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Abstract 

Most patients with aphasia recover language function to some degree, but there is significant 

variability in the speed, nature, and extent of language recovery that occurs in the months following 

a stroke. Currently, there is no effective method available to predict how an individual with aphasia 

will recover. The most accurate predictors of recovery to date rely on global outcome measures 

which do not provide relevant information regarding recovery of symptoms that are targeted in 

therapy. The overall goal of this thesis was to examine whether language-related brain activity 

predicted recovery of specific symptoms in aphasia. The first aim was to gain a clearer 

understanding of the neural mechanisms which underpin word processing in healthy individuals. 

Brain activity associated with spoken word processing was investigated firstly in a group of healthy 

young adults, then in a healthy older cohort in order to ascertain whether task performance was 

preserved in ageing and if so, whether a preserved performance was underpinned by age-related 

changes in the neural mechanisms. The second main aim was to investigate the neural substrates 

which underpin language processing in the subacute (2-6 weeks) and chronic (6 months) phases of 

aphasia recovery and to determine whether the timing and extent to which these mechanisms are 

recruited contributes to a good or poor language outcome. An auditory lexical decision task with a 

novel pseudoword condition was employed to investigate language recovery mechanisms and was 

selected to ensure that patients with aphasia in the subacute stage would be able to perform the task 

with sufficient accuracy. The real word stimuli consisted of concrete and abstract items. The stimuli 

were presented in an event-related fMRI task to young healthy controls, older healthy controls, and 

patients with aphasia during the subacute and chronic phases post-stroke. A range of behavioural 

language measures was administered to all three cohorts and at both time points for patients with 

aphasia.  

 

In the healthy young group, concrete words elicited increased activity in a widely distributed 

network of brain regions including bilateral angular gyrus (AG), left posterior cingulate and left 

dorsolateral prefrontal cortex, compared to abstract words. Meanwhile, no region showed increased 

activity for abstract compared to concrete words, rather differences were only observed in bilateral 

AG when abstract words were contrasted with pseudowords. In the healthy older group, region of 

interest (ROI) results identified that a preserved performance was associated with an altered pattern 

of left hemisphere activity in the inferior and middle frontal regions, the AG and the fusiform gyrus. 

Differences between the healthy older and healthy young group were identified in key language 

regions, with the left inferior frontal gyrus (IFG) showing increased activity for abstract and 

pseudowords compared to concrete words while increased activity in the left AG was observed in 

the younger group only.  
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In patients with aphasia at the subacute stage, there was a strong positive correlation between left 

posterior cingulate activity for pseudowords and improved spoken word comprehension at six 

months. Negative correlations were also observed between chronic spoken word comprehension 

and increased subacute left superior frontal gyrus (SFG) activity for pseudowords and increased 

right SFG activity for abstract > pseudowords. At the chronic time point, activity in left posterior 

cingulate for both concrete and abstract words continued to be positively correlated with single 

word comprehension but activity in right prefrontal regions for words > pseudowords was also 

positively correlated with improved spoken word comprehension.  

 

The findings from this thesis demonstrate the potential of this paradigm to reliably elicit language-

related neural activity associated with spoken word recognition in both healthy individuals and in 

post-stroke aphasia. Furthermore, this thesis demonstrates how the experimental paradigm can be 

employed successfully in subacute and chronic aphasia to identify neural mechanisms that underpin 

language recovery and to enhance our understanding of how involvement of these neural substrates 

changes over the course of recovery and relates to improved spoken word comprehension. While no 

distinct pattern emerged between the upregulation of right and left hemisphere mechanisms at 

specific stages of recovery, the results did show that mechanisms in both hemispheres contribute to 

improved language function. The positive involvement of left posterior cingulate at both time points 

suggests a key role in recovery that changes over time. While this region is commonly associated 

with the default mode network, its involvement in recovery observed here is consistent with 

alternative proposed roles in retrieval of semantic information and episodic memory operations. The 

negative relationship between subacute stage left SFG activity and recovery of spoken word 

comprehension, suggests less capacity for recovery when domain-general regions associated with 

cognitive control are recruited during lexical decision. This research broadens our understanding of 

the relationship between brain structure and function and the brain mechanisms which underpin 

improved language function following aphasic stroke and contributes to the growing body of 

evidence regarding potential predictors of aphasia recovery.   
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1 Chapter One 

Introduction 

_______________________________________________________________________________ 

Recovery from post-stroke aphasia is highly variable and while most patients will go on to 

recover language function to some extent in the weeks and months following a stroke, the speed, 

nature and amount of recovery an individual will make is difficult to determine. There are currently 

no effective methods to predict potential for recovery from aphasia. The most accurate predictors of 

recovery are reliant on global outcome measures which do not provide relevant information 

regarding recovery of symptoms that are targeted in therapy. The present thesis will focus on the 

neural mechanisms which underpin spoken word recognition for concrete and abstract words and 

examine how these mechanisms drive recovery of particular symptoms in aphasia.  

Definitive theories regarding the organisation and representation of semantic conceptual 

knowledge remain elusive. Comparisons between concrete and abstract word processing have 

proved useful in examining semantic processing in both healthy individuals and people with 

aphasia. The concreteness effect is a term used to describe a processing advantage in terms of 

reaction times and accuracy of responses for concrete (e.g. hospital) compared to abstract words 

(e.g. knowledge). While concreteness effects are present in the performance of both healthy and 

language impaired individuals, the effects are often more pronounced in aphasia (Coltheart, 

Patterson, & Marshall, 1980; Franklin, 1989; Goodglass, Hyde, & Blumstein, 1969; Jefferies, 

Patterson, Jones, & Lambon Ralph, 2009; Sandberg & Kiran, 2014). However, a reversal of 

concreteness effects has also been reported (Bonner et al., 2009; Breedin, Saffran, & Coslett, 1994; 

Kousta, Vigliocco, Vinson, Andrews, & Del Campo, 2011; Papagno, Capasso, Zerboni, & Miceli, 

2007; Warrington, 1981) which has led to the suggestion that concrete and abstract processing is 

underpinned by different neural mechanisms.  

Studies investigating the neural correlates of concreteness in healthy adults have found 

varying results although recent meta-analyses by Binder, Desai, Graves, and Conant (2009) and 
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Wang, Conder, Blitzer, and Shinkareva (2010) have demonstrated some consensus in the findings. 

Critically, most of the existing studies on concrete and abstract processing have investigated 

processing differences in healthy young adults and currently there are very few studies which have 

focused on concreteness effects in older adults and established whether the effects are preserved or 

attenuated with age, and whether performance is associated with an altered pattern of neural 

activation. Since most patients with aphasia will fall into the older age-range, the establishment of a 

baseline regarding neural activity in healthy older adults would seem essential if accurate 

comparisons are to be drawn about the language processes which underpin aphasia and language 

recovery.  

Recently, a longitudinal study investigating improved language function in post-stroke 

aphasia showed that recovery is underpinned by distinct neural mechanisms which are implicated at 

different time points (Saur et al., 2006). While informative, the task selected to investigate recovery 

in this study proved difficult for many of the patients with aphasia, particularly in the very early 

acute stage, and this may have confounded the results. The task selection in studies investigating 

language processing mechanisms is of critical importance and it is essential that people with 

aphasia are presented with tasks that they can perform accurately and successfully in order that 

neural activity patterns that are elicited, primarily reflect the language process under investigation 

rather than other aspects of cognitive processing relating to task performance (Price & Friston, 

2002). Longitudinal studies in aphasia recovery, which include an experimental task that patients in 

the early stages of post-stroke recovery are able to do, are therefore essential if an accurate 

understanding of the relationship between brain structure and function is to be obtained, although, it 

is also preferable that the task presented is not so easy that differences associated with performance 

at different time points cannot be observed (Fernandez et al., 2004). Critically, an enhanced 

understanding of the neural mechanisms which underpin aphasia recovery has valuable clinical 

implications and will not only be able to provide a more accurate predictor of an individual’s 

potential for language recovery but may also have implications for the provision and direction of 
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treatment in post-stroke aphasia.  

The following review will consider how advances in neuroimaging techniques are 

contributing to an increased understanding of possible neural mechanisms that are implicated in 

concrete and abstract processing, changes associated with ageing, and the language recovery 

process in aphasia. In section 1.1, I begin by discussing cognitive neuropsychological models of 

spoken language processing, particularly with regard to concrete and abstract processing, and in 

section 1.2 the literature in ageing and semantic conceptual processing associated with concreteness 

effects is reviewed. In sections 1.3 and 1.4, I consider the phenomenon of aphasia and the 

traditional mechanisms of recovery in aphasia while section 1.5 provides a brief overview of 

neuroimaging and functional magnetic resonance imaging (fMRI). Section 1.6 reviews the 

neuroimaging literature as it pertains to spoken word processing (specifically with regard to 

concrete and abstract processing mechanisms) in healthy young and healthy older adults and in 

people with aphasia. Imaging research into the neural mechanisms of language recovery in aphasia 

is then considered. Finally, in section 1.7 the aims and rationale for this study are outlined. 

1.1 Theoretical Models of Spoken Word Comprehension 

The focus in this study is on spoken word comprehension and as such, this review will 

discuss two of the prominent cognitive neuropsychological theories regarding spoken word 

comprehension. In 1981, McClelland and Rumelhart designed a highly interactive model called 

TRACE which emphasised top-down processing whereby acoustic and phonetic information can be 

directly supported by contextual information. This model proposes a connectionist approach in 

which different processing units are connected and are activated simultaneously once the acoustic 

signal is heard (McClelland & Rumelhart, 1981). Activation is bi-directional and occurs along the 

connections until the target word is activated. Once selection occurs, inhibitory processes are 

initiated which prevent further competitors being selected (Harley, 2000).   

An alternate theory of spoken word processing was proposed in the cohort model of 

Marslen-Wilson & Warren, subsequently revised many times (1973, 1975, 1987, 1994) in response 
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to findings from experimental studies. In this model, cohorts of items eliminate themselves until a 

uniqueness point is reached (Marslen-Wilson, 1987). This is achieved via three interactive stages 

that all occur in parallel. In the first stage, acoustic representations make direct access to the lexicon 

and a cohort of items is activated. The second stage is the selection phase and this occurs in parallel 

to the first stage with a lexical item being selected once enough acoustic information has been 

provided and competitors to the target word have been discarded. This is the lexeme’s uniqueness 

point and once this is reached all other linguistic information about the word becomes available. 

Lastly, the integration stage occurs and is where semantic and syntactic properties are incorporated 

(Marslen-Wilson & Warren, 1994; Marslen-Wilson, 1987). The most recent 1994 model is much 

more autonomous than the original model with top-down contextual effects only occurring at the 

integration (i.e. post-lexical) stage (Harley, 2000).  

Language deficits observed in people with aphasia have continued to provide a rich source 

of evidence to either support or disprove theoretical language processing accounts. Whitworth, 

Webster, and Howard (2005) discuss three kinds of evidence that can be obtained from analysing 

aphasic language. The first, a ‘critical variable approach’ (Shallice, 1988) is where different 

variables such as word length, frequency and imageability affect performance on comprehension 

and production tasks. Lexicality, a term used to describe varying performance on real words and 

nonwords, may also be considered a critical variable. The second type of evidence can be obtained 

from analysing the nature of the errors made and hypothesising as to the loci of impairment, for 

instance, errors of imageability suggest a specific deficit in the semantic system. The third type of 

evidence can be gained by contrasting the performance on tasks that use common processing 

components. This can be done by either comparing performance of the same task across modalities 

or comparing the same task at different processing levels within a modality (Franklin, 1989). 

Typically, data obtained from people with aphasia is mapped onto processing models to identify the 

proposed loci of impairment and therapy is then targeted at the specific processing deficit. Below I 

consider spoken word processing impairments in people with aphasia and discuss how these 
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symptoms can inform processing models.  

Frauenfelder and Tyler (1987) proposed that there were three stages of spoken word 

comprehension with the first being initial contact, the second, lexical decision and the third, spoken 

word recognition. These three distinct phases are also present in current cognitive 

neuropsychological models which have been informed by patient data and are illustrated in Figure 

1. During the initial auditory phonological analysis, speech sounds will be identified and an 

impairment at this level may cause ‘pure word deafness’ (Saffran, Marin, & Yeni-Komshian, 1976); 

that is a profound difficulty with spoken word comprehension in the presence of intact 

nonlinguistic, environmental sound recognition.  

 

 
 

Figure 1. Schematic of spoken word comprehension stages. 

 

The second level incorporates the phonological input lexicon (PIL) and this is where all 

known auditory word forms are stored. An impairment at this level would cause difficulties with the 

recognition of real words and the rejection of nonwords and is termed ‘word form deafness’. 

Longer words may be more easily understood as they will have fewer phonological neighbours thus 

facilitating ease of retrieval (Howard & Franklin, 1988; Luce & Large, 2001). Evidence for an 

intermediate processing step between the PIL and the semantic system (SS) has also been seen in 

patients who have ‘word meaning deafness’. This impairment occurs when a word is selected as a 

real word but is not able to be understood and this may be due to a weak drive from the PIL to the 

SS where the conceptual representations of words are stored. Again, longer words may be better 

understood here since the distinctiveness of a lexical item increases accessibility to the SS 
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(Franklin, Turner, Lambon Ralph, Morris, & Bailey, 1996).  

The last processing stage to be activated during spoken comprehension is at the semantic 

system level. This system serves as the store for all word meanings and is activated once a word has 

been recognised. The semantic system itself can be further divided into progressive stages with 

more immediate implicit lexical semantics being activated upon initial recognition of a word, while 

deeper higher order explicit processing occurs when conceptual semantic representations need to be 

accessed in order to understand words such as is the case with superordinate category judgments 

(Zahn et al., 2000). Selective deficits of specific word types can also occur at this level and one 

such example of this is the processing advantage observed in people with aphasia for high 

imageability, concrete words compared to abstract words (Coltheart et al., 1980).  

Processing differences between concrete and abstract words and how the semantic 

representations associated with these concepts are organised and represented in the brain has been 

widely investigated. Concrete words such as ‘hospital’ are usually associated with physical objects, 

have strong mental images and are grounded in sensory-motor experiential knowledge. In contrast, 

abstract words such as ‘knowledge’ refer to ideas or mental states that are more verbally encoded 

and are less readily associated with any mental imagery (Paivio, 2007). Imageability refers to the 

ease in accessing a mental image of a word and while it is generally highly correlated with 

concreteness, this is not always the case as is exemplified by the word ‘animal’ which whilst being 

concrete is also of low-imageability (Bedny & Thompson-Schill, 2006). As such, it is generally 

considered that highly imageable items contain some additional semantic information (Bedny & 

Thompson-Schill, 2006). 

The concreteness effect is a term used to describe the processing advantage for concrete 

over abstract words. Previous studies have shown that concrete words are processed more 

accurately and faster than abstract words in healthy adults (Binder, Westbury, McKiernan, Possing, 

& Medler, 2005; James, 1975; Paivio, 1991, 2007) and in neurological patients with language 

deficits (Coltheart et al., 1980; Franklin, 1989; Goodglass et al., 1969; Jefferies et al., 2009; 
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Sandberg & Kiran, 2014). Other studies have reported the reverse behavioural effect, where abstract 

words have the processing advantage (Bonner et al., 2009; Breedin et al., 1994; Kousta et al., 2011; 

Papagno et al., 2007; Warrington, 1981) and this had fuelled debate around whether these 

conceptual representations may be stored independently and can be selectively impaired (Papagno, 

Fogliata, Catricalà, & Miniussi, 2009).  

The two dominant and competing accounts of semantic memory used to explain 

concreteness effects are dual coding theory (Paivio, 1991) and the context availability theory 

(Schwanenflugel & Shoben, 1983) (refer to Chapter 2 for a full review). Briefly, dual coding theory 

proposes that selective processing occurs in a verbal and a nonverbal, perceptual coding system. 

Concrete and abstract words are both processed in the verbal system but concrete words also able to 

engage the nonverbal, imagery-based system and this ability to recruit a dual system results in 

increased efficiency and the concreteness effect (Paivio, 1991). The context availability theory also 

predicts a processing advantage for concrete words through more efficient processing but it is 

proposed that this is caused by the amount of available context associated with a word. Concrete 

words have a rich available context and have access to a greater network of contextual semantic 

associations compared to abstract words where meaning is derived mainly from verbal associations. 

This difference in available context therefore contributes to how efficiently a word will be 

processed and results in the observed concreteness effects (Schwanenflugel & Shoben, 1983). 

Whilst the accounts are not necessarily mutually exclusive, differences between the models 

have concerned the underlying neural mechanisms which underpin concreteness effects. Dual 

coding theory proposes that abstract words and concrete words are processed in qualitatively 

distinct systems. While both word types engage the verbal system in the left hemisphere, concrete 

words also engage the nonverbal, imagery-based system in the right hemisphere resulting in a more 

bilateral representation (Binder et al., 2005; Paivio, 2007). In contrast, the context availability 

theory proposes quantitative differences in the verbal left hemisphere only, with concrete and 

abstract words engaging the same system but to different degrees according to the amount of 
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available context associated with the word. Theories of semantic memory which combine 

neuroimaging and behavioural data have recently been developed to explain conceptual processing. 

Embodied abstraction is one such account (Binder & Desai, 2011) and proposes that conceptual 

knowledge is processed in modality specific and heteromodal convergence zones with the latter 

being located in temporal and parietal regions. The amount of perceptual and contextual 

information and the familiarity of a word will affect how it is processed (Binder & Desai, 2011). 

Thus, concrete words would be expected to elicit increased activity due to their richer set of 

conceptual features. Applying embodiment theories however to abstract word processing is more 

problematic (see Chapter 2 for a more detailed discussion). Recent studies have explored the 

semantic representations associated with abstract concepts (Kousta et al., 2011; Shallice & Cooper, 

2013; Vigliocco, Meteyard, Andrews, & Kousta, 2009). Vigliocco et al. (2009) and Kousta et al. 

(2011) proposed an extended theory of embodiment which includes abstract words. In this 

framework concrete concepts are embodied through experiential sensorimotor knowledge while 

abstract words are embodied through both linguistic and the underlying affective and emotional 

experiential knowledge associated specifically with abstract words (Kousta et al., 2011; Vigliocco 

et al., 2009).  

1.2 Concreteness Effects in Ageing  

While deficits in word retrieval in healthy older adults are well documented (Burke & 

Shafto, 2004; Burke & Shafto, 2008) other language processes such as the knowledge of words 

(Verhaeghen, 2003) and comprehension of language do not seem to be as susceptible to effects of 

ageing (Tyler, Wright, Randall, Marslen-Wilson, & Stamatakis, 2010). It might be assumed 

therefore that concreteness effects and concrete and abstract processing would be preserved in 

healthy ageing. However, previous studies have reported conflicting findings. An increase in the 

concreteness effect has been demonstrated, (Rowe & Schnore, 1971; Witte & Freund, 1976) as has 

an attenuation of the effect (Rissenberg & Glanzer, 1987) but this may be attributed to reduced 

functionality in an underlying cognitive process, such as memory. Peters and Daum (2008) 
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investigated verbal memory and concreteness effects in a cross-sectional study which included three 

different age groups (mean 21, 42 and 61 years) and demonstrated both preserved and attenuated 

effects. While in the three age groups concrete words were easier to recollect than abstract words, 

the effect was attenuated in the older age group. They attributed this attenuation of concreteness 

effects to the preserved recollection of abstract words which was present in the older group only 

(Peters & Daum, 2008). Critically, given that brain structure and function changes over the course 

of ageing, it is unclear whether any preserved functionality or attenuation of this effect in older 

adults is associated with the recruitment of different neural mechanisms when processing concrete 

and abstract words.  

Cognitive function and the effects of ageing have been investigated in studies investigating 

differences in brain activity in young and older adults performing the same task (Cabeza, Anderson, 

Locantore, & McIntosh, 2002; Shafto & Tyler, 2014; Wingfield & Grossman, 2006) and findings 

have been considered alongside conceptual accounts of compensation (Reuter-Lorenz & Park, 

2010) and dedifferentiation (Baltes, Cornelius, Spiro, Nesselroade, & Willis, 1980; Lindenberger & 

Baltes, 1994; Reinert, 1970). The compensation view holds that in order to counteract age-related 

deficits and maintain preserved functionality, increased activity in additional brain regions serves as 

a strategic mechanism as processing becomes shared by multiple components (Cabeza et al., 2002; 

Cabeza et al., 1997). In comparison, the dedifferentiation view proposes that gradual changes in an 

ageing brain results in the loss of specialised function in distinct cortical regions and a move 

towards more generalised functionality resulting in increased, widespread activity in healthy older 

brains (Li & Lindenberger, 1999). This thesis will examine processing of concrete and abstract 

words in older adults considering these theories.  

1.3 Aphasia 

According to the Australian Government Productivity Commission, by 2059-2060 life 

expectancy for the average Australian is set to reach 89.1 years for men compared to approximately 

80.3 years in 2012 and 91.4 years for women compared to around 84.6 years in 2012 (Productivity 
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Commission, 2013). The change in demographics will create new issues for Australia’s public 

health system and healthcare provision. With an ageing population comes an increase in the medical 

conditions associated with older age including stroke. Stroke is a leading cause of disability and is 

currently the second main cause of death after coronary heart disease in Australia (ABS, 2014). It 

was estimated that in 2015 there would be approximately 50,000 new or recurrent strokes in 

Australia and a combined total of 440,000 Australians living with the effects of stroke (Deloitte 

Access Economics, 2014 ). In addition, around 65% of people living with stroke will also suffer 

some form of long term disability and in 2012, the fiscal amount associated with stroke care was an 

estimated $5 billion (Deloitte Access Economics, 2013).  

Following a stroke, some people may experience an impairment of language function called 

‘aphasia’. Aphasia can affect speaking, understanding, reading and writing either selectively or in 

combination. Approximately one third of all stroke patients will experience some form of aphasia in 

the acute stages post-stroke with incidence rates ranging from 21% to 38% (Laska, Hellblom, 

Murray, Kahan, & Von Arbin, 2001; Pedersen, Jorgensen, Nakayama, Raaschou, & Olsen, 1995). 

Of those patients diagnosed with aphasia, over 60% will continue to have aphasia one year post 

onset (Pedersen et al., 1995; Pedersen, Vinter, & Olsen, 2004). The impact of aphasia cannot be 

underestimated. Aphasia can have a significant impact on a person’s ability to participate in 

activities of daily living such as working or living independently (Price, Seghier, & Leff, 2010) and 

can also have a negative effect on a person’s self-image which may lead to profound social isolation 

(Hillis, 1998).   

The most frequently asked question by people with aphasia immediately following a stroke 

concerns their prognosis in terms of both spontaneous and treatment-induced recovery. 

Unfortunately, clinicians are ill-equipped to answer this question. One factor that has not been 

previously considered in depth is the underlying neural mechanisms that support language recovery.  
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1.4 Aphasia Recovery 

As mentioned above, the recovery from aphasia following stroke is not predictable and 

varies considerably from patient to patient (Kertesz & McCabe, 1977; Lazar & Antoniello, 2008; 

Pedersen et al., 1995; Pedersen et al., 2004) yet the prognosis of recovery is of paramount 

importance to the person with aphasia. Most people with aphasia do make some degree of 

spontaneous recovery (Hillis, 2007; Pedersen et al., 1995) but the course of recovery is variable. 

Lazar and Antoniello (2008) suggest that the greatest amount of recovery happens in the first three 

months while Pedersen et al. (2004) suggests that 80% of expressive recovery occurs within the 

first two weeks and 95% within the first six weeks. However, even if we consider that the majority 

of spontaneous aphasia recovery occurs in the first three months post-stroke (Hillis, 2007; 

Szaflarski et al., 2011) the time course and degree of recovery is not predictable even in those 

patients who present with similar sites of lesion and types of aphasia. Below, I consider the various 

stages of recovery and some of the traditional factors that have been considered influential in the 

recovery of aphasia.   

1.4.1 Stages of Recovery  

Following a stroke, a patient will experience various stages of recovery. These stages are 

known as acute, subacute and chronic with distinct types of recovery occurring at each phase. The 

acute phase is experienced within the first 2 weeks following stroke onset and during this stage, 

language recovery is rapid due to physiological changes in neural plasticity, reduction in oedema 

and metabolic disturbances (Marsh & Hillis, 2006), as well as reperfusion of the ischaemic 

penumbra (Hillis et al., 2008; Kiran, 2012). The second stage of recovery is the subacute phase and 

this lasts until six months post-stroke. Recovery during this period is less rapid and consists of 

neural reorganisation, specifically, the establishment of alternative networks, synaptic remodelling 

and axonal sprouting (Lazar & Antoniello, 2008; Marsh & Hillis, 2008). The last stage of recovery 

is the chronic phase and once this stage is reached, recovery will have slowed considerably. 

Spontaneous recovery still continues to occur but any differences can be attributed primarily to 



12 

compensatory reorganisation (Grafman & Litvan, 1999). As such, people with aphasia can learn 

new ways of accessing intact representations or use an alternative strategy to perform the same task 

even though neural reorganisation may no longer be occurring. From the above, it is clear that 

considerable physiological and neural changes are happening immediately post-stroke onset and 

continue well into the recovery period. Exactly how these neurophysiological changes correlate 

with language recovery is less clear and below I consider some of the variables that have 

traditionally been used to predict recovery from aphasia.  

1.4.2 Traditional Determinants of Recovery 

1.4.2.1. Initial severity, lesion size and site. Currently, one of the most informative 

determinants of recovery is the initial severity of aphasic symptoms and lesion size (Hillis, 2007; 

Lazar & Antoniello, 2008; Lazar et al., 2010; Pedersen et al., 1995). Certainly, patients presenting 

with a moderate to mild aphasia have a better prognosis with more complete recovery (Kreisler et 

al., 2000; Yang, Zhao, Wang, Chen, & Zhang, 2008) while a large infarct involving multiple 

language areas has been shown to increase the severity of the aphasia and suggest a less favourable 

outcome (Enderby, Wood, Wade, & Hewer, 1987; Pedersen et al., 1995). However, this is not 

always the case as patients presenting with the same level of initial severity can still experience 

very different recovery trajectories. Lesion size is also considered an unreliable predictor of 

recovery as multiple small lesions situated in language regions may cause a more severe language 

impairment than a large lesion in a non-language area (Crinion, Holland, Copland, Thompson, & 

Hillis, 2013).  

The site of the lesion is regarded by some as being an important predictor of aphasia 

recovery (Crinion et al., 2013) and the resulting negative behavioural influences on language 

function has provided insights into the functional organization of the brain (Cappa, Perani, Schnur, 

Tettamanti, & Fazio, 1998) and the widespread distribution of language processing networks 

(Hickok & Poeppel, 2007). Various studies have identified functional deficits which they attribute 

to the lesion site. Nonfluency in chronic patients has been attributed to a lesion in the left precentral 
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gyrus (Knopman et al., 1983) while persistent naming disorders in chronic patients have been 

associated with posterior temporoparietal and insulo-lenticular lesion sites (Knopman et al., 1983). 

Comprehension disorders have been inextricably linked to the site of the lesion (Cappa, 1998), with 

Wernicke’s area and suprasylvian parietal regions (Selnes, Knopman, Niccum, Rubens, & Larson, 

1983), the temporal lobe (Naeser, Helm-Estabrooks, Haas, Auerbach, & Srinivasan, 1987), and the 

inferior parietal lobe (Kertesz, Lau, & Polk, 1993) variously associated with receptive language 

deficits. Distinctions between more specific language symptoms were explored recently in a large 

patient study by Mirman et al. (2015) showing that damage in perisylvian regions was associated 

with phonological form deficits while damage in extrasylvian regions, including lesions in left 

anterior temporal lobe and impaired white matter connectivity with the frontal cortex was 

associated with semantic recognition and production deficits (Mirman et al., 2015).  

1.4.2.2. Aphasia subtype. The use of aphasia classifications to predict recovery is 

considered a less accurate measure of recovery (Cappa, 2008) and has not been predictive beyond 

being associated with initial severity levels (Pedersen et al., 2004). Apart from demonstrating an 

evolving aphasia, whereby progression to a milder type of aphasia usually occurs (Laska et al., 

2001; Lazar & Antoniello, 2008; Pedersen et al., 2004) there have not been any studies which have 

shown that one particular type of aphasia has a better recovery than another (Lazar et al., 2010). 

The use of aphasia type is limited for various reasons and classification of aphasia subtypes are 

themselves problematic (Lazar et al., 2010). They are made up of a cluster of linguistic symptoms, 

patients often don’t fit precisely within one subtype based on these symptoms, and recovery of 

these symptoms can occur selectively (El Hachioui et al., 2013). Therefore, assigning a patient to a 

specific subtype with a particular course of recovery is limiting. Problems can also arise with 

methods used to assign patients to particular classification subgroups with differences in 

classification criteria, selection of patients and the timing of assessments confounding the issue of 

classification. Furthermore, different aphasia subtypes will be associated with different concomitant 

factors which can affect outcomes. A study by Laska et al. (2001) showed that 25% of all aphasic 
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patients in the acute phase had global aphasia and by the chronic stage, this figure had dropped to 

only a few percent (Laska et al., 2001). However, this finding may not be attributed to recovery but 

rather the high rate of morbidity that is associated with global aphasia (Laska et al., 2001). Lazar et 

al. (2010) suggests that rather than using aphasia subtypes to predict recovery, it is likely to be more 

beneficial to look at the recovery of language function and identify changes in neurolinguistic 

abilities that occur over the course of recovery (Lazar et al., 2010).  

From the above, it is clear that there may be multiple factors which are associated with 

language recovery following stroke and that these factors may contribute to recovery of language 

function at different stages during the course of recovery from aphasia. While factors such as 

handedness, sex, age and premorbid education levels do not significantly predict recovery outcomes 

(Lazar & Antoniello, 2008; Lazar et al., 2010), other factors such as initial severity, lesion size, site 

and type of aphasia have all been posited as potential markers of recovery. One significant factor 

which has not been previously considered in depth is the underlying brain activity involved in 

language processing. Below I discuss neuroimaging techniques currently used in aphasia research 

and discuss their contribution to the current understanding of neural mechanisms of language 

recovery. 

1.5 Neuroimaging 

Neuroimaging evidence when combined with behavioural language studies carried out from 

acute to chronic phases post-stroke can provide insights into structure/function relationships of 

language and how these change during the course of recovery. A clearer understanding of these 

processes may provide crucial information on the neural mechanisms that influence recovery and 

how we can use these mechanisms to predict recovery in aphasia.  

1.5.1 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is an imaging technique which can provide in vivo 

structural and functional information in the brain. Below I consider the main principles behind MRI 

and introduce functional MRI (fMRI).  
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Magnetic resonance arises from the interaction of nuclei which have a magnetic moment 

with an applied magnetic field (Matthews, 2001). Protons within the nuclei, have a property defined 

as a ‘spin’ (Lee, Kannan, & Hillis, 2006) and this can assume either a high-energy (anti-parallel) or 

a low-energy state (parallel) when placed in a static magnetic field (Matthews, 2001). Exposure to 

an appropriate radiofrequency (RF) pulse causes the protons to excite to the higher-energy state 

(Lee et al., 2006; Matthews, 2001). Once excited, the protons induce signal in the coil and return to 

their resting state (Lee et al., 2006) known as ‘relaxation’. There are two forms of relaxation – T1 or 

longitudinal relaxation and T2 or transverse relaxation.  These relaxation times alter with varying 

tissue characteristics, and different contrasts in MRI can be achieved by manipulating timing and 

RF pulses to achieve different weightings (McMahon, Cowin, & Galloway, 2011). T1-weighted 

scans are able to contrast grey and white matter while T2-weighted scans have bright fluid 

contrasts, and are effective at identifying oedema and inflammation. The main advantage of MRI is 

its relatively safety since it uses magnetic fields and RF pulses rather than ionizing radiation 

(Dronkers & Ludy, 1997).  

1.5.2 Functional Magnetic Resonance Imaging 

Functional magnetic resonance imaging (fMRI) has caused much excitement in the literature 

with research driven by attempts to ‘light up’ different regions of the brain in response to specific 

tasks. The basic principle behind fMRI is that increased brain activity results in localised blood 

oxygenation changes that can be measured by using an endogenous functional contrast (Hillary & 

DeLuca, 2007, 31; Lee et al., 2006). As far back as 1936, Pauling and Corryell demonstrated that 

the magnetic properties of oxygenated haemoglobin are different from deoxygenated haemoglobin 

with the former being in a diamagnetic state and the latter in a paramagnetic state, which can be 

measured with MRI sequences sensitive to magnetic susceptibility (Lee et al., 2006). Ogawa, Lee, 

Kay, and Tank (1990) were the first to detect changes in cerebral blood flow when coupled with 

neuronal activity. They coined the term Blood Oxygen Level Dependent (BOLD) whereby neural 
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activation causes a haemodynamic response function (HRF), or delayed increase in signal relative 

to neural activation (Lee et al., 2006). 

The potential of fMRI to reveal brain areas involved in language processing and enhance 

existing functional anatomy maps is enormous. Comparisons between patient and healthy data are 

able to provide identification of mechanisms that are necessary to perform a particular cognitive 

function and will enable a critical system of language processing to be developed (Price, Mummery, 

Moore, Frakowiak, & Friston, 1999). As such, BOLD fMRI is currently the brain activation 

mapping method of choice for investigating putative brain mechanisms involved in language 

processing and indeed, a review of fMRI studies by Price (2010) identified 100 such studies in 2009 

alone.  

However, there are some limitations with the technique which must be considered when 

using an fMRI experimental design especially with patient populations. Increased movement in the 

scanner can decrease the ability to detect BOLD changes (Hoeller et al., 2002). In addition, 

ischaemic infarcts or reduced vascular activity can cause a reduction in the HRF which may affect 

the BOLD signal detection and create errors in data interpretation. Importantly, delayed HRF has 

been observed in patients with aphasia (Bonakdarpour, Parrish, & Thompson, 2007) and therefore, 

it is critical that this issue is considered when designing an experimental paradigm investigating 

specific cognitive linguistic functions.  

From the above, it is clear that the increased advances and refinements in neuroimaging 

technology that carry minimal patient risk is enabling in vivo investigations into cognitive processes 

that were previously only able to be studied post-mortem. These neuroimaging studies are 

fundamental for exploring the structure and function relationships in the brain.  

1.6 Neural Correlates of Spoken Word Comprehension  

Evidence from fMRI language studies both in normal and also brain-damaged populations 

has enabled the identification of possible brain regions that are involved when a particular task is 

being performed and has contributed to the understanding of hierarchical processes at work in 
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language processing. In terms of spoken word processing, a more detailed hierarchy has been 

proposed with activation occurring successively in response to specific acoustic, phonetic and 

phonological information such as phonetic features, segments, syllable identification and lexical 

and semantic levels of processing (Davis & Gaskell, 2009; Davis & Johnsrude, 2003; Hickok & 

Poeppel, 2007; Sharp et al., 2010). Accounts of dual stream processing, which mirror the ‘what’ 

and ‘where’ streams in the visual cortex, have also been suggested. A dual stream account is 

supported by evidence from animal studies on auditory cortex (Scott & Wise, 2004) as well as data 

from neuroimaging studies of auditory processing of single words in normal subjects (Hickok, 

2009; Hickok & Poeppel, 2007; Saur et al., 2008). Both Hickok and Poeppel (2007) and Saur et al. 

(2008) identify two streams; a dorsal and ventral stream. The dorsal stream, which is dominant in 

the left hemisphere, integrates sensory and motor information for articulation and moves through 

the parietal-temporal junction and frontal lobe. The ventral stream on the other hand is responsible 

for comprehension of speech and is located in the superior and middle temporal lobe. Whilst the 

ventral stream is largely organised bilaterally, there may be a weak left hemisphere bias for the 

comprehension of lexical-semantics (Hickok & Poeppel, 2007).  

The dual stream model of Hickok and Poeppel (2007) proposes that the processing of early 

acoustic information is carried out in the dorsal superior temporal regions bilaterally, including 

Heschl’s gyrus (HG), superior temporal gyri (STG) and planum temporal. From there, more 

complex acoustic stimuli such as speech are processed further downstream at phonetic and 

phonological levels in mid-posterior superior temporal sulci (STS) bilaterally, with some studies 

indicating a more left lateralized STG activation for speech stimuli (Binder et al., 1996; Demonet et 

al., 1992; Demonet, Thierry, & Cardebat, 2005). At this point, either the ventral route or dorsal 

route is activated, depending on the processing required. If semantic decoding is required, 

information is conveyed via the ventral stream and posterior and inferior portions of the temporal 

lobes are activated. This is the lexical interface and is where phonological information activates 

associated semantic information (Hickok & Poeppel, 2007). Findings from a recent review by Price 
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(2010) also indicate bilateral involvement of HG for processing of acoustic signals with speech 

specific selectivity occurring in the STG and if further semantic processing of single words is 

required, activation will spread anteriorly, ventrally and posteriorly into the middle and inferior 

temporal regions (Price, 2010).  

From the above, it is clear that neuroimaging is able to provide valuable evidence to inform 

theoretical models of language processing. Below I consider how concreteness effects and the 

neural mechanisms which underpin the spoken recognition of concrete and abstract words in 

healthy and language-impaired individuals can contribute to our understanding of how conceptual 

semantic representations are organised.  

1.6.1 Neural Correlates of Concrete and Abstract Processing in Healthy Young Adults  

Increasingly, evidence from neuroimaging studies has been used to support concreteness 

accounts and identify the brain regions which underpin concrete and abstract processing. While 

both visual and auditory modalities have been utilized to explore differences between concrete and 

abstract processing, the majority of studies have employed visual tasks and investigated recognition 

(Fliessbach, Weis, Klaver, Elger, & Weber, 2006; Mestres-Misse, Munte, & Rodriguez-Fornells, 

2009), semantic categorisation (Friederici, Opitz, & von Cramon, 2000; Pexman, Hargreaves, 

Edwards, Henry, & Goodyear, 2007), semantic similarity decisions (Noppeney & Price, 2004; 

Sabsevitz, Medler, Seidenberg, & Binder, 2005; Whatmough, Verret, Fung, & Chertkow, 2004), 

and lexical decision (Binder et al., 2005; Evans, Lambon Ralph, & Woollams, 2012; Fiebach & 

Friederici, 2004; Kiehl et al., 1999; Perani et al., 1999; Vigliocco et al., 2014). Meanwhile, studies 

which have used the auditory modality have employed passive listening tasks (Tettamanti et al., 

2008; Wise et al., 2000) and mental imagery generation tasks (D'Esposito et al., 1997; Mellet, 

Tzourio, Denis, & Mazoyer, 1998) although findings from the latter may reflect spoken word 

recognition rather than neural correlates associated with concrete and abstract word retrieval.  

Considered together, the findings from both types of studies have been highly variable with 

some showing that concrete words were associated with increased left hemisphere (Fiebach & 
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Friederici, 2004; Jessen et al., 2000; Mellet et al., 1998; Wise et al., 2000) or bilateral activation 

(Binder et al., 2005; Sabsevitz et al., 2005), while abstract words were associated with increased left 

(Binder et al., 2005; Noppeney, Price, Duncan, & Koepp, 2005; Sabsevitz et al., 2005), right (Kiehl 

et al., 1999) or bilateral activation (Friederici et al., 2000; Grossman et al., 2002; Perani et al., 1999; 

Pexman et al., 2007). The high variability in the results has been attributed not only to possible 

differences in the methodology and modality of input (Kotz, Cappa, von Cramon, & Friederici, 

2002) but also to differences in the baseline contrasts and imaging techniques. 

Meta-analyses by Binder et al. (2009) and Wang et al. (2010) have provided some 

consensus (refer to Chapters 2 and 3 for a more detailed discussion on the findings). The Binder et 

al. (2009) analysis included 17 studies on concrete (perceptual) and abstract (verbal) processing and 

found 113 overlapping foci associated with perceptual (concrete) processing and 34 for verbal 

(abstract) processing. The concrete processing foci included the left and right angular gyrus (AG), 

left posterior cingulate, left fusiform (occipitotemporal) gyrus, left middle frontal gyrus (MFG) and 

left superior frontal gyrus (SFG). The 34 foci identified for abstract words were located in left 

inferior frontal gyrus (IFG), mainly pars orbitalis and left anterior superior temporal sulcus (aSTS) 

(Binder et al., 2009). The analysis by Wang et al. (2010) was based on 19 studies, ten of which had 

also been included in the Binder et al. meta-analysis (2009), and arrived at similar conclusions in 

that concrete words elicited activity in left hemisphere regions including, the fusiform gyrus, 

posterior cingulate, precuneus and parahippocampus. Left hemisphere activity was also elicited by 

abstract words but this was focused in the middle temporal gyrus (MTG), STG and IFG (Wang et 

al., 2010).   

Lexical decision tasks are commonly used to explore lexical processing and importantly 

semantic effects have been reliably observed in priming tasks using lexical decisions (Balota et al., 

2007). To date, only a few lexical decision tasks have employed the auditory modality to investigate 

concreteness effects with the majority utilizing the visual modality (Binder et al., 2005; Fiebach & 

Friederici, 2004; Kiehl et al., 1999; Perani et al., 1999). However, the visual modality may be 
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associated with some limitations. Firstly, using picture-based stimuli may access visual 

representation codes which can confound findings. Secondly, written lexical decision tasks may 

result in shallow processing caused by rapid orthographic analysis (Grainger & Jacobs, 1996) or the 

orthographic familiarity of the stimuli (Balota, Ferraro, & Connor, 1991; Balota, Paul, & Spieler, 

1999). In addition, activity in inferolateral regions has been reported in response to visual lexical 

decision tasks, possibly reflecting processes associated with grapheme - phoneme conversion rather 

than semantics (Herbster, Mintun, Nebes, & Becker, 1997; Price, 1998; Rumsey et al., 1997). In 

contrast to the findings from the visual lexical decision tasks, studies employing the auditory 

modality have not observed the same pattern of activity in phoneme to grapheme conversion 

regions (Kotz et al., 2002; Newman & Twieg, 2001), highlighting potential advantages for using 

spoken word tasks to examine concrete and abstract word processing. Nevertheless, activity elicited 

in response to auditory tasks has also been variable and inconsistent across studies (Kotz et al., 

2002; Newman & Twieg, 2001; Raettig & Kotz, 2008; Shafto, Randall, Stamatakis, Wright, & 

Tyler, 2012) and one factor that might contribute to this variability is the nonword baseline 

employed. The types of nonword that may be created can be very different and will depend on the 

design method used (Bedny & Thompson-Schill, 2006). As a result, different processing 

mechanisms may be engaged and reflect varying factors such as the point of deviation, phonotactic 

legality and lexical transparency (Raettig & Kotz, 2008). Thus, if a nonword appears too similar to 

a real word, semantic representations may be activated. In contrast, if the nonword is too 

‘unwordlike’ and phonotactic legality is violated, the processing mechanisms may be very different 

from that used to process more legal nonwords or real words. Raettig and Kotz (2008) suggest that 

the use of an opaque pseudoword will ensure that lexical access is prevented, thereby minimising 

semantic-based activation (Raettig & Kotz, 2008). A more detailed explanation on the design and 

construction of opaque pseudowords is included in the introduction to Chapter 2.  
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Based on the above, an auditory lexical decision task with a novel pseudoword condition 

was employed to examine the neural correlates of concreteness effects and concrete and abstract 

processing. This experiment forms the basis for Chapter 2.  

