
Accepted Manuscript

Title: Synergism between ivermectin and the tyrosine
kinase/P-glycoprotein inhibitor crizotinib against
Haemonchus contortus larvae in vitro

Author: Ali Raza Steven R. Kopp Andrew C. Kotze

PII: S0304-4017(16)30286-2
DOI: http://dx.doi.org/doi:10.1016/j.vetpar.2016.07.026
Reference: VETPAR 8099

To appear in: Veterinary Parasitology

Received date: 26-5-2016
Revised date: 29-5-2016
Accepted date: 21-7-2016

Please cite this article as: {http://dx.doi.org/

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/83970299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/doi:10.1016/j.vetpar.2016.07.026
http://dx.doi.org/


1 
 

Short Communication 

 

Synergism between ivermectin and the tyrosine kinase / P-glycoprotein inhibitor 

crizotinib against Haemonchus contortus larvae in vitro 

 

Ali Razaa,b, Steven R. Koppb, and Andrew C. Kotzea * 

 

a CSIRO Agriculture, Queensland Bioscience Precinct, University of Queensland, Brisbane, Australia  

b School of Veterinary Science, University of Queensland, Gatton, Australia 

 

 

 

 

* Corresponding author: CSIRO Agriculture, 306 Carmody Rd., St. Lucia, QLD 4067, Australia 

E-mail address: andrew.kotze@csiro.au  (A. Kotze) 

  



2 
 

Graphical abstract 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Highlights: 

 

- we examined interaction of P-gp inhibitor crizotinib with ivermectin in Haemonchus 

contortus larvae in vitro  

- crizotinib increased the toxicity of ivermectin towards a resistant isolate in migration 

assays 

- less synergism observed in larval development assays 

- assay differences suggest life-stage specific patterns of ivermectin /  P-gp interaction. 

- study highlights potential of P-gp inhibitors to reverse ivermectin resistance 

 

Abstract 

Anthelmintic resistance is a major problem in parasitic nematodes of livestock 

worldwide. One means to counter resistance is to use synergists that specifically inhibit 

resistance mechanisms in order to restore the toxicity, and hence preserve the usefulness, of 

currently available anthelmintics. P-glycoproteins (P-gps) eliminate a wide variety of 

structurally unrelated xenobiotics from cells, and have been implicated in anthelmintic 

resistance. Crizotinib is a tyrosine kinase inhibitor under development as a cancer therapeutic. 

The compound also inhibits P-gps, and has been shown to reverse multidrug resistance in 

cancer cells. We were therefore interested in determining if the compound was able to 

increase the sensitivity of Haemonchus contortus larvae to ivermectin, as measured by in 

vitro larval development and migration assays with a drug-resistant and a –susceptible 

isolate. In migration assays, co-administration of crizotinib increased the toxicity of 

ivermectin to resistant larvae (up to 5.7-fold decrease in ivermectin IC50), and rendered the 

resistant larvae equally or more sensitive to ivermectin than the susceptible isolate. On the 

other hand, co-administration of crizotinib had no effect on ivermectin sensitivity in the 
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susceptible isolate. In development assays, significant increases in the sensitivity of both the 

resistant (up to 1.9-fold) and susceptible (up to 1.6-fold) larvae to ivermectin were observed , 

although the magnitude of the observed synergism was less than seen in migration assays, 

and the resistant larvae retained significant levels of ivermectin resistance. By highlighting 

the ability of the P-gp inhibitor crizotinib to increase the sensitivity of H. contortus larvae to 

ivermectin, this study provides further evidence that P-gp inhibitors are potential tools for 

modulating the efficacy of anthelmintics. In addition, the differences in the outcomes of the 

two assays, with ‘resistance-breaking’ effects being much more marked in migration assays, 

suggest that some life-stage-specific aspects may exist in the interaction of ivermectin with P-

gps in the two worm isolates.  

Keywords: Crizotinib, P-glycoprotein, Inhibitor, Haemonchus contortus, Anthelmintic 

resistance 

 

1. Introduction 

The development of resistance to almost all available anthelmintics threatens our ability 

to control parasitic nematodes in livestock enterprises worldwide. Given the time and cost of 

developing new drugs (Woods and Williams, 2007), there is a need to manage the use of the 

existing drugs to preserve their usefulness for as long as possible. Means to achieve this 

include the elucidation of resistance mechanisms in order to develop resistance diagnostics 

(Kotze et al., 2014), as well as the use of compounds that can act to inhibit resistance 

mechanisms, and hence restore anthelmintic susceptibility to resistant worms (for example 

Lespine et al., 2012).  

