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Highlights 14 

• Sequenced batch reactor operations selected a highly diverse culture with low 15 

biological performances 16 

• High rate continuous reactor operations attained a culture dominated at 97% by 17 

Sulfuricurvum spp. 18 

• The Sulfuricurvum spp. dominated culture achieved long term stable biological 19 

performances 20 

• Ammonium and carbon dioxide were biologically converted into high-quality 21 

microbial protein22 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 
 

Abstract 23 

Domestic used water treatment systems are currently predominantly based on conventional 24 

resource inefficient treatment processes. While resource recovery is gaining momentum it 25 

lacks high value end-products which can be efficiently marketed. Microbial protein 26 

production offers a valid and promising alternative by upgrading low value recovered 27 

resources into high quality feed and also food. In the present study, we evaluated the 28 

potential of hydrogen-oxidizing bacteria to upgrade ammonium and carbon dioxide under 29 

autotrophic growth conditions. The enrichment of a generic microbial community and the 30 

implementation of different culture conditions (sequenced batch resp. continuous reactor) 31 

revealed surprising features. At low selection pressure (i.e. under sequenced batch culture at 32 

high solid retention time), a very diverse microbiome with an important presence of 33 

predatory Bdellovibrio spp. was observed. The microbial culture which evolved under high 34 

rate selection pressure (i.e. dilution rate D=0.1h-1) under continuous reactor conditions was 35 

dominated by Sulfuricurvum spp. and a highly stable and efficient process in terms of N and 36 

C uptake, biomass yield and volumetric productivity was attained. Under continuous culture 37 

conditions the maximum yield obtained was 0.29 g cell dry weight per gram chemical oxygen 38 

demand equivalent of hydrogen, whereas the maximum volumetric loading rate peaked 0.41 39 

g cell dry weight per litre per hour at a protein content of 71%. Finally, the microbial protein 40 

produced was of high nutritive quality in terms of essential amino acids content and can be a 41 

suitable substitute for conventional feed sources such as fishmeal or soybean meal. 42 

Keywords: 43 

Resource up-cycling; Nitrogen assimilation; Carbon capture; Microbial protein; Hydrogen-44 

oxidizing bacteria; Sulfuricurvum spp.45 
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1. Introduction 46 

Primary producers - autotrophic microorganisms - are essential for carbon and nutrients 47 

cycling. While fixing inorganic CO2 into organic biomass they recycle nutrients (N and P) and 48 

provide food for higher life forms (Elser et al., 2000). Primary producers such as algae and 49 

autotrophic bacteria can serve as alternative protein source in the form of microbial protein 50 

(MP) for livestock but also for human consumption (Anupama and Ravindra, 2000; 51 

Verstraete, 2015; Walsh et al., 2015). Besides protein, microbes can also accumulate 52 

considerable amounts of biocompatible prebiotics such as PHB (Defoirdt et al., 2007), 53 

thereby enhancing the nutritional value of the microbial biomass.  54 

After being extensively studied in the past, mainly as means to upgrade fossil fuel (e.g. 55 

paraffin, natural gas) to protein supplements (Westlake, 1986), the use of bacteria for 56 

microbial protein (MP) production has nowadays re-gained significant interest (Aas et al., 57 

2006; Marit Berge et al., 2005) with natural gas based MP production entering the market 58 

economy (Strong et al., 2015). Innovative approaches implementing bacteria to produce MP 59 

within the context of resource recovery from used water have also been recently proposed 60 

(Lee et al., 2015; Liu et al., 2016; Matassa et al., 2015a). Indeed, the production of MP can 61 

allow the up-cycling of nitrogen and carbon dioxide recovered from used water streams, 62 

converting them into protein-rich feed and food substances. Different physico-chemical 63 

techniques can be implemented in the recovery of N and C substrates. Air stripping or 64 

pervaporative processes can recover N from concentrated streams such as anaerobic 65 

digestate, whereas pressure swing adsorption (PSA) can concentrate CO2 from biogas, thus 66 

providing the building blocks which are at the base of MP biosynthesis.  67 
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Among the various metabolic pathways suitable for MP production, including both 68 

eukaryotic and prokaryotic microorganisms (Anupama and Ravindra, 2000), autotrophic 69 

hydrogen-oxidizing bacteria (HOB) constitute a special and thus far unexplored metabolic 70 

niche with potential for novel applications in resource recovery and upgrade. Even if 71 

ubiquitous, autotrophic HOB have only received limited attention, with previous studies 72 

focusing on the use of axenic cultures comprising bacteria such as Alcaligenes eutrophus, 73 

Ralstonia eutropha, Seliberia carboxydohydrogena (Ishizaki and Tanaka, 1990; Repaske and 74 

Mayer, 1976; Volova and Barashkov, 2010). The metabolic features of autotrophic HOB 75 

allow them to grow on hydrogen (electron donor) and oxygen (electron acceptor) while 76 

fixing carbon dioxide into cell material and assimilating nitrogen into high quality protein 77 