1.6.2 Neural Correlates of Concrete and Abstract Processing in Healthy Older Adults 

The neural mechanisms which underpin concrete and abstract processing in ageing have 

received less attention than studies investigating the concreteness effects in healthy young adults. 

Indeed, of the studies included in the Binder et al. (2009) and Wang et al. (2010) meta-analyses 

only one study investigated concrete and abstract processing in healthy older adults. This PET study 

by Whatmough et al. (2004) examined concreteness effects in 15 healthy adults (mean age 74.3 yrs) 

performing a semantic judgement task and found that when the concrete and abstract words were 

compared to a baseline condition, similar activation in left lateral temporal cortex was elicited. 

However, when a direct comparison was made between the real word conditions, increased 

activation was observed in left fusiform gyrus for concrete and right fusiform gyrus for abstract 

words. Unfortunately, the Whatmough et al. (2004) study did not include a young group for 

comparison and therefore it is not clear whether age-related neural differences were contributing to 

the results. Effects of ageing and processing differences associated with concrete and abstract 

semantic judgement tasks were also examined in an fMRI study by Stebbins et al. (2002). The 

results identified age-related differences in hemispheric activity with the young group showing 

greater left hemisphere activity than the older adults (Stebbins et al., 2002).  

 A more recent study by Shafto et al. (2012) investigated age-related differences in language 

comprehension in a group of healthy young and older adults whilst performing an auditory lexical 

decision task. Variables such as phonology were measured by phonological competition and 

semantics measured by imageability. The results identified both groups as responding faster to 

words with high imageability, but only the older group showed an increased sensitivity to items of 

low imageability and this was associated with increased activity in left MTG. These findings 

suggest that in older adults, a preserved performance on abstract compared to concrete word 
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processing may be associated with an altered pattern of compensatory brain activity such that 

semantic processing is supported by an upregulation of activity but phonological processing is not 

(Shafto et al., 2012), but see Geva et al. (2012), where it was argued that compensatory 

phonological processing was observed in the performance of older adults and associated with an 

increase in activity in right IFG regions. 

Age-related neural differences for semantic versus phonemic fluency were also identified in 

a study by Meinzer et al. (2012). The findings showed increased right IFG by the older adults 

accompanied by a reduction in behavioural performance in semantic fluency, suggesting that 

semantic and phonological processing may differ as a function of age. Thus, while the engagement 

of prefrontal regions appears to be associated with changes in semantic processing in ageing, other 

regions seem to be involved in maintaining preserved functionality and it remains unclear whether 

age-related neural changes reflect compensatory or inefficient processing mechanisms.  

Structural changes associated with the normal ageing process are well documented and 

usually include reductions of grey matter volume (Fjell et al., 2009; Raz et al., 2005) in prefrontal 

and hippocampal regions (Raz et al., 2005) and decreased white matter integrity (Madden et al., 

2009). Given the reported structural changes, it is likely that functional abilities associated with 

these brain regions will also be affected over the life span and this has been reported for a range of 

cognitive functions including processing speed (Salthouse, 1996), executive function (West, 1996), 

working memory (Salthouse & Babcock, 1991), and declarative memory (Murty et al., 2009).  In 

terms of language function, deficits in word retrieval in healthy older adults are well-reported 

(Burke & Shafto, 2004; Burke & Shafto, 2008) while word knowledge (Verhaeghen, 2003) and 

language comprehension (Tyler et al., 2010) appear to remain relatively stable in older individuals. 

A still unresolved issue centres on preserved language function and whether, in view of the 

significant changes in grey and white matter structures associated with a healthy ageing brain, 

recruitment of additional neural substrates is a necessary prerequisite to preserve performance. 

Neuroimaging studies that have investigated nonlinguistic processes in healthy older and 
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young adults have shown activation differences between the two groups, suggesting a tendency for 

young adults to show increased focal task-related activity compared to older adults who show a 

pattern of more widespread activity (Cabeza, 2002). The results from the Cabeza (2002) study also 

showed hemispheric differences between the two groups in response to the same task. While 

younger adults tend to elicit activity in the hemisphere which is usually recruited to perform the 

task, older adults demonstrate the reverse (i.e. greater activity in the non-task dominant 

hemisphere), with activity most usually observed in prefrontal cortical regions. This shift in 

lateralisation has been termed the hemispheric asymmetry reduction in older adults or HAROLD 

(Cabeza, 2002). While a reduction in asymmetrical activation patterns for healthy older adults is 

well-established, what is less clear is how this reduction in laterality affects function. Questions 

remain as to whether the upregulation of additional brain regions serves as a compensatory neural 

response, enabling older individuals to perform a task equally as successfully as their young 

counterparts or if the increased widespread activity is a result of reduced brain specificity and a 

decline in neural efficiency (for a review see Park & Reuter-Lorenz, 2009; Park et al., 2003).  

 As such, based on the behavioural evidence outlined in section 1.2 of this introduction and 

the neuroimaging evidence discussed above, competing accounts regarding attenuation (as per 

Peters & Daum, 2008) versus preservation (as per Huang, Meyer, & Federmeier, 2012) of 

concreteness effects were tested in a group of healthy older adults, and the experiment forms the 

basis for Chapter 3 of this thesis. 

1.6.3 Neural Correlates of Concrete and Abstract Processing in Aphasia.  

Comparisons between brain activity elicited by individuals with aphasia and healthy 

controls performing the same task can provide further insights into the neural mechanisms which 

underpin abstract and concrete processing (Skipper-Kallal, Mirman, & Olson, 2015). However, it is 

essential that the imaging protocols employed in studies investigating aphasic language are 

carefully constructed to ensure reliable and consistent activation is observed (see meta-analysis by 

Turkeltaub, Messing, Norise, & Hamilton, 2011). Below I consider some of the studies which have 
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investigated concreteness effects in aphasia and consider how they contribute to our understanding 

of the neural mechanisms which underpin concrete and abstract processing. 

While concreteness effects and the processing advantage for concrete over abstract words 

have been reported in healthy populations (James, 1975; Kroll & Merves, 1986, for a review, refer 

Pavio, 1991) (see Chapter 2 for a review of concreteness), the effects of concreteness are not only 

present, but are often exaggerated in people with aphasia (Barry & Gerhand, 2003; Crutch & 

Warrington, 2005; Martin, Saffran, & Dell, 1996; Newton & Barry, 1997; Sandberg & Kiran, 2014) 

and also people with semantic dementia (Hoffman, 2015). Other studies have reported a reversal of 

the effect (Warrington, 1975); that is a processing advantage for abstract over concrete words in 

patients with semantic dementia (Bonner et al., 2009; Macoir, 2009; Papagno, Capasso, & Miceli, 

2009; Yi, Moore, & Grossman, 2007), although these cases are not typical (Hoffman & Lambon 

Ralph, 2011). Nevertheless, these observations have fuelled the debate regarding whether concrete 

and abstract processing is underpinned by distinct neural systems which can be selectively impaired 

following an insult to the brain. While informative, a limitation of the studies investigating 

concreteness effects in aphasia is that they have largely been behavioural case studies and have also 

investigated language function in the chronic phase of recovery when significant reorganisation is 

likely to have already occurred.  

To date, there has only been one study that has used fMRI to investigate the neural 

mechanisms associated with concrete and abstract processing in people with aphasia (Sandberg & 

Kiran, 2014). In this study, three individuals with chronic aphasia and three healthy age-matched 

controls were investigated while performing visual, semantic judgement tasks. The results showed 

that for the aphasic subjects, there was increased activation for abstract compared to concrete words 

in anterior and posterior brain regions. However, no region elicited increased activity for concrete 

compared to abstract words. In contrast, activation differences between conditions elicited by the 

controls were not as robust and the authors suggest that this difference in activation between the 

two groups may explain the more pronounced effects of concreteness observed in people with 
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aphasia (Sandberg & Kiran, 2014). Whilst not using fMRI in aphasia, Skipper-Kallal et al. (2015) 

recently demonstrated that patients with lesions involving the temporoparietal cortex had 

difficulties processing abstract but not concrete words when the words were presented in a related 

array, providing further insights into effects of aphasia on abstract conceptual processing (Skipper-

Kallal et al., 2015).  

1.6.4 Neural Mechanisms of Recovery in Aphasia 

The development of newer, more refined imaging techniques offers exciting prospects for 

exploring neural mechanisms of language recovery following stroke. In terms of aphasia and the 

recovery of language there are two important issues. The first issue concerns the neurophysiological 

changes that occur following a stroke and cause the language impairment. The second issue relates 

to the mechanisms of recovery that are responsible for the recovery of the lost language function 

(Calvert et al., 2000). As discussed above, traditional methods of predicting recovery such as lesion 

size only account for about a third of the variance (Lazar & Antoniello, 2008) and other factors 

such as functional neural mechanisms may therefore be contributing to the recovery process. Below 

I discuss the neural mechanisms of recovery and consider how they might be correlated with 

functional recovery of language processes.  

1.6.4.1. Neurophysiological mechanisms. Following a stroke, a patient may experience 

loss of function caused by the death of neuronal cells and deafferentation whereby activation of the 

neural network is interrupted (Muñoz-Cespedes, Rios-Lago, Paul, & Maestu, 2005). From a 

neurophysiological perspective, mechanisms of recovery will be operating immediately post insult 

(Muñoz-Cespedes et al., 2005). During the acute stage, recovery occurs rapidly and is mainly 

caused by restoration of the function of damaged neural tissue, largely brought about by reperfusion 

of the ischaemic penumbra and reduction of oedema (Lazar & Antoniello, 2008). At the subacute 

phase, synaptic remodelling and axonal sprouting occurs and recovery at this time slows (Marsh & 

Hillis, 2006). Finally, once the chronic phase is reached, neural recovery may be complete or have 

plateaued (Muñoz-Cespedes et al., 2005). While there are clearly distinct neurophysiological 
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mechanisms occurring at different stages, how they contribute to recovery of language function is 

currently not well understood. 

1.6.4.2. Stages of recovery. Most people with aphasia and even those with large perisylvian 

lesions, go on to make some degree of spontaneous recovery (Thompson & den Ouden, 2008). 

Following a stroke, neuroplastic changes occur as the brain undergoes reorganisation or repair so 

that it can compensate for the impaired functionality (Muñoz-Cespedes et al., 2005). Three distinct 

but clearly overlapping stages of recovery have been proposed with specific underlying neural 

mechanisms occurring at the different time points (Hillis, 2005; Kiran, 2012; Marsh & Hillis, 

2006). Grady and Kapur (1999) suggest that functional recovery can occur following (i) 

reorganisation within the region, (ii) recruitment of new or alternate network (compensatory 

mechanism) and (iii) plasticity in regions surrounding the lesion. Breier et al. (2004) describe the 

three mechanisms as (i) restoration of activity in premorbid areas, (ii) map expansion to perilesional 

areas within the left hemisphere and (iii) reorganisation of right hemisphere homologues. Below I 

consider these mechanisms and their influence in the acute, subacute and chronic phases of 

recovery. 

1.6.4.2.1. Acute stage. At the acute stage, there are two mechanisms of recovery. The first is 

reorganisation and reestablishment of damaged connections and the second is restoration of neural 

tissue as the damaged area of the brain is reperfused (Marsh & Hillis, 2006). While both 

mechanisms are important, reperfusion of the dysfunctional area rather than structural 

reorganisation is probably a more common mechanism of recovery in the first few days of stroke 

(Marsh & Hillis, 2006) and it is essential to consider its impact on spontaneous aphasia recovery 

during this period.  

Newer methods of imaging however such as diffusion-weighted imaging (DWI) and 

perfusion-weighted imaging (PWI) have enabled a more detailed understanding of how low blood 

flow contributes to functional deficits in the acute phase post-stroke. DWI is used to measure the 

volume of the ischaemic tissue that is permanently infarcted while PWI measures the total 
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volumetric measure of brain tissue that is compromised but salvageable (Lee et al., 2006; Reineck 

et al., 2005). A diffusion/perfusion mismatch (Lee et al., 2006; Reineck et al., 2005) can be used to 

define functionally the area known as the ischaemic penumbra (IP). That is, the volume of the 

penumbra is calculated by subtracting the abnormality seen in DWI from that seen in PWI. The 

resulting figure is the volume of tissue that, while compromised, has not experienced irreversible 

infarction (Hillis, Barker, Beauchamp, Gordon, & Wityk, 2000; Hillis et al., 2004). If the IP is 

reperfused, normal function will resume but if the area remains hypoperfused, permanent cell death 

will occur (Payabvash et al., 2010). In terms of language function, if the IP is situated in a language 

area, hypoperfusion can cause language deficits such as aphasia in the acute phase. Studies have 

shown that once the IP is reperfused, an improvement in language function is seen despite the 

infarct remaining unchanged (Hillis et al., 2006; Lee et al., 2006). 

Language studies which have investigated recovery in the acute stage have largely focused 

on the contribution of hypoperfusion to aphasia recovery (Hillis, 2005, 2007). DWI and PWI were 

used by Hillis and Heidler (2002) to examine spoken word comprehension in 110 patients with 

acute stroke and showed that following successful perfusion of Brodmann area (BA) 22 

(Wernicke’s area), there was a rapid recovery of language comprehension. In contrast, patients with 

persisting hypoperfusion in BA 22, continued to show impaired spoken word comprehension (Hillis 

& Heidler, 2002) demonstrating the important role of reperfusion in early language recovery. 

Indeed, compromised cerebral perfusion in the acute stages has been considered a more reliable 

predictor of spontaneous aphasia progression than the size of the lesion (Fridriksson et al., 2002; 

Hillis et al., 2000). Thus, reperfusion of potentially salvageable tissue appears to be an important 

early mechanism of recovery in acute aphasia (Cappa, 2008), as compared to neural mechanisms 

associated with the reorganisation of brain structure and function mechanisms, which may 

contribute to improved language function but at a later time point. It should be noted that these 

mechanisms have not been examined as predictors of chronic recovery, but instead have explained 

changes or between subject differences in behaviour at the acute stage. 
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1.6.4.2.2. Subacute stage. During the subacute stage, reorganisation and reestablishment of 

damaged connections continues to occur through restitution and extension of perilesional regions 

and/or a functional transfer to the right hemisphere homologue (Lazar & Antoniello, 2008; 

Thompson, 2000a). These two mechanisms have been at the centre of the debate on language 

recovery for the past 100 years and the emergence of new noninvasive neuroimaging techniques has 

prompted a renewed interest in determining whether recruitment of residual left hemisphere 

language regions or contralateral homologues mediates recovery (Muñoz-Cespedes et al., 2005).  

The notion that language recovery occurs as a result of recruitment of perilesional tissue is 

widely accepted (Kertesz, 1988, 1989). Evidence from patient data also supports this ‘map 

extension’ (Thompson, 2000a) with reports of renewed language impairments in people with 

aphasia with previously recovered language function, but who go on to experience a second left 

hemisphere stroke (Basso, Gardelli, Grassi, & Mariotti, 1989). Neuroimaging studies have also 

demonstrated activation of perilesional tissue adjacent to the lesioned area in response to language 

processing (Heiss, Kessler, Thiel, Ghaemi, & Karbe, 1999; Kurland et al., 2004; Warburton, Price, 

Swinburn, & Wise, 1999). Moreover, if the perilesional area surrounds an active language area it is 

more likely that it will be able to subsume some of language function previously carried out by the 

damaged regions (Marsh & Hillis, 2006) perhaps due to functional redundancy (Thompson & den 

Ouden, 2008). Some researchers have claimed that perilesional restitution is the main substrate for 

functional language recovery (Breier et al., 2004; Crinion & Price, 2005; Crosson et al., 2007; 

Meinzer et al., 2008; Sharp et al., 2010; Szaflarski et al., 2011) and is actually indicative of a 

‘better’ recovery (Thompson & den Ouden, 2008). However, it is not clear whether this increased 

perilesional activation is caused by the left hemisphere assuming new functionality or by 

reperfusion (Marsh & Hillis, 2006).  

The involvement of the right hemisphere in language recovery is also well documented. As 

far back as 1877, Barlow demonstrated a transference from typical language centres to the right 

hemisphere (as cited in Crosson et al., 2007). Furthermore, patients with recovered language 
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function following a left hemisphere stroke have been shown to experience a relapse after 

experiencing new right hemisphere damage (Basso et al., 1989; Thompson & den Ouden, 2008). 

Similarly, studies demonstrating loss of language function in recovered aphasic patients after 

anesthetizing the right hemisphere during Wada testing has also provided evidence of right 

hemisphere involvement in language processing in this patient group (Kinsbourne, 1971). 

Importantly, the same effect is not seen when the right hemisphere is anesthetized in normal 

subjects (Marsh & Hillis, 2006). Recent functional neuroimaging research has indicated that right 

hemisphere involvement is more than a shift of lateralisation and propose that it is actually the 

homologous regions in the right hemisphere that are implicated in language recovery (Blank, Bird, 

Turkheimer, & Wise, 2003; Calvert et al., 2000; Cao, Vikingstad, George, Johnson, & Welch, 1999; 

Crosson et al., 2007; Lazar et al., 2000; Thulborn, Carpenter, & Just, 1999; Weiller et al., 1995). 

There seems to be little doubt that the right hemisphere is involved in the recovery of 

language but its role appears complex and questions surrounding the circumstances, stage and 

extent of involvement have yet to be answered (van Oers et al., 2010). It is not clear whether right 

hemisphere involvement actively contributes to recovery of language function or whether it is 

merely implicated due to transcallosal disinhibition following left cortical damage (Crosson et al., 

2007; Price & Crinion, 2005). Furthermore, it is not known whether right hemisphere involvement 

is actually beneficial (Crosson et al., 2007) or maladaptive (Crosson et al., 2007; Selnes, 1999) and 

prevents a good recovery through the persistence of residual deficits (Marsh & Hillis, 2006; Martin, 

2003). Moreover, since right hemisphere involvement has been documented in healthy controls, 

activation of these right hemisphere regions may be representative of the large-scale neural network 

that is usually operational during normal language processing  (Crosson et al., 2007; Thompson & 

Shapiro, 2005) and this must be considered when evaluating the role of this mechanism in language 

recovery. 

Clearly, it would appear that both perilesional restitution and right hemisphere homologues 

are involved to some degree in the reorganisation and reestablishment of damaged connections in 
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the recovery of language function. A review of fMRI studies investigating mechanisms of recovery 

in aphasia (Price & Crinion, 2005) concluded that both left and right hemisphere mechanisms do 

indeed contribute to the recovery of language, although the circumstances under which these 

mechanisms are involved is not clear (Price & Crinion, 2005), and differences in patterns of neural 

reorganisation may be attributed to factors such as the type of task investigated, the lesion site and 

size, and the timing post-stroke. Marsh and Hillis (2006) proposed three possible explanations for 

differences in reorganisation. In the first instance, the extent of left hemisphere damage and the 

location may determine which mechanism is recruited, so that perilesional cortex may provide an 

adequate substrate for a small lesion while a large lesion may be better served by a right hemisphere 

substrate (Crosson et al., 2007; Vitali et al., 2007). Certainly, right hemisphere recruitment has 

traditionally been associated with extensive left hemisphere damage (Cao et al., 1999; van Oers et 

al., 2010). The second explanation is that both left and right hemispheres always support language 

recovery, possibly through the upregulation of right homologous and left perilesional regions, 

although the significance of their contribution to the process may be different (Marsh & Hillis, 

2006; Noppeney et al., 2005). Lastly, following left hemisphere damage, the contralateral 

hemisphere may initially be recruited for language function until reintegration can occur in the left 

hemisphere (Marsh & Hillis, 2006). This last theory has been shown to be predictive of a good 

recovery  (Heiss et al., 1999; Rosen et al., 2000; Saur et al., 2006) while poorer outcomes have been 

indicated following large left hemisphere lesions and prolonged right hemisphere involvement 

(Szaflarski, Allendorfer, Banks, Vannest, & Holland, 2013; van Oers et al., 2010). 

From the above, it is clear that neural reorganisation is an important mechanism of recovery 

which starts in the acute stage and continues into the subacute phase albeit at a slower rate. Another 

neural mechanism of recovery that occurs in the subacute phase is regression of diaschisis (Cappa et 

al., 1997; Lazar & Antoniello, 2008; Marsh & Hillis, 2006). The term diaschisis refers to a 

functional impairment that occurs downstream in either an ipsilateral or contralateral area of the 

brain and is caused by the loss of neural input from the infarcted region (Feeney & Baron, 1986; 
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Marsh & Hillis, 2006). Once input is received from other, intact areas of the brain, functionality is 

restored (Marsh & Hillis, 2006). Regression of intrahemispheric and transhemispheric diaschisis 

during the first six months post-stroke onset has been associated with an improvement in language 

function and has been considered by some to be the best predictor of language recovery (Cappa et 

al., 1997) although definitive evidence of this prominent role is lacking.  

1.6.4.2.3. Chronic stage. In the chronic stage of recovery, recovery of language function 

continues and may be achieved by establishing compensatory strategies or learning new ways of 

performing a task (Holland, Fromm, DeRuyter, & Stein, 1996; Marsh & Hillis, 2006), or by the 

strengthening and extension of previous networks (Mohr, Difrancesco, Harrington, Evans, & 

Pulvermüller, 2014). Compensatory masquerade has been proposed as a neuroplastic mechanism 

whereby a different cognitive process is used to perform a task following impairment to the original 

cognitive processing mechanism (Grafman, 2000). For example, reading may be accomplished by 

using a letter by letter reading strategy which whilst being explicit and slower, is nevertheless 

effective. As such, people with aphasia can learn new ways of accessing intact representations or 

use an alternative strategy to perform the same task (Lazar & Antoniello, 2008).  

Spoken language comprehension in chronic post-stroke aphasia was investigated in an fMRI 

study by Crinion and Price (2005). Auditory sentence comprehension and speech recognition tasks 

were presented to 17 aphasic patients. Positive correlations were observed between brain activity in 

the right superior temporal lobe and auditory sentence comprehension whereas story recognition 

memory was associated with activity in left IFG and right cerebellum. These findings suggest that 

right hemisphere regions contribute to auditory sentence comprehension in aphasic recovery. 

However, since this study investigated people with chronic aphasia, it is possible that the 

recruitment of right hemisphere homologues reflects a system that had already undergone 

significant reorganisation. 

Whilst beyond the scope of this review, it should be noted that aphasia treatment studies, 

predominantly conducted in chronic aphasia (for a rare example in acute aphasia see Mattioli et al. 
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2014), have also provided varying results on the contribution of left and right hemisphere 

mechanisms to improved language function. Some have shown language improvements associated 

with left hemisphere regions (Breier, Maher, Novak, & Papanicolaou, 2006; Fridriksson, Bonilha, 

Baker, Moser, & Rorden, 2010; Meinzer et al., 2008). Others have shown improvements associated 

with right hemisphere mechanisms although its involvement does appear to vary so that right 

activation prior to therapy may predict improved function immediately post-therapy, but may not 

predict sustained language improvements (Breier et al., 2006; Richter, Miltner, & Straube, 2008). 

For more detailed information on aphasia treatment studies and fMRI, refer to the reviews of 

Meinzer et al. (2013), Crosson et al. (2007), Crinion and Leff (2007) and Crinion and Leff (2015).  

It is clear from the above, that a variety of neural mechanisms are associated with improved 

language function over the course of aphasia recovery. However, one of the key limitations with 

many of existing studies examining aphasia recovery is that language function was only examined 

at one time point and the exact nature, extent and timing of the neural mechanisms which underpin 

a successful recovery remain unclear. Importantly, changes to these mechanisms occur relative to 

time post-stroke onset (Marsh & Hillis, 2006; Thompson & den Ouden, 2008) and therefore 

longitudinal neuroimaging studies on language recovery in people with aphasia are essential, not 

only to evaluate what mechanisms contribute to recovery but also to identify when and how these 

mechanisms are implicated in the process. Below I discuss some of the existing longitudinal studies 

on aphasia recovery and consider their contribution to the current debate. 

1.6.4.3. Longitudinal studies of neural recovery mechanisms. Early longitudinal 

neuroimaging studies of language recovery used single case studies to investigate possible neural 

substrates (Fernandez et al., 2004; Léger et al., 2002). Fernandez et al. (2004) used fMRI at one 

month and again at one year on a patient with a left temporoparietal lesion and resulting conduction 

aphasia. At the one month period, increased activation was demonstrated in the right homologue 

and while this increase was still present at the one year stage, a shift towards increased perilesional 

activity was also noted. However, one of the problems with the Fernandez et al. (2004) study was 
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that the patient was able to complete the speech comprehension task normally at both testing times 

and as such, no direct correlation between the shift in activation changes from right to left 

hemisphere could be necessarily attributed to the recovery of language function. 

Longitudinal neuroimaging studies on groups of patients have also been carried out to 

determine the neural mechanisms that are involved at different stages of the recovery process both 

in cortical (Heiss et al., 1999) and subcortical structures (de Boissezon et al., 2005). The study by 

Heiss et al. (1999) demonstrated initial right hemisphere recruitment at two weeks post-stroke with 

a shift to perilesional regions at eight weeks. However, a limitation of this study was that the 

imaging data was not correlated with language recovery. A more recent neuroimaging study which 

did investigate language recovery and the contribution of left and right hemisphere mechanisms at 

two time points was carried out by van Oers et al. (2010). Thirteen patients with aphasia were 

recruited to the study and underwent a range of language assessments at less than 2 months and one 

year post-stroke (van Oers et al., 2010). The results indicated that improved overall language 

performance in the chronic period correlated positively with increased activity in left perisylvian 

rather than right regions and particularly in left IFG. The authors suggested that these results 

reflected a role for left IFG in language function in chronic aphasia whereas recruitment of right 

IFG might be associated with more cognitive, nonlinguistic processing (van Oers et al., 2010). 

Unfortunately, a significant shortfall with this study was that the functional imaging task was not 

carried out in the first phase of testing and therefore changes in neural mechanisms associated with 

the course of recovery were not able to be evaluated.  

The neural mechanisms which underpin language recovery were examined in a longitudinal 

study by Saur et al. (2006). Repeated fMRI examinations and language assessments were 

administered to14 acute aphasic patients from the acute to chronic time points to determine the 

mechanisms involved with language reorganisation. The results identified three phases of recovery. 

During the early, acute phase, left hemisphere language regions were recruited but activity was 

weak and greatly reduced. In contrast, in the subacute phase, approximately 12 days post-stroke, the 
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entire language network was upregulated and this was accompanied by recruitment of right 

hemisphere homologues, with peak activation in the right IFG. Finally, in the chronic phase of 

recovery, more normalised patterns of brain activation were observed, with a decrease in right 

hemisphere activation and a return to peak activity in the left hemisphere (Saur et al., 2006). 

Importantly, as this hemispheric shift of brain activity from right to left correlated with 

improvements in behavioural language measures, Saur et al. (2006) proposed that recruitment of 

right IFG in the subacute stage might be considered an early mechanism of recovery, while the left 

hemisphere and specifically the left IFG may play a role in language recovery in the chronic stages 

(Cappa, 2008; van Oers et al., 2010) and may therefore be considered a later stage mechanism of 

recovery (Saur et al., 2006). 

From the above, it could be suggested that a good recovery from aphasia is associated with a 

functional transfer in the subacute stage from the right IFG to the left hemisphere in the chronic 

phase (Saur et al., 2006). However, it is unlikely to be as simple as a right-left transfer since other 

factors may influence the pattern of recovery and the neural mechanisms recruited. One possible 

factor concerns the extent of the lesion as the infarct itself may cause a loss of activation or disrupt 

the language network (Price, Warburton, Moore, Frackowiak, & Friston, 2001). In addition, the 

infarct may also cause damage to mechanisms that control lateralisation (Crosson et al., 2007) and 

as such, right hemisphere activation may reflect reduced trans-hemispheric functioning caused by 

left hemispheric disinhibition, rather than functional recruitment. Consideration also needs to be 

given to the fact that a weak BOLD signal could cause reduced activation rather than being a result 

of a functional deficit (Krainik, Hund-Georgiadis, Zysset, & von Cramon, 2005).  

Furthermore there were some methodological limitations of the Saur et al. (2006) study 

which may have contributed to the pattern of results observed and may account for the lack of any 

correlations between task-related brain activity at any single time point and subsequent language 

outcome. One significant problem was that some of the aphasic patients were not able to perform 

the fMRI task due to its complexity (see Chapters 4 and 5 for a more detailed explanation). Thus the 
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interpretation of the imaging data, particularly in the acute phase of testing when accuracy rates 

were at their lowest (mean accuracy rate in the acute phase was 36%), is problematic as it cannot be 

determined if the impaired performance is a result of the underlying neural deficit or whether the 

task-related brain activity actually reflects an impaired performance (Price & Friston, 1999).  

A second limitation of the study concerns the sentence level task employed in the study to 

investigate recovery of spoken language comprehension. Sentence level processing is considered to 

rely heavily on other cognitive functions, in particular verbal working memory (Caplan, Michaud, 

& Hufford, 2013). Therefore, the task-related prefrontal activity may actually reflect an increased 

requirement for attention and cognitive control mechanisms (Geranmayeh, Brownsett, & Wise, 

2014) which are reduced in the acute phase, increased in the subacute phase and then return to 

normal activation patterns in the left hemisphere language areas in the chronic phase once support 

from the right hemisphere is no longer required (Saur et al., 2006) (this is covered in more depth in 

the discussion in Chapter 5). As such, while right hemisphere activation and specifically right IFG 

recruitment might be considered an early neural mechanism of recovery, it could be interpreted as a 

result of an increased nonlinguistic cognitive process that occurs in response to increased working 

memory or executive control demands (van Oers et al., 2010).  

Thus, it would appear important in studies investigating language recovery that individuals 

with aphasia are presented with tasks that are not cognitively demanding and that they are able to do 

with sufficient accuracy. If this is achieved, the task-based activity is likely to reflect the neural 

substrates associated with the stimuli being shown rather than reflecting processing mechanisms 

associated with the difficulty of the task or the inaccuracy of responses (Price, Crinion, & Friston, 

2006; Price & Friston, 1999). Finally, the predictive mechanisms suggested by Saur et al. (2006) 

have been suggested in terms of sentence comprehension and it cannot be assumed that the same 

regions would underpin processing of single words, given the different regions involved in these 

processes.  

In conclusion, while the substrates of language recovery are not well understood, recent 
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neuroimaging studies are beginning to provide further insights into the timing and extent to which 

certain neural mechanisms underpin improved language function. Perilesional activity has been 

associated with a good recovery (Heiss et al., 1999) as has bilateral activation (Cardebat et al., 

2003; de Boissezon et al., 2005). The benefits of other mechanisms such as right hemisphere 

homologues are less clear. While recruitment in the subacute stage post-stroke has been associated 

with an improved language outcome (Saur et al., 2006), it may be that this upregulation is only 

beneficial if transient and precedes a return to more left hemisphere network in the chronic phase. 

Furthermore, right hemisphere homologous activity may actually indicate a poorer recovery 

outcome (Zahn et al., 2004) or reflect maladaptive processes when its involvement is sustained well 

into the chronic recovery period (Szaflarski et al., 2013; van Oers et al., 2010).  

There is no doubt that the neural mechanisms which underpin improved language function 

are dynamic and are implicated at different times during the recovery process. A successful 

language recovery may follow a systematic time course so that residual perilesional activity occurs 

in early post-stroke aphasia, followed by recruitment of right homologues in the subacute phase 

(Rochon et al., 2010; Saur et al., 2006) or as necessary (Crosson et al., 2007), and a subsequent 

return to the upregulation of perilesional regions in the left hemisphere in the chronic phase (Saur et 

al., 2006; van Oers et al., 2010). However, recovery is highly variable and there is clearly a need for 

more longitudinal fMRI studies which examine how brain structure and function is reorganised over 

the course of aphasia recovery and contributes to improved language function. An increased 

understanding of the stages involved in recovery has significant clinical implications both in terms 

of providing an accurate prognosis for recovery and also in guiding treatment provision. Based on 

this, a longitudinal study of the neural correlates of recovery, particularly as related to spoken word 

processing, was carried out in the subacute and chronic stages of aphasia and is reported in Chapters 

4 and 5. 

1.7 Aims and Rationale for the Current Study 

The first aim of this thesis (reported in Chapter 2) was to investigate the neural substrates 
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which underpin spoken word processing and specifically concrete and abstract processing in 

healthy young adults (Roxbury, McMahon, & Copland, 2014). Previous studies on concrete and 

abstract processing have focussed on the visual modality while the auditory modality has been left 

largely unexplored. This study employs an auditory lexical decision to explore processing 

differences between concrete and abstract and therefore avoids some of the limitations associated 

with using the visual modality. It was hypothesised that by using a lexical decision task with a 

robust baseline, differences in brain activity elicited during the task would represent discrete 

language processing mechanisms associated with semantic or phonological processing. In addition, 

by making the pseudowords as close to real words as possible and therefore increasing task 

difficulty, it was also hypothesised that maximal semantic-based activation would be observed in 

response to the concrete and abstract words (Evans et al., 2012).  

The second aim of this thesis was to employ the same paradigm to investigate the effects of 

healthy ageing on the neural substrates of concrete and abstract processing (Roxbury, McMahon, 

Coulthard, & Copland, 2016). Chapter 3 tested competing hypotheses regarding whether 

concreteness effects are attenuated with age (as per Peters & Daum, 2008) or whether they are 

preserved (as per Huang et al., 2012), and if preserved, whether performance by the older adults 

was associated with patterns of neural activity not observed in the younger adults.  

The major aim of the experiments investigating aphasia recovery was to explore the neural 

mechanisms underpinning language processing in subacute (2 - 6 weeks) and chronic (6 months) 

aphasia and to examine whether the extent to which these mechanisms are recruited and the time at 

which this occurs contributes to an improved language recovery. The intention behind using the 

auditory lexical decision task was to ensure that all patients with aphasia, even in the early stages of 

recovery, would be able to perform the task with sufficient accuracy as this has been a limitation 

with previous studies investigating language processing in subacute aphasia (Saur et al., 2006).In 

addition, by using an auditory task, aphasic patients with visual deficits did not need to be excluded 

from the study. Importantly, the use of a lexical decision task enabled evaluation of phonological 
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and semantic processing as these components are reliant on a widely-distributed network and are 

often disrupted in early post-stroke aphasia (Hillis & Heidler, 2002).  

Chapter 4 outlines the experiment in patients with aphasia during the subacute phase of 

recovery and considers the results alongside those from a group of healthy age-matched controls. 

The same experimental paradigm as the one employed in the previous two experiments was used to 

determine whether patterns of brain activity would be similar to that of healthy older adults 

performing the same task or whether there would be increased contralateral activation as previously 

reported in patients in subacute aphasia performing a spoken comprehension task (Saur et al., 

2006). Based on previous reports that concreteness effects (the processing advantage for concrete 

over abstract words) are maintained in aphasic language and are often more pronounced, a primary 

aim was to investigate the neural substrates associated with concrete and abstract processing in 

subacute aphasia. Consistent with previous studies investigating concreteness effects in aphasia 

(Sandberg & Kiran, 2014), it was hypothesised that greater activity would be elicited for abstract 

compared to concrete words in the aphasic group. The second aim of this experiment was to 

investigate whether there was a relationship between brain activity elicited in response to the fMRI 

task and measures of spoken language comprehension and confrontation naming taken outside the 

scanner. Based on the findings of Crinion and Price (2005) it was hypothesised that there would be 

a positive correlation between right hemisphere activity and spoken word and sentence 

comprehension.   

The experimental procedure described above was repeated in the same group of aphasic 

patients in the chronic (6 months) phase of recovery and is detailed in Chapter 5. The aim of the 

experiment was to investigate the neural mechanisms associated with improved language recovery 

in post-stroke aphasia and specifically set out to determine whether measures of language related 

fMRI activity at 2-6 weeks post-onset can predict aphasia recovery at 6 months. In addition, the 

experiment aimed to identify whether the brain activity in the subacute and chronic stage can 

predict aphasia recovery and to determine how these measures of brain function relate to a range of 
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clinical language measures. Recovery of specific language functions is considered rather than more 

global language measures. Based on the findings of Saur et al. (2006) and Crinion and Price (2005), 

it was predicted that right hemisphere homologous recruitment in the subacute phase, followed by a 

shift back to more left hemisphere recruitment in the chronic phase would be associated with 

improved language function at six months.  

The research addressed in this thesis has the potential to further our insights into the neural 

substrates which underpin spoken word recognition in healthy adults and how these mechanisms 

can be impaired in aphasia. At present there are few neuroimaging studies that have used a 

longitudinal approach on a group of people with aphasia to determine the neural mechanisms that 

contribute to functional recovery of language. Outcomes of this thesis therefore provide an 

enhanced understanding of the timing and extent to which neural mechanisms which underpin 

language function contribute to a successful recovery from aphasia. The clinical outcomes 

associated with this research are significant. The development of more reliable neurophysiological 

markers of language recovery in subacute stroke has the potential to provide people with aphasia in 

the early post-stroke recovery period with a more informed and accurate prognosis of recovery. In 

addition, increased knowledge of predictors of language recovery may assist clinicians in 

determining the most appropriate assessment and therapeutic approach, both in terms of timing and 

type of intervention, thereby maximising outcomes for the person with aphasia. Furthermore, a 

greater understanding of the brain mechanisms underlying successful language recovery may 

initiate the development of new treatment approaches.  
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2 Chapter Two 

An fMRI study of Concreteness Effects in Spoken Word Recognition 

________________________________________________________________________________ 

The following chapter provides an introduction into the neural mechanisms associated with 

the spoken word recognition of concrete and abstract words in young adults. This chapter has been 

previously published in a manuscript entitled “An fMRI study of concreteness effects in spoken 

word recognition” (Roxbury et al., 2014)
1
. The aim of this current chapter was to investigate the 

neural basis of concreteness effects during spoken word recognition when young adults performed 

an auditory lexical decision task. It was hypothesised that concrete words would elicit greater 

activity in bilateral brain regions while activity in response to abstract word processing would be 

contained to the left hemisphere.  

 

 

 

 

 

 

 

 

 

1
 The content of this chapter has been modified from the original publication in terms of the formatting in order that the 

thesis style can be adhered to. As such, the formatting and numbering of the figures and headings differ to that of the 

manuscript. In all other respects, the chapter is identical to the published manuscript.  

Pages 53 and 59 have been modified in the thesis in response to examiner feedback.   
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2.1 Abstract 

Evidence for the brain mechanisms recruited when processing concrete versus abstract concepts has 

been largely derived from studies employing visual stimuli. The tasks and baseline contrasts used 

have also involved varying degrees of lexical processing. This study investigated the neural basis of 

the concreteness effect during spoken word recognition and employed a lexical decision task with a 

novel pseudoword condition. The participants were seventeen healthy young adults (9 females). 

The stimuli consisted of (a) concrete, high imageability nouns, (b) abstract, low imageability nouns 

and (c) opaque legal pseudowords presented in a pseudorandomised, event-related design. 

Activation for the concrete, abstract and pseudoword conditions was analysed using anatomical 

regions of interest derived from previous findings of concrete and abstract word processing.  

 

Behaviourally, lexical decision reaction times for the concrete condition were significantly faster 

than both abstract and pseudoword conditions and the abstract condition was significantly faster 

than the pseudoword condition (p < .05). The region of interest analysis showed significantly 

greater activity for concrete versus abstract conditions in the left dorsolateral prefrontal cortex, 

posterior cingulate and bilaterally in the angular gyrus. There were no significant differences 

between abstract and concrete conditions in the left superior temporal gyrus or inferior frontal 

gyrus. These findings confirm the involvement of the bilateral angular gyrus, left posterior cingulate 

and dorsolateral prefrontal cortex in retrieving concrete versus abstract concepts during spoken 

word recognition. Significant activity was also elicited by concrete words relative to pseudowords 

in the left fusiform and left anterior middle temporal gyrus. These findings confirm the involvement 

of a widely distributed network of brain regions that are activated in response to the spoken 

recognition of concrete but not abstract words. Our findings are consistent with the proposal that 

distinct brain regions are engaged as convergence zones and enable the binding of supramodal 

input.   
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2.2 Introduction 

How conceptual knowledge is represented and organised in the brain is a question that 

remains a point of contention. Previous language studies have attempted to unravel some of the 

complexities surrounding the organisation and access of semantic conceptual representations and 

have investigated processing differences between concrete and abstract words. Concrete words such 

as ‘hospital’ are grounded in sensory-motor experiential knowledge while abstract words such as 

‘knowledge’ refer more to verbally encoded concepts (Paivio, 2007). Imageability is often 

associated with concreteness and these constructs have been treated synonymously (Reilly & Kean, 

2007). However, we acknowledge that they are distinct psycholinguistic concepts (Barber, Otten, 

Kousta, & Vigliocco, 2013; Kousta et al., 2011) and for the purposes of this study, focus on 

processing differences associated with concrete versus abstract words in spoken word recognition.  

Behavioural evidence from healthy individuals has demonstrated that concrete items are 

processed faster and more accurately than abstract items (Binder et al., 2005; James, 1975; Paivio, 

1991, 2007). This processing advantage or concreteness effect has been reported in people with 

aphasia (Sandberg & Kiran, 2014), deep dyslexia (Coltheart et al., 1980; Franklin, 1989; Goodglass 

et al., 1969) and semantic dementia (Jefferies et al., 2009). However, the reverse effect, where 

abstract words are able to be processed more efficiently than concrete words has also been observed 

(Bonner et al., 2009; Breedin et al., 1994; Kousta et al., 2011; Papagno et al., 2007; Warrington, 

1981). This reversal of behavioural effects has been used to suggest the possible independent 

storage of these conceptual representations. 

