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Abstract 

Conformational changes associated to sensing mechanisms of heme-based protein 

sensors are a key molecular event that seems to modulate not only the protein activity 

but also the potential of the Fe
III/II

 redox couple of the heme domain. In this work, 

midpoint potentials (Em) assigned to the Fe
III/II

 redox couple of the heme domain of 

FixL from Rhizobium etli (ReFixL) in the unliganded and liganded states were 

determined by spectroelectrochemistry in the presence of inorganic mediators. In 

comparison to the unliganded ReFixL protein (+19 mV), the binding to ligands that 

switch off the kinase activity induces a negative shift, i. e. Em = 51, 57 and 156 mV 

for O2, imidazole and CN

, respectively. Upon binding to CO, which does not affect the 

kinase active, Em was observed at +21 mV. The potential values observed for Fe
III/II

 of 

the heme domain of ReFixL upon binding to CO and O2 do not follow the expected 

trend based on thermodynamics, assuming that positive potential shift would be 

expected for ligands that bind to and therefore stabilize the Fe
II
 state. Our results 

suggest that the conformational changes that switch off kinase activity upon O2 binding 

have knock-on effects to the local environment of the heme, such as solvent 

rearrangement, destabilize the Fe
II
 state and counterbalances the Fe

II
-stabilizing 

influence of the O2 ligand. 

 

 

Keywords: Heme-based sensor, FixL, redox potential, kinase activity, 

spectroelectrochemistry 
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1. Introduction 

During the last two decades, a new family of hemoproteins has emerged with the 

function of biological sensors. Currently, these proteins are called heme-based sensors 

and are ubiquitous in nature; from archae to humans. These sensors have also exhibited 

many distinct biological functions, such as regulators of nitrogen fixation, aerotaxis, 

dormancy, circadian rhythms, among others [1-4]. Interestingly, these proteins harbour 

the heme group in at least 7 different types of fold, e.g. PAS, Globin, CooA, HNOB, 

GAF, SCHIC, LDB, which are usually coupled to a variety of output domains, 

including domains that exhibit enzymatic activity, DNA-protein or protein-protein 

interaction properties under ON/OFF control by the axial ligands bound to the heme 

domain [2, 3], as schematically illustrated in Fig. 1.  

 

Fig. 1. General Scheme of Heme-Based Sensor Regulation 

In 1991, a landmark publication reported that FixL was an oxygen heme-based 

sensor [5]. Since then, FixL has been one of the most thoroughly investigated heme-

based sensors, with many of its mechanistic details elucidated [6-14]. Commonly found 

in bacteria, FixL is part of a two-component system in which it acts as a sensor kinase 

while the transcription factor FixJ acts as a response regulator protein [15]. While the 

kinase activity of FixL is switched off upon binding to O2 [8, 16], under anaerobiosis a 

FixL histidine residue is autophosphorylated. Subsequent transfer of the histidine 
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phosphoryl group to an aspartate residue in the N-terminal signaling domain of FixJ 

makes the transcriptionally active phospho-FixJ, which then induces the expression of 

nitrogen fixation and microaerobic respiration genes (fix and nif genes) [3]. 

FixL from Bradyrhizobium japonicum (BjFixL) and Sinorhizobium meliloti 

(RmFixL) have been widely studied over recent years and, despite the fact that these 

FixLs are quite similar (see sequence alignment in Fig. S1 of the Supplementary 

Material), there are some differences in their domain organization and heme-regulated 

properties [6-10, 12-14]. For example, BjFixL can catalyse FixJ phosphorylation either 

in the deoxy (Fe
II
) or met (Fe

III
) state, while oxy (Fe

II
-O2) and cyano-met (Fe

III
-CN


) 

states efficiently deactivate BjFixL. On the other hand, RmFixL is only fully active in 

the deoxy (Fe
II
) state, while met (Fe

III
), oxy (Fe

II
-O2) and cyano-met (Fe

III
-CN


) states 

are kinase inactive towards FixJ turnover. Recently, another interesting FixL from 

Rhizobium etli (ReFixL) was investigated [11]. This is a hybrid sensor kinase that 

contains, additionally to BjFixL domains, a FixJ-like receiver domain at the C-terminal. 