ATP binding cassette (ABC) transporters are a superfamily of transmembrane proteins 

which mediate the ATP-dependent efflux of a wide range of structurally and mechanistically 

unrelated compounds including various anticancer and anthelmintic drugs (Gottesman and 
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Pastan, 1993; Lespine et al., 2012). Multiple ABC transporter genes have been reported in 

free-living and parasitic nematodes (Sheps et al., 2004; Ardelli et al., 2010; Laing et al., 

2013).  The overexpression of some of these transporters has  been observed in drug-resistant 

isolates of different nematode species compared to susceptible reference isolates (Dicker et 

al., 2011; Williamson et al., 2011; Sarai et al., 2013; Raza et al., 2016), suggesting a potential 

role for ABC transporters in anthelmintic resistance. Numerous in vitro and in vivo studies 

have shown that  an anthelmintic/ MDRI combination therapy increases the toxicity of the 

anthelmintic to both drug-susceptible and –resistant isolates of different nematode species 

(Bartley et al., 2009; Pérez et al., 2010; Heckler et al., 2014). Recently, Raza et al. (2015) 

reported that zosuquidar and tariquidar, members of the so-called third generation of MDRIs 

(Falasca and Linton, 2012) significantly increased ivermectin (IVM) toxicity to Haemonchus 

contortus larvae in vitro. 

Tyrosine kinase inhibitors are an important new class of targeted chemotherapeutic 

agents that represent a promising group of anticancer drugs in current clinical trials and 

clinical use. (Shawver et al., 2002). Crizotinib is a tyrosine kinase inhibitor that has been 

examined as a cancer therapeutic for the treatment of patients with anaplastic lymphoma 

kinase (ALK)-positive advanced non-small cell lung cancer (NSCLC). It works by inhibiting 

c-Met (a gene that encodes hepatocyte growth factor receptor) and ALK. In NSCLC, it also 

inhibits echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase 

(EML-ALK 4) translocation (reviewed by Sahu et al., 2013). As well as being an inhibitor of 

tyrosine kinase, crizotinib also acts as a competitive inhibitor of P-gps (Zhou et al., 2012). 

The compound significantly increased the sensitivity of ABCB1 over-expressing cells to 

doxorubicin and paclitaxel, and the combination of crizotinib with paclitaxel markedly 

increased anti-tumour activity of paclitaxel in the KBv200 tumour xenograft model. 
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Given that, i) crizotinib increases toxicity of anti-cancer drugs in mammalian cells and 

xenograft experimental models by acting as an MDRI in inhibiting the activity of P-gps, ii) 

that P-gps have been implicated in some anthelmintic resistances, and iii) that other MDRIs 

have been shown to partially reverse anthelmintic resistances, we hypothesized that crizotinib 

might be able to inhibit nematode P-gps, and hence restore the sensitivity of resistant worms 

to anthelmintics. The present study therefore aimed to investigate whether crizotinib was able 

to synergise the toxicity of IVM against drug-resistant and -susceptible isolates of H. 

contortus using larval development and migration assays. 

 

 

 

2. Materials and methods 

 

2.1. Parasites and chemicals 

Two isolates of H. contortus were used for the present study: the drug-susceptible 

Kirby isolate (Albers and Burgess, 1988) and the multi-drug-resistant Wallangra (WAL) 

isolate (Love et al., 2003). Infections were maintained in sheep at the CSIRO Agriculture FD 

McMaster laboratory, Armidale, New South Wales (NSW), and faecal samples were 

collected and transported to the CSIRO laboratories in Brisbane, QLD. All animal procedures 

were approved by the FD McMaster Animal Ethics Committee, CSIRO Agriculture (Animal 

Ethics Approval Number AEC 13/23). Worm eggs and infective stage L3 larvae were 

prepared for use in larval development and migration assays, respectively, as described 

previously (Raza et al., 2015).  

Technical grade IVM was purchased from Sigma Chemical Co. and a stock solution 

was prepared at 10 mg/mL in dimethyl sulfoxide (DMSO). Crizotinib was purchased from 
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SelleckChem, and a stock solution was prepared in DMSO at a concentration of 5 mg/mL. 

The stock solutions for both chemicals were further diluted by two-fold serial dilutions in 

DMSO to produce multiple separate drug solutions. The drug solutions were stored at -20 0C. 

