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Surprise responses in the human brain demonstrate statistical
learning under high concurrent cognitive demand
Marta Isabel Garrido1,2,3, Chee Leong James Teng4, Jeremy Alexander Taylor2, Elise Genevieve Rowe1,2 and Jason Brett Mattingley1,3,5

The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive
behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein,
as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however,
learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of
statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with
responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers
evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was
greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early
neurophysiological marker of the brain’s ability to implicitly encode complex statistical structure in the environment. Moreover, we
manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these
streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high
cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive
load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when
cognitive resources are taxed by concurrent demands.
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INTRODUCTION
Learning about regularities in the world is a fundamental ability of
adaptable animals. This ability to predict what will happen next
provides a competitive advantage for anticipating reward or
avoiding punishment. Both we and others have previously
demonstrated that the human brain can implicitly learn about,
and detect, violations in these regularities.1–3 A large number of
studies investigating regularity learning have employed auditory
oddball paradigms in which so-called ‘standard’ sounds establish a
given rule, or a prediction, and occasional ‘oddball’ events violate
that rule. These prediction violations evoke a conspicuous early
brain response (peaking at about 100–250 ms), which can be
recorded with magneto- and electroencephalography (M/EEG).
This response, called the mismatch negativity (MMN), is thought
to reflect a sensory prediction error and a neurophysiological
marker of a learned regularity.4,5

In the classic, and most commonly used, oddball paradigm,
standard sounds are repeated single pure-tone events and
oddballs are rare sounds that differ from standards in some
physical property such as frequency,6–9 duration10 or amplitude.11

More sophisticated paradigms have employed abstract
regularities, albeit based on deterministic sequence-based rules,
such as a sequence of regularly descending tone pairs broken by
an occasional ascending combination.12 In contrast, we have
designed a novel paradigm in which the regularity is completely
probabilistic: it can not be encoded as a deterministic sequence-
based rule, a finite set of known stimuli, or by a categorical

separation between expected and unexpected events.1 In that
study, we showed that people can implicitly learn statistical
patterns while performing a simple incidental detection task, and
that the strength of the MMN depends on the relative likelihoods
of oddball stimuli. In more ecological scenarios, however, learning
about regularities will often occur in the context of competing
cognitive demands that may impose limits on cognitive resources.
It has been shown that sensory prediction error responses can

be elicited when cognitive resources are taxed by concurrent
demands, for example, while people perform challenging
tasks13–15 and even during non-conscious states such as sleep16 or
coma.9,17 This demonstrates the brain’s capacity to detect changes
automatically,18 even when cognitive resources are limited. These
studies have typically employed rule violations simply evoked by a
change occurring after several repetitions of the same event.
While such observations suggest that the brain can detect simple
changes when voluntary attention is reduced or absent, it is
unclear whether the system can implicitly learn, and detect
violations to, complex patterns while performing a cognitively
demanding task. Here we asked whether such learning can occur,
and if so, whether it is compromised by depletion in cognitive
resources associated with performance of a concurrent task.
To address these questions we used our novel MMN paradigm,1

which employs a probabilistic regularity, in conjunction with a
working memory task to tax cognitive resources.19 We hypothe-
sised that the brain should be able to learn, and detect violations
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to, statistical regularities even while performing a highly
demanding cognitive task.

RESULTS
Single-channel analysis
Our goal was to demonstrate that the brain is able to learn, and
detect violations to, statistical regularities even under high
concurrent cognitive demands. To do so, we recorded EEG data
while human participants listened to a stream of pure-tone sounds
sampled from narrow and broad Gaussian distributions centred at a
given frequency (see Figure 1a). We first examined whether our
results replicated the MEG findings reported by Garrido et al.,1

which employed the same paradigm as used here in Experiment 1;
that is, the same sound structure (as illustrated in Figure 1a) was
played while participants performed a simple incidental visual
detection task. We contrasted evoked responses to odds and
means under narrow and broad distributional variance (event-
related potentials (ERPs) recorded at fronto-central channel FCz,
displayed in Figure 1b), and indeed found that responses to odds
were larger than responses elicited by means, regardless of
contextual variance and within the typical MMN time window
(main effect of surprise, F(1,18) = 46.71, P=2.14×10− 6). In addition,
we found that these MMNs, or prediction error responses, were
larger under the narrow than the broad distribution (surprise by
variance interaction, F(1,18) = 7.99, P=0.011). Follow-up analysis
revealed larger responses to odds within the narrow than the broad
distribution conditions (t(18) =− 2.32, P=0.032), but no differences
were found for means between the narrow and the broad contexts
overall (t(18) = 1.43, P=0.169). These results replicate our previous
MEG findings (Garrido et al.1), and demonstrate that the brain is
sensitive to outliers and to contextual uncertainty.
Next, in Experiment 2, we again used the same sound structure

but manipulated cognitive demands by adding a secondary task
at fixation that imposed a working memory load (N-back) with two
levels of difficulty (low and high cognitive load; 1-back versus
2-back). In this task, participants were significantly slower
(F(1,16) = 14.91, P= 0.001) and less accurate (F(1,16) = 29.89,
P= 5.17 × 10− 5) in the high-load than in the low-load condition,
regardless of contextual variance, thus verifying the effectiveness
of the cognitive load manipulation. For the incidental auditory
streams, which were identical to those employed in Experiment 1,
we again found larger responses to odds than to means,
regardless of cognitive load (main effect of surprise,
F(1,16) = 43.02, P= 7× 10− 6) and this difference was again larger
under the narrow than the broad distribution (surprise by variance
interaction, F(1,16) = 22.83, P= 2.05 × 10− 4, see Figure 1c,d). These
results demonstrate that the brain is sensitive to outliers and
contextual variance even when it is engaged in a cognitively
demanding task.

Spatiotemporal analysis
The fine temporal resolution and spatial coverage afforded by the
high-density EEG recordings permitted a whole-volume spatio-
temporal analysis. We converted the whole data into three-
dimensional (3D) spatiotemporal images (see Methods for further
details) and modelled these data with a GLM approach as typically
used in functional magnetic resonance imaging studies. As above,
we employed analysis of variance (ANOVA) designs to investigate
effects of surprise, variance and cognitive load. With this
approach, however, we could fully explore the richness of the
whole data set in an unbiased way, that is, with no a priori
assumptions about when in time and in which particular channel
our effects might be. In Experiment 1, we found a large cluster for
the main effect of surprise, which peaked at 75 ms and spread
over a fronto-central scalp region (Po0.05, family-wise error
(FWE) corrected, Figure 2a). In addition, we found one cluster for

the interaction of surprise and variance, which peaked at a central
region of the scalp at 110 ms (Figure 2b, statistical map displayed
at Po0.001 uncorrected). This cluster reached significance with a
small-volume correction (SVC, FWE-corrected Po0.014) for the
reduced volume of interest, based on the orthogonal main effect
of surprise (shown in Figure 2a). These results are consistent with
our previous findings,1 and demonstrate the brain’s sensitivity to
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Figure 1. Stimulus distributions and prediction error responses.
(a) Stimuli presented in Experiments 1 and 2. The frequencies of the
majority of pure-tone sounds in each block (grey) were drawn from
a contextual distribution that could be narrow (left, blue shading) or
broad (right, red shading). The distribution densities are shown on
the right in blue and red shading; both were centred at 500 Hz and
had s.d. of 0.5 and 1.5 octaves, respectively. Embedded in both
sequences were probe tones whose frequencies were either equal
to the distribution centres (means, cyan and magenta), or 2 octaves
above (odds, blue and red). (b–d) Brain responses evoked by mean
and oddball sounds in the context of the narrow and the broad
distributions, recorded in a fronto-central channel (FCz) while
participants performed a detection task (Experiment 1, b) and a
working memory task (Experiment 2) with low (c) and (d) high
cognitive load.
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outliers, as well as its ability to learn about the statistical structure
of sensory events.
In Experiment 2, we asked whether the ability to learn the

statistical structure of the tones was preserved or modulated by

concurrent cognitive demands, as manipulated by the N-back
working memory task. We found that responses to odds were
larger than responses to means, regardless of distributional
variance and cognitive load, again at fronto-central regions of
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the scalp and peaking as early as 110 ms, as well as at later time
points (Po0.05 FWE-corrected, Figure 2c). The interaction
between surprise and variance, regardless of load, resulted in a
central cluster peaking at 125 ms (Po0.05 FWE-corrected,
Figure 2d), which is very similar in spatial coverage and temporal
profile to the effect found for the same interaction in Experiment
1. In addition, we found a number of clusters for the effects of load
and the three-way interaction (but only at Po0.01 uncorrected)
over occipital-parietal regions, but these failed to reach signifi-
cance when corrected for multiple comparisons. This shows that
the human brain can indeed learn about, and detect changes to,
statistical regularities, even while occupied with a cognitively
demanding concurrent task.
Finally, we conducted follow-up tests to determine whether

learning ability was preserved in either, or both, cognitive load
conditions (Figure 2e–h). We found a main effect of surprise in
both load conditions, with a common fronto-central cluster
peaking at about 100 ms (105 ms and 95 ms for high load and
low load, respectively, both at Po0.05 FWE-corrected; compare
Figure 2e,g). Under low load, however, we found two extra frontal
clusters at later time points (peaking at 240 and 400 ms). The
interaction of surprise by variance yielded one early cluster
peaking at 125 ms in both load conditions, although this cluster
was less significant under the high-load condition (displayed at
Po0.05 FWE-corrected and Po0.001 uncorrected, respectively;
compare Figure 2f,h). In the low-load condition, the significant
cluster survived whole-volume FWE correction and was slightly
right lateralised, whereas in the high-load condition there was an
early central cluster, Po0.01 FWE (for the volume defined in the
orthogonal effect of surprise under high load, shown in Figure 2g).

DISCUSSION
In this study, we investigated the role of concurrent cognitive
demands on learning about statistical relationships in the auditory
sensory environment. In two separate experiments, we had
participants perform a visual task while listening to an apparently
random sequence of sounds, which, unbeknownst to them, was
governed by a specific statistical structure. Sounds were drawn
from two normal distributions with equal mean frequencies and
distinct contextual variances: narrow and broad. We examined
sensory prediction error responses with EEG by contrasting
outliers and mean sounds under both narrow and broad variance
contexts and found that outliers evoked a larger response than
mean sounds. Moreover, we found that this prediction error
response was larger for the narrow than broad distribution, a
context under which outliers were less likely. Importantly, these
findings were robust in both experiments, that is, when
participants performed a simple visual change detection task
(Experiment 1, and in keeping with our MEG findings1), and also
when they were engaged in a visual working memory task
(N-back; Experiment 2). Crucially, our findings demonstrate that
people are able to implicitly learn about, and detect violations to,
statistical relationships in the sensory environment even when
engaged in a demanding concurrent task.

We had two principal goals in conducting this study. First, we
aimed to replicate the findings from our previous study,1 which
involved an identical paradigm to that used here in Experiment 1,
but in which neural activity was measured using MEG instead of
EEG. Importantly, we successfully replicated our MEG findings of
larger neurophysiological responses evoked by outliers (compared
with means), which were larger if these outliers were more
unlikely. This provides further support to the idea that the brain is
sensitive to statistical structure in the environment.1,2 It is
important to note that the greater MMN-like response we observe
when comparing outliers with sounds at the centre of the
distribution is most likely caused by a combination of two
processes: a release from adaption20 after a change in the
stimulus, and a second-order memory comparison mechanism.5,8

In our previous study,1 we demonstrated that while release from
adaptation plays an important role in the generation of prediction
error responses, it does not account for them entirely. Indeed, it
appears that a mechanism of sensory learning and comparison
between inputs and a memory trace may be engaged above and
beyond simple adaptation.
In addition, by manipulating the cognitive load imposed by a

concurrent working memory task, we were able to show that such
learning proceeds even when cognitive resources are heavily
taxed. We did not find a significant relative difference in the
surprise effect for the low- and high-cognitive load conditions,
despite verifying that the visual load effect was indeed effective in
that participants were both slower and more error prone in the
high-load than in the low-load condition. There was, nevertheless,
a clear difference (by visual inspection) in the significance maps
for prediction errors (main effect of surprise and surprise by
variance interaction) under both low- and high-cognitive loads.
However we wish to highlight the need for caution in interpreting
the absence of an interaction effect, which might simply reflect
the rather strict correction for multiple comparisons under
random field theory, a lack of power or both. To examine these
possibilities, we used MarsBaR toolbox21 (http://marsbar.source
forge.net/) to compute the effect size of the load by surprise
interaction effect based on a cluster extracted from an uncor-
rected map thresholded at Po0.001, which resulted in a value of
1.06. A power analysis based on 0.80 and 0.95 power and an α of
0.0001 suggests we would need 26 and 33 participants,
respectively, to find a reliable effect (we were left with 17
participants after applying relevant exclusion criteria). The choice
of α is not trivial since it should be comparable to a corrected
threshold, which is hard to compute. Our choice of 0.0001 is based
on the similarity between the Po0.05 FWE-corrected and
Po0.0001 uncorrected maps for the interaction of variance and
surprise. Hence, if this effect were real, to find it we would need to
run our experiment again with at least 26 participants.
We also performed a Bayesian analysis22 to compare the

posterior probability of a Null model, that is, a model without a
load by surprise interaction, with a model including this
interaction. The Null model included two regressors, one for the
effect of surprise and the other for the interaction between
surprise and variance, each of which had revealed significant
effects in the standard SPMs. The Load× Surprise model included

Figure 2. Spatiotemporal maps reveal statistical learning under cognitive load. Spatiotemporal statistical analysis revealed significant effects of
surprise (left column) and surprise–variance interaction (right column) over fronto-central areas at early time points (about 100 ms) for both
the detection task (Experiment 1, a and b) and the working memory task (Experiment 2, c–h). (a) Results for the detection task (Experiment 1).
Main effect of surprise (odds4means) and (b) the interaction between surprise and variance (odds versus means larger in the narrow versus
the broad distribution. Results for the working memory task (Experiment 2). (c) Main effect of surprise and (d) the interaction between surprise
and variance regardless of cognitive load. (e) Simple effect of surprise and (f) the interaction between surprise and variance for the
low-cognitive load condition. (g) Simple effect of surprise and (h) the interaction between surprise and variance for the high cognitive
load condition. (i) 2D scalp topographic maps at peak statistical difference per cluster; (ii) 3D representation of responses with spatial
dimensions on x–y plane, time domain along z-axis and views from dual angles; (iii) Statistical parametric map at peak statistical difference,
anterior–posterior (A–P) and left–right (L–R) sectional views.
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the same regressors as the Null model, plus a third regressor that
modelled the putative interaction between surprise and load. We
fit these two models to the whole spatiotemporal scalp ERP data
and obtained probability maps for each model over the whole
space and time. Our Bayesian analysis revealed that overall, the
Null model explained the data better than the Load × Surprise
model, particularly at the time points where we found clusters
above Po0.05 uncorrected. However, the Load × Surprise model
won at an earlier time point (between 70 and 130 ms), which was
not significant for the load by surprise interaction, even in the
uncorrected Po0.05 maps. Hence, while our Bayesian analysis
suggests that the absence of a load by surprise interaction is the
most likely explanation for our data, it suggests there might be an
interaction at an earlier time point that was not uncovered by the
mass-univariate approach.
The absence of a cognitive load effect on learning would seem

inconsistent with cognitive load theory, which postulates that the
brain has limited cognitive resources.23 A sensible prediction of
this theory is that taxing working memory should leave fewer
cognitive resources for learning about auditory regularities, which
in turn would lead to smaller prediction errors. In contrast, we
found that prediction errors were statistically indistinguishable
under low and high cognitive loads. The absence of any
modulation of prediction errors by cognitive load—specifically
working memory load in this case—is in keeping with the idea of
automaticity in the brain’s change detection system,18 and of the
MMN in particular (consistent with SanMiguel et al.24; but see
Lv et al.,15 who found an increase in the MMN with cognitive load).
Caution is needed, however, in interpreting the lack of a cognitive
load effect in our data. There are a number of important
differences between our paradigm and those of Lv et al.15 and
SanMiguel et al.,24 who both found reduced P300 amplitude with
working memory load. First and foremost, the unpredictability of
our odd sounds was conditional on participants learning—
probably implicitly—about the statistical relationships among
the auditory stimuli. On the other hand, the above-mentioned
studies used environmental sounds such as those produced by a
drill, hammer, telephone ringing, etc., as oddballs, and pure tones
for standards. In that context, standard and oddball sounds were
physically very different from each other, and importantly,
oddballs had a much higher intrinsic behavioural salience in their
paradigm than in ours, which might have engaged other cognitive
associations and neuronal circuits. Hence, the ‘oddball-ness’ of our
outliers was of a fundamentally different nature to those deviants
employed by Lv et al.15 Another important point of divergence
between the paradigms is that in our implementation the working
memory load depleted cognitive resources in a continuous
manner, i.e., for practically the entire duration of each trial. By
contrast, in Lv et al.15 and SanMiguel et al.,24 this manipulation was
done prior to (instead of during) the presentation of sounds and
on a trial-by-trial basis.
Our findings are consistent with those of Bekinschtein et al.,25

who proposed the notion of local and global (sequence-based)
rules and found early (MMN) signatures of local rule violation,
even when people performed a working memory (letter
detection) task. Indeed, our paradigm established a (non-
sequential) statistical regularity with local violations reflected in
early neurophysiological responses such as MMN. In contrast to
Bekinschtein et al.,25 however, we also found markers of global
violation at early time points (at MMN latency) as shown in the
surprise by variance interaction contrasts. In the paper by
Bekinschtein et al.25, neurophysiological markers of global
violations were only found in later time periods and only if
participants were aware of the regularity structure. In our study,
however, participants reported having no awareness of the
relationship among sounds. In light of our data, and contrary to
Bekinschtein et al.,25 conscious awareness of regularity does not

seem to be necessary for a neuronal signature of global rule
violation.
It is worth noting that we chose to manipulate task load in the

visual modality while statistical learning was probed in the
auditory domain. This choice was driven by an attempt to extract
cleaner auditory evoked responses. The question remains,
however, as to whether we would find an interaction between
cognitive load and learning, had both processes occurred in the
same sensory modality and competed for common attentional
resources. Indeed, it is plausible that cognitive resources are
independently allocated to different modalities,26 and hence no
cross-modality interference would be observed. In other words,
taxing visual resources may have no impact on auditory resources
or learning. An alternative explanation is that our task
manipulation did not push the working memory system to its
full capacity, which may have left spare capacity available for both
implicit auditory learning and the visual task, and hence concealed
a potential cross-modal interference (ref. 27, but see ref. 28). This
cross-modal interference might have been present, had we taxed
the system even further with higher load (i.e., N42-back task) or
with a different working memory task. Verbal working memory, for
example, shares common networks with those engaged by
auditory sensory learning. These two processes might therefore
compete for a common pool of resources if they occur
concurrently.
In this study, we manipulated the cognitive load of the task at

hand. It is worth reflecting on the possible consequences of
manipulating perceptual (instead of cognitive) load. Perceptual
load theory29 posits that processing of goal-irrelevant stimuli
depends on the type and level of load on the task at hand,
decreasing with perceptual task load and, conversely, increasing
with cognitive task load. In a future study it would be interesting
to manipulate perceptual load for the central visual task and to
investigate its effect on statistical learning. In light of perceptual
load theory29 it seems reasonable to predict a decrease in
learning, and hence a smaller surprise effect, evoked by
goal-irrelevant outliers.
Given the unequivocal evidence that people can learn about

statistical regularities in the environment even while engaged in a
demanding cognitive task, it is tempting to speculate that such
learning may remain unaffected in clinical conditions in which
cognitive (working memory) or attentional capacities are
compromised, such as in individuals with attention-deficit/
hyperactivity disorder,30 or those with attention deficits (e.g.,
unilateral neglect) due to stroke.31