(Parkin and Sargent, 2012; Pohlmann et al., 2006). MP produced by autotrophic HOB is 78 

characterized by all the essential amino acids, having an amino acid profile closer to high-79 

quality animal protein rather than to vegetable protein (Volova and Barashkov, 2010). Given 80 

this interesting feature, autotrophic HOB were already proposed as possible protein source 81 

within biological life support systems for space missions (Bartsev et al., 1996), as well as for 82 

human and animal nutrition (Volova and Barashkov, 2010).  83 

An attractive characteristic of MP production with autotrophic HOB is the possibility to 84 

exploit the increasing potential of renewable energy generation. A clear example is the use 85 

of hydrogen gas produced from water electrolysis, powered by e.g. wind or solar energy, or 86 

also from biomass gasification (Ni et al., 2006) Recently, biomethane has also been proposed 87 

as possible renewable feedstock for hydrogen production by means of a combined heat, 88 

hydrogen and power generation unit (CHHP) (Agll et al., 2013; Hamad et al., 2014). The 89 

possibility to implement such technologies on-site and produce hydrogen on demand might 90 

enable the direct up-cycling of mineral nitrogen and carbon dioxide recovered from 91 
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wastewater treatment plants, as previously mentioned. Moreover, upcoming technological 92 

developments and the decrease of hydrogen prices (Ball and Weeda, 2015) justify further 93 

research efforts towards the application of autotrophic HOB within resource recovery and 94 

up-cycling.  95 

In the present study, we aimed to experimentally determine the feasibility of nitrogen and 96 

carbon upgrade into MP by means of a microbial community enriched in HOB using a lab-97 

scale gas. Along the experimental investigation different culture conditions were imposed to 98 

the enriched HOB culture (i.e. sequenced batch and continuous). This was done in order to 99 

establish how the microbial community was shaped by the process conditions and how this 100 

affected the overall biological performance of the system, aiming at maximizing MP 101 

production (i.e. biomass yield and volumetric productivities). Nitrogen under the form of 102 

ammonium salt and gaseous CO2 represented the N and C substrates needed for the 103 

production of MP protein by means of autotrophic HOB. The study started with the 104 

enrichment of a generic aerobic microbial mixed culture with autotrophic HOB under 105 

sequencing batch reactor operations. Consequently, the enriched mixed community was 106 

cultured in a continuous reactor configuration, resulting in the ongoing evolvement of a 107 

highly specific bacterial culture dominated by the genus Sulfuricurvum. The efficiency of the 108 

process in terms of gas utilization and by-product formation was monitored along the time 109 

course of the selective enrichment process. The microbial community analyses of the HOB 110 

microbiome under batch and continuous culture systems allowed delineating the evolution 111 

of the mixed bacterial community towards a quasi-monoculture dominated by Sulfuricurvum 112 

spp. Finally, the MP produced was characterized in terms of crude protein content and 113 

amino acid profile in order to assess its nutritional value. 114 
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2. Material and Methods 115 

2.1 Enrichment of hydrogen-oxidizing bacteria  116 

Aerobic sludge from a local food (potatoes) processing plant (Nazareth, Belgium) was used 117 

as an initial mixed culture for the enrichment of autotrophic HOB community. The 118 

enrichment was carried out in a 1 L gas fermentor. The fermentor was connected to 3 gas 119 

bags supplying a gas mixture composed by H2/O2/CO2 with the following composition: 120 

65/20/15 (vol/vol). Prior to use, each gas bag was flushed with Alphagaz 2-grade H2, O2 and 121 

CO2 gasses (Air Liquide, Belgium). The gaseous H2/O2/CO2 atmosphere was constantly 122 

recirculated between the culture vessels and the gas bags by means of a peristaltic pump 123 

adapted to gas recirculation (Sci-Q 300, Watson Marlow, Belgium). The reactor was placed in 124 

a 28 °C temperature controlled room and shaken at 150 rpm. A volume of 500 mL of mineral 125 

media inoculated with 10% of inoculum was used at start. The mineral medium was 126 

prepared accordingly to Yu et al. (2013) for HOB isolation and culturing. The growth of HOB 127 

was followed by monitoring the increase of cell dry weight (CDW) over the course of the 128 

experimental run. When ammonium nitrogen was depleted, 50 mL of bacterial culture was 129 

withdrawn and diluted into 450 mL of fresh medium to restart the enrichment. After a stable 130 

and reproducible growth was attained in terms of CDW concentrations (2-3 g CDW/L before 131 

medium replenishment), the culture was considered enriched and used to start the 132 

experimental phase in the final reactor setup. 133 

2.2 Reactor operations and controls 134 

A completely stirred tank reactor (CSTR) (Biostat A plus, Sartorius, Belgium) was used during 135 

batch as well as continuous experiments. The 5 L glass vessel, with a working volume of 3 L, 136 

was stirred at 700rpm with a 3-blade segment impeller to ensure completely mixed 137 
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conditions. Hydrogen gas was produced on site by means of a lab-grade hydrogen generator 138 

(Alphagaz™ Flo H2, Air Liquide, Belgium), while CO2 from gas bottles was of the same grade 139 

of the one used during the initial enrichment of the culture. Compressed air was used to 140 

provide the oxygen. Gases were fed separately by means of 3 micro-spargers (Sartorius, 141 

Belgium) submerged in the reactor. Gas flows were monitored using gas rotameters (Omega, 142 

USA) and kept at H2: 120 mL/min; CO2: 25 mL/min; Air: 180 mL/min. The gas collected in the 143 

headspace was constantly recirculated by means of a peristaltic pump adapted to gas 144 

recirculation (Sci-Q 300, Watson Marlow, Belgium) using a fourth micro-sparger. Utilized gas 145 

by the bacteria, was bubbled through an external water lock (imposing an overpressure of 146 

20 mbar) and subsequently vented to the atmosphere by means of a fume hood. 147 

Temperature and pH were automatically controlled and kept at 35±1 °C and 6.7, 148 

respectively. 149 

2.3 Sequencing batch and continuous reactor culture systems 150 

Sequencing batch reactor (SBR) tests were started by transferring 300 mL of fully grown 151 

bacterial culture into 2.7 L of fresh mineral medium, allowing an initial cell dry weight Cell 152 

