coefficient, 

Deff, that increased towards the value for the lattice diffusion coefficient.  

Fig. 6 presents the fitting of rise and decay transients to the theoretical curves for 980 

DP-GI (650 MPa YS) steel. Fig. 6(a) shows the normalized experimental rise transient from – 

1.600 VHg/HgO and – 1.700 VHg/HgO, which was well fitted by the theoretical curve. This 

indicated that when the cathodic potential decreased to the more negative value, the hydrogen 

concentration at the subsurface immediately changed to the new constant value, the hydrogen 

diffusion was controlled by lattice diffusion, and that trapping was negligible. The fitted 

value of 1.58 × 10
-6

 cm
2
 s

-1
 was identified as the hydrogen lattice diffusion coefficient, DL, 
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for 980 DP-GI (650 MPa YS) steel. In contrast, for the decay transients, as shown in Fig. 6(b), 

the fitting was not as good as those for rise transients, attributed to the influence of trapping. 

There was the same trend for each steel. This allowed determination of the hydrogen 

lattice diffusion coefficient, DL, for each steel: 2.07 × 10
-6

 cm
2
 s

-1
, 0.76 × 10

-6
 cm

2
 s

-1
, 1.27 × 

10
-6

 cm
2
 s

-1
 and 0.68 × 10

-6
 cm

2
 s

-1
 for 980 DP, 980 DP-GI (700 MPa YS), 1200 DP-GI and 

980 QP steels, respectively.  

Fig. 7 presents a transient loop from – 1.700 VHg/HgO to – 1.100 VHg/HgO and back to – 

1.700 VHg/HgO in the 0.1 M NaOH solution for 980 DP-GI (650 MPa YS) steel. Each transient 

was a partial transient, which meant that there was always a significant charging potential 

applied to the specimen, and the specimen was not allowed to completely discharge all 

hydrogen. Similar transient loops were also carried out for other DP and Q&P steel grades. 

Each experimental transient was fitted by Matlab to Eq. (8) or Eq. (9) to determine the 

hydrogen diffusion coefficient values.  

Table 3 presents the values of hydrogen diffusion coefficient, the steady-state current 

density and the hydrogen concentration, evaluated using Eq.(10). Fig. 7 and Table 3 indicate 

that as the charging potential was changed from – 1.700 VHg/HgO to – 1.100 VHg/HgO the 

steady-state current density and the hydrogen concentration at each potential decreased, 

indicating less hydrogen entered and permeated through the steel at a less negative charging 

potential. When the charging potential was increased from – 1.100 VHg/HgO to – 1.700 VHg/HgO, 

there was more hydrogen entering and permeating through the specimen, providing a higher 

steady-state current density and hydrogen concentration. Venezuela et al. [36] stated that 

during cathodic charging in the 0.1M NaOH solution, an increasingly negative charging 

potential lead to an increased hydrogen fugacity, as also found by Liu et al. [33], and thus an 

increased hydrogen concentration in the steel. They further found that this increased 

hydrogen concentration increased the susceptibility of martensitic advanced high strength 

steels to hydrogen embrittlement. The steady-state current density at – 1.700 VHg/HgO at the 

end of the loop was somewhat lower than that at – 1.700 VHg/HgO at the beginning of the loop, 

attributed to a slight change of the surface during the transients. This is consistent with the 

decrease of the permeation current density after peaking, as shown in Fig. 4.      

 

4.0 Trap density evaluations  

4.1 Oriani-Dong model 
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Table 4 presents the values of the density of reversible hydrogen trap sites, Nt, 

evaluated from the successive partial decay transients from the transient loop, evaluated using 

the Oriani-Dong model using Eq. (5) with (i) the hydrogen lattice diffusion coefficient as 

presented in part 3.3, (ii) NL = 7.2 × 10
22

 cm
-3

 [25], (iii) Eb = 28.9 kJ mol
-1

 [16], and (iv) 

values of Deff as listed in Table 3 for each transient. This particular value of binding energy 

was chosen because it is in the middle of the range of binding energies for reversible traps, 

and was the value used in our prior study [29]. 

Table 4 indicates that the trap density increased as the charging potential became less 

negative. For example, for 980 DP-GI (650 MPa YS), for the decay transient from the most 

negative charging condition from -1.700
 
VHg/HgO to -1.600

 
VHg/HgO, the Nt value of 0.39 × 10

17
 

sites cm
-3

 was the smallest. In contrast, the Nt value of 6.82 × 10
17

 sites cm
-3

 was the largest 

for decay transient that involved the least negative charging conditions (i.e. from -1.200
 

VHg/HgO to -1.100
 
VHg/HgO). Similarly, for 980 QP, the minimum Nt value of 0.81 × 10

17
 sites 

cm
-3

 was evaluated for the transient from -1.700
 
VHg/HgO to -1.600

 
VHg/HgO, whereas the 

maximum value of 5.40 × 10
17

 sites cm
-3

 was evaluated for the decay transient from -1.200
 

VHg/HgO to -1.100
 
VHg/HgO. There was the same trend for each steel. 

The hydrogen trap site density decreased with more negative charging during decay 

transients. This was attributed to the fact that the reversible traps in each steel were emptied 

step by step during successive each decay transient. At a less negative potential, more of the 

filled traps were emptied, leading to more interactions between the traps and diffused 

hydrogen, and thus there was a higher value for the trap site density. The trend that the 

hydrogen trap site density decreased with more negative charging potentials, resulting in a 

less potent trapping effect, was also consistent with the results that the hydrogen diffusion 

coefficient, Deff, increased with more negative charging potential.        

The density of the emptied reversible trap sites provided the amount of reversible 

trapped hydrogen for a particular condition, if it is assumed that there was only one hydrogen 

atom trapped at each reversible trap. For example, for 980 DP-GI (650 MPa YS) steel, when 

the charging potential was decreased from -1.700
 
VHg/HgO to -1.600

 
VHg/HgO, the Nt value was 

0.39 × 10
17

 sites cm
-3

, indicating that 0.39 × 10
17

 sites cm
-3

 were emptied under this charging 

condition, and the trapped hydrogen concentration Ct was ~ 0.06 mol m
-3

 at -1.700
 
VHg/HgO. 

For comparison, the lattice hydrogen concentration, CL, was calculated from Eq. (10), which 

at -1.700
 
VHg/HgO was calculated to be 13.3 mol m

-3
. Thus, the reversibly trapped hydrogen 

accounted for 0.5 % of the total absorbed hydrogen, which was the sum of trapped and lattice 

hydrogen.  
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Using this approach, for 980 DP-GI (650 MPa YS) steel, the amount of reversibly 

trapped hydrogen was equal to 3 %, 13 % and 37 % of the total absorbed hydrogen for the 

decay transient from -1.600
 
VHg/HgO to -1.400

 
VHg/HgO, from -1.400

 
VHg/HgO to -1.200

 
VHg/HgO, 

and from -1.200
 
VHg/HgO to -1.100

 
VHg/HgO, respectively. The increasing portion of trapped 

hydrogen was consistent with the fact that the hydrogen trapping effect was more significant 

at a less negative charging potential.  

Similarly, the percentage of trapped hydrogen at each charging potential from -1.700
 

VHg/HgO to -1.600
 
VHg/HgO, from -1.600

 
VHg/HgO to -1.400

 
VHg/HgO, from -1.400

 
VHg/HgO to -

1.200
 
VHg/HgO, and from -1.200

 
VHg/HgO to -1.100

 
VHg/HgO, was 1 %, 3 %, 15 % and 45 %, 

respectively, for 980 DP steel, and the corresponding percentage at each charging potential 

was 1 %, 3 %, 9 % and 21 % for 980 DP-GI (700 MPa YS) steel, 0.3 %, 1 %, 6 % and 19 % 

for 1200DP-GI steel and 2 %, 7 %, 18 % and 42 % for 980 QP steel. 

It is assumed that the reversible hydrogen traps were emptied step by step during the 

partial transients. The total density of the emptied traps could be considered as the sum of 

traps evaluated from each transient. Thus, the density of hydrogen trap sites for the decay 

transients from -1.700
 
VHg/HgO to -1.100

 
VHg/HgO was 12.8 × 10

17
 sites cm

-3 
for 980 DP, 14.4 × 

10
17

 sites cm
-3

 for 980 DP-GI (650 MPa YS), 8.42 × 10
17

 sites cm
-3

 for 980 DP-GI (700 MPa 

YS), 7.04 × 10
17

 sites cm
-3

 for 1200 DP-GI and 12.4 × 10
17

 sites cm
-3

 for 980 QP steel.   

Table 4 also includes values of the total hydrogen concentration, CT, evaluated using 

Eq.(11). This value of total trapped hydrogen was in good agreement with the value of 

trapped hydrogen evaluated as the sum of trapped hydrogen concentration, Ct, and the lattice 

hydrogen concentration, CL. 

 

4.2 Permeation curves 

Fig. 8(a) presents the decay transients obtained at various applied potentials and the 

theoretical curve calculated with a DL value of 1.58 × 10
-6

 cm
2
 s

-1
 for 980 DP-GI (650 MPa 

YS). Fig. 8(b) presents the corresponding normalised curves. The area difference, between 

each decay transient curve and the theoretical curve, is shown shaded in Fig. 8(a). This area 

increased with less negative applied potential and then decreased for the transient from -1.200 

VHg/HgO to -1.100 VHg/HgO. As stated above in the Introduction, the area difference between 

the experimental curve and the theoretical curve provided a measurement of the amount of 

trapped hydrogen. Thus, the general increased area difference indicated that there was more 

hydrogen trapped at a less negative potential, consistent with a more potent trapping effect at 
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a less negative potential. This same trend also occurred for each DP and Q&P steel, 

indicating that a more potent trapping effect at a less negative potential for each steel.  

Table 4 presents the values for the density of reversibly trapped hydrogen, Nt
*
, 

evaluated from the difference between the experimental permeation curve and the theoretical 

curve as illustrated in Fig. 8(a), and Eq. (6). Table 4 also presents the concentration of the 

trapped hydrogen, Ct
*
,
 
and the concentration of lattice hydrogen, CL

*
,
 
which was evaluated 

based on the proportion of the shaded area to the area below the theoretical curve. Due to 

different values of i0 and i∞, the area below the theoretical curve was different for each partial 

decay transient, resulting in changed values of CL
*
. From -1.700

 
VHg/HgO to -1.100

 
VHg/HgO for 

the 980 DP-GI (650 MPa YS) steel, the trap site density, Nt
*
, was 0.50 × 10

17
 sites cm

-3
, 3.26 

× 10
17

 sites cm
-3

, 5.68 × 10
17

 sites cm
-3

, 1.88 × 10
17

 sites cm
-3

 for each successive decay 

transient. The trap site density value, Nt
*
, from -1.700

 
VHg/HgO to -1.600

 
VHg/HgO was 

comparable to that, Nt, obtained using Oriani-Dong model, for 980 DP-GI (650 MPa YS) and 

also for each steel. In general, the trap site density was higher at a less negative potential for 

each steels evaluated using this permeation curve method.  

For the 980 DP-GI (650 MPa YS) steel, the concentration of trapped hydrogen for the 

decay transient from -1.400
 
VHg/HgO to -1.200

 
VHg/HgO, as shown in Fig. 8(a), was calculated to 

be ~ 0.94 mol m
-3

. Based on the area below the theoretical curve, the corresponding lattice 

hydrogen concentration at -1.400
 
VHg/HgO was calculated to be ~ 5.50 mol m

-3
. The trapped 

hydrogen corresponded to 15 % of the total amount of hydrogen from -1.400
 
VHg/HgO to -

1.200
 
VHg/HgO. Correspondingly, the reversibly trapped hydrogen from -1.700

 
VHg/HgO to -

1.600
 
VHg/HgO, from -1.600

 
VHg/HgO to -1.400

 
VHg/HgO, from -1.400

 
VHg/HgO to -1.200

 
VHg/HgO, 

and from -1.200
 
VHg/HgO to -1.100

 
VHg/HgO, accounted for 0.6 %, 4 %, 15% and 18 % of the 

total absorbed hydrogen, respectively. The portion of trapped hydrogen also increased with 

less negative potential, consistent with the results from Oriani-Dong model.  

Table 4 also presents the calculated Nt
*
, Ct

*
 and CL

*
 values for all the other steels. In 

all cases the percentage of trapped hydrogen increased from -1.700
 
VHg/HgO to -1.100

 
VHg/HgO. 

The percentage of trapped hydrogen was 1 %, 5 %, 14 % and 17%, respectively for 980 DP 

steel; 1 %, 4 %, 6 % and 10 % for 980 DP-GI (700 MPa YS) steel; 0.3 %, 1 %, 7 % and 9 % 

for 1200 DP-GI steel, and 1 %, 2 %, 5 % and 7 % for 980 QP steel. 

The total density of reversibly trapped hydrogen was the sum of the density from each 

transient. The total trap site density influencing the hydrogen diffusion between -1.700
 

VHg/HgO to -1.100
 
VHg/HgO was 10.1 × 10

17
 sites cm

-3
 for 980 DP, 11.1 × 10

17
 sites cm

-3
 for 980 

DP-GI (650 MPa YS), 6.24 × 10
17

 sites cm
-3

 for 980 DP-GI (700 MPa YS), 5.08 × 10
17

 sites 
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cm
-3

 for 1200 DP-GI and 3.12 × 10
17

 sites cm
-3

 for 980 QP. The trap density values, Nt
*
, for 

all the DP steels were between 20 ~ 30 % lower than those evaluated from Oriani-Dong 

model for the same steels. Similarly, the Nt
*
 value was 3.12 × 10

17
 sites cm

-3
 from the 

permeation curve method, about a quarter of the value obtained from Oriani-Dong model. 

 

4.3 Complete decay transients  

Fig. 9 presents the area difference between the experimental complete decay curve 

and the theoretical curve for 980 DP-GI (650 MPa YS) steel and 980 QP steel. The complete 

decay transient curve was obtained by discharging on the hydrogen entry side, meaning the 

charging potential was changed to the open circuit potential (ocp) from -1.700
 
VHg/HgO, so that 

there was no hydrogen being introduced into the specimen. According to the permeation 

curve method, the area of the shaded parts in Fig. 9(a) and (b) reflect the total amount of 

reversible hydrogen trap sites that were emptied from -1.700
 
VHg/HgO to  0 VSHE, and the area 

below the theoretical curve provided the amount of lattice diffused hydrogen at -1.700
 

VHg/HgO. This area difference between the experimental complete decay curve and the 

theoretical one was obtained for all the steels. Table 5 presents the values of the trap site 

density Nt
*
, the trapped hydrogen concentration Ct

*
, the concentration of lattice diffused 

hydrogen CL
*
 and the percentage of trapped hydrogen.  

Table 5 indicated that, for 980 DP-GI (650 MPa YS) steel, the trap site density Nt
*
 

from -1.700
 
VHg/HgO to 0 VSHE was 2.42 × 10

18
 sites cm

-3
. Assuming one hydrogen atom 

occupied one trap site, the corresponding trapped hydrogen concentration was 4.02 mol m
-3

, 

equivalent to 58 % of the total absorbed hydrogen.  

For the three 980 DP steels, 980 DP, 980 DP-GI (650 MPa YS) and 980 DP-GI (700 

MPa YS) steel, with increasing yield strength and decreasing grain size, the calculated 

reversible hydrogen trap site density increased from 1.88 × 10
18

 sites cm
-3

 to 2.42 × 10
18

 sites 

cm
-3

 and to 3.30 × 10
18

 sites cm
-3

, and the corresponding percentage of trapped hydrogen in 

total absorbed hydrogen also increased from 54 % to 58 % and to 64 %. This was consistent 

with the results of the decreased diffusion coefficients for these three steel grades, caused by 

more hydrogen traps with finer grain sizes.  

For 980 DP and 1200 DP-GI, which had similar grain sizes, the trap site density for 

1200 DP-GI was 2.26 × 10
18

 sites cm
-3

, 20 % higher than that of 1.88 × 10
18

 sites cm
-3

 for 

980 DP steel, attributed to the higher martensite content that provided more trap sites in 1200 

DP-GI.  
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The density of reversible hydrogen trap sites for 980 QP steel was 5.91 × 10
17

 sites 

cm
-3

 and was significantly lower, by a factor of 3 to 4, than that for the 980 DP steels. This 

was considered to result from the presence of retained austenite, acting as more potent 

hydrogen traps, and that the hydrogen trapped in austenite was not emptied during the 

complete decay transients. Sojka et al. [37] found that TRIP 800 steel absorbed much more 

hydrogen than other AHSS due to the higher retained austenite content. Zhu et al. [38], 

observed the hydrogen trap sites in Q&P steels directly using three-dimensional atom probe 

tomography (3DAPT). They found that austenite contained three times more hydrogen than 

martensite and the hydrogen trapping in ferrite was low due to the small solubility and fast 

diffusivity of hydrogen in the bcc iron structure. They further claimed that this retained 

austenite with high concentration of hydrogen could be detrimental source when the 

martensite transformation occurred, leading to susceptibility of the steels to hydrogen 

embrittlement, as also stated in other studies [39, 40]. Therefore, the stability of retained 

austenite was important to reduce the martensite transformation so that the high concentration 

of hydrogen in austenite would not assist the HE of the steel [41-43]. In addition, the size and 

morphology of the retained austenite were also stated to be decisive in terms of the resistance 

to HE [37, 44]. However, the stability and morphology of retained austenite are beyond the 

scope of this study.   

 

 

5. Discussion  

5.1 Charging conditions 

In this study, the purpose of the pre-charging was (i) to condition the surface to a 

relatively stable state, which minimized the surface effect to allow reproducible permeation 

transients; and (ii) to fill all the irreversible and reversible hydrogen traps. During the pre-

charging, it is considered that all traps were filled at random, but that the hydrogen in 

irreversible traps cannot escape. Thus with sufficient pre-charging time, all the irreversible 

traps are filled and reversible traps are in equilibrium with the diffusible hydrogen. In 

subsequent permeation transients, only reversible traps are evaluated. 

The successive partial transients did not allow complete dehydrogenation, and thus 

the irreversible traps remained saturated during the transients. The charging conditions for 
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partial transients in this study correspond to the charging conditions for hydrogen 

embrittlement tests, and the evaluated density of reversible hydrogen trap sites correspond to 

each charging condition. 

The complete decay transients, in contrast, allowed dehydrogenation on the hydrogen 

entry side. However, due to the high binding energy of irreversible hydrogen traps, ~ 56 kJ 

mol
-1

 [45], the irreversible hydrogen traps were unlikely to be emptied at a temperature of 25 

± 2 ℃. Thus, the trap site density evaluated from the complete decay in this study was also 

the density of reversible hydrogen trap sites. 

 

5.2 Diffusion coefficients  

Fig. 10 presents the measured diffusion coefficient for each steel at the different 

applied potentials from the transient loop. The error bars in Fig. 10 depict the standard 

deviation for the measured Deff values. Fig. 10 and Table 3 indicate that, for the DP steels 

studied in this research, the values for effective diffusion coefficient were in the range of 0.5 

× 10
-6

 cm
2
 s

-1
 ~ 2.1 × 10

-6
 cm

2
 s

-1
, consistent with those from literature [46-49]. For 980 QP 

steel, the effective diffusion coefficient varied from 3 × 10
-7

 cm
2
 s

-1
 to 7 × 10

-7
 cm

2
 s

-1
, in 

agreement with the range of 0.3 × 10
-7

 cm
2
 s

-1
 to 6 × 10

-7
 cm

2
 s

-1
 from other studies [41, 44, 

47], despite the fact that different methods were used to determine the diffusion coefficient, 

which would lead to a variance of the values. For instance, Yang et al. [41] used two methods, 

the time lag method and the breakthrough method, to determine the hydrogen diffusion 

coefficient of their Q&P steels. The results obtained from both methods had a difference of 

least a factor of 2.     

Fig. 10 and Table 3 further indicate that, for each steel, the diffusion coefficient 

increased with increasingly negative potential from – 1.100 VHg/HgO to – 1.700 VHg/HgO for 

both the rise and decay transients. For example, at – 1.100 VHg/HgO, the value of hydrogen 

diffusion coefficient for 980 DP-GI (650 MPa YS) was 0.76 × 10
-6

 cm
2
 s

-1
, whilst at – 1.700 

VHg/HgO, the Deff value was 1.36 × 10
-6

 cm
2
 s

-1
. There was a similar trend for each steel. This 

trend was attributed to more potent trapping at a less negative charging potential. At a less 

negative potential, less hydrogen was produced and entered into the specimen, fewer traps 

were full, more traps were filled during the transient, and consequently the diffusion 

coefficient was lower. In comparison, there was a larger amount of generated hydrogen at 

more negative potentials, more hydrogen traps were full, and the empty traps had less 

influence on hydrogen diffusion coefficient.  
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5.3 Trap site densities  

Table 4 indicates that that, for each of the DP and Q&P steels, with increasingly 

negative charging potential, from -1.100
 
VHg/HgO to -1.700

 
VHg/HgO, the corresponding 

reversible hydrogen trap site density decreased. The increase in the effective diffusion 

coefficient with increasingly negative potential is attributed to a less potent trapping effect at 

a more negative potential. From -1.700
 
VHg/HgO to -1.600

 
VHg/HgO, the trapped hydrogen 

corresponded to 1 % or less of the total absorbed hydrogen, and thus, the repeated transient 

from -1.600
 
VHg/HgO to -1.700

 
VHg/HgO could be used to determine the lattice diffusion 

coefficient. Furthermore, the effective diffusion coefficient decreased from the value of the 

lattice diffusion coefficient as the trap effect became greater. 