This system promotes histidine phosphorylation and phosphoryl transfer to aspartate in 

the same protein, which facilitates investigation of all of these regulatory phenomena in 

one protein. Similarly to BjFixL, ReFixL contains two PAS domains in tandem and is 

fully kinase active in the deoxy (Fe
II
) and met (Fe

III
) states while bound to O2 and CN


, 

the ReFixL protein is no longer active. The heme is bound to the second PAS domain, 

while the first PAS also mediates signal transduction and influences the oxygen affinity 

of the second PAS. ReFixL has the lowest oxygen affinity measured for any heme based 

sensor (Kd = 738 µM) [11].  Nevertheless, the kinase activity of ReFixL is fully 

inhibited when only 26% of the protein is saturated with oxygen; since ReFixL is 

dimeric, cooperativity cannot account for this. The most likely explanation is a 

hysteretic effect similar to the “memory effect” shown for BjFixL [12]. 
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In heme-based sensors, as in all other ligand binding heme proteins, amino acid 

residues in contact with the heme are sensitive to ligand binding. These local structural 

changes and their accompanying effects on reduction potential have been measured for 

some heme based sensors. [17]. For FixL proteins, however, only a few studies on the 

redox potentials have been conducted, and only with isolated heme domains, not the 

full-length protein, which will miss all the effects due to coupling of the heme domain 

changes to the conformational changes in the kinase domain that result in reversible 

inactivation.  [17-20].  These long-range effects of ligand binding are broadly analogous 

to the triggering of the R-T quaternary structure change in hemoglobin caused by ligand 

binding. Such changes must affect the redox potential making the understanding of this 

connection a key step for learning the mechanistic principles of signal transduction.  

In this work we have examined the full-length ReFixL at different liganded 

states and conditions using mediated spectroelectrochemistry, where the protein is 

gradually reduced/oxidized at a constant applied potential and a spectrum is recorded 

for each potential. To ensure equilibrium is established between the electrode and the 

oxidized and reduced forms of FixL small molecular weight redox mediators are present 

as electron relays between the electrode and the protein. 

 

2. Materials and Methods 

2.1. Chemicals 

Aqueous solutions were prepared using Millipore (Germany) water of resistivity 

greater than 18.2 MΩ cm at 25 
o
C. Tris(hydroxymethyl)aminomethane, sulfuric acid, 

formic acid, acetic acid, imidazole, NaCl, all from Sigma-Aldrich (United States), and 

KCN from Merck (Germany) were used as received.  
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The mediator 2,5-dihydroxybenzoquinone [21] was purchased from Lancaster 

and the following coordination compounds (with their formal Co
III/II

 redox potentials at 

pH 8.0) [Co((NMe3)2sar)]Cl5
 
(+10 mV vs NHE), [Co(CLME-N4S2-sar)]Cl3 (134 mV 

vs NHE), [Co(AMME-N5S-sar)]Cl3 (220 mV vs NHE), [Co(sep)]Cl3 (296 mV vs 

NHE), [Co(AMMEsar)]Cl3 (380 mV vs NHE) and [Co(trans-diammac)](ClO4)3 (551 

mV vs NHE) have been described collectively in earlier publications [22-27].  

2.2. Protein Expression, Purification and Assays 

The full-length Rhizobium etli fixL (ReFixL) gene was cloned in a pUC19 

derived plasmid under a tac promoter regulation, which contained ampicillin resistance 

gene for selection in Escherichia coli strain MC1061(E. coli). The expression and 

purification followed the procedures described in the literature [11]. The purity of the 

protein was evaluated by SDS-PAGE and UV-Vis spectra resulting in > 90%. 

2.3. Spectroelectrochemistry 

Spectroelectrochemistry measurements were performed with a BAS100B/W or 

EPSILON potentiostats (Bioanalytical Systems Inc., BASi, West Lafayettte, IN, USA) 

using an optically transparent thin-layer cell (OTTLE, 0.1mm or 0.05 mm) with a gold 

or platinum mesh working electrode, a platinum wire counter electrode and Ag/AgCl 

reference electrode (+196 mV vs NHE), in conjunction with an Ocean Optics USB2000 

fibre optic UV-Vis spectrophotometer (United States) with the spectroelectrochemistry 

cell mounted inside a Belle Technology anaerobic box (O2 concentration < 20 ppm, 

United Kingdom). For experiments performed in the presence of oxygen the buffer 

solution (35 mM Tris, pH 8.0, 100 mM NaCl) was previously saturated with pure O2 for 

20 min and a constant flux was kept during the titrations. A Cary 5000 UV-Vis-NIR 

(United States) and an Agilent 8453 diode array spectrophotometers (United States) 

were used for the acquisition of the spectra with applied potential. While the 
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measurements in the presence of O2 and CN

 were taken on the former equipment, the 

Agilent spectrophotometer was used for the acquisition of the spectra in air and in the 

presence of CO.  

All potentials, unless otherwise specified, are referenced against a normal 

hydrogen electrode (NHE) at room temperature (25˚C) and the AgǀAgCl/Cl

 reference 

electrode was always calibrated against the quinhydrone redox couple (+86 mV vs 

AgǀAgCl/Cl

 at pH 7.0 and 25˚C). 