Dry Weight (CDW) concentration of 300 to 500 mg CDW/L. Each sequencing batch test was 153 

allowed to evolve for an average of 5 to 6 days before transferring the culture into fresh 154 

medium, corresponding to a solid retention time (SRT) of 6±0.5 days. Additional NH4Cl was 155 

added to the standard mineral medium composition in order to achieve initial NH4
+-N 156 

concentration of 1.2 g/L, and simulate higher N concentrations obtainable with recovery 157 

techniques such as air stripping or pervaporative systems. The sequencing batch culture was 158 

monitored along a period of 5 months. 159 
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Continuous reactor (CR) operations were set by supplying fresh media with a diaphragm 160 

pump (Qdos, Watson Marlow, Belgium), totaling a flow of 7.2 L/day. In the same way, 7.2 161 

L/day of cell culture were constantly withdrawn from the CSTR reactor by means of a similar 162 

pump. As for the sequenced batch experiment, additional NH4Cl was added to the standard 163 

mineral medium composition in order to achieve initial NH4+-N concentration of 0.5 g/L. The 164 

complete absence of biomass recirculation set hydraulic and (SRT) of 10 h. Under these 165 

continuous reactor conditions (chemostat), only bacteria with a specific growth rate “µ” 166 

equal or higher than the dilution rate D=0.1 h-1 could avoid being washed-out from the 167 

biological system. The continuous system was operated uninterruptedly for 3 months. 168 

2.4 Analytical methods  169 

NH4
+-N concentrations were determined by means of cuvette tests (Hach Lange, range 0-47 170 

mg NH4
+
-N/L). Cell Dry Weight (CDW) was measured in duplicate after water was evaporated 171 

at 105 °C for 24 h. Prior to analysis, the samples were centrifuged at 12500 g for 10 minutes 172 

for three times, each time re-suspending the biomass pellet in demineralized water. Gas 173 

samples collected from the reactor headspace were analyzed with a Compact GC (Global 174 

Analyser Solutions, Breda, The Netherlands), equipped with a Molsieve 5A pre-column and 175 

Porabond column (O2, H2 and N2) and a Rt-Q-bond pre-column and column (CO2). 176 

Concentrations of gases were determined by means of a thermal conductivity detector. 177 

2.5 Analysis and characterization of microbial protein 178 

Kjeldahl nitrogen content of the microbial biomass was analyzed according to Standard 179 

methods (APHA et al., 1992). Organic nitrogen was determined as the difference between 180 

Kjeldahl nitrogen and ammonium nitrogen. The final protein content of CDW was obtained 181 

by multiplying the obtained value by applying a conversion factor of 6.25 as done in previous 182 
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studies (Salo-väänänen and Koivistoinen, 1996). The dietary amino acids composition of the 183 

microbial biomass was determined by an external accredited commercial laboratory 184 

(Eurofins Denmark A/S, Denmark). 185 

2.6 Microbial community analysis 186 

Liquid samples for total DNA extraction were centrifuged for 10 min at 10000 RPM. 187 

Subsequently, the supernatant was removed and biomass pellet was stored immediately at 188 

−20◦C until further analysis following a protocol adapted from Vilchez Vargas et al. (2013). 189 

Cells were lysed with 1 mL lysis buffer (100 mM Tris/HCl pH 8.0, 100 mM EDTA pH 8, 100 190 

mM NaCl, 1% (m/v) polyvinylpyrrolidone and 2% (m/v) sodium docecyl sulphate) and 200 mg 191 

glass beads (0.11 mm, Sartorius) in a FastPrepR - 96 instrument (MP Biomedicals, Santa Ana, 192 

USA) for two times 40 s (1600 rpm). After removing glass beads by centrifugation (5 min at 193 

10000 RPM), DNA was extracted from supernatant following a phenol–chloroform 194 

extraction. DNA was precipitated with 1 volume ice-cold isopropyl alcohol and 0.1 volume 3 195 

M sodium acetate for at least 1h at −20◦C. After removal of isopropyl alcohol by 196 

centrifugation (30 min, maximum speed), the DNA pellet was dried and re-suspended in 100 197 

μL 1× TE (10 mM Tris, 1 mM EDTA) buffer. After finishing the extraction protocol, the DNA 198 

samples were immediately stored at −20◦C until further processing. Quality of DNA samples 199 

was analyzed by 1% (w/v) agarose (Life technologies, Madrid, Spain) gel electrophoresis. The 200 

PCR amplicons were purified with the innuPREP PCR pure kit (Analytik Jena, Jena, Germany), 201 

and sequenced with the primers used for PCR. 16s rRNA Illumina and Sanger sequencing 202 

analyses were conducted for each sample in triplicate by external commercial laboratories 203 

(Analytik Jena, Jena, Germany). 204 

2.8 Calculations        205 
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The gas conversion efficiency was calculated as: 206 

���	����	
����		�����	��
		�%� =	 ���	�����	���� ��������	������	���� ����⁄ 	⁄
���	�����	���� ����	⁄ 	× 100 (1) 207 

 208 

With hydrogen gas as the electron donor for the HOB, the biomass yield on H2 gas is 209 

expressed in terms of Chemical Oxygen Demand (COD) hydrogen gas equivalent. The yield is 210 

calculated as: 211 

"#$ %
&	'()

&	#$�'*(
+ = 	 '()	�& ,⁄ �

#$	&��	�-��.�	�����	×	/0	�&	'*( ���⁄ � 	× 1�23�4	��536		�1�  (2) 212 

 213 

The biomass yield on carbon dioxide is calculated as: 214 

 "'*$ %
&	'()�'
&	'*$�'

+ = 	 '()	�& ,⁄ �	×	7.9	�&	'/&	'()�
'*$	&��	�-��.�	�����	×	/;	�&	' ���⁄ � 	× 1�23�4	��536		�1�    (3) 215 