 

2.2. Worm bioassays 

The ability of ivermectin, alone or in combination with crizotinib, to inhibit the 

migration of L3 stage larvae through an agar/mesh system was measured using a larval 

migration assay (LMA) in 96-well microtitre plates (Kotze et al., 2006), as described 

previously (Raza et al., (2015). Final concentration ranges for IVM were 25000-195.30 

ng/mL for WAL, while the ranges used for Kirby were 6250-48.8 ng/mL (final DMSO 

concentration was 1% v/v). The plates were incubated for 48 h, and the drug-exposed worms 

were then transferred using a multichannel pipette to the agar / filter mesh / receiver plates.  

After 24 h, the agar / filter plates were removed, and the worms that had migrated into the 

receiver plate wells were killed by adding Lugol’s iodine (10 µL), and counted. 

A larval development assay (LDA) was used to study the effects of IVM, alone or in 

combination with crizotinib, on the development of H. contortus larvae from the egg to the 

L3 stage following the method described by Kotze et al. (2009). The assay was performed in 

96-well plates, with drugs impregnated into agar. Final IVM concentration ranges were 39-

0.076 ng/mL for the WAL isolate, and 2.44-0.0048 ng/mL for the Kirby isolate (final DMSO 

concentration was 1 % v/v). Eggs were added to each well, the larvae were fed the next day 

(with a growth medium prepared as described by Kotze et al. (2009)), and finally larvae were 

killed after 7 days using Lugol’s iodine, and the number of fully grown infective L3 in each 

well was counted.  

For both the LDAs and LMAs, each experiment consisted of triplicate wells at a range 

of IVM concentrations, either alone or combined with crizotinib, as well as at least 12 control 
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wells (DMSO or crizotinib only) per plate. Three separate experiments were performed for 

IVM alone and IVM in combination with crizotinib with each worm isolate. 

 

2.3. Data Analysis 

For each experiment, the number of L3 in each well was converted to a percentage of 

the mean number of L3 in multiple control wells. The data were then analysed using non-

linear regression with GraphPad Prism® software (GraphPad Software Inc., USA, version 

5.03).  

The effects of crizotinib on the sensitivity of larvae to IVM were described using 

synergism ratios, calculated as: IC50 IVM alone / IC50 IVM in combination with crizotinib. 

The ratios were considered to indicate a significant degree of synergism if they were derived 

from IC50 values which showed non-overlapping 95% confidence intervals (CIs).  

 

 

3. Results and Discussion 

 

Dose-response curves from a number of preliminary LMA and LDA experiments with 

crizotinib-alone were used to select two concentrations of crizotinib for use in subsequent 

assays in combination with IVM (Fig. 1A, B).  Crizotinib concentrations that resulted in less 

than 20% inhibition of larval migration or development were chosen: LMA, Kirby 3 and 1.5 

µg/mL, WAL 13 and 6.5 µg/mL; LDA, Kirby 10 and 5 µg/mL, WAL 20 and 10 µg/ mL 

(Table 1). The Kirby larvae showed increased sensitivity to crizotinib in both the LMA and 

LDA compared to WAL, with dose-response curves shifted to the left for Kirby compared to 

WAL, and hence lower combination treatment crizotinib concentrations were selected for 

subsequent combination assays with Kirby compared to WAL. It has previously been 
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reported that WAL larvae tolerate higher levels of some MDRIs than Kirby larvae, for 

example verapamil and zosuquidar (Raza et al., 2015). The present study and our earlier data 

therefore suggest that WAL larvae may have defensive systems that allow them to survive in 

the presence of higher concentrations of crizotinib and other MDRIs. One possible 

mechanism may be the use of P-gps to efflux the compounds, as WAL larvae have been 

reported to show higher expression of several P-gp genes compared to Kirby (Sarai et al., 

2013; Raza et al., 2016). In addition, both the isolates also showed higher tolerance to 

crizotinib in LMAs as compared to LDAs. The variation in toxicity of the compound in the 

two bioassays may be due to life-stage-specific differences in expression patterns of different 

P-gps genes, as previously observed in comparisons of P-gp gene expression patterns 

between different life stages of H. contortus (Sarai et al., 2013). 

Dose responses in LMAs with IVM alone, or in combination with crizotinib, are shown 

in Fig. 2, with IC50 values in Table 1. Crizotinib had no significant effect on the IVM dose 

response for Kirby larvae (Fig. 2A). On the other hand, crizotinib shifted the WAL IVM 

dose-response significantly to the left, amounting to a 2.6-fold decrease in IVM IC50 at 6.25 

µg/mL crizotinib, and a 5.7-fold decrease in IVM IC50 at 12.5 µg/mL crizotinib (Fig. 2B). 