Theories of semantic memory have been developed to explain concreteness effects. Two 

prominent and competing accounts are the dual coding theory (Paivio, 1991) and the context 

availability theory (Schwanenflugel & Shoben, 1983). Both theories predict a superior processing 

advantage for concrete words due to the increased efficiency of processing systems associated with 

concrete words. Dual coding theory proposes that two structurally distinct coding systems, a verbal 

code and a nonverbal, perceptual code, are selectively engaged in response to different types of 
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stimuli. According to this theory, both abstract and concrete words are processed in the verbal 

system but concrete words are able to recruit additional representations in a nonverbal, imagery-

based system. As a result of this dual representation, concrete words are able to be processed more 

efficiently, resulting in the processing advantage.  

In comparison, the context availability theory (Schwanenflugel & Shoben, 1983) suggests 

that the efficiency with which a word is able to be processed is due to the amount of available 

context associated with the target. Available context can be thought of in terms of the additional 

discourse/contextual information preceding the target word (Schwanenflugel, Harnishfeger, & 

Stowe, 1988) or the specific semantic knowledge about the target word which is individual to each 

person (Holcomb, Kounios, Anderson, & West, 1999). Words with richer available context, such as 

concrete concepts, will be processed more efficiently since they have access to a larger network of 

contextual semantic associations thus resulting in the observed concreteness effect. Abstract words 

do not have the same level of context surrounding them as their meaning is largely derived from 

other verbal codes and as such, they are not able to be processed as efficiently. 

Both theories acknowledge that abstract words are associated with a reduced set of semantic 

associations compared to concrete words either in terms of imagery or available context (Pexman et 

al., 2007). However, differences between the models are centred around the underlying neural 

substrates which contribute to concreteness effects. Dual coding theory proposes qualitatively 

distinct systems which are differentially activated such that abstract words and concrete words are 

processed in the same verbal system in the language dominant left hemisphere but concrete words 

are able to utilize the additional nonverbal, imagery-based system in the right hemisphere. As a 

result, concrete words should have a more bilateral representation (Binder et al., 2005; Paivio, 

2007). Context availability theory on the other hand proposes quantitative differences within a 

single system located in the verbal left hemisphere. Both abstract and concrete words will utilize the 

same system but activation for concrete items will be more extensive due to their richer context 

availability.  
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More recent theories of semantic memory have combined neuroimaging and behavioural 

data to explain conceptual processing. One such account by Binder and Desai (2011) describes a 

modified embodiment theory (‘embodied abstraction’) which proposes that conceptual information 

is processed by modality-specific and heteromodal convergence zones. The convergence zones are 

located in temporal and inferior parietal regions situated between sensory, motor and affective 

systems. Modality-specific representations initially develop in response to repeated perceptual 

experiences and these modal representations converge with high-level heteromodal convergence 

zones which serve to bind the representations from different modalities (Binder & Desai, 2011). 

Concept representations are differentially processed based on how familiar they are and the amount 

of perceptual and contextual information that is available about the target (Binder & Desai, 2011). 

Thus, as concrete words have strong sensory-motor representations, they would be expected to elicit 

increased activation compared to abstract words due to their richer set of conceptual features.  

It is clear that embodiment theories can account for the representation of concrete concepts 

but the case for abstract concepts is less obvious. Recent studies have investigated the semantics 

associated with abstract words (Kousta et al., 2011; Shallice & Cooper, 2013; Vigliocco et al., 

2009). Vigliocco et al. (2009) and Kousta et al. (2011) have proposed an extended theory of 

embodiment and applied a framework which includes abstract words and meaning. They suggest 

that semantic conceptual representations of concrete and abstract words are acquired through 

experiential and linguistic knowledge but to different degrees. They argue that concrete concepts 

are strongly associated with experiential knowledge based in sensory-motor experiences while 

abstract words and meanings are strongly grounded in linguistic as well as experiential knowledge 

(Kousta et al., 2011; Vigliocco et al., 2009). However, it is the type of experiential knowledge 

associated with the two word types that differs. While concrete words are embodied through 

sensorimotor experiential knowledge, abstract words are also embodied but their embodiment 

occurs instead through the underlying affective and emotional experiential knowledge associated 

with abstract words (Kousta et al., 2011; Vigliocco et al., 2014; Vigliocco et al., 2009).   
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Increasingly, neurophysiological evidence has been used to buttress accounts of 

concreteness and define putative brain regions associated with concrete and abstract conceptual 

processing. Both auditory and visual modality paradigms have been employed but visual modality 

tasks have been the most utilized and have included visual recognition (Fliessbach et al., 2006; 

Mestres-Misse et al., 2009), visual semantic similarity decisions (Noppeney & Price, 2004; 

Sabsevitz et al., 2005; Whatmough et al., 2004), visual semantic categorisation tasks (Friederici et 

al., 2000; Pexman et al., 2007) and visual lexical decision tasks (Binder et al., 2005; Evans et al., 

2012; Fiebach & Friederici, 2004; Kiehl et al., 1999; Perani et al., 1999; Vigliocco et al., 2014). 

Auditory modality studies meanwhile have utilized passive listening (Tettamanti et al., 2008; Wise 

et al., 2000) and mental imagery generation (D'Esposito et al., 1997; Mellet et al., 1998) but it is 

unclear how these latter studies relate to spoken word recognition versus the retrieval of concrete 

versus abstract representations.  

In general, findings from both visual and auditory studies investigating concrete and abstract 

words have been highly variable and far from conclusive. Some studies have reported greater left 

hemisphere activity associated with concrete word processing (Fiebach & Friederici, 2004; Jessen 

et al., 2000; Mellet et al., 1998; Wise et al., 2000) while others have shown more of a bilateral 

pattern of activation for concrete words (Binder et al., 2005; Sabsevitz et al., 2005) and greater left 

hemisphere activation for abstract words (Binder et al., 2005; Sabsevitz et al., 2005) which has been 

used to support theories of dual coding. Meanwhile, other studies have not shown activation for 

concrete words in either hemisphere but instead elicited activity for abstract words only and this 

varied from the left (Noppeney & Price, 2004) to right (Kiehl et al., 1999) to bilateral hemispheres 

(Friederici et al., 2000; Grossman et al., 2002; Perani et al., 1999; Pexman et al., 2007). These 

findings do not support either context availability theory or dual coding theory as neither suggests 

greater activity for abstract terms should occur. The discrepant findings on concreteness effects 

have been largely attributed to differences in methodology, modality of input (Kotz et al., 2002), 

baseline contrasts, and differences in imaging techniques. 
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Recent meta-analyses by Binder et al. (2009) and Wang et al. (2010) have combined 

findings from previous studies on concreteness effects with the aim of clarifying some of the 

inconsistent results. The meta-analysis by Binder et al. (2009) included 17 studies on concrete and 

abstract processing and identified 113 overlapping foci associated with perceptual (concrete) 

processing and 34 for verbal (abstract) processing. Regions associated with concrete processing 

were located in bilateral angular gyrus (AG), left posterior cingulate, left dorsomedial prefrontal 

cortex and left mid fusiform while left inferior frontal gyrus (IFG), largely pars orbitalis and 

anterior superior temporal sulcus (aSTS) were associated with abstract processing. The meta-

analysis on concrete word processing by Wang et al. (2010) was based on 19 studies, ten of which 

were also included in the Binder et al. meta-analysis (2009). Concrete words showed more 

activation in left precuneus, left posterior cingulate, left fusiform and left parahippocampal regions 

while abstract processing was associated with left IFG, left middle temporal gyrus (MTG) and left 

superior temporal gyrus (STG).  

One type of task commonly used to explore putative cognitive processing mechanisms 

associated with word recognition and semantic processing is a lexical decision task which is the 

focus of the present study. Lexical decisions have been shown to produce reliable semantic effects 

when used in a priming paradigm (Balota et al., 2007) and have been used to explore effects of 

concreteness. However, to date, the majority of the imaging studies investigating lexicality have 

focused on the visual modality (Binder et al., 2005; Fiebach & Friederici, 2004; Kiehl et al., 1999; 

Perani et al., 1999) while lexical decision tasks employing the auditory modality have been largely 

neglected. Critically, the visual modality has a number of limitations. Visual representation codes 

associated with picture-based stimuli may have a confounding effect while shallow processing has 

been associated with rapid orthographic analysis in written lexical decision tasks (Grainger & 

Jacobs, 1996). Visual lexical-semantic tasks might be able to be performed with only superficial 

semantic processing due to orthographic familiarity of the stimuli (Balota et al., 1991; Balota et al., 

1999) and furthermore, studies that have investigated visual lexical decision tasks have identified 
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increased activation in the inferolateral regions which may be more attributable to grapheme - 

phoneme conversion routes rather than semantic processing per se (Herbster et al., 1997; Price, 

1998; Rumsey et al., 1997). 

Findings from auditory modality studies investigating lexicality have in some cases not 

observed activity in regions associated with phoneme to grapheme conversion (Kotz et al., 2002; 

Newman & Twieg, 2001), further highlighting the benefits of using the spoken word to explore 

concrete and abstract processing. However, to date, the reported activation from auditory modality 

tasks has also not been consistent across studies (Kotz et al., 2002; Newman & Twieg, 2001; 

Raettig & Kotz, 2008; Shafto et al., 2012). One possible reason for this variability is the type of 

nonword baseline used to discriminate phonological and semantic based processes. Methods used to 

create nonwords can vary enormously and result in the formation of very different types of 

nonwords (Bedny & Thompson-Schill, 2006) which may engage different processing mechanisms 

(Raettig & Kotz, 2008). Raettig and Kotz (2008) demonstrated that lexical transparency, the point 

of deviation and phonotactic legality all affect how a nonword will be processed. If a nonword is 

too like a real word, it may activate semantic representations whereas if it is too ‘unwordlike’ it will 

be dismissed prior to any phonological level processing. They conclude that opaque pseudowords 

are the preferred type of nonword stimuli. While opaque pseudowords are able to be processed 

phonologically as legal real words, lexical access is prevented and consequently any semantic based 

processing will be minimised (Raettig & Kotz, 2008).  

As such, the aim of this study was to investigate the neural basis of the concreteness effect 

during spoken word recognition and employ a lexical decision task with a novel pseudoword 

condition. The method used in this study to generate the pseudowords is comparable to the Balota, 

Cortese, Sergent-Marshall, Spieler, and Yap (2004) study in that the nonwords were created by 

reordering the real word stimuli. However the stimuli employed in the Balota et al. (2004) study 

were monosyllabic words of 1 to 3 letters whereas this present study used polysyllabic words which 

were developed according to the criteria described in Raettig and Kotz (2008) and Valdois et al. 
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(2006). This method involved rearranging the syllables from the real word conditions while 

ensuring that the constituent position of each syllable remained constant (Valdois et al., 2006). As a 

result, the pseudowords were comparable to the real words in terms of phonology, length and 

legality but opaque enough to prevent elicitation of conceptual semantic representations (Raettig & 

Kotz, 2008). Consequently, we predicted that the use of a robust baseline would enable observation 

of discrete brain activation associated with concrete and abstract spoken word processing. In 

addition, by making the pseudowords as close to real words as possible, discrimination between the 

word types was made as difficult as possible thereby increasing any associated semantic based 

activation associated with the real word conditions (Evans et al., 2012). We examined activity in 

regions of interest (ROIs) selected from the meta-analysis of Binder et al. (2009) to explore whether 

the reported ‘perceptual’ and ‘verbal’ regions could be reliably activated during spoken word 

recognition of concrete and abstract words using an auditory lexical decision task.  

2.3 Methods 

2.3.1 Materials 

The stimuli consisted of 60 English real words and 60 phonologically legal pseudowords. 

The 60 real words comprised 30 concrete, high imageability polysyllabic nouns (e.g. wallet, 

hospital) and 30 abstract, low imageability polysyllabic nouns (e.g. saga, rarity). Stimuli in both real 

word conditions were controlled for the following variables; (i) spoken word frequency (SpFreq), 

(ii) written word frequency (WFreq), (iii) phoneme length, (iv) phonological neighbourhood density 

(PND), (v) concreteness (Concr), (vi) imageability (Img) and (vii) number of syllables (Refer Table 

1 for statistical significance and stimuli characteristics). There were no significant differences (p > 

.05) between the two real word conditions on any of the variables except for (v) concreteness and 

(vi) imageability. Average durations for the stimuli were analysed using the Kruskal-Wallis test 

(Kruskal & Wallis, 1952) and were not significantly different across conditions (p > .05) with mean 

durations of 724ms (SD: 105ms) for concrete, 772ms (SD: 119ms) for abstract and 780ms (SD: 

93ms) for pseudowords.  
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Table 1. Summary statistics for the two stimulus conditions (Mean (SD)) for a range of variables, plus the 

significance from a t-test comparing conditions 

Condition SpFreq 

CELEX
1
 

Phonemes 

MRC
2
 

WFreq 

CELEX
1
 

PND 

ELP
3
 

Concr 

MRC
2
 

Img 

MRC
2
 

Syllable 

MRC
2
 

Concrete 30.2 

(46.4) 

6.1  

(1.4) 

45.9 

(45.3) 

1.0  

(1.2) 

586.9 

(27.4) 

600.5 

(17.2) 

2.47  

(0.5) 

Abstract 39  

(31.3) 

6.2  

(1.4) 

52.4 

(38.7) 

0.77  

(0.9) 

300.03 

(42.2) 

328.9 

(31.3) 

2.47  

(0.5) 

p .397 ns .780 ns .553 ns .345 ns <.0001 <.0001 1.000 ns 

1
N-Watch database (Davis, 2005). 

2
MRC psycholinguistic database (Wilson, 1988). 

3
English Lexicon Project (Balota et al., 2007). 

 

Sixty pseudowords, matched for phonemes and syllables were created from the 60 real 

words. All the real words were segmented according to their syllable boundaries, taken from the 

MRC database (Wilson, 1988). The syllables for each word were then recombined but kept in their 

original constituent positions (Valdois et al., 2006) in order to control for syllable frequency. Thus 

sixty, phonologically legal, opaque pseudowords of 2 and 3 syllables were created (e.g. culief, 

esiter) in accordance with Raettig and Kotz (2008). Syllable boundaries were checked to ensure 

legality. Any mix of syllables that resulted in an illegal combination or a word that resembled a real 

word was not selected for inclusion. All stimuli were digitally recorded with a Rode NTK 

condenser microphone in a soundproofed room using a trained, female native English speaker who 

was not made aware of the study purpose. 

2.3.2 Participants 

Twenty-six healthy young participants aged between 18 and 35 years were recruited to the 

study. All participants had English as a primary language, were right-handed as indicated by the 

Edinburgh Handedness Inventory (Oldfield, 1971) and had sufficient vision and hearing to perform 

the task. None of the participants reported any neurological disease or disorder, mental illness, head 

trauma, alcoholism or cerebral tumour. Structural scans from all participants were reviewed by a 

neuroradiologist for abnormalities. As a result, three of the 26 participants were identified as having 

an incidental finding of clinical significance and were not included in the analysis. Six additional 
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participants were excluded due to subject compliance and technical issues leaving a total of 17 

subjects in the analysis (9 female, 8 male; mean age 27, SD: 5.1). The study received approval from 

the Queensland Health Ethics Committee, University of Queensland Medical Research Ethics 

Committee and site specific approval from the Royal Brisbane and Women’s Hospital Ethics 

Committee. Full written consent was obtained from all participants and each received a $30 

reimbursement.  

2.3.3 Procedure 

The experiment consisted of 120 trials presented in an event-related design with two 

individual runs completed in the same session. Prior to the scanning session, the task was explained 

to each participant and examples practised until at least an 80% success rate was achieved. Once 

inside the scanner, the button press was placed in the participant’s left hand and reminders given 

about the correct orientation for response, with a left button for ‘yes’ to respond to real words and a 

right button for ‘no’ to respond to pseudoword stimuli. The left hand was used to enable 

comparisons to be made with a future-planned companion study on people with post-stroke aphasia 

performing the same task. At the start of each stimulus presentation, a small black fixation cross 

was presented visually in 48 point font for 2.3s, along with the instruction ‘Is it a real word?’. Each 

real word or pseudoword was presented auditorily with the mean length of presentation lasting an 

average of 764ms (SD: 105ms). After hearing each stimulus, subjects had 3.5s to respond. During 

the response/sound window a black “+” was on the screen plus Yes/No indicating the correct 

orientation for response. Once a response had been received, a large blue cross (84 point font) 

appeared on the screen. After 1s, this changed to a black cross (84 point font) which remained 

visible until the start of the next trial/event as detailed in Figure 2.  
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Figure 2. Acquisition sequence for auditory lexical decision task. (RW – real word, PS – pseudoword). 

 

A long inter-trial interval (jittered between 10-18s, mean 14s) was employed to allow for the 

delayed hemodynamic response function observed with stroke patients (Bonakdarpour et al., 2007; 

Meinzer, Lahiri, Flaisch, Hannemann, & Eulitz, 2009) and to enable future comparison with a 

planned companion study on individuals with post-stroke aphasia. Order of presentation within each 

run was pseudorandomised with no more than four items from any one condition (concrete real 

words, abstract real words and pseudowords) being presented in succession and never more than 

four words or pseudowords in a row. Additionally, real words and pseudowords which shared 

constituent syllables were never presented in consecutive order. Five different pseudorandomised 

orders were applied to reduce order effects across participants. All stimuli were presented 

binaurally using MR confon headphones (MR Confon GmbH, Magdeburg, Germany) and responses 

recorded with an MR compatible button box (Current Designs Inc, Philadelphia PA). Prior to the 

scan, subjects were reminded to keep their eyes open and to look at the fixation cross in order to 

prevent eye movement. 
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2.3.4 Data Acquisition  

Structural and functional images were collected on a Siemens Trio (3T; Siemens Erlangen) 

at the Royal Brisbane and Women’s Hospital. The design of the fMRI task was a pseudo-

randomised event-related design consisting of two runs of approximately 14.4 minutes administered 

across one session. Gradient echo EPI images with BOLD sensitivity were acquired during each of 

the runs, resulting in 390 brain volumes, 36 x 3mm slices, with a 0.3mm gap, FOV 220x220mm, 

flip angle 90, matrix 64x64, TE 30, TR 2210ms. A high resolution 3D structural T1-weighted MP-

RAGE image was also acquired ((0.9mm)
3
 resolution; TE/TR 2.4/1900ms TI 900ms).  

2.3.5 Image Processing 

Images were processed and analysed using statistical parametric mapping software (SPM8, 

Wellcome Department of Cognitive Neurology, London, UK) with MATLAB 2009a (The 

MathWorks Inc., Natick, MA). To allow for steady state magnetization, five dummy scans were 

acquired at the start of each run and excluded from analysis. INRIAlign (Freire, Roche, & Mangin, 

2002) was used for spatial preprocessing of the image time series and to correct for motion 

artefacts. Registration of the time series mean EPI image in Run 1 and Run 2 was coregistered with 

the T1 image which had been acquired in the same scan session. The T1 image was segmented 

using New Segment (Ashburner & Friston, 2005). A DARTEL template was created from all 

participants and each subject normalized to it (Ashburner, 2007). These transformations were 

applied to the realigned EPI time series before an 8mm full-width half-maximum (FWHM) 

Gaussian kernel was applied to spatially smooth the normalised volumes (3.0 x 3.0 x 3.0mm
3
).  

2.3.6 Data Analysis  

A general linear model analysis using a hemodynamic response function with derivatives 

was used for the fixed effects analysis per subject. Conditions in Run 1 and Run 2 were combined 

in the design matrix. Due to the small numbers of errors (average 2 per subject), incorrect trials 

were excluded from the time series. Realignment parameters in 6 degrees of freedom were included 

as regressors of no interest. Covariates were created to model the BOLD signal change associated 
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with the different event trials and contrasts included concrete – abstract, concrete – pseudoword and 

abstract - pseudoword. The mean corrected reaction time was included in the regression model, 

similar to Binder et al. (2005), to remove any confounding effects associated with the variability in 

reaction time from the comparisons of concrete to abstract to pseudowords. 

A random effects analysis of the group was carried out on each condition. Differences in 

BOLD signal between the three conditions of concrete, abstract and pseudoword were evaluated 

using a regression analyses. The FWHM was calculated from the square root of the residuals (with 

3dFWHMx; Analysis of Functional Neuroimages (Cox, 1996)) and used as input to 3dClustSim to 

calculate a cluster threshold correction for multiple comparisons. Adopting a height threshold of p < 

.001 uncorrected for the whole brain analysis, a FWE (familywise error) rate of p < .05 was 

achieved with a minimum cluster threshold of 45 contiguous voxels. The probabilistic 

cytoarchitectonic maps from the Anatomy Toolbox (Eickhoff et al., 2007) were used to identify the 

neuroanatomical location of peak maxima for the specific contrasts.  

Region of interest (ROI) analyses were carried out based on a priori hypotheses about 

hemispheric lateralization differences associated with the processing of concrete and abstract words 

and findings from the Binder et al. meta-analysis (2009). As a result, a total of nine anatomical 

ROIs were selected (see Figure 3). Six of these ROIs were associated with concrete processing and 

were created in the left and right AG, left superior frontal gyrus (SFG), left middle frontal gyrus 

(MFG), left posterior cingulate and left fusiform. Binder et al. (2009) also reported increased 

activation for abstract concepts in the left IFG (mainly pars orbitalis) and left aSTS. As such, three 

further ROIs were created to explore potential activity associated with abstract word processing. 

ROIs were created in the anterior superior temporal gyrus (aSTG) and anterior middle temporal 

gyrus (aMTG) to enable investigation of the aSTS and a third ROI was created in the left pars 

orbitalis.  
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Figure 3. Nine anatomical ROIs. Light blue – aSTG, yellow – aMTG, green – IFG(orb), pink – MFG, 

turquoise – SFG, blue – Fusiform, red – left AG, dark blue – right AG, gold –posterior cingulate. 

 

ROIs were created by using the IBASPM 116 Human Atlas in WFU PickAtlas (Maldjian, 

Laurienti, & Burdette, 2004; Maldjian, Laurienti, Kraft, & Burdette, 2003) in SPM8 (Friston, 2007). 

Anterior ROIs (aSTG and aMTG) were subdivided based on the classification of Indefrey and 

Levelt (2004) of y<-7. MarsBaR (Brett, Anton, Valabregue, & Poline, 2002), a region of interest 

toolbox for SPM8, was used to extract the percentage mean signal change for each participant for 

each ROI. Group statistical analyses were then performed using SPSS Statistics version 21 (IMB; 

Armonk, New York, USA). A repeated measures analyses of variance (ANOVA) with factors of 

condition (3) x ROI (9) was performed. Huynh-Feldt corrections (Huynh & Feldt, 1970) were 

applied when the assumption of sphericity was not met and are reported throughout with the 

original degrees of freedom. Testing for pairwise differences between conditions (concrete – 

abstract, concrete – pseudoword, abstract – pseudoword) in all nine ROIs was performed with an 

adjusted p level using Benjamini and Hochberg’s correction for multiple comparisons (Benjamini & 

Hochberg, 1995). 

2.4 Results  

2.4.1 Behavioural Results 

Reaction time data was calculated from stimulus onset. Only correct responses were 

analysed, with trials less than 100ms removed. There was a significant main effect for condition 

F(2, 1999) = 91.582, p < .0001. Participants responded fastest to concrete words followed by 

abstract words then pseudowords (see Table 2) with a significant difference between each condition 
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(all p < .001). There was no statistically significant difference in accuracy between conditions (p = 

.386).  

 

Table 2. Behavioural results 

CONDITION Reaction Time (SE) (ms) % accuracy 

Concrete 1187.19 (15.89)  98.6 (0.006) 

Abstract 1262.99 (16.00)  97.5 (0.006) 

Pseudoword 1433.81 (11.26)  98.1 (0.004) 

 

2.4.2 Anatomical Region of Interest Analyses 

Results from the ROI analyses are shown in Figure 4 with the mean percent signal change of 

BOLD signal for the three conditions in each of the ROIs. There was a main effect of condition for 

the left AG, F(1.225, 19.601) = 18.248, p < .0001. Increased BOLD signal was observed for 

concrete (p < .0001) and abstract (p = .008) compared to pseudowords and concrete compared to 

abstract words (p < .0001). There was a main effect of condition for the right AG, F(2, 15) = 21.15, 

p < .0001 and increased BOLD signal for concrete (p < .0001) and abstract (p = .025) compared to 

pseudowords. Concrete words also elicited increased BOLD signal compared to abstract words (p = 

.007).  

A main effect of condition was observed for left SFG F(2, 15) = 8.812, p = .003. There was 

increased BOLD signal for concrete compared to abstract (p = .049) and pseudoword (p = .004). 

There was a main effect of condition for left MFG F(2, 15) = 9.897, p = .002 and increased BOLD 

signal for concrete compared to abstract (p = .008) and pseudoword (p < .0001). There was also a 

main effect of condition for left posterior cingulate F(2, 15) = 12.579, p = .001 with increased 

BOLD signal for concrete compared to abstract (p = .004) and pseudoword (p < .0001). A main 

effect of condition in the left fusiform F(1.346, 21.529) = 4.811, p = .03 was also seen with 

increased BOLD signal for concrete compared to pseudowords (p < .0001).  

The left IFG (pars orbitalis), aSTG and aMTG ROIs were included to investigate association 
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with abstract word processing (Binder et al., 2009). Of these only left aMTG showed a main effect 

for condition F(2, 15) = 7.49, p = .006, but with increased BOLD signal for concrete compared to 

pseudowords (p = .025).  

 

 
 

Figure 4. Percent signal change from the regions of interest. 

* p < .05; ** p < .005; *** p < .0001. 

(Abbreviations: L AG = left angular gyrus; R AG = right angular gyrus; L Fus = left fusiform, L SFG = left 

superior frontal gyrus; L MFG = left middle frontal gyrus; L post cing = left posterior cingulate; L aMTG = 

left anterior middle temporal gyrus; L IFG (orb) = left inferior frontal gyrus (pars orbitalis); L aSTG = left 

anterior superior temporal gyrus). 

 

2.4.3 Whole Brain Analyses  

The whole brain results for concrete greater than pseudoword, abstract greater than 

pseudoword and concrete greater than abstract are shown in Table 3 and Figure 5. No cortical 

regions were significantly more activated for abstract greater than concrete words. There was a 

bilateral pattern of activity for both concrete and abstract words when compared to pseudowords. 

The right precuneus was the sole region that was commonly activated by both concrete greater than 

pseudoword and abstract greater than pseudoword contrasts and this was more extensive for 

concrete than abstract words, extending into right AG and occipital regions. In the direct contrast 

between concrete and abstract, a bilateral pattern of activity was elicited for concrete words. 
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However, this bilateral activity appeared to be slightly more left-lateralised.  

 

Table 3. Whole brain regions showing significant BOLD peak activation 

Contrast Structure x y z Volume Z-score 

Concrete>Pseudoword right precuneus 7 -50 47 6101 6.14 

 right hippocampus 32 -32 -7 609 4.93 

 left MFG -32 25 54 341 4.49 

 Left ITG -54 -14 -25 105 4.26 

Abstract>Pseudoword left MTG -54 -58 18 82 4.37 

 right SMG 50 -40 32 62 4.04 

 right  precuneus 14 -50 32 58 3.86 

Concrete>Abstract right mid occipital g 40 -65 29 85 4.89 

 left IPC (PGP)
1
 -47 -76 29 141 4.53 

 left calcarine g -7 -58 7 349 4.47 

 left fusiform -22 -36 -18 51 4.47 

 right MFG 25 22 40 53 4.16 

Peak activations for whole brain analyses for all participants in each condition (p < .001 probability 

threshold and 45 voxel cluster threshold). MFG = middle frontal gyrus, ITG = inferior temporal gyrus, MTG 

= middle temporal gyrus, SMG = supramarginal gyrus, g = gyrus. 

1 
See Caspers et al 2006 (Caspers et al., 2006) for details of this area. 

 

 

 
 

Figure 5. Whole brain results. Significant peak activations for group whole brain analyses in each condition 

are shown in red on a rendered brain.  Surface structures are in darker shades of red. Significance was 

determined by a p < .001 probability threshold and 45 voxel cluster threshold.  
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2.4.4 Summary of Results 

There was a concreteness effect in terms of faster speed of response for concrete words 

compared to abstract words. Anatomical ROI analyses revealed significant increased signal for 

concrete words compared to both abstract and pseudowords in left and right AG, left SFG, left 

MFG, left posterior cingulate. Significant signal differences were also observed in the left fusiform 

and left aMTG for concrete words but only for the concrete – pseudoword contrast. The AG was the 

sole brain region which elicited significant differences in activity between all three conditions, with 

concrete words eliciting greater activation than both abstract and pseudowords. Abstract words also 

produced greater activity than pseudowords in bilateral AG. Greater activity for abstract words 

compared to concrete words was not observed in any of the nine ROIs. Whole brain results showed 

bilateral activity for concrete and abstract words when compared to pseudowords. Bilateral 

activation was also seen for concrete words when directly compared to abstract words. 

2.5 Discussion  

The aim of this study was to investigate brain activity associated with recognising spoken 

concrete and abstract words. We predicted that concreteness effects would be reflected in reaction 

time data and accuracy of response. We also predicted that the use of an opaque pseudoword 

condition would provide a robust baseline against which to measure differential brain-related 

activity elicited directly in response to concrete and abstract spoken word recognition. We 

anticipated that concrete words would elicit increased brain activity in bilateral brain regions while 

abstract words would elicit greater activity in left-lateralised language processing networks. The 

present study revealed bilateral activity for concrete words, however, we did not see a left-

lateralised pattern of activity for abstract words. Our results confirm the involvement of the angular 

gyrus, posterior cingulate and dorsolateral prefrontal cortex in retrieving concrete versus abstract 

concepts during spoken word recognition, consistent with previous meta-analyses on concrete and 

abstract processing based primarily on visually presented words (Binder et al., 2009; Wang et al., 

2010). Overall, our findings suggest that heteromodal association areas were activated when 
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recognising spoken concrete and abstract words consistent with the view that these regions interface 

with a critical set of modality-specific representations. 

The behavioural results showed that concrete items were responded to significantly faster 

than both abstract and pseudoword conditions and the abstract condition was significantly faster 

than the pseudoword condition. The observed increased efficiency for concrete over abstract words 

is in accordance with the two dominant theoretical accounts used to explain effects of concreteness; 

dual coding theory (Paivio, 1991) and context availability theory (Schwanenflugel, 1991; 

Schwanenflugel & Shoben, 1983) which both predict a processing advantage for concrete words. 

There was no difference in accuracy across the three conditions which was most likely due to a 

ceiling effect.  

Of the nine ROIs selected to investigate concrete and abstract word processing, the right and 

left AG proved to be the sole brain region that showed significant differences in activation between 

all three contrasts with concrete words eliciting greater activity than both abstract words and 

pseudowords and abstract words eliciting stronger activation than pseudowords. Increased 

activation for concrete items in the right AG has previously been reported in visual word processing 

studies investigating concrete and abstract words (Binder et al., 2005; Jessen et al., 2000). These 

findings provide support for dual coding theory which predicts that concrete words will recruit 

additional image-based codes represented in the right hemisphere. However, our results also 

showed stronger activation in the left AG for concrete items compared to abstract words which is 

inconsistent with dual coding theory. Rather, it is more consistent with a single system model of 

processing such as the context availability theory. This model suggests that concrete words access 

the same verbal regions as abstract words but to a greater degree due to the larger amount of 

associated context available to concrete words. As such while the context availability theory does 

not preclude right hemisphere involvement, the verbal language-based left hemisphere regions are 

more likely to be recruited. The left AG has been associated with general semantic retrieval 

processes (Price, 2010) and was the region which was most reliably activated across the 120 studies 
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in the Binder et al. (2009) semantic meta-analysis as well as having the largest number of activation 

foci for concrete words specifically (Binder et al., 2009). 

The ROI analysis also revealed greater activity for concrete versus abstract words in the left 

posterior cingulate, SFG and MFG. The posterior cingulate has previously been described as a 

connector hub, structurally linking other cortical and subcortical brain networks (Hagmann et al., 

2008). Binder et al. (2009) suggest that this region is implicated in many semantic based tasks as a 

result of the nature of episodic encoding. Words that have a richer set of concepts and associations 

such as concrete items will evoke enhanced episodic encoding (Binder et al., 2009) while activation 

of abstract words will be less strong as they have weaker associations with specific episodic 

memories.  

Significantly greater activity for concrete compared to abstract words in the left MFG and 

SFG also suggests a critical involvement of these frontal regions in the processing of concrete 

information. However, the specific role of these regions in semantic conceptual processing is not 

well understood and their activation in language-based tasks is commonly thought to be in response 

to more executive type task demands. The MFG and SFG have previously been associated with 

working memory (Peelle, McMillan, Moore, Grossman, & Wingfield, 2004) and have been 

implicated in a distributed network monitoring and facilitating comprehension (Hampson, Driesen, 

Skudlarski, Gore, & Constable, 2006; Scott, Leff, & Wise, 2003). The MFG has been associated 

specifically with auditory lexical decision tasks (Rissman, Eliassen, & Blumstein, 2003) and 

controlled cognitive processing (Aron, Monsell, Sahakian, & Robbins, 2004). Whole brain results 

also indicated an involvement of the right MFG for the concrete greater than abstract contrast and 

this region has previously been associated with auditory attention and comprehension (Giraud et al., 

2004; Rissman et al., 2003) and monitoring (Stuss, 2011).  

Previously, executive task-related engagement of frontal regions has been associated with 

increased effort and a corresponding increased response time, however the findings in this present 

study do not support this view as our behavioural results demonstrate clear involvement of these 
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regions in concrete word processing without any associated increase in time on task. It is possible 

these frontal regions are recruited to monitor activation of the word candidate in the associated 

lexical-semantic network while a decision on lexicality is made (Rissman et al., 2003), however this 

does not explain why significant activity was observed for concrete words only. An alternative 

proposal is that these frontal regions are implicated in the creation, integration and manipulation of 

a strong mental representation as sensory-motor information associated with concrete concepts is 

activated within the language processing network (Barber, Kousta, Otten, & Vigliocco, 2010; 

Barber et al., 2013). This interpretation should be treated with caution however, given that our 

whole brain analyses did not identify increased activity in other regions associated with sensory-

motor processing for this contrast.  

ROI analyses of both the left fusiform gyrus and aMTG elicited additional activation in the 

concrete greater than pseudoword contrast. The fusiform has been referred to as a basal temporal 

language area (Luders et al., 1991) and our findings for concrete words are consistent with a role 

that this region plays in visual imagery associated with language processing. The fusiform has 

previously been associated with both lexical decisions (Kiehl et al., 1999) and auditory semantic 

retrieval processes (Adams & Janata, 2002). Discrete activation in this brain region relating to 

concrete word processing has also been observed in studies investigating imageability associated 

with concrete and abstract word processing (D'Esposito et al., 1997; Mellet et al., 1998; Sabsevitz et 

al., 2005; Wise et al., 2000) and this has been attributed to the greater levels of visual imagery 

associated with concrete concepts (D'Esposito et al., 1997; Fiebach & Friederici, 2004; Sabsevitz et 

al., 2005; Wise et al., 2000). Wise et al. (2000) suggest that once a word has been perceived as real, 

the fusiform serves to encode semantic representations (in terms of episodic and semantic memory) 

associated with the verbal input and this region may therefore act as a lexical-semantic store (Gold 

et al., 2006).  

The aMTG was examined as an ROI to explore the aSTS, which was reliably activated by 

abstract words in the Binder et al. meta-analysis . In order to ensure complete coverage of the aSTS, 
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both the aMTG and aSTG were included as ROIs although neither region elicited any increase in 

activity for abstract words. On the contrary, our results for aMTG showed a significant increase in 

activity for concrete words when compared to pseudowords. The anterior MTG has previously been 

associated with the access of conceptual representations as they become increasingly more 

semantically specific (Price, 2012) and the anterior temporal lobe has been described as an amodal 

semantic hub, implicated in the integration of conceptual and semantic information (Bonner & 

Price, 2013; Patterson, Nestor, & Rogers, 2007). Lesions in aMTG have been associated with 

lexical-semantic deficits and category specific impairments (Lambon Ralph, Lowe, & Rogers, 

2007; Warrington & Shallice, 1984). The literature is mixed on the results of aMTG lesions and 

concreteness effects with Jefferies et al. (2009) showing a processing advantage for concrete over 

abstract words while other studies have demonstrated a reverse concreteness effect (i.e. greater 

preservation of abstract words)(Reilly, Peelle, & Grossman, 2007; Yi et al., 2007).  

Our results clearly demonstrate that lateral and ventral temporal regions were engaged in 

lexical-semantic processes but only for the concrete greater than pseudoword contrast. No 

differences were observed in these regions for either the concrete greater than abstract or abstract 

greater than pseudoword contrasts. As such, we tentatively propose that these regions may serve as 

lexical-semantic stores prior to subsequent processing and that the selective activation observed for 

concrete words when compared to pseudowords may be due to equivalent activation in these 

regions from processing nonverbal codes associated with abstract words and processing verbal 

codes associated with opaque pseudowords. To expand on the first point, we suggest that abstract 

words like concrete words are in fact associated with a set of nonverbal imaginal representations 

although they are just more weakly represented than the nonverbal representations associated with 

concrete words. For instance, a word such as charity might be associated with nonverbal, imaginal 

associative knowledge such as a collection tin or a red cross sign (Wise et al., 2000) and will 

therefore activate a set of nonverbal associations, albeit more weakly than concrete words which 

have strong imaginal referents attached to them. As a result, potential differences in brain-related 
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activity in these regions related to concrete and abstract conceptual processing will be reduced.  

Secondly, no significant differences in activation between abstract and pseudowords were 

observed in these lateral and ventral regions. Indeed, the lack of activation differences associated 

with abstract and pseudoword processing was a common finding in this study. Of the nine ROIs, 

only bilateral AG elicited a difference between abstract and pseudoword processing. We suggest 

that this finding may be due to the type of pseudowords employed in this study and the verbal codes 

attached to them. The opaque pseudowords shared features common to both the abstract and 

concrete words such as phonemes and syllables which enabled them to be processed in the same 

lexical networks as the real words (Hickok & Poeppel, 2007). However, the opaqueness minimised 

any word specific knowledge and subsequent semantic based activity (Raettig & Kotz, 2008). As 

such, the opaque pseudowords activated associated verbal codes as the lexicon was searched for 

real word matches, resulting in brain activity similar to that evoked during the auditory presentation 

of abstract words to a degree and reducing any activation differences associated with the spoken 

word recognition of abstract and pseudowords. However, unlike the abstract words, nonverbal 

representations were not associated with the pseudowords as the stimuli were meaningless and 

imaginal codes therefore non-existent. Thus, we suggest that where there were differences between 

concrete and pseudoword contrasts only, such as in the lateral and temporal regions, these are likely 

due to the strong nonverbal (conceptual) representations or features associated with concrete words, 

which are only weakly represented in abstract words and not associated at all with the opaque 

pseudowords.  

In summary, our findings demonstrate that brain activity was reliably elicited during this 

auditory lexical decision paradigm in most of the regions previously showing activity for concrete 

word processing using visual word processing paradigms; bilateral AG, left posterior cingulate, 

SFG, MFG, fusiform and aMTG. In terms of the prominent theories regarding concrete and abstract 

word processing our findings for the recognition of spoken concrete words provide some support 

for both a dual representation and single system model. The selective activation of concrete words 
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in three of the six ‘perceptual’ regions; left SFG, MFG and posterior cingulate, identified in the 

Binder et al. meta-analysis , provides support for dual coding theory which predicts that concrete 

words are represented in distinct neural systems which are differentially activated in response to 

more image-based, nonverbal codes. The additional activation for concrete items in the right AG is 

also consistent with dual coding theory which predicts greater recruitment of nonverbal, right 

hemisphere for concrete words.  

However, we also observed quantitative activation differences for all three conditions in left 

and right AG suggesting that this brain region serves as a common zone which is differentially 

activated in response to both abstract and concrete terms compared to pseudowords. These findings 

provide support for the context availability theory which proposes that in a single system model, 

common regions will be implicated in real word processing but to differing degrees. Since concrete 

words have a richer set of contextual representations available to them than abstract words, they 

will elicit stronger activity than abstract words although activity will occur in common regions.  

Importantly, our findings provide support for the embodied abstraction theory proposed by 

Binder and Desai (2011) which suggests that large parts of the temporal and inferior parietal cortex 

serve as multimodal convergence zones and are integral in the binding of modality-specific 

information. Specifically, our results support the view that bilateral AG serves as a convergence 

zone binding supramodal input from modality-specific and heteromodal systems. Conceptual 

representations of concrete and abstract words will be differentially processed according to the 

amount of associated sensory, motor and affective representations with levels of activity in the AG 

responding to the amount of semantic information associated with the target word. Both concrete 

and abstract words will elicit greater levels of activity compared to pseudowords due to the greater 

amount of semantic representations attached to real words. However, concrete words will elicit 

stronger activity than abstract words as they are associated with stronger conceptual representations.   

Lastly, the ROI and whole brain results for abstract word processing in this present study are 

in agreement with both dual coding and context availability theory in that neither theory proposes 
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that greater activity should be elicited by abstract compared to concrete words. However, our results 

also show minimal processing differences when abstract words were compared with pseudowords 

and this lack of activation difference was a pattern which was consistent in all ROIs except bilateral 

AG. This is an interesting finding and whilst we have provided a tentative explanation for the 

increased activity observed for concrete but not abstract words when compared to pseudowords, the 

present study cannot definitively say whether the this pattern of activity can be attributed to the type 

of stimuli, the task employed or modality of presentation. Future studies investigating spoken word 

recognition of concrete and abstract words will need to consider possible effects of the verbal and 

nonverbal, imaginal codes likely associated with abstract conceptual representations.   

Whilst this study has provided a number of findings regarding the processing of spoken 

concrete and abstract words during a lexical decision task, we acknowledge that there are some 

limitations with the stimuli selection employed. Firstly, we were unable to control for the first 

phoneme across the conditions and as such, this needs to be considered as a possible confound and 

the results interpreted accordingly. Secondly, the abstract stimuli selected for use in this study were 

also of very low imageability and it may be helpful in future studies to attempt to match for 

imageability across both concrete and abstract conditions although this is challenging.  

2.6 Conclusion 

Findings from the ROI analyses in this study demonstrate that the recognition of spoken 

concrete words reliably activates a wide network of brain regions in the AG bilaterally, left 

posterior cingulate and left dorsolateral prefrontal cortex more than both abstract and pseudowords. 

