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Abstract  

Only when the process of particle detachment is well understood and modelled can minerals 

recovery using the flotation process be modulated to achieve a high efficiency by suitably 

changing the operating parameters. This is vitally necessary for the recovery of coarse 

particles in an energy efficient way, as detachment is the key limiting factor in the successful 

recovery of large particles. However, until the detachment mechanism is more fully 

understood, an upper limit on the floatable particle diameter still remains unidentified. To 

assess the current state of knowledge available in this area, a comprehensive literature review 

on the mechanisms and models of the bubble-particle detachment process in froth flotation is 

presented. In general, the detachment process is considered to be a stochastic process, and is 

usually attributed to the dynamic interactions with the turbulent flow structures (eddies) in 

the flotation environment which cause particles to detach because of dissipating energy. In 

this paper, previous studies on bubble-particle detachment have been critically analyzed with 

respect to the formulation of the models in predicting the detachment probability of particles. 

The models are classified into three different categories: force balance analysis; energy 

balance analysis and empirical analysis of particle size compared to maximum floatable 

particle size. Attention is also paid to an understanding of the mechanisms of bubble-particle 

detachment in quiescent and turbulent liquid flow fields. The predictions of all these models 

have been compared with the published experimental data and it was found that models 

which take an accurate consideration of the influence of eddies on a particle’s detachment 

give the closest predictions. The generally held concept of bubble-particle detachment inside 

an eddy was experimentally validated, where a particle was observed to rotate on the surface 

of a bubble, resulting in a centrifugal acceleration 20 times that of gravitational acceleration. 

The aim of this paper is to review the developments and limitations of the existing models. 

The experimental work is reviewed so as to reveal the mechanisms of bubble-particle 
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detachment. Therefore, the future development of models is identified in order to successfully 

predict particle detachment.  

Keywords: bubble-particle detachment; detachment model; turbulence; flotation   
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1. Introduction 

 

    Froth flotation is an important process in the mining industry, and is widely used in the 

recovery of valuable minerals from the ores. It is also applied in processes like the deinking 

of waste paper and in waste water treatment. The essence of flotation lies in using bubbles to 

capture particles based on their surface hydrophobicity difference. Hydrophobic particles are 

more likely to attach to the bubble interface due to a strong adhesion force compared to 

hydrophilic particles. The kinetics of flotation is often described as a first-order process, 

relating the rate of particle attachment to particle concentrations (Sutherland, 1948; Jowett 

and Safvi, 1960; Kelsall, 1961; Arbiter and Harris, 1962; Klassen and Mokrousov, 1963; 

Ahmed and Jameson, 1989). Following this definition, the rate of a particle capture process in 

a batch process can be described as:  

p

p

C
C

d
k

dt
     (1) 

where the rate constant,  , represents the rate of the removal of particles from the pulp, and 

Cp is the particle concentration in the pulp in units of mass/volume. It is noted that Equation 

(1) only applies to the simulated removal of particles in a batch process. In a continuous 

flotation cell, the inlet and outlet concentrations do not change with time in a steady state, so 

that Equation (1) does not apply to the cell as a whole. Batch flotation has been most 

extensively studied in the laboratory. The experimental data has been tested against a more 

general model: 

p n

p

d
k

dt

C
C     (2) 
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where n is the order of the “reaction” between the particles and bubbles. Arbiter (1951) 

considered the second-order fit experimental data. Morris (1952) considered a first-order rate 

equation similar to Equation (1). When integrated, it gave: 

01
ln

t

C x
k

t C x





                         (3) 

where C0 is the original concentration of the mineral, Ct is the concentration after time t, and 

x is the percentage of unfloatable mineral.  

    Bushell (1962) used a modified first-order equation to fit his data, and gave: 

( )
p

p T

dC
k C C

dt
                (4) 

Here, CT  is the concentration of unfloatable material. The fit of the function improved when 

CT was taken as an empirical constant.  

    These expressions appear to be conflicting, and the reasons lie in the definitions of the rate 

constant k and the rate order n (Jameson et al. 1977). The critical parameter here is the rate 

constant k which, in fact, is not in any sense a constant. It is a proportionality factor that can 

be correlated to a particular set of conditions. The rate constant is typically expressed as a 

function of the physical parameters of the system (Arbiter, 1951; Morris, 1952; Jowett and 

Safvi, 1960; Bushell, 1962; Jameson, Nam et al., 1977; Gorain, Franzidis et al., 1995; Yoon 

and Mao, 1996; Gorain, Franzidis et al., 1997; Deglon, Sawyerr et al., 1999; Heiskanen, 2000) 

which can be written as:  

3

2

collection

b c

QhP
k

d V
 .  (5) 

where Q is the gas volumetric flowrate, h is the depth of the cell,    is the bubble diameter, 

Vc is the effective volume of the cell, Pcollection is the probability that a particle can be 

collected in the pulp phase. The rate constant is dependent on the particle and bubble sizes, 
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and the way of dependency varies as the particle collection efficiency is strongly dependent 

on the particle’s size. The particle collection process is decomposed into three incidences: the 

collision between the particles and bubbles; the particle attachment to the bubble; the particle 

detachment from the bubble. Thus, the probability that a particle that can be collected is:  

 1collection c a dP P P P     (6) 

where    is the collision probability,    is the attachment probability and    is the probability 

of a particle detachment from the bubble. It is apparent that the collision, attachment and 

detachment processes should be individually modelled so as to properly model the flotation 

process kinetics in order to successfully predict the product recovery rate from the limited 

known input variables. The recovery rate can be improved by manipulating these input 

variables. Flotation recovery typically depends on particle size. Initially, the flotation 

recovery increases with particle size monotonically and reaches a plateau. Afterwards, the 

flotation recovery plummets with an increase in particle size (Gaudin, 1931; Trahar, 1981; 

Dobby and Finch, 1987; Crawford and Ralston, 1988; De F. Gontijo et al., 2007). The 

reasons attributed to the decline in recovery rates for fine and coarse particles are reportedly 

different (Ralston et al., 1999; Jameson et al., 2007; Jameson, 2010). Due to their small 

inertias, the collision and attachment stages often become limiting factors for fine particle 

recovery. On the contrary, coarse particles, after forming bubble-particle aggregates, are 

vulnerable to disturbances from the adjacent liquid’s motion, which results in particle 

detachment. Both the collision and attachment processes have been widely investigated and 

reported. Critical literature reviews on the collision models have been presented (Dai et al. 

2000; Meyer and Deglon, 2011). On the attachment process, Nguyen et al. (1998) thoroughly 

studied the factors affecting this process. In a physical sense, particle attachment happens 

only when the induction time, defined as the time for the thin film between the particle and 
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the bubble to rupture, is longer than the contact time between a bubble-particle pair. Albijanic 

et al (2010) reviewed the roles of the induction and contact times in a study of the attachment 

process. It was noted that out of the three successive sub-processes of the bubble-particle 

interactions, the detachment process remains relatively unexplored for the reason that 

detachment is negligible for fine particles – the usual size range of interest in mineral 

processing industries. The modelling approaches in such cases assumes that, once attached, 

fine particles stay attached to the bubble, leading to complete recovery.  

Nevertheless, the study of particle detachment from the bubble has its historical origins in 

the analyses of the forces on the particle attached to a fluid interface (Nutt, 1960; Princen, 

1969). This theory was further developed by Schulze (1977; 1982). The mechanisms of 

particle detachment are complex because of the eddies and circulating flow patterns imposed 

on the pulp. From the perspective of the hydrodynamics, the various mechanisms of the 

detachment of particles from bubbles were discussed. Klassen and Mokrousov (1963) 

considered that the detachment of particles from bubbles was because of the destructive 

forces in a flotation process. The destructive forces may come from: (a) the rise (accelerated 

or equilibrium) of a mineralized bubble; (b) the actions of liquid streams; (c) the slide of a 

particle along a bubble; (d) a change in the motion of a bubble; (e) the impact and attrition of 

particles in the pulp against a mineralized bubble surface; (f) the impact of a bubble with an 

obstacle; and, (g) the oscillation of the bubble’s surface. Woodburn et al. (1971) proposed 

that a particle could be wrenched from a bubble, to which it had adhered, by a sudden 

acceleration. Schulze (1982) hypothesized that a bubble-particle aggregate was entrapped 

into an eddy and that the attached particle followed the motion of the eddy in a centrifugal 

movement. When the centrifugal force is higher than the capillary force, the particle is 

detached.  