Tables 3 and 4 indicate that, for the three 980 DP steel grades, with increasing yield 

strength and decreasing grain size, the values of the lattice diffusion coefficient and the 

values of the effective diffusion coefficient decreased slightly, but the hydrogen trap density 

increased from 980 DP to 980 DP-GI (650 MPa YS) and then decreased to 980 DP-GI (700 

MPa YS).  Thus the decrease in effective diffusion coefficient in this series is attributed to a 

combination of the decrease in lattice diffusion coefficient and the increase in trapping effect. 

The values of the diffusion coefficient of 1200 DP-GI steel were somewhat lower 

than that of the 980 DP steel. The lower lattice diffusion coefficient of 1200 DP-GI is 

attributed to the lower ferrite content. The small decrease with decreasingly negative 

potential is attributed to a slightly increased trapping effect; the trap density for 1200 DP-GI 

is similar to that of 980 DP-GI (700 MPa YS). 

The lattice and effective diffusion coefficients for 980 QP steel were similar to those 

of 980 DP-GI (700 MPa YS). The lower lattice diffusion coefficient is attributed to the higher 

carbon content of the 980 QP steel. The similar decrease of effective diffusion coefficient 

with decreasingly negative potential is attributed to a similar trap effect. 

In summary, the values of the effective diffusion coefficient for each steel could be 

explained in terms of a trapping effect.     

 

5.3.1 Partial decay transients 

The density of reversible hydrogen trap site was evaluated using the two methods: (i) 

the Oriani-Dong model [25], and the permeation curve method [27], Table 4. The values 
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were comparable, however the values of total trap density evaluated by the permeation curve 

method were somewhat smaller than those evaluated using Oriani-Dong model. This may be 

attributed to the followed reasons:  

(i)  NL. This study, due to the lack of available data for DP and Q&P steels, used the value 

of 7.2× 10
22

 sites cm
-3

, adopted from the reported value for α-Fe [16]. Since Nt is 

directly proportional to NL, an error in NL directly causes a similar error in the density 

of trap sites.  

(ii)  Eb. The trap binding energy characterises the trap type. Each trap has a different 

binding energy. In this study one type of reversible trap was assumed. A value of 28.9 

kJ mol
-1

 was assumed for Eb. However, more than one type of reversible trap was 

expected in the DP and Q&P steels, especially the Q&P steel because of the retained 

austenite. Thus, using a single value of Eb would also lead to the different calculated 

values.  

Nevertheless, the results from both methods showed good consistency: (i) the 

densities of reversible hydrogen trap sites, Nt and Nt
*
, exhibited the same trend that the values 

were lower at a more negative potential, (ii) the trapped hydrogen was a lower percentage of 

the total absorbed hydrogen at a more negative potential, and (iii) the reversible hydrogen 

trap density values evaluated between -1.700
 
VHg/HgO to -1.100

 
VHg/HgO using these two 

methods were similar in magnitude of ~10
18

 sites cm
-3

 for all the steels, although there was a 

difference of three times for 980 QP steel. Such a difference was not higher than that from the 

literature [29].   

 

5.3.2 Complete decay transients 

Tables 4 and 5 present values of the reversible hydrogen trap site density, evaluated 

using the permeation curve method, (i) for partial decay transients between -1.700
 
VHg/HgO to 

-1.100
 
VHg/HgO, and (ii) for complete decay transients from -1.700

 
VHg/HgO to the open circuit 

potential (ocp).  

The trap site density from complete decay was significantly higher than that from 

partial decay transients for each of the studied steels. For example, for 980 DP-GI (650 MPa 

YS) steel, Nt
*
 was 11.1 × 10

17
 sites cm

-3
 between -1.700

 
VHg/HgO to -1.100

 
VHg/HgO, whereas 

Nt
*
 was 24.2 × 10

17
 sites cm

-3
, more than 100 % higher, from the complete decay. 

Correspondingly, the trapped hydrogen, evaluated from the complete decay, accounted for 

58 % of the total absorbed hydrogen, whilst from partial decay transients, the percentage was 
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significantly lower. Especially for the most negative charging conditions, from -1.700
 
VHg/HgO 

to -1.600
 
VHg/HgO, the trapped hydrogen was 0.5 % of the total amount of hydrogen. This was 

attributed to the less significant trapping effect at more negative charging potentials, as was 

also found by Liu and Atrens [29].    

Reversible traps have a significant influence on hydrogen diffusion and on hydrogen 

embrittlement susceptibility. The permeation curve method is a useful way of estimation the 

reversible trap site density. However, when using this method, the evaluated value from a 

complete decay involves all the reversible traps and is higher than that evaluated from partial 

decay transients, which only involved the reversible traps under the particular charging 

conditions. Thus, for understanding the reversible hydrogen traps that influence the hydrogen 

diffusion behaviour under particular charging conditions, the Oriani-Dong model and 

permeation curve method are both useful.     

 

5.4 Comparison with literature 

Table 6 shows the values of reversible hydrogen trap density determined through 

permeability experiments from the literature [25, 27-29, 44, 45, 47, 50], where tL is the lattice 

breakthrough time and tL* is the lattice time lag, both related to the lattice diffusion 

coefficient, DL, tT is the breakthrough time with trapping and tT* is time lag in the presence of 

trapping, Ca is the average hydrogen concentration at steady state, and the other symbols have 

the same meaning as in this paper.  

The magnitude of reversible hydrogen trap densities ranged from 10
12

 sites cm
-3

 to 

10
26

 sites cm
-3

 for different steels and using various mathematic models. The values measured 

herein are in the middle of this range. 

Liu and Atrens [29] used an approach similar to that used herein, and evaluated 

similar trap densities to those estimated herein. Fallahmohammadi et al. [28] and Frappart et 

al. [45] used similar models, both adopted from Kumnick and Johnson [51] and related to 

time lag or breakthrough time, to calculate the trap site density in their steels. Both studies 

estimates similar values of 10
19

 sites cm
-3

, and similar values were obtained by [24, 52, 53], 

and were somewhat higher than the values estimated herein. This difference in values may be 

attributed to the intrinsic difference of the materials used in these studies and difference in 

methods for calculating the trap site density.    

Zhu et al. [44] determined the density of hydrogen traps in quenching and partitioning 

(Q&P) steels with different heat treatments. The densities for all their steels were of similar 
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magnitude of 10
21

 sites cm
-3

. However, the model they used to calculate hydrogen trap 

density did not involve the trap binding energy, Eb, and was also different from the Oriani-

Dong model [25] as used herein this paper.  

Zakroczymski [27] determined the mount of trapped hydrogen using complete 

permeation decay curve and obtained around 10
-7

 mol cm
-2

 of trapped hydrogen from the 

hydrogen detection side. By using Eq. (6) and (7) in this paper, we converted the amount of 

hydrogen to trap site density and obtained an estimation of around 10
13

 sites cm
-3

, as shown 

in Table 6. This value was lower than those in our study by a few orders of magnitude. This 

is within expectation, since a much lower hydrogen trap density is expected in the Armco 

iron used in the study of Zakroczymski [27].    