Typical spectroelectrochemical experiments were run with ca. 15 µM of ReFixL 

in an electrolyte solution of 35 mM Tris buffer (pH 8.0) and 100 mM NaCl. All 

mediators, except 2,5-dihydroxybenzoquinone, which was used only in the anaerobic 

study of ReFixL with no additional ligands, were used at concentrations of ca. 100 µM. 

Prior to the acquisition of the spectra, the working electrode (Au mesh or Pt mesh) was 

polarized at + 0.3 V vs NHE for 8 min to ensure the fully oxidized state of the protein, 

met-ReFixL (Fe
III

-unliganded ReFixL). Typically, the potential was scanned firstly in 

the negative direction and then back in the positive direction to check the reversibility of 

the systems and the existence of hysteresis. A potential range of 0.55 V, usually from 

+0.3 to 0.25V vs NHE, was applied in steps of 0.05V and 0.025V in the vicinity of the 

redox midpoint potential. Each potential was held for at least 8 min before the spectrum 

was taken. All data were treated by global analysis with Reactlab Redox (Australia) [28] 

and kinetic analysis of the spectral changes as a function of time was performed with 

Reactlab Kinetics (Australia) [29]. 
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3. Results  

Aiming to study the redox process of the Rhizobium etli FixL (ReFixL) protein 

in the presence of O2, CO, CN

, and imidazole, a series of spectroelectrochemical 

measurements were conducted using a mixture of the mediators given in the Section 

2.1. The organic mediator 2,5-dihydroxybenzoquinone (60 mV vs NHE) was also used 

in the measurements of ReFixL in deaerated solution to provide additional redox 

buffering at higher potentials. In this work, a mixture of all mediators were used in each 

experiment to provide identical conditions in each case regardless of where the redox 

potential was found in ReFixL. As reported previously [30], relative to the strongly 

absorbing heme chromophore (at a concentration of 15 μM), the Co complex mediators 

are essentially colorless in both oxidation states at the concentrations used (100 μM) as 

so no interference from mediator absorption is found.  

We initially found that experiments in the presence of CN

 carried out with a 

gold working electrode were not reversible as the concentration of CN

 in solution 

decreased during the course of the experiment. This was attributed to the anodic 

formation of [Au(CN)2]

 and thus consumption of the cyanide. This problem was 

averted by using a Pt mesh working electrode as Pt is inert to oxidation in the presence 

of cyanide at the potentials used in the experiment. Also, CN

 is a weak base (pKa 9.2) 

so experiments with this ligand were carried out at pH 9.5 to avoid major protonation 

and loss of volatile HCN from the solution. In order to discuss the data obtained for 

ReFixL-CN

 in relation to the unliganded protein, the spectroelectrochemical 

experiments for the deoxy-ReFixL were also performed at pH 9.5. 

Fig. 2A shows the spectral results for the oxidized (Fe
III

) and reduced (Fe
II
) 

forms of ReFixL in the absence of oxygen. Global analysis of all 

absorbance/wavelength data obtained across all applied potentials (see Figs S2 to S6 in 
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the Supplementary Material) yielded the redox midpoint potential of the half reaction 

and also the spectra of the fully oxidized and reduced forms, as shown in Fig. 2. 
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Fig. 2. UV-Vis spectra of the unliganded Fe
III

 (solid black line), Fe
III

-imz and Fe
III

-CN 

(dark gray line), and Fe
II
 (dotted black line) forms of 15 µM ReFixL in electrolyte 

solutions (35 mM Tris buffer (pH 8.0) and 100 mM NaCl) as follows: (A) 

deoxygenated, (B) CO saturated (0.93 mM), (C) oxygen saturated (1.25 mM, at 25 
o
C), 

(D) 200 mM imidazole and (E) 1.0 mM CN

 (pH 9.5). 

In the absence of any additional ligands, the spectra in Fig. 2A are each 

characteristic of the five-coordinate deoxy-Fe
II
 and Fe

III
 states of the ReFixL heme [30]. 

The most pronounced change is in the Soret band, which shifts from 395 nm (Fe
III

) to 

432 nm (Fe
II
). The broad visible absorption band (a combination of the α- and β-bands) 

also shifts to longer wavelength upon reduction (500 nm to 560nm). 
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It is well known that CO is a ligand that binds very well to heme cofactors, 

binding only to the Fe
II
 heme similar to oxygen. We also found this with ReFixL (Fig. 