  

8 
 

It is worth noting that these analyses were based on bubble-particle interactions in the pulp 

phase and that the effect of the froth layer was not considered. The existence of a froth layer 

has a significant impact on particle detachment, especially at the pulp-froth interface (van 

Deventer et al., 2004). On the way up to the froth layer, the bubble-particle aggregates 

gradually decelerate due to a decrease in the medium’s density which results in a subsequent 

reduction in the driving buoyancy force. It is believed that the abrupt change in velocity is 

sufficient to dislodge attached particles when the bubbles carrying the attached particles 

arrive at an air-water interface. The kinetic energy released by the deceleration and impact 

upon arrival at the interface causes the detachment of the particles (Falutsu, 1994). However, 

recent experiments by Ireland and Jameson (2014) have demonstrated, for the first time, that 

the particles do not detach as the arrival kinetic energy is dissipated by the motion of the 

particles. In the froth phase, the bubbles coated with particles tend to coalesce and result in a 

lower specific surface area. The combined effects of the increase in inertia, due to collision, 

and the decrease of the specific surface area lead to particle detachment. Particle detachment 

in the froth phase has attracted significant recent research attention (Ata et al., 2003; Ata, 

2008; Ata, 2009; Ata, 2011; Ata, 2012; Ang et al., 2013). For the last few decades, the 

concept of coarse particle flotation has been gaining significant research attention in the 

mineral processing industries as significant amounts of energy can be saved in the grinding 

process (Austin, 1973; Jameson, 2010; Curry et al., 2014). It is known that, unlike for fine 

particles, the detachment sub-process is the limiting factor for the successful recovery of 

coarse particles in the flotation process. Due to such limitations, the option for extending the 

upper size limit of floatable particles is rather limited; however, this constraint can be relaxed 

by manipulating the hydrodynamic conditions of the flotation cell. The reasons behind the 

poor recovery rates of coarse particles was explored by Jameson (2012), based on 

experiments carried out by two separate research groups. Welsby et al. (2010) reported 
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careful on-site measurement of the rate constant for galena flotation, and the experimental 

data were analyzed with reference to particle size and surface liberation. Thereafter, Muganda 

et al. (2011) measured the effect of the contact angle on the flotation rate constants based on a 

size-by-size basis. It was observed that the particle size’s influence on the flotation recovery 

followed a similar trend for particles of different levels of surface liberation. By combining 

these two interesting experimental results, Jameson (2012) explained that the poor recovery 

of coarse particles is independent of poor surface liberation, since even the fully liberated 

particles are affected in the same way with changes in the particles’ sizes. This leads to an 

important conclusion that the hydrodynamic environment in flotation cells results in a decline 

in the recovery rates of coarse particles. More specifically, these hydrodynamic conditions 

are essentially governed by the fluctuating velocity components, i.e., the intensity of the 

turbulence in the pulp phase. It was shown that decreasing the level of intensity of the 

turbulence leads to the improved recovery of coarse particles of a given size (Jameson and 

Goel, 2012). 

    Although significant studies have reported on the bubble-particle detachment process, to 

the best of authors’ knowledge there are no reviews which have reported on the bubble-

particle detachment phenomenon to this date. This literature review is intended to summarize 

the previous bubble-particle detachment studies, with an emphasis on an in-depth analysis of 

the mechanisms and strengths and weaknesses of the various models reported. To avoid the 

complexities of inter-bubble-particle collision interactions in the froth phase, for which 

models are decidedly scarce, and which require further research, this review is constrained to 

a discussion only of the particle detachment process in the pulp phase.   

 



  

10 
 

2. Bubble-particle detachment models 

2.1.  Detachment models based on force balance 

 

    It is intuitive to study particle motions on a bubble’s surface, either for an analysis of 

attachment or detachment, from the perspective of a force balance analysis following 

Newton’s second law of motion. The forces acting on the particle can be divided into two 

groups: attaching forces and detaching forces. The competition between these two groups of 

forces governs the particle’s detachment and stability. A particle will detach from a bubble 

interface if the magnitude of the detaching forces surpasses the magnitude of the attaching 

forces. To analyze the particle detachment process, the Bond number (Bo) is expressed as the 

ratio of the inertial force to the capillary force in order to characterize the stability of the 

bubble-particle aggregate. Following the above definition, in a general sense, the Bond 

number can be expressed as: 

2gd
Bo 




             (7) 

where g is the gravity acceleration associated with the body force, ρ is the particle density, d 

is the characteristic length scale of a particle and σ is the surface tension of the interface. A 

high Bond number indicates that the system is relatively unaffected by the effects of surface 

tension, while a low Bond number indicates the dominance of a surface tension force. 

    Originally the importance of the Bond number was utilized in describing the two-phase 

system, for example the shape deformation of a droplet. Realizing the limitations of the Bond 

number in reflecting the actual physics of a three-phase flotation system, Schulze (1982) 

proposed a modified Bond number ( *

oB ), which is expressed as the ratio of the magnitude of 

all off the detaching forces to all of the attaching forces. Thus, the modified Bond number is 

not restricted to a two-phase system, where only particles (droplets or bubbles) exist in a 
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continuum fluid, but is expanded to a multi-phase flotation system in describing a bubble-

particle detachment where the particles, bubbles and liquid all coexist.  

    Logically, if particle detachment is considered to be a static process, where the detaching 

force is equal to, or exceeds, the attaching force, the particle should be detached. When a 

detaching force is less than an attaching force, particles stay attached to the bubble interface. 

The analysis of the bubble-particle detachment is under the assumption that there is a bubble-

particle aggregate. The strength of a bubble-particle aggregate is the difference between the 

tenacity and the detaching forces. Figure 1 shows the strength of an aggregate changing with 

the particle’s radius in a gravitational field. The defaulted applicability of a bubble-particle 

detachment is located in the domain (on the left side) of the bubble-particle aggregate. On the 

right-hand side, the detachment already occurs. Thus, the detachment probability is 1 when 

the detaching forces are higher than the tenacity of a bubble-particle aggregate. Consequently, 

a sharp separation can be expected in the flotation process, where particles bigger than a 

critical size will detach, and fine particles smaller than this critical size will stay attached to 

the bubble interface. Based on the definition of the modified Bond number ( *

oB ), then the 

particle detachment probability can be defined as follows: 

*

*

1; 1

1; 0

o d

o d

B P

B P

 

 
             (8) 

    From the definition of the modified Bond number, it can be readily realized that the 

particle detachment probability is proportional to the detachment force and is inversely 

proportional to the strength of the bubble-particle aggregate (Nguyen and Schulze, 2004). 

According to the experimental data (Plate et al., 1989) and the theoretical reasoning of the 

detachment probability presented in Equation (8), an exponential distribution function can be 

assumed to describe the particle detachment process. The detachment probability based on 

this concept is described as follows:  
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d

de

S
P exp

F

 
  

 
            (9) 

where Fde is the detaching force and S is the strength of the bubble-particle aggregate, which 

is expressed as the difference between the tenacity and the detaching forces. Utilizing the 

definition of the modified Bond number, Equation (9) is further transformed and the 

probability of particle detachment (Schulze, 1993) can be expressed as follows:  

*

1
1d

o

P exp
B

 
  

 
            (10) 

Equation (10) presents the particle detachment probability model in its simplest form 

however it does not account for many factors, for example, the hydrodynamic conditions of 

the system. Often the mean liquid flow around the bubble-particle aggregate is taken into 

account to represent the hydrodynamic effect, in terms of the drag force on the bubble-

particle aggregates. Although the effects of the hydrodynamic conditions due to the mean 

flow are relatively straightforward to include in the model, such is not the case with the 

fluctuating velocity components which generate turbulence of different length scales in the 

system. Bloom and Heindel (2002) studied the detachment frequency for flocs disruption in a 

turbulent field, and vortices with the size of a typical bubble-particle aggregate were thought 

to be responsible for the aggregate destruction. Analytical expressions for the bubble-particle 

detachment frequency were obtained.  

   The detachment probability model obtained in Equation (10) was modified by adding an 

additional stability constant As to match the experiment result:  

*

1
1d s

o

P exp A
B

  
   

   
           (11) 

where As is an empirical constant that varies from 0 to 1.0. Assuming As is equal to 0.5, the 

variation of the particle detachment probability with *

oB  obtained from Bloom’s model is 
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compared with Schulze’s model in Figure 2. With the inclusion of this empirical constant, 

which captures the unaccounted system hydrodynamics, the detachment physics is apparently 

better represented, even though it is purely empirical and system specific with no other 

experimental validation available. It can be seen from Figure 2 that the predictions of the two 

probability distribution functions presented in Equation (10) and Equation (11) are different 

due to the change in slope. As the empirical constant As is restricted from 0 to 1.0 for the 

same *

oB , Bloom’s model predicts a higher detachment probability than Schulze’s model. It 

should, however, be noticed that using these models, when *

oB  exceeds 1.0, a physically 

inconsistent detachment probability of higher than 1.0 is predicted. To avoid this limitation, 

the function prediction is restricted to 1.0 (the cut-off value) for any *

oB  value other than 1.0 

for practical purposes. It is worth noting that at *

oB = 1.0, when the sum of the attaching 

forces is equal to the sum of the detaching forces, a maximum floatable particle size can be 

obtained from the force balance analysis.  

Bubble-particle aggregate stability depends, to a great extent, on the interplay of the 

different forces. Nutt (1960) studied the adhesion of a spherical particle to an air-liquid 

interface, where a centrifugal field was applied to detach the particle. For the given system’s 

physical properties (contact angle, surface tension, liquid and solid density, etc.), the critical 

centrifugal force was theoretically calculated and was found to agree with the experimental 

results. A schematic of the particle detachment from the gas-liquid interface used in Nutt’s 

study (1960) is presented in Figure 3. In this analysis, only three forces, namely the surface 

tension force, buoyancy force and centrifugal force, were considered. Of all these forces, the 

surface tension force (capillary force) is perhaps the most critical in a mineral flotation 

process (Yoon, 2000). The attachment of a particle to the bubble interface depends greatly on 

the capillary force which, in turn, depends on the radius of the three phase contact line, the 
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surface tension of the interface, and the contact angle (Amirfazli and Neumann, 2004; Chau 

et al., 2009).  

In Figure 3, the bubble-particle aggregate is considered to be axisymmetric and the surface 

tension force in this system acts in the direction to the center of the bubble. It is apparent that 

such a definition of the surface tension force depends on the geometric location of the particle 

on the interface. In this case, the total surface tension force acting on the perimeter is 

calculated as follows: 

 2 cos cosc pF R      
         (12) 

where Rp is the radius of the three phase contact angle, α is the polar angle of the interface 

position on the particle’s surface (measured from the bubble rear) and θ is the contact angle 

obtained from drawing two tangents at the interface and at the intersection point of the 

interface and the particle surface.  

