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Abstract 

 

The objective of this research was to develop a method to map weeds in sorghum as the first 

step as a procedure to control them using site-specific weed management (SSWM). Site-specific 

weed management is a method to limit the application of herbicides only to areas with weeds. 

Accurate mapping of weeds is a pre-requisite for applying SSWM. Analysis of hyperspectral 

remote sensing imagery is recognized as a potentially cost effective technique for discriminating 

between weeds and crop plants. This research involved: i) collecting hyperspectral reflectance 

spectra from weeds and sorghum plants, ii) Stepwise Linear Discriminant Analysis (SLDA) to 

identify the most significant spectral bands, iii) Linear Discrimination Analysis (LDA) to test the 

accuracy of the SLDA bands for classifying weeds and sorghum, and iv) analysis of customized 

multispectral imagery to produce maps which detected weeds in the sorghum crop. 

Hyperspectral signatures of weeds and sorghum were obtained using a FieldSpec® 

Handheld2
TM

 spectroradiometer with a spectral range from 325 nm to 1075 nm. Spectra were 

recorded for different weed species and sorghum plants for three years, 2012 to 2014. Data were 

collected at four different stages of plant growth each year, from week one to week four after 

planting. 

The results show that it is feasible to discriminate spectral profiles of weeds from each other 

weeds and from sorghum plants. Statistical Analysis Software (SAS) was used to identify the most 

significant spectral bands (10 nm width) from the hyperspectral reflectance data using SLDA. All 

weeds and sorghum were correctly classified in 2012 using LDA for week four reflectance data. In 

2013, the classification accuracy increased with stage of growth (weeks one to four) from 85% to 

90%. In 2014, the classification accuracy also increased with stage of growth (weeks two to four) 

from 90% to 100%. Combinations of spectral bands were analysed to reduce the number of 

potential bands identified from the SLDA results. Spectral bands centred on 930, 890, 710, 700, 560 

and 500 nm were common to the 20 most significant spectral bands identified by SLDA analysis 

each year. Six spectral bands 850, 720, 710, 680, 560 and 440 nm were subsequently selected for 

use in multispectral image collection. They were selected based on maximizing the differences and 

similarities between the 2013 weed and crop reflectance profiles. These bands were used for the 

band-pass filters in the Tetracam MCA 6 camera used for collecting high spatial resolution 

terrestrial and aerial imagery. 

The imagery was analysed using Object-Based Image Analysis (OBIA) and Vegetation 

Index Analysis (VIA) to classify weeds and sorghum plants. OBIA identified weeds more 

successfully than VIA. The accuracy of OBIA classification was tested using two methods. 

Confusion matrices were used to measure the Coefficient of Agreement (Khat), Overall Accuracy 
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and Producer‘s and User Accuracies. Geometry matrices were used to measure under and over 

segmentation. The Overall accuracy and Khat for all the weeds was more than 80% and 70% 

respectively for mosaic imagery. These results are considered high and moderate for effectiveness 

in discrimination respectively. 

The results of this research are limited by the weed species that grew in the sorghum crop at 

Gatton, Queensland, the spectral resolution of the imagery and the image analysis methods. To 

ensure the wider applicability of the procedures, methods presented in this thesis need to be tested 

on other sorghum crops in different locations. 

 

Key Words: Weed-crop classification, hyperspectral reflectance, weed mapping, site-specific 

weed management, weed detection and image processing. 
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Chapter 1  

INTRODUCTION 

1.1 BACKGROUND 
 

Australia produces 2.2 million tonnes of grain sorghum annually which is mainly harvested 

from Queensland and New South Wales (USDA, 2016). Sixty percent of this production occurs in 

Queensland (Department of Agriculture and Fisheries 2012). Sorghum is a summer crop, which is 

planted between September and January each year. At this time of the year weed infestation is 

inevitable and it reduces grain yield if not controlled (Department of Agriculture and Fisheries 

2012).  

Weeds cause yield loss because they compete with crop plants for moisture, nutrients and 

sunlight (Birch et al. 2011). Potential yield loss due to uncontrolled weed growth is estimated to be 

43% globally (Oerke 2006). The Department of Agriculture, Fisheries and Forestry (DAFF) 

reported that weeds cause the loss of AUD$4 billion annually in Australia and this increases each 

year (Goktogan et al. 2010).  

Weeds are controlled by herbicides in Australia, applied either as a blanket application to 

the whole field or to banded areas within rows. Neither method is sensitive to the spatial variability 

of the weeds (Birch et al. 2011). These methods can harm the crop, use unnecessary amounts of 

herbicide, increase the cost of production, contribute to herbicide resistance and cause 

environmental side effects (De Baerdemaeker 2014). Herbicide resistance is a critical problem in 

Australian cropping systems (Evans and Diggle 2008). These problems can be reduced by more 

targeted methods of herbicide application. Site-specific weed management (SSWM) is one method 

that has been proposed to achieve this (Torres-Sanchez et al. 2013b). In this procedure, farmers only 

apply the right amount of herbicide to the specific location at the right time. This can minimise 

chemical usage and herbicide resistance because it decreases the opportunity for selection of 

herbicide tolerant strains of weeds by minimizing the chance of survival through application of 

suboptimal concentrations of herbicide. 

The concepts of Precision Farming (PF) and Precision Agriculture (PA) were introduced 

globally in 1990 (Khorramnia et al. 2014). Spraying herbicide at the right dosage at the right time 

and in the precise location of the weed is an application of PA and provides a better approach to 

weed control than blanket herbicide application (Okamoto et al. 2014). It requires specific 

information about the location (distribution) of each weed (Kiani and Jafari 2012).  
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Discrimination between weeds and crop plants is the first step needed to apply SSWM 

(Gutjahr and Gerhards 2010). Visible wavelength remote sensing is one method of acquiring 

information for SSWM application (Pena et al. 2013). However, the use of satellite imagery for 

weed detection at the early stages of weed growth is limited by the lack of spatial and spectral 

resolution of the satellite sensors to detect small plants (Pena et al. 2013). Unmanned aerial vehicles 

(UAVs) