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Abstract 20 

Storage is an unavoidable critical phase regarding dairy powder reconstitution abilities, 21 

particularly for high casein content powders, which generally present a poor rehydration 22 

behavior. The ability of micellar casein powders to completely rehydrate can thus be 23 

particularly affected by storage time and temperature. To implement best practices for the 24 

optimization of storage conditions, understanding changes occurring is a crucial point. For the 25 

first time, biophysical techniques were used to investigate powder surface at the nanoscale. 26 

Atomic force microscopy revealed that particle surface became rougher during storage, 27 

associated with the formation of hollow zones (around 500 nm) holes when stored for 10 28 

months at 40 °C. Mechanical properties of micellar casein particle surface during powder 29 

storage was quantified using AFM nanoindentation. Spatially-resolved force/indentation 30 

curves evidenced a significant stiffer surface for aged powder (Young modulus of ~20 GPa) 31 

in comparison with the fresh one (~0.2 GPa). These findings were fully consistent with the 32 

formation of a crust at the powder surface observed by high-resolution field-emission 33 

scanning electron microscopy during powder rehydration. Finally, alterations of the 34 

rehydration process can be related to modifications occurring at the particle surface during 35 

storage. 36 

 37 

 38 

Keywords: AFM; nanoindentation; surface characterization; micellar casein powder, SEM 39 
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1. Introduction 42 

High-protein dairy powders are ingredients added to a large variety of products in 43 

order to improve food nutritional, functional and/or sensory properties (Kelly & Fox, 2016). 44 

The ability of dehydrated dairy ingredients to rehydrate readily in aqueous media is essential 45 

if their underlying functionality is to be exploited (Crowley, Kelly, Schuck, Jeantet & 46 

O’mahony, 2016; Fang, Selomulya, Ainsworth, Palmer & Chen, 2011; Gaiani, Schuck, Scher, 47 

Desobry & Banon, 2007; Mimouni, Deeth, Whittaker, Gidley & Bhandari, 2009; Mimouni, 48 

Deeth, Whittaker, Gidley & Bhandari, 2010b). Concerning high-protein powders concentrated 49 

in caseins, poor rehydration characteristics in aqueous media are often encountered. In 50 

addition, intrinsic powder properties, such as surface and bulk composition, particle structure 51 

(e.g. morphology, presence of pores and capillaries) and rehydration conditions (e.g. stirring 52 

rate, temperature, solids content), can influence rehydration behavior (Crowley et al., 2016). 53 

Micellar casein (MC) powders belongs to high protein dairy powders, they are produced by 54 

membrane filtration of skimmed milk followed by spray-drying (Schuck et al., 1994; Rollema 55 

& Muir, 2009). In these powders, whey proteins are removed and caseins are present under a 56 

micellar state (casein micelles containing colloidal calcium phosphate). Formation of inter-57 

linked network of casein micelles at the particle surfaces during processing can explain the 58 

poor rehydration capacity of such powders. Dispersion of the powder into primary particles is 59 

the limiting step to allow complete rehydration after a reasonable period of time (Anema et 60 

al., 2006; Havea, 2006; Baldwin, 2010; Fang et al., 2012; Haque et al., 2012; Crowley et al., 61 

2016). Moreover, the rehydration capacity decrease is linked to storage conditions 62 

(temperature, water activity, duration, etc.) and fresh powders present better rehydration 63 

properties than aged powders (Fang et al., 2011; Gazi & Huppertz 2015). For example, higher 64 

storage temperature leads to a decrease in MPC (milk protein concentrate) powders solubility 65 

(Anema, Pinder, Hunter & Hemar, 2006; Fang et al., 2011; Fyfe et al., 2011; Gazi & Huppertz 66 
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2015) and the caseins dominate the composition of insoluble material (Anema et al., 2006). 67 

Also, the quantity of insoluble material was increased at high relative humidity (Le, Bhandari 68 

& Deeth, 2011) and linked to the apparition of Maillard products (Le, Bhandari, Holland & 69 