Concrete words also activated regions in the left fusiform and left anterior MTG but this activation 

was only elicited for the concrete greater than pseudoword contrast. Our findings further define 

possible convergence zones proposed to bind supramodal input from modality-specific and 

heteromodal systems, and confirm the role of these regions in processes beyond initial modality 

specific lexical processing.  
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3 Chapter Three  

An fMRI study of Concreteness Effects during Spoken Word Recognition 

in Ageing. Preservation or Attenuation? 

________________________________________________________________________________ 

Chapter 3 examined whether the activation patterns observed in Chapter 2 would be replicated in a 

group of older adults performing the same fMRI task. In particular, we wanted to examine whether 

the effects of concreteness showed attenuation or preservation in ageing and whether a difference in 

performance from that of the healthy young adults was accompanied by an altered pattern of neural 

activity. It was hypothesised that if the older adults demonstrated preserved concreteness effects, 

this would be accompanied by an age-related upregulation possibly involving the right prefrontal 

cortex. The content of this chapter has been published in Frontiers for Aging Neuroscience 

(Roxbury et al., 2016)
2
.  

 

 

 

 

 

 

 

 

 

2
 This chapter has been modified from the original publication in order that the formatting requirements for the 

numbering of the headings, figures and tables are consistent with the format of the thesis. No other modifications have 

been made and the content is identical to the published manuscript. 

Pages 70 and 72 have been modified in the thesis in response to examiner feedback.  
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3.1 Abstract 

It is unclear whether healthy ageing influences concreteness effects (i.e. the processing 

advantage seen for concrete over abstract words) and its associated neural mechanisms. We 

conducted an fMRI study on young and older healthy adults performing auditory lexical decisions 

on concrete versus abstract words. We found that spoken comprehension of concrete and abstract 

words appears relatively preserved for healthy older individuals, including the concreteness effect. 

This preserved performance was supported by altered activity in left hemisphere regions including 

the inferior and middle frontal gyri, angular gyrus, and fusiform gyrus. This pattern is consistent 

with age-related compensatory mechanisms supporting spoken word processing. 
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3.2 Introduction 

Word retrieval deficits are well documented in healthy older individuals (Burke & Shafto, 

2004; Burke & Shafto, 2008) while word knowledge (Verhaeghen, 2003) and language 

comprehension abilities appear less susceptible to ageing effects (Tyler et al., 2010). The present 

study is focused on how older adults process concrete versus abstract words, where there are 

conflicting findings of (1) a reduction in concreteness effects (the processing advantage observed 

with concrete over abstract words) in recall and recollection memory tasks (Peters & Daum, 2008; 

Rissenberg & Glanzer, 1987) versus (2) a preservation of concreteness effects with lexical tasks 

(Huang et al., 2012). Given age-related changes in brain structure and function it is also not clear 

whether recruitment of different neural mechanisms is necessary during concrete versus abstract 

word processing in order to ensure preserved functionality in older adults.  

There is an extensive literature demonstrating that concrete words are more easily recalled 

in memory tasks (Paivio, 1971) and tend to be responded to more quickly and accurately than 

abstract words during lexical decision tasks (James, 1975; Kroll & Merves, 1986). Historically, 

concreteness effects and conceptual differences between concrete and abstract words have been 

investigated and explained by two prominent theories of cognition: dual coding theory (Paivio, 

1971, 1986) and context availability theory (Schwanenflugel & Shoben, 1983). Dual coding theory 

proposes that the processing advantage for concrete words is due to the dual system representation 

(verbal and nonverbal) available to concrete but not abstract words (Paivio, 1971, 1986) while 

context availability attributes the processing efficiency observed with concrete words to an 

increased amount of available context, associated with concrete but not abstract words due to their 

richer set of semantic-based representations (Schwanenflugel & Shoben, 1983). However, the 

results from neuroimaging studies investigating concrete and abstract processing have been 

inconsistent and a definitive interpretation in support of either of these two dominant theories has 

thus far proved elusive.  

In a meta-analysis of brain imaging studies involving concrete (perceptual) and abstract 



69 

(verbal) conceptual processing, Binder et al. (2009) found that concrete words were strongly 

associated with a wide network of regions including the left angular gyrus (AG), the left fusiform 

(occipitotemporal) gyrus, left superior frontal gyrus (SFG), left middle frontal gyrus (MFG), left 

posterior cingulate and right AG. Abstract words were associated with left anterior superior 

temporal sulcus (aSTS) and left inferior frontal gyrus (IFG) (Binder et al., 2009). A meta-analysis 

by Wang et al. (2010) reached similar conclusions with concrete words eliciting left hemisphere 

activity in the posterior cingulate, fusiform, precuneus and parahippocampal regions. Abstract word 

processing also elicited left hemisphere activity but this was in the left IFG, middle temporal gyrus 

(MTG) and superior temporal gyrus (STG) (Wang et al., 2010).  

Findings from imaging studies have been variously used to support dual coding theory 

(Binder et al., 2005; Sabsevitz et al., 2005), or dual coding and context availability theory (Fiebach 

& Friederici, 2004). Yet other studies showed no differences in activity for concrete compared to 

abstract words (Grossman et al., 2002; Kiehl et al., 1999; Noppeney & Price, 2004; Perani et al., 

1999), which makes an interpretation in support of either theory problematic. Pexman et al. (2007) 

investigated concrete and abstract processing during a semantic categorization task and evaluated 

their findings within the frameworks of dual coding and context availability theory. Their results 

showed increased widespread activity for abstract words compared to concrete words and this was 

observed in brain regions normally associated with semantic-based conceptual representations 

including temporoparietal and frontal cortex. Since, neither dual coding nor context availability 

theory predict increased activity for abstract words, Pexman et al. (2007) suggested that their 

findings were instead more compatible with Barsalou’s perceptual symbol systems (Barsalou, 

1999). In this strong embodiment theory of semantic representations, abstract words are expected to 

activate similar semantic-based regions to concrete words but with differences in the focus of the 

situational content. Thus, concrete words will have a more focused referent while the situational 

focus for abstract concepts is more distributed due to a more complicated set of referents (Barsalou, 

1999; Barsalou & Wiemer-Hastings, 2005). 
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A modified theory of embodiment, termed embodied abstraction is a recent view put 

forward by Binder and Desai (2011) which proposes that conceptual information is represented in 

multiple levels in sensory, motor and affective systems and undergoes a process of abstraction from 

these inputs. They suggest that conceptual information develops in modality-specific 

representations (located near sensory, motor and emotional networks) and interacts with modality-

independent (supramodal) systems, located in the temporal and inferior-parietal lobes. These 

higher-level cortical regions serve to bind representations from different modalities with various 

levels of access activated in response to determining variables such as context, familiarity or task 

demands (Binder & Desai, 2011). According to this view, the comprehension of conceptual 

information undergoes a process of gradual abstraction such that concrete words, which are 

associated more with sensory-motor experiential information will require less detailed simulations 

than abstract words. Other related theories have argued that processing abstract words is associated 

with greater emotional processing and associated neural mechanisms (Vigliocco et al., 2014).  

Results from behavioural studies investigating concreteness and ageing have provided 

mixed results with some reporting increases in the effects of concreteness with ageing (Rowe & 

Schnore, 1971; Witte & Freund, 1976) while others have shown an attenuation of the effect 

(Rissenberg & Glanzer, 1987), possibly attributable to reduced cognitive function in underlying 

processes, such as memory. A cross-sectional study across three age groups (mean ages 21, 42 and 

61 years) investigated concreteness effects and verbal memory (Peters & Daum, 2008). Concrete 

words were better recollected than abstract words in the three age groups, supporting the expected 

concreteness effect. However, they observed an attenuation of the effect in the older age group. 

While recollection of concrete words showed a steady, continuous decline with age, a reduction in 

the recollection of abstract words only occurred from the young to the middle-aged group. No 

further reduction was observed for the older group resulting in the attenuated concreteness effects 

(Peters & Daum, 2008). 

To date, there have been very few neuroimaging studies which have directly investigated 
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concrete and abstract processing effects in ageing. Processing differences between young and older 

adults when making semantic judgments on concrete and abstract words, were investigated in an 

fMRI study conducted by Stebbins et al. (2002). The findings of this study showed hemispheric 

differences between the two groups with the young adults eliciting greater activity in the left 

hemisphere compared to the older adults. In a PET study, Whatmough et al. (2004) also 

investigated semantic judgments for concrete and abstract words in a group of older adults. They 

found that left lateral temporal cortex was similarly activated for both word types when compared 

to a baseline condition. However, a direct comparison between concrete and abstract conditions 

showed that concrete words elicited activity in left fusiform while for abstract words, the activity 

was observed in right fusiform regions. However, as Whatmough et al. (2004) did not include a 

comparison group of young adults, it is unclear whether their results reflected age-related neural 

differences.  

 Shafto et al. (2012) employed an auditory lexical decision task in a group of healthy young 

and older adults to investigate language comprehension function and specifically factors of (i) 

semantics (as measured by imageability) and phonology (as measured by phonological competition) 

in ageing (Shafto et al., 2012). While both groups responded more quickly to words with high 

imageability, only the older adults showed an increased behavioural sensitivity to low imageability 

words and this was associated with greater activity in the left MTG. The findings of Shafto et al. 

(2012) suggest that preserved processing of abstract versus concrete words in older adults may be 

associated with age-related compensatory brain activity but the balance between discrete processing 

components may change, such that an age-related upregulation for the semantic task serves a 

compensatory role while the differences that occur in response to phonological processes may not 

(Shafto et al. (2012) but see Geva et al. (2012)). Meinzer et al. (2012) observed a difference in brain 

activity between young and older adults for semantic but not phonemic fluency, with older adults 

showing an upregulation of the right IFG and a reduced behavioural performance compared to the 

young adults, further suggesting that age-related changes in language processing may vary as a 
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function of semantic versus phonological processing. Meinzer et al. (2012) interpret this finding as 

reflecting ineffective compensation for left IFG semantic functions. While recruitment of prefrontal 

structures appears to play a role in age-related changes in semantic processing, other regions also 

appear to be integral in maintaining preserved language functions and should not be overlooked 

(Shafto et al., 2012) and it remains unclear as to whether age-related differences that may be 

associated with the processing of concrete versus abstract words reflect compensatory or inefficient 

mechanisms.  

Conceptual theories of ageing and cognitive performance such as dedifferentiation (Baltes et 

al., 1980; Lindenberger & Baltes, 1994; Reinert, 1970) and compensation (Reuter-Lorenz & Park, 

2010) have been used to explain functional differences between the brain activity elicited by young 

compared to older adults when performing the same task (Cabeza et al., 2002; Shafto & Tyler, 

2014; Wingfield & Grossman, 2006). The dedifferentiation hypothesis proposes that increased, 

widespread activity in healthy older brains is necessary and occurs as distinct cortical regions lose 

their specialized functionality (Li & Lindenberger, 1999). The compensation hypothesis meanwhile 

proposes that increased activity of additional brain regions serves as a strategic mechanism (Cabeza 

et al., 2002; Cabeza et al., 1997) to enable a preserved functional performance while compensating 

for neurocognitive decline in the ageing brain (Park et al., 2004; Park et al., 2003; Reuter-Lorenz & 

Park, 2010). 

In the present study, we employed an fMRI task to investigate the spoken word 

comprehension of concrete and abstract words in young and older adults performing a lexical 

decision task. We wanted to test competing hypotheses: that concreteness effects are attenuated 

with age (as per Peters & Daum, 2008) versus the preservation of the effect consistent with the 

findings of Huang et al. (2012). We also wanted to determine whether a preserved performance by 

the older adults was associated with age-related differences in neural activity between groups. In 

view of structural changes in prefrontal regions associated with ageing, we predicted that a 

preserved performance by older adults would be accompanied by changes in the underlying 
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substrates associated with concrete and abstract processing in healthy young adults and reported 

previously in Roxbury et al. (2014). We employed an auditory lexical decision task with a novel 

pseudoword condition to investigate the different processing mechanisms associated with concrete 

and abstract words in young and older adults considering the key brain regions previously reported 

as being reliably associated with concrete and abstract processing (Binder et al., 2009; Wang et al., 

2010). Given the evidence for upregulation of the contralateral prefrontal cortex (PFC) by healthy 

older adults during semantic fluency tasks (Meinzer et al., 2012; Meinzer, Wilser, et al., 2009), we 

also examined age-related differences in the right IFG.  

3.3 Methods 

3.3.1 Materials 

A total of 120 polysyllabic words and pseudowords were included in the stimuli list. Sixty 

of the 120 were pseudowords while the other sixty were English real words. The real word 

condition was manipulated to include 30 high imageability, concrete nouns (e.g. wallet, hospital) 

and 30 low imageability, abstract nouns (e.g. saga, rarity). Real word stimuli were controlled for a 

number of variables including (i) spoken word frequency, (ii) written word frequency, (iii) phoneme 

length, (iv) phonological neighbourhood density, (v) concreteness, (vi) imageability and (vii) 

number of syllables. There was no statistical significance difference (p > .05) between abstract and 

concrete words for any of the variables except concreteness and imageability (for stimuli 

characteristics and statistical significance, refer to Table 1 in Chapter 2 or in Roxbury et al. (2014). 

All pseudoword stimuli conformed to English phonological rules. Mean average durations were 

calculated for the three conditions [concrete, 724ms (SD 105ms); abstract, 772ms (SD 119ms) and 

pseudowords, 780ms (SD 93ms)] and a Kruskal-Wallis test (Kruskal & Wallis, 1952) revealed no 

statistical, significant difference (p > .05).  

The 60 pseudowords were matched for number of phonemes and syllables with the 60 real 

words, and syllable boundaries determined from the MRC database (Wilson, 1988). In order to 

control for syllable frequency, the syllables from each real word were re-combined to make the 
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pseudowords whilst ensuring that their original constituent position remained constant (Valdois et 

al., 2006). As a result, sixty, phonologically legal, opaque polysyllabic pseudowords were created 

as per Raettig and Kotz (2008), resulting in 120 items as detailed in Roxbury et al. (2014). A native 

female English speaker recorded all stimuli digitally in a soundproofed room using a Rode NTK 

condenser.  

3.3.2 Participants 

Twenty-six healthy young and twenty-four healthy older adults were initially recruited to 

the study. The young participants have previously been reported in Roxbury et al. (2014). 

Recruitment for the older participants was achieved through advertising flyers in local community 

centres and in the University of Queensland newsletters. Written consent was obtained from all 

participants with each receiving $30 in reimbursement. Following the scanning session, all scans 

were reviewed by a neuroradiologist for possible structural abnormalities. Incidental findings of 

clinical significance were noted in six scans (three younger adults and three older adults) and these 

subjects excluded. A further six young adults and four older adults were also excluded from 

analysis due to technical and subject compliance issues. As a result, 17 young adults aged between 

18 and 35 years (M = 27.35, SD = 5.1; 8 males), and 17 older adults ranging from 64 to 83 years (M 

= 71, SD = 5.07; 6 males) were included in the present study.  

All participants were right hand dominant according to the Edinburgh Handedness Inventory 

(Oldfield, 1971) and reported using English as a first language. Knowledge of vocabulary was 

assessed using the National Adult Reading Test (NART) (Nelson & Wilson, 1991). The Mini-

Mental State Examination (MMSE) (Folstein, Folstein, & McHugh, 1975) was also administered to 

the older group as a test to confirm the absence of cognitive impairment. None of the participants 

from either group reported a history of neurological disease, head trauma, alcoholism, mental 

illness, or cerebral tumour and all had sufficient vision and hearing to perform the task. Hearing 

thresholds were also confirmed in the older group using a pure tone audiometry test to rule out 

significant hearing impairment and all average thresholds were under 40 dB (M = 28.55, SD = 
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3.41). Ethical approval for this study was received from the University of Queensland Medical 

Research Ethics Committee and the Queensland Health Human Research Ethics Committee. Site-

specific research governance was also obtained from the Royal Brisbane and Women’s Hospital 

Ethics Committee. 

3.3.3 Procedure 

The lexical decision task was explained to each participant prior to the scanning session and 

a computer-based practice task administered until a score of over 80% was achieved. The fMRI task 

consisted of 120 individual stimuli, presented binaurally via MRI confon headphones (MR Confon 

GmbH, Magdeburg, Germany) across two runs within the same scanning session (refer to Figure 1 

in Roxbury et al. (2014) for acquisition sequence). At the start of each trial participants saw a small 

black fixation cross (48 point font) for 2.3s and a visual prompt ‘Is it a real word?’. A word or 

pseudoword was then heard by the participant with a mean length of auditory presentation lasting 

an average of 764ms (SD = 105ms). Participants had 3.5s to make a response and during this 

response/sound window, a screen with a black “+” and the correct orientation for Yes/No was 

displayed. Participants selected their response using an MR compatible button press box (Current 

Designs Inc, Philadelphia PA). A left button press signalled a positive (yes) response and a right 

button press signalled a negative (no) response. A large blue cross (84 point font) appeared on the 

screen to indicate that a response had been selected and remained visible for 1s. After this time, a 

black cross (84 point font) appeared and stayed on screen until the start of the next trial. Participants 

were asked to keep their eyes open for the duration of the scanning session and to look at the 

fixation cross. Participants used their left hand to make their responses on the button response box 

in order to allow for a future comparison study on patients with aphasia following stroke.  

Stimuli were presented in a pseudorandomised, event related design with a maximum of two 

consecutive trials from any one condition (concrete real words, abstract real words and 

pseudowords). To reduce order effects, five different pseudorandomised orders were employed. In 

addition, words and pseudowords which shared constituent syllables were not presented in 
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consecutive order. An inter-trial interval (jittered between 10-18s, mean 14s) followed each 

auditory stimulus presentation. The long interval was designed to allow for future comparison of 

this data with that of patients with post-stroke aphasia, who can experience a delay in hemodynamic 

response function (Bonakdarpour et al., 2007). 

3.3.4 Data Acquisition  

Participants underwent one scanning session at the Royal Brisbane and Women’s Hospital 

with a Siemens 3 Tesla Trio scanner (Siemens Erlangen). A pseudorandomised event-related design 

was employed and stimuli delivered in two runs lasting approximately 14.4 minutes in duration. 

During the two task runs, a total of 390 gradient echo EPI images with BOLD sensitivity were 

acquired (TR 2210ms; TE 30ms; slice thickness 3mm with 0.3mm gap; 36 axial slices, FOV 

220x220mm, flip angle 90, matrix 64x64). At the start of the scanning session, a 3D T1-weighted 

image was also acquired [MP-RAGE; TR 1900ms; TE 2.4ms; TI 900ms; (0.9mm)
3
 resolution].  

3.3.5 Image Processing 

Statistical parametric mapping software (SPM8; Wellcome Trust Centre for Neuroimaging; 

http://www.fil.ion.ucl.ac.uk/spm) was used to process and analyse the images with MATLAB 

2009a (The MathWorks Inc., Natick, MA). The first five volumes acquired at the beginning of each 

run were discarded to ensure that images were only included for analysis once magnetization had 

reached steady state. EPI images from run 1 and run 2 were realigned using INRIAlign (Freire et 

al., 2002) to correct for motion artefacts and a mean image created. This mean EPI was then 

coregistered with the T1 image acquired in the same session and the T1 image segmented and 

spatially normalized (Ashburner & Friston, 2005). A DARTEL template (Ashburner, 2007) was 

created for both groups and each subject’s T1 and EPI image normalized to the standard Montreal 

Neurological Institute (MNI) space. The EPI images were then resampled (3.0 x 3.0 x 3.0 mm
3
) and 

spatially smoothed using an 8 mm full-width half-maximum (FWHM) Gaussian smoothing kernel.  

3.3.6 Behavioural Analysis 

Mean accuracy was calculated per subject. Reaction times were calculated from the 

http://www.fil.ion.ucl.ac.uk/spm
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beginning of the sound onset and all incorrect trials plus those that were shorter than 100ms were 

removed prior to analysis. Both mean accuracy and reaction time data were not normally distributed 

(Shapiro-Wilk test of normality: accuracy p < .003; RT p < .0001). As group variances could be 

treated as equal (using a non-parametric Levene’s test) a Mann-Whitney test was employed. In 

addition, to determine whether the concreteness effect existed for each group we compared concrete 

and abstract processing differences associated with accuracy and reaction time, using a Wilcoxon 

Signed-Ranks test. 

3.3.7 Imaging Data Analysis  

A fixed effects analysis was employed for each subject. The general linear model was 

constructed using a hemodynamic response function with derivatives. This was done to model the 

increased variability due to ageing (D'Esposito, Deouell, & Gazzaley, 2003). The realignment 

parameters (6 degrees of freedom) were included as regressors of no interest. In order to exclude 

BOLD response effects which were due to variability in reaction time (or time on task), a 

parametric modulation for each of the three conditions (concrete, abstract and pseudoword) was 

included using the mean corrected reaction time for each trial. Contrasts included concrete – 

abstract, concrete – pseudoword and abstract – pseudoword. Error trials were modelled separately, 

and included both incorrect and trials where the reaction time was less than 100ms.   

For the whole brain analyses, a group by condition (2 x 3) factorial analysis was completed 

to determine the main effects. Anatomy Toolbox (Eickhoff et al., 2007) was used to determine the 

neuroanatomical locations of peak maxima for significant clusters elicited in the different contrasts. 

To correct for multiple comparisons, a Monte Carlo simulation calculation was performed and 

cluster thresholds calculated by using the full-width half-maximum of the square root of the 

residuals (3dFWHMx and 3dClustSim; Analysis of Functional Neuroimages) (Cox, 1996). Using a 

height threshold of p < .001 uncorrected, a family wise error rate of p < .05 was achieved with a 

minimum cluster threshold of 44 contiguous voxels. Regions showing a main effect of condition or 

group were investigated further to explore directionality and mean percent signal change calculated 
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for each region. 

A priori regions of interest (ROIs), determined from Binder et al. (2009) and Cabeza et al. 

(2002), were created using IBASPM 116 Human Atlas in WFU PickAtlas (Maldjian et al., 2004; 

Maldjian et al., 2003) in SPM8 (Wellcome Trust Centre for Neuroimaging; 

http://www.fil.ion.ucl.ac.uk/spm). A total of 10 ROIs were created; six to examine concrete word 

processing (left AG, right AG, left MFG, left SFG, left posterior cingulate and left fusiform), three 

for abstract processing, left IFG; pars orbitalis and left aSTS – split into anterior superior temporal 

gyrus (aSTG) and anterior middle temporal gyrus (aMTG). An additional ROI in right IFG (pars 

orbitalis) was included, to investigate recruitment of homologous, contralateral brain regions 

particularly the ventral, inferior frontal cortex by older adults (Cabeza et al., 2002). The anterior, 

superior and middle temporal cortical regions were subdivided according to the delineation of y<-7 

for anterior by Indefrey and Levelt (2004) so that potential activity in the aSTS could be thoroughly 

examined.  

Mean percent signal for each participant in each of the ROIs was extracted using MarsBaR 

(Brett et al., 2002), a region of interest toolbox for SPM8. SPSS Statistics version 21 (IMB; 

Armonk, New York, USA) was used for group statistical analyses. Data was checked for normality 

of distribution and when not normally distributed a Log10 transformation was applied to create 

normality. Two (young, old) x 3 (concrete, abstract and pseudoword) repeated measures ANOVAs 

were then conducted to test for mean percent signal change differences between conditions within 

the 10 ROIs. Where the assumption of sphericity had been violated, degrees of freedom were 

corrected using Huynh-Feldt estimates of sphericity and are reported throughout along with original 

degrees of freedom. Post hoc pairwise comparisons (concrete – abstract, concrete – pseudoword, 

abstract – pseudoword) in the 10 ROIs were evaluated using an adjusted p level following 

correction for multiple comparisons (Benjamini & Hochberg, 1995). Where results indicated a 

group by condition interaction, an ANOVA was conducted to explore the interactions within a 

single group between conditions.  

http://www.fil.ion.ucl.ac.uk/spm
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3.4 Results 

3.4.1 Participant Results 

There was no significant difference between cohorts on either the NART score [p =.2, 

young mean 32.18 (SD 5.07), older mean 35.18 (SD 7.95)] or mean years of education [p =.5, 

young mean 16.5 yrs (SD 2.1), older mean 15.5 yrs (SD 4)]. Scores from the MMSE (Folstein et al., 

1975) confirmed intact cognition of the older group (max = 30, group mean = 28.82, SD = 0.95).  

3.4.2 Behavioural Results 

The mean accuracy for all conditions was high in both groups. Mann-Whitney U tests 

between the groups indicated that accuracy of pseudowords was significantly greater for young 

adults (M = 97.9, SD = 2.3) than for older adults (M = 95.2, SD = 4.1) U = 79.5, Z = -2.295, p = 

.022, but there was no significant difference between the groups for accuracy in either the concrete 

(young M = 98.6, SD = 2.4; older M = 97.1, SD = 4.4) or abstract conditions (young M = 97.5, SD = 

1.9; older M = 93.5, SD = 7.5).  

The percentage of reaction times removed (incorrect or < 100ms) was 4.6% for older adults 

and 2% for younger adults. A Mann-Whitney U test on mean response times for the young and old 

groups (see Table 4) indicated that young adults were significantly faster than older adults for all 

three conditions; pseudoword U = 311864, Z = -13.746, p < .001 two-tailed, concrete U = 100275, 

Z = -5.319, p < .001 two-tailed, and abstract U = 97875, Z = -4.807, p < .001 two-tailed.  

 

Table 4. Mean reaction times for young and older adults 

 Pseudoword Concrete Abstract 

 Mean  

(SD) 

Mean  

(SD) 

Mean  

(SD) 

Young adults 1434ms 

(396) 

1187ms 

(274) 

1263ms 

(346) 

Older adults 1738ms 

(588) 

1288ms 

(318) 

1356ms 

(353) 
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Concreteness effects, or the processing advantage seen for concrete over abstract words in 

terms of accuracy and reaction time, were tested in both the young and old groups. The older group 

was significantly more accurate for concrete over abstract words Z = -2.116, p = .034 but there was 

no significant difference for the younger group (p = .303). The results for reaction times indicate 

faster processing for concrete over abstract words, with a significant difference for both the young 

group Z = -15.316, p < .001 and the older group Z = -13.241, p < .001 (See Table 4) and confirm 

that the expected processing advantage for concrete words occurred.  

3.4.3 Region of Interest Analyses 

Results for the left fusiform ROI indicated that there was a main effect of group F(1, 16) = 

7.523, p = .014, with older adults eliciting increased activity in this region (M = 0.304, SE = 0.062) 

compared to young adults (M = 0.207, SE = 0.041). A main effect of group was also observed in the 

left AG F(1, 16) = 38.329, p = < .001, with older adults eliciting increased activity (M = 0.282, SE 

= 0.028) compared to young adults (M = -0.065, SE = 0.035). No other region showed a main effect 

of group.  

A main effect for condition was found for left AG, right AG, left posterior cingulate, left 

aMTG, left MFG, left SFG, left aSTG, and left IFG. Regions showing significant main effects for 

condition effects after FDR correction (Benjamini & Hochberg, 1995) are listed in Table 5.  
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Table 5. Region of interest - main effect of condition 

Region F value Concrete - 

Pseudoword 

Abstract -  

Pseudoword 

Concrete - 

Abstract 

Left AG F(2, 15) = 9.643, p = .002 Conc > PS  

p < .001 

Ab > PS  

p = .017 

Conc > Ab  

p = .017 

Right AG F(2, 15) = 13.315, p < .001 Conc > PS  

p < .001 

Ab > PS  

p = .009 

Conc > Ab  

p = .030 

Left posterior 

cingulate 

F(2, 15) = 16.161, p < .001 Conc > PS  

p < .001 

Ab > PS  

p = .013 

Conc > Ab  

p = .002 

Left aMTG F(2, 15) = 8.101, p = .004 Conc > PS  

p = .009 

Ab > PS  

p = .002 

ns 

Left MFG F(2, 15) = 6.04, p = .012 Conc > PS  

p = .009 

Ab > PS  

p = .03 

ns 

Left SFG F(2, 15) = 11.260, p = .001 Conc > PS  

p < .001 

Ab > PS  

p = .017 

ns 

Left aSTG F(2, 15) = 18.568, p < .001 Conc > PS  

p < .001 

PS > Ab  

p = .03 

ns 

Left IFG F(2, 15) = 10.124, p = .002 PS > Conc 

p = .047 

ns Ab > Conc  

p < .001 

 

Results from the repeated measures ANOVA for each of the 10 ROIs revealed a significant 

age x condition interaction in four ROIs; left AG F(1.431, 22.903) = 9.102, p = .003 (Huynh-Feldt 

correction), left IFG F(2, 15) = 8.936, p = .003, left fusiform F(2, 15) = 6.531, p = .009 and left 

MFG F(2, 15) = 6.040, p = .011. Follow-up analyses on the significant interactions were conducted 

to find the differences in the mean percent change between conditions within each group. The 

interactions and mean percent BOLD signal change in the four ROIs can be seen in Figure 6. There 

was a condition effect in the left IFG for the older adults only F(2, 15) = 17.127, p = < .001. Post 

hoc pairwise comparisons indicated significant differences for the concrete compared to both the 

pseudoword (p = .001) and abstract (p < .001) conditions. Mean percent signal change was greater 

for the abstract (M = 0.20, SE = 0.05) and pseudowords (M = 0.24, SE = 0.06) compared to the 

concrete words (M = 0.17, SE = 0.04). Results also indicated a significant difference in activity for 

condition in the left AG for the young adults only F(2, 15) = 11.270, p = .001. Pairwise 
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comparisons indicated that the differences between contrasts were significant for all three 

conditions (p ≤ .001) with greatest activity for the concrete condition (M = 0.02, SE = 0.04), 

followed by abstract words (M = -0.06, SE = 0.04) and then pseudowords (M = -0.14, SE = 0.04).  

 

 
 

Figure 6. Region of interest analysis. Illustrates ROIs which showed a significant group by condition 

interaction. 

 

An effect of condition was observed in the left MFG for both the older adults F(2,15) = 

4.268, p = .034 and young adults F(2, 15) = 9.897, p = .002. Post hoc pairwise comparisons further 

indicated a significant difference in the older adults for the abstract - pseudoword contrast (p = 

.018) with mean percent signal change elicited being significantly higher for abstract (M = 0.09, SE 

= 0.04) compared to pseudowords (M = 0.03, SE = 0.04). A significant difference was observed in 

the young group for concrete words when compared to both abstract (p = .003) and pseudoword 

conditions (p < .001). Mean percent signal change indicated that greatest activity was elicited for 

the concrete words (M = 0.12, SE = 0.03) compared to abstract (M = 0.02, SE = 0.03) and 
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pseudoword (M = -0.01, SE = 0.03) conditions. A condition effect was also observed in the left 

fusiform for both groups [older adults F(2, 15) = 10.114, p = .002 and young adults F(2, 15) = 

14.952, p < .001]. Pairwise comparisons between conditions indicated significant differences in the 

older adults for abstract and pseudoword condition (p = .001) with abstract words eliciting greater 

activity (M = 0.33, SE = 0.06) than pseudowords (M = 0.27, SE = 0.07). Significant differences for 

the young group were observed for the concrete – pseudoword (p < .001) and abstract –pseudoword 

condition (p = .044). Mean percent signal change was greater for both the concrete (M = 0.27, SE = 

0.04) and abstract conditions (M = 0. 18, SE = 0.06) when compared to pseudowords (M = 0.16, SE 

= 0.04).  

3.4.4 Whole Brain Analyses 

We also ran exploratory whole brain analyses which revealed a main effect of age in the left 

precentral, left supplementary motor area (SMA), left IFG (pars triangularis) and right IFG (pars 

triangularis extending into pars opercularis) for the word greater than pseudoword contrast. A main 

effect of condition was also observed in the left calcarine gyrus (refer Table 6). There were no 

significant group by condition interactions for the whole-brain analyses. 

 
Table 6. Factorial results from whole brain analysis for main effects between young and older groups 

Main effect Structure x y z Volume Z-score 

Age 

 

 

 

Condition 

left precentral gyrus 

right IFG (pars triangularis) 

left SMA 

left IFG (pars triangularis) 

left calcarine gyrus 

-36 

54 

-7 

-50 

-7 

4 

18 

25 

32 

-50 

32 

22 

47 

18 

7 

53 

65 

62 

138 

76 

4.65 

4.62 

4.62 

4.45 

4.54 

p < .001 probability threshold and cluster threshold level of 44 voxels. 

 

Brain regions in which a main effect of age was indicated were investigated further to 

explore directionality of the effect. Differences in activity were calculated using the mean percent 

signal change extracted for each cluster (see Figure 7) and show that older adults elicited increased 

activity in all four regions compared to the young adults.  



84 

 
 

Figure 7. Main effect of age. Activation differences were calculated using the mean percent signal 

change extracted for each cluster.  

 

Mean percent signal change was also calculated to explore the main effect of condition in 

the calcarine gyrus. Results indicate that concrete words elicited increased activity (M = 0.06, SD = 

0.04) in this region than abstract words (M = 0.07, SD = 0.04) across groups. 

3.5 Discussion 

We investigated concreteness effects during spoken word comprehension in young versus 

old adults and tested the competing age-related hypotheses of attenuation (Peters & Daum, 2008) 

versus preservation (Tyler et al., 2010; see Wingfield and Grossman, 2006 for a review) in concrete 

and abstract word processing. We also examined whether behavioural performance was associated 

with age-related changes in neural activity. We found that comprehension of spoken concrete and 

abstract words and the concreteness effect is indeed preserved in ageing. However, the neural 

substrates that underpin this preserved performance appear to vary as a function of age and may 

reflect compensatory age-related upregulation.  

The expected processing advantage for concrete over abstract words was observed in both 

groups for reaction time and for accuracy in the older adults only. The lack of concreteness effect in 

accuracy for the young cohort was most likely due to a ceiling effect. Results for accuracy between 

the two groups for concrete and abstract words revealed no significant differences. These findings 
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are consistent with previously reported observations in the healthy ageing literature, which suggests 

that spoken word comprehension remains relatively preserved throughout life (Burke & Shafto, 

2008; Shafto et al., 2012). A significant difference in accuracy did emerge for the pseudoword 

condition and showed that older adults were less accurate than the young adults when responding to 

these non-lexical items. With regard to reaction times, our results showed that the older adults were 

significantly slower than their younger counterparts for all three conditions. This result is in 

agreement with previous observations of a consistent, general slowing in lexical decision response 

times as people age (Gold, Andersen, Jicha, & Smith, 2009; Madden, 1992). Whilst both groups 

responded to pseudowords slower than both concrete and abstract words, the response time 

observed for the older adults was dramatically slower compared to the young adults. This is 

consistent with the model of Balota and Chumbley (1984) which proposes that fast lexical decision 

responses can be facilitated by the familiarity or unfamiliarity of the stimuli. Since, the 

pseudowords employed in this study were opaque (Raettig & Kotz, 2008), and ageing is associated 

with an increase in lexical knowledge (Burke & Shafto, 2008), the slower response time observed 

for the older adults to the pseudowords might be due to a more extensive lexical search which is 

required before a decision can be made.  

In the left IFG ROI, older adults showed increased activity for abstract and pseudowords 

compared to concrete words, whereas young adults showed no difference between conditions. This 

recruitment by the older adults of a mechanism not used by the young group for abstract and 

pseudoword processing, accompanied by a preserved performance suggests an element of age-

related compensatory upregulation. Studies investigating differences between semantic and 

phonological processes and IFG activity have shown that different linguistic processing components 

can be differentially affected in ageing (Diaz, Johnson, Burke, & Madden, 2014; Geva et al., 2012; 

Meinzer et al., 2012; Meinzer, Wilser, et al., 2009; Shafto et al., 2012). Previous studies 

investigating concreteness have shown involvement of left inferior frontal regions when abstract 

words are directly contrasted with concrete words (Binder et al., 2005; Fiebach & Friederici, 2004; 
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Mellet et al., 1998; Noppeney & Price, 2004; Perani et al., 1999; Wise et al., 2000) and this may 

represent strategic retrieval of semantic knowledge (Fliessbach et al., 2006). However, the fact that 

this region was also activated more for pseudowords compared to concrete words, but not when 

directly contrasted with abstract words makes it unlikely that upregulation of this region by the 

older adults reflects semantic-based processes. Rather, we suggest that the current findings are more 

consistent with previous studies which have indicated a role for left IFG in more phonologically-

based, short term working memory processes (Binder et al., 2005; Fiebach & Friederici, 2004; 

Sabsevitz et al., 2005). This is supported by results from a study investigating differences in word 

learning strategies in ageing, which demonstrated that when older adults are engaged in word 

learning tasks, they rely more on phonological processes and less on semantic working memory 

(Service & Craik, 1993). Our findings are also in agreement with reports that pseudoword 

processing activates more focal phonological processes compared to real words which activate 

lexical representations at a higher level (Davis & Gaskell, 2009). Thus, since we observed greater 

activation for abstract and pseudowords compared to concrete words in left IFG for the older adults 

only, we propose the involvement of the left IFG may instead reflect an age-related compensatory 

upregulation of more phonologically-based, rather than semantically-mediated or working memory 

processes.  

Young adults showed increased left AG activity for concrete words compared to abstract 

words, with both concrete and abstract words also showing greater activity than pseudowords. In 

contrast, older adults showed no change in AG activity for the different conditions. Involvement of 

the left AG in semantic-based processing generally is well documented (Price, 2010) and this was 

also the region identified in the Binder et al. (2009) meta-analysis as being most reliably activated 

in response to semantic-based tasks. Findings from our previous study investigating concreteness 

effects in healthy young adults showed that the left AG was the region most robustly activated by 

concrete compared to abstract words (Roxbury et al., 2014). Recent work has suggested that the AG 

may act as a supramodal zone, binding and integrating sensory-motor information from modality-
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specific regions (Binder & Desai, 2011). The findings in the present study are consistent with this 

view and demonstrate that the young adults are reliably using this region when accessing semantic 

conceptual knowledge. However, this is not the case for the older adults. While older adults do 

recruit left AG, and generally elicit greater activity than the young adults, no activation differences 

between the conditions suggests that older adults are recruiting the left AG for more general lexical 

processing. As such, we propose that this reduction in specificity may be due to a change in focus 

by the older adults who attend more to phonological rather than semantic aspects of processing in 

order to maintain a preserved performance. 

In the present study, we observed increased activation for abstract compared to pseudowords 

in left MFG for the older adults. The MFG has generally been considered to be associated with 

more executive type functions relating to working memory, inhibition and processing speed (Grady, 

2008; Reuter-Lorenz & Park, 2010) and thus the finding of increased activation for abstract words 

by the older adults might reflect an engagement of executive resources. This increased neural 

activity for the older adults for abstract word processing is supported by the behavioural findings 

which showed both slower reaction times and reduced accuracy for the abstract condition 

suggesting that abstract words required more effortful processing. However, we also observed 

increased activation in this region for the young group for the concrete words compared to both 

abstract and pseudowords and this was associated with an intact behavioural performance both in 

terms of reaction time and accuracy. These findings are not therefore consistent with an executive 

function explanation for this region. Instead, activity in this region has previously been observed in 

semantic-based tasks although its precise function in language processing is not yet well 

understood. Thus the finding of increased activity for concrete words in the young adults could 

potentially reflect processes involved with the retrieval of semantic knowledge (Binder et al., 2009; 

Diaz et al., 2014; Peelle, Troiani, Wingfield, & Grossman, 2010), which is greater for concrete 

concepts due to their richer set of conceptual features. 

In the left fusiform gyrus older adults showed a generalized increase in activity overall and 
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elicited greater activity for abstract words compared to pseudowords. In contrast, the young adults 

reliably recruited this region for the processing of real words (concrete and abstract) compared to 

pseudowords. The left fusiform gyrus is considered to be a conceptual semantic store and associated 

with the retrieval of visual attributes (Binder et al., 2009). Since concrete words are associated with 

stronger visual attributes than abstract words, the expectation is that concrete words will elicit 

increased activity in this region. However, while some have shown increased activity in this region 

for concrete compared to abstract words (D'Esposito et al., 1997; Fiebach & Friederici, 2004; 

Mellet et al., 1998; Whatmough et al., 2004; Wise et al., 2000), others have not (Binder et al., 2005; 

Friederici et al., 2000; Jessen et al., 2000; Kiehl et al., 1999; Noppeney & Price, 2004; Perani et al., 

1999). The findings in this present study differ from those of Whatmough et al. (2004) who 

observed increased activity for concrete words in the left fusiform gyrus and these differences may 

be due to the nature of the lexical decision task we employed with does not require deeper 

conceptual processing. Nevertheless, our finding of increased activity in the young group for both 

concrete and abstract words compared to the pseudowords suggests that lexical processing was 

occurring and we tentatively interpret this result as reflecting differences associated with real word 

imagery and features, compared to pseudowords that have no meaning and therefore no imagery or 

features attached to them. Meanwhile, the increased activity for the abstract compared to 

pseudoword condition for the older group might suggest that the older adults were engaged in 

increased visual imagery for retrieving abstract words in order to maintain a preserved performance.  

Results for the whole brain analysis revealed a main effect of age in left IFG (pars 

triangularis, extending into pars opercularis), right IFG (pars triangularis), left precentral gyrus and 

left SMA with older adults eliciting increased activity in each of these regions compared to the 

young adults for words compared to pseudowords. The increase in bilateral PFC activity is 

consistent with the HAROLD model (Cabeza, 2002) which proposes that when performing the 

same task, older adults elicit additional activity in the contralateral right PFC regions (Cabeza et al., 

2004). However, the HAROLD model also predicts that activity elicited by older adults will be less-
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lateralized than that observed in young adults. The current results do not support a reduction in 

laterality in the older group since we also observed increased activity in the left hemisphere in the 

older compared to young adults. This trend towards a general increase in brain activity in the older 

compared to the young adults suggests a compensatory upregulation of brain regions, which are 

required to maintain performance in word processing.  

The fMRI data in the present study confirm involvement of a large network of common 

regions which are activated in response to both concrete and abstract words regardless of age. Of 

the eight regions which showed condition effects, three ROIs (left AG, right AG and left posterior 

cingulate) showed greater activation for concrete greater than abstract greater than pseudowords. 

The results for increased activation for concrete compared to abstract words in left and right AG are 

consistent with Binder and Desai’s (2011) view of embodied abstraction which proposes that 

bilateral AG acts as a convergence zone with the purpose of binding conceptual representations 

from modal-specific regions. Differences in processing in this region are associated with the 

different amounts of conceptual information associated with a word. As such, in this framework, 

concrete words would be expected to elicit more activity than abstract words due to their stronger 

semantic representations, largely associated with sensory-motor knowledge (Binder & Desai, 2011).  