2B), where an intense and sharp Soret band (426 nm) for the six-coordinate Fe
II
-CO, 

ReFixL-CO, form was identified. Also the α- and β- bands are well resolved as maxima 

at 571 and 542 nm, respectively. As expected the Fe
III

 heme is unaffected by CO and the 

same spectrum of the five-coordinate Fe
III

 heme seen in Figs 2A and 2B is obtained. 

In the presence of oxygen (Fig. 2C) the spectral changes are subtly different. 

Initially the Fe
III

 spectrum is the same as in Fig. 2A as the Fe
III

 heme has no affinity for 

oxygen. However, O2 does bind to the Fe
II
 heme and the spectrum of the oxy-Fe

II
 form 

(Fig. 2C) is clearly different from the deoxy-Fe
II
 state (Fig. 2A). The most significant 

change is the splitting of the single visible region band of deoxy-Fe
II
 (Fig. 2A) into two 

broad peaks at 569 and 554 nm. It should be mentioned that the calculated spectrum of 

the oxy-Fe
II
 form is actually a combination of deoxy-Fe

II
 and oxy-Fe

II
 as the heme 

cofactor has only a weak affinity for dioxygen; i.e. c.a. 26% and 63% oxygen bound in 

air and under O2 saturation, respectively [11]. 

In Fig. 2D, the spectra are in the presence of 200 mM imidazole. The Fe
III

 

spectrum is clearly different from those of the five-coordinated Fe
III

 heme (Figs 2A and 

2B) and indicate that imidazole is coordinated trans to the histidine residue ligand in the 

axial coordination site i.e. a six-coordinated Fe
III

 heme, ReFixL-imz. The Soret band 

sharpens, gains intensity and moves to longer wavelength. By contrast the Fe
II
 spectrum 

is identical to that determined in the absence of any ligands and without oxygen present 

(Fig. 2A), so imidazole is not bound in the Fe
II
 state. 

Cyanide is a very effective ligand that prefers Fe
III

 over Fe
II
 heme. In the 

presence of 1 mM CN

 the Soret band of the Fe

III
 heme in ReFixL shifts immediately 

from 395 nm to 421 nm corresponding to a change from five-coordinate to six-
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coordinate Fe
III

-CN heme, ReFixL-CN. Upon reduction the CN

 ligand is lost (Fig. 2E) 

as the spectrum is again identical to the deoxy-Fe
II
 spectrum seen in Figs 2A and 2D. 

In all cases the spectra were reversible and it did not matter whether the spectra 

were acquired starting from a high (Fe
III

) or low (Fe
II
) potential. The calculated spectra 

were the same and the redox potentials obtained from the reductive or oxidative sweeps 

were identical; i.e. no relevant hysteresis was seen. In principle only the redox potential 

of the deoxy-Fe
III/II

 can be considered a formal potential as there is no change in 

coordination number. All of the redox potentials calculated from the data in Figs 2B-2E 

are electron transfer reactions coupled to chemical reactions, e.g. Fe(III)L + e

  

Fe(II) + L (L = CN

 and imz) or Fe(III) + L‟ + e


  Fe(II)L‟ (L‟ = O2 and CO). 

These coupled chemical reactions (ligand binding) were fast on the timescale of the 

spectroelectrochemical cell but the determined midpoint potentials (Em) obtained from 

the experiments involving ligand binding to either Fe
III

 or Fe
II
 are necessarily shifted 

from the formal potential. Usually, ligand binding to the Fe
III

 state (but not to the Fe
II
 

state) should result in a negative shift in the redox potential and ligand binding 

exclusively to the Fe
II
 state should result in a positive shift. This was not always seen 

(Table 1) and an explanation of these interesting changes in the redox potentials is 

deferred to the Discussion. 
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Table 1. Midpoint potentials (Em, mV vs NHE), shifts of the liganded Em values in 

relation to the non-bounded ReFixL (Em, mV) and Soret band electronic spectral 

maxima ( in nm and  in mM cm
-1

) of Fe
III

 and Fe
II
 ReFixL in its various liganded 

states.  

Protein 
(a)

Em Em 

Fe
III

 Fe
II

 

ox ɛ red ɛ 

ReFixL +19.0  0.0 395 126.0 432 129.2 

(b)
ReFixL 11 ± 2.8 - 395 126.0 432 129.2 

ReFixL-O2 (air) 12  31.0 395 126.0 428 134.5 

ReFixL-O2 (O2 saturated 

solution) 

51  70.0 395 126.0 426 134.5 

ReFixL-CO +21  2.0 395 126.0 426 201.7 

ReFixL-imz 57  76.0 415 128.4 432 129.2 

(b)
ReFixL-CN 156  145.0

(c) 424 148.4 432 129.2 

(a)
Fe(III)L + e


  Fe(II) + L (L = CN


 and imz) or Fe(III) + L‟ + e


  Fe(II)L‟ (L‟ = 

O2 and CO). 
(b)

Measurements at pH 9.5. 
(c)∆Em value was calculated based on the Em value 

determined for ReFixL (Em = 11 mV) at pH 9.5. 

 

4. Discussion 

4.1. Optical Spectral Features of ReFixL in its Oxidized and Reduced Forms 

The spectral dependence of the liganded and unliganded ReFixL protein on the 

applied potential always gave series of spectra with well-defined isosbestic points (Figs. 

S2 to S6 of the Supplementary Material) supporting the interchange of only two redox 

active species. The only exception to this was for the oxy-Fe
II
 form of ReFixL which 

was always in equilibrium with its deoxy-Fe
II
 form due to its known weak affinity for 
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oxygen. In fact the calculated spectrum of „oxy-Fe
II
‟ ReFixL is a mixture of both oxy- 

and deoxy-Fe
II
. 

Upon reduction of Fe
III

 to Fe
II
 heme, the Soret maximum of the fully oxidized 

state of ReFixL, met-ReFixL, shifts from 395 to 432 nm (Fig. 2A) while the combined 

maximum of the broad α/β bands shift from 500 to 563 nm, a behavior consistent with 

five coordinate, high-spin, b-type hemes [31, 32]. In oxygen saturated solution (Fig. 

2C), the Soret band presents a similar shift upon reduction. The shape of the band, 

however, is broad and asymmetric supporting partial formation of oxy-ReFixL as 

previously reported [11].  

A hypothetical domain-domain response induced by the binding of small 

molecules to the PAS domain of ReFixL was raised in the literature based on the 

changes in oxygen affinity modulated by the adjacent non-heme-binding PAS domain 

[11]. Similar behavior was reported before for other heme-based sensors [33, 34], where 

oxygen affinity for the heme domains and full-length proteins showed significant 

differences. Full-length BjFixL showed a 4-fold lower oxygen affinity than its isolated 

heme domain, while DosP, an oxygen sensor phosphodiesterase, was 6-fold lower [33, 

34]. These results have highlighted the sensitivity and connectivity of the heme to 

changes also outside of the immediate vicinity of the iron heme, which can occur during 

signal transduction events. Furthermore, these observations reinforce the importance of 

measurements conducted on the full-length protein.  

Such findings lead us to surmise that the redox behavior and, consequently, the 

physiological function of ReFixL is affected by binding other small molecules such as 

CO, imidazole and CN

. Figs 2B, 2D and 2E show the spectral changes of ReFixL with 

applied potential in solution containing CO, imidazole and CN

, respectively. In 

solutions containing imidazole and CN

, the Soret band of the met-ReFixL shifts to 415 
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nm and 424 nm (Figs. 2D and 2E), respectively, indicating binding to Fe
III

. On the other 

hand, no shift is observed in the spectra of met-ReFixL in the CO saturated medium 

(Fig. 2B). In the presence of CO, the Soret band of the Fe
II
 form shifts to 426 nm along 

with a concomitant shape change to a sharp and very intense peak. This is corroborated 

by clear separation of the α- and β-band maxima which also indicates the CO 

coordination in the sixth site; features characteristic of low spin Fe
II
 heme b 

chromophores. In the imidazole and cyanide experiments, the oxidative scan leads to the 

recovery of the non-CO-coordinated form.  

4.2. Ligand Dependent Shifts in Redox Potential 

For discussion purpose, Table 2 displays the Em values for the systems studied in 

this work along with those reported in the literature for some sensor and non-sensor 

heme-based proteins. 

Table 2. Redox potentials of sensor and non-sensor heme-based proteins. 

Heme protein Em, mV Reference 

PAS domain 

ReFixL +19 This work 

ReFixL* 11 This work 

ReFixL-O2 (air) 12 This work 

ReFixL-O2 (O2 saturated solution) 51 This work 

ReFixL-CO +21 This work 

ReFixL-imz 57 This work 

ReFixL-CN* 156 This work 

[18] 
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  [19, 35, 36] 

Globin domain 

DosC (YddV) (Globin) 22 [20] 

HNOB domain 

[37] 

[38] 

Cyt c domain 

 [39] 

 [40] 

 [40] 

Non-sensor heme proteins 

Myoglobin 46 [41] 

Myoglobin – CN 385 [41] 

 41 [42] 

– CO +8 [42] 

– O2 +9 [42] 

283  [43] 

– 0.0 [43] 

-139 [44] 

– -176 [44] 

– imz -203 [44] 

*Measurements at pH 9.5 

The unliganded ReFixL presents a Fe
III/II

 redox potential significantly lower than 

BjFixL (+68 mV) and DosP (+67 mV), where the heme is also harbored in a PAS 
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domain. It is worth mention that, like BjFixL, the unliganded ReFixL is kinase active in 

both iron states (Fe
II
 and Fe

III
) [11]. 