    The buoyancy force (Fb) is also a stabilizing force which can be evaluated from the mass 

of the liquid that would be contained in the cylinder (Figure 3), together with the spherical 

portion. It is:  

   

   

1/1/2 2 2

23 3

2

2 /

1 sin 2 s

cos 1 sin

4

3 3
in

p

b

p

l

l

p

R

F
R

g
R

g    

 

 

 


 
 
 

   


   







      (13) 

    The centrifugal force acts on the bubble-particle aggregate to destabilize it. This force 

arises from the rotational motion of the surrounding liquid, and is expressed as: 

34

3
bp ma pF R 

           (14) 

where bm represents the characteristic machine acceleration of the system. For a given system, 

there exists a value of angle α for which the sum of the surface tension force and the 

buoyancy force is the maximum. Therefore, the critical centrifugal acceleration (bm) can be 

determined by counterbalancing the maximum attaching force.  
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    Princen (1969) considered the influence of the particle’s shape on the force balance on the 

particle at a fluid interface in quiescent conditions. Three shapes of particles, i.e., cylinder, 

prismatic particle and sphere were considered in analysis. The two forces considered were the 

surface tension force and a combined force of the apparent gravity and the hydrostatic 

pressure force. From the force balance of the considered forces, the critical radius of a 

particle was calculated. Particles larger than the critical size would just detach from the liquid 

interface. A complete force balance analysis of attached particles was further developed by 

Schulze (1977; 1982), who considering two distinct cases - a static case in a quiescent liquid 

and turbulent liquid motion incorporating the influence on the bubble-particle aggregates 

from eddies. From this study, the maximum size of a floatable particle of a given density was 

calculated as a function of the bubble size and the turbulence intensity or, in particular, the 

specific energy dissipation rate. This study was critical in forming the robust basis for 

determining the effects of the different forces on a bubble-particle’s aggregate stability, and 

thus requires an elaborate analysis. 

    The static case in a quiescent liquid is described in Figure 4, where a spherical particle is 

attached to a bubble. It can be noticed that the central angle α, the angle between the vertical 

line and the radius to the point of the three phase contact, is different from the definition used 

in the analysis of Nutt (1960). The forces considered to act on the particle are, namely, the 

capillary force, buoyancy force, pressure force and the gravity force. In the forces analysis, 

positive and negative signs indicate the direction of the attaching force and the detaching 

force, respectively. The most significant attaching force is the capillary force. For a particle 

size of   , attached at the bubble-liquid interface, the capillary force can be expressed as: 

 2 sin sinc pF R    
          (15) 

It is apparent that the capillary force is at its maximum when the polar angle α is half of the 

contact angle (Nguyen, 2003).  
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The second force which stabilizes the particle attached to a bubble is the buoyancy force. 

In a liquid of density ρl, for a partially immersed particle, the buoyancy force can be 

described as:  

 
3

32 3cos cos
3

p l

b

R g
F   

 
            (16) 

When it comes to the pressure force, there are two components acting in opposite 

directions. One component originates from the hydrostatic pressure, while the other one 

comes from the capillary pressure. Combining the contributions of these two components, the 

net pressure force is written as: 

2 2 2 2 2
sin sinp

b

p l pF R g RH
R

 


            (17) 

A positive sign for the hydrostatic pressure force makes it an attaching force, which is 

contributed to by the height of the liquid from the bubble’s apex to the three phase contact 

area acting on the three phase contact area. It is represented by the first term of Equation (17). 

Due to the surface tension, the Laplace pressure inside the bubble is higher than the pressure 

outside the bubble. The capillary pressure force is determined by multiplying the pressure 

difference across the interface to the three phase contact area, and is represented by the 

second term of Equation (17).  

The particle weight, Fg, which pulls the attached particle into the liquid, acts as a detaching 

force. For a particle with a density of ρp, the gravity force can be written as: 

34

3

p p

g

R
F

g
 

 
            (18) 

    By considering the balance of all these forces acting on a bubble-particle aggregate at 

equilibrium, the maximum floatable particle size can be obtained. In contrast to the static case 

(stagnant fluid around the bubble-particle aggregate), where a consideration of the above 

discussed forces is sufficient to obtain an estimate of the maximum floatable particle size, 
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such is not the case with an actual flotation cell where a turbulent flow condition persists. In 

his analysis, Gaudin (1957) showed that the maximum floatable size of minerals, from such a 

force balance consideration, can be larger than the maximum particle size of an actual 

flotation process by a factor of 10. Such an anomaly exists because, in a flotation cell, the 

bubble-particle aggregates are subjected to other disruptive forces due to the turbulent fluid’s 

motion which are not accounted for by the force balance model in the static case. To describe 

such detaching/disruptive forces, Schulze (1982) considered the interaction of the rotating 

turbulent flow structures (eddies) with the bubble-particle aggregate and postulated that the 

centrifugal force originating from the rotating flow structures detaches the particle from the 

bubble when the bubble-particle aggregate is trapped in a rotating eddy. This theory is based 

on the assumption that a bubble-particle aggregate trapped in an eddy of the same scale will 

rotate along the eddy to the extent where the centrifugal force exceeds the adhesive force. 

    Particles with a density higher than the continuous phase tend to migrate from the center of 

eddies to the ridge of the flow structure. On the contrary, the bubbles, due to their smaller 

density, tend to gather in the center of flow structures. Such distribution patterns of particles 

and bubbles determine the stability of the bubble-particle aggregates in the turbulent field. 

The particles present in the turbulent eddy are moved by the corresponding size of the 

turbulent eddies. It is apparent that obtaining an expression of the centrifugal force, while 

considering the complex heterogeneous nature of the turbulence, is not a trivial matter. 

However, a simpler expression for the centrifugal force can be obtained, assuming isotropic 

turbulence, following Kolmogorov’s theory: 

3

p4πR
F

3

p m

a

b
 


            (19) 

where    is the turbulent acceleration generated by the eddies, and which can be determined 

by the root mean square of the fluctuating velocities     over the rotating length scale  , as 

follows: 
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l
mb

u

r
              (20) 

To determine the fluctuating velocity, the energy levels of the eddies is considered to be in 

the inertial sub-range (Kolmogorov, 1941):  

 
1/3

1lu c l
            (21) 

where c1 is a constant equal to 1.37, l is the distance of the particle rotation from the reference 

axis located inside the eddy and   is the specific kinetic energy dissipation rate. Schulze 

(1982) assumed that the particles move with the same velocity as the eddy, and the radius of 

rotation can be represented by the bubble diameter, dB. Substituting ul from Equation (21) 

into Equation (20), then, the centrifugal acceleration  , can be rearranged as: 

2/3 1/31.9 /m Bb d              (22) 

    The description of the fluctuating velocity component in Equation (21) was further 

modified by Hui (2001). In his work, the value of c1 was reduced to 1.5 and the radius of 

rotation was replaced with the radius of the bubble-particle aggregate instead of the 

previously used bubble diameter. Using these new values, the maximum acceleration of the 

aggregate can be found out as: 

2/3 1/32.38 /m agb d
           (23) 

When the bubble-particle aggregate is in the vicinity of an eddy with a diameter of the same 

order of magnitude to its size, it is hypothesized that the interactions between the aggregate 

and the eddy will result in bubble vibration, leading to the rotational motion of the attached 

particle on the bubble surface. Two distinct accelerations are considered to act on the 

attached particle in this case, namely circulation and vibration acceleration. The rotational 

velocity of the attached particle on the vibrating bubble surface can be approximated as 

follows: 
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 2 'sps uu r 
            (24) 

where rs is the radius of the particle movement on the bubble surface, u’ is the liquid 

fluctuating velocity,  represents eddies of  -space. Following this, the circulation 

acceleration can be expressed as follows:  

 
224 'scirb r u 
 .         (25) 

    For a favorable interaction between the bubble-particle aggregate and the eddies following 

the transfer of energy, the individual eddy size should be in the same order of magnitude as 

the aggregate. With the size of the eddy equal to the diameter of the bubble-particle aggregate, 

one can obtain the following expression for the circulation acceleration: 

2/3
2

1 1/3
2cir

ag

b c
d




             (26) 

To describe the vibration acceleration of the aggregate, an analogy with a spring-mass system 

could be drawn. Upon external excitation, for example, with energy transfer due to 

interaction with the eddies, the bubble vibrates like a spring. The maximum vibration 

acceleration of the attached particle can be expressed by: 

 
2

2 '/ av gb u d A
           (27) 

where A is the amplitude of the bubble vibration, which is proportional to the bubble diameter. 

Assuming the amplitude follows a linear trend with the bubble radius as 2
2

agd
c , the 

vibrational acceleration can be expressed as follows:  

2/3
2

1 2 1/3
2v

ag

b c c
d




             (28) 

Combining these two accelerations together, the effective acceleration can be expressed as:  

 
2/3

2

1 2 1 3m x /a 2 1
ag

b c c
d

 


            (29) 
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From the definition of the bubble vibration amplitude, it is reasonable to assume that c2<<1. 

Thus, the acceleration of the attached particle maybe expressed as:  

2/3 1/329.6 /m agb d
           (30) 

    Hui (2001) assumed the detachment probability as: 

 
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Usually, in the flotation situation the eddy turbulent acceleration is typically more than 100 

times the gravitational acceleration. Considering the aggregate diameter as the bubble 

diameter, Equation (31) becomes: 
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 

 
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          (32) 

    In another work, Koh and Schwarz (2005) used a similar equation with a different length 

scale in reference to Schulze (1982), where the particle size is taken into considerations. It is:  

 
1/32/31.9 /m B Pb d d 

          (33) 

Goel and Jameson (2012) assumed that the radius of the rotation is equal to the radius of the 

bubble. So, the attached particle is considered to rotate at the same speed as the interacting 

eddy of the same size as the bubble. The equation for the eddy turbulent acceleration is given 

as follows:  

2/3 1/33.75 /m Bb d             (34) 

There are a number of similarities in the definitions of eddy turbulent acceleration. The 

capture of bubble-particle aggregates by the rotating eddies is, rather, a hypothesis of the 

particle detachment process which has not been experimentally validated. Actually, the 

interactions of particles with eddies is of practical importance in many technological and 

environmental applications. The dispersion patterns of the particles resulted from their 
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interactions with eddies are different, depending on the particle’s density relative to the 

continuous phase (Crowe et al., 1995).   

    By analyzing the forces at work on the attached particle, and comparing the attaching force 

to the detaching force, bubble-particle detachment can be predicted. Based on Schulze’s 

definition of the modified Bond number, which is a ratio of the detaching force on the 

attaching force, it is:  

* g b a p

o

c

F F F F
B

F

  
            (35) 

Note that the capillary force depends on the position of the three phase contact line on the 

particle, and that in the modified Bond number expression the capillary force is replaced with 

a maximum capillary force when the central angle   is half of the contact angle. The 

maximum floatable particle size is present when *

oB is 1, which means that the particle is 

detached when *

oB  is larger than 1. A simple calculation can show why large particles are 

vulnerable to detachment caused by turbulent flow. The force of detachment is proportional 

to the particle’s mass, which is linear with the cubic of the particle size. The adhesive force 

changes with the perimeter length of the three phase contact line, between the particle, the 

liquid and the air bubble, which is proportional to the particle’s size. Thus, *

oB , which is a 

ratio of the detachment force to the adhesion force, is approximately proportional to the 

square of the particle’s size. Correspondingly, there is a maximum particle size of a given 

density to a certain turbulent intensity. Schulze (1993) defined this dimensionless number in 

order to characterize aggregate stability, in which the capillary force was the maximum. This 

can be achieved at a specific situation when the central angle is half of the contact angle.   

    Replacing the forces, the modified Bond number is written as: 
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Thus, Schulze (1993) gave the detachment probability as: 
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       (37) 

    Goel and Jameson (2012) made a simplification by just considering the capillary force and 

the centrifugal force and gave a formula on the modified Bond number in relation to the 

turbulent energy dissipation rate. Substituting the eddy centrifugal acceleration, the modified 

Bond number is:  
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         (38) 

and the detachment probability is:  
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         (39) 

It is noted that the modified Bond number has been used to study bubble-particle detachment. 

The significance of the modified Bond number equation is that it can predict the maximum 

floatable size of a particle of a given density and contact angle in a flotation cell with a 

known energy dissipation rate (Jameson and Goel, 2012). 

    Nguyen and Schulze (2004) studied particle detachment caused by different mechanisms 

and external forces, including gravitational forces, tensile stresses, shear stress and bubble 

vibrations. A number of equations can be derived from the different perspectives. The 
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detachment probability is written as an exponential function of the attaching force and the 

detaching force: 

1 att
d

de

F
P exp
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 
  

 
           (40) 

In a flow field dominated by tensile stress, the detaching force is a combination of the gravity 

force and the centrifugal force. Then, the detachment probability is: 
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          (41) 

    It is worth noting that the theory on formulating capillary force presented in the literature 

so far has not considered the dynamic contact angle. Due to the movement of the gas-liquid 

interface over a solid surface, the three phase contact line has a certain velocity which is 

responsible for the contact angle hysteresis and leads to a transient change in the contact 

angle (Ngan and Dussan, 1982; Drelich et al., 1996; Kwok and Neumann, 1999; Gao and 

McCarthy, 2006; Kowalczuk and Drzymala, 2011). The contact angle, therefore, in reality 

changes from the assumed static contact angle over the course of the dynamics of the 

detachment process. In contrast to the measurement of the static contact angle, which is 

usually measured in a straightforward way by the sessile droplet/bubble method, the 

measurement of the dynamic contact angle is rather challenging since no single value can be 

reported due to the changing nature of the contact angle over time. Usually, a limit is rather 

imposed on the range of the dynamic contact angle, in terms of the advancing (maximum) 

and receding (minimum) contact angle, which are usually measured by the increasing or 

decreasing liquid volume of the sessile or pendent droplet. Another method is to impart 

rotational motion to a sessile droplet resting on a sample stage to the point of the incipient 

motion of the droplet. Such controlled experiments are not able to include the surrounding 

environmental effects on the transient nature of the dynamic contact angle, for example,  the 
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influences of the surrounding fluid’s movement, which is the case for real applications like 

the flotation process where the bubble-particle aggregate is subject to the turbulent liquid’s 

motion around it. This physical quantity, although difficult to measure, is extremely 

significant in formulating the capillary force, which is the prime attaching force for the 

particle on a bubble’s surface. Due to the inability of measuring the dynamic nature of the 

contact angle, as well as the absence of a robust physical model, often the capillary force is 

modelled by incorporating the equilibrium contact angle or the static contact angle, which is 

independent of the movement of the three phase contact line. Theoretically, the equilibrium 

contact angle can be derived from Young’s hypothesis that the interfacial forces achieve an 

equilibrium state at the three phase contact point. The equilibrium contact angle derived in 

this way assumes any value between the advancing contact angle and the receding contact 

angle. Looking closely at the bubble-particle interaction, it is apparent that particle 

detachment from a bubble’s surface is a wetting process, during which the three phase 

contact does not move while the contact angle is changing until the advancing contact angle 

is reached. In contrast, particle attachment is rather a dewetting process, during which the 

three phase contact perimeter only expands when the apparent contact angle is less than the 

receding contact angle. The difference between the advancing contact angle and the receding 

contact angle is described as contact angle hysteresis which can be expressed as:   

A R      .            (42) 

     The magnitude of the capillary force is dependent on the length of the three phase contact 

line, which in turn depends on the particle position (polar angle) on the attached bubble’s 

surface. The maximum magnitude of the force is obtained when the polar angle subtended at 

the center of the particle ( m ) becomes half of the contact angle. In the particle attachment 

process this central angle is higher than the receding contact angle, since αR = θ + β, as per 

the schematic presented in Figure 5. Depending on the position of the particle on the bubble’s 
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surface, the local interface shape deformation pattern may vary around the three phase 

contact line (see Figure 4 and Figure 5). Figure 4 shows a particle attached to the bottom of a 

bubble with the interface stretched away from the center of the bubble, which reflects the 

onset of a necking phenomenon typical of the particle detachment process due to the 

downward direction of the gravity force. The depth of a particle’s penetration into the bubble 

depends on the attaching process. The contact angle reaches the minimum contact angle at 

the receding contact angle. At the end stage of particle attachment, the three phase contact 

line stops expanding and the central angle reaches the maximum at R . When R  is higher 

than m , where the maximum capillary value is achieved, in the process of detachment the 

central angle   keeps on reducing and the capillary force keeps on increasing until the 

central angle reaches m . Otherwise, if R  is smaller than m , the capillary force does not 

have the opportunity to reach its theoretical maximum value and the capillary force is highest 

when the central angle is at its maximum, that is R . Thus, Nguyen and Schulze (2004) 

concluded that Equation (41) is valid when m  is smaller than R . When m  is higher than

R , the particle is detached after the contact angle exceeds the advancing contact angle. This 

condition R    applies while taking the smallest value of the central angle at R . The 

capillary force is changed, and replacing it into Equation (41) gives: 

 

 2

3 sin sin
1 ,

4

R

d R

P m

P exp
R g b

 
       

  
 


                  (43a) 

when R   , replacing the equilibrium contact angle in Equation (41) with the advancing 

contact angle, the detachment probability is: 

 

 2

3 1 cos
1 ,

4

A

d R

P m

P exp
R g b

 
       

 
 


                  (43b) 
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In the same way, in a flow field dominated by shear stress detachment, the probability is an 

exponential function of the attaching force and the detaching force. The difference is to 

analyze the competence between the shear force and the capillary force component in the 

tangential direction. The bubble-particle couplet was experimentally observed to be sheared 

apart (Wang et al., 2016). Similarly, the detachment probability is: 

   1 cos sin / 2
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    Tao (2005) described detachment probability as 

1
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
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            (45) 

where Fatt is the total attachment force and Fde is the total detachment force. This suggests 

that when the detachment force is equal to the attachment force, Pd = 0.5; Pd = 0 when Fatt >> 

Fde; Pd = 1 when Fatt << Fde. The detachment probability is:  
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     (46) 

2.2.  Detachment models based on energy balance 

    Yoon and Mao (1996) gave the probability of detachment from the perspective of energy, 

where the detachment probability was considered to be an exponential function of the energy 

ratio. The energy considered is the energy supplied to the attached particle and the energy 

required for the detachment to occur. In the process of detachment, two kinds of energy need 

to be overcome, i.e., the work of adhesion and the energy barrier. A particle can be detached 
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when the kinetic energy that tears the particle off the bubble’s surface exceeds the energy 

(work of adhesion,   , and energy barrier,   ). The detachment probability is written as:   

1
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E
P exp
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 
            (47) 

where    is the work of adhesion calculated as follows:  