With regard to the two prominent theories of concreteness and abstract processing, the 

results for bilateral AG activity cannot be fully explained by either account. Context availability 

theory does not predict increased right hemisphere activity for abstract or concrete concepts, since 

quantitative differences between these word types should occur in left hemisphere regions 

(Schwanenflugel & Shoben, 1983). In terms of dual coding theory, involvement of the nonverbal 

right hemisphere is predicted by the model for concrete words, due to their richer image-based 

associations. However, we also observed a significant condition effect in the left IFG with greater 

activity for abstract compared to concrete words. While this is consistent with dual coding theory, 

which predicts that abstract words will activate qualitatively distinct systems in the verbal left 

hemisphere, we also observed greater activity for pseudowords compared to concrete words in this 
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region which is not predicted by the model. Instead, as discussed above, this finding suggests that 

the older adults recruit left IFG as a compensatory mechanism in order to maintain performance 

during more phonologically-based processes.  

In summary, our results show that, despite a general reduction in response times, spoken 

language comprehension of concrete and abstract words, and concreteness effects remain relatively 

preserved in ageing. Interestingly, the pseudoword condition proved most problematic for the 

healthy older adults and we suggest that may be due to the additional strategic processing required 

as they search through a more extensive lexicon (Kemper & Sumner, 2001; Verhaeghen, 2003) 

before deciding to discard an item. The results from the imaging data showed that a large network 

of brain regions, previously reported as being involved in concrete and abstract processing (Binder 

et al., 2009; Wang et al., 2010), are similarly activated by both groups in response to concrete and 

abstract words although the older adults routinely showed increased activation compared to the 

young adults. Age-related vascular changes need to be considered when comparing activity between 

young and older adults (D'Esposito et al., 2003). A general reduction in BOLD has been observed 

previously, meaning a decrease in activation cannot be directly tied to a decrease in neural activity. 

However, this doesn’t explain the increased activity in older compared to younger adults seen in 

this study, which is contrary to the expected direction based on possible biological differences, and 

indicate a larger neuronal activation or BOLD response. Selective regions also showed activation 

differences between conditions for the two groups. The findings for left IFG and left AG present an 

interesting dichotomy. These findings suggest that while the spoken recognition of concrete and 

abstract processing remains preserved in ageing, this preserved performance is accompanied by 

compensatory upregulation in regions which are differentially recruited by the two groups such that 

older adults are required to focus more on phonological and less on semantic aspects of processing 

and this appears essential for preservation of functionality.  
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4 Chapter Four  

Brain Activity during Spoken Word Recognition in Subacute Aphasia 

________________________________________________________________________________ 

The results from Chapter 3 confirmed that the neural mechanisms which underpin the 

recognition of spoken concrete and abstract words are altered in ageing and as such, the first aim of 

Chapter 4 was to examine how this brain activity is altered in people with aphasia during the 

subacute phase of recovery compared to a group of aged-matched healthy controls. The second aim 

was to determine the relationship between brain activity elicited during the fMRI task and 

performance on a range of language measures taken outside the scanner. Based on previous aphasia 

studies, it was hypothesised that increased right hemisphere activity would be elicited in response to 

the fMRI task during this subacute period (Saur et al., 2006) and that greater activity would be 

observed for abstract compared to concrete words in the aphasic group compared to the aged-

matched controls (Sandberg & Kiran, 2014).  

4.1 Introduction  

Recovery from post-stroke aphasia is considered to occur in three separate stages, 

underpinned by distinct neural mechanisms (Kiran, 2012). The acute phase is experienced within 

the first two weeks following stroke onset and during this phase, language recovery is rapid due to 

physiological changes in neural plasticity, reduction in oedema and metabolic disturbances as well 

as reperfusion of the ischaemic penumbra (Marsh & Hillis, 2006). The second stage of recovery is 

the subacute phase which occurs weeks to months post-stroke. During this period recovery is less 

rapid and consists primarily of neural reorganisation leading to the formation of new alternative 

networks and changes in the efficacy of synaptic connections (Lazar & Antoniello, 2008). Recovery 

in this phase is thought to be associated with the regression of diaschisis (that is the normalisation 

over time of dysfunctional brain activity in areas remote or distant to the lesion and which correlate 

with behaviour, see Carrera and Tononi (2014) for a full review), perilesional restitution 
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(Thompson & den Ouden, 2008; Warburton et al., 1999) or a functional transfer to the right 

hemisphere homologue (Saur et al., 2006). The chronic phase of recovery is dominated by neural 

reorganisation and compensatory cognitive strategies which may continue for a number of years 

(Grafman & Litvan, 1999). 

Observations of task-related brain activity can provide insights into the mechanisms of 

recovery in patients with aphasia when performance is compared to that of healthy controls. 

Turkeltaub et al. (2011) conducted a meta-analysis on fMRI studies investigating the consistency in 

brain activity elicited by people with chronic aphasia in response to language tasks. The findings 

indicated that while controls recruited consistent left hemisphere language areas, aphasic subjects 

employed both intact language areas, as well as recruiting new areas within the left hemisphere and 

right hemisphere language homologues (Turkeltaub et al., 2011). These findings demonstrate that 

critical information on the regions and mechanisms associated with recovery can be derived from 

carefully constructed imaging protocols which enable a comparison between the performance of 

controls and aphasic subjects to be made.  

Imaging studies investigating recovery and aphasia have provided some intriguing insights 

into the brain mechanisms that underpin language function in the acute stages post-stroke (Hillis, 

2007; Hillis et al., 2005). Hillis and Heidler (2002) investigated spoken word comprehension in 110 

patients with acute stroke and used perfusion-weighted imaging (PWI) and diffusion-weighted 

imaging (DWI) to examine the relationship between severity of hypoperfusion and the level of 

comprehension impairment. Rapid improvements in spoken word comprehension in acute aphasia 

was directly associated with successful reperfusion of BA 22 (Wernicke’s area) (Hillis & Heidler, 

2002; Hillis et al., 2005) whereas, those patients with persisting hypoperfusion in BA 22 also had 

persisting spoken word comprehension deficits. Hillis and Heidler (2002) concluded that early 

recovery is attributable to reperfusion rather than early reorganisation of structure/function 

relationships which they suggest are likely to play more of a role in subsequent stages of recovery 

(Hillis & Heidler, 2002). However, the exact nature and timing of the neural reorganisation 
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associated with subsequent stages of recovery (including the subacute phase) for spoken word 

comprehension is still unclear.  

A longitudinal fMRI study by Saur et al. (2006) provided a number of insights into the 

mechanisms of language recovery associated with the different stages of language recovery. A 

group of 14 acute aphasic subjects were scanned initially within 4 days post-stroke and then again 

in the subacute phase approximately two weeks later. A third scanning session was conducted in the 

chronic phase of recovery between 4 to 12 months post. The fMRI task employed was an auditory 

sentence comprehension task with correct, incorrect and reversed speech sentences and the aphasic 

patients were required to respond using a two button press to indicate ‘correct’ versus ‘incorrect’ 

sentences. During the acute phase, weak activity was elicited in left IFG. However, in the subacute 

phase, there was a shift to a more bilateral pattern of activity in the language networks, particularly 

in right IFG, and this was associated with improved language function. In the chronic phase, there 

was a return to left hemisphere activation, similar to that of the controls, and this was associated 

with further improvements in language recovery (Saur et al., 2006). These findings suggest that 

successful recovery of language function is associated with a dynamic hemispheric reorganisation.  

One limitation of the Saur et al. (2006) study concerns the complexity of the task. During 

pretesting, the sentence-level task proved difficult for some of the aphasic patients and as a result, 

the task needed to be modified so that a response with a button press was only required when an 

incorrect sentence was heard. Thus, reversed speech and violated sentences were both categorized 

as incorrect. Despite simplification of the task, accuracy was still poor in the acute phase (mean 

36% correct). This poses problems when interpreting task-related brain activity, as it cannot be 

ascertained whether the brain activity elicited reflects an impaired performance or whether the 

impaired performance is caused by the underlying neural deficits (Price & Friston, 1999). A further 

limitation of the Saur et al. (2006) study relates to the use of a sentence level task as sentence 

comprehension in aphasia is significantly reliant on other cognitive functions, particularly verbal 

working memory (Caplan et al., 2013). Since task-related activity observed in aphasia often reflects 
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increased cognitive control and attention (Geranmayeh et al., 2014), there is a need to consider less 

cognitively demanding language tasks that can provide unique insights into aphasia recovery. 

Therefore, in order to further investigate the brain mechanisms associated with language processing 

in acute and subacute phases, it is important that patients are presented with in-scanner tasks that 

can be performed successfully and with enough accuracy to ensure that the brain activity elicited 

during the task reflects the neural responses to the stimuli being presented, rather than reflecting 

other processes which may be related more to task difficulty or inaccurate responses (Price et al., 

2006; Price & Friston, 1999).  

In order to examine the brain mechanisms associated with spoken word comprehension in 

subacute aphasia, the present study investigated concrete versus abstract word processing as this has 

proven an informative method for examining lexical-semantic function in aphasia. Concreteness 

effects (i.e. the processing advantage observed for concrete (e.g. blanket) over abstract words (e.g. 

belief) have been reported in healthy populations (James, 1975; Kroll & Merves, 1986, for a review, 

refer Pavio, 1991) (see Chapter 2 for a review of concreteness). Behaviourally, exaggerated effects 

of concreteness (whereby concrete words appear to be processed better than abstract words) have 

been observed in people with aphasia (Barry & Gerhand, 2003; Crutch & Warrington, 2005; Martin 

et al., 1996; Newton & Barry, 1997; Sandberg & Kiran, 2014) and also people with semantic 

dementia (Hoffman, 2015). These findings suggest that distinct neural mechanisms are involved in 

the processing of concrete and abstract concepts and these can be differentially affected by brain 

lesions. However, the studies which have reported these effects have largely been behavioural case 

studies and have investigated aphasic subjects in the chronic phases of recovery.  

Two recent meta-analyses have provided insights from neuroimaging studies of concrete 

versus abstract processing in healthy adults (Binder et al., 2009; Wang et al., 2010). A combined 

total of 26 neuroimaging studies were examined, ten of which fitted the inclusion criteria for both 

meta-analyses, and the findings showed consistent activation for both concrete and abstract words. 

While concrete words were associated with stronger activation in a widely distributed network of 
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language regions, including the right hemisphere, activity elicited for abstract words was observed 

in fewer regions and these were in the left hemisphere only (see Chapter 2 for a full review). These 

findings are consistent with dual coding theory (Paivio, 1991) which predicts that concrete words 

are processed in a widely distributed language network and abstract word processing is more 

contained in the verbal left hemisphere. Importantly, the results from the meta-analyses demonstrate 

that in healthy young adults, concrete and abstract words consistently elicit different patterns of 

neural activity in distinct brain regions which suggests that conceptual processing associated with 

these word types may be underpinned by different mechanisms.  

Recently, accounts of semantic memory and theoretical models on the neural organization of 

conceptual knowledge have been developed by combining findings from behavioural and 

neuroimaging studies. One such account is the embodied abstraction account of Binder and Desai 

(2011) which is based on a modified theory of embodiment. The embodied abstraction view 

suggests that conceptual information undergoes a process of embodiment in different levels in 

motor, sensory and affective systems with these systems being located near associated modality 

specific cortical regions. Modal regions interact with non-modality specific, supramodal systems 

which are located in temporal and inferior parietal cortex. Conceptual knowledge is abstracted 

gradually from the modal-specific systems and interacts with the supramodal convergence zones 

with the purpose of binding the representations. Different levels of access are determined by 

variables such as familiarity or context and thus, according to this view, concrete words will elicit 

greater activation than abstract words due to the increased amount of associated semantic 

conceptual information. Vigliocco et al. (2014) have argued that abstract words can be also be 

accounted for in an embodied view. They propose an extended theory of embodiment and suggest 

that abstract words achieve embodiment through affective and emotional experiential knowledge 

rather than in sensory-motor experiences. 

A recent study by Sandberg and Kiran (2014) investigated concrete and abstract word 

processing in three people with chronic aphasia and three healthy aged-matched controls when 
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performing a visual, semantic judgement task (word judgement and synonym judgement). During 

the word judgement task, there was increased activity for abstract compared to concrete words in a 

widely distributed bilateral network in anterior and posterior regions. In contrast, no region showed 

increased activation for the concrete greater than abstract condition in either of the tasks. The neural 

difference in activation between the two conditions was not as robust for the healthy older controls 

and the authors suggest that this may reflect the exaggerated behavioural effects of concreteness 

often observed in people with aphasia (Sandberg & Kiran, 2014).  

The present study sought to further investigate the neural basis of concrete versus abstract 

word processing in aphasia, but unlike Sandberg and Kiran (2014), we focused on subacute aphasia 

and also examined the relationship between observed brain activity and spoken language 

comprehension outside the scanner (see Crinion and Price (2005) for a similar approach with 

sentence comprehension in chronic aphasia). Our first aim was to investigate the neural mechanisms 

underpinning concrete versus abstract word processing in people with aphasia during the subacute 

phase of their recovery compared to healthy age-matched controls. As described in Chapter 3, we 

observed differences between young adults and older adults in select brain regions. In the left IFG, 

the older adults showed an increase in activity for abstract and pseudoword processing but not for 

concrete word processing compared to the young adults. Meanwhile in the left AG, the older adults 

elicited increased activity for all three conditions but with no differences observed between 

conditions, suggesting indiscriminate use of this region by the older adults compared to the young 

adults. In the present study, we wanted to examine whether similar patterns of activity are evident in 

people with subacute aphasia, or whether increased contralateral activity would be elicited (see Saur 

et al., 2006). Based on Sandberg and Kiran (2014) we also expected greater activity for abstract 

versus concrete words in the aphasia group compared to controls. Our second aim was to explore 

the relationship between brain activity elicited with the fMRI task and out of scanner language 

performance (in spoken language comprehension and confrontation naming). Based on Crinion and 
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Price (2005) we predicted right hemisphere activity would be positively correlated with spoken 

word and sentence comprehension.  

4.2 Methods 

4.2.1 Participants 

Twenty aphasic patients were recruited from the Stroke Unit at the Royal Brisbane and 

Women’s Hospital. Inclusion criteria were: (i) single left hemisphere stroke as diagnosed by a 

clinical structural scan, (ii) the presence of aphasia as indicated in the clinical chart or as confirmed 

by assessment of the Western Aphasia Battery - Revised (WAB-R; Kertesz, 2007), (iii) able to 

provide informed consent, (iv) English as primary language, and (v) sufficient hearing and vision to 

perform the tasks. Exclusion criteria were (i) any other neurological disorder, mental illness, head 

trauma, alcoholism and cerebral tumour, (ii) any contraindications for MRI, (iii) significant 

cognitive deficits as identified on the MMSE (Folstein et al., 1975), and (iv) severe comprehension 

difficulties that would impede following fMRI instructions. Six aphasic patients were unable to 

complete the scanning protocol due to (i) technical issues (n = 2) (ii) MRI contraindications (n = 1), 

(iii) site of lesion (n = 2 pons region) or (iv) were transferred to another hospital before their 

scanning session could be completed (n = 1). A total of 14 aphasic patients (10 males, M = 63.8 yrs, 

SD = 11.1 yrs) were included.  

An aged-matched control group t(15.243) = -1.839, p = .085 of 15 healthy adults (10 

females, M = 69.5 yrs, SD = 3.4 yrs) was recruited through advertising flyers in the University of 

Queensland newsletters and from local community centres. Inclusion and exclusion criteria were 

the same as that of the aphasic patients except for the absence of stroke and aphasia. The MMSE 

(Folstein et al., 1975) was administered to confirm the absence of cognitive impairment.  

Detailed written information regarding the research was provided to all participants and 

carers of the participants with aphasia were asked to be present during the consent procedures. All 

subjects provided full written consent and control subjects received $30 in reimbursement. The 

study received approval from the University of Queensland Medical Research Ethics Committee 



98 

and the Queensland Health Human Research Ethics Committee. Site-specific research governance 

was also obtained from the Royal Brisbane and Women’s Hospital Ethics Committee.  

4.2.2 Behavioural Assessment 

Preliminary assessments were administered to aphasic patients within a week of the scan 

date and included: (i) the MMSE (Folstein et al., 1975), (ii) the Edinburgh Handedness Inventory 

(EHI; Oldfield, 1971), (iii) the WAB-R (Kertesz, 2007) and (iv) the Apraxia Battery for Adults 

(ABA-2; Dabul, 2000). A more detailed language battery was administered to each participant 

within 24 to 48 hours of the scanning procedure and comprised of: (i) the Comprehensive Aphasia 

Test (CAT; Swinburn, Porter, & Howard, 2004) (ii) the Boston Naming Test (BNT; Kaplan, 

Goodglass, & Weintraub, 1983), (iii) the Pyramids and Palm Trees test (Howard & Patterson, 1992) 

and (iv) subtests 5 (Auditory Lexical Decision), 25 (Visual Lexical decision), 49 (Auditory 

Synonym Judgements), 8 (Nonword Repetition) and 9 (Real Word Repetition) of the 

Psycholinguistic Assessment of Language Processing in Aphasia (PALPA; Kay, Lesser, & 

Coltheart, 1992). Control participants were administered the full assessment battery within one 

week of their individual scan date. 

4.2.3 fMRI Task 

The fMRI paradigm consisted of an auditory lexical decision task and employed real word 

and pseudoword stimuli as previously reported in Chapters 2 and 3. Using an event-related design 

we presented 120 individual stimuli (30 concrete words, 30 abstract words and 60 pseudowords) in 

the same session. The stimuli were split into two runs of 14.4 minutes duration and sixty items were 

administered in each run. Order of stimuli within a session was pseudorandomised to prevent items 

with the same constituent syllables being presented one after the other and to ensure that no more 

than two trials from any of the three conditions (concrete, abstract and pseudowords) ever appeared 

consecutively. Five different lists were created to account for order effects and these were 

randomised across the aphasic patients. The auditory stimuli were digitally recorded in a 

soundproofed room with a Rode NTK condenser microphone using a native female English 
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speaker’s voice. Audacity, a software editing tool, (http://www.audacity.sourceforge.net) was used 

to edit each spoken word and pseudoword. Mean durations were 723.7ms (SD: 105.0ms) for 

concrete, 771.93ms (SD: 118.7ms) for abstract and 779.8ms (SD: 92.6ms) for pseudowords. A 

Kruskal-Wallis test (Kruskal & Wallis, 1952) revealed no significant difference between conditions 

(p > .05).  

4.2.4 fMRI Procedure 

All aphasic patients were scanned between 2 – 6 weeks post-stroke onset (M = 23.4 days, 

SD = 10.3 days). Before the scanning session, a full explanation of the auditory lexical decision task 

was provided to all participants and a demonstration provided with a computer-based example of 

the task using 10 items. The participants practised the task until a success rate of approximately 80 

percent had been achieved. Participants used their non-dominant hand to respond to ‘Is it a real 

word’, with the middle finger indicating ‘yes’ and the index finger indicating ‘no’. Once inside the 

scanner, an MR compatible response box (Current Designs Inc, Philadelphia PA) was placed in the 

participant’s non-dominant hand. Stimuli were delivered binaurally with MRI confon headphones 

(MR Confon GmbH, Magdeburg, Germany) and hearing levels of the audio checked once in the 

scanner to ensure adequate volume for each individual participant. All participants were reminded 

to keep as still as possible and to keep their eyes open during the fMRI sequence. Fixation crosses 

and the written prompt, ‘Is it a real word?’ were presented on a screen positioned behind the 

scanner. The screen could be viewed by the participants in a mirror attached to the headcoil. The 

fMRI acquisition sequence began with the visual presentation of a small black fixation cross (48 

point font) and the words ‘Is it a real word?’. This screen was visible for 2.3s. After this, a response 

screen with a fixation cross and Yes/No was displayed simultaneously with an audio presentation of 

either a word or a pseudoword. The participants were given 3.5s to respond. To indicate that a 

response had been made, a large blue 84 point font cross appeared on the screen. This cross was 

visible for 1s after which time a black 84 point font appeared on the screen and remained visible 

until the beginning of the following trial. A long inter-trial interval (jittered between 10-18s, mean 

http://www.audacity.sourceforge.net/
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14s) followed each auditory stimulus presentation in order to allow for the delayed hemodynamic 

response function previously observed in patients with post-stroke aphasia (Bonakdarpour et al., 

2007; Meinzer, Lahiri, et al., 2009).  

4.2.5 Data Acquisition  

The fMRI data were acquired using a Siemens 3 Tesla Trio scanner (Siemens, Erlangen) at 

the Royal Brisbane and Women’s Hospital. A standard gradient echo-planar imaging pulse 

sequence (repetition time (TR): 2210ms; echo time (TE): 30ms; flip angle: 90°; field of view 

(FOV): 220x220mm and acquisition matrix: 64x64) was used, covering whole brain with 36 

contiguous axial slices of 3mm thickness with 0.3mm inter-slice interval. A total of 390 volume 

images with BOLD contrast were collected during the same session in two separate runs, with each 

run lasting 14.4 mins in duration. During the same scanning session, a high resolution T1-weighted 

anatomical image (MP-RAGE; TR 1900ms; TE 2.4ms; TI 900ms; (0.9mm)
3
 resolution) and FLAIR 

image (TE 87ms, TR 9000ms, TI 2500ms, 36 3mm slices, 0.9x0.9mm in-plane resolution) were 

acquired for each participant. To minimize potential head movements, vacuum cushions were 

placed between the headphones and the head coil. 

4.2.6 Image Processing 

Statistical parametric mapping was performed using SPM8 and 12 software (Wellcome 

Trust Centre for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm) with MATLAB 2011 (The 

MathWorks Inc., Natick, MA). The first five (dummy) volumes of each run were discarded to allow 

for steady-state magnetization effects. All remaining EPI volumes for each participant from run 1 

and run 2 were motion corrected and realigned using INRIAlign (Freire et al., 2002) and a mean 

image created. A T1-weighted image, acquired during the same session, was then coregistered with 

the mean EPI and segmented (Ashburner & Friston, 2005). Lesion masks were created for every 

participant using MRIcron (http://www.mccauslandcenter.sc.edu/mricro/mricron), by manually 

drawing the lesion outline onto each individual’s high resolution T1 image, with FLAIR images 

used as points of reference. A group specific template was created for both groups using the 

http://www.fil.ion.ucl.ac.uk/spm
http://www.mccauslandcenter.sc.edu/mricro/mricron
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DARTEL toolbox (Ashburner, 2007) and each subject’s T1 and each EPI image were then spatially 

normalized to the standard Montreal Neurological Institute (MNI) template. Finally, EPI volumes 

were resampled (3.0 x 3.0 x 3.0 mm
3
) and spatially smoothed with an 8 mm full-width at half-

maximum (FWHM) isotropic Gaussian kernel.  

4.2.7 In-Scanner Behavioural Analysis  

Behavioural measures were taken for both accuracy and response times. For accuracy, a 

mean was calculated per subject, per condition. Response times were calculated from the start of 

sound onset for each trial. Responses less than 100ms and incorrect trials were removed from 

analysis. Normality of distribution was tested using Shapiro-Wilk. Non-normal distributions were 

tested using a Mann-Whitney U test, otherwise an independent t-test was used for normally 

distributed data. Concreteness effects for both accuracy and reaction time were also tested using a 

Wilcoxon Signed-Ranks test for data that was not normally distributed or a paired t-test for 

normally distributed data.  

4.2.8 Imaging Data Analysis  

An individual analysis per subject was carried out using a fixed-effects model. Using a 

hemodynamic response function with derivatives, the general linear model was created with 

realignment parameters (6 degrees of freedom) entered as regressors of no interest. For each 

condition (concrete, abstract and pseudoword), a parametric regressor for mean corrected reaction 

time per trial was included thereby ensuring that any BOLD signal responses were not confounded 

by differences of reaction time or time-on-task. Incorrect responses and trials with reaction times 

less than 100ms were modelled separately. Four contrasts were created at first level or within-

subject analysis; concrete – pseudoword, abstract – pseudoword, concrete – abstract, and  word 

(average response of concrete and abstract) – pseudoword. 

We used an ROI approach and developed 10 ROIs based on a priori findings relating to 

concrete and abstract processing (Binder et al., 2009) and subacute aphasia recovery (Saur et al., 

2006). The ROIs were defined using IBASPM 116 Human Atlas and created in WFU PickAtlas 
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(Maldjian et al., 2004; Maldjian et al., 2003) of SPM8 (Wellcome Trust Centre for Neuroimaging; 

http://www.fil.ion.ucl.ac.uk/spm). Six regions were selected to examine activity associated with 

concrete words and included: left AG, right AG, left MFG, left SFG, left posterior cingulate and left 

fusiform gyrus. Abstract word processing was investigated with ROIs in the left IFG and left aSTS 

with the latter being subdivided into left aMTG and left aSTG using the delineation of y<-7 for 

anterior by Indefrey and Levelt (2004) to ensure complete coverage of the left aSTS region. Based 

on the findings of Saur et al. (2006) the right IFG was included as an additional ROI in order to 

investigate the potential upregulation of this region in the subacute phase of aphasia recovery.  

For the individual a priori ROIs, each participant’s mean percentage signal was extracted for 

each condition using the region of interest toolbox, MarsBaR (Brett et al., 2002) in SPM8. 

Statistical group analyses were carried out using SPSS Statistics version 21 (IMB; Armonk, New 

York, USA) to determine differences between the two groups by condition. Normality was 

calculated for each ROI and for those regions where the data was not normally distributed, 

logarithm or square root transformations were applied (or inverse of both, as appropriate based on 

skew). For every ROI where data could be normalized by transformation, we used two-way 

repeated ANOVAs; 2 (aphasic, control) x 3 (concrete, abstract and pseudoword) to calculate 

differences in mean signal. In instances where the data could not be normalized, a non-parametric 

Mann-Whitney U test was applied. Assumptions of sphericity were checked and where they had 

been violated, a Huyhn-Feldt correction was applied. In all other instances, the original degrees of 

freedom are reported. Where normality of distribution could not be assumed, nonparametric 

statistical tests were applied.  

In those brain regions where a significant effect of group, condition or a group by condition 

interaction was observed, further correlational analyses were carried out between imaging data and 

behavioural data using either a Pearson’s Correlation Coefficient or Spearman’s rank correlation 

depending on whether the data was normally distributed or not. Out of scanner scores from the BNT 

http://www.fil.ion.ucl.ac.uk/spm
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and spoken word and spoken sentence comprehension subtests from the CAT were correlated with 

the mean signal elicited during the fMRI task. 

In addition to the ROI analysis, exploratory whole brain analyses were conducted to 

investigate differences between groups by condition using a 2 (aphasic, control) x 2 (concrete-

pseudoword, abstract-pseudoword) factorial analysis. The direction of any significant main effects 

was then explored using an independent t-test for given contrasts. We used the Anatomy Toolbox 

(Eickhoff et al., 2007) to identify the coordinates of peak maxima for neuroanatomical locations 

significantly activated in response to the different contrasts. In order to correct for multiple 

comparisons, a minimum cluster threshold was determined by using Bonferroni correction (FWE p  

< .05) in SPM12 (Wellcome Trust Centre for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm).  

4.3 Results 

4.3.1 Clinical Data 

Characteristics of the fourteen aphasic subjects recruited to the study are shown in Table 7. 

Site of lesion was confirmed using a T1 structural scan taken during the research scanning session 

and evaluated by a neuroradiologist. Figure 8 shows the lesion overlay for the group of aphasic 

patients.  

 

 
 

Figure 8. Lesion overlap image. Representative axial slices show the lesion overlap in the 14 aphasic 

subjects. A lesion map was drawn on the T1-weighted images, using MRIcron 

(http://www.mccauslandcenter.sc.edu/mricro/mricron), using the FLAIR images for guidance. The colour 

intensity bar indicates the number of overlapping lesions. The lesion overlap is greatest in left putamen with 

six of the 14 aphasic patients having an overlap in this region. 
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Table 7. Aphasic patient characteristics 

Patient 

ID 

Age 

(yrs) 

Sex Handed-

ness 

(EHI) 

Education 

(yrs) 

fMRI 

(days post 

stroke) 

NIHSS at 

admission 

Oxford 

Stroke 

Classification 

Site of lesion Thrombolysis 

(min post-

stroke) 

Lesion volume  

(3mm voxels) 

 

P01 ML 49 M 88.8 10 16 5 PACS L MCA: Temporal + parietal No 265 

P02 NL 68 F 100 11 6 4 POCS L Cerebellar No 131 

P03 WB 56 M 90 11 18 17 PACS L MCA: SC + frontal 200 964 

P04 DB 84 F 100 8 25 4 PACS L MCA: Frontal + parietal No 332 

P05 GS 51 M 100 17 23 23 PACS L MCA: SC + parietal + 

temporal 

150 2036 

P06 RT 66 M 100 10 36 6 PACS L MCA: Frontotemporal + SC No 3000 

P07 CH 70 F -100 8 23 12 PACS L Thalamus + SC No 342 

P08 PL 58 M 100 14 41 12 POCS L PCA: Cerebellar + thalamus No 1687 

P09 DC 76 M 80 16 17 12 PACS L Thalamus +SC No 530 

P10 PK 52 M -90 15 13 5 PACS L MCA: Frontal + temporal No 289 

P11 HH 63 F 50 9 23 1 PACS L MCA: Temporoparietal + 

occipital 

No 3037 

P12 RC 54 M 60 13 42 4 PACS L MCA: SC 210 63 

P13 HH 66 M 70 13 25 3 PACS L MCA: Frontal No 176 

P14 DH 80 M 100 7 19 2 POCS L PCA: Occipital + thalamus No 1456 

M = male, F = female; EHI = Edinburgh Handedness Inventory: left-handed = < -40, right-handed > +40; NIHSS = National Institute of Health Stroke Scale: 0 = no 

deficit, 34 = maximal deficit; PACS = partial anterior circulation syndrome; POCS = posterior circulation syndrome; L = left; MCA = middle cerebral artery; PCA = 

posterior cerebral artery; SC = striatocapsular. 
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4.3.2 Behavioural Results 

The MMSE (Folstein et al., 1975) scores indicated that the control group did not have 

cognitive impairment (max = 30, group M = 29.0, SD = 0.9) while scores for the aphasic group 

indicating a mild cognitive impairment (group M = 21.8, SD = 6.0) although it should be noted that 

performance on a number of MMSE tasks requires verbal responses, so impaired performance may 

reflect aphasia. Two of the aphasic patients and one control were confirmed as being left-handed 

according to the EHI (Oldfield, 1971). The two groups differed in number of years of education 

t(27) = -2.776, p = .010 (controls M = 15.3 yrs, SD = 3.9 yrs; aphasics M = 11.6 yrs, SD = 3.2). 

Scores from the language assessments are summarised and shown in Table 8 and Table 9. At the 

time of admission to the hospital, deficits in language had been observed and presence of aphasia 

was confirmed by an impaired performance in at least one of the language assessments. Using the 

WAB classification criteria, at the time of recruitment to the study, eight aphasic patients presented 

with anomic aphasia (4 = mild, 3 = mild to moderate and 1 = moderate severity), two with Broca’s 

aphasia (very severe) and two with conduction aphasia (moderate to severe). The remaining two 

aphasic patients presented with mild language disturbance and did not receive a WAB 

classification. 
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Table 8. Language assessment scores from the CAT and WAB-R  

 Language 

Assessment 

Score P01 

ML 

P02 

NL 

P03 

WB 

P04 

DB 

P05  

GS 

P06 

RT 

P07 

CH 

P08  

PL 

P09  

DC 

P10  

PK 

P11  

HH 

P12  

RC 

P13 

HH2  

P14 

DH 

Max 

CAT                 
Semantic  R 20 19 15* 20 16* 18* 19 16* 19 19 20 20 19 15* 20 

Memory 

 

T 62 54 43* 62 45* 50 54 45* 54 54 62 62 54 43* 62 

Aud Word  R 29 30 28 28 17* 25* 30 22* 28 30 27 30 30 22* 30 

Comp 

 

T 60 65 58 58 41* 51* 65 46* 58 65 55 65 65 46* 65 

Aud Sent  R 32 31 25* 14* 12* 17* 30 28 26* 29 19* 30 28 6* 32 

Comp 

 

T 72 67 57* 46* 44* 49* 65 61 58 63 51* 65 61 37* 72 

Aud Para  R 4 3* 2* 4 3* 3* 3* 2* 2* 4 4 4 3* 2* 4 

Comp 
 

T 60 49* 43* 60 49* 49* 49* 43* 43* 60 60 60 49* 43* 60 

Written  R 30 30 18* 25* 6* 23* 28* 28* 28* 30 25* 30 29 0* 30 

Word Comp 
 

T 65 65 43* 50* 35* 47* 55* 55* 55* 65 50* 65 59 28* 65 

Written  R 31 32 14* 18* 12* 17* 30 15* 30 23* 11* 30 24* 0* 32 

Sent Comp 
 

T 68 72 47* 51* 46* 50* 67 48* 67 57* 45* 67 59 25* 72 

Naming R 79 92 0* 0* 0* 15* 61* 50* 47* 77 44* 108 74 31* 94+ 

 
 

T 68 74 35* 35* 35* 46* 58* 55* 54* 67 53* 75 65 49* 75 

Repetition R 72 74 14* 29* 4* 49* 66* 64* 67 67 66* 74 70 54* 74 

 
 

T 66 72 43* 46* 40* 55* 59 58* 59 59 59 72 62 53* 72 

Reading R 52* 66 0* 0* 0* 49* 55* 40* 64 61 35* 70 61 n/c 70 

 
 

T 55* 64 38* 38* 38* 53* 56* 50* 62 55* 49* 71 59 38* 71 

Writing R 73 71 27* 31* 9* 55* 71 36* 70 70 61* 75 70 4* 76 

 
 

T 62 60 46* 47* 41* 52* 60 48* 59 59 55* 65 59 40* 69 

WAB-R                 

Speech 
  

 16* 20 1* 10* 0* 11* 18* 13* 15* 20 11* 20 18* 14* 20 

Comp  

 

 9.85 10 6* 7.55* 5.45* 6.4* 10 9.3* 9.7 10 7.7* 10 10 9* 10 

Repetition  

 

 9.5 9.8 3.1* 5.8* 0* 6.5* 9.7 9.6 8.6* 10 7.9* 9.8 10 8.8* 10 

Naming  
 

 9.1* 9.7 0.9* 2.5* 0* 2.9* 8.7* 7.1* 5.9* 9.4 3.7* 10 9.4 5.8* 10 

WAB AQ 

Classification 
Severity 

 88.9 

Anomic 
Mild 

99 

n/a 

22 

Broca’s 
very severe to 

severe 

51.7 

Conduction 
moderate to 

severe 

10.9 

Broca’s 
very 

severe 

53.6 

Conduction 
moderate to 

severe 

92.8 

Anomic 
mild 

78 

Anomic 
mild to 

moderate 

78.4 

Anomic 
mild to 

moderate 

98.8 

Anomic 
mild 

60.6 

Anomic 
moderate 

99.6 

n/a 

94.8 

Anomic 
mild 

75.2 

Anomic 
mild to 

moderate 

100 

CAT = Comprehensive Aphasia Test; WAB-R = Western Aphasia Battery-Revised, R = Raw, T = T-score, Aud = Auditory, Comp = Comprehension, Sent = Sentence, Para = Paragraph, AQ = Aphasia Quotient,  
* indicates impaired performance based on published norms, dis = discontinued, n/c = not collected, n/a = not applicable.  
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Table 9. Language assessment scores from the BNT, PALPA, Pyramids and Palm Trees test and ABA-2 

Language Assessment P01ML P02 NL P03WB P04DB P05 GS P06 RT P07CH P08 PL P09 DC P10 PK P11 HH P12RC P13HH2  P14DH Max 

BNT 

 

47* 54   1*   5*   0*   6* 29* 28* 42 51 20* 55 56   6* 60 

PALPA 5                

Real word 79 80 73 70 70 63 77 75 74 80 80 79 79 65 80 

HI/HF 20 20 20 18* 17* 20 20 20 20 20 20 20 20 17* 20 
HI/LF 20 20 18* 18* 16* 19* 20 20 18* 20 20 20 20 19* 20 

LI/HF 20 20 20 18* 20 15* 20 20 19* 20 20 20 19* 17* 20 

LI/LF 19 20 15* 16* 17*   9* 17* 15* 17* 20 20 19 20 12* 20 
Nonword 

 

79 78 74 56* 71 72 75 65* 70 78 66* 77 74 70 80 

PALPA25                
Real word 60 60 56 57 58 51 53 27 60 55 32 57 60 n/c 60 

HI/HF 15 15 14 15 15 15 15 10* 15 15 10* 14 15 n/c 15 
HI/LF 15 15 15 15 14 14 14   6* 15 15   9* 15 15 n/c 15 

LI/HF 15 15 14* 15 14* 14* 15   5* 15 14*   4* 15 15 n/c 15 

LI/LF 15 15 13* 12* 15   8*   9*   6* 15 11*   9* 13* 15 n/c 15 
Nonword 

 
58* 59 48* 36* 28* 54* 60 45* 59 53* 55* 60 56* n/c 60 

PALPA 9                
HI/HF 20 20   2* 11.5* 1* 20 20 17* 20 20 19 20 20 18* 20 

HI/LF 19.5 20 5.5*    8* 0* 19.5 19 12* 20 19 18 20 19 18 20 

LI/HF 18.5* 20   7*    4* 0* 17* 20 15.5* 18* 19.5 15* 20 20 20 20 
LI/LF 

 

17.5* 20   5* 3.5* 0* 17* 19 15* 17* 20 16* 20 19 17.5* 20 

PALPA 8 

Control data: 

M = 29.07; SD = 1.39 

 

23∆ 27 4∆ 4∆ Dis 26∆ 27 21∆ 24∆ 29 20∆ 28 24∆ 20.5∆ 30 

PALPA 49                

HI 

Control data: 
M = 29.73; SD = 0.59 

30 30 14∆ 14∆ 18∆ 25∆ 29 25∆ 30 29 27∆ 30 29 27∆ 30 

LI 

Control data: 
M = 28.67; SD = 1.54 

 

28 30 16∆ 15∆ 17∆ 17∆ 20∆ 18∆ 27 28 23∆ 29 27 16∆ 30 

P&PT V1 

 

50 51 47 48 40* 38* 48 39* 47 51 46* 51 50 n/c 52 

ABA-2 N N Mod Mi Mod-Sev N N N Mi N N N N N  

                

BNT = Boston Naming Test; WAB-R = Western Aphasia Battery-Revised; PALPA = Psycholinguistic Assessment of Language Processing in Aphasia: PALPA 5 = Auditory Lexical 

Decision; PALPA 25 = Visual Lexical Decision; PALPA 9 = Real Word Repetition; PALPA 8 = Nonword Repetition; PALPA 49 = Auditory Synonym Judgement; P&PT V1 = 

Pyramids and Palm Trees(Version 1 – 3 pictures); ABA-2 = Apraxia Battery for Adults – Second Edition; N= None, Mi = Mild, Mod = Moderate, Sev = severe 

* indicates impaired performance based on published norms, 
∆
 indicates impaired performance based on control results where published norms were not available, dis = 

discontinued, n/c = not collected. 



108 

4.3.3 In-Scanner Behavioural Results 

Mean accuracy was calculated for each condition in the aphasic and control groups (see 

Table 10). Values indicated that while accuracy for the concrete and pseudowords for both groups 

was relatively high ( > 90%), accuracy for the abstract condition was considerably lower for the 

aphasic group.  

 

Table 10. Mean percent accuracy for aphasic patients and controls 

Condition Aphasics 

Mean (SD) 

Controls 

Mean (SD) 

Concrete 92.4 (10.2) 97.6 (3.7) 

Abstract 83.1 (14.6) 95.1 (4.8) 

Pseudoword 90.2 (9.5) 95.0 (4.3) 

 

The accuracy values were not normally distributed (p < .044) and a non-parametric Mann-

Whitney U test was used. Neither the concrete or the pseudoword conditions showed significant 

differences between groups (p > .123) but the aphasic group were significantly less accurate for 

abstract words than controls U = 41.5, Z = -2.8, p = .004. 

The percentage of reaction times that were removed (response times < 100ms or incorrect) 

was 9.1% for aphasic patients and 4.4% for controls. Differences between response times for the 

two groups were investigated using a Mann-Whitney U test. Controls were significantly faster than 

the aphasic subjects for all three conditions; pseudoword U = 304253, Z = -2.120, p = .034 two-

tailed, concrete U = 64111, Z = -6.043, p < .0001 two-tailed, and abstract conditions U = 58232, Z = 

-5.706, p < .0001 two-tailed (see Table 11). 

 

  



109 

Table 11. Mean reaction times for aphasic patients and controls 

Condition Aphasics 

Mean (SD) 

Controls 

Mean (SD) 

Concrete 1406ms (446) 1263ms (186) 

Abstract 1539ms (531) 1335ms (219) 

Pseudoword 1779ms (609) 1736ms (585) 

 

Both accuracy and response times were examined for concreteness effects (i.e. the 

processing advantage observed for concrete over abstract words) using Wilcoxon Signed-Ranks 

Tests separately in the two groups. Individuals with aphasia were significantly more accurate for 

concrete compared to abstract words Z = -3.084, p = .002 but there was no difference for the 

controls (p = .082). Results for reaction times showed that concreteness effects were maintained in 

both groups with concrete words being responded to significantly faster than abstract words in the 

aphasic group Z = -4.004, p < .0001 and the controls Z = -4.818, p < .0001.  

4.3.4 Region of Interest Analyses  

4.3.4.1 ANOVA. Results for the main effects of condition between the concrete, abstract 

and pseudoword conditions are shown in Table 12. Main effects were observed in left AG, right 

AG, left SFG, left posterior cingulate and left fusiform gyrus (p < .05, FDR corrected). 

Left IFG showed an effect of group F(1, 14) = 5.718, p = .031 with the control group 

eliciting greater signal (M = 0.287, SE = 0.019) compared to the aphasic group (M = 0.133, SE = 

0.032). Where a significant effect of group had been observed, the degree of lesion overlap in that 

region was examined to see if that alone could explain the group effect. Only three aphasic patients 

had some damage within the left IFG, with 1.52%, 10.82% and 44.43% lesion overlap in this area.  
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Table 12. Regions of interest - main effect of condition (concrete – abstract – pseudoword), and post hoc 

results comparing conditions in each ROI 

Region F value Concrete –  

Pseudoword 

Abstract –  

Pseudoword 

Concrete – 

Abstract 

Left AG F(2, 13) = 14.493, p = < .001 Conc > PS  

p = .001 

Ab > PS  

p < .001 

ns  

Right AG F(2, 13) = 9.728, p = .003 Conc > PS  

p < .001 

Ab > PS  

p = .007 

ns 

Left SFG F(2, 13) = 6.258, p = .012 Ns Ab > PS  

p = .003 

ns 

Left posterior 

cingulate 

F(2, 13) = 24.655, p < .001 Conc > PS  

p = .001 

Ab > PS  

p < .001 

ns 

Left fusiform F(1.471, 20.593) = 4.856, p = 

.027* 

Conc > PS  

p = .039 

Ab > PS  

p = .006 

ns 

* Huynh-Feldt correction. 
 