 216 

The mineral nitrogen upgrade efficiency is calculated as: 217 

<	3=>
�4			���	����
	�%� = 	?#@�?	��	�& ,�	�	A�?	���	�& ,�⁄ 	⁄
?#@�?	�� 	× 100   (4) 218 

 219 

Where NH4-N in indicates the amount of NH4-N fed to the reactor, respectively to the SBR 220 

and the CR systems and X-N out indicates the amount of dissolved nitrogen under the form 221 

of NH4
+, NO2

- or NO3
- at in at the end of each SBR test and in the effluent of the CR system.    222 

  223 
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3. Results 224 

3.1 Sequencing batch and continuous reactor performances 225 

The enriched HOB culture was first cultivated under sequencing batch reactor (SBR) 226 

conditions, with a SRT of 6±0.5 days. The same experimental setup was then adapted to 227 

grow the HOB culture under continuous reactor (CR) configuration, imposing a SRT of 10 h. 228 

The main parameters analyzed both under SBR and CR configurations were: volumetric 229 

productivities (g CDW/L·h), biomass yields on hydrogen (g CDW/g COD-H2) and carbon 230 

dioxide (g CDW-C/g CO2-C) and hydrogen gas conversion efficiencies (%), as shown in Table 231 

1. 232 

Table 1. Parameters of HOB cultivation obtained under SBR tests (averaged over three different sequencing 233 

batch tests) and CR operations (over 90 days of continuous operations). Maximum values were calculated for 234 

each batch for the data points which maximized volumetric productivity and biomass yield, whereas average 235 

values were calculated over the whole period.   236 

Parameter 

 

 Sequence Batch 

reactor 

Continuous 

reactor 

Volumetric productivity  

(g CDW/L·h) 

Average 0.078 ± 0.012 0.375 ± 0.015 

Maximum 0.187 ± 0.045 0.406 

YH2 (g CDW/g COD-H2) 
Average 0.073 ± 0.007 0.280 ± 0.010 

Maximum 0.157 ± 0.037 0.290 

YCO2 (g CDW-C/g CO2-C) 
Average 0.153 ± 0.023 0.427 ± 0.013 

Maximum 0.246 ± 0.058 0.456 

H2 gas conversion 

efficiency 

Average 65% ± 4% 81% ± 2% 

Maximum 71% ± 3% 87% 

N upgrade efficiency 
Average 100%  87% ± 4% 

Maximum 100%  97% 

Protein content (%CDW) 
Average 66% ± 5% 71% ± 5% 

Maximum 73% 76% 

 237 

The average values for each individual SBR test reported in Table 1 were calculated, by 238 

considering the initial and final point of each test over the duration of the experimental run 239 
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(i.e. t=0 to t=120-144 h). Three subsequent SBR experimental run (t=41, 82, 120 days) were 240 

averaged together to summarize the values obtained along the SBR cultivation period. 241 

Maximum values indicate the maximum single data point measured during each individual 242 

SBR test For the CR operations, samples were taken for analysis three times per week over a 243 

period of 90 days (n=35). The average values reported in table 1 show the average of the 244 

total amount of samples taken.  245 

Under SBR conditions, an average volumetric productivities of 0.078 ± 0.012 g CDW/L·h was 246 

achieved. The latter value increased about 5-fold under CR configurations, reaching an 247 

average of 0.375 ± 0.015 g CDW/L·h. Biomass yields in terms of g CDW/g COD-H2 increased 248 

from 0.073 ± 0.007  to 0.280 ± 0.010 g CDW/g COD-H2, when changing from a SBR to a 249 

continuous operation mode. In the same way, CO2–based yield increased from the minimum 250 

of 0.153 ± 0.023 g CDW-C/g CO2-C observed during SBR cultivation to the maximum of 0.427 251 

± 0.013 g CDW-C/g CO2-C. Hydrogen gas was also converted more efficiently when the 252 

reactor operated continuously, with an increase of 16% compared to SBR operations, 253 

reaching 81 ± 2%. Maximum values observed under CR were almost double than observed 254 

under SBR conditions. A different trend was observed for the nitrogen upgrade efficiency. 255 

SBR conditions allowed the complete conversion of the ammonium nitrogen supplied into 256 

MP, which reached an average of 65 ± 5% of the microbial biomass CDW. Under CR 257 

operation, instead, about 13% of the total mineral ammonium nitrogen supplied was still 258 

present in dissolved form in the CR effluent, whereas the average protein content of the 259 

produced biomass was 71 ± 5% (%CDW).  260 

3.2 Microbial community analysis 261 
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In order to assess the composition of the microbial community, DNA samples from the SBR 262 

(after 120 days of operations) and from the CR configurations (after 20 days of operations) 263 

were analyzed by means of 16S rRNA Illumina sequencing.  264 

  265 

Figure 1. Phylogenetic composition of the HOB microbiome during SBR (a) and CR (b) operations, assessed by 266 

16S rRNA Illumina sequencing. The timeline indicates the duration of each phase: SBR and CR, and when DNA 267 

samples were processed for 16S rRNA Illumina and Sanger sequencing. The central graph resumes the 268 

percentage of each class within the microbial community. Each class is then characterize in terms of genera 269 

composition in the external graphs (a, b) or within brackets (b). 270 

 271 

b 

a 
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The enriched microbial community cultivated under SBR conditions was characterized by a 272 

rather high diversity. Amongst the 12 genera identified, Ancylobacter (Morita, 1999), 273 

Xanthobacter (Wilde and Schlegel, 1982) and Hydrogenophaga (Willems et al., 1989) have 274 

been already documented as able to carry out autotrophic oxyhydrogen metabolism. The 275 

latter constitute less than one-third of the quantitative genera distribution of the microbial 276 

community. No direct evidence of aerobic hydrogen oxidation is available in literature for 277 

the other genera present. Notably, the microbial community was dominated (one-third of 278 

the whole quantitative genera distribution) by Bdellovibrio, a genus of the class of 279 

Deltaproteobacteria encompassing predatory bacteria able to invade and lyse various other 280 

Gram-negative bacteria (Rendulic et al., 2004). The remaining genera detected (about 30% 281 

relative abundance) were mainly composed by the classes of Falvobacteriia and 282 

Sphingobacteriia, known as aerobic chemoorganotrophic bacteria (Vandamme et al., 1994; 283 

Yabuuchi et al., 1983). 284 

Following the SBR cultivation period, the effect of the first 20 days of CR operations on the 285 

microbial community was investigated by means of a second 16S rRNA Illumina sequencing 286 

analysis. As shown in Fig. 1.b, the simple implementation of high rate (D=0.1 h-1) continuous 287 

reactor operations led to a remarkable selection within the microbial community, with 288 

almost 97% of the total community composed by a single genus: Sulfuricurvum. Almost 80% 289 

of the remaining 3% was composed by only other two genera: Gammaproteobacteria 290 

(Thermomonas) and Flavobacteriia (Chryseobacterium).  291 

The DNA sample used for the 16S rRNA Illumina sequencing analysis of the CR was 292 

subsequently analyzed by means of 16S rRNA sequencing, together with a second sample 293 

taken after 90 days of continuative CR operations. The latter was done in order to confirm 294 
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the stability of the microbial community composition and to gain more in depth information 295 

on the dominating Sulfuricurvum genus. For both samples the analysis indicated similarities 296 

at the level of 98 and 99% to Sulfuricurvum kujiense strains YK-2, YK-3 and YK-4, as well as to 297 

other uncultured Epsilonproteobacteria when compared using NCBI BLAST under default 298 

settings (Han et al., 2012).  299 

3.3 Protein and amino acid profile 300 

The bacterial biomass grown under CR configurations was harvested at day 90 (i.e. at the 301 

end of the CR cultivation period) and analyzed for crude protein content as well as for 302 

essential amino acids composition.  303 

 304 

Figure 2. Crude protein content on CDW basis of the microbial biomass produced under CR configuration by 305 

the Sulfuricurvum spp. dominated culture (this study) compared with other microbial protein (bacterial meal), 306 

animal protein (fishmeal) and vegetable protein (soybean meal) (Øverland et al., 2010).  307 

Figure 2 compares the results obtained in this study with reference protein feed additives 308 

such as fishmeal, soybean meal and bacterial meal. The latter is a MP product obtained from 309 

methane oxidizing bacteria (Methylococcus capsulatus grown in association with other 310 

heterotrophic bacteria) already produced at pilot scale and tested in several feed trials 311 

involving monogastric animals as well as aquaculture species, for which the EU already 312 
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approved the use in animal nutrition (Øverland et al., 2010). Fishmeal and soybean meal 313 

were chosen as a reference for animal and vegetable protein, respectively.  Bacterial meal 314 

allows to benchmark the MP produced in this study with another know similar product (i.e. 315 

already tested and legally approved MP).  316 

As demonstrated in Fig. 2, the crude protein content of 71% of the Sulfuricurvum spp. 317 

microbial culture is slightly higher than bacterial meal (68%) and fishmeal (66%) and 318 

substantially higher than the average crude protein content of soybean meal (45%). 319 

 320 

Figure 3. Essential amino acids profile of the microbial biomass produced under CR configuration by the 321 

Sulfuricurvum spp. dominated culture (blue) (this study) compared with bacterial meal (yellow), fishmeal (grey ) 322 

and soybean meal (green) as reported from Øverland et al. (2010).  323 

A similar trend can be observed in Fig. 3 for the amino acid profile. The profile for the 324 

Sulfuricurvum spp. microbial culture was comparable to that of bacterial meal and fishmeal 325 

and systematically better (at the exception of Arginine) than the one of soybean meal.  326 

  327 
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4. Discussion 328 

4.1 Sequenced Batch Reactor 329 

Following the enrichment, the SBR operations confirmed that the microbial culture 330 

effectively oxidized hydrogen coupled with assimilation of carbon dioxide and mineral 331 

nitrogen (i.e. ammonium nitrogen) into cell biomass. Consistent biomass growth was 332 

observed, allowing to operate the SBR at a SRT of about 6 days. Also, the NH4-N fed at the 333 

beginning of each SBR test was completely (100%) converted into organic nitrogen for 334 

microbial biomass build up. Nevertheless, the average performances observed in terms of 335 

volumetric productivities and biomass yield on hydrogen were far from being optimal. More 336 

specifically, the mixed culture grown under SBR conditions gave average biomass yields and 337 

productivities lower than values previously reported using specific bacterial strains (see 338 

Table 2).  339 

Table 2. Comparison of results obtained in this study for SBR and CR grown cultures with data from literature 340 

on single HOB strains.   341 

Microbial culture / 

Strains 
Substrate 

Culture 

method 

Biomass 

productivity 

(g CDW/L·h) 

Biomass 

yield 

(g CDW/g 

COD-H2) 

Reference 

Alcaligenes eutrophus H2/O2/CO2 Batch 2.28 - (Tanaka et al., 1995) 

Alcaligenes eutrophus 

ATCC 17697
T
 

H2/O2/CO2 Batch 0.71 0.28 
(Ishizaki and Tanaka, 

1990) 

Ideonella sp. O-1 H2/O2/CO2 Batch 0.27 0.20 (Tanaka et al., 2011) 

Pseudomonas 

hydrogenovora 
H2/O2/CO2 Batch 0.50 0.16 (Goto et al., 1977) 

Mixed culture 

(SBR) 
H2/Air/CO2 Batch 0.08 0.07 

This study (average 

values) 

Alcaligenes eutrophus 

ATCC17697 
H2/O2/CO2 Continuous 0.40 0.29 

(Morinaga et al., 

1978) 

Alcaligenes 

hydrogenophilus 
H2/O2/CO2 Continuous 0.33 0.23 (Miura et al., 1982) 

Cupriavidus eutrophus B-

10646 
H2/O2/CO2 Continuous - 0.14 (Volova et al., 2013) 

Sulfuricurvum spp. 