In other research [25, 29, 47, 50] using similar model as the Oriani-Dong model [25] 

as in this paper, the reversible hydrogen trap density values ranged from 10
12

 sites cm
-3

 to 

10
26

 sites cm
-3

. Table 6 documents that different values have been assigned to the parameters 

in this model. For example, Liu et al. [29] used the value for NL obtained from a quenched 

and tempered martensitic steel, whereas other researchers [25, 47, 50] used the NL values for 

α-Fe or the tetrahedral site density in bcc Fe at room temperature. The value of NL for α-Fe 

was also used in this study. Araújo et al. [16] asserted that the value for NL depended on the 

type of metal being analysed. As a consequent, different values were assigned to this 

parameter and contributed to the variation of the calculated trap site density. The same would 

happen when different values were assigned to DL or Eb, as also mentioned above in section 5. 

In addition, the Oriani-Dong model [25] also involved the effective diffusion coefficient. The 

diffusion coefficient was influenced by the sub-surface hydrogen concentration and thus by 

the charging condition [29, 45].  

Nevertheless, the values of trap site density obtained using the two methods in this 

study were comparable and were around 10
18

 sites cm
-3

, were consistent with the results of 

Liu et al. [29] and were within the range of the values from the literature [24, 25, 27-29, 44, 

45, 47, 50, 52, 53].       

     

5.5 Microstructure 

Table 1 and Fig. 3 indicate that the microstructure of the DP steels consisted mainly 

of ferrite and martensite whereas the microstructure of the Q&P steel consisted of ferrite, 

bainite and retained austenite.  
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Table 1 and 2 indicate that, for the three 980 DP grades of steels, from 980 DP to 980 

DP-GI (650 MPa YS) and to 980 DP-GI (700 MPa YS), the yield strength increased, the 

relative amount of ferrite decreased, and the grain size decreased. The decreasing grain size 

can be related to grain refinement by the increasing Ti alloying content, and is consistent with 

the increasing yield strength. 

1200 DP-GI and 980 DP steels had similar grain sizes. The higher strength of the 

1200 DP steel was attributed to (i) the higher amount of martensite, which was 74% 

compared with 60% for 980 DP steel and thus the lower volume fraction of ferrite, and (ii) 

the slightly higher carbon concentration, which is expected to produce a stronger martensite.      

980 QP steels had 39% of soft ferrite and 53% of hard bainite and 8% of retained 

austenite, which had a hydrogen diffusion coefficient much lower than that of ferrite, and a 

solubility of hydrogen higher than ferrite and martensite [47, 54].     

During pre-charging, it took the hydrogen about 315 s, 1235 s, 1503 s, 1184 s and 810 

s to breakthrough to the other side of the specimen of 980 DP, 980 DP-GI (650 MPa YS), 980 

DP-GI (700 MPa YS), 1200 DP-GI, and 980 QP, respectively. Increased breakthrough time 

indicates a lower effective diffusion coefficient, which could be caused by a larger trapping 

effect, or there could be also a contribution from the lattice diffusion coefficient. The 

breakthrough times roughly correlate with the total density of trap sites as evaluated in Table 

5, except that the trap densities are not sufficiently high for 980 QP, in which case there is 

assumed to be a significant influence from the low lattice diffusion coefficient for 980 QP, 

see Table 3. Fig. 4 shows that it took a shorter time of peaking for the 980 DP-GI (650 MPa 

YS) and 980 DP-GI (700 MPa YS). This is attributed to the surface of these steel samples, 

which had been galvanized and the galvanizing was removed by grinding and polishing. The 

reason for the different times to reach steady-state current density of the different steels was 

attributed to the differences in the way the surfaces reacted to the cathodic charging. The 

values of the steady-state current density of different steels correspond to the values of i∞ at 

the end of transient from -1.700
 
VHg/HgO to -1.600

 
VHg/HgO in Table 4, which provides 

corresponding values for CT and CL. 

Tables 1, 2 and 3 indicate that, for the three 980 DP steel grades, with increasing yield 

strength, decreasing ferrite content, and decreasing grain size, the values of the lattice 

diffusion coefficient decreased slightly from 2.07 × 10
-6

 cm
2
 s

-1
 to 1.58 × 10

-6
 cm

2
 s

-1
 to 0.75 

× 10
-6

 cm
2
 s

-1
. This decrease in the lattice diffusion coefficient is attributed to the decreasing 

fraction of ferrite in the microstructure. It is expected that the diffusion coefficient of the 
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ferrite dominates the diffusion coefficient of the steel, because the diffusion coefficient of the 

martensite is much lower due to its highly distorted lattice. 

The value of the diffusion coefficient of 1200 DP-GI steel was somewhat lower than 

that of the 980 DP steel. The lower lattice diffusion coefficient of 1200 DP-GI is attributed to 

the lower ferrite content.  

The lattice diffusion coefficient values for 980 QP steel was lower than that of 980 

DP-GI (700 MPa YS) attributed to the higher carbon content of the 980 QP steel. 

 

 

6. Conclusions 

1. The values of reversible hydrogen trap site density and the proportion of the reversibly 

trapped hydrogen for the DP and Q&P steels indicated that (i) the trapping effect was less 

significant at a more negative potential, and (ii) the lattice diffusion coefficient of 

hydrogen could be measured from the partial transients at the most negative potentials.  

2. The values of the effective diffusion coefficient measured in this work were consistent 

with literature values.  

3. The densities of reversible hydrogen trap sites from complete decays were ~ 2 × 10
18

 sites 

cm
-2

 and were a factor of two higher than those from partial decay transients between -

1.700 VHg/HgO and -1.100 VHg/HgO. 

4. The densities of reversible hydrogen trap sites estimated in this work were consistent with 

literature values. 

5. The values of hydrogen lattice diffusion coefficient and values of the reversible trap site 

density were within fairly narrow ranges for the steels studied, reflecting the fact that the 

steels were quite similar. 
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Fig. 1 The typical area difference (shaded part) between the integration of the permeation curve 

and the theoretical one for a decay transient for a 980 DP-GI (650 MPa YS) steel hydrogen 

charged in 0.1 M NaOH solution. 



Fig. 2 Schematic of permeability cell  



(a) 



Fig. 3 Microstructures of (a) 980 DP steel observed under SEM and (b) 980 QP steel viewed with 

light microscope. M stands for martensite, F is for ferrite, B is for bainite and RA refers to 

retained austenite.  

(b) 

F 

B 
RA 



Fig. 4 Hydrogen permeation current density vs. time for the steels during long time pre-

charging in 0.1 M NaOH solution at -1.600 VHg/HgO. 



(a) 



Fig. 5 The normalized current (as defined by Eq. (8) and (9)) of two sequential (a) rise and (b) 

decay transients between -1.700 VHg/HgO and -1.600 VHg/HgO for 980 DP-GI (645 MPa YS)  in 0.1 

M NaOH solution. For a rise transient, the normalised current is equal to (the measured current 

minus the initial current) divided by (the difference between the final current and the initial 

current). For a decay transient, the normalised current is equal to (the initial current minus the 

measured current) divided by (the difference between the initial current and the final current). 

(b) 



(a) 



Fig. 6 Fitted curves (a) for a rise transient from – 1.600 VHg/HgO to – 1.700 VHg/HgO by Matlab and 

(b) for a decay transient from – 1.700 VHg/HgO to – 1.600 VHg/HgO for 980 DP-GI (650 MPa YS) 

specimen in 0.1 M NaOH solution. For a rise transient, the normalised current is equal to (the 

measured current minus the initial current) divided by (the difference between the final current 

and the initial current). For a decay transient, the normalised current is equal to (the initial current 

minus the measured current) divided by (the difference between the initial current and the final 

current). 