Deeth, 2011). However, covalent cross-linking explanation as the cause of insolubility 70 

development is questionable (Gazi and Huppertz, 2015) because prolonged reconstitution 71 

times eventually lead to full solubility of MPC powders (Mimouni et al., 2010a). Finally, the 72 

composition of particle surface plays a crucial role in powder rehydration as it was supported 73 

by XPS analysis (increase in non-polar bonding) (Gaiani et al., 2006) and by Atomic Force 74 

Microscopy (AFM) where MPC established attractive forces with a hydrophobic surface 75 

(Fyfe et al., 2011). Decrease in rehydration was also attributed to compounds migration from 76 

particle core to surface during storage. MC powder is mainly composed of caseins and only 77 

residual phospholipids were found to migrate to the surface (Gaiani et al., 2006; Gaiani et al., 78 

2007).  79 

 80 

Dairy powder surface in depth investigation appears essential to elucidate the nature of 81 

phenomena occurring. In the pharmaceutical field, development of new techniques able to 82 

probe surface mechanical properties of the powders were recently implemented (Wu, Li & 83 

Mansour, 2010). Among these techniques, AFM nanoindentation allows measurements on 84 

individual particles while providing mechanical properties at nanometer scale. Indentation 85 

testing is a method consisting in touching the surface of interest presenting unknown 86 

mechanical properties such as elastic modulus and hardness with another material presenting 87 

knowns properties. Mechanical properties of milk protein skin layers after drying were 88 

estimated by indentation test in order to understand the mechanisms of particle formation but 89 

was not directly performed on particle powder and at a nanoscale (Sadek et al., 2015). 90 

Nanoindentation is an indentation test in which the length scale of the penetration is measured 91 
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in nanometers rather than microns or millimeters, the latter being common in conventional 92 

hardness tests (Fischer-Cripps, 2000). Nanoindentation can be performed with an atomic force 93 

microscope and the interesting advantages of the technique are to get a mapping of elastic 94 

modulus on a defined region. This particular case give local information of surface hardness. 95 

A cantilever force sensor is very reliable and sensitive which makes the AFM an ideal tool for 96 

probing by this sensor, the mechanical properties of materials with high resolution and high 97 

sensitivity. Such characterizations can be obtained by performing a force-distance curve. By 98 

analyzing the force curve approach with theoretical models, the mechanical properties (ie 99 

stiffness, Young's modulus) of the soft sample can be obtained (Kasas, Longo and Dietler, 100 

2013). In the field of pharmaceutical materials, nanoindentation was for example performed 101 

on lactose (Masterson & Cao, 2008; Perkins et al., 2007) or sucrose (Liao & Wiedmann, 102 

2004; Masterson et al., 2008; Ramos & Bahr, 2007). Pharmaceutical powders were 103 

characterized by AFM nanoindentation in order to correlate particle hardness with powder 104 

compaction performance (Cao, Morganti, Hancock & Masterson, 2010). On the best 105 

knowledge of the authors, a declination of these promising biophysical techniques to food 106 

powders was never done. Given that crust formation has been reported during process and 107 

storage, nanomechanical measurements appear as an interesting tool to evaluate very local 108 

modifications of particle powder surface. Even if the method was used from several decades 109 

for pharmaceutical application, it was never applied for dairy powders. In this context, the 110 

present study aimed at understanding how particle surface is modified at nanoscale during 111 

storage at high temperature and the consequence of these structural alterations on the 112 

hydration mechanism of particle surface during powder rehydration. 113 

 114 

2. Material and methods 115 

2.1. MC powders: production and storage 116 
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MC concentrate was provided by a dairy company (Ingredia, France). It was obtained 117 

from skimmed milk by tangential membrane microfiltration followed by purification through 118 

water diafiltration (Pierre, Fauquant, Le Graet, Piot & Maubois, 1992; Schuck et al., 1994). 119 

The concentrate was spray-dried at Bionov (Rennes, France) in a three-stage pilot-plant spray-120 

dryer (GEA, Niro Atomizer, St Quentin en Yvelines, France). The inlet and outlet 121 

temperatures were fixed at 150 °C and 50 °C respectively. MC powders were packaged in 122 

sealed tins (aw = 0.2), then stored under a controlled temperature of 40 °C for ten months. 123 