In the word (concrete and abstract words combined) versus pseudoword contrast, a 

significant group by condition interaction was observed in left IFG F(1, 14) = 10.062, p = .007 (see 

Figure 9). The control group elicited increased activity compared to the aphasic group for 

pseudowords (control M = 0.33, SE = 0.03; aphasic M = 0.13, SE = 0.05) and words (control M = 

0.26, SE = 0.03; aphasic M = 0.13, SE = 0.06). A within group paired t-test revealed that differences 

between the conditions was only significant for the control group t(3.239) = 14, p = .006.  

 

 
 

Figure 9. Group by condition interaction in left IFG. Aphasic group and controls x 2 conditions (word  

and pseudoword). 
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Within the individual conditions (concrete, abstract and pseudoword), significant group by 

condition interactions were observed in two of the ROIs; left IFG F(2, 13) = 6.635, p = .010 and left 

aMTG F(2, 13) = 4.666, p = .030 (refer to Figure 10). These interactions were further explored by 

examining differences in mean signal between conditions separately for each group. An effect of 

condition was observed in the left IFG for the controls only F(2, 13) = 8.384, p = .005 and post hoc 

pairwise comparisons indicated significant differences for all three contrasts (p < .009) with greatest 

activity for the pseudowords (M = 0.34, SE = 0.03), followed by abstract words (M = 0.28, SE = 

0.03) and then concrete words (M = 0.25, SE = 0.03). There was a significant difference in activity 

for condition in the left aMTG for the aphasic group only F(2, 13) = 5.909, p = .015. Pairwise 

comparisons indicated that the differences between contrasts were significant for all three 

conditions (p < .013). Mean signal was greatest for concrete words (M = 0.09, SE = 0.03), followed 

by pseudowords (M = 0.05, SE = 0.03) and then abstract words (M = 0.02, SE = 0.03).  

 

 
 

Figure 10. Group by condition interactions in two significant ROIs. Aphasic group and controls x 3 

conditions (concrete, abstract and pseudoword). 
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4.3.4.2 Mann-Whitney: group differences. We also conducted group-wise comparisons 

for each condition in the right IFG where Mann Whitney tests were required due to non-normal 

data. Results showed a significant difference between groups for the pseudoword condition only U 

= 51, Z = -2.357, p = 0.18 two tailed with the control group (M = 0.289, SE = 0.035) eliciting 

significantly more activity in this region than the aphasic group (M = 0.146, SE = 0.040).  

4.3.4.3 Correlational analyses. Regions where significant main effects or interactions had 

been observed were examined further using a correlation analysis to explore subacute brain activity 

and performance in confrontation naming and spoken comprehension tests. Eight ROIs were 

therefore included in the analysis: left AG, right AG, left SFG, left posterior cingulate, left fusiform 

gyrus, left aMTG, left IFG and right IFG. For the word (concrete and abstract words combined) 

contrast, a significant positive correlation was observed between right AG activity and CAT spoken 

word comprehension rs = .554, p = .04. For the concrete contrast, positive correlations were 

observed in the right AG with CAT spoken word rs = .687, p = .007 and spoken sentence 

comprehension r = .590, p = .026. A positive correlation was also observed in the left posterior 

cingulate for the abstract contrast with the spoken word comprehension task rs = .545, p = .044. 

Significant results are shown in Figure 11. No other significant correlations were observed in 

subacute aphasic patients. No significant correlations were found for controls. In order to further 

explore the basis for right AG correlations we also examined left AG lesions. Results showed that 

only one patient had damage to the left AG with a 42.8% lesion overlap.  
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Figure 11. Increases in mean signal with single word and sentence comprehension. 

Aphasic patients         Controls   

 

4.3.5 Whole Brain Analyses 

A main effect of group was observed in left IFG (pars opercularis extending into pars 

triangularis) and left superior medial gyrus extending into SMA (refer Table 13 and Figure 12). No 

other main effects of condition or group by condition interactions were observed in the whole brain 

analyses.  

 
Table 13. Factorial results from whole brain analysis for main effect of group between aphasic patients and 

controls 

Main effect Peak Maxima Cluster 

pFWE 

Cluster 

(k) 
x y z Z-score 

Group 

 

left IFG (pars opercularis) 

left superior medial gyrus 

< .001 

= .007 

463 

96 

-50 

-7 

11 

25 

11 

43 

5.36 

4.45 

p < .001 probability threshold and cluster thresholded at FWE p < .05 
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Figure 12. Significant clusters for the main effect of group. 

 

In the brain regions where a main effect was observed, we conducted further tests to explore 

the direction of activity in each of the regions. Results of the mean signal per group are shown in 

Figure 13.  

 

 
 

Figure 13. Mean signal extracted from each ROI showing the directionality of the main effect of group. 

 

4.4 Discussion 

We investigated neural activity associated with the recognition of spoken concrete and 

abstract words in a group of aphasic patients in the subacute phase of recovery and compared their 
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performance to a group of healthy aged-matched controls. We also examined the relationship 

between brain activity elicited during the fMRI task and language performance outside the scanner. 

We found that activity in right AG elicited during concrete word processing correlated positively 

with spoken word and sentence comprehension. We also found significant group by condition 

interactions in left aMTG and left IFG, demonstrating that these regions are recruited differently in 

spoken word recognition by people with aphasia during the subacute phase of recovery compared to 

healthy controls performing the same task. 

Behavioural results from the in-scanner task revealed a difference in accuracy for abstract 

word processing between the two groups. Compared to the controls, the aphasic group was 

significantly less accurate for abstract word recognition. In addition, a significant difference in 

accuracy was observed between conditions for the aphasic group with abstract word recognition 

being significantly less accurate than either concrete or pseudoword processing. The reduction in 

accuracy for abstract words is consistent with findings in the behavioural literature which show 

worse performance for abstract over concrete words both in the spoken (Franklin, 1989) and written 

comprehension in aphasia (Barry & Gerhand, 2003; Crutch & Warrington, 2005). Thus, it would 

appear that reduced accuracy for abstract words, rather than a better performance for concrete 

words may contribute to exaggerated concreteness effects. No differences were observed in the 

control group between any of the conditions for accuracy and this is likely due to a ceiling effect. 

Both groups responded faster to concrete words than abstract words and faster to abstract words 

than pseudowords, thus confirming the presence of concreteness effects in this task. Comparisons 

across the two groups indicated that the controls were faster on all three conditions compared to the 

aphasic subjects. Previous studies have shown that there is a consistent slowing in response times 

by healthy older adults when performing a lexical decision task (Gold et al., 2009; Madden, 1992) 

and the additional slowing in response times seen in the aphasic patients suggests that lexical 

decision processes are further slowed in the subacute phase of post-stroke aphasia. 

Significant positives correlations between the concrete contrast and spoken language 
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comprehension at the single word and sentence level were observed in the right AG for the aphasic 

subjects. The strongest correlation for the aphasic group was observed between the concrete 

contrast and single word comprehension whereas the correlation between the sentence 

comprehension was weaker, suggesting that right AG may be less sensitive to sentence level tasks. 

The association between recruitment of right hemisphere regions and improved language function is 

in general agreement with previous observations of increased right hemisphere activity in post-

stroke aphasia (Crinion & Price, 2005; Saur et al., 2006). Crinion and Price (2005) looked 

specifically at auditory comprehension recovery in chronic post-stroke aphasia. Right superior 

temporal lobe activity elicited during an in-scanner auditory comprehension task of meaningful 

narrative versus meaningless reversed speech was positively correlated with out of scanner 

performance on auditory sentence comprehension and story recognition tasks. The present study 

suggests that other right hemisphere regions elicited during single word processing also support 

auditory comprehension in post-stroke aphasia. The different regions identified in these two studies 

may in part reflect the imaging tasks employed, with the present finding of comprehension-related 

activity in the right AG reflecting the more selective semantic processing elicited during the lexical 

decision task compared to narrative comprehension as in Crinion and Price (2005)(see also below). 

It is also possible that these differences reflect the fact that Crinion and Price (2005) investigated 

the chronic phase of recovery, where the right superior temporal recruitment observed may reflect 

activity in a network that has already undergone significant reorganisation.  

Saur et al. (2006) looked specifically at recovery mechanisms associated with recovery in 

subacute aphasia. They found increased right IFG activity in response to an auditory sentence task, 

compared to controls. While we did not observe any such differences between the two groups in 

this present study, we did observe correlations between right AG and spoken word comprehension. 

A possible explanation for the correlated activity in right AG and not in other right hemisphere 

regions such as right IFG, could be due to the nature of the task employed in this study. In aphasia, 

the processing of sentences is considered to be heavily dependent on other cognitive functions such 
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as verbal working memory (Caplan et al., 2013) and associated with left IFG (Binder et al., 2009; 

Binder et al., 2005). In contrast, activity in the left AG associated with semantic processing has 

been widely reported (Price, 2010) and indeed, a meta-analysis on semantics by Binder et al. (2009) 

identified this region as being the most routinely activated in response to semantic-based tasks. The 

reliable involvement of this region in semantic processing has prompted some to suggest that the 

AG acts to integrate and bind sensorimotor knowledge received from modality specific regions 

(Binder & Desai, 2011). Results from a recent study investigating concrete and abstract processing 

in healthy ageing are reported in Chapter 3 and showed that older adults elicited greater activity 

than young adults in left AG for both real words and pseudowords and thus appear to reliably 

recruit this region for lexical processing (Roxbury et al., 2014). The correlation between activity in 

the right AG and auditory comprehension in the present study indicates that recruitment of the 

homologous region in the subacute aphasia may serve as a compensatory recovery mechanism 

which possibly contributes to speech comprehension both at the single word and sentence level 

during post-stroke aphasia recovery. There was no correlation in this region for the controls 

(although this likely reflects a ceiling effect in spoken word and sentence comprehension 

performance). Intriguingly, in the present study, all the aphasic patients except one had an intact left 

AG and thus in the subacute phase of aphasia recovery, it appears that recruitment of the right 

homologous AG in response to spoken word recognition occurs despite there being no direct lesion 

in the corresponding contralateral region. 

Additionally, since we employed a simple auditory lexical decision task in this present 

study, we ensured that a successful performance was achievable for most of the aphasic subjects. 

Thus, we are confident that the strong positive correlation observed in the right AG for the concrete 

contrast and single word comprehension, reflects neural activity associated with the accurate 

processing of spoken word recognition in the subacute recovery phase. This relationship between 

right AG and auditory comprehension is further highlighted by the fact that the activity elicited 

during the task and out of scanner performance is specific to comprehension and does not extend to 
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less directly related functions such as confrontation naming.  

A moderate positive correlation was also observed in left posterior cingulate with the 

abstract contrast and single word comprehension in the aphasia group. In healthy individuals, the 

posterior cingulate is often implicated in semantic-based processing and episodic encoding (Binder 

et al., 2009). It has also been more specifically associated with concrete word processing (Binder et 

al., 2009; Wang et al., 2010) and it is suggested that this is due to the richer set of conceptual 

features in concrete words which evoke strong episodic memories (Binder et al., 2009). However, 

since specific episodic memories are less strongly linked to abstract words, activity elicited in this 

region should be reduced for abstract conceptual processing. Thus, the relationship observed 

between abstract words and single word comprehension in left posterior cingulate by the aphasic 

patients may reflect the retrieval of additional episodic memories required to assist with the 

processing of abstract words.  

Significant group by condition interactions were observed in left aMTG and left IFG. 

Further analyses of the interaction in the left aMTG showed that for the aphasic group only, there 

were differences between all three conditions, with concrete words eliciting greater activity than 

pseudowords and pseudowords eliciting greater activity than abstract words. It should be noted that 

this is not consistent with the findings of Sandberg and Kiran (2014). However, this may be due to 

differences in the patient cohort. While the MTG generally has been considered a critical region in 

the language comprehension network, with multiple fibre pathways converging beneath this region 

and cortical association areas directly connected to it (Turken & Dronkers, 2011), the more anterior 

portions of the temporal lobe have been described as an amodal conceptual hub (Patterson et al., 

2007) and considered a critical region for semantic memory, although its precise function remains 

unclear (Bonner & Price, 2013). Evidence from the aphasia literature has shown that lesions in the 

anterior temporal region are associated with semantic recognition and production deficits (Mirman 

et al., 2015) and that auditory comprehension deficits are associated with a disruption in the ventral 

stream pathway which connects regions in the temporal and prefrontal lobes (Kümmerer et al., 



119 

2013). In terms of concrete and abstract processing specifically and focal aMTG lesions, the 

literature has shown mixed results. While our finding is consistent with a processing advantage 

observed for concrete over abstract words in patients with semantic dementia (Jefferies et al., 2009), 

reverse effects (i.e. worse performance on concrete compared to abstract words) have also been 

reported (Reilly et al., 2007; Yi et al., 2007) although it should be noted that these reversal effects 

are much less typical (Hoffman, 2015; Hoffman & Lambon Ralph, 2011).   

In the left IFG, the controls showed significant differences between all three conditions with 

greatest activity elicited by pseudowords, followed by the abstract and then concrete words. This 

finding is consistent with the view that left IFG is involved in controlled processes associated with 

semantic retrieval and maximally so with stimuli that are associated with weak or ambiguous 

semantic conceptual representations (Hoffman, 2015). This pattern was not observed in the aphasia 

group, where there was no difference between conditions. In addition, we observed a main effect of 

group in left IFG with the controls eliciting significantly greater activity than the aphasic subjects. 

The differences in recruitment of this region between the two groups is unlikely to be explained by 

effects of lesion alone as only three aphasic patients had involvement of left IFG and of those, only 

one had a lesion that involved greater than 11 percent of the region. Furthermore, since the aphasic 

patients were able to perform the task, we suggest that the differences observed between the two 

groups and specifically the underactivity (relative to the controls) observed in this region by the 

aphasic patients may reflect diaschisis, whereby activity in the left IFG is compromised as it is 

dependent on inputs from distant but connected lesioned regions (Carrera & Tononi, 2014; Price et 

al., 2001).   

In summary, we observed decreased left IFG and increased left aMTG activity during 

spoken word recognition in the subacute aphasic group compared to controls. Results from the 

correlation analysis between task-related brain activity and out of scanner language performance on 

comprehension tasks in subacute stroke provided some intriguing insights, demonstrating that 

increased right AG activity supported auditory comprehension in the aphasic group, and this 
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relationship was not observed in the control group. Furthermore, the recruitment of the right AG 

was evident despite only one patient having a lesion involving the left AG suggesting a novel 

compensatory mechanism that does not occur in response to contralateral lesions. These findings 

provide further insights into the neurobiology of language recovery in subacute aphasia.  
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5 Chapter Five 

Neurophysiological Markers of Language Recovery in Subacute Stroke 

________________________________________________________________________________ 

Chapter 4 showed that activity in the right AG during concrete word processing was 

positively correlated with spoken language comprehension in the subacute stage of recovery. The 

aim of Chapter 5 was to extend on these findings by examining how the neural mechanisms 

associated with spoken word recognition change over the course of aphasia recovery and to 

determine whether language-related fMRI activity obtained in subacute aphasia is able to predict 

language recovery at the chronic time-point. Previous longitudinal aphasia recovery studies have 

shown that in the subacute phase, brain activity is associated with an upregulation of right 

hemisphere homologues but that this changes in the chronic phase when a return to more left 

hemisphere networks is observed (Saur et al., 2006), and based on this study it was hypothesised 

that a similar pattern of right/left hemisphere shift would be observed.  

5.1 Introduction 

It has been proposed that language recovery in aphasia is associated with distinct neural 

mechanisms which are engaged at different time points (Kiran, 2012). In the first few weeks 

following a stroke, recovery from aphasia can be rapid. This accelerated recovery is due largely to 

physiological changes which result in reperfusion of the ischaemic penumbra and a reduction in 

oedema and metabolic disturbance (Marsh & Hillis, 2006). In the subacute phase, which begins at 

approximately two weeks post-stroke and lasts for weeks, the recovery process slows and the 

upregulation of intact, undamaged regions occurs as new alternate networks are reorganised and 

formed (Lazar & Antoniello, 2008). Mechanisms during this recovery phase include recruitment of 

perilesional tissue (Warburton et al., 1999), an engagement of homologous language regions (Saur 

et al., 2006; Turkeltaub et al., 2011) or resolution of diaschisis whereby a reduction in dysfunctional 

brain activity occurs in structurally unaffected regions, that are connected to but distant from the 
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lesion (for a review see Carrera & Tononi, 2014). During the final chronic phase, after the language 

network has experienced significant reorganisation and language recovery has stabilised, neural 

reorganisation and compensatory cognitive strategies continue to contribute to recovery and this 

may continue for many years (Grafman & Litvan, 1999; Muñoz-Cespedes et al., 2005). 

Most neuroimaging research investigating the mechanisms of language recovery has 

focussed on people with aphasia at one point during the recovery process either in the early phase 

(Hillis & Heidler, 2002; Hillis, Kane, et al., 2001; Hillis et al., 2005; Hillis, Wityk, et al., 2001; 

Reineck et al., 2005) or the chronic phase (Crinion & Price, 2005; Crinion, Warburton, Lambon-

Ralph, Howard, & Wise, 2006; Heath et al., 2012; Heath et al., 2013; van Hees, McMahon, 

Angwin, de Zubicaray, & Copland, 2014). The studies which have investigated recovery in the 

acute stage have largely focused on the contribution of hypoperfusion to aphasia recovery (Hillis & 

Heidler, 2002; Hillis et al., 2005). The Hillis and Heidler (2002) study employed PWI and DWI to 

investigate spoken word comprehension in acute aphasia. They found that when BA 22 (Wernicke’s 

area) was successfully reperfused, recovery of spoken word comprehension was rapid. In 

comparison, patients with persisting hypoperfusion in BA 22 remained impaired in their spoken 

comprehension abilities, demonstrating that early recovery of receptive language function is largely 

attributable to reperfusion (Hillis & Heidler, 2002).  

In comparison, studies investigating the chronic phase of recovery have identified other 

mechanisms associated with aphasia recovery. A recent meta-analysis by Turkeltaub et al. (2011) 

reviewed 12 studies and compared the consistency in brain activity in people with chronic aphasia 

performing language tasks with that of controls. Chronic aphasic subjects reliably recruited intact 

language areas, new left hemisphere regions and right hemisphere homologues (Turkeltaub et al., 

2011) suggesting that recovery may involve multiple patterns of adaptation which vary depending 

on the specific location of the lesion and whether residual function in the left hemisphere language 

networks is still available or not. Crinion and Price (2005) looked specifically at auditory 

comprehension and examined the relationship between brain activity and language performance in 
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chronic post-stroke aphasia. In this study, aphasic subjects listened to meaningful narrative and 

meaningless reversed speech. Brain activity elicited during the task was correlated with out of 

scanner performance on auditory sentence comprehension and story recognition tasks. There was a 

positive correlation between activity in the right superior temporal lobe and both auditory sentence 

and narrative speech comprehension suggesting the upregulation of right hemisphere homologues 

may underpin language comprehension in chronic aphasia. A limitation of these studies however, is 

that they examine the neural mechanisms associated with aphasia at one time point in the recovery 

process and cannot therefore provide insights into the exact nature and timing of the neural 

reorganisation associated with the different stages of aphasia recovery and successful language 

outcomes.  

Longitudinal aphasia recovery studies which have investigated language improvement and 

changes in brain activity on patient cohorts, while few in number, have provided insights into the 

dynamic process of language reorganisation. Heiss et al. (1999) investigated aphasic patients at 2 

and 8 weeks post-stroke in a PET study and found that successful language recovery was associated 

with the preservation of left temporal areas. However, the study did not investigate whether there 

was a correlation between language recovery and brain activity. In another longitudinal PET study, 

Cardebat et al. (2003) recruited aphasic patients at 2 and 11 months post-stroke and demonstrated 

that increased activation in perisylvian regions was associated with improved language outcome. de 

Boissezon et al. (2005) employed the same experimental paradigm as that of Cardebat et al. (2003) 

in a subgroup of patients with subcortical aphasia and showed that language improvement was 

associated with increased activity in bilateral temporal regions. However the process of 

reorganisation, in terms of the timing and extent to which different neural mechanisms are recruited 

over the course of recovery, was not considered in either of these studies.  

Saur et al. (2006) addressed some of these limitations in a longitudinal fMRI study on a 

group of 14 aphasic patients in the acute (< 4 days post-stroke), subacute (~ 2 weeks post-stroke) 

and chronic phase (4 to 12 months post onset). An auditory sentence comprehension fMRI task was 



124 

employed and patients were required to identify whether a sentence was correct from correct, 

incorrect and reversed speech sentences. In the acute phase, weak activation was observed in the 

left IFG whereas in the subacute phase, there was a significant increase in bilateral activation 

caused by an upregulation of the entire language network with peak activation observed in right 

IFG and this was associated with improved language performance. Finally, at the chronic stage, a 

return to more normal patterns of left hemisphere activity comparable to that of the controls was 

observed and this was associated with further language improvements (Saur et al., 2006). Thus, it 

appears that neural reorganisation associated with improved language function is a dynamic process 

and distinct aspects of the reorganisation are critical at different points during the recovery period. 

Unfortunately, a limitation of the Saur et al. (2006) study was that the aphasic patients had 

some difficulty responding to the sentence-level task, having an average of 36% accuracy in the 

acute testing period. This presents a problem in the interpretation of brain activation as it is unclear 

whether the activity is indicative of an impaired performance or whether it is attributable to the 

neural deficit itself which underlies the impairment (Price & Friston, 1999). In addition, the type of 

task employed required sentence comprehension which is known to rely significantly on other 

cognitive functions and in particular on verbal working memory (Caplan et al., 2013). Geranmayeh 

et al. (2014) have suggested that much language-related brain activity observed in aphasia studies 

can be explained by the upregulation of regions more associated with attention and cognitive 

control and as such, they suggest that language tasks employed for aphasic patients need to be less 

cognitively demanding in order that mechanisms associated specifically with language processes 

can be clearly determined. Therefore, in order to establish clear relationships between brain activity 

and language function it is preferable that aphasic subjects are presented with experimental fMRI 

tasks that are less reliant on other cognitive processes and can be performed with sufficient 

accuracy.  

Despite these limitations, a follow-up study including an additional seven patients (total 21) 

who performed a different but related sentence comprehension task showed striking results (Saur et 
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al., 2010). Overall, 86% of stroke patients with aphasia at 2 weeks were correctly predicted as 

having good or poor language recovery at over 6 months based on fMRI data in addition to 

language performance and age (with similar results for predicting improvement). While the results 

are very promising, recovery was only considered via one global binarised language measure of 

good / bad outcome (combining repetition, reading comprehension, spontaneous speech, functional 

communication, and in-scanner performance). It has been noted that this approach precludes 

prediction of specific language symptom recovery (Stinear & Ward, 2013) which would aid therapy 

planning. The need to predict recovery of specific aphasia symptoms is further highlighted by the 

observation that different aspects of language recover with different trajectories in aphasia (El 

Hachioui et al., 2013) and recovery of one function is not necessarily related to recovery of another 

(Swinburn et al., 2004). 

The present study sought to further investigate the neural mechanisms associated with 

improved language function post-stroke. It addresses the limitations of previous studies by using a 

simple word processing task and examining the recovery of specific language functions. Our 

primary aim was to determine whether language related fMRI activity at 2-6 weeks post-onset 

predicts aphasia recovery at 6 months. We employed a simple spoken word recognition fMRI task 

and scanned people with aphasia in the subacute and chronic phases of recovery. Recovery of 

language was examined using behavioural measures of spoken word and sentence comprehension 

and confrontation naming. The fMRI paradigm examined the neural substrates associated with 

processing concrete and abstract words compared to pseudowords. People with aphasia often 

demonstrate an exaggerated effect of concreteness (Barry & Gerhand, 2003; Crutch & Warrington, 

2005; Martin et al., 1996; Newton & Barry, 1997; Sandberg & Kiran, 2014) and this manipulation 

allows further examination of recovery of lexical-semantics post-stroke. Based on Saur et al. (2006) 

and Crinion and Price (2005), we predicted that increased recovery would be associated with 

recruitment of right hemisphere homologues in the subacute phase followed by a return to increased 

left hemisphere recruitment in the chronic phase.  
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5.2 Methods 

5.2.1 Participants 

Recruitment of patients with left hemisphere stroke and language impairment was conducted 

at the stroke unit at the Royal Brisbane and Women’s Hospital. Inclusion criteria were: (i) first ever 

left hemisphere stroke confirmed on structural imaging; (ii) evidence of aphasia in the WAB-R 

(Kertesz, 2007) or in milder impairment, language disturbance reported in the medical chart; (iii) 

primary language English; (iv) adequate vision and hearing for the tasks; and (v) adequate 

comprehension to provide informed consent. Exclusion criteria were (i) previous neurological or 

psychiatric diagnoses; (ii) MRI contraindications; (iii) severe cognitive impairment on the MMSE 

(Folstein et al., 1975), and (iv) severe comprehension impairment that would impact on performing 

the fMRI task. Following the screening procedure, a total of 19 aphasic patients provided consent 

for the study. Five of the 19 were excluded from the study due to (i) technical issues (n = 2); (ii) 

transference to another hospital facility before the scheduled fMRI scanning date (n = 1); or (iii) 

lesion site (n = 2 in the pons region). A total of 14 patients with aphasia (10 males, M = 63.9 yrs, 

SD = 11.1 yrs) were scanned in the subacute stage, 1 – 5 weeks post-stroke (M = 23.3 days, range: 6 

– 41 days). At six months, all 14 patients were invited to come back for a repeat follow-up. Twelve 

patients (8 males, M = 63.0 yrs, SD = 10.8 yrs) returned for the chronic phase testing (M = 202.3 

days post-stroke, range = 184 – 237 days). The remaining two aphasic patients declined due to 

ongoing health issues.  

A control group was recruited from advertising in local community centres and via flyers in 

the University of Queensland newsletters. A total of 15 (10 females, M = 69.5 yrs, SD = 3.4 yrs) 

healthy aged-matched adults was recruited (age matched against patients at the time of the acute 

testing t(12.689) = -1.900, p = .080) and tested at one time point only. The controls all satisfied the 

same inclusion and exclusion criteria as the patient group with the exception of presence of stroke 

and aphasia. Cognition was measured using the MMSE (Folstein et al., 1975) to confirm no 

cognitive impairment was present.  
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Full written consent was obtained from all participants in the study and a reimbursement of 

$30 was given to each control participants. Carers of the participants with aphasia also received the 

detailed written information and were present during the consenting process. Approval for the study 

was obtained from the University of Queensland Medical Research Ethics Committee, the 

Queensland Health Human Research Ethics Committee and site-specific research governance from 

the Royal Brisbane and Women’s Hospital Ethics Committee.  

5.2.2 Behavioural Assessment 

In the subacute stage and a week prior to the scan date, a series of preliminary assessments 

were administered to the aphasic patients including the: (i) MMSE (Folstein et al., 1975), (ii) EHI 

(Oldfield, 1971), (iii) WAB-R (Kertesz, 2007) and (iv) ABA-2 (Dabul, 2000). Within 24 to 48 

hours of the scan date, each participant underwent further testing using a more comprehensive 

language battery. This battery comprised of the following: (i) the CAT (Swinburn et al., 2004) (ii) 

the BNT (Kaplan et al., 1983), (iii) subtests 5 (Auditory Lexical Decision), 25 (Visual Lexical 

decision), 49 (Auditory Synonym Judgements), 8 (Nonword Repetition) and 9 (Real Word 

Repetition) from the PALPA; (Kay et al., 1992) and (iv) the Pyramids and Palm Trees test (Howard 

& Patterson, 1992). At the six month time point and within a week of the second scan date, the 

entire assessment process was repeated. All control subjects were scanned once and were tested 

using the full language assessment battery within one week of the scanning session. 

5.2.3 fMRI Task 

We employed an auditory lexical decision paradigm with real words and pseudowords, the 

development of which has previously been described in Roxbury et al. (2014) (see Chapter 2). We 

used an event-related design to present a total of 120 stimuli (30 concrete words, 30 abstract words 

and 60 pseudowords). The stimuli were pseudorandomised to ensure that there were no more than 

two trials in succession from any condition and also to prevent constituent syllables appearing in 

consecutive order. Order effects were minimised by using five different stimuli lists and these were 

randomised across the aphasic patients and control subjects. The 120 stimuli were split equally into 
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two runs (sixty items per run). The auditory stimuli were digitally recorded using a native female 

English speaker’s voice with a Rode NTK condenser microphone in a sound-proofed room. 

Audacity, a digital recording and editing software package (http://www.audacity.sourceforge.net) 

was used to edit the stimuli. Mean durations of the spoken word stimuli were 723.7ms (SD: 

105.0ms) for concrete words, 771.93ms (SD: 118.7ms) for abstract words and 779.8ms (SD: 

92.6ms) for pseudowords and a Kruskal-Wallis test (Kruskal & Wallis, 1952) indicated no 

significant difference between conditions (p > .05).  

5.2.4 fMRI Procedure 

Aphasic patients had two fMRI scans (at the subacute and chronic time points), while 

controls were only scanned once. The fMRI task started with a small black fixation cross (48 point 

font) with the written words ‘Is it a real word?’ displayed on the screen. This screen remained 

visible for 2.3s. Following this, a new response screen appeared with a fixation cross and Yes/No. 

Participants simultaneously heard the audio of a word or pseudoword and had 3.5s to respond. As 

soon as a response was made, a large blue cross (84 point font) appeared on the screen and was 

visible for 1s duration. Following this, a new screen appeared with a large black (84 point font). 

This stayed visible until the start of the next trial. Between each stimulus presentation there was a 

long inter-trial interval with a jitter of between 10-18s, mean 14s. This was incorporated into the 

design to allow for the delayed hemodynamic response function which has previously been reported 

in post-stroke aphasia (Bonakdarpour et al., 2007). 

Before each scanning session, the task was explained to the participants and a computer-

based demonstration of the task with 10 practice words and pseudowords was shown and practised 

until an accuracy rate of approximately 80 percent was reached. Once inside the scanning suite, an 

MR safe button response box (Current Designs Inc, Philadelphia PA) was placed in the non-

dominant hand of each participant and a reminder given as to the correct button press orientation. A 

headcoil with a mirror attachment was positioned over the participant’s head and adjusted until the 

screen behind the scanner, displaying a fixation cross and the written words ‘Is it a real word?’, was 

http://www.audacity.sourceforge.net/
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fully visible. The stimuli were presented binaurally via MRI confon headphones (MR Confon 

GmbH, Magdeburg, Germany), the hearing levels adjusted to ensure adequate volume for each 

individual participant, and the response box checked.   

5.2.5 Data Acquisition  

The fMRI was carried out on a Siemens 3 Tesla Trio scanner (Siemens, Erlangen) at the 

Royal Brisbane and Women’s Hospital. A total of 390 volume images with BOLD sensitivity were 

acquired during each scanning session (2 runs of 14.4 mins per run) with 36 contiguous axial slices 

covering the whole brain (3mm thickness with 0.3mm inter-slice interval). A standard gradient 

echo-planar imaging (EPI) pulse sequence [repetition time (TR) = 2210ms, echo time (TE) = 30ms, 

flip angle = 90°, field of view = 220x220mm, matrix = 64x64] was used. Within the scanning 

session, a high-resolution anatomical T1-weighted image (MP-RAGE; TR = 1900ms, TE = 2.4ms, 

TI = 900ms, (0.9mm)
3
 resolution) for each participant was acquired. A FLAIR image (TE 87ms, 

TR 9000ms, TI 2500ms, 36 3mm slices, 0.9x0.9mm in-plane resolution) was also acquired. To 

ensure that motion artefact due to potential head movement was minimised, vacuum cushions were 

positioned between the head coil and the headphones. 

5.2.6 Image Processing 

Image preprocessing and fMRI statistical analysis were performed using SPM software (v8 

and 12; Wellcome Trust Centre for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm) with 

MATLAB 2011 (The MathWorks Inc., Natick, MA). To allow for T1 equilibration effects, the first 

five (dummy) volumes acquired from each run were discarded. The remaining volumes from runs 1 

and 2 were motion corrected and spatially realigned using INRIAlign (Freire et al., 2002), and a 

mean EPI image was created for each participant. The mean EPI image was coregistered to a T1-

weighted image acquired during the same scanning session, and the transformation was applied to 

all realigned images. The T1-weighted image was segmented (Ashburner & Friston, 2005). Using 

MRIcron (http://www.mccauslandcenter.sc.edu/mricro/mricron), lesion masks for both acute and 

chronic patients were manually drawn on the high resolution T1 images, using the FLAIR images 

http://www.fil.ion.ucl.ac.uk/spm
http://www.mccauslandcenter.sc.edu/mricro/mricron
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as a reference guide. A DARTEL template of patients was created using the segmentation results 

and weighting with the lesion information (Brett et al., 2002). Finally, to account for intersubject 

variability, normalized EPI images were then resampled (3.0 x 3.0 x 3.0 mm
3
) and smoothed with 

an isotropic Gaussian kernel of 8 mm full width at half maximum (FWHM).  

5.2.7 In-Scanner Behavioural Analysis  

In-scanner behavioural data consisted of mean accuracy rates calculated per subject, per 

condition and mean response times (for correct trials and responses greater than 100ms only), 

calculated from the beginning of the sound onset for each trial. SPSS Statistics version 22 (IMB; 

Armonk, New York, USA) was used to analyse the data and to conduct an independent t-test when 

the assumption of normal distribution was met (using Shapiro-Wilk), or a non-parametric Mann-

Whitney U test otherwise. Accuracy rates and reaction times were also examined within group to 

determine concreteness effects. This was tested using a paired t-test when data was normally 

distributed or with a nonparametric Wilcoxon Signed-Ranks test. 

5.2.8 Imaging Data Analysis  

Imaging data from both runs were combined for each subject and individually analysed 

using a fixed effects model. The fMRI time series were analysed in an event-related approach in the 

context of a general linear model with realignment parameters (6 degrees of freedom) entered into 

the design matrix as regressors of no interest, after convolving each event-related unit impulse with 

a hemodynamic response function with derivatives. To ensure that the BOLD signal responses were 

not confounded by differences in time-on-task or reaction times, we included a parametric regressor 

for each mean corrected reaction time per trial for each condition (concrete, abstract and 

pseudoword). Trials for reaction times that were less than 100ms and that were incorrect were 

modelled separately as errors in the general linear model. First level or within-subjects analysis 

included four contrasts; concrete – pseudoword, abstract – pseudoword, concrete – abstract and 

word (average response of concrete and abstract) – pseudoword. 
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We conducted ROI analyses to test activity within a priori regions previously associated 

with concrete and abstract processing (Binder et al., 2009) and with language comprehension in 

subacute aphasia (Saur et al., 2006). A total of 10 ROIs were defined using IBASPM 116 Human 

Atlas and constructed using WFU PickAtlas (Maldjian et al., 2004; Maldjian et al., 2003) within 

SPM8 (Wellcome Trust Centre for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm). Activity 

associated with concrete word processing was investigated in the following six ROIs: left AG, right 

AG, left MFG, left SFG, left posterior cingulate and left fusiform gyrus. The ROIs associated with 

abstract words were left IFG and left aSTS. Left aSTS was further subdivided, using the delineation 

of y<-7 for anterior by Indefrey and Levelt (2004), into left aMTG and left aSTG in order that full 

coverage of the left aSTS was achieved. Thus, a total of three ROIs were examined for abstract 

processing. An additional ROI in right IFG was created and included in the analysis based on a 

priori hypotheses regarding the upregulation of this region as being a critical mechanism in aphasia 

recovery (Saur et al., 2006).  

The region of interest toolbox, MarsBaR (Brett et al., 2002) in SPM8 was used to extract 

mean signal of event-related responses for each condition from all individual ROIs for each 

participant. Differences between the two groups (group and condition effects) were analysed using 

SPSS Statistics version 22 (IMB; Armonk, New York, USA). When the assumption of normal 

distribution was met (using Shapiro-Wilk), activation differences between each ROI using the mean 

signal were calculated and entered into a two-way repeated ANOVA. First the data was tested to 

see if the subacute or chronic phase was significantly different to controls in a 3 x 3 (concrete, 

abstract, pseudoword) or 3 x 2 (word, pseudoword) design. Then longitudinal differences were 

tested in either a 2 (subacute, chronic) x 3 or 2 x 2 design. For regions with non-normal 

distributions, logarithm or square root transformations (or inverse of both, as appropriate based on 

skew) were applied. Non-parametric tests (Kruskal-Wallis for 3 group comparison; subacute –

chronic - control or Wilcoxon Signed Rank for 2 group comparison; subacute – chronic) were used 

when data could not be transformed to a normal distribution. F values were checked and the 

http://www.fil.ion.ucl.ac.uk/spm
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original degrees of freedom are reported throughout unless there was a violation in the assumption 

of sphericity in which case they were corrected using Huyhn-Feldt adjustment.  

Correlational analyses were conducted to investigate the relationship between brain activity 

elicited during the fMRI task and out of scanner language performance. The mean signal elicited in 

each ROI for the three individual contrasts at both the subacute and chronic time-points was 

correlated with language assessment scores obtained outside the scanner from the spoken word 

comprehension subtests (word, sentence and combined overall total) of the CAT (Swinburn et al., 

2004) using both chronic T-scores and improvement scores as measures. Improvement scores from 

the language assessments were calculated using the chronic scores minus the subacute score and 

dividing by the amount of possible maximal recovery (maximum test score – subacute score) or 

maximal impairment (subacute score – minimum test score) if the chronic score is lower than 

subacute. These percentage maximal recovery or impairment (PMRI) values were used in the 

correlational analyses and this approach is based on similar methods that have been used previously 

to measure language improvement in aphasia (see Lazar, Speizer, Festa, Krakauer, & Marshall, 

2008; Saur et al., 2006; Saur et al., 2010)  

Separate whole brain analyses were conducted using a factorial ANOVA with the group as 

the between-subject and conditions as the within-subject factor. Four analyses were carried out, 

using a 2 (subacute, chronic) x 2 (word, pseudoword), a 2 (subacute, chronic) x 3 (concrete, 

abstract, pseudoword), a 3 (subacute, chronic, control) x 2 (word, pseudoword) and a 3 (subacute, 

chronic, control) x 3 (concrete, abstract, pseudoword) factorial. Any main effects of group or 

condition or group by condition interactions were analysed further using an independent t-test to 

identify the directionality of the effect. Results were generated with grey matter masking, and 

significance was determined using p < .01 incorrectness threshold, with cluster thresholding using 

Bonferroni correction (FWE p < .05) in SPM12. In those regions that were significant, the 

neuroanatomical location based on the coordinates of the peak maxima was identified using the 

Anatomy Toolbox (V20) (Eickhoff et al., 2007). Whole brain regression analyses were conducted 
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in the same manner as the ROI analyses for the subacute and chronic groups, using out of scanner 

behavioural language scores and PMRI measures.  

5.3 Results 

5.3.1 Clinical Data 

Patient characteristics for the twelve subjects included in the study are displayed in Table 

14. The T1-weighted structural scan acquired during the research scanning protocol was evaluated 

by a neuroradiologist to confirm site and size of lesion. The lesion overlay for the group of aphasic 

subjects in the subacute and chronic phase is shown in Figure 14 and Figure 15 respectively.  

 

 
 

 
 

Figure 14. Subacute lesion overlap image. Representative slices show the lesion overlap in the 12 aphasic 

subjects in the subacute phase of recovery. The number of overlapping regions is shown in the colour 

intensity bar with the lighter colours indicating greater overlap. The region with the maximal overlap was 

left putamen with 6 of the 12 aphasic patients showing involvement of this region. 
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Figure 15. Chronic lesion overlap image. Representative slices show the lesion overlap in the 12 aphasic 

subjects in the chronic phase of recovery. The number of overlapping regions is shown in the colour intensity 

bar with the lighter colours indicating greater overlap. The region with maximal overlap in the chronic phase 

was left putamen with 4 of the 12 aphasic patients showing involvement of this region. 
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Table 14. Aphasic patient characteristics 

Patient 

ID  

Age at 

scan 1 

(years ) 

Sex Handedness 

(EHI) 

Education 

(years) 

fMRI 1 

(days 

post 

stroke) 

fMRI 2 

(days 

post 

stroke) 

NIHSS at 

admission 

Oxford Stroke 

Classification 

Site of lesion Lesion 

Volume 

(3mm 

voxels) 

Thrombolysis 

(min post-

stroke) 

01 ML 49 M 88.8 10 16 191 5 PACS L MCA: Temporal + parietal 265 No 

02 NL 68 F 100 11 6 195 4 POCS L Cerebellar 131 No 

03 WB 56 M 90 11 18 185 17 PACS L MCA: SC + frontal 964 200 

04 DB 84 F 100 8 25 186 4 PACS L MCA: Frontal + parietal 332 No 

05 GS 51 M 100 17 23 184 23 PACS L MCA: SC + parietal + 

temporal 

2036 150 

06 RT 66 M 100 10 36 204 6 PACS L MCA: Frontotemporal + 

SC 

3000 No 

07 CH 70 F -100 8 23 191 12 PACS L Thalamus + SC 342 No 

08 DC 76 M 80 16 17 209 12 PACS L Thalamus + SC 530 No 

09 PK 52 M -90 15 13 212 5 PACS L MCA: Frontal + temporal 289 No 

10 HH 63 F 50 9 23 205 1 PACS L MCA: Temporoparietal + 

occipital 

3037 No 

11 RC 54 M 60 13 42 237 4 PACS L MCA: SC 63 210 

12 HH 66 M 70 13 25 229 3 PACS L MCA: Frontal 176 No 

M = male, F = female; EHI = Edinburgh Handedness Inventory: left-handed = < -40, right-handed > +40; NIHSS = National Institute of Health Stroke Scale: 0 = no 

deficit, 34 = maximal deficit; PACS = partial anterior circulation syndrome; POCS = posterior circulation syndrome; L = left; MCA = middle cerebral artery; SC = 

striatocapsular. 
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5.3.2 Behavioural Results 

MMSE scores were obtained for both the control and aphasic group. Group results showed 

no cognitive impairment in the control group (max = 30, group M = 29.0, SD = 0.9). The scores for 

the aphasic group indicated reduced performance (group M = 22.42, SD = 5.96) in the subacute 

phase although this performance improved in the chronic phase (group M = 25.58, SD = 3.85). The 

EHI (Oldfield, 1971) confirmed left-handedness in two of the aphasic patients and one control. 