The IC50 for IVM against WAL larvae in combination with 12.5 µg/mL crizotinib (570 

ng/mL) was significantly less than for Kirby larvae with IVM alone (1171 ng/mL), indicating 

that the presence of crizotinib resulted in an increase in the sensitivity of WAL larvae to IVM 

to levels greater than that observed with IVM alone and the drug-susceptible Kirby isolate.  

Co-administration of crizotinib with IVM shifted the LDA dose response curves 

towards the left and significantly decreased IVM IC50 values for both WAL and Kirby 

isolates, as indicated by non-overlap of 95% CIs (Figure 3, Table 1). Synergism ratios were 

1.4 and 1.6 for the Kirby isolate (at 10 and 5 µg/mL crizotinib, respectively) and 1.9 and 1.5 

for the WAL isolate (at 20 and 10 µg/mL crizotinib, respectively).  
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There were several points of difference between the LMA and LDA results. Firstly, 

crizotinib acted synergistically with WAL larvae only in the LMA, while showing equivalent 

levels of synergism with both isolates in the LDA. Secondly, the effects of crizotinib with 

WAL larvae in the LMA were much more marked than those seen with either isolate in the 

LDA (SRs of 2.6 and 5.7 in the LMA with WAL, compared to 1.4 – 1.9 in the LDA with 

both isolates). Thirdly, leading directly on from the last point, co-administration of crizotinib 

and IVM to WAL larvae in the LMA rendered the larvae more sensitive to IVM than the 

Kirby isolate (Kirby IVM IC50 = 1171 ng/mL, compared to WAL IVM IC50 in presence of 

crizotinib = 570 ng/mL). That is, the IVM resistance displayed by the WAL larvae was 

removed by crizotinib in the LMA. In contrast, in the LDA, the WAL IVM IC50 in the 

presence of crizotinib remained 11-fold higher than IVM-alone IC50 value for Kirby larvae 

(2.09 ng/mL compared to 0.19 ng/mL). These differences may reflect differences in the 

nature of the two assays. The assays measure the effects of IVM on quite different phenotypic 

traits (larval development and larval migration), focused on different life stages, with the 

LDA focusing on the early larval stages, while the LMA assesses migration ability in 

infective L3 stage larvae. 

The minor levels of synergism observed with both isolates in the LDA, alongside the 

more significant synergism with WAL larvae only in the LMA, suggests that the nature of the 

IVM resistance mechanism(s) that distinguishes Kirby from WAL larvae, and specifically the 

contribution of P-gps towards the resistance, varies between the larval life stages. As 

mentioned above, Sarai et al. (2013) reported significant variation in the life-stage expression 

patterns of the various P-gp genes in L1 and L3 stages of H. contortus larvae within as well 

as between different isolates. The low level of synergism in both isolates as measured by 

LDA in the present study suggest that P-gps may play a minor role in the ability of early 

larval stages of both isolates to tolerate IVM. On the other hand, the significant synergism 
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seen in the LMA only with WAL suggests that P-gps may play a significant role in the 

observed IVM resistance displayed by L3 of this isolate, while being of little consequence in 

the interaction of Kirby L3 with IVM.  That is, the data suggest a significant role in IVM 

sensitivity for P-gps in L3 stage larvae, compared to a minor role in protection of early larval 

stages against IVM in both isolates, but no role in resistance in these early larval stages. This 

suggestion of no role in resistance in the early larval stages needs to be tempered by the fact 

that crizotinib may only interact with a sub-set of the ABC transporters present in nematode 

larvae, or at least its inhibitory effects may vary across the population of ABC transporters, 

and hence it is only the lack of a role for the specific ABC transporters inhibited by this 

compound that is indicated by the data for early stage larvae. Raza et al. (2015) also found 

that the synergistic effects of a number of MDRI were more marked in larval migration 

assays compared to LDAs; for example co-administration of zosuquidar and tariquidar 

rendered the WAL larvae more sensitive to IVM than Kirby larvae (synergism ratios 4.7-6.0), 

whereas these compounds had less effect on the toxicity of IVM towards WAL larvae in 

LDAs (SRs 1.6-2.4).  

In examining the interaction of crizotinib with IVM sensitivity in H. contortus larvae, 

the present study aimed to explore two aspects of P-gp inhibition and anthelmintic sensitivity. 