This high temperature was chosen to enhance physicochemical phenomena observed during 124 

powder storage. 125 

 126 

2.2. Rehydration protocol 127 

 Rehydration was performed at 5 % (w/v) powder concentration in water. 0.5 g MC 128 

powder was added to 10 mL deionised water. Stirring (200 rpm) at ambient temperature was 129 

carried out for 5 min (short-term rehydration) and 60 min (long-term rehydration). 130 

 131 

2.3. Surface observation 132 

2.3.1. Scanning Electron Microscopy  133 

A high-resolution field-emission scanning electron microscopy (SEM) type JEOL 134 

JSM-7100F supplied with a hot (Schottky) electron gun (JEOL Ltd., Tokyo, Japan) and 135 

having a resolution around 1 nm at 30 kV was used to investigate the surface morphology and 136 

structure of MC powders. Powder particle surface observation during rehydration was 137 

conducted according to the protocol developed by Mimouni et al. (Mimouni, Deeth, 138 

Whittaker, Gidley & Bhandari, 2010a) with small modifications. The suspension containing 139 

powder particles (under short or long-term rehydration) was deposited on a silicon chip wafer 140 

(ProSciTech, Kirwan, Australia) that has previously been coated with poly-L-Lys (Sigma, 141 
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Castle Hill, Australia). Powder particles were able to adhere to the wafer by creating 142 

electrostatic bonds with the substrate. The suspension was kept in contact with the wafer for 5 143 

min, then the wafer was drained and rinsed with 100 mM phosphate buffer (pH = 7). 144 

Chemical protein fixation was achieved by immersing the wafer in a solution composed of 3 145 

% glutaraldehyde in 100 mM phosphate buffer (pH = 7) for 15 min. When the fixation was 146 

completed, the samples were gently washed in phosphate buffer and dehydrated using the 147 

following graded ethanol series: 50 %, 60 %, 70 %, 80 %, 90 % (1 time) and 100% (3 times). 148 

The elapsed time per solution was 3 min (Dalgleish, Spagnuolo & Goff, 2004). Samples were 149 

then dried by using CO2 in a Supercritical Autosamdri-815B critical point dryer (Tousimis, 150 

Rockville, MD, USA). The silicon wafer was then mounted onto electron microscopy stubs 151 

thanks to a carbon double-sided adhesive tape. Finally, samples were coated with iridium 152 

(Q150T Turbo-Pumped Sputter Coater, ProSciTech Pty Ltd, Australia) for 2 min (~ 15 nm 153 

thick).  154 

 155 

2.3.2. AFM: surface topography and roughness 156 

Dairy powders were fixed onto a circular glass thanks to epoxy glue. AFM measurements 157 

were performed at room temperature using an Asylum MFP-3D atomic force microscope 158 

(Santa Barbara, CA, USA) with IGOR Pro 6.04 operation software (Wavemetrics, Lake 159 

Osewego, OR, USA). All images were acquired in liquid media, more precisely in ethanol to 160 

avoid powder rehydration during experiments. Topography images were obtained in contact 161 

mode at 1 Hz scan rate with NPG-10 gold cantilevers (Bruker AXS, Palaiseau, France). The 162 

scanned surface area was of 5 µm × 5 µm corresponding to 512 points × 512 lines. The 163 

average roughness (Ra) was calculated for MC powder particles with the following 164 

expression: 165 
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Where f (x, y) is the surface relative to the center plane, Lx and Ly are the dimensions of the 166 

surface. Tukey test was performed using KyPlot software version 2.0 in order to determine 167 

significant differences. To this end, roughness of around ten images was used to perform 168 

statistical analyses.  169 

 170 

2.4. Surface characterization 171 

2.4.1. XPS 172 

Elemental composition of the surface layer of MC powder (up to 5 - 6 nm depth) was 173 

measured by X-ray Photoelectron Spectroscopy (XPS) (Gaiani et al., 2006; Rouxhet et al., 174 