 

(b) 



Fig. 7 Hydrogen permeation transients at different cathodic potentials at the input side of the 980 

DP-GI (650 MPa YS) steel after 48 h pre-charging at – 1.600 VHg/HgO in 0.1 M NaOH solution( P1: 

– 1.700 VHg/HgO, P2: – 1.600 VHg/HgO, P3: – 1.400 VHg/HgO, p4: – 1.200 VHg/HgO and P5: – 1.100 

VHg/HgO ).  

 



(a) 



Fig. 8. (a) The area difference between the experimental permeation curves (full symbols) and the 

theoretical curve (open symbols) for decay transients for 980 DP-GI (650 MPa YS) in 0.1 M NaOH 

solution: (1) circles - experimental decay transient from -1.700 VHg/HgO to -1.600 VHg/HgO, theoretical 

curve with D = 1.584×10-6 cm2 s-1; (2) diamonds - experimental decay transient from -1.600 VHg/HgO to -

1.400 VHg/HgO, theoretical curve with D = 1.584×10-6 cm2 s-1; (3) squares - experimental decay transient 

from -1.400 VHg/HgO to -1.200 VHg/HgO, theoretical curve with D = 1.584×10-6 cm2 s-1; (4) triangles - 

experimental decay transient from -1.200 VHg/HgO to -1.100 VHg/HgO, theoretical curve with D = 

1.584×10-6 cm2 s-1 and (b) the normalized experimental decay transients and the corresponded 

theoretical curve calculated with D value of 1.584×10-6 cm2 s-1. For a decay transient, the normalised 

current is equal to (the initial current minus the measured current) divided by (the difference between the 

initial current and the final current). 

(b) 



(a) 



Fig. 9 The typical area difference between the experimental complete decay curve and the 

theoretical one for (a) 980 DP-GI (650 MPa YS) and (b) 980 QP steels, hydrogen charged in 0.1 

M NaOH solution. 

(b) 



Fig. 10 Hydrogen diffusion coefficient values of the studied DP and Q&P steels during the 

transient loop from -1.700 VHg/HgO to -1.100 VHg/HgO and back to -1.700 VHg/HgO in 0.1 M NaOH 

solution. 
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Table 1. Chemical composition (in wt %) and mechanical properties of the DP and QP steels. 

Steel designation C Si Mn Al Nb Ti Cr 
Yield stress, 

MPa 

Tensile stress, 

MPa 

Elongation at fracture, ef,  

% 

980 DP 0.09 0.28 2.26 0.03 0.004 0.02 0.54 590 930 8 

980 DP-GI (650MPa YS) 0.09 0.29 2.19 0.03 0.04 0.03 0.43 650 1060 8 

980 DP-GI (700MPa YS) 0.08 0.41 2.18 0.03 0.04 0.05 0.02 700 1040 7 

1200 DP-GI 0.12 0.24 2.43 0.03 0.02 0.03 0.56 900 1200 5 

980 QP 0.20 1.39 1.88 0.04 0.03 0.006 0.03 680 1020 11 

 

 

Table 2. Quantitative metallography results for the DP and QP steels. 

Steel Designation 

Ferrite Martensite Bainite Retained austenite 

Relative amount  

% 

Grain size 

m 

Relative amount 

% 

Grain size  

m 

Relative amount 

% 

Grain size  

m 

Relative amount 

% 

Grain size  

m 

980 DP 

 

40% 6.8 60% 5.5 0 - 0 - 

980 DP (650 MPa YS) 

 

37% 2.1 63% 1.5 0 - 0 - 

980 DP (700 MPa YS) 36% 1.1 64% 1.4 0 - 0 - 

1200 DP-GI 26% 5.0 74% 4.8 0 - 0 - 

980 QP 39% 9.8 0 0 53% 9.4 8% 1.3 
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Table 3. Permeability parameter values for the DP and QP steels obtained from experimental transients cathodically charged in 0.1 M NaOH solution.  
Steel designation Thickness 

(L, cm)  

Working area 

(S, cm2) 

Starting and finishing potential  

for transient,  

(VHg/HgO) 

i∞ 

(µA cm-2) 

i∞ × L 

(µA cm-1) 

Deff 

(cm2 s-1) 

CL 

(mol m-3) 

  

CL 

(µg g-1) 

980 DP 0.053 3.394 -1.600 to -1.700 39.99 2.12 2.07 × 10-6 10.6 1.41 

-1.600 to -1.700 39.96 2.12 2.07 × 10-6 10.6 1.41 

-1.700 to -1.600 32.33 1.71 2.00 × 10-6 8.55 1.14 

-1.700 to -1.600 32.02 1.70 1.88 × 10-6 8.51 1.13 

-1.600 to -1.400 15.04 0.80 1.61 × 10-6 4.01 0.54 

-1.400 to -1.200 4.50 0.24 1.21 × 10-6 1.20 0.16 

-1.200 to -1.100 2.14 0.11 1.06 × 10-6 0.55 0.07 

-1.100 to -1.200 4.32 0.23 0.99 × 10-6 1.15 0.15 

-1.200 to -1.400 12.37 0.66 1.16 × 10-6 3.30 0.44 

-1.400 to -1.600 24.29 1.29 1.52 × 10-6 6.45 0.86 

-1.600 to -1.700 29.51 1.56 1.77 × 10-6 7.81 1.04 

  Average: 1.58 ± 0.4 ×10-6   

980 DP-GI (650 MPa YS) 0.075 3.308 -1.600 to -1.700 27.32 2.05 1.58 × 10-6 13.4 1.94 

-1.600 to -1.700 27.08 2.03 1.56 × 10-6 13.3 1.92 

-1.700 to -1.600 22.34 1.68 1.55 × 10-6 11.0 1.59 

-1.700 to -1.600 22.06 1.65 1.49 × 10-6 10.8 1.56 

-1.600 to -1.400 11.76 0.88 1.19 × 10-6 5.77 0.83 

-1.400 to -1.200 4.06 0.30 0.86 × 10-6 1.97 0.28 

-1.200 to -1.100 1.96 0.15 0.76 × 10-6 0.98 0.14 

-1.100 to -1.200 4.10 0.31 0.72 × 10-6
 2.03 0.29 

-1.200 to -1.400 10.63 0.80 0.80 × 10-6 5.25 0.76 

-1.400 to -1.600 18.20 1.37 1.11 × 10-6 8.99 1.30 

-1.600 to -1.700 22.07 1.66 1.36 × 10-6 10.9 1.57 

  Average: 1.18 ± 0.3 ×10-6   
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980 DP-GI (700 MPa YS) 0.080 3.133 -1.600 to -1.700 10.55 0.84 0.75 × 10-6 11.5  1.46 