Years of education were significantly different t(24.987) = -2.616, p = .015 (equal variances not 

assumed) between the two groups (aphasic group M = 11.8 yrs, SD = 3.0; controls M = 15.3 yrs, SD 

= 3.9 yrs).  

Language assessments were administered to the aphasic group at both time points and 

results are shown in Table 15, Table 16, Table 17, Table 18, and Table 19. Language deficits had 

been observed in all aphasic patients included in the study at the time of their initial admission into 

hospital. These deficits were then confirmed by an impaired performance in one of the assessments 

included in the language battery. At the time of recruitment to the study the WAB-R classification 

criteria indicated that two of the aphasic patients had very severe Broca’s aphasia and two had 

moderate to severe conduction aphasia. The majority of the aphasic patients (n = 6) had anomia 

ranging from mild to moderate in severity (1 = moderate, 1 = mild to moderate and 4 = mild). The 

final two patients did not receive a WAB-R classification or severity score as they presented with 

mild language disturbance. It should be noted that BNT results were skewed for this cohort, with an 

extreme outlier who declined from subacute to chronic stages. This precluded calculation of the 

PMRI and this distribution was not able to be normalised. As a result the BNT was not included in 

the correlational analyses. 
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Table 15. Subacute language assessment scores from the CAT and WAB-R 

Language 

Assessment 

Score P01 

ML 

P02 

NL 

P03 

WB 

P04 

DB 

P05  

GS 

P06 

RT 

P07 

CH 

P08  

DC 

P09  

PK 

P10  

HH 

P11  

RC 

P12 HH2  Max 

CAT               
Semantic  Raw 20 19 15* 20 16* 18* 19 19 19 20 20 19 20 

Memory 

 

T Score 62 54 43* 62 45* 50 54 54 54 62 62 54 62 

Aud Word  Raw 29 30 28 28 17* 25* 30 28 30 27 30 30 30 

Comp 

 

T Score 60 65 58 58 41* 51* 65 58 65 55 65 65 65 

Aud Sent  Raw 32 31 25* 14* 12* 17* 30 26* 29 19* 30 28 32 

Comp 

 

T Score 72 67 57* 46* 44* 49* 65 58 63 51* 65 61 72 

Aud Para  Raw 4 3* 2* 4 3* 3* 3* 2* 4 4 4 3* 4 

Comp 
 

T Score 60 49* 43* 60 49* 49* 49* 43* 60 60 60 49* 60 

Written  Raw 30 30 18* 25* 6* 23* 28* 28* 30 25* 30 29 30 

Word Comp 
 

T Score 65 65 43* 50* 35* 47* 55* 55* 65 50* 65 59 65 

Written  Raw 31 32 14* 18* 12* 17* 30 30 23* 11* 30 24* 32 

Sent Comp 
 

T Score 68 72 47* 51* 46* 50* 67 67 57* 45* 67 59 72 

Naming Raw 79 92 0* 0* 0* 15* 61* 47* 77 44* 108 74 94+ 

 
 

T Score 68 74 35* 35* 35* 46* 58* 54* 67 53* 75 65 75 

Repetition Raw 72 74 14* 29* 4* 49* 66* 67 67 66* 74 70 74 

 
 

T Score 66 72 43* 46* 40* 55* 59 59 59 59 72 62 72 

Reading Raw 52* 66 0* 0* 0* 49* 55* 64 61 35* 70 61 70 

 
 

T Score 55* 64 38* 38* 38* 53* 56* 62 55* 49* 71 59 71 

Writing Raw 73 71 27* 31* 9* 55* 71 70 70 61* 75 70 76 

 
 

T Score 62 60 46* 47* 41* 52* 60 59 59 55* 65 59 69 

WAB-R               

Speech 
  

 16* 20 1* 10* 0* 11* 18* 15* 20 11* 20 18* 20 

Comp  

 

 9.85 10 6* 7.55* 5.45* 6.4* 10 9.7 10 7.7* 10 10 10 

Repetition  

 

 9.5 9.8 3.1* 5.8* 0* 6.5* 9.7 8.6* 10 7.9* 9.8 10 10 

Naming  
 

 9.1* 9.7 0.9* 2.5* 0* 2.9* 8.7* 5.9* 9.4 3.7* 10 9.4 10 

WAB AQ 

Classification 
Severity 

 88.9 

Anomic 
Mild 

99 

n/a 

22 

Broca’s 
very severe 

to severe 

51.7 

Conduction 
moderate to 

severe 

10.9 

Broca’s 
very severe 

53.6 

Conduction 
moderate to 

severe 

92.8 

Anomic 
mild 

78.4 

Anomic 
mild to 

moderate 

98.8 

Anomic 
mild 

60.6 

Anomic 
moderate 

99.6 

n/a 

94.8 

Anomic 
mild 

100 

CAT = Comprehensive Aphasia Test; WAB-R = Western Aphasia Battery-Revised, R = Raw, T = T-score, Aud = Auditory, Comp = Comprehension, Sent = Sentence, Para = Paragraph, AQ = Aphasia Quotient,  

* indicates impaired performance based on published norms.  
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Table 16. Chronic language assessment scores from the CAT and WAB-R 

Language 

Assessment 

Score P01 

ML 

P02 

NL 

P03 

WB 

P04 

DB 

P05 

GS 

P06 

RT 

P07 

CH 

P08 

DC 

P09 

PK 

P10 

HH 

P11 

RC 

P12 

HH2  

Max 

CAT               
Semantic  Raw 18* 20 20 19 18* 19 19 20 18* 20 20 18* 20 

Memory 

 

T Score 50* 62 62 54 50* 54 54 62 50* 62 62 50* 62 

Aud Word  Raw 29 30 30 21* 24* 30 27 28 30 27 29 30 30 

Comp 

 

T Score 60 65 65 45* 49* 65 55 58 65 55 60 65 65 

Aud Sent  Raw 31 29 28 22* 23* 26* 30 28 31 25* 29 28 32 

Comp 

 

T Score 67 63 61 54* 55* 58* 65 61 67 57* 63 61 72 

Aud Para  Raw 4 3* 3* 3* 3* 2* 3* 4 4 3* 4 4 4 

Comp 
 

T Score 60 49* 49* 49* 49* 43* 49* 60 60 49* 60 60 60 

Written  Raw 30 30 28* 28* 24* 30 29 30 28* 30 30 28* 30 

Word Comp 
 

T Score 65 65 55* 55* 49* 65 59 65 55* 65 65 55* 65 

Written  Raw 32 30 26 18* 23* 21* 30 30 29 29 30 29 32 

Sent Comp 
 

T Score 72 67 61 51* 57* 55* 67 67 65 65 67 65 72 

Naming Raw 86 96 37* 7* 4* 50* 77 67 92 80 105 92 94+ 

 
 

T Score 72 75 51* 44* 43* 55* 67 59 74 68 75 74 75 

Repetition Raw 70 74 50* 27* 36* 68* 74 66* 74 64* 74 68* 74 

 
 

T Score 62 72 52* 45* 47* 60* 72 59* 72 58* 72 60* 72 

Reading Raw 58* 69 39* 10* 22* 60 57* 70 64 47* 70 62 70 

 
 

T Score 57* 67 49* 45* 47* 59 57* 71 62 52* 71 60 71 

Writing Raw 74 72 65* 43* 39* 64* 70 73 74 72 76 75 76 

 
 

T Score 64 61 57* 49* 48* 56* 59 62 64 61 69 65 69 

WAB-R               

Speech 
  

 19* 20 13* 11* 7* 18* 20 19* 20 18* 20 20 20 

Comp  

 

 9.85 10 9.5 8.3* 5.9* 9.7 10 9.5 10 9.6 10 10 10 

Repetition  

 

 10 10 7.2* 3.7* 6.4* 8.2* 10 9.3 10 9.4 10 10 10 

Naming  
 

 10 10 6.7* 3.1* 2.2* 7.6* 9.6 8.7* 10 9.5 10 10 10 

WAB AQ 

Classification 
Severity 

 97.7 

Anomic 
n/a 

100 

n/a 

72.8 

Broca’s 
Mod 

52.2 

Conduction 
Mod 

43 

Broca’s 
Severe 

87 

Anomic 
Mild 

99.2 

n/a 

93 

Anomic 
Mild 

100 

n/a 

93 

Anomic 
Mild 

100 

n/a 

100 

n/a 

100 

CAT = Comprehensive Aphasia Test; WAB-R = Western Aphasia Battery-Revised, R = Raw, T = T-score, Aud = Auditory, Comp = Comprehension, Sent = Sentence, Para = Paragraph, AQ = Aphasia Quotient,  

* indicates impaired performance based on published norms. 
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Table 17. Subacute language assessment scores from the BNT, PALPA, Pyramids and Palm Trees test and ABA-2 

Language Assessment P01ML P02NL P03WB P04DB P05GS P06RT P07CH P08DC P09PK P10HH P11RC P12HH2  Max 

BNT 

 

47* 54   1*   5*   0*   6* 29* 42 51 20* 55 56 60 

PALPA 5              

Real word 79 80 73 70 70 63 77 74 80 80 79 79 80 

HI/HF 20 20 20 18* 17* 20 20 20 20 20 20 20 20 
HI/LF 20 20 18* 18* 16* 19* 20 18* 20 20 20 20 20 

LI/HF 20 20 20 18* 20 15* 20 19* 20 20 20 19* 20 

LI/LF 19 20 15* 16* 17*   9* 17* 17* 20 20 19 20 20 
Nonword 

 

79 78 74 56* 71 72 75 70 78 66* 77 74 80 

PALPA25              
Real word 60 60 56 57 58 51 53 60 55 32 57 60 60 

HI/HF 15 15 14 15 15 15 15 15 15 10* 14 15 15 
HI/LF 15 15 15 15 14 14 14 15 15   9* 15 15 15 

LI/HF 15 15 14* 15 14* 14* 15 15 14*   4* 15 15 15 

LI/LF 15 15 13* 12* 15   8*   9* 15 11*   9* 13* 15 15 
Nonword 

 

58* 59 48* 36* 28* 54* 60 59 53* 55* 60 56* 60 

PALPA 9              
HI/HF 20 20   2* 11.5* 1* 20 20 20 20 19 20 20 20 

HI/LF 19.5 20 5.5*    8* 0* 19.5 19 20 19 18 20 19 20 

LI/HF 18.5* 20   7*    4* 0* 17* 20 18* 19.5 15* 20 20 20 
LI/LF 

 

17.5* 20   5* 3.5* 0* 17* 19 17* 20 16* 20 19 20 

PALPA 8 
Control data: 

M = 29.07; SD = 1.39 

 

23∆ 27 4∆ 4∆ dis 26∆ 27 24∆ 29 20∆ 28 24∆ 30 

PALPA 49              

HI 

Control data: 
M = 29.73; SD = 0.59 

30 30 14∆ 14∆ 18∆ 25∆ 29 30 29 27∆ 30 29 30 

LI 

Control data: 
M = 28.67; SD = 1.54 

 

28 30 16∆ 15∆ 17∆ 17∆ 20∆ 27 28 23∆ 29 27 30 

P&PT V1 
 

50 51 47 48 40* 38* 48 47 51 46* 51 50 52 

ABA-2 N N Mod Mi Mod N N Mi N N N N  

BNT = Boston Naming Test; WAB-R = Western Aphasia Battery-Revised; PALPA = Psycholinguistic Assessment of Language Processing in Aphasia: PALPA 5 = Auditory Lexical 

Decision; HI = High Imageability; HF = High Frequency; LI = Low Imageability; LF = Low Frequency; PALPA 25 = Visual Lexical Decision; PALPA 9 = Real Word Repetition; 

PALPA 8 = Nonword Repetition; PALPA 49 = Auditory Synonym Judgement; P&PT V1 = Pyramids and Palm Trees(Version 1 – 3 pictures); ABA-2 = Apraxia Battery for Adults – 

Second Edition; N= None, Mi = Mild, Mod = Moderate. 

* indicates impaired performance based on published norms, 
∆
 indicates impaired performance based on control results where published norms were not available.  
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Table 18. Chronic language assessment scores from the BNT, PALPA, Pyramids and Palm Trees test and ABA-2 

Language Assessment P01ML P02 NL P03WB P04DB P05 GS P06 RT P07CH P08DC P09PK P10HH P11RC P12HH2  Max 

BNT 

 

48* 54   7*   2*   0* 16* 43 52 53 39* 55 57 60 

PALPA 5              

Real word 79 80 74 67 79 68 74 79 80 78 79 77 80 

HI/HF 20 20 20 18* 20* 20 20 20 20 20 20 20 20 
HI/LF 20 20 18* 19* 20 20 20 20 20 19* 20 19* 20 

LI/HF 20 20 20 17* 20 17* 19* 20 20 19* 20 20 20 

LI/LF 19 20 16* 13* 19* 11* 15* 19* 20 20 19 18* 20 
Nonword 

 

78 77 74 56* 75 73 68 74 77 67* 79 76 80 

PALPA25              
Real word 60 59 57 59 58 54 57 59 55 56 60 58 60 

HI/HF 15 15 15 14 15 15 15 15 15 14 15 15 15 
HI/LF 15 15 14 15 15 14 15 14 15 14 15 13* 15 

LI/HF 15 15 15 15 13* 15 15 15 15 14* 15 15 15 

LI/LF 15 14 13* 15 15 10* 12* 15 10* 14 15 15 15 
Nonword 

 

60 59 57* 42* 47* 60 60 59 60 58* 60 60 60 

PALPA 9              
HI/HF 19 20 18* 16* 7.5* 20 20 20 20 20 20 20 20 

HI/LF 19 20 12* 7.5* 7* 20 20 18 20 18 20 20 20 

LI/HF 19 20 14.5 3* 4* 20 19 20 20 19 20 20 20 
LI/LF 

 

17.5* 20 14* 8.5* 6* 18* 20 20 20 19 20 20 20 

PALPA 8 
Control data: 

M = 29.07; SD = 1.39 

 

22∆ 30 10∆ 4∆ 6∆ 27 28 27 29 21∆ 29 24.5∆ 30 

PALPA 49              

HI 

Control data: 
M = 29.73; SD = 0.59 

28.5∆ 30 28.5∆ 24∆ 29 26∆ 29 30 29 30 30 30 30 

LI 

Control data: 
M = 28.67; SD = 1.54 

 

27 28.5 24∆ 19∆ 23∆ 20∆ 25∆ 30 26 29 29 28 30 

P&PT V1 
 

52 51 47 46* 47 44* 49 50 52 51 50 52 52 

ABA-2 N N Mi to mod Mi to mod Mod Mild N N N N N N  

BNT = Boston Naming Test; WAB-R = Western Aphasia Battery-Revised; PALPA = Psycholinguistic Assessment of Language Processing in Aphasia: PALPA 5 = Auditory Lexical 

Decision; HI = High Imageability; HF = High Frequency; LI = Low Imageability; LF = Low Frequency; PALPA 25 = Visual Lexical Decision; PALPA 9 = Real Word Repetition; 

PALPA 8 = Nonword Repetition; PALPA 49 = Auditory Synonym Judgement; P&PT V1 = Pyramids and Palm Trees(Version 1 – 3 pictures); ABA-2 = Apraxia Battery for Adults – 

Second Edition; N= None, Mi = Mild, Mod = Moderate. 

* indicates impaired performance based on published norms, 
∆
 indicates impaired performance based on control results where published norms are not available. 
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Table 19. PMRI language scores from the CAT (word and sentence comprehension subtests and CAT overall score) 

Language 

Assessment 

P01ML P02 NL P03WB P04DB P05 GS P06 RT P07CH P08DC P09PK P10HH P11RC P12HH2  

CAT             

Aud Word Comp 0.00 0.00 100.00 -22.41 33.33 100.00 -15.38 0.00 0.00 0.00 -7.69 0.00 

             

Aud Sent Comp -6.94 -5.97 26.67 30.77 39.29 39.13 0.00 21.43 44.44 28.57 -3.08 0.00 

             

CAT Overall* 10.87 -0.74 39.53 11.83 27.64 32.06 30.26 30.38 55.56 37.82 5.56 27.54 

*CAT overall score calculated from the average T-scores of the following subtests: Comprehension of spoken language, comprehension of written language, 

repetition, naming, reading and writing.  
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5.3.3 In-Scanner Behavioural Results 

For the accuracy analyses, mean values were calculated for the control group and the 

aphasic group at both time points (subacute and chronic). The results are shown in Table 20 and 

show that accuracy for both concrete and pseudowords was greater than 90 percent for the controls 

and both aphasic groups.  

 

Table 20. Mean accuracy values for aphasic patients and controls 

Condition Subacute Aphasics 

Mean (SD) 

Chronic Aphasics 

Mean (SD) 

Controls 

Mean (SD) 

Concrete 94.7 (6.7) 91.1 (7.3) 97.6 (3.7) 

Abstract 86.4 (11.4) 89.2 (9.5) 95.1 (4.8) 

Pseudoword 92.5 (7.1) 94.2 (5.7) 95.0 (4.3) 

 

Accuracy was not normally distributed (Shipiro-Wilk p < .023) except for the concrete 

condition within the chronic aphasic group (p = .131). A Kruskal-Wallis test revealed no statistical 

difference in accuracy between the three groups for the concrete and pseudoword conditions (p > 

.076) although the reduced accuracy for the abstract condition was close to reaching significance (p 

= .051).  

Values for incorrect responses or for responses longer than 100ms were removed from 

analysis (subacute aphasics = 7.9%, chronic aphasics = 7.8%, controls = 4.4%). The reaction times 

did not have a normal distribution (Shapiro-Wilk p < .05) and a non-parametric Kruskal-Wallis test 

was used. There was a statistically significant difference between the three groups for reaction times 

for the concrete H(2) = 25.717,  p < .0001 and abstract H(2) = 23.260, p < .0001 conditions with the 

controls being significantly faster compared to the chronic aphasics and then the subacute aphasic 

performance (see Table 21). 
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Table 21. Mean reaction times for aphasic patients and controls 

Condition Subacute Aphasics 

Mean (SD) 

Chronic Aphasics 

Mean (SD) 

Controls 

Mean (SD) 

Concrete 1397ms (266) 1388ms (282) 1263ms (186) 

Abstract 1501ms (306) 1443ms (259) 1335ms (219) 

Pseudoword 1715ms (493) 1669ms (449) 1736ms (585) 

 

Behavioural differences between subacute and chronic time-points were directly assessed 

with a Wilcoxon Signed Ranks test. There was no significant difference between time-points for 

accuracy (p > .265) but there was a significant difference in reaction times (p < .0001 for all 

conditions), with the aphasic patients responding faster in the chronic compared to subacute time 

point (see Table 21). 

Concreteness effects (the performance advantage for concrete over abstract words) were 

also assessed at each time point using a Wilcoxon Signed Ranks test. Accuracy was significantly 

greater for concrete compared to abstract items in the subacute testing phase (p = .005), but not in 

the chronic phase (p = .372). At both time-points, reaction times were significantly faster for 

concrete words (p = .001 for subacute and p = .003 for chronic).   

5.3.4 Region of Interest Analyses  

5.3.4.1 Two conditions (word – pseudoword). 

5.3.4.1.1  Three group comparison (subacute, chronic, controls). Only left posterior 

cingulate cortex and left aSTG regions could be transformed to a normal distribution for an 

ANOVA to be applied. The ANOVA examining differences between the three groups for word and 

pseudoword conditions revealed a main effect of condition in left posterior cingulate F(1, 14) = 

7.440, p = .016 and left aSTG F(1, 14) = 7.447, p = .016. Mean values for left posterior cingulate 

indicated greater activity for word (M = 0.080, SE = 0.029) compared to pseudoword (M = -0.007, 

SE = 0.029), whereas for left aSTG mean values were greater for pseudoword (M = 0.409, SE = 

0.047) compared to word (M = 0.305, SE = 0.055). There were no significant main effects of group 

or group by condition interactions for these two ROIs.  
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Of the remaining eight ROIs tested with a Kruskal-Wallis, the left IFG was the sole region 

to show a significant group difference for the pseudoword condition only H(2) = 8.366, p = .015. 

Mean values indicated that the control group elicited greater activity in this region (M = 0.335, SE = 

.032), compared to the aphasic group at both the chronic (M = 0.167, SE = .094) and subacute (M = 

0.121, SE = .059) time points.  

5.3.4.1.2  Two group comparison (subacute, chronic). In the direct comparison between 

aphasic performance at the subacute and chronic time points (2x2 ANOVA), only the left aSTG 

retained the main effect of condition F(1, 14) = 6.465, p = .023 and values for mean  signal showed 

greater activity for pseudowords (M = 0.337, SE = 0.066) compared to words (M = 0.191, SE = 

0.075). There was no other main effect of group or interaction in left aSTG.  

For regions where the data could not be transformed to a normal distribution, the subacute to 

chronic group differences were tested by a Wilcoxon Signed Ranks test. None of those ROIs (left 

AG, right AG, left fusiform, left SFG, left MFG, left aMTG, left or right IFG) showed a significant 

difference between groups for any of the conditions.  

5.3.4.2 Three conditions (concrete, abstract, pseudoword). 

5.3.4.2.1  Three group comparison (subacute, chronic, controls). Left posterior cingulate 

cortex and left aSTG activity was normally distributed and an ANOVA (3 x 3) was applied. The 

results revealed a main effect of condition in both ROIs; left posterior cingulate F(2, 13) = 9.779, p 

= .003 and left aSTG F(1.2, 17) = 5.3, p = .029 (Huynh-Feldt corrected). Mean signal in left 

posterior cingulate was greater for abstract (M = 0.081, SE = 0.031) compared to concrete (M = 

0.078, SE = 0.030) and then pseudowords (M = -0.007, SE = 0.029). In the left aSTG, activity was 

greatest for the pseudoword condition (M = 0.409, SE = 0.047) compared to both abstract (M = 

0.351, SE = 0.059) and concrete (M = 0.350, SE = 0.055) conditions. There was no main effect of 

group in either of the ROIs.  

A significant group by condition interaction was observed in left posterior cingulate F(4, 11) 

= 3.540, p = .043) for the concrete – abstract – pseudoword comparison. The mean BOLD signal in 



145 

left posterior cingulate is shown in Figure 16. Follow-up analyses were carried out to determine the 

nature of the interaction. There was a significant difference for both the subacute and control groups 

between the concrete and pseudoword conditions (subacute aphasics; p =.013 and controls; p = 

.018) and abstract and pseudoword condition (subacute aphasics; p = .001 and controls; p = .010). 

There was no significant difference between conditions for the chronic aphasic group. Mean signal 

values in the subacute group were greater for the abstract (M = 0.09, SE = 0.04) and concrete (M = 

0.06, SE = 0.03) compared to pseudowords (M = -0.06, SE = 0.03), whereas the mean signal values 

in the control group were greater for the concrete (M = 0.14, SE = 0.05) and abstract words (M = 

0.13, SE = 0.04) compared to the pseudowords (M = 0.03, SE = 0.05).  

 

 
 

Figure 16. Group by condition interaction in left PCC. Subacute, chronic, controls x 3 conditions (concrete, 

abstract and pseudoword). 

 

There were no significant group differences in the other eight ROIs, tested by non-

parametric Kruskal-Wallis, for either concrete or abstract conditions. (Pseudoword conditions are 

reported above). 

5.3.4.2.2  Two group comparison (subacute, chronic). In the direct comparison between 

activity elicited by the aphasic groups at the different time points (2 (subacute and chronic) x 3 

ANOVA), a main effect of condition was only observed in left posterior cingulate F(2, 10) = 5.107, 

p = .030. Mean values indicated that both concrete (p = .042) and abstract (p = .010) words showed 
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significantly greater activity than pseudowords (concrete: M = 0.056, SE = .029, abstract: M = .087, 

SE = .035 and pseudoword: M = -.058, SE = .030). A group by condition interaction was observed 

in left posterior cingulate F(2, 10) = 4.627, p = .038. There was a significant difference in mean 

signal for both concrete (p = .013) and abstract (p = .001) words when compared to pseudowords 

for the subacute aphasic group only. Mean values are reported above in the 3 x 3 group by condition 

interaction results. 

No subacute-chronic differences were found for any of the other ROIs (left and right AG, 

left fusiform, left SFG, left MFG, left aMTG, left aSTG, left or right IFG), tested with a Wilcoxon 

Signed Ranks test, for concrete or abstract conditions.  

5.3.5 Region of Interest Correlational Analyses 

Correlational analyses were used to explore whether any relationship existed between brain 

activity elicited during (i) the acute and (ii) the chronic testing phase in specific areas and 

behavioural scores from confrontation naming and spoken language comprehension assessments 

(both chronic and PMRI scores).  

5.3.5.1 Subacute ROI activity with chronic behavioural scores. There was a positive 

correlation between subacute activity for pseudowords in the left posterior cingulate cortex r = .648, 

p = .023 and CAT word performance at the chronic stage, and a negative correlation between 

pseudoword activity in the left SFG r = -.673, p = .016 and chronic CAT word performance. 

Significant correlations are shown in Figure 17. No other significant correlations were observed.  

 



147 

 
 

Figure 17. Subacute mean signal with the chronic behavioural score from the CAT word subtest. 

 

5.3.3.2 Subacute ROI activity with PMRI scores. There were no significant correlations 

between subacute activity and PMRI scores.  

5.3.5.3 Chronic ROI activity with chronic behavioural scores. A positive correlation was 

observed between chronic mean signal in left posterior cingulate cortex for the concrete condition 

and the chronic CAT word subtest r = .600, p = .039 and for the abstract condition and the chronic 

CAT sentence subtest r = .579, p = .049. Correlations in left aSTG were observed for all three 

conditions and the CAT sentence subtest (pseudoword: r = .662, p = .019, concrete: r = .608, p = 

.036, abstract: r = .780, p = .003) and CAT overall score (pseudoword: r = .623, p = .03, concrete: r 

= .664, p = .018, abstract: r = .768, p = .004). Negative correlations were observed between left IFG 

activity for abstract words and the CAT sentence subtest r = .683, p = .014 and CAT overall r = 

.670, p = .017. Significant correlations are shown in Figure 18. No other correlations between brain 

activity and behavioural scores in the chronic aphasic group or in the control group were significant.  
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Figure 18. Chronic mean signal with chronic behavioural score of CAT word and CAT sentence subtests. 

 

5.3.5.4 Chronic ROI activity with PMRI scores. No correlations were significant in the 

chronic aphasic group and no significant correlations were observed in the control group. 5.3.6 

Whole Brain Analyses 

Exploratory whole brain analyses revealed a significant main effect of group for the 3 

(subacute, chronic, control) x 2 (word, pseudoword) in left IFG (pars triangularis) (extending into 

pars orbitalis and pars opercularis), left parahippocampal gyrus (PHG) (extending into left fusiform 

gyrus and left thalamus (temporal)), right MFG (extending into right SFG) and right MTG 

(extending into right middle occipital gyrus) (see Table 22). Figure 19 shows the main effect of 
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group and Figure 20 displays the axial slices illustrating the main effect of group (subacute, chronic, 

control). There were no significant results in the 2 (subacute, chronic) x 2 (word, pseudoword) 

ANOVA.  

 

Table 22. Factorial results from whole brain analysis for main effect of group between subacute, chronic 

aphasics and controls (GM masked) 

Main effect Peak Maxima Cluster 

pFWE 

Cluster  

(k) 

x y z Z-score 

Group Left IFG (pars tri)  < .001 305 -36 7 29 5.20 

 Left PHG .001 153 -29 -43 -7 4.48 

 Right MFG  .036 62 22 25 47 3.92 

 Right MTG  .036 62 40 -65 18 4.07 

 

 

 
 

Figure 19. Main effect of group (subacute, chronic, control). 
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Figure 20. Axial slices for key regions in the main effect of group (subacute, chronic, control). 

 

5.3.7 Whole Brain Correlational Analyses 

5.3.7.1. Subacute whole brain activity correlated with chronic behavioural scores. 

Results from the subacute whole brain regression analysis with chronic language performance 

scores are shown in Table 23. The chronic overall CAT score was positively correlated with 

concrete > abstract activity in the left insula (extending into left IFG; pars triangularis and pars 

opercularis) and the right MFG. A negative correlation was observed for the CAT word score and 

right SFG (extending into right MFG) activity for the abstract > pseudoword contrast.  

 

Table 23. Subacute whole brain activity related to chronic language performance scores 

 Contrast Peak 

Maxima 

pFWE Cluster  

(k) 

x y z Z-

score 

Positive         

CAT Overall Conc > Ab Left insula .012 59 -32 -4 14 3.83 

Negative         

CAT Word Ab > Pseudoword Right SFG .047 41 22 18 54 3.92 

p = FWE-corr for cluster threshold  
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5.3.7.2 Subacute whole brain activity correlated with PMRI scores. Results from the 

subacute whole brain regression analysis with PMRI language scores are shown in Table 24. 

Negative associations with PMRI scores from the sentence level assessment in the CAT were 

observed for concrete > abstract words in the left postcentral gyrus (extending into left precentral 

and left primary somatosensory and motor cortex). Axial slices for key regions showing subacute 

brain activity correlated with PMRI scores are shown in Figure 21.  

 

Table 24. Subacute whole brain activity related to PMRI performance scores 

 Contrast Peak Maxima pFWE Cluster 

(k) 

x y z Z-

score 

Negative         

CAT Sentence Conc > Ab Left postcentral 

gyrus  

.024 52 -43 -29 50 4.68 

p = FWE-corr for cluster threshold.  

 

 

 
 

Figure 21. Axial slices for key regions showing subacute brain activity correlated with PMRI scores. 

 

5.3.7.3 Chronic whole brain activity correlated with chronic behavioural scores. 

Results from the chronic whole brain regression analysis with chronic language performance scores 

are shown in Table 25 and the axial slices are shown in Figure 22. Chronic CAT word scores were 

positively correlated with activity for the word > pseudoword contrast in (1) right anterior cingulate 
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cortex (ACC), extending into right mid orbital gyrus, right rectal gyrus and left mid orbital gyrus 

and (2) right olfactory cortex, extending into right insula and right caudate.  

 

Table 25. Chronic whole brain activity related to chronic language performance scores 

 Contrast Peak Maxima pFWE Cluster  

(k) 

x y z Z-

score 

Positive         

CAT Word Word > Pseudoword Right ACC .030 86 14 43 7 4.14 

  Right olfactory 

cortex 

.022 94 7 18 -4 3.70 

p = FWE-corr for cluster threshold  

 

 

 
 

Figure 22. Axial slices for key regions showing chronic whole brain activity correlated with chronic 

language performance scores. 

 

5.3.7.4 Chronic whole brain activity correlated with PMRI scores. No results were 

significant for the chronic whole brain regression analysis with PMRI language scores.  

5.4 Discussion 

We investigated the neural mechanisms underpinning spoken word recognition in a group of 

aphasic patients in the subacute and chronic stages of stroke recovery and examined whether task-

related neural activity in subacute aphasia predicted recovery at the chronic stage. In subacute 

aphasia, language comprehension recovery was associated with increased activity in left posterior 
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cingulate and left insula/inferior frontal regions while a poorer recovery was associated with 

increased activity in bilateral dorsolateral regions. In chronic aphasia, improved spoken sentence 

comprehension was associated with increased brain activity in the left posterior cingulate cortex and 

left aSTG while improved spoken word comprehension was associated with right anterior cingulate 

and right olfactory cortex extending into the insula and caudate. In contrast, a poorer outcome on 

spoken sentence comprehension and overall language performance on the CAT was associated with 

increased activity in left IFG.  

Results for the whole brain analysis revealed a main effect of group in left IFG (pars 

triangularis) extending into pars orbitalis and pars opercularis, left PHG (extending into left 

fusiform and the left thalamus), right MFG and right STG with the chronic aphasic group eliciting 

decreased activity in all four regions compared to both the subacute aphasic group and controls. The 

left IFG region showed the greatest difference between both aphasic groups and the controls and 

given that this region was intact in the majority of patients, we suggest that reduced activity of the 

aphasic patients relative to the controls may reflect diaschisis whereby activity in the left IFG is 

compromised as it is dependent on inputs from distant but connected lesioned regions (Carrera & 

Tononi, 2014; Price et al., 2001). The lack of any regions showing increased activity in the aphasia 

group compared to controls also suggests that upregulation or adoption of novel regions was not a 

recovery mechanism evident in this cohort.  

5.4.1 Relationship between Subacute Brain Activity and Language Recovery 

A positive correlation was observed between subacute activity for pseudowords in the left 

posterior cingulate ROI and spoken word comprehension in the chronic phase. The posterior 

cingulate is a richly connected brain region which links subcortical and cortical brain networks 

(Hagmann et al., 2008; Leech & Sharp, 2014) and has been associated with internally directed 

thought processes (Buckner, Andrews-Hanna, & Schacter, 2008), and is involved in memory 

recollection and planning for the future (Addis, Wong, & Schacter, 2007; Mason et al., 2007). The 

involvement of the posterior cingulate in language remains unclear, although it is commonly 
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engaged during semantic processing (Binder et al., 2009). The posterior cingulate also has a central 

role in the default mode network and connectivity within this network has been associated with 

treatment-induced aphasia recovery (Marcotte, Perlbarg, Marrelec, Benali, & Ansaldo, 2013). The 

pseudowords employed in the experimental paradigm were designed to be as close to real words as 

phonologically possible whilst not requiring semantic activation (although it is acknowledged that 

semantic activation can occur during such lexical decisions). Thus, the increased activity seen in the 

subacute aphasic group in response to pseudowords may reflect an increased requirement to draw 

on internally directed declarative memories to assist in making a decision regarding the lexical 

status of the pseudoword.  

The posterior cingulate also plays an integral role in facilitating or monitoring attentional 

control (Hahn, Ross, & Stein, 2007; Hampson et al., 2006; Leech, Braga, & Sharp, 2012), 

integrating information processed in brain networks that are functionally distinct. Thus, if the 

posterior cingulate serves as a cortical hub, the correlation between increased subacute activity and 

improved word comprehension may reflect the regulation of attentional control in response to high-

level integrative processes in this region.  

Comparisons between the control and aphasic group may provide insights into whether the 

reported involvement of the left posterior cingulate in recovery is attained through normal 

mechanisms or reflects novel mechanisms. We observed that left posterior cingulate activity 

differed between the subacute aphasic group and controls as a function of condition. For the 

subacute group, the abstract word condition elicited greatest activity while in the control group, 

greatest activity was observed for the concrete condition. The finding in controls is consistent with 

previous studies showing increased posterior cingulate activation for concrete words (Binder et al., 

2005; Ferreira, Gobel, Hymers, & Ellis, 2015; Sabsevitz et al., 2005) and is likely due to the richer 

set of conceptual representations associated with concrete words. It is unclear why this region 

would be engaged differentially for abstract words in the subacute aphasic group versus concrete 

words in the controls, but this may in part be explained by increased attentional engagement (as 
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described above) required in the subacute group during retrieval of abstract words. 

A positive correlation was observed between the overall chronic CAT score and subacute 

activity in the left insula extending into left IFG at whole brain level for concrete > abstract words. 

While the representation of concrete concepts is considered to involve a widely distributed, 

predominantly left hemisphere language network (Binder et al., 2009; Wang et al., 2010), this 

network does not appear to include either the left insula or left IFG, suggesting an alternative role. 

The left insula is directly connected to Broca’s region and has typically been considered to have an 

involvement in the motoric aspects of speech production and specifically articulatory planning 

(Ardila, Bernal, & Rosselli, 2014; Dronkers, 1996) and control (Oh, Duerden, & Pang, 2014). 

However, its central location and connections with regions associated with a more diverse range of 

language functions including comprehension and lexico-semantic associations (Ardila et al., 2014) 

suggest that this region has an integral role in language processing (Price, 2010) and may mediate 

higher-order cognitive functions associated with language function (Oh et al., 2014).  

While the left IFG has been associated with controlled lexical-semantic selection and a 

range of other relevant language processes including strategic semantic retrieval and phonological 

processing (Binder et al., 2009; Price, 2012), it frequently shows increased activity for words 

compared to pseudowords (see Davis & Gaskell, 2009 meta-analysis). In a meta-analysis that 

included 12 studies on aphasia recovery, Turkeltaub et al. (2011) identified activation in left 

anterior insula and pars orbitalis regions by aphasic patients which was not observed in controls. 

The upregulation of activity in key regions that were unique to the aphasic subjects was interpreted 

as a recovery mechanism activated to compensate for reduced functionality of the lesioned areas 

(Turkeltaub et al., 2011). In the current study, this activity does not appear to represent an 

upregulation unique to the subacute aphasic group, given that there was no overall increase 

compared to controls. Nevertheless, the degree of left insula/IFG activity in an individual was 

related to overall recovery capacity. This finding is in general agreement with the observation that 

left frontal activity in the subacute stage is associated with improved word comprehension (Heiss et 
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al., 1999) and predictive of global language improvement (Saur et al., 2010).  

Bilateral SFG activity at the subacute stage was also related to aphasia recovery, consistent 

with findings of increased subacute activity in frontal regions in previous longitudinal studies on 

aphasia recovery (Fernandez et al., 2004; Saur et al., 2006; Saur et al., 2010). However, in the 

present study, we observed a negative correlation between left SFG subacute activity for 

pseudowords and single word comprehension at the chronic stage. Activation in this region in 

response to language-based tasks is typically attributed to executive or other cognitive demands. In 

particular, the SFG has been associated with working memory (Peelle et al., 2004) and is considered 

to be part of a distributed network which monitors and facilitates comprehension (Hampson et al., 

2006; Scott et al., 2003). Thus, the engagement of left SFG for pseudoword processing in the 

subacute aphasic group may reflect a possible involvement of this region during lexical decision 

making, in the monitoring of possible word candidates in the associated lexical-semantic network, 

required before the pseudoword can be discarded as a nonlexical item. Thus, those aphasic patients 

who require greater engagement of this region to make an accurate lexical decision in the subacute 

stage have a reduced capacity for language recovery at the chronic time point.  

A negative correlation was also observed between increased right SFG activity for the 

abstract > pseudoword contrast at whole-brain level in the subacute phase and decreased spoken 

word comprehension in the chronic phase. The right SFG has been associated with a range of 

cognitive functions including control of emotions (Falquez et al., 2014) and dealing with conflicting 

stimuli (Zmigrod, Zmigrod, & Hommel, 2016), while as discussed above, the left SFG has typically 

been associated with executive functions, working memory and inhibition. Dominant theories of 

concrete and abstract word processing propose that abstract words, which are reliant on verbally 

encoded concepts, are processed largely in the left hemisphere (for a full review see Chapter 2). 

Thus, the engagement of the right SFG for abstract compared to pseudowords in subacute aphasia 

could support the processing of lexical items when a reduced set of conceptual representations are 

available in left hemisphere networks. Other accounts of concrete and abstract processing suggest 
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that representations of abstract words are associated with strong affective and emotional 

experiential knowledge (Kousta et al., 2011; Vigliocco et al., 2014; Vigliocco et al., 2009) and 

therefore an alternative interpretation for right SFG activity during abstract word processing might 

be that it is engaging emotional representations to assist with lexical retrieval.  

Longitudinal studies on language recovery have shown the relevance of bilateral prefrontal 

activity to language recovery. Fernandez et al. (2004) demonstrated that at the one month phase of 

recovery, increased activation in bilateral prefrontal regions was associated with both semantic and 

phonological tasks but more so with the latter. At the chronic phase of testing (1 year post-stroke), 

the activation of the prefrontal cortex had decreased and this was accompanied by improved 

recovery of language function, suggesting that the activation of prefrontal cortical regions may be 

associated with greater attentional control due to increased task demands (Fernandez et al., 2004). A 

decrease in bilateral frontal activation has also been reported in treatment induced recovery from 

aphasia (Léger et al., 2002). The findings in the present study for increased subacute activation in 

bilateral SFG associated with poorer language recovery outcomes suggests that the recruitment of 

this region does not necessarily reflect successful functional recruitment. Instead, recruitment of 

bilateral prefrontal regions in subacute aphasia seems to reflect a requirement for increased support 

of cognitive control during this early phase (Turkeltaub et al., 2011). In the chronic phase of 

recovery, we did not observe the same relationship between bilateral SFG and out of scanner 

performance, suggesting a reduced requirement of cognitive control with recovery. 

5.4.2 Relationship between Chronic Brain Activity and Language Recovery 

We observed the involvement of several different regions when examining chronic stage 

brain activity associated with language performance at six months post-stroke. Results for the ROI 

correlations showed increased activity in left hemisphere language regions which was associated 

with improved language function and this finding is consistent with the general view that an 

important mechanism of aphasia recovery is the restoration or restitution of the left hemisphere 

language network (Crosson et al., 2007; Heiss & Thiel, 2006; Kiran, 2012; Price & Crinion, 2005). 
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Positive correlations were observed between chronic activity for all three conditions (concrete, 

abstract and pseudowords) in left aSTG and chronic sentence comprehension performance. Left 

anterior STG is thought to play a critical role in responding to the acoustic complexity of speech 

(Price, 2012) and auditory phonological word form (Friederici, 2012), and has also been associated 

with syntactic processing (Friederici, 2011) or combinatorial processes (Hickok & Poeppel, 2007). 

In aphasia, focal lesions in the anterior temporal region have been associated with semantic 

recognition and production impairments (Mirman et al., 2015) while disruption of the ventral 

stream (a pathway connecting regions in auditory cortex with the anterior temporal lobe and 

prefrontal cortex) results in auditory comprehension deficits (Kümmerer et al., 2013) and a 

reduction in accuracy in the conduite d’approche (i.e. multiple repeated attempts to retrieve a target) 

for real words (Ueno & Lambon Ralph, 2013).  

Findings from a longitudinal PET study on aphasia recovery by Heiss et al. (1999) which 

examined different subgroups of aphasic patients at 2 and 8 weeks post-stroke, demonstrated that 

patients with subcortical and frontal lesions, showed an upregulation of left STG which was not 

seen in the patient group with temporal lesions. The authors interpreted this finding as suggesting 

that efficient recovery of language function is only achievable if the left temporal regions are 

preserved and are able to be reintegrated as part of the functional language network (Heiss et al., 

1999). The current finding of involvement of this region in response to both the word and 

pseudoword conditions and the positive correlation with improved sentence processing suggests 

that in chronic aphasia, engagement of the left aSTG during spoken word processing provides a 

mechanism also supporting sentence comprehension. 