2008). Prior to analysis, the sample was outgassed under vacuum for 24 h. Spectra were 175 

obtained with a KRATOS Axis Ultra X-ray photoelectron spectrometer (Kratos Analytical, 176 

Manchester, UK) equipped with a monochromatic Al Kα X-ray (hν = 1486.6 eV) operated at 177 

150 W. Spectra were collected at normal take-off angle (90°) and the analysis area was 700 178 

µm × 300 µm.  179 

 180 

2.4.2 AFM Nanoindentation 181 

Mechanical properties of dairy powder particle surface were obtained in three steps 182 

described in Figure 1.  183 

(1) First of all, particle powders were spread onto a thin coat of epoxy glue deposited on 184 

the surface of a cleaned circular glass and the overall was let overnight to allow glue 185 

hardening. 186 

AFM measurements were performed with a diamond tip of Berkovich type purchased from 187 

Veeco (DNISP, Veeco Instruments SAS, Palaiseau, France). Regarding the cantilever, the 188 
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DNISP spring constant kc was evaluated at about 300 N.m-1 by the thermal calibration method 189 

(Levy & Maaloum, 2002). The experiments were performed at room temperature in liquid 190 

conditions, particularly in ethanol. AFM nanoindentation requires precise knowledge of the 191 

cantilever sensitivity. In order to evaluate this parameter, the calibration procedure consists in 192 

pressing the AFM tip onto an 'infinitely hard' surface, and to measure the gradient of the 193 

vertical displacement of cantilever versus the photodiode signal caused by the cantilever 194 

deflection (Clifford & Seah, 2005). Finally, once the system is perfectly calibrated, AFM 195 

nanoindentation can be performed on particle powders. A camera allows to visualize the 196 

sample and to select a particle powder. Once above the selected particle, the tip is put in 197 

contact with the surface and the measurements are imitated. 198 

(2) Mechanical properties of particle powder surface was obtained by recording force-199 

indentation curves. To perform nanoindentation tests, the AFM is operated in force mode and 200 

the tip is brought into contact with the surface, pushed to a maximum load (Approach curve), 201 

and then withdrawn (withdrawal curve). The voltage on the photodiode is recorded during the 202 

movement and plotted against the vertical distance to the sample. The voltages recorded can 203 

be converted into forces by Hooke’s law thus providing force-distance curves. Force/volume 204 

images consisting of 16 × 16 force curves were recorded for a 20 µm × 20 µm scanned 205 

surface meaning that a pixel has a dimension of 1.25 µm × 1.25 µm. 206 

(3) During nanoindentation measurements, force curves are recorded and converted into 207 

force versus indentation curves using appropriate treatments (Burnham & Colton, 1989). 208 

Force curves were exported as ASCII files and processed with a custom program written in 209 

Matlab (MathWorks, Inc., Natick, MA). The measured force-indentation curves were 210 

processed to estimate the Young’s modulus (also known as the elastic modulus) of the 211 

sample. The Young’s modulus was obtained by applying Hertz theory for elastic media 212 

(Hertz, 1882) and elasticity maps were designed.  213 
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where F is the force, " the indentation depth, E the Young modulus, # the Poisson coefficient 214 

and α the semi-top angle of the tip.  215 

Finally, analysis of at least three elasticity maps provided a mean elasticity value for each 216 

analyzed sample.  217 

 218 

3. Results and discussion 219 

3.1. Surface composition and structure of MC powders 220 

 Dairy powders surface is essential in its functional properties (Crowley, Kelly, Schuck, 221 

Jeantet & O’mahony, 2016), such as rehydration ability, which is crucial for the end use of a 222 

product. Surface composition of MC powders was determined by XPS on fresh and aged 223 

samples. XPS results are presented in Figure S1. Overall, no significant differences in surface 224 

composition were evidenced between analyzed samples. However, because XPS provides 225 

composition on large surface area, very local modifications cannot be revealed by this 226 

technique. Images of particle structure and surface topography were acquired by SEM. As 227 

displayed in Figure 2, particle sizes were heterogeneous and their surface appeared smooth in 228 

spite of the presence of dents. Regarding surface topography of fresh and aged powders, no 229 

differences were noticed, confirming previous observations reported in the literature (Fäldt & 230 