In sum, by investigating sensory prediction errors with EEG we
have demonstrated that people can implicitly learn about
statistical patterns in the auditory environment even when taxed
by a concurrent, cognitively demanding visual task.

MATERIALS AND METHODS
Ethics statement
Informed consent from each participant was obtained after a full
explanation of the experiment, according to the procedures approved
by The University of Queensland Medical Research Ethics Committee.

Participants
EEG data were recorded from 41 adult participants in 2 experiments (20 in
Experiment 1 and a separate pool of 21 participants in Experiment 2).
We excluded 1 participant in Experiment 1 due to excessive noise in the
EEG signal, and hence analysis was conducted on a total of 19 participants
(10 males, age range: 19–46 years, mean age: 24 years). In Experiment 2,
we excluded 1 participant due to a technical failure and 3 participants due
to underperformance (hit rate o50%) on the load task (11 males,
6 females, age range 19–30 years, mean age 23 years). All participants were
healthy volunteers, had no known history of psychiatric or neurological
disorders or previous head trauma, resulting in unconsciousness, and had
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normal or corrected-to-normal vision. Participants were naive to the study
and were compensated financially for their time. After the experiment,
the participants were debriefed about whether they noticed anything
particular about the sounds. None of the participants reported being aware
of a pattern in the sounds.

Experimental design
In both Experiments 1 and 2, participants listened to a stream of sounds
sampled from two Gaussian distributions with equal means and different
variances (narrow and broad, displayed in blue and red shades in
Figure 1a) while performing a visual detection task (Experiment 1) or a
working memory task (Experiment 2). The auditory stream consisted of a
series of pure tones with frequencies sampled from a Gaussian distribution
(in log-frequency) centred at 500 Hz, with a s.d. of either 0.50 octaves
(narrow variance condition) or 1.50 octaves (broad variance condition). All
tones had identical durations of 50 ms, a smooth rise and fall period of
10 ms, and were presented every 500 ms at the same comfortable volume
throughout the experiments. Two types of probe tone, equivalent to the
standard and oddball events in classic MMN paradigms, were embedded
within the tone streams pseudo-randomly, with frequencies equal to the
standard (mean probes: fs = 500 Hz, cyan/magenta) or two octaves higher
(oddball probes: fo = 2000 Hz, blue/red). These probe tones were
indistinguishable from those drawn from the Gaussian distribution. The
resulting distribution of frequencies was not strictly Gaussian as each
probe type (mean/oddball) was presented 10% of the time, while the
Gaussian stream made up the remaining 80% of frequencies. This was
necessary to ensure a good signal-to-noise ratio comparable to that
typically found in MMN studies. Since only the width of the auditory
stream’s frequency distribution differed, ERP comparisons were made
based solely on responses to the probe tones.
In Experiment 1, we employed the exact same paradigm first described

in our previous study.1 Participants were asked to detect luminance
changes in a fixation cross displayed on a screen via a key press, while
ignoring the concurrent auditory stream. The fixation cross had two levels
of luminance, which changed at random intervals between 2,000 and
5,000 ms (in increments of 500 ms). The experiment was presented in two
blocks of 13 min each for the narrow and broad distribution conditions.
Blocks were counterbalanced across participants. There were ~ 160 trials of
each type (mean or oddball), in each block (narrow or broad) and for every
participant.
In Experiment 2, participants monitored a stream of letters presented in