The first of these was to use crizotinib as a test compound for exploring the IVM resistance 

mechanism in WAL larvae. The data described above add to the body of literature indicating 

that P-gps play a role in the sensitivity of nematode larvae to anthelmintics, particularly MLs 

(reviewed by Lespine et al., 2012), while the life-stage-dependant patterns of synergism 

across the two assays has allowed us to make suggestions as to the relative role of P-gps in 

IVM resistance in WAL larvae at different larval life stages. The second aspect of this study 

was to assess the potential for the use of crizotinib to reverse IVM resistance. A number of 

studies have reported on the use of MDRI compounds in combination with anthelmintics, 



12 
 

especially MLs, to increase the toxicity of these drugs in vivo (Molento and Prichard, 1999; 

Lifschitz et al., 2010a; 2010b). Importantly, for crizotinib, only our LMA data is supportive 

of such a potential use. Studies with adult parasites would be required to assess the practical 

applicability of the ML-resistance reversing ability of this compound, since this is the target 

life stage of most chemotherapeutic approaches to worm control. Initially, though, in vitro 

studies using sensitive assays may be informative as to compound concentrations (ratios) 

required in order to observe synergistic effects with the adult life stage. There are, however, 

significant barriers to such an approach. Most importantly, there is potential for toxic side-

effects in the host as a result of inhibiting host animal ABC transporters alongside the 

nematode transporters (Lespine et al., 2012) Secondly, the cost of such drugs is currently 

prohibitive. Such combination therapies will not be a cost-effective option while cheaper 

drugs remain effective, however, such cost constraints may diminish in the future as multi-

drug resistance becomes more intense and widespread.  
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Figure captions: 

 

Fig. 1. Effects of crizotinib alone on the migration (A) and development (B) of H. contortus 

Kirby and WAL larvae. Kirby dose-response curve shown with solid lines and closed 

symbols, WAL dose-response curve shown as dashed lines and open symbols. Arrows 

indicate crizotinib concentrations chosen for subsequent assays in combination with IVM. 

Each data point represents mean ± SE, n= 9 (pooled data from three experiments, each with 

assays in triplicate). 

 

 

Fig. 2. Effects of IVM alone, or in combination with crizotinib, on the migration of L3 stage  

H. contortus Kirby (A) and WAL (B) larvae;  IVM alone shown with solid lines and closed 

symbols, IVM plus crizotinib shown as dashed (WAL) or dotted (Kirby) lines, and open 

symbols. The concentration of crizotinib in µg/mL is shown as a subscript after the inhibitor 

name; Cri: crizotinib. Each data point represents mean ± SE, n= 9 (pooled data from three 

experiments, each with assays in triplicate). 

 

Fig. 3. Effects of IVM alone, or in combination with crizotinib, on the development of H. 

contortus Kirby and WAL larvae;  Kirby set of dose responses lie to the left of the WAL set; 

IVM alone shown with solid lines and closed symbols, IVM plus crizotinib shown as dashed 

(WAL) or dotted (Kirby) lines, and open symbols. The concentration of crizotinib in µg/mL 

is shown as a subscript after the inhibitor name; Cri: crizotinib. Each data point represents 

mean ± SE, n= 9 (pooled data from three experiments, each with assays in triplicate). 
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Figure 1 
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Figure 3 
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Table 1.   Responses of Kirby and WAL larvae to ivermectin alone, or in combination 

with crizotinib, in larval migration assays (LMAs) and larval development assays (LDAs)  

 

Worm 

bioassay 
MDRI 

Hc Kirby 

 

Hc Wallangra 

Crizotinib 

(µg/mL) 

IVM

IC50 a 

(ng/mL) 

95% CI  SRb 
Crizotinib 

(µg/mL) 

IVM 

IC50 a 

(ng/mL) 

95% CI  SRb 

LMA 

None  ‐  1171  965‐1422  ‐    ‐  3268 
2520‐

4238 
‐ 

Crizotinib 

3.0  1280  1081‐1760  0.9    12.5  570*  459‐708 
5.7

* 

1.5  1535  1340‐1760  0.8    6.25  1262*  815‐1954 
2.6

* 

       

LDA 

None  ‐  0.19 0.16‐0.23 ‐ ‐ 4.01  3.55‐4.73 ‐

Crizotinib 

10  0.14*  0.12‐0.15 
1.4

* 
  20  2.09*  1.66‐2.64 

1.9

* 

5  0.12*  0.10‐0.14 
1.6

* 
  10  2.81*  2.32‐3.42 

1.5

* 

 

a Within an isolate, and within an assay type, * denotes that the IC50 in the presence of 

crizotinib was significantly less than the IC50 for IVM  alone, as determined by non-overlap of 95 % 

Confidence Intervals. 
b SR = Synergism ratio = IC50 for IVM in the absence of crizotinib / IC50 for anthelmintic in the 

presence of crizotinib 

 

 

 

 

 