Bergenståhl, 1996; Fyfe et al., 2011). Unexpectedly, AFM topographical measurements 231 

revealed an increase in surface roughness during powder aging (Figure 3). These little 232 

variations were not discernible on SEM observation maybe because of the iridium coating that 233 

is thicker than 5 nm, which may have overlay differences in surface profiles of fresh and aged 234 

powders. On the contrary, AFM in contact mode is highly sensitive to very fine topographical 235 

deviations. Ra was calculated according to equation 1, and gave values of 5.1 ± 0.8 nm for the 236 

fresh powder and 7.8 ± 0.8 nm for the MC powder stored for 10 months at 40 °C. Statistical 237 
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analysis evidenced that roughness was significantly different (p ≤ 0.01). In particular, as can 238 

be noticed on the 3D representation (Figure 3), many hollows of around 500 nm diameter 239 

were noticeable on particle surface after aging at 40 °C for 10 months, while slight variations 240 

in roughness were observed on fresh particle powder surface.  241 

 242 

3.2. Nanomechanical properties of MC powder surface 243 

Nanomechanical properties of MC powder surface were explored using AFM nanoindentation 244 

measurements. Force/indentation curves were analyzed using the Hertz theory to generate 245 

elasticity maps (Figure 4 - inserts). The colorbar associates low elasticity values when the 246 

region is purple and high elasticity values when the region is red. The average of elasticity 247 

values obtained in three maps was used to calculate the mean elasticity of fresh and aged 248 

powders (Figure 4). The fresh powder presented a mean elasticity of 0.16 ± 0.03 GPa which 249 

is lower than values obtained for NPC skin layers (0.48 ± 1.10-3 GPa) by applying indentation 250 

test (Sadek et al., 2015) but from the same order. These differences can be explained by the 251 

system studied itself, a protein layer for Sadek et al., (2015) versus a particle powder in the 252 

present study. Also drying conditions were not identical between the two systems. In 253 

nanoindentation test, the length scale of the penetration is smaller than for an indentation test 254 

meaning that thanks to AFM nanoindentation the extreme surface was probed. The initial 255 

elasticity map revealed that surface is homogeneous as already supposed by Sadek et al., 256 

(2015) for skin layers. It was impossible to find the technique applied to systems similar as 257 

ours. But, AFM nanoindentaiton was performed on pharmaceutical powders and for example 258 

lactose powders exhibited values that were comprised between 0.18 and 0.51 GPa (Masterson 259 

& Cao, 2008) which is not far from the elasticity values obtained on MC powders in the 260 

present work. Elasticity maps recorded on stored powders were totally different: not 261 

homogeneous with local harder surfaces. Nonetheless, it is important to remember that the 262 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
size of a pixel in these maps is 1.25 µm × 1.25 µm meaning that unfortunately differences in 263 

elasticity cannot be attributed to topographical modification. For future work, it could be 264 

interesting to improve resolution in order to highlight very local modifications on powder 265 

surface. Elasticity increase during storage is a consequence of particle surface hardening: 266 

indeed, fresh MC powder had a relatively soft surface at the beginning of the storage, which 267 

evolved into a stiffer surface with elasticity values of 18.85 ± 9.33 after 10 months storage at 268 

40 °C.  269 

 270 

3.3. Evolution of surface structure during powder rehydration 271 

The three-dimensional organization of the material on particle surface was considerably 272 

modified during rehydration (Figure 5). 273 

Short term rehydration. 274 

Under short term rehydration, fresh MC powders globally followed the behavior described by 275 

Mimouni et al. (Mimouni, Deeth, Whittaker, Gidley & Bhandari, 2010a). Their microstructure 276 

was characterized by a loose assembly of individual casein micelles. For aged MC powders 277 

that were stored during 6 months at 40 °C, particles appeared poorly affected by the 278 

rehydration media and casein micelles were tighter on particle surface. On fresh and 6-month 279 

aged MC powders, the remaining undissolved powder particles presented large holes of 280 

several micrometers within the surface. These holes resulted from partial material removal 281 

upon rehydration, leading to the release of surface casein micelles in the surrounding media. 282 