-1.600 to -1.700 10.21 0.82 0.76 × 10-6 11.2  1.42 

-1.700 to -1.600 8.27 0.66 0.71 × 10-6 9.00  1.14 

-1.700 to -1.600 7.91 0.63 0.68 × 10-6 8.59  1.09 

-1.600 to -1.400 4.13 0.33 0.60 × 10-6 4.50  0.57 

-1.400 to -1.200 1.94 0.16 0.54 × 10-6 2.18  0.28 

-1.200 to -1.100 1.36 0.11 0.49 × 10-6 1.50  0.19 

-1.100 to -1.200 1.95 0.16 0.47 × 10-6 2.18  0.28 

-1.200 to -1.400 3.80 0.30 0.51 × 10-6 4.09  0.52 

-1.400 to -1.600 6.34 0.51 0.55 × 10-6 6.95  0.88 

-1.600 to -1.700 9.20 0.74 0.64 × 10-6 10.1  1.28 

  Average: 0.61 ± 0.1 ×10-6   

1200 DP-GI 0.070 2.997 -1.600 to -1.700 24.74 1.73 1.26 × 10-6 14.1  1.37  

-1.600 to -1.700 23.97 1.68 1.27 × 10-6 13.7  1.33  

-1.700 to -1.600 20.14 1.41 1.14 × 10-6 11.5  1.12  

-1.700 to -1.600 19.61 1.37 1.21 × 10-6 11.2  1.09  

-1.600 to -1.400 11.59 0.81 1.14 × 10-6 6.61  0.64  

-1.400 to -1.200 4.91 0.34 0.93 × 10-6 2.77  0.27  

-1.200 to -1.100 2.55 0.18 0.79 × 10-6 1.47  0.14  

-1.100 to -1.200 5.14 0.36 0.77 × 10-6 2.94  0.29  

-1.200 to -1.400 11.95 0.84 0.85 × 10-6 6.86  0.67  

-1.400 to -1.600 18.54 1.30 1.05 × 10-6 10.6  1.03  

-1.600 to -1.700 21.95 1.54 1.20 × 10-6 12.6  1.22  

  Average: 1.05 ± 0.2 ×10-6   

980 QP 0.048 2.930 -1.600 to -1.700 10.00 0.48 0.66 × 10-6 7.32  1.05  

-1.600 to -1.700 9.47 0.46 0.68 × 10-6 7.01  1.01  

-1.700 to -1.600 7.85 0.38 0.63 × 10-6 5.79  0.83  

-1.700 to -1.600 7.38 0.35 0.61 × 10-6 5.33  0.77  

-1.600 to -1.400 4.15 0.20 0.50 × 10-6 3.05  0.44  

-1.400 to -1.200 1.69 0.08 0.42 × 10-6 1.22  0.18  

-1.200 to -1.100 0.93 0.05 0.36 × 10-6 0.76  0.11  

-1.100 to -1.200 1.74 0.08 0.33 × 10-6 1.22  0.18  

-1.200 to -1.400 3.69 0.18 0.40 × 10-6 2.74  0.39  

-1.400 to -1.600 5.53 0.27 0.49 × 10-6 4.12  0.59  

-1.600 to -1.700 8.66 0.42 0.57 × 10-6 6.40  0.92  

  Average: 0.51 ± 0.1 ×10-6   
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Table 4. The density of reversible hydrogen trap sites in the DP and Q&P steels for the successive partial decay transients from -1.700 VHg/HgO to -1.100 VHg/HgO. NT was 

evaluated using the Oriani-Dong model. NT
* was evaluated using the permeation curve method.  

Steel 

designation 

Starting and 

finishing 

potential for 

transient, 

(VHg/HgO) 

η, 

V, 

(at start of 

transient) 

i∞, 

(µA cm
-2

), 

(at end of 

transient) 

Deff, 

(cm
2
 s

-1
), 

(average 

for 

transient) 

Nt, 

(sites cm
-

3 
), 

(at start of 

transient) 

Ct, 

(mol m
-3 

), 

(at start of 

transient) 

Ct, 

(µg g
-1

), 

(at start of 

transient) 

CL, 

(mol m-3 ), 

(at start of 

transient) 

CL, 

(µg g
-1

), 

(at start of 

transient) 

CT, 

(µg g
-1

), 

(at start of 

transient) 

Ct 

/( Ct 

+ 

CL), 

(%) 

Nt
*
, 

(sites cm
-

3 
), 

(average 

for 

transient) 

Ct
*
, 

(mol m
-3 

), 

(average for 

transient) 

Ct
*
, 

(µg g
-1

), 

(average 

for 

transient) 

CL
*
, 

(mol m
-

3 
) , 

(at start of 

transient) 

CL
*
, 

(µg g
-1

) , 

(at start of 

transient) 

Ct
*
/( Ct

*
 

+ CL
*
), 

(%) 

980 DP-GI -1.700 to -

1.600 

-0.857 32.02 1.88 × 10
-6

 0.65 × 

10
17

 

0.11 0.015 10.6 1.410 1.556 1 0.69 × 

10
17

 

0.11 0.015 11.1 1.476 1 

-1.600 to -

1.400 

-0.757 15.04 1.61 × 10
-6

 1.82 × 

10
17

 

0.30 0.040 8.51 1.130 1.447 3 2.91 × 

10
17

 

0.48 0.064 8.76 1.168 5 

-1.400 to -

1.200 

-0.557 4.50 1.21 × 10
-6

 4.42 × 

10
17

 

0.73 0.097 4.01 0.535 0.911 15 5.15 × 

10
17

 

0.85 0.113 5.13 0.684 14 

-1.200 to -

1.100 

-0.357 2.14 1.06 × 10
-6

 5.93 × 

10
17

 

0.99 0.132 1.20 0.160 0.311 45 1.31 × 

10
17 

0.22 0.029 1.05 0.140 17 

   sum 12.8 × 

10
17

 

      10.1 × 

10
17 

     

980 DP-GI 

(650 MPa 

YS) 

-1.700 to -

1.600 

-0.857 22.06 1.49 × 10
-6

 0.39 × 

10
17

 

0.06 0.009 13.3 1.920 2.035 0.5 0.50 × 

10
17

 

0.08 0.012 14.3 2.060 0.6 

-1.600 to -

1.400 

-0.757 11.76 1.19 × 10
-6

 2.05 × 

10
17

 

0.34 0.049 10.8 1.560 2.080 3 3.26 × 

10
17

 

0.53 0.077 12.6 1.817 4 

-1.400 to -

1.200 

-0.557 4.06 0.86 × 10
-6

 5.19 × 

10
17

 

0.86 0.124 5.77 0.833 1.530 13 5.68 × 

10
17

 

0.94 0.136 5.50 0.794 15 

-1.200 to -

1.100 

-0.357 1.96 0.76 × 10
-6

 6.82 × 

10
17

 

1.13 0.163 1.97 0.284 0.598 37 1.88 × 

10
17

 

0.36 0.052 1.69 0.244 18 

   sum 14.4 × 

10
17

 

      11.1 × 

10
17

 

     

980 DP-GI 

(700 MPa 

YS) 

-1.700 to -

1.600 

-0.857 7.91 0.68 × 10
-6

 0.70 × 

10
17

 

0.12 0.015 11.2 1.420 1.572 1 0.95 × 

10
17

 

0.16 0.020 13.1 1.658 1 

-1.600 to -

1.400 

-0.757 4.13 0.60 × 10
-6

 1.67 × 

10
17

 

0.28 0.036 8.59 1.090 1.383 3 1.87 × 

10
17

 

0.31 0.039 7.27 0.922 4 

-1.400 to -

1.200 

-0.557 1.94 0.54 × 10
-6

 2.61 × 

10
17

 

0.43 0.055 4.50 0.571 0.804 9 2.40 × 

10
17

 