 
22 1 cosa pW R  
          (48) 

and    is the energy barrier. Yoon and Mao (1996) used kinetic energy to predict detachment 

by considering a simple situation, where a cap of particles attaches to the bottom of a rising 

bubble, as is shown in Figure 6. As bubbles rise in a flotation cell, more and more particles 

will be collected at the bottom of the bubble. The kinetic energy is supplied by the fluid 

flowing past the bubble and the particle at the center is subjected to a pressure 1p . The 

particles in the cap are subjected to increased pressure. The kinetic energy of the particle is 

calculated as follows: 

'

1kE p               (49) 

where is the area of contact between the particle and the bubble. It is given by: 

2 2

pR sin                (50) 

The particle in the center of the cap is subjected to a pressure 1p : 

2

0
1

3

P BgR
p 

 
            (51) 

where P is the particle density, g is the gravitational acceleration, BR  is the bubble radius 

and 0  is the cap angle reflecting the loading capacity of the bubble, which is a function of 

the number of the particles in the cap. When 0  is zero, there is no particle on the bubble. As 

the bubble rises up, the number of particles collected on the bubble’s surface increases. So 
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does the energy exerted on the attached particle. Inserting Equation (50) and Equation (51) 

into Equation (49) gives the following prediction for the kinetic energy for detachment: 

2
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 
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    Hence, the probability of detachment is: 
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The limitation of this model is that it is derived for a quiescent environment. Sherrell (2004) 

extended this model to describe particle detachment in a turbulent field generated by an 

impeller. The largest eddy within the flotation cell is created by the impeller itself. It is 

assumed that the energy contained in the largest eddy directly corresponds to the bubble-

particle aggregate detachment. The kinetic energy is equal to the tip-velocity of the impeller 

squared: 

 
2
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           (54) 

then, the turbulent energy provided to the bubble-particle aggregate is: 

 ' 21

2
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    Usually, the energy barrier is negligible compared to the work of adhesion. Thus, the 

detachment probability can be written as: 
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          (56) 

As noted, Equation (56) is fitted for a turbulent flow field generated by an impeller. Do (2010) 

gave a general model for turbulent flow where the velocity was calculated from the shear rate. 

Referring to Camp and Stein (1943), the shear rate inside an eddy is /  . For a bubble-
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particle aggregate inside an eddy, the velocity of the attached particle, in respect to the bubble, 

is   /P Bd d   . The kinetic energy of the particle is described by: 

  
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         (57) 

The detachment probability is given as:  

 

  

22

2

1 cos
exp

1
/

2

p

p P B

d

R
P

m d d

 
 

  
 
 

 

 

         (58) 

     Nguyen and Schulze (2004) also gave the detachment probability from an energy 

perspective, which is given as: 
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deE  is the particle energy of the detachment, which is calculated as follows:  

 
22 1 cosde pE R C    

          (60) 

where C is the correction to the thermodynamic estimation of the particle detachment energy. 

It is: 
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where L  is the capillary length,  is the Euler constant and is equal to 0.5772,   is the 

contact angle and PR  is the particle radius. '

kE  is the detaching energy due to the turbulent 

fluctuations:  
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where   is the density difference between the attached particle and the liquid, V  is the 

turbulent relative velocity of the bubble-particle aggregate. Thus, the detachment probability 

is described as follows: 
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    Wang et al. (2014) developed a bubble-particle detachment model from an energy 

perspective. With the accurate account of kinetic energy supplied from the turbulent liquid’s 

motion, eddies of the same scale in the close vicinity of the attached particles are considered 

accountable for the particle’s detachment. In this way, the detachment probability is written 

as:  
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2.3.  Detachment models based on maximum floatable particle size 

 

    Many other researchers have studied the probability of particle detachment from an 

empirical perspective. The detachment probability is correlated with the particle size in 

reference to the maximum floatable particle size. Woodburn et al. (1971) developed a model 

capable of predicting recovery for any particular particle size range, giving the following 

equation to represent the particle detachment probability in reference to the maximum 

floatable size, dpmax : 
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    Jameson et al. (2007) provided the following equation: 
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The maximum particle size that could remain attached to a bubble was given by Nguyen 

(2003), where the equation derived by Schubert (1999) was combined with the work of 

Schulze (1982). It is:  
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In deciding the centrifugal acceleration, the maximum stable bubble size from Parthasarathy 

et al. (1991) was used: 
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Inserting the maximum stable bubble size into Equation (22) gives: 

4/5 1/1 5 5/1.28 /lmb               (69) 

Thus, the detachment probability can be expressed as:  
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This equation is valid when the contact angle hysteresis is less than the receding contact 

angle. When the contact angle hysteresis is larger than the receding contact angle, Equation 

(70a) is replaced by: 
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    Brożek and Młynarczykowska (2010) proposed the following formula: 
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where dpmin is the size of the floating particle, below which the detachment probability is zero, 

dpmax is the size of the particle above which the detachment probability is 1, and n is an 

empirical constant.  

 

3. Experimental works 

 

    Although force balance models were proposed to analyze the bubble-particle aggregate’s 

stability, the direct measurement of these forces was not performed up until Butt’s (1994) 

work which is reportedly considered to be pioneering work in measuring the force between a 

particle and a bubble in water using an atomic surface microscope (AFM). In the AFM 

measurement technique, the deflection of the cantilever during the process of pulling out a 

glass particle from a bubble was measured to translate into the interaction forces. Further 

work was carried out by Pitois (2002) who studied the effects of the contact angle hysteresis 

on the force and work of detachment using an AFM. The effects of the contact line pining 

and the associated contact angle hysteresis on the force and the work to detach a particle was 

quantified in his work. The measurement of the force-path curve showed that neglecting the 

contact angle hysteresis during the detachment process could induce significant deviations. 

Further work on the contact angles was carried out by Nguyen (2003), where an AFM was 

used to determine the contact angle for fine particles, and it was observed that the contact 

angle of a spherical particle changed with the speed of the AFM piezoelectric translator. The 

dynamic behavior of the contact angle and other uncertainties, such as the position of the 

three phase contact line on the particle’s surface during the bubble-particle interaction, make 

it difficult to directly use the experimentally determined contact angle as a measure of the 

particle surface hydrophobicity. Schimann (2004) measured the detachment force between 

spherical particles of varying hydrophobicity and air bubbles using a surface tensiometer. In 
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his work, bubble-particle detachment was defined as a three step process. The first step 

involves bubble stretching caused by surface tension and the contact angle hysteresis. Once 

the advancing contact angle is reached, the three phase contact line begins to slide off the 

particle, which is defined as step two. The final step of particle detachment is the formation 

of a bubble neck which narrows down with time till a breakup point is reached. Afterwards, 

the adhered particle detaches from the bubble and leaves a small amount of air attached to the 

particle. An illustration of how the colloid probe technique can be used to measure single 

bubble-particle interactions and the contact angle can be found in the literature review 

(Johnson et al. 2006). Ally (2010) measured the detachment force needed to detach a micro-

particle from an air-liquid interface with different solutions in order to study the effects of 

surface tension and viscosity. The results showed that the maximum force during detachment 

was not necessarily at the position where the particle broke away from the interface. This can 

be explained by the dynamics of meniscus deformation and the viscosity effects. Taran and 

Nguyen (2012) offered a better qualification of the local bubble deformation by modelling 

AFM measurements by solving the augmented Young Laplace equation with the inclusion of 

DLVO disjoining pressure. Bubble deformation revealed the nonlinear behavior of the local 

bubble-liquid interface deformation. This outcome can help to convert the actual AFM data 

into force versus separation distance. In summary, advanced experimental methods make 

detachment force measurement available. It is beneficial to understanding the mechanism of 

the bubble-particle detachment process. Even though the detachment force can be accurately 

measured, the shortcoming of this technique is its inability to reflect the conditions (the 

liquid’s motion) under which particle detachment occurs.  

    Researchers have devised different experimental techniques to study particle detachment in 

different conditions. Nutt (1960) devised an experimental technique using a centrifuge 

method to detach the particle from a liquid’s interface. Schulze (1989) used a similar method 
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to determine the adhesive strength of particles within the liquid/gas interface, where single 

particles were attached to the liquid’s surface. The liquid was placed in a glass cell of a 

laboratory centrifuge with a freely swinging rotor. By increasing the speed to a given value, 

particles were exposed to increasing centrifugal accelerations. The decisive advantage of this 

method is its applicability in studying the essential characteristics of a single micro-process 

of flotation, namely the stability of bubble-particle aggregates, by changing the rotation speed 

to get rid of other influencing parameters. 

    Holtham and Cheng (1991; 1995) studied the particle detachment process in flotation using 

an acoustic vibration method. A small loudspeaker driven by an audio signal generator was 

used to provide sinusoidal vibration to a small rectangular glass cell where a single bubble 

with a known number of attached particles was settled. The experimental detachment force 

was compared with the theoretically predicted attachment forces, and the results showed that 

the amplitude of the oscillations imposed on the bubble was the dominant factor in the 

detachment process. This can be reflected in the significant deformation of air bubbles in 

coarse particle flotation due to collision with large particles. The oscillating bubble causes a 

prevalence of particle detachment. Stevenson et al (2009) studied the behavior of an 

oscillating particle attached to a gas liquid surface, and three more forces, i.e., Basset history 

force, the added mass of the particles and the drag force imparted by the liquid, were added to 

analyze the true position of the three phase contact line. The results showed that the Basset 

history force, drag force, d’Alembert force and capillary force were dominant over the 

particle weight, buoyancy and pressure force due to meniscus deformation.  