The significant negative shifts of the redox potentials (Em, Table 1) in the 

presence of imidazole and CN

 are consistent with thermodynamic predictions, where 

ligand binding to the higher oxidation state more tightly than the lower oxidation state 

elicits a negative shift in the observed midpoint potential; the shift being related to the 

relative ligand binding constants in the oxidized and reduced states. The larger shift in 

the cyanide experiment (ΔEm 145 mV) compared with imidazole (ΔEm 76 mV) 

reflects a greater (almost hundred-fold) Fe
III

-CN binding constant than with imidazole. 

It should be addressed that the ΔEm value of ReFixL-CN

 was calculated based on the 

Em values determined for both ReFixL-CN

 and ReFixL (Em = 11 mV) at pH 9.5.  In 

fact, CN

 ligand showed much larger affinity (over 100-fold) than imidazole to BjFixL 

and RmFixL [7, 43], whose trend is followed by ReFixL as indicated by the reported kon 

rates [11]. 

Following the reasoning above, the coordination of ligands high in the 

spectrochemical series (CO, CN

, imidazole) to the lower oxidation state, on the other 

hand, would result in positive potential shift due to thermodynamic stabilization of the 

Fe
II
 states of the protein. Cytochrome P450 CYP2C9 (Fe

II
), for instance, upon binding 

to CO shows a positive shift of 49 mV relative to the non-CO bound protein [42]. 

Another small peptide model of hemoproteins, called peptide-sandwiched mesoheme 

(PSM), exhibits an even larger potential shift (c.a. 283 mV) upon binding to CO [44]. 

Contrary to such thermodynamic predictions, for the ReFixL protein, CO does not alter 

the midpoint potential of the heme significantly from the unliganded form (ΔEm +2 

mV). A similar observation was found for the spectroelectrochemical experiment 

performed in the presence of O2. Oxygen binding exclusively to the Fe
II
 heme should 
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also elicit a positive shift in the Fe
III/II

 redox potential but the opposite was found (ΔEm 

70 mV). Furthermore, the actual shift is almost certainly underestimated as the oxygen 

binding was incomplete. In fact, in air, where only 26% of oxygen bound is reported 

[11], the value of Em was observed at 12 mV with a potential shift of 31 mV in 

relation to deoxy-ReFixL (Fig. S7 of the Supplementary Material). 

4.3. Structural Changes Upon Ligand Binding 

There are clearly other effects at play that counterbalance the ligand-binding 

positive shifts in Fe
III/II

 redox potential for CO and O2. There are reports of redox 

potential changes upon ligand binding that do not involve coordination to the metal 

center but instead induce a conformational change in the protein. Soluble guanylate 

cyclase from Manduca sexta showed a consistent positive shift of +22 mV upon binding 

to YC-1, an allosteric effect that affects heme regulation but does not bind to the iron 

[37]. As mentioned above, modifications to the protein secondary structure may have 

knock-on effects to the local environment of the heme that lead to different second 

sphere interactions at the active site, i.e. ligand binding has indirect effect on the protein 

structure. We suggest that similar events may occur here. Despite the lack of full-length 

X-ray structure for FixL, there is a variety of heme domain structures published for 

FixL from Sinorhizobium meliloti and Bradyrhizobium japonicum in the Fe
II
 unliganded 

(Fe
II
), carbonyl (Fe

II
-CO), and nitrosyl (Fe

II
-NO) in addition to the Fe

III
 unliganded 

(Fe
III

), cyano (Fe
III

-CN

) and imidazole (Fe

III
-imz) bound forms [14, 46-50]. We have 

focused on the most relevant amino acids (within 7 Å of the Fe atom) as shown in Figs 3 

and 4. The CO-bound BjFixL protein has been crystallized in three different space 

groups R32 (one independent molecule in the asymmetric unit), C2 (2 independent 

molecules) and P1 (four independent molecules); so there are 7 independent structures 

of the heme active site. Fig. 3A shows one of these 7 CO-bound structures and three 
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hydrophobic residues (Ile215, Ile238 and Leu236) are highlighted. These alkyl side 

chains have conformational flexibility but in the case of CO-bound BjFixL, remarkably, 