(CR) 
H2/Air/CO2 Continuous 0.38 0.28 

This study (average 

values) 

 342 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 
 

The average volumetric productivity of 0.08 g CDW/L·h observed under SBR conditions, was 343 

28.5, 9.1, 3.5, 6.4 and 3.3 times lower than the values reported for autotrophic growth of 344 

Alcaligenes eutrophus, Alcaligenes eutrophus ATCC 17697T, Ideonella sp. O-1 and 345 

Pseudomonas hydrogenovora, respectively. Equally, the biomass yield on hydrogen gas was 346 

3.8, 2.7 and 2.2 times lower than vales reported for Alcaligenes eutrophus ATCC 17697
T
, 347 

Ideonella sp. O-1 and Pseudomonas hydrogenovora grown under batch conditions. 348 

The analysis of the community composition revealed a surprising fractionation of the HOB 349 

enriched community into three distinct compartments: autotrophic HOB, heterotrophic 350 

bacteria and predatory bacteria, each sharing about 1/3 of the relative abundance of the 351 

overall community. The association between primary producers (autotrophic bacteria) and 352 

secondary consumers (heterotrophic bacteria) has already been documented in full scale MP 353 

production as well as reported and investigated in recent scientific studies (Aas et al., 2006; 354 

Ho et al., 2014). In the context of MP production, a clear example is represented by a 355 

methylotrophic bacterium (Methylococcus capsulatus) cultured in association with other 356 

heterotrophic bacteria. Such microbial fermentation is used in pilot-scale bioconversion of 357 

natural gas into MP (bacterial meal), eventually used as high-quality feed in aquaculture (Aas 358 

et al., 2006; Marit Berge et al., 2005). The coexistence of different microbial species offers 359 

benefits such as the removal of inhibiting byproducts or cell lysates, as well as the regulation 360 

of oxygen level (Ho et al., 2014; Strong et al., 2015).  361 

Quite unexpected was the 33% relative abundance of Bdellovibrio spp., by far the most 362 

abundant genus dominating the mixed culture after 120 days of continuous SBR operations. 363 

The fact that such genus comprises predatory bacteria thriving on invasion and consumption 364 

of other Gram-negative bacteria (Rendulic et al., 2004) offers a reasonable yet remarkable 365 
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explanation for the low performances of the HOB enriched community observed under SBR 366 

conditions. It is likely that the predatory activity of Bdellovibrio spp. imposed a major stress 367 

on the primary producers HOB, which were actively oxidizing hydrogen and fixing carbon 368 

dioxide into new microbial biomass then partly lysed by predatory activity. The lysed 369 

biomass might have also served as growth substrate for heterotrophic bacteria (Van 370 

Loosdrecht and Henze, 1999), in fact occupying the remaining 1/3 of the microbial 371 

community.  372 

The high metabolic diversity and the low performances characterizing the microbial 373 

community under SBR condition can be also explained by speculating over the degrees of 374 

freedom of the biological systems in terms of growth rate and substrates concentrations, i.e. 375 

from a Monod-like point of view. Under SBR conditions, low constrains were imposed to the 376 

specific growth rate of the different bacteria present, which were therefore able to coexist in 377 

the same biological context. Also, the depletion of nutrients as well as the varying 378 

concentration of gasses as affected by the changing microbial activity over the batch culture 379 

(i.e. lag, log and decay phase), resulted in continuously changing growth conditions, 380 

potentially favoring different bacteria over time (see Fig. 4.a). 381 

 382 

Figure 4.  Hypothetic resume of growth rates depending on substrates concentrations in SBR (a) and CR (b) 383 

conditions. (a) SBR culture conditions do not impose a strong growth rate to the system and substrate levels 384 

vary over the growth period, hence bacteria with different specific growth rates and affinities can freely co-385 

a b 
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evolve. (b) CR conditions are characterized by a strong dilution rate, which imposes a specific growth rate to 386 

the overall biological system. In the CR configuration substrates concentrations are well defined and become 387 

constant over time. Therefore only bacteria able to cope with the imposed dilution rate and having high affinity 388 

with the set of substrates concentrations can evolve in the system. 389 

 In view of the sub-optimal performances, the SBR culture system did not seem to offer the 390 

best solution between process efficiency and stability. Moreover, the diverse microbial 391 

community would be difficult to control in terms of constancy of composition, and the 392 

presence of different bacterial strains of uncertain nutritional composition would affect the 393 

quality of the HOB microbiome as such for MP production for feed and food purposes. 394 