    To fully and explicitly explain the function of the energy dissipation rate on the flotation 

process, Brady et al. (2006) simulated a flotation column environment by passing pulp 

through a grid of cylindrical rods. The fluctuating velocities of the particle and bubble were 

calculated and compared to theoretical models based on the turbulent energy dissipation rate. 
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Grid oscillation was believed to generate nearly isotropic and homogeneous turbulence (Long, 

1978; De Silva and Fernando, 1994; Srdic et al., 1996; Shy et al., 1997; Kang and Meneveau, 

2008), which is beneficial to study the turbulence’s influence on the flotation kinetics. 

Further, the oscillating grid flotation cell was devised to exhibit relatively isotropic and 

homogeneous turbulence, characterizing the effects of energy input on the flotation kinetics 

(Changunda et al., 2008; Massey et al., 2012). The results showed that the power intensity 

influence on the flotation kinetics was strongly dependent on both the particle and bubble size. 

Increasing the energy input for fine particle flotation benefits the flotation recovery. An 

optimum energy input is beneficial for coarse particle flotation because a higher energy input 

leads to particle detachment. Omelka et al. (2009; 2010) studied the detachment of particles 

from bubbles in the wake turbulence behind grids. The particle detachment was due to the 

breakage of bubbles in the strong shear flow, and particle detachment due to centrifugal force 

was not observed.  

   To float coarse particles, a special flotation process is needed. Jameson (2008; 2010) 

devised a new process for coarse particle flotation in which a fluidized bed was formed in the 

flotation cell to bring the particle and bubble into contact in a quiescent environment. The 

flow conditions in this flotation cell are very gentle and high solid concentration ensures a 

rapid rate of particle capture, which leads to a high flotation recovery rate.    

Xu et al. (2011) examined the detachment of coarse particles from oscillating bubbles as a 

function of the particle’s hydrophobicity and shape, as well as a medium’s viscosity. The 

schematic diagram of the apparatus is shown in Figure 7. The results showed that the quasi-

static model predicts the detachment force quite well at low vibration frequencies. At high 

vibration frequencies the model cannot make an accurate prediction because of the reason 

that the detachment force is determined by the dynamic contact angle, which is governed by 

the velocity of the three phase contact line. The rate of movement of the three phase contact 
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line is reduced at high viscosity, resulting in more stable bubble-particle aggregates. Awatey 

et al. (2014) used this technique to measure the detachment forces for particles with different 

contact angles. The detachment forces of the particles increased with the contact angle, 

indicating a lower detachment probability for particles with a higher contact angle. The 

critical detachment amplitude was also plotted as a function of the measured contact angle, 

showing a higher critical detachment amplitude is needed to detach particles with higher 

contact angles. This technique was later used by Fosu et al. (2015) to test the detachment of 

coarse composite particles from bubbles. Particles with the same contact angle but different 

sizes responded to vibration differently, in that coarser particles detach at lower acceleration 

due to high inertia. However, as noted in the experiment on the movement of the bubble, the 

frequency and magnitude of the movement of the bubble was assumed to be identical with 

that of the loudspeaker. This is true without considering the elasticity of the bubble. 

Nevertheless, for the bubble size (typically 2 mm in diameter) used in the experiment, 

neglecting the bubble deformation in the process of oscillation is evidently inappropriate.  

The testing of particle detachment as a function of the energy dissipation rate in a turbulent 

liquid field is only recently available (Goel and Jameson 2012). As shown in Figure 8, a 

specially designed flotation cell was devised to observe the behavior of particle-laden bubbles 

in a turbulent shear flow, where Schulze’s hypothesis and the criterion for detachment are 

tested. Bubbles were generated in a fluidized bed, where particles adhered to the bubble. The 

bubbles were then directed beneath the impeller into the cell, and some particles were 

observed to detach. The fractional detachment of particles was related to the mechanical 

energy dissipation rate in the region of the impeller, and the results showed that detachment 

occurred over a range of modified Bond numbers. It does not support the hypothesis that 

detachment occurs at the critical Bond number of 1. Nevertheless, Schulze’s detachment 

criterion was within the correct order of magnitude. However, as the energy dissipation rate 
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in a stirred tank is distributed unevenly, even at the impeller region, how particles get 

detached with the impaction from the surrounding vortices is still not clear. 

    Wang et al. (2016) designed a novel experimental setup to study bubble-particle 

detachment in a turbulent vortex. As is shown in Figure 9, a vortical flow field develops in 

the wall cavity when water flows through the tunnel. A bubble that was pre-loaded with one 

or more particles was introduced into the cavity, and the motion of the bubble-particle 

aggregate was studied using a high-speed video camera. The trajectories of the attached 

particles in a centrifugal motion on the bubble’s surface were analyzed in order to prove the 

validity of the theory that the centrifugal force leads to particle detachment. Figure 10 shows 

a time series of the centrifugal movement of a spherical particle on a bubble’s surface. The 

particle diameter was 282 μm and the bubble diameter was 715 μm, and the particle was seen 

to rotate about the bubble at 143 cycles per second, giving a centrifugal acceleration of 297 

m/s
2
. The rotational speed of an attached particle can reach as high as 200 cycles per second 

and the averaged centrifugal acceleration leading to detachment of particles was nearly 23 

times the gravitational acceleration. For the first time, the centrifugal movement of a particle 

on the bubble’s surface inside a vortex was observed, and the theory of detachment due to 

centrifugal movement in the turbulent field was experimentally proven. 

    It is noted that the direct measurement of the detachment force of a particle detaching from 

a bubble using AFM provides insights into the bubble-particle detachment process. The only 

problem with this method is that the detachment force is measured statically by gradually 

increasing the load on the cantilever. It is an efficient way to measure bubble-particle 

aggregate strength, but is far from reflecting particle detachment in a real flotation situation. 

Particle detachment is reflected in the study of the effect of particle size on the flotation 

process as a whole, where recovery drops for coarse particle flotation (Awatey et al., 2013, 

Jameson, 2012, Trahar, 1981, Woodburn et al., 1971, Morris, 1952, Gaudin et al., 1931). 
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Considering the complexity of bubble-particle detachment in a real flotation environment, 

methods like the centrifugal method and the oscillation method are devised to mimic the 

particle’s behavior, such as its rotation and oscillation. The detachment probability can be 

reflected by the amplitude of oscillation or the rotation speed. Keeping in track with the 

detachment models, the influence of the liquid’s motion is reflected in the detachment 

probability prediction by the energy dissipation rate. An oscillating grid device is used to 

study the influence of energy input on the flotation recovery. The limitation is that the 

flotation is considered as a whole process. Furthermore, a delicate experiment, where the 

bubble-particle aggregates are introduced into a stirred tank, is used to study the energy 

dissipation rate’s influence on bubble-particle detachment. For the first time, the detachment 

probability was plotted as a function of the energy dissipation rate and experimentally 

testified as a function of the modified Bond number. The mechanisms of bubble-particle 

detachment remained unclear until recent experimental work on bubble-particle detachment 

in a rotating eddy. The detachment of particles due to centrifugal movement was proven for 

the first time and centrifugal acceleration can reach 20 times the gravitational acceleration.   

 

4. Summary of discussions 

 

    In previous sections, the different detachment models have been reviewed and grouped 

into three principal categories, namely, force, energy and maximum floatable particle size. 

Intuitively, a particle’s movement on a bubble’s surface, whether detaching or staying 

attached, depends on the forces acting on the bubble. The bubble-particle detachment process 

was analyzed from the perspective of the force balance. Table 1 presents the various 

detachment models reported in the literature obtained from the force balance analysis. Of all 

the forces, in a typical flotation environment, the centrifugal force is believed to be 
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responsible for bubble-particle detachment in turbulent flow fields (Abrahamson, 1975; 

Schulze, 1977). The centrifugal force is dependent on the interactions between the eddies and 

the bubble-particle aggregate. Solid particles with a density higher than the fluid phase tend 

to migrate away from the eddy’s core and concentrate on the edges of the eddy. Bubbles with 

a density smaller than the liquid phase tend to gather in the eddy’s core. Conspicuously, a 

bubble-particle aggregate interacts with an eddy differently than the usual interaction 

behavior of its counterparts – the individual bubble and particle.  

    The discrepancies between the models in calculating the centrifugal force comes from the 

eddy’s turbulent acceleration, where the radius of the rotation is rooted in the definition of the 

aggregate’s movement inside an eddy. Schulze (1982) considered that the radius of the 

rotation is equal to the bubble’s diameter, while Hui (2001) regarded the diameter of the 

bubble-particle aggregate as the rotation radius. Goel and Jameson (2012) considered that the 

bubble-particle aggregate was captured in the center of the eddy and that the radius of 

rotation was the bubble’s radius. Theoretically, when the attached particles are negligible to 

the bubble or if the bubble is fully covered by tiny particles, where the bubble is considered 

to be a heavier bubble but much lighter than the fluid phase, the aggregate will act more like 

a bubble. When the aggregate interacts with an eddy, it will migrate to the center of the eddy. 