6 of the 7 heme structures bear different conformational combinations of these three 

hydrophobic residues. This reveals a large degree of conformational flexibility at the 

active site of CO-bound BjFixL and uncertainty in the actual solution structure. By 

contrast the Fe
III

 heme structure of BjFixL is more rigid; 5 independent heme domains 

have been structurally characterized and 4 of them are found in the conformation shown 

in Fig. 3B. If these structures can be taken to be representative of solution behavior then 

there is a large conformational rearrangement of the hydrophobic Ile and Leu residues 

upon oxidation of the Fe
II
-CO form to met-Fe

III
. Such changes may be correlated with 

solvent rearrangement at the active site that stabilizes the Fe
III

 form and counterbalances 

the Fe
II
-stabilizing influence of the CO ligand. An overlay view of the X-ray structures 

of the heme domains is shown in Fig. S8 of the Supplementary Material, where the 

conformational changes can be better visualized. 

 

 

(A) (B)

  A 

(C) (D) 

Ile215 
Leu236 

Ile215 
Leu236 

Arg220 
Arg220 
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Fig. 3. Crystal structures of BjFixL (A) in one of its CO-bound forms (PDB 1XJ2), (B) 

in its Fe
III

 unliganded state (PDB 2VV6), (C) in its O2-bound forms (PDB 1DP6) and 

(D) in its Fe
III

 CN

 bound state (PDB 1LT0). 

The conformational change in BjFixL upon oxygen binding is even more 

dramatic. As shown in Fig. 3(C), O2 binding is accompanied by appearance of an 

arginine residue (Arg220) that is in H-bonding contact with the dioxygen ligand. The 

movement of Arg220 has an even more significant effect on the secondary structure of 

the protein. Taking a wider view of the structure (Fig. 4), in the absence of dioxygen as 

a ligand, Arg220 swings away from the heme pocket and H-bonds to a heme propionate 

and a number of other H-bonding interactions are disturbed. This Arg220 was showed 

to play a key role not only in ligand binding, but also critically on signal transduction 

along with Arg206. These interactions cause heme distortion and affect heme 

propionate, which has also been noticed in other heme-based sensor signal transduction 

event [17]. Distal hydrophobic residues Leu and Ile, previously described, have also a 

role as steric residues implicated in the signal transduction as reported elsewhere [48], 

which might have an important role particularly upon imidazole binding.  
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Fig. 4. X-ray crystal structures of the heme domain of BjFixL in the (A) Fe
III

 form 

(PDB 1DRM), (B) Fe
II
 deoxy form (PDB 1LSW), (C) Fe

II
 oxy form (PDB 1DP6), (D) 

Fe
III

 cyanide bound form (PDB 1LT0) and (E) Fe
III

 imidazole bound form (PDB 1DP9) 

illustrating the changes in protein conformation upon O2, cyanide and imidazole 

binding. Inset: superimposed structures of Fe
II
 oxy (blue) and deoxy (grey) BjFixL. 

 

As expected, the same inactive site conformation has been observed in the Fe
III

 

cyanide-bound form of BjFixL where the arginine H-bonds with the cyanide ligand 

(Fig. 4) [47]. It is known that both the oxy and cyanide bound forms of ReFixL are 

switched off with respect to kinase activity. Accounting for all the crystal structures 

determined for liganded BjFixL with species relevant to this study, those structures 

reported for imidazole, O2 and CN

 ligands exhibit the largest conformational changes 

[47]. 

Our results support that electronic properties of the heme are not only dependent 

on the immediate sixth ligand, but a combination of effects including heme distortion, 
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nature of microenvironment, propionate ionic interactions, among other effects (steric 

side chain) as previously suggested by the literature [2, 51, 52]. In summary, there is an 

overall change upon oxygen binding/release involving FG-loop movement that cause 

heme to be flatten and movement of hydrophobic distal residues (Ile215, Ile238) along 

with reorganization of polar residues (especially Arg220). All of these effects counteract 

the intrinsic positive shift in redox potential upon oxygen binding to Fe
II
. 