4.2 Continuous Reactor 395 

The continuous operation at a dilution rate of 0.1 h-1 allowed to select for the evolvement of 396 

a more performing microbial culture in terms of biomass yields and volumetric 397 

productivities. Indeed the CR culture system selected for bacteria able to implement 398 

maximum substrate conversion at the specific growth rate imposed by the dilution D at 399 

which the bioreactor is operated (Goldberg, 1985). Thus microorganism having high specific 400 

growth rate can outcompete others not able to cope with the dynamics of the system. Such 401 

configuration can be summarized in the following two conditions: 402 

1) µ ≥ D=0.1 h-1: Continuous growth 403 

2) µ < D=0.1 h-1: Wash-out 404 

Fig. 4.b offers a virtual example of how the CR reactor impacted on the initial diverse 405 

community. The dilution rate of 0.1 h-1 required a corresponding specific growth rate of the 406 

same value. Moreover, the constant supply of nutrients and substrates to a biological system 407 

growing in steady conditions allowed to set a quite specific environment able to naturally 408 

select for the more adaptive and fast growing bacteria. In other terms, only bacteria 409 
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possessing a specific growth rate higher than the dilution rate imposed, as well good 410 

affinities with the substrates provided were not washed-out.  411 

As revealed by the microbial community analyses, within three weeks of operation the high 412 

dilution rate resulted in the selection of a highly specific microbial culture, dominated for 413 

more than 96% by Sulfuricurvum spp. The latter genus is known as encompassing a specific 414 

type of bacteria predominantly active towards sulfur oxidation in crude oil deposits (Han et 415 

al., 2012). Sulfuricurvum kujiense YK-1T was first isolated from oil sands and characterized as 416 

a facultative anaerobic sulfur oxidizing bacteria (sulfide, elemental sulfur and thiosulfate) 417 

also able to use hydrogen as electron donor. Electron acceptors were described to be nitrate 418 

and oxygen under anaerobic and aerobic conditions, respectively. Aerobic growth though 419 

was limited to microaerophilic ranges (with maximum 1% in the headspace)(Kodama and 420 

Watanabe, 2004). Three other strains of Sulfuricurvum kujiense were already reported, but 421 

only strain YK-1T was cultured and characterized in its whole genome (Han et al., 2012). 422 

Recently, the complete genome of Candidatus Sulfuricurvum sp. RIFRC-1 was assembled de 423 

novo from an aquifer-derived metagenome, confirming the importance and the link 424 

between sulfur and hydrogen metabolism in terrestrial subsurface environments. The latter 425 

finding also points out how more strains of the Sulfuricurvum spp. genus might still be 426 

discovered and characterized. 427 

The Sulfuricurvum spp. dominating the culture studied in the present work is closely related 428 

to Sulfuricurvum kujiense, yet the exact identity of the strain is still unclear. The mineral 429 

medium used to culture the HOB both under sequenced batch and continuous reactor 430 

conditions did not contain any reduced sulfur compound such as sulfide, elemental sulfur or 431 

thiosulfate. Only oxidized sulfur under the form of sulfate (MgSO4·7H2O (0.5 g/L)) was 432 
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supplied to the reactor with the influent mineral medium. The development of the high 433 

enrichment of Sulfuricurvum spp. without any available reduced sulfur substrate points out 434 

that the most plausible metabolism for biomass growth within the biological system was 435 

hydrogen as electron donor and oxygen as electron acceptor. Therefore, when analyzing the 436 

conditions under which hydrogen oxidation was carried out, the fact that partial pressures of 437 

O2 in the headspace of the CR were constantly higher than 1%, reaching 5-6% for long 438 

periods, constitutes a first important difference with the strain YK-1T
 as characterized by 439 

Kodama and Watanabe (2004). The latter observation is supported by the fact that dissolved 440 

oxygen levels between 0.5 and 1.2 mg O2/L could be measured in the effluent of the 441 

continuous reactor. Although the abovementioned physiological characterization reported 442 

the use of H2 as electron donor in combination with microaerophilic O2 concentrations, it did 443 

not identify the possibility of exploiting such bacterium for high rate autotrophic hydrogen 444 

oxidation, as experimentally demonstrated in this study has not been described before. 445 

As reported in Table 2, the cultured Sulfuricurvum spp. displayed biomass yields and 446 

volumetric productivities comparable to the ones reported for Alcaligenes eutrophus 447 

ATCC17697 from (Morinaga et al., 1978), outscoring the values available in other studies for 448 

continuous cultures of Alcaligenes hydrogenophilus and Cupriavidus eutrophus B-10646 449 

(Miura et al., 1982; Volova et al., 2013). Alcaligenes eutropuhs, currently known as 450 

Cupriavidus necator can be also regarded as reference for a possible overall stoichiometry of 451 

carbon dioxide and ammonium nitrogen assimilation into bacterial biomass within the 452 

biological system driven by hydrogen oxidation (Ishizaki and Tanaka, 1990):  453 

21.36	E; +	6.21	G; +	4.09	JG; +	0.76	<EL 	→ 	J@.7NEO./LG/.PN<7.O0 +	18.70	E;G (5) 454 

 455 
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The molar ratios which can be calculated from the stoichiometry are in fact close to the gas 456 

ratios used in the present experiment. More specifically, from the stoichiometry a ratio of 3.4 457 

can be calculated between H2 and O2, which is comparable to the ratio of 3.2 at which the 458 

enrichment of Sulfuricurvum spp. was obtained. Similarly, the ratio of 4.8 between H2 and 459 

CO2 used in the present investigation was similar to the 5.2 obtained from the stoichiometry 460 

of Cupriavidus necator. 461 

The fact that the culture dominated by Sulfuricurvum spp. matched efficiencies in terms of 462 

biomass yield and volumetric productivities of other well-known HOB strains while being fed 463 

with gas mixtures suitable for HOB growth, represents an interesting and novel finding and 464 

holds the potential to expand the biotech applications of autotrophic hydrogen oxidation to 465 

unexplored bacteria. Further research is warranted to investigate its potential in more detail.  466 