0.40 0.051 6.25 0.793 6 

-1.200 to -

1.100 

-0.357 1.36 0.49 × 10
-6

 3.44 × 

10
17

 

0.57 0.072 2.18 0.276 0.415 21 1.02 × 

10
17

 

0.17 0.022 1.60 0.203 10 

   sum 8.42 × 

10
17

 

      6.24 × 

10
17

 

     

1200 DP-GI -1.700 to -

1.600 

-0.857 19.61 1.21 × 10
-6

 0.27 × 

10
17

 

0.04 0.004 13.7 1.330 1.398 0.3 0.22 × 

10
17

 

0.04 0.004 13.7 1.330 0.3 

-1.600 to -

1.400 

-0.757 11.59 1.14 × 10
-6

 0.67 × 

10
17

 

0.11 0.011 11.2 1.090 1.216 1 0.77 × 

10
17

 

0.13 0.013 9.04 0.877 1 

-1.400 to -

1.200 

-0.557 4.91 0.93 × 10
-6

 2.27 × 

10
17

 

0.38 0.037 6.61 0.641 0.877 6 2.62 × 

10
17

 

0.43 0.042 6.00 0.582 7 

-1.200 to -

1.100 

-0.357 2.55 0.79 × 10
-6

 3.83 × 

10
17

 

0.64 0.062 2.77 0.269 0.438 19 1.47 × 

10
17

 

0.24 0.023 2.42 0.235 9 

   sum 7.04 × 

10
17

 

      5.08 × 

10
17 
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980 QP -1.700 to -

1.600 

-0.857 7.38 0.61 × 10
-6 0.81 × 

10
17 

0.13 0.019 7.01 1.010 1.112 2 0.71 × 

10
17 

0.12 0.017 12.5 1.796 1 

-1.600 to -

1.400 

-0.757 4.15 0.50 × 10
-6

 2.21 × 

10
17

 

0.37 0.053 5.33 0.767 1.056 7 1.01 × 

10
17

 

0.17 0.024 7.97 1.147 2 

-1.400 to -

1.200 

-0.557 1.69 0.42 × 10
-6

 3.97 × 

10
17

 

0.66 0.095 3.05 0.439 0.708 18 8.51 × 

10
16

 

0.14 0.020 3.11 0.448 5 

-1.200 to -

1.100 

-0.357 0.93 0.36 × 10
-6

 5.40 × 

10
17

 

0.90 0.130 1.22 0.176  0.338 42 5.51 × 

10
16

 

0.09 0.013 1.30 0.187 7 

   sum 12.4 × 

10
17

 

      3.12 × 

10
17 

     

 

 

 

 

 

 

 

Table 5. The total density of reversible hydrogen trap sites in the DP and Q&P steels for the complete decay transients started at -1.700 VHg/HgO evaluated using the 

permeation curve method. The final potential was the open circuit potential (ocp). 
Steel 

designation 

Starting and 

finishing potential 

for transient, 

(VHg/HgO) 

η, 

V, 

(at start of 

transient) 

i∞, 

(µA cm-2), 

(at start of 

transient) 

Deff, 

(cm2 s-1), 

(average for 

transient) 

CT, 

(µg g-1), 

(at start of 

transient) 

Nt
*, 

(sites cm-3 ), 

(average for 

transient) 

Ct
*, 

(mol m-3 ), 

(average for 

transient) 

Ct
*, 

(µg g-1), 

(average for 

transient) 

CL
*, 

(mol m-3 ) , 

(at start of 

transient) 

CL
*, 

(µg g-1) , 

(at start of 

transient) 

Percentage of 

trapped 

hydrogen, 

(%),  

980 DP-GI -1.700 to ocp -0.857 28.95 1.25 × 10-6 1.689 18.8 × 1017 3.12 0.416 2.65 0.353 54 

980 DP-GI 

(650 MPa YS) 

-1.700 to ocp -0.857 20.48 0.98 × 10-6 2.223 24.2 × 1017 4.02 0.581 2.92 0.422 58 

980 DP-GI 

(700 MPa YS) 

-1.700 to ocp -0.857 8.44 0.51 × 10-6 1.737 33.0 × 1017 5.48 0.695 3.11 0.394 64 

1200 DP-GI -1.700 to ocp -0.857 21.61 0.88 × 10-6 1.728 22.6 × 1017 3.75 0.364 4.13 0.400 48 

980 QP -1.700 to ocp -0.857 7.80 0.42 × 10-6 1.331 5.91 × 1017 0.98 0.141 1.90 0.273 34 
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Table 6. The values of reversible hydrogen trap density from the literature.   
        Authors                     Material Mathematic model Assigned value to 

parameters 

Charging conditions Trap site 

density 

(sites cm-3) 

Liu and Atrens [29] 3.5NiCrMoV medium strength steel 
   =    × (

  

    
 

 )       
  

  
  

DL = 1.29 × 10-6
  cm2 s-1 

NL = 1.45 × 1023
  sites cm-3 

Eb = 29 kJ mol-1 

Between -1.700 VAg/AgCl and -1.100 VAg/AgCl in 0.1 M NaOH 
~ 1018 

 

Fallahmohammadi et al. 

[28] 
X65 and F22 pipeline steel 

  
 

  
    = 

   

  
    

 = L2/6DL 
Constant cathodic current density of 0.5 mA cm-2 in  

0.2 mol  L-1 CH3COOH + 0.4 mol  L-1 CH3COONa 

~ 1019 

 

Frappart et al. [45] 
Quenched and tempered martensitic 

steel 

  

  
   = 

   

  
   = L2/15.3DL 

Constant cathodic current density of 5-200 mA cm-2 in 1 M 

H2SO4  
~ 1019 

Zhu et al. [44] Quenching and partitioning steels    = 
        

 
(

  

    
  ) 

DL = 1.28 × 10-4
  cm2 s-1 

NA = 6.02 × 1023
  mol-1 

Constant cathodic current density of 7.64 mA cm-2 in  

0.2 M NaOH + 3 g L-1 NH4SCN 
~ 1021 

Zakroczymski [27] Armco iron Permeation curve method - 
Complete decay from a current density of 10mA cm-2  in 0.1M 

NaOH 
~ 1013 

Haq et al. [50] X70 pipeline steel 
   =    × (

  

    
 

 )       
  

  
  

DL = 7.20 × 10-5
  cm2 s-1 

NL = 7.52 × 1022 sites cm-3 

Eb = 0.3 eV 

Constant cathodic current density of 3.52 mA cm-2 in  

0.1 N NaOH + 10 g L-1 Na2S · 9H2O 

~ 1012 

 

Dong et al. [25] X100 pipeline steel 
   =    × (

  

    
 

 )       
  

  
  

DL = 1.28 × 10-4
  cm2 s-1 

NL = 7.52 × 1022 sites cm-3 

Eb = 0.3 eV 

Constant cathodic current density of 10 mA cm-2 in  

0.2 M H2SO4 + 0.25 g L-1 As2O3 
~ 1026 

Begić Hadžipašić et al. [47] DP and TRIP steel 
   =    × (

  

    
 

 )       
  

  
  

DL = 1.28 × 10-4
  cm2 s-1 

NL = 7.52 × 1022 sites cm-3 

Eb = 0.3 eV 

Open circuit potential (ocp)  in 2 mol L-1  H2SO4 ~ 1025 

 

 