4.4. Electrochemical Potential Trend and Kinase Activity 

The key process for FixL to work as a heme-based sensor is to bind and 

recognize selectively a given signal. ReFixL in the Fe
II
 state binds very well CO and 

NO, but none of them can alter histidine kinase activity of this protein [11]. Upon 

oxygen binding, the histidine kinase activity is switched off, which is due to structural 

changes started at the heme domain (Fig. 4). On the other hand, ReFixL in the Fe
III

 state 

presents histidine kinase activity, which is likely due to structural similarity of the heme 

domain of the Fe
II
 state as indicated in Fig. 4 by the X-ray structures of FixLs. In the 

Fe
III

 state, also, ReFixL can be switched off upon binding to CN

 and imidazole, which 

is in agreement to structural changes noticed at the heme domain. By correlating the 

histidine kinase activity with the reported overall structural changes of FixL in 

unliganded and liganded states [47], one can hypothesize the dependence of the 

electrochemical potentials on the activity of the protein. Having this in mind the terms 

“ON” and “OFF” in Fig. 5 are related to the kinase activity of the proteins studied in 

this work. Such evidence is quite interesting because, in certain cases, the 

electrochemical potential trend does not follow the expected ligand effect on heme, 

reinforcing other changes taking place to modulate the potential.  
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Fig. 5. Bar plot showing the correlation between histidine kinase activity and Fe
III/II

 

redox potentials of liganded and unliganded ReFixL.  

As can be ascertained from Fig. 5, histidine kinase activity is active when the 

protein shows positive (and quite similar) potentials, i.e. for the unliganded ReFixL and 

ReFixL-CO. For ReFixL-O2, ReFixL-CN

 and ReFixL-imz, whose potentials are all 

negative, the histidine kinase is switched off. 

 

 

 

5. Conclusions 

Spectroelectrochemical studies were performed for the unliganded ReFixL 

protein and upon binding to O2, imidazole, CN

 and CO ligands, knowing that the 

binding of the first three species switches off the kinase activity of ReFixL. In 

comparison to the unliganded ReFixL protein (Em = +19 mV), the binding to the ligands 

that switch off the protein induces a negative shift of the midpoint potential (Em), i. e. 

Em = 51 mV, 57 mV and 156 mV for O2, imidazole and CN

, respectively. Upon 

binding to CO, which does not affect the kinase active, the midpoint potential is 
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observed at +21 mV. The spectral profiles obtained during applying potential also 

showed that imidazole and CN

 bind Fe

III
 while O2 and CO coordinate to Fe

II
. From a 

thermodynamic standpoint, the potential of the Fe
III/II

 redox pair would shift negatively 

upon coordination to iron(III) while a positive shift would be expected upon binding of 

 acceptor ligands to iron(II) due to the stabilization of the reduced state. Whether the 

negative shift is indeed observed upon coordination of imidazole and CN

 to Fe

III
, the 

binding to Fe
II
 virtually does not affect the redox potential in the case of CO and, most 

unexpected, shifts the potential negatively upon coordination to O2, where there are 

significant changes around heme. Our results, however, supports electronic properties of 

the heme are not only dependent on the immediate sixth ligand, but a combination of 

effects including heme distortion and propionate interactions. We can conclude, 

therefore, that new microenvironment created upon binding to the studied ligands 

strongly control the overall potential trend, which shown to be correlated to histidine 

kinase activity of ReFixL. 

 

 

 

Abbreviations: BjFixL, Bradyrhizobium japonicum FixL; ReFixL, Rhizobium etli 

FixL; deoxy-ReFixL, Fe
II
 unliganded FixL; ReFixL-O2, Fe

II
-O2 FixL; ReFixL-CO, Fe

II
-

CO FixL; met-ReFixL, Fe
III

 unliganded FixL; ReFixL-CN, Fe
III

-cyanide FixL; ReFixL-

imz, Fe
III

-imidazole FixL,; imz, imidazole; Fe
II
, protoporphyrin IX-Fe

II
 complex; Fe

III
, 

protoporphyrin IX-Fe
III

 complex; NHE, normal hydrogen electrode; PAS, Per, ARNT, 

and Sim proteins domain; GAF, cGMP-specific and stimulated phosphodiesterases, 

adenylate cyclases, and E. coli formate hydrogen lyase transcriptional activator domain; 

SCHIC, sensor containing heme instead of cobalamin domain; HNOB, heme-NO-
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binding domain; LBD, ligand binding domain for nuclear receptors; CooA, CO sensor 

transcriptional regulator. 
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Graphical abstract 

 

  
 

 

 

 

Graphical Abstract (synopsis) 

Midpoint potentials assigned to the Fe
III/II

 redox couple of the heme domain of FixL 

from Rhizobium etli (ReFixL) were determined for the unliganded state (+19 mV) and 

bounded to CO (+21 mV), O2 (51 mV), imidazole (57 mV) and CN

 (156 mV) and 

support a  correlation with the kinase activity. 
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Highlights 

 First time measured the electrochemical potential of a full-length FixL protein 

 Potentials were determined for Rhizobium etli FixL (ReFixL) bounded to 

different ligands 

 Surprisingly, oxygen bound ReFixL showed a negative potential shift of 70 mV 

 Electrochemical potentials showed a trend linked to the histidine-kinase activity 