In contrast, an aggregate will rotate with the eddy diverted from the center when the attached 

particle becomes more dominant over the bubble. Schubert (1978; 1999) studied the 

hydrodynamics inside flotation machines, and various eddy sizes were observed. Three 

sub-processes of flotation controlled by the turbulence were discussed. Even though the way 

in which bubble-particle aggregates interact with eddies has not been proven, it can be 

concluded that the bubble-particle detachment happens due to the centrifugal field of the 

turbulent eddies (Zhang et al., 2016).  
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    In the particle detaching process, the capillary force is the attaching force that stops a 

particle from detaching and the capillary force changes with the contact angle. Nguyen and 

Schulze (2004) pointed out that the contact angle hysteresis was required to be taken into 

consideration when calculating the maximum capillary force. When the contact angle 

hysteresis is less than the receding contact angle, the capillary force is at a maximum with the 

polar angle at half of the advancing contact angle. When the contact angle hysteresis is higher 

than the receding contact angle, the capillary force is at a maximum with the polar angle at 

the highest value equal to the receding contact angle. In different conditions, the respective 

maximum capillary force expression is replaced in the detachment probability prediction. A 

bubble-particle aggregate interacting with an eddy will not only experience centrifugal force, 

but also shear stress. Under shear stress, the three phase contact meniscus is no more 

symmetrical. The net component of the capillary force in the tangential direction comes into 

being to counterbalance the shear force. This net component of the capillary force depends on 

the contact angle hysteresis. When the shear force is higher than the net component of the 

capillary force, the particle is detached. Thus, Nguyen and Schulze (2004) gave the particle 

detachment probability by comparing the shear force and the capillary force component in the 

tangential direction.  

    Detachment probability is predicted as an exponential function of the forces. When the 

detaching force is equal to the attaching force, the detachment probability is 1. Tao (2005) 

gave the detachment probability as inverse to the force ratio. When the detaching force equals 

the attaching force, whether the particle is attaching or detaching, it counts as 0.5 percent 

individually. Also, only when the attaching force is negligent to the detaching force, the 

detachment probability is infinitely close to 1. Contrariwise, when the attaching force is much 

larger than the detaching, the force detachment probability is close to 0. Thus, for a given 

system, the detachment probability is always within a certain range between 0 and 1. 
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   The detachment probability is also predicted from the perspective of the energy balance, as 

is shown in Table 2. When the energy required to detach the attached particle is met, the 

particle is going to detach. Yoon and Mao (1996) assumed that the detachment probability is 

an exponential function of the energy ratio and gave the expression for a bubble rising up in a 

stationary liquid. The detachment energy is provided by the pressure acting on the particle 

seated at the bottom of the bubble. The default limitation of this model is that it is suited to 

stationary liquid and the detaching energy is provided by other particles seated above the 

particle at the bottom. Considering that just one particle is attached to the bubble, it will not 

detach, no matter the size of the particle. Sherrell (2004) extended this expression to describe 

the particle detachment in a stirred tank. The detachment energy is considered to be provided 

by the largest eddy in the tank, which is generated by the stirrer. Do (2010) generalized 

particle detachment in a turbulent field by considering the shear rate acting on the bubble-

particle aggregate. The relative velocity between the particle and the bubble is considered as 

the provider of the detachment energy. The relative velocity is calculated by multiplying the 

shear rate by the bubble-particle aggregate’s size. Wang (2014) took into consideration the 

influence of the turbulent liquid’s motion in the way that the energy required to detach the 

particle was provided by the kinetic energy of the liquid’s motion. In a turbulent liquid field, 

the bubble carrying the attached particles would experience a range of eddies of different 

scales. The bubbles would follow the large scale liquid’s motion, which is in a bigger scale 

than the bubble’s size. For eddies of the same scale or smaller than the bubble’s size act on 

the bubble’s surface and affect the particle’s performance on the bubble’s surface. Eddies of 

the same scale as the attached particles transfer kinetic energy to the attached particles. The 

similarity between these models is that even where enough energy is provided for the particle 

to detach, the detachment probability is 36.8 percent. Only where the detachment energy is 

much higher than the energy required, the detachment probability is close to 1. Similarly, 
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Nguyen and Schulze (2004) provided the detachment probability from an energy perspective 

by applying the same format as the force balance analysis. When the detachment energy is 

equal to the energy required for the particle to detach, the detachment probability is 1.  

    The detachment probability is also given for particles of different sizes compared to the 

maximum floatable particle size, as is shown in Table 3. Even though it is totally empirical, it 

can predict the detachment probability for particles of any given size for a flotation cell. 

Woodburn et al. (1971) used 1.5 orders of the diameter ratio (particle size on maximum 

floatable particle size) to calculate the detachment probability. When the particle’s size is 

bigger than the maximum floatable particle size, the detachment probability is defaulted to 1. 

Jameson et al. (2007) used an exponential function to calculate the detachment probability. 

When the particle size is equal to the maximum floatable particle size, the detachment 

probability is 1. However, when the particle size is bigger than the maximum floatable 

particle size, the detachment probability is higher than 1. As the probability is within 0 to 1, 

so when the particle size is larger than the maximum particle size the detachment probability 

is defaulted to 1. Brożek and Młynarczykowska (2010) showed the detachment probability as 

a function of the partition number. This equation is applied to particle sizes in the range of the 

maximum floatable particle size and particle sizes below which no detachment occurs. Based 

on the empirical dependences obtained in a particular flotation machine, this stochastic model 

can predict the detachment probability from the particle’s size.  

    From the above analysis, some models are for the static case and some models include the 

influences from the turbulent liquid’s motion. Even though the turbulence’s influence is 

interpreted from different perspectives, resulting in particle rotation or oscillation, the 

hydrodynamics inside the flotation cells are regarded as the main reason for the particle’s 

detachment. It is difficult to solely study the influence of turbulence on the detachment of 

particles from bubbles, as the flotation process is usually studied as a whole. Omelka et al. 
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(2009;  2010)  studied  particle  detachment  in  the  wake  turbulence  behind  grids,  and  the

particle  detachment  was  observed  to  occur  due  to  the  breakage  of  the  bubble.  It  is  noted,

however, that the size of the bubbles used in the experiment  were in the range of 1.7-4.5 mm,

and the turbulence  intensity  was high, with the energy dissipation rate in the range of 50-100

m
2
/s

3
. In a turbulent flow with so high an energy dissipation rate, the bubbles are unstable and

break  into  smaller  bubbles,  leaving  particles  detached.  Connecting  the  probability  of  particle

detachment in a turbulent  liquid  field  as a function of energy dissipation rate  is only recently

available  (Goel  and  Jameson,  2012).  The  experimental  procedure  was  well  designed  so  that

only the detachment process was subjected to the turbulence’s  influence. As shown  in Figure

8,  a  capillary  system  buried  in  a  column  of  a  fluidized  bed  was  used  to  generate  single

bubbles.  The  particle-laden  bubbles  were  directed  beneath  the  impeller  into  a  stirred  tank.

Particle  detachment  was  observed  in  the  turbulent  shear  flow.  The  fractional  detachment  of

particles was related to the kinetic energy dissipation rate in the region of the impeller. In this

part, the detachment probabilities calculated from the different models are compared with the

experimental results.

The  parameters  used  in  the  calculation  are  consistent  with  the  experimental  values,  where

the  particle’s  diameter  is  260  microns;  the  bubble’s  diameter  is  1.5  mm;  the  contact  angle  is

50  degrees;  the  surface  tension  is  0.068  N/m;  the  liquid  density  is  1000  kg/m
3
;  the  particle

density  is  2500  kg/m
3
;  and  the  impeller  diameter  is  50  mm.  The  rotation  speed  of  the  stirrer

was  modulated  to  provide  different  levels  of  turbulence  and  the  detachment  fraction  was

measured.  Correspondingly,  the  detachment  probability  is  calculated  as  a  function  of  the

energy dissipation rate.

Figure  11  compares  the  detachment  probability  from  the  force  balance.  It  is  apparent  that

Hui’s model predicts a higher detachment probability, even at a low energy dissipation rate. It

fast  reaches  close  to  1  and  stays  almost  constant  at  1.  As  the  detachment  probability  is
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considered  to  be  an  exponential  function  of  the  force  ratio  of  the  attaching  force  on  the

detaching  force,  even  the  detaching  force  is  much  higher  than  the  attaching  force  and  the

detachment  probability  is  close  to  1.  Comparatively,  Goel’s  model  and  Schulze’s  model

predict a lower increasing slope as the particle detachment is due to centrifugal motion. Hui’s

model  considers  that  turbulence  leads  to  bubble  oscillation  and  provides  a  much  higher

detaching  force.  Additionally,  detachment  probability  is  also  calculated  from  the  maximum

floatable  particle  size  using  Jameson’s  model.  In  the  range  of the energy dissipation rate,

Schulze’s  model  is  fit  for a  low  energy  dissipation  rate  and  Jameson’s  model  is  fit  for an

energy  dissipation  rate  of  medium  value.  However,  Hui’s  model  predicts the detachment

probability  well  when  the  energy  dissipation  rate  is  low,  due  to  the  characteristics  of  the

assumed  distribution  function.  Deviations  may  also  come  from  the  calculation  of  the  energy

dissipation  rate.  In  the  stirred  tank,  Goel  and  Jameson  assumed  that  the  detachment  of

particles  occurs  only  in  the  vicinity  of  the  impeller  region,  where  most  of  the  energy  is

dissipated.  The  mean  energy  dissipation  rate  is  calculated  for  the  region  of  the  stirrer.  More

importantly,   the   local   energy   dissipation   rate   is   more   significant   to   bubble-particle

detachment,  other  than  the  mean  energy  dissipation  rate.  Generally,  the  hypothesis  of  the

centrifugal  force  in  the  eddy  field  predicts  the  detachment  probability  well  at  low  levels  of

turbulence.  Nevertheless,  in  a  high  level  of  turbulence  this  theory  tends  to  exaggerate  the

influence from the turbulent liquid’s motion.