The role of left posterior cingulate cortex was also highlighted at the chronic stage, where 

left posterior cingulate activity during both concrete and abstract word processing was positively 

correlated with spoken word comprehension and sentence comprehension, respectively. As 

discussed above, this region has been associated with the control of internally directed thought and 

attentional processes. Thus, the positive correlations observed at both the subacute and chronic time 
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points suggest that the engagement of the left posterior cingulate may contribute to the successful 

recovery of language comprehension, although its function over the course of recovery changes 

such that in subacute aphasia it supports pseudoword processing but in chronic aphasia, it is 

engaged to support real word processing.  

Negative correlations were observed for the chronic left IFG ROI activity between the 

abstract condition and chronic sentence comprehension and overall CAT scores. The left IFG has, 

amongst other assumed roles, been associated with phonologically-based, short term working 

memory processes (Binder et al., 2005; Fiebach & Friederici, 2004; Sabsevitz et al., 2005). It was 

also one of the main regions reliably activated by abstract words in both the Binder et al. (2009) and 

Wang et al. (2010) meta-analyses investigating processing differences between concrete and 

abstract words in healthy individuals and its engagement may therefore reflect strategic semantic 

retrieval processes (Fliessbach et al., 2006). In terms of longitudinal aphasia studies, a reduced 

reliance on frontal regions as the need for cognitive control diminishes, accompanied by a return to 

perisylvian language areas has been associated with a more successful language recovery (Saur et 

al., 2006).  

Our findings are consistent with this view in that we observed a poorer language outcome 

associated with increased left IFG. However, this correlation was only negative for abstract words 

and therefore it may be due to unique processing requirements associated with this word type. 

Abstract words are considered to be processed largely in left hemisphere regions and are thought to 

have a more ambiguous or weaker set of semantic conceptual representations compared to their 

concrete counterparts (Hoffmann, 2008). Therefore, the current finding of increased activity in left 

IFG for abstract word processing in chronic aphasia may reflect an ongoing requirement to engage 

this area for controlled semantic retrieval when selection demands are increased or retrieval is not 

successful. As a significant number of language subtests which contribute to the overall CAT score 

require semantic retrieval to some degree, an increase in the engagement of left IFG in chronic 

aphasia to assist with semantic retrieval may contribute to a poorer language recovery outcome in 
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general, although it should be noted that other studies have reported increased left IFG activity in 

chronic aphasia as correlating positively with successful language recovery (Fridriksson, 

Richardson, Fillmore, & Cai, 2012; Kiran, 2012; Turkeltaub et al., 2011; van Oers et al., 2010). The 

present findings also highlight the different mechanisms driving recovery at subacute and chronic 

stages, given the positive association between insula/IFG activity in the subacute phase and chronic 

overall CAT score discussed earlier.  

Results for the chronic whole brain activity and chronic behavioural scores showed right 

hemisphere recruitment was associated with improved outcome. There was a positive correlation 

between spoken word comprehension and word greater than pseudoword activity in the right 

anterior cingulate and right olfactory cortex extending into right insula and right caudate regions. 

Dorsal anterior cingulate and the adjacent medial SFG region form part of a domain-general cortical 

system termed the cingulo-opercular network (Dosenbach et al., 2007; Power & Petersen, 2013). 

While this region is reliably activated in response to more nonlinguistic cognitive tasks (Kennerley, 

Walton, Behrens, Buckley, & Rushworth, 2006; Lovstad et al., 2012; Torta & Cauda, 2011), 

activity has also been observed in response to language tasks (Blank et al., 2003; Price, 2012; 

Warburton et al., 1999). In aphasic patients, the engagement of right frontal regions associated with 

improved language outcome has been observed from the acute to the subacute phase (Saur et al., 

2006), in the subacute (Saur et al., 2010) and chronic (Blank et al., 2003) phases, and also in 

treatment induced recovery (Crosson et al., 2009).  

More recently, the interplay between domain-general cognitive systems and domain-specific 

language networks that are disrupted in aphasia has been investigated (see Geranmayeh et al., 2014 

for a full review), demonstrating that the ability to activate domain general cognitive control 

networks has a direct influence on the potential outcome for aphasia recovery following treatment 

(Brownsett et al., 2013). Thus, recruitment of the domain-general right hemisphere regions in early 

post-stroke aphasia recovery can either be interpreted as a response to an increased requirement for 

cognitive control of language processes due to compromised functioning of the left hemisphere 
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regions (Saur et al., 2006; Saur et al., 2010) or it may reflect an engagement of a domain-general 

network in response to impaired task performance and an increased requirement for greater top-

down cognitive control (Geranmayeh et al., 2014).  

One explanation for the findings showing increased chronic brain activation for words 

greater than pseudowords in the present study is that domain-general systems are recruited to assist 

with lexical decision-making processes and reflect an increased requirement for cognitive control 

which is still required in the chronic phase in order to support compromised language function due 

to disrupted left hemisphere language networks. However, a role for this region in controlled 

linguistic processing is consistent with findings from a study by Gold et al. (2006) investigating 

lexical semantic processes which showed that during a lexical decision bilateral anterior cingulate 

activation was associated with a strategic semantic inhibition task. The present findings suggest that 

those aphasic patients who are able to successfully activate these right hemisphere domain-general 

regions to support controlled language processing, show a more improved language comprehension 

recovery.  

In conclusion, it appears that the neural mechanisms which underpin improved aphasia 

recovery are dynamic and are differentially recruited at the subacute and chronic stages post-stroke. 

The role of left hemisphere language regions in aphasia recovery appears critical at both time 

points. During the subacute phase, improved language function is associated with the engagement 

of the left posterior cingulate and left insula/inferior frontal regions. In the chronic phase, the left 

posterior cingulate continues to be associated with a good recovery but restitution of left aSTG 

function also appears important. The contribution of right hemisphere mechanisms over the course 

of recovery is less clear. While in the subacute phase, the right prefrontal cortex activity is 

predictive of poorer language outcome, activation patterns change in the chronic phase such that 

involvement of key prefrontal regions appears to be associated with improved language outcome. 

The negative correlations between subacute activity in right SFG and language improvement 

suggests that the engagement of this region reflects a temporary maladaptive mechanism of 
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recovery or increased cognitive demands, while the right prefrontal cortical regions in the chronic 

phase appears to play a more complementary role, supporting the processing of more difficult 

linguistic input. However, the restitution of perisylvian language regions also appears critical and 

thus a combination of both right and left hemisphere mechanisms intrinsically contribute to 

improved language outcome in chronic aphasia. These findings provide critical insights into the 

neural mechanisms underpinning successful language improvement at different stages in the 

recovery process and highlight the possible use of functional imaging in predictive models of 

language processing in the clinical setting in the future, both in terms of eventually informing 

patient outcomes and also enabling the relative effectiveness of treatment programmes and timing 

of rehabilitation to be measured, thus promoting recovery and ensuring best possible outcomes for 

individuals with aphasia.  
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6 Chapter Six 

Conclusion 

________________________________________________________________________________ 

The overall aims of this thesis were two-fold. The first broad aim was to investigate the 

neural basis of spoken word recognition in healthy individuals with a particular focus on concrete 

and abstract processing mechanisms. The second overall aim was to identify the neural substrates 

associated with aphasia recovery from the subacute to chronic phase, in order to address the critical 

long-term clinical goal of providing people with aphasia with an informed prognosis of likely 

outcomes in terms of language recovery. Brain activity elicited in response to a spoken word 

recognition fMRI task was first examined in young and older healthy adults. Patients with post-

stroke aphasia were scanned employing the same fMRI paradigm at both the subacute (2 to 6 weeks 

post-stroke) and chronic (6 months post-stroke) phases of aphasia recovery. Section 6.1 summarises 

the main findings from the four experiments while section 6.2 considers some of the implications 

associated with the results. Section 6.3 discusses the limitations of this study and possible future 

directions that can be explored to extend the findings further. Lastly, section 6.4 considers the final 

conclusions that can be drawn from this thesis. 

6.1 Summary of Major Findings 

An auditory processing paradigm was the preferred modality employed to investigate 

language recovery mechanisms and a simple task was selected to ensure that aphasic patients would 

be able to perform the task, even in the early stages of aphasia recovery. A lexical decision task 

with a novel pseudoword condition was selected to explore the neural mechanisms which underpin 

word form and meaning. Concrete and abstract words were selected as the real word stimuli in 

order to provide an in depth examination of the semantic system and to address previous reports that 

people with aphasia show pronounced concreteness effects (i.e. the superior processing advantage 

for concrete compared to abstract words). Variables associated with these real words were 

controlled so that task-related activity reflected unique differences between semantic conceptual 
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representations. The pseudowords were designed to be as close to real words as possible in terms of 

following English phonological rules but were specifically made ‘opaque’ (Raettig & Kotz, 2008) 

in order to limit semantic-based activity. Furthermore, it was anticipated that making the 

pseudowords more wordlike, differences attributed to effects of imageability and concreteness 

would be increased (Evans et al., 2012).  

6.1.1 Concreteness Effects and Spoken Word Recognition in Healthy Young Adults 

Much of the previous evidence regarding the brain mechanisms recruited during concrete 

versus abstract word processing has been drawn from studies using visual stimuli. In addition, the 

investigations into concrete and abstract word processing have used various tasks and baselines, 

resulting in varying degrees of linguistic processing (refer to Chapter 2 for more details). As such, 

the aim of Chapter 2 was to examine the neural underpinnings associated with concreteness effects 

and the recognition of spoken concrete and abstract words in a group of healthy young adults. As 

predicted, the behavioural results confirmed the presence of concreteness effects for reaction time; 

that is concrete words were responded to significantly faster than both abstract words and 

pseudowords and abstract words were responded to faster than pseudowords.  

The imaging results confirmed that concrete words elicited more activity compared to 

abstract words in widely distributed brain regions including bilateral AG, left posterior cingulate 

and left dorsolateral prefrontal cortex. Concrete words also elicited more activity in the left fusiform 

gyrus and left aMTG when contrasted with the pseudoword baseline. These qualitative and 

quantitative findings support both dual coding theory (Paivio, 1971, 1991) and context availability 

theory (Schwanenflugel et al., 1988; Schwanenflugel & Shoben, 1983) respectively but the lack of 

left hemisphere activity for abstract greater than concrete words was not consistent with either 

theory. The engagement of bilateral AG was also considered alongside newer theories of embodied 

abstraction and interpreted as reflecting a multimodal convergence zone role which interfaces and 

binds conceptual information from modality specific, heteromodal regions (Binder & Desai, 2011). 

According to this account, concrete and abstract words will elicit greater activation in convergence 
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zones compared to pseudowords due to the greater amount of conceptual knowledge associated 

with real words but not pseudowords. Concrete words however should elicit greater activation than 

abstract words as they are associated with a richer set of semantic conceptual representations, 

consistent with the findings in the present study.  

6.1.2 Concreteness Effect and Spoken Word Recognition in Healthy Older Adults 

Much of the existing literature on concreteness effects and the neural mechanisms associated 

with concrete and abstract processing is derived from studies on younger adults. As such, it is not 

clear whether concreteness effects and the associated neural mechanisms change as a function of 

age. This is potentially problematic when using the existing studies on healthy language processing 

to inform and interpret findings in aphasia as most individuals with aphasia are likely to fall within 

the older age range.  

 The older cohort showed concreteness effects in reaction time responses as per the young 

healthy adults, and an additional processing advantage was observed for accuracy of response. The 

behavioural results were also consistent with previous observations that spoken word recognition 

and the concreteness effect appear relatively preserved in ageing (Burke & Shafto, 2008; Shafto et 

al., 2012). The ROI analyses showed that the preserved performance in the older adults was 

supported by an altered pattern of neural activity in the left hemisphere, and included inferior and 

middle frontal regions, the AG and the fusiform gyrus. In particular, the left IFG and left AG were 

recruited selectively by the older and younger groups respectively. The left IFG showed increased 

activity in the older group but not in the younger group, for abstract and pseudowords compared to 

concrete words. This region has previously been associated with phonological and working memory 

processes (Binder et al., 2005; Fiebach & Friederici, 2004; Sabsevitz et al., 2005) and thus the 

recruitment of this region in response to abstract and pseudoword processing by only the older 

adults, coupled with a preserved performance, may reflect an age-associated compensatory 

mechanism involving increased phonological processing.  

In contrast, the left AG showed increased activity in only the younger group. Differences 
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were significant between all three conditions with greatest activity for the concrete words, followed 

by abstract words and then pseudowords. This result suggests that the younger adults reliably 

recruit this region when accessing semantic conceptual information and provides further support for 

the embodied abstraction proposal discussed above (Binder & Desai, 2011) and the role of the AG 

as a convergence zone. In contrast, the selective pattern of activation in left AG was not observed in 

the older adults. Instead, the older adults appeared to recruit this region similarly for all three 

conditions which suggests that in older adults, left AG may play a more general lexical processing 

role. Interpreted together, the finding for reduction in specificity in left AG, accompanied by an 

upregulation of left IFG, suggests that in order to maintain a preserved performance, older adults 

may attend more to phonological than semantic information during lexical decisions. The above 

findings highlight the need to examine age-related changes in the brain mechanisms underlying 

language processing in order to provide an accurate comparison for considering aphasia, rather than 

relying on knowledge derived from young healthy adults.   

6.1.3 Brain Activity during Auditory Lexical Decision Making in Subacute Stroke using fMRI 

Neuroimaging studies investigating early mechanisms of aphasia recovery have provided 

interesting insights into brain mechanisms which underpin recovery of language function in the 

acute stage (Hillis, 2007; Hillis & Heidler, 2002; Hillis et al., 2005). However, the mechanisms 

which continue to contribute to a successful language outcome in the subsequent stages in post-

stroke aphasia are less clear. An influential study by Saur et al. (2006) investigated the neural 

mechanisms associated with aphasia recovery in the acute, subacute and chronic phases post-stroke. 

However, limitations with this study concern the complexity of the task and the sentence level task 

employed, as the reported task-related activity may reflect an involvement of more cognitive 

strategies rather than language recovery function per se. When investigating language disorders, it 

is vital that the in-scanner tasks employed can be performed successfully and accurately by people 

with aphasia in order to ensure that any task-related brain activity reflects the language processes 

being examined rather than activity associated more with the difficulty of a task or inaccuracy of 
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response (Price et al., 2006; Price & Friston, 1999), although there is also an issue if the task 

presented is too easy, as differences between time points may not be observed, and sensitivity to 

language recovery may be reduced (Fernandez et al., 2004). The type of task employed is therefore 

of critical importance in early post-stroke aphasia studies when any associated language deficits are 

likely to be at their most severe. Thus, the selection of a spoken word lexical decision task in the 

present study was the preferred experimental modality, thereby minimising task complexity and 

increasing the likelihood of task accuracy.  

 The behavioural results for the in-scanner task showed that both age-matched older adults 

and subacute aphasic patients responded fastest to concrete words, followed by abstract words and 

then pseudowords, confirming the presence of concreteness effects. The subacute patients processed 

abstract words significantly less accurately compared to the age-matched control group. In addition, 

the subacute group appeared to have significantly greater difficulty in accurately responding to 

abstract words compared to their processing of both concrete and pseudowords. This suggests that 

in subacute aphasia it may be the increased difficulty with abstract word processing rather than a 

reduced performance in concrete words that contributes to the exaggerated concreteness effects 

observed in aphasia. 

 Results from the region of interest analyses showed a strong correlation in right AG between 

concrete word processing and spoken language comprehension for the aphasic subjects in the 

subacute stage of recovery. Given task-based accuracy was high, it can be assumed that the 

engagement of right AG reflected activity associated with the spoken recognition of concrete words. 

This right hemisphere involvement is broadly similar to that of Saur et al. (2006) and Crinion and 

Price (2005), however, neither study found activity that was specific to right AG and this might 

reflect the fact that these studies investigated sentence level rather than single word processing 

tasks. The reliable activation of left AG in response to semantic-based tasks (Binder et al., 2009; 

Price, 2010) has prompted some to propose that this region may serve as a supramodal zone, 

binding and integrating sensorimotor representations from modality-specific brain regions (Binder 
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& Desai, 2011). In the present study, only one patient had a lesion which involved left AG and thus, 

this selective engagement by the aphasic group suggests that in subacute aphasia, the right AG may 

be upregulated to support language processing despite there being no predominance of lesions in the 

contralateral homologue.  

The differential effect of condition in the left aMTG observed in the aphasic group only is 

consistent with previous observations of patients with semantic dementia who show superior 

processing for concrete over abstract words in this region (Jefferies et al., 2009). An effect of 

condition was also identified in left IFG between the two groups with the controls showing greater 

activity for the pseudowords, followed by the abstract and then concrete words. Group differences 

were also observed in this region with the control group eliciting significantly greater activity than 

the aphasic group. Thus, since left IFG was minimally impacted in the aphasic group (refer to 

Chapter 4 for details) and task accuracy above 83% for all conditions was achieved, the differences 

observed between the two groups and specifically the underactivity in left IFG may reflect 

diaschisis or distance effects which are present during this subacute period of aphasia recovery 

(Kiran, 2012).  

6.1.4 Using fMRI to Predict Post-Stroke Aphasia Recovery 

The neural substrates typically associated with aphasia recovery include both left and right 

hemisphere mechanisms (see Chapter 1) and these appear to influence language function at 

different time points during aphasia recovery. In subacute aphasia, it has been proposed that a 

laterality shift occurs and language recovery is supported by an upregulation of homotopic regions 

in the right hemisphere, recruited due to compromised functionality in the contralateral regions 

(Saur et al., 2006; Saur et al., 2010). In the chronic phase of recovery, once much reorganisation has 

occurred, a good language recovery is associated with a return to left hemisphere language 

networks (Saur et al., 2006) and persistent involvement of right hemisphere homologues may hinder 

recovery and instead reflect dysfunctional processing mechanisms (Szaflarski et al., 2013) or 

transcallosal disinhibition (Naeser et al., 2005). Thus the aim of Chapter 5 was to address the lack 
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of knowledge regarding brain mechanisms which underpin aphasia from the subacute to chronic 

phases post-stroke in order to provide much needed specificity in determining predictors associated 

with language recovery.  

 Subacute activity in left posterior cingulate and left insula/inferior frontal regions predicted 

improved language function in the chronic phase. Left IFG is a core component of the language 

network, while left posterior cingulate is often associated with semantic processing and is highly 

connected with other regions including the medial temporal lobes and ventromedial prefrontal 

cortex (Leech & Sharp, 2014). Thus, their engagement in response to language functioning may 

suggest a compensatory role in early aphasia recovery. These results are consistent with the 

perilesional recovery hypothesis which suggests that left hemisphere regions surrounding the lesion 

are upregulated to support compromised language function following damage to language nodes 

(Saur et al., 2006; Zahn et al., 2004). Although it should be noted there is no clear definition of what 

constitutes “perilesional” and this mechanism may in some cases reflect involvement of other intact 

ipsilesional regions distant from the damaged region, given the varied locations of lesions in this 

cohort. 

In contrast, other regions activated in the subacute phase showed negative correlations and 

this activation combined with poorer language function in the chronic phase suggests a possibly 

maladaptive or unsuccessful recovery mechanism which may indicate the engagement of controlled 

processes in those patients with reduced potential for recovery. Specifically, a negative correlation 

was found between the left SFG ROI activity for pseudowords and spoken word comprehension. 

The specific function SFG plays in language tasks is not clear and while it may reflect semantic 

retrieval processes (Binder et al., 2009), it has also been associated with more executive type 

functions including cognitive control (Hampson et al., 2006; Peelle et al., 2004; Scott et al., 2003). 

In the present study, the activation in left SFG was for pseudowords only and in right SFG was for 

abstract words greater than pseudowords and thus the activity is unlikely to reflect purely semantic 

retrieval processes. Rather, the engagement of bilateral SFG may reflect a requirement for more 
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cognitive-linguistic control due to the compromised function in the disrupted left hemisphere 

language regions. However, since these domain-general regions typically form part of a more 

distributed cognitive system, their engagement in subacute aphasia, coupled with a poorer 

performance on spoken word comprehension in chronic aphasia, likely reflects an inefficient 

compensatory processing mechanism.  

Correlations between outcome and chronic brain activity revealed that the recruitment of 

alternate neural substrates in both left and right hemispheres underpinned an improved language 

outcome. In the left hemisphere, positive correlations were observed between left posterior 

cingulate for concrete words and spoken word processing and between abstract words and spoken 

sentence comprehension confirming its role at both subacute and chronic phases of recovery. 

Another positive correlation was identified between left aSTG for all three contrasts and sentence 

comprehension, consistent with a role in syntactic and semantic combinatorial processes (Friederici, 

2011; Hickok & Poeppel, 2007; Rogalsky & Hickok, 2009).  

The findings in this chapter demonstrate the potential of this paradigm to reliably elicit 

language-related neural activity in subacute and chronic aphasia and indicate how distinct patterns 

of left and right hemisphere activity change over the course of recovery and may be predictors of 

improved spoken word comprehension and overall language function. The positive engagement of 

left posterior cingulate at both time points suggests that this region contributes to improved 

language comprehension abilities although its function appears to change over the course of 

recovery. The role that prefrontal regions play in recovery is less clear. In the subacute stage 

increased bilateral SFG activity was associated with poorer recovery of spoken word 

comprehension, while in chronic aphasia, increased activity in right anterior cingulate cortex 

correlated with improved language comprehension. These data highlight the potential role of more 

domain-general systems in post-stroke aphasia but suggest this involvement does not always 

indicate a successful outcome and may be dependent on the stage of recovery. 
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6.2 Implications of Major Findings 

The major findings of this thesis discussed above add to a growing body of evidence 

regarding the neural mechanisms which underpin language function and provide a better 

understanding of how these mechanisms contribute to improved language function in subacute and 

chronic aphasia recovery. In particular, the findings in this thesis demonstrate the potential 

prognostic capability of this paradigm to predict specific language outcomes at 6 months.  

6.2.1 Clinical Implications 

The clinical applications of this project are significant. In the first instance, once a more 

accurate understanding of the neural mechanisms which underpin language recovery is reached, 

MRI and fMRI may be used clinically as a predictive tool to determine a person’s potential to 

recover from aphasia following stroke (Crosson et al. 2007; Muñoz-Cespedes et al. 2005). With 

advances in technology, scanning times may be shortened and it is conceivable that a combination 

of complementary imaging methodologies could be used in the clinical setting and imaging 

sequences added to routine clinical scanning procedures to inform prognosis and treatment 

directions. Whilst this suggestion might appear overly optimistic or unrealistic, task-based fMRI 

investigations are currently being employed clinically for the purpose of language mapping in 

adults with brain tumours (Peck et al., 2009; Sair et al., 2016).  

In addition, imaging modalities where patients are not required to perform a task, such as 

resting state functional connectivity (RSFC) and diffusion imaging, may have a critical role in 

predicting outcomes and will be able to capture all patients with aphasia regardless of whether they 

can perform the task or not. Prediction models such as the PLORAS system (Price et al., 2010) are 

being further refined and are aiming to predict recovery of language function based on 

heterogeneous lesion sites and behavioural data from large longitudinal patient population studies, 

and data from this thesis will contribute to the Price et al. (2010) model. Prediction of system-

specific recovery using a support vector machine in post-stroke aphasia has also been shown to 

have the potential to identify whether a patient will have a good or poor prognosis for recovery 
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(Saur et al., 2010) and this can then inform rehabilitation programmes. However, this system has 

not been applied to individual symptoms that are targeted in rehabilitation and does not focus on 

patients in the subacute 2-6 weeks stage post-stroke which is a critical period when patients and 

family are in need of information regarding recovery. Other predictive models such as the PREP 

algorithm (Stinear, Barber, Petoe, Anwar, & Byblow, 2012) have been used successfully in the 

prognosis of motor function in stroke patients, based on the notion that imaging may be required to 

provide accurate predictors of recovery in a subset of patients, while recovery in others may be 

predicted based on behavioural measures. In the future, it may be possible to include information on 

language assessments in stroke recovery algorithms to further improve prediction. This prognostic 

information may then be used by clinicians to determine patients who are likely to benefit from 

rehabilitation. Importantly, for those patients who are not predicted to have a favourable recovery, 

alternative, appropriate rehabilitation could be offered. Depending on individual factors, it may be 

beneficial for some people with aphasia to receive more intensive and frequent therapy while for 

others, it may be of more benefit to focus on a more functional, compensatory therapeutic approach 

thereby ensuring maximal quality of life outcomes.  

A second long-term clinical application of this study concerns the provision of aphasia 

therapy. Understanding predictors of aphasia may provide the basis for new treatment approaches 

both in terms of timing and type of intervention and may help identify those patients who are likely 

to benefit from therapeutic input (Lazar et al., 2008). A crucial question is whether spontaneous 

recovery can be complemented by language therapy and if so, at what point of recovery is it most 

beneficial to provide maximal therapeutic intervention. At present it is not known how, or even 

whether, treatment of aphasia in the acute stages of recovery influences the progressive dynamics of 

language reorganisation in the brain. While Godecke et al. (2014) suggest that early intervention in 

acute stroke is associated with an improved outcome, other studies have raised questions about 

early intervention by showing no significant improvement in those receiving therapy compared to a 

control group (Bowen et al., 2012).  
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Studies identifying the brain mechanisms driving treatment-induced recovery have been 

primarily focused on the chronic phase (Fridriksson, 2010; Fridriksson et al., 2010) and there are 

likely to be several factors that influence recovery outcomes such as the type of therapy (Heath et 

al., 2012; van Hees, McMahon, Angwin, de Zubicaray, & Copland, 2014) and frequency of delivery 

(Bhogal, Teasell, & Speechley, 2003; Dignam et al., 2015). What is well-established is that in the 

first few weeks post-stroke, rapid neurophysiological spontaneous recovery is occurring (Lazar & 

Antoniello, 2008; Marsh & Hillis, 2006). Since a significant amount of language improvement 

occurs within the first three months of recovery (Berthier, 2005; Lazar et al., 2010; Robey, 1998), a 

more effective utilization of a clinician’s time in very early post-stroke recovery may be to carry out 

informal language assessments, provide alternative or compensatory methods of communication to 

ensure the patient is able to communicate as functionally as possible, and offer support and 

education to the family as appropriate. Then, during the subacute phase once much neurobiological 

restitution has occurred and language recovery has slowed, it may be timely and more appropriate 

to conduct comprehensive standardised speech and language assessments to enable the clinician to 

make a more reliable diagnosis and prognosis regarding language recovery and to begin a therapy 

programme which accurately targets any persisting underlying language deficits.  

Clearly, the influence of timing and type of therapeutic intervention needs to be more clearly 

understood. In the long term, accurate predictors of recovery will enable the relative effectiveness 

of treatment programmes and timing of rehabilitation to be measured. Once this is achieved 

targeted, realistic rehabilitation goals can be set and cost effective provision of therapy can be 

offered to ensure maximal outcomes whilst also ensuring that resource allocation is at its most 

efficient. Furthermore, the identification of the brain mechanisms driving recovery could provide 

new targets for neurobiological treatments such as non-invasive brain stimulation or 

pharmacotherapy. 
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6.2.2 Mechanisms of Recovery 

While it is clear that both left and right hemisphere mechanisms are associated with 

improved language function in aphasia, the extent and timing of the involvement of these 

mechanisms and critically, whether their engagement assists or hinders language recovery remains 

an interesting point of contention. The findings in this thesis contribute to this debate and provide 

evidence that both left and right hemisphere mechanisms are associated with aphasia recovery, but 

this involvement varies from the subacute to chronic time points and differentially impacts on 

improved language function.  

In the subacute stage of recovery, neurophysiological changes are still occurring although 

less rapidly than in the acute stage and thus neural mechanisms at this stage reflect a system that is 

still undergoing reorganisation. The subacute results in this thesis showed that activity in discrete 

left hemisphere regions correlated positively with improved language function in the chronic phase. 

Specifically subacute brain activity in the left posterior cingulate predicted improved spoken word 

comprehension while subacute activity in the left insular/IFG predicted improved overall language 

function in the chronic phase of recovery. The left posterior cingulate is frequently activated in 

semantic-based tasks and is strongly connected with other language regions including the 

ventromedial prefrontal and medial temporal regions (Leech & Sharp, 2014) while left IFG is 

considered a key component of the language network and associated with a range of language 

functions (Binder et al., 2009; Price, 2012). Thus the finding of increased recruitment in the early 

aphasia recovery period in these ipsilateral regions may reflect compensatory perilesional 

recruitment, whereby undamaged areas of the left hemisphere language network surrounding the 

lesion are engaged to support the compromised language functioning (Saur et al., 2006; Thompson, 

2000b). It should also be acknowledged that involvement of the left posterior cingulate cortex in 

conceptual processing tends to occur in stimulus-independent or freewheeling mental activity 

(Leech & Sharp, 2014).  

However, subacute brain activity also correlated negatively with language recovery in left 
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SFG, left postcentral gyrus regions and in right SFG and therefore the involvement of left 

hemisphere mechanisms does not always appear beneficial and may predict a poorer outcome. The 

engagement of these domain-general systems may be caused by the level of damage in domain-

specific language systems. Patients with lesions that severely disrupt left hemisphere language 

systems may recruit these regions to assist with language processing in early aphasia recovery, but 

since the function of these regions is associated with cognitive control, its involvement is unlikely 

to be as efficient as the upregulation of regions in more domain-specific language systems. 

In the chronic stage of recovery, much of the neurophysiological changes associated with 

spontaneous recovery have ceased and the system may be considered to have undergone significant 

reorganisation. The findings in this thesis show that while left hemisphere regions continue to be 

associated with improved language outcome, right hemisphere mechanisms also appear to play a 

critical role in recovery in chronic aphasia. The left hemisphere regions that correlated with an 

improved outcome included the left posterior cingulate and left aSTG and confirm that the ability to 

recruit regions in the left hemisphere of both domain-general and domain-specific language areas 

has a critical role in ongoing aphasia recovery. The role of right hemisphere domain-general 

systems in the chronic phase appears to indicate improved outcome and may reflect a compensatory 

masquerade (Grafman & Litvan, 1999), that is the carrying out of the same function using a 

different strategy and associated neural mechanisms, and in this case, an engagement of regions 

associated with cognitive control recruited to support cognitive-linguistic processes, which are 

usually dependent on left hemisphere regions but are compromised following disruption to the 

network.  

Findings from this thesis support the view that a combination of neural mechanisms 

underpin aphasia recovery (Crinion & Leff, 2007; Price & Crinion, 2005; Thompson & den Ouden, 

2008) and are implicated at different time points in subacute and chronic aphasia. The role of the 

left hemisphere appears important at both time points and specifically the engagement of 

perilesional tissue in domain-general and domain-specific language systems appears to play a 



176 

significant role in recovery from aphasia. The role of the right hemisphere in language recovery is 

more unclear and whether its involvement constitutes a compensatory upregulation to support 

compromised function of the left hemisphere networks or whether its involvement is 

disadvantageous and associated more with dysfunctional processes and a loss of transcallosal 

inhibition, is yet to be fully determined.  

6.3 Limitations and Future Directions 

This thesis successfully used a simple auditory lexical decision task with a novel 

pseudoword condition, to determine neural underpinnings of spoken word recognition and to 

identify mechanisms of recovery associated with improved language function in patients in the 

subacute and chronic stages of post-stroke aphasia. However, some comments regarding the study 

limitations are necessary as they will benefit future studies. A first limitation concerns the selection 

of stimuli. As is typical of such studies, the abstract words were of very low imageability and 

although challenging, future studies may benefit from attempting to match the levels of imageability 

in both concrete and abstract conditions. A second limitation concerns the inclusion and exclusion 

criteria which were very stringent in order to ensure that only patients with aphasia who were able 

to provide informed consent and perform the fMRI task were included in the study. As a result, all 

patients with severe language comprehension deficits and a more global aphasia presentation were 

automatically excluded. Thus the small sample size combined with a cohort which did not include 

more severe aphasia subtypes was not truly representative of the aphasic population. This may have 

impacted on the results in that the neural mechanisms which were considered to underpin aphasia 

recovery, may in fact be more representative of a mild-moderate aphasia presentation. For example, 

remaining intact left hemisphere regions in those patients with milder aphasic symptoms may have 

inhibited the functional upregulation of the homologous regions as right hemisphere adaption is 

thought to occur more commonly when the inhibition from the contralateral region is removed 

(Grafman & Litvan, 1999). Thus, by including more patients with severe aphasia, the upregulation 

of right hemisphere mechanisms may have been more prevalent. Future studies will undoubtedly 
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benefit from recruiting a larger cohort of patients with a more heterogeneous range of lesions, 

language deficits and associated recovery trajectories, recruitment issues notwithstanding.  

An additional shortfall with the study was that the provision of therapy was not able to be 

controlled for and thus it is not clear how it may have contributed to recovery. Most patients 

received usual care while an inpatient in hospital, and while no patient underwent an intensive 

therapy program, some continued to receive therapy input once they had been discharged from 

hospital before the chronic stage assessment. Other patients who had a more mild presentation 

received minimal therapy although some of their symptoms were still persisting in the chronic 

phase. Thus the effects of therapy from the subacute to chronic period of recovery could not 

considered and this may have been a factor which influenced the results (Lazar et al., 2010). Future 

studies will benefit from controlling the type, amount, frequency and timing of therapy intervention 

to examine whether the recovery mechanisms and functional outcome can be influenced by 

treatment. Finally, as the current study focussed on single word and sentence outcome measures, 

future studies will also benefit from moving towards using more ecologically valid, connected 

speech as an outcome measure to determine the effects of both spontaneous and treatment-induced 

recovery.  

Another limitation of the present study is that additional neuroimaging modalities were not 

used to inform the interpretation of the results regarding the neural substrates which underpin 

aphasia recovery. The relative safety and non-invasive nature of MRI has enabled more 

investigation into brain structure and function relationships and is fundamental for exploring the 

neural mechanisms involved in language processing. However, there are inherent limitations in 

using one imaging modality in isolation. Future studies investigating aphasia recovery may benefit 

from using a combination of complementary MRI techniques.  

Diffusion imaging is able to determine the integrity and connectivity of the white matter 

fibres which can be damaged following stroke and can be combined with other imaging 

technologies to provide novel insights into language processing mechanisms. Diffusion tensor 
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imaging (DTI) has been used to complement structural language studies in healthy brains 

(Richardson & Price, 2009) and has also been able to demonstrate that, despite normal MRI 

morphometry on standard structural scans, language dysfunction may be associated with reduced 

integrity of white matter structures connecting the anterior and posterior language regions (Breier, 

Hasan, Zhang, Men, & Papanicolaou, 2008). DTI has also proved a useful imaging technique in 

exploring longitudinal changes in major fibre trajectories and anatomical predictors associated with 

aphasia recovery from diffusion tractography (Forkel et al., 2014; van Hees, McMahon, et al., 

2014a). In addition, by combining DTI with fMRI, information regarding the language networks 

and the specific function associated with distinct pathways is able to be examined (Glasser & 

Rilling, 2008; Saur et al., 2008). Thus, the use of DTI with complementary methodologies in future 

studies investigating aphasia recovery, may provide novel insights into how white matter integrity 

influences and predicts functional outcome in aphasia recovery. Measures of structural connectivity 

may also be combined with measures of functional connectivity within and between relevant 

language and cognitive networks, particularly given the regions we identified as being correlated 

with recovery (Geranmayeh et al., 2014).  

Another important imaging methodology to consider in future studies investigating aphasia 

recovery is resting state fMRI to enable analysis of functional connectivity between anatomically 

distinct brain regions when the brain is ‘at rest’; that is when the brain is not engaged in an overt 

task. Previous studies have shown that during rest, the brain is not silent, rather there is continual 

processing of information and ongoing functional connectivity between brain regions (Biswal, 

Kylen, & Hyde, 1997). RSFC analyses have been used to investigate behavioural differences in a 

variety of patient populations including Alzheimer’s disease (Supekar, Menon, Rubin, Musen, & 

Greicius, 2008), schizophrenia (Jafri, Pearlson, Stevens, & Calhoun, 2008) and aphasia (van Hees, 

McMahon, et al., 2014b) and a recent study investigating longitudinal changes in recovery from 

traumatic brain injury showed that increased functional connectivity in networks involving the 

medial temporal and insular regions occurs at 3 to 6 months (Hillary et al., 2011). In addition, the 
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utility of combining resting state data with task-based fMRI data to explore connectivity in key 

language subregions has also been demonstrated (Jackson, Hoffman, & Pobric, 2016). Critically, 

because RSFC can be performed without any overt response from the patient, it offers an 

advantageous imaging technique to characterise network changes in both spontaneous and treatment 

induced improvements in early post-stroke aphasia and may provide additional insights in future 

studies investigating longitudinal changes in aphasia recovery.  

A further imaging methodology that may provide novel information on predictive neural 

mechanisms associated with aphasia recovery is voxel-based lesion-symptom mapping (VLSM; 

Bates et al., 2003). VLSM enables the relationship between the extent of the lesion and language 

symptoms in aphasia to be examined (Bates et al., 2003; Lee et al., 2006) and provides lesion maps 

which can be overlaid and within-group analyses carried out. Across-group comparisons can also be 

made using data from the lesion group and normal subjects, and areas that are identified 

consistently across a group can then be considered ‘necessary’ for performance of that particular 

function (Vandenberghe & Gillebert, 2009) and can inform the neural basis of language (Mirman et 

al., 2015). In addition, VLSM can be combined with other imaging modalities to provide a more 

comprehensive understanding of language processing mechanisms. Functional MRI can be used to 

complement lesion studies such that anatomical maps can be overlaid with lesion maps and fMRI 

activation maps to identify regions that are critical to the performance of a language task (Price & 

Friston, 2002; Vandenberghe & Gillebert, 2009). In addition, the complementary use of voxelwise 

lesion-behaviour mapping (Rorden, Karnath, & Bonilha, 2007) and DTI has been used to examine 

how damage to ventral and dorsal language pathways affects language comprehension in acute 

aphasia (Kümmerer et al., 2013) and future longitudinal studies investigating aphasia recovery 

would benefit from examining how the relationship between structure and function changes over 

the course of aphasia recovery.  

The use of an imaging modality to measure perfusion levels may also be beneficial to future 

studies investigating longitudinal changes in aphasia recovery. Techniques such as Arterial Spin 
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Labelling (ASL) measure blood perfusion levels and can identify hypoperfused regions not always 

identifiable with a structural scan. In acute aphasia, the degree of hypoperfusion is currently 

considered a more reliable predictor of neurological deficit than the size of the lesion (Hillis et al., 

2000) and has been shown to have an influence on language function in the acute stages post-stroke 

(Hillis et al., 2000; Hillis et al., 2004). However, studies have also demonstrated that cerebral 

perfusion is still present in chronic stroke patients (Brumm et al., 2010), correlates with the severity 

of aphasia even at one month post-stroke and is actually a more reliable predictor of aphasia 

severity than lesion size (Fridriksson et al., 2002). Thus, while the present study did not include 

patients in the acute recovery stage, it may be beneficial in future studies investigating longitudinal 

changes associated with aphasia recovery to incorporate ASL since it is a non-invasive technique 

and can be acquired in conjunction with a structural MRI scan, making it a feasible clinical/research 

tool. 

6.4 Overall Conclusions 

Findings from the studies on healthy young and older adults confirmed that concreteness 

effects were present in both groups and demonstrated that spoken word recognition of concrete and 

abstract words remains preserved in ageing. The imaging results for both groups also confirmed a 

range of common regions were activated in response to concrete and abstract words regardless of 

age. Of these regions, activity in bilateral AG and left posterior cingulate was reliably elicited in 

response to concrete greater than abstract greater than pseudoword processing. The healthy young 

adult findings cannot be fully reconciled by either of the two dominant accounts used to explain 

concrete and abstract processing as dual coding theory would not predict increased left hemisphere 

activity for concrete compared to abstract words, while context availability theory would not predict 

increased right hemisphere activity for either concrete or abstract words. Instead, engagement of the 

bilateral AG was more consistent with contemporary theories of embodiment which propose that 

the AG acts as a convergence zone. The contrasting findings in healthy older adults were interpreted 

as reflecting different aspects of age-related compensatory upregulation such that the older adults 
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focus more on phonological and less on semantic aspects of processing in order to maintain a 

preserved performance.  

The findings for the aphasic patients demonstrate the potential of the experimental paradigm 

to reliably elicit language-related neural activity in both subacute and chronic aphasia and provide 

an indication as to how distinct patterns of brain activity change over the course of recovery and 

may relate to improved spoken word comprehension. While no definitive conclusions can be drawn 

regarding the timing and extent to which the distinct mechanisms underpin a successful recovery, 

the results do provide support for the view that aphasia recovery is associated with a dynamic set of 

left and right hemisphere mechanisms which are differentially recruited during subacute and 

chronic aphasia. The results of this project have demonstrated that the role of the left hemisphere 

appears critical at both time points and specifically the engagement of regions in domain-general 

and domain-specific language systems appears to predict improved recovery. In particular, the 

positive recruitment of left posterior cingulate cortex at both subacute and chronic phases suggests 

that this region contributes to language comprehension improvements in aphasia recovery, although 

its function differs depending on the time post-stroke. The role the right hemisphere plays in 

language recovery is less clear, particularly with regard to the involvement of prefrontal structures. 

These results contribute to the debate on the role of left and right hemisphere mechanisms in 

recovery and highlight the potential role of more domain-general systems in post-stroke aphasia.  

Currently there is no accurate way to predict an individual’s potential for aphasia recovery 

and there are many factors that may contribute to both spontaneous and treatment-induced 

improvements (Jarso et al., 2013). While it is acknowledged that the sample size in the present 

study is small, the findings from this thesis demonstrate the predictive strength of utilizing a 

paradigm that people with aphasia are able to perform successfully and accurately in the early 

stages post-stroke. This paradigm has the potential to be used alongside other imaging modalities in 

future longitudinal studies to enable a more detailed understanding of the complex relationship 

between brain structure and function in aphasia and the neural mechanisms associated with aphasia 
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recovery. In the future, this information may be combined with clinical data to predict an 

individual’s potential for overall and therapy-induced recovery. Such an approach would transform 

current practices in aphasia rehabilitation. Not only does this ensure a better quality of life for the 

person with aphasia but it also has considerable implications for the provision of speech pathology 

services in the acute-subacute hospital setting, where resources are often limited and targeted, 

effective therapy optimum.  
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