Slow rehydration of dairy powders is often attributed to the casein fraction, known to have a 283 

poor dispersibility, and this phenomenon may be enhanced after storage at elevated 284 

temperature (Mimouni, Deeth, Whittaker, Gidley & Bhandari, 2010a). Finally, for prolonged 285 

storage of MC powders (10 months at 40 °C), the particle surface appeared almost unaffected 286 

by the rehydration media (no individual casein micelles can be observed) and looked like a 287 
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dry powder. Likewise, the large holes described for fresh and 6-month stored MC powders are 288 

no longer noticeable on particles stored for ten months at 40 °C. 289 

Long term rehydration. 290 

The long term rehydration process was conducted during 1 hour and particle surface was 291 

again analyzed. Only residual material was observed after long term rehydration of the fresh 292 

powder, while particles remained visible for powders stored at 40 °C. However, surface 293 

hydration after long term rehydration seemed to decrease with storage duration. In particular, 294 

as for short term rehydration, particles of the 10-month aged powder seem almost unaffected 295 

by the rehydration media. In the intermediate case (6-month aged powder), particles were far 296 

from fully solubilized but their surface appeared significantly hydrated with the presence of 297 

individual casein micelles. Approaching more finely the particle surface was possible by the 298 

exceptional resolution properties of a high-resolution field-emission SEM. The rehydration of 299 

a fresh MC powder allows visualizing casein micelles arranged in an open gel-like 300 

organization (Mimouni, Deeth, Whittaker, Gidley & Bhandari, 2010a). On the contrary, the 301 

aged powder stored for 6 months at 40 °C presented a layer of tightly packed casein micelles. 302 

Finally, when the powder was stored for 10 months at 40 °C, the integrity of particle surface 303 

seemed preserved (no holes could be observed) and the previously described casein micelles 304 

assemblies were not noticeable. Only the fresh MC powder succeeded to rehydrate, whereas 305 

rehydration capacity of aged powders was markedly affected by storage.  306 

Dynamic vapor sorption (DVS) is an interesting tool to evaluate the ability of powders to 307 

adsorb water (Schuck, Dolivet & Jeantet, 2012). The method provide information on the 308 

rehydration of a dry product through adsorption isotherm. Gaiani et al. (2006) investigated the 309 

effect of storage on surface composition, water sorption properties and powder microstructure 310 

of MC powders. A significant decreased of the monolayer water capacity was noticed by 311 

these authors on the same powders during storage for 60 days at 50 °C (around 0.0632 kg.kg-1 312 
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for fresh and around 0.0524 kg.kg-1 for aged MC powders). MC powders are the milk 313 

powders able to absorb the highest quantities of water in a fresh state. In the present study, 314 

water sorption properties were also evaluated (data not shown) and same tendencies were 315 

obtained (around 0.0644 kg.kg-1 for fresh and around 0.0424 kg.kg-1 for aged MC powders). 316 

This implies that the ability of aged powder to adsorb water is affected compared to fresh 317 

powders which is in accordance with the SEM observation (Figure 5). This impossibility to 318 

absorb elevated quantities of water can be related to the structural modifications of the 319 

micelles observed. 320 

From SEM analysis, it can be stated that the powder particle surface is not uniformly affected 321 

by the rehydration media, but some parts are solubilised while other parts remain unaffected. 322 

This spatial heterogeneity of particle rehydration meaning that partial removal of the crust 323 

occurred during rehydration has previously been described (Mimouni, Deeth, Whittaker, 324 

Gidley & Bhandari, 2010a). Additionally, heterogeneity in rehydration behavior was also 325 

denoted for the first time between particles from a same batch. More precisely, the hydration 326 

degree of particle surface was totally different, ranging from well to poorly hydrated (Figure 327 

6). These differences between individual particles could be the result of different residence 328 

time of the product in the dryer. It was shown that for a three-stage installation, depending on 329 

configurations related to fine particle recycling, some powder particles could leave the tower 330 

almost immediately, whilst others could remain in the installation for more than 70 min 331 