Interestingly, the microbial composition was stable over the course of the experiments (90 467 

days) and dominated by the same genus (see Figure 1). This finding is important as this 468 

implies that the fermentation process can be easily managed without cumbersome sterility 469 

precautions (e.g. media autoclaving, gas filtering). The latter feature can be of interest in 470 

allowing the direct upgrade of used resources such as carbon dioxide and ammonia gas 471 

recovered e.g. from biogas and anaerobic digestate, respectively (Matassa et al., 2015b), 472 

without requiring strict subsequent axenic processing conditions and related operational 473 

costs. Further research is required to understand how such operational setting is resistant to 474 

external invasion and destabilization. Indeed, the latter can have biotechnological 475 

applications which go beyond the aim of this study.  476 

In relation to the other bacteria coexisting with the Sulfuricurvum spp., the spectrum was 477 

composed by heterotrophic bacteria pertaining to the classes of Gammaproteobacteria 478 

(Thermomonas) and Flavobacteriia (Chryseobacterium). It is therefore likely that under high 479 
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rate CR reactor configuration, these bacteria were benefitting from organic metabolites 480 

from the HOB, in this case Sulfuricurvum spp. Yet, this equilibrium achieved under CR 481 

conditions was totally different from the almost equal relative abundance between HOB and 482 

heterotrophs under SBR conditions. The magnitude of the residual heterotrophic niche (in 483 

terms of relative abundance) might be indeed depending on the growth conditions, and 484 

more specifically on the dilution rate imposed to the system. Further research efforts might 485 

aim at establishing whether or not such niche would be completely diminished at higher 486 

dilution rates, not allowing the secondary heterotrophic consumers to take advantage of the 487 

primary autotrophic carbon fixation activity.  488 

4.3 Nitrogen assimilation efficiency, protein and amino acids profile 489 

In terms of nitrogen assimilation and conversion efficiency, the system operated in batch-490 

mode was able to convert 100% of NH4-N nitrogen into MP at 66% or more protein content 491 

on CDW basis. In case of the CR configuration, the N-usage efficiency was lower, in the order 492 

of 87% on CDW basis. The aim of the high rate CR operation was to attain maximum biomass 493 

growth and MP accumulation, avoiding nutrient limitation. As result, nitrogen was added in 494 

a slight excess with some nitrogen was still present (unused) in the effluent of the reactor. It 495 

is likely that higher efficiencies could be obtained imposing more carefully N limiting 496 

conditions and varying the initial nitrogen loading rate.  497 

The biomass produced under constant CR operation revealed a high protein content of more 498 

than 70%. The latter is in agreement with other studies on HOB for MP production (Volova 499 

and Barashkov, 2010), and confirms that Sulfuricurvum spp. might be suitable as a MP 500 

producing bacterium. The overall protein content is higher than the 68% reported for 501 

bacterial meal as well as than the one of fishmeal, regarded as high-quality additive in 502 
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nutrition and also than the one of soybean meal, the reference vegetable protein for 503 

livestock. In the same way, the amino acids profile of the produced MP revealed a close 504 

compatibility to the one of bacterial meal as well as fishmeal, outscoring the one of soybean 505 

meal. Bacterial meal, as already produced from natural gas could also be used to directly 506 

upgrade the biogas produced from anaerobic digestion of sewage into MP. As discussed in a 507 

recent review (Matassa et al., 2015b),  more than being self-excluding the hydrogen and the 508 

methane platforms can be seen as complementary, depending on the availability of each 509 

resource on-site. Like for bacterial meal, which already received positive feedback from feed 510 

trials, preliminary in vitro tests on the nutritional digestibility of our MP were also positive 511 

(data not shown). Clearly, the findings obtained in the study need to be complemented by 512 

detailed animal studies in which aspects of long-term gastro-intestinal uptake and putative 513 

nutritional side effects are scrutinized. However, the current findings clearly show the 514 

potential of using the produced MP as high-quality feed/food additive, offering a valid 515 

alternative to the high land, water, nutrients and carbon footprint of conventional vegetable 516 

protein production (Walsh et al., 2015). If this would be done by upgrading nitrogen 517 

recovered from used water the benefits in terms of avoided N losses and emissions could be 518 

even higher (Matassa et al., 2015a). 519 

5. Conclusions 520 

In this study, we aimed at assessing the potentialities of autotrophic hydrogen oxidation to 521 

recover and upgrade of resources under different operating conditions. The evolution of 522 

HOB from a generic mixed microbial community under different operating conditions 523 

allowed to reveal interesting and novel aspects, with potential for application in industrial 524 

contexts. The key findings are: 525 
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• Under SBR conditions the enriched mixed culture revealed the coexistence of a 526 

diversity of microbial actuators 527 

• Under high rate CR culture conditions the microbiome narrowed down to 528 

Sulfuricurvum spp. dominated culture which was both stable and highly productive 529 

• Mineral nitrogen and carbon dioxide were directly upgraded into microbial biomass, 530 

rich in protein, by using hydrogen and oxygen with high efficiency under CR culture 531 

conditions; 532 

• The nutritional properties of the produced MP are comparable to the high-quality 533 

fishmeal and surpass those of vegetable soybean meal. 534 

Microbial biosynthesis of useful commodities from carbon dioxide is amongst the most 535 

challenging yet promising routes of the future bioeconomy. The exploration of renewable 536 

energy generation combined with technology advances in hydrogen production might 537 

enable on-site recovery and upgrading of valuable resources by means of HOB, produced 538 

under appropriate microbial resource management (MRM) conditions (Verstraete, 2015; 539 

Verstraete et al., 2007).  540 
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