The  detachment  probability  is  also  calculated  from  energy  perspectives.  Figure  12  shows

that  the  detachment  probability  increases  sharply  with  the  energy  dissipation  rate  at  a  low

turbulence  level,  which  is  far  away  from  the  experimental  results.  This  is  mainly  due  to  the

reason  that the  detachment  is  correlated  with  the  energy  required  to  supply  a  surface  energy

increment and the energy supplied to the particle from turbulent liquid’s motion. Two factors

lead  to  the  overestimation  of  the  energy’s  influence  on  particle  detachment.  One  side  is  that
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only the surface energy increment of the bubble replaces the three phase contact plane. 

However, in the detachment process a bubble is adsorbing and dissipating energy, to a large 

extent, due to its elastic property. Even though this amount is not clear in the detachment 

process, it is believed to be much higher than the surface energy increment. The other side is 

the way in which the energy is transferred from the liquid’s motion to the attached particle. 

The particle is believed to follow the liquid’s motion and the velocity is calculated from the 

levels of the turbulence’s intensity using the energy dissipation rate. This neglects the 

particle’s inertia and gravity, which overestimate the energy imparted on the attached particle 

from the turbulent liquid’s motion. These two combined effects overestimate the influence of 

the turbulent liquid, making the detachment probability sensitive to an energy dissipation rate 

increase when the value is very small. Due to the assumed exponential function, the 

detachment probability remains constant at a high energy dissipation rate. The detachment 

probability prediction of Wang is also plotted. With a more accurate account of an eddy’s 

influence, the model predicts the particle detachment in accordance with the experimental 

results, giving a closer prediction of the detachment probability over other models.  

    Bubble-particle detachment is a complex process. Under different flow conditions, the 

main characteristic features of the bubble-particle detachment differ. It can be summarized 

that all of the existing models somehow consist of empirical descriptions of the bubble-

particle detachment. The detachment models of force balance and energy supply treat the 

influence of a turbulent liquid’s motion differently, using either centrifugal force or kinetic 

energy. Nevertheless, the turbulence’s influence on particle detachment is explained as the 

interaction of the eddy with the bubble-particle aggregate. The bubble-particle aggregate 

experiences different eddies on its way up to the froth phase. This stochastic process is 

described using a presumed distribution function, which is an exponential function. The 

distribution of the detachment probability still remains mysterious. Schulze and Stöckelhuber 
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(2005) cited Bloom and Heindel (2003) as a reference for Equation (11), where As was 

introduced. In turn, Bloom and Heindel got their equation from Schulze (1993). However, 

neither of them take us back to the original thesis of Plate, which is unpublished. 

The success of the flotation process intuitively depends on controlling the bubble-particle 

aggregate’s stability, which ensures the maximum recovery of floatable particles. Such 

control is only possible if the interactions of the aggregates with the surrounding turbulent 

fluid’s motion are adequately understood. In recent years, researchers have started to use 

computational fluid dynamics (CFD) to simulate the behavior inside flotation cells (Koh et al., 

2000; Koh and Schwarz, 2003; Koh and Schwarz, 2005; Koh and Schwarz, 2007; Kostoglou 

et al., 2007; Koh and Schwarz, 2008; Koh and Schwarz, 2008; Koh et al. 2009; Liu and 

Schwarz, 2009; Liu and Schwarz, 2009; Koh and Schwarz, 2011; Koh and Smith, 2011). The 

advantage of this approach is the potential to model any tank design at any scale, providing a 

wealth of details, such as the internal velocities, shear rates, turbulence parameters, 

distributions of phases, bubble sizes, and residence time distribution (Evans et al., 2008). 

Thus, the levels of turbulence inside flotation devices can be optimized to achieve high 

flotation recovery rates. The detailed understanding of flow gained using this approach 

allows modifications to existing equipment and the identification of potential process 

improvements (Koh and Schwarz, 2011). To achieve that, the flotation process needs to be 

well modelled.   

 

5. Conclusion 

 

    This work has reviewed the different models for predicting bubble-particle detachment 

probability and the experimental work on bubble-particle detachment. The experimental work 

is focused on exploring the mechanisms of particle detachment. Using AFM can accurately 
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measure the detachment force. The particle detachment process is characterized by three 

processes: bubble stretching; three phase contact contraction and neck formation. However, it 

cannot represent particle detachment in a real flotation situation. The different methods are 

devised to study particle detachment under different conditions, like the centrifugal method, 

the oscillation method, an oscillating grid cell and a stirred tank. Thus, the influences on 

particle detachment of the speed of rotation, the magnitude of oscillation, the frequency of 

oscillation and the energy dissipation rate can be quantified. Nevertheless, bubble-particle 

detachment in a turbulent liquid’s motion is not clearly understood. When a novel experiment 

was designed to capture the bubble-particle detachment process in a rotating eddy using high 

speed camera, the particles were observed to rotate on the surface of bubbles and the 

centrifugal acceleration reached 20 times the gravitational acceleration.    

    In the modelling of the particle detachment process a great disagreement exists in 

describing the influences of eddies and the interactions of eddies and bubble-particle 

aggregates. The models employed in describing detachment probability are divided into three 

groups: force balance, energy balance and maximum floatable particle size. As particle 

detachment is a stochastic process, certain distribution functions are assumed when 

describing the detachment probability, like the exponential distribution. The differences and 

similarities of the different models were analyzed. It is important to point out that the 

predictions of detachment probability from a particle’s size based on the maximum floatable 

particle size are empirical, but are useful for the known flotation cells. In summary, the 

different detachment models were summarized and compared in this comprehensive literature 

review. The mechanisms of particle detachment are also discussed. Decreasing the energy 

input is considered as an efficient way to increase the flotation recovery of coarse particles. 

Hopefully, this organization of the knowledge on bubble-particle detachment will help 

researchers in floating coarse particles. Thus, future work in this area should aim to combine 
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the study of turbulence with bubble-particle detachment prediction. Once achieved, bubble-

particle detachment can be predicted in a more direct way using the fundamental analysis of 

the inside physics, with less dependency on case specific empirical factors.  
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Nomenclature 

A   Magnitude of vibration       (m) 

     Empirical constant        (-) 

Bo    Bond number         (-) 

*

oB   Modified Bond number       (-) 

C    Correction to the estimation of the particle detachment energy, Eq.61 (-) 

Cp  Particle concentration in the pulp            (kg/m
3
) 

1E   Energy barrier         (J) 

'

kE   Detachment energy        (J) 

deE   Particle energy of detachment       (J) 

aF    Centrifugal force        (N) 

attF   Attaching force        (N) 

cF    Capillary force        (N) 

bF    Buoyancy force        (N) 

deF   Detaching force        (N) 

gF    Gravity force         (N) 

pF    Pressure force         (N) 
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H   Distance between the bubble apex and the plane of the three phase contact 

circle          (m) 

     Attachment probability        (-) 

     Collision probability        (-) 

             Collection probability        (-) 

     Detachment probability       (-) 

impR   Radius of impeller        (m) 

pR   Particle radius         (m) 

S   Strength of bubble-particle aggregate      (N) 

DU   Impeller tip velocity                  (m/s) 

gV   Gas superficial velocity                 (m/s) 

V   Turbulent relative velocity between the particle and the bubble            (m/s) 

aW    Work of adhesion        (J) 

mb    Eddy turbulent acceleration               (m/s
2
) 

maxb    Sum acceleration due to circulation and vibration            (m/s
2
) 

1c   Constant in fluctuating velocity equation, Eq. 21    (-) 

2c   Particle rotational radius correction factor     (-) 

agd   Diameter of bubble-particle aggregate     (m) 
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d    Characteristic length scale of particle      (m) 

Bd   Bubble diameter        (m) 

Pd   Particle diameter        (m) 

maxbd   Maximum stable bubble diameter      (m) 

pmaxd   Maximum floatable particle diameter      (m) 

minpd   Minimum particle diameter below which detachment probability is zero  (m) 

g   Gravity acceleration                (m/s
2
) 

    Flotation rate constant        (-) 

l   Particle rotating distance from the axis of an eddy    (m) 

pm   Particle mass         (kg) 

bm   Bubble mass         (kg) 

r   Radius of rotation        (m) 

sr   Radius of particle movement on bubble surface due to bubble vibration (m) 

1p   Pressure acting on the particle at the bottom     (pa) 

lu   Fluctuating velocity corresponding to eddy of scale l             (m/s) 

u’   Fluctuating velocity corresponding to eddy of  -space             (m/s) 

psu    Circular velocity of the attached particle on the vibrating bubble            (m/s) 
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Greek letters 

   Rotational speed                (rad/s) 

    Surface tension                (N/m) 

A    Advancing contact angle        (
o
) 

R    Receding contact angle       (
o
) 

   Central angle         (
o
) 

    Contact angle         (
o
) 

    Particle density              (kg/m
3
) 

l   Liquid density               (kg/m
3
) 

P   Particle density               (kg/m
3
) 

   Energy dissipation rate              (m
2
/s

3
) 

    Wavenumber of oscillating eddy               (1/m) 

R   Maximum central angle at attaching process     (
o
) 

m   Central angle at maximum capillary force     (
o
) 

    Kinetic viscosity               (m
2
/s) 

   Area of contact between particle and bubble     (m
2
) 

   Density difference between particle and liquid          (kg/m
3
) 
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Table 1: Summary of detachment models based on force balance  

 

Model Equation Comments 

Schulze (1993) 
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Table 2: Summary of detachment models based on energy balance 

 

Model Equation Comments 

Yoon and 
Mao (1996) 
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Table 3: Summary of detachment models based on maximum floatable particle size 

 

 

Model Equation Comments 

Woodburn et al. 
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Highlights 

1. Bubble-particle detachment models in flotation are reviewed. 

2. Experimental works highlighting the detachment mechanisms are reviewed.  

3. Detachment probabilities predicted from detachment models are compared. 

 

 