(Jeantet, Ducept, Dolivet, Méjean & Schuck, 2008). 332 

 333 

3.4 Proposed mechanism of modification during powder storage 334 

Complete rehydration is a crucial step for the effective expression of protein functionality 335 

(Crowley et al., 2015). The inhibition of water transfer inside particles is the limiting factor 336 

during rehydration of powders of high protein content, especially when caseins are the 337 
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predominant proteins. The long time required for complete rehydration was attributed to the 338 

slow dispersion of a “skin” of casein micelles present at particle surfaces (Mimouni, Deeth, 339 

Whittaker, Gidley & Bhandari, 2009). Numerous authors consider that the slow dispersion of 340 

primary particles is responsible for the extended rehydration times of casein-dominant 341 

powders (Fang, Selomulya, Ainsworth, Palmer & Chen, 2011; Gaiani, Banon, Scher, Schuck 342 

& Hardy, 2005; Richard, et al., 2013). In their work, Scokker et al. (2011) improved the 343 

powder reconstitutability by increasing the amount of non-micellar protein in the spray-drying 344 

feed. Two possible mechanisms contributing to the positive effect of non-micellar casein were 345 

highlighted. One of them proposes the spatial separation of the casein micelles by non-346 

micellar casein, preventing micelle–micelle interactions which can contribute to reduce the 347 

incidence of micelle cross-linking. The present study suggests that the apparent surface 348 

structure of powder particles during rehydration results from modification occurring during 349 

storage. Up to now, exact mechanisms behind these observations were never evidenced but 350 

AFM in topographical and force mode used in the present work can help in the development 351 

of some assumptions (Figure 7). In fresh powders, casein micelles are spatially separated thus 352 

preventing cross-linking between caseins. After storage at high temperature, aggregation of 353 

casein micelles leads to heterogeneous surface where caseins are tighter and this phenomenon 354 

may generate the mentioned hollows that were observed on topographical measurements. 355 

From a mechanical point of view, this results in an increase of elastic modulus reflecting a 356 

harder surface for aged powders. Hardening is a time-dependent, restructuring process 357 

occurring in concentrated systems (Hogan, O'Loughlin & Kelly, 2016). The proposed 358 

mechanisms underlying are protein aggregation through covalent (intermolecular disulphide 359 

bonds) and non-covalent (hydrophobic) interactions that can results in harder surface (Zhou, 360 

Liu & Labusa, 2008). Moreover, surface hardening during storage at elevated temperature 361 

resembles to shrinkage and case-hardening phenomenon occurring during drying of food 362 
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materials (Gulati & Datta, 2015). Drying of food materials usually results in large 363 

deformations (shrinkage) due to moisture removal. Material shrinkage (or strains) results in 364 

stress development that plays a critical role in the development of food structure and final 365 

volume of the dried product. 366 

 367 

4. Conclusion 368 

The measurement of nanomechanical properties of MC particle surface by AFM 369 

nanoindentation revealed an increase in surface hardness during storage at high temperature, 370 

while particle surface topography was barely affected. However, particle behavior during 371 

rehydration was markedly affected by storage conditions, leading to a compact network of 372 

casein micelles for aged powders, while it was looser for fresh powders. Nanomechanics 373 

revealed particle surface modifications during storage that were not visible on SEM images 374 

but having a great influence on powder ability to rehydrate. The harder particle surface 375 

observed for aged powders can be the result of compacted micelles, a material that is further 376 

difficult to disperse, resulting in very low rehydration mechanisms. The main reason for this 377 

reduction of powder solubility could be the non-covalent aggregation of closely-packed casein 378 

micelles. Finally, the hollow structures observed on topographical images (AFM) at dry state 379 

may originate from protein aggregation and resulting to a harder surface demonstrated by 380 

nanomechanical measurements. These modification can explain why powder rehydration is 381 

tricky after storage.  382 
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• MC powder presents hollow zones and harder surface during storage 

• Storage induce loss of rehydration ability of MC powder 

• Surface hydration is heterogeneous between particles from a same powder batch 

 