the centre of a computer display, and were asked to perform a visual
N-back task while ignoring the sounds. The N-back task required
participants to press a key when the currently presented letter matched
the letter that was presented either one (low-load condition) or two letters
(high-load condition) prior to the current letter. This formed the basis of
the cognitive load manipulation. Each letter was displayed for 400 ms, with
an inter-stimulus interval of 1,000 ms, plus a randomly determined
temporal jitter of between 0 and 500 ms. The experiment was presented
in 16 counterbalanced blocks of 210 s each (4 blocks per condition:
low- and high-load under narrow and broad variance distributions).
The experimental procedures and stimuli were written in MATLAB

(Mathworks, Natick, MA, USA) and the Cogent 2000 toolbox (London, UK).

EEG recording and preprocessing
Continuous EEG and EOG data were acquired using a BioSemi Active
Two 64 Ag-AgCl electrode system (BioSemi, Amsterdam, Netherlands).
Electrodes were attached according to the international 10–10 system for
electrode placement32 and standard BioSemi reference electrodes were
used to reference all scalp electrode channels. Data were sampled at
1,024 Hz, with 24-bit A/D conversion and a 0.16–100 Hz amplifier band
pass. Offline processing was applied using Statistical Parametric
Mapping (SPM8) software (Wellcome Trust Centre for Neuroimaging,
UCL, London, UK). Experimental trials were epoched from − 100 ms to
+400 ms in peri-stimulus time. Data were then downsampled from 1,024 to
200 Hz, filtered using two applications of a Butterworth filter at 0.50 and
40 Hz, thresholded at 100 μV for artefacts, and baseline corrected between
− 100 and 0 ms.

Spatiotemporal image conversion
Averaged ERP data were converted into 3D spatiotemporal images for
each participant. A 2D 32× 32 matrix was produced per time bin, and the
images were then stacked according to their peri-stimulus temporal order.

This resulted in a 3D spatiotemporal image volume (32 × 32 × 101) per
participant. These images were smoothed at full width half maximum of
8 mm×8 mm×20 ms.

Statistical analysis
Single-channel analysis. Statistical analyses were performed for channel
FCz, a fronto-temporal channel in which MMN responses elicited in oddball
paradigms are typically recorded.18,33 Mean ERP values were obtained by
averaging across a preselected time window of interest and taken over to
ANOVA models. In Experiment 1, we had a 2 × 2 ANOVA design with factors
Surprise (odds, means) and Variance (narrow, broad), and in Experiment 2
we had a 2 × 2× 2 ANOVA design with the extra factor for Cognitive Load
(low, high). To ensure an unbiased selection for the time window of
interest, we computed the mean ERP across all conditions (four conditions
in Experiment 1 and 6 in Experiment 2) and chose the first two time points
where the ERP crossed the zero line (after stimulus onset). With this
procedure, we obtained windows of interest that overlap with typical MMN
latencies,33 namely 80–150 ms in Experiment 1 and 55–165 ms in
Experiment 2. Note that this choice is orthogonal to the statistical tests
performed.

Spatiotemporal maps. We modelled the 3D spatiotemporal image
volumes with a mass-univariate general linear model approach as
implemented in SPM.34 Data were modelled with one regressor per
condition. In Experiment 1, we had a 2 × 2 design with surprise and
variance as factors and four regressors: means and oddballs under the
narrow and broad variance conditions. In Experiment 2, we had the extra
factor of cognitive load resulting in a 2× 2× 2 design with eight regressors:
means and oddballs under narrow and broad variance, and in the low and
high cognitive load conditions. We estimated full factorial ANOVA models
for each participant and computed contrast images for main effects and
interactions. We then carried these contrasts over to a one-sample
t-statistic and assessed the significance of these tests across the group.
This approach enables an unbiased statistical inference over the whole 3D
spatiotemporal data space (2D sensor space and time). Unless stated
otherwise, these statistical maps are reported at a threshold of
Po0.05, with a FWE correction for multiple comparisons for the whole
spatiotemporal volume.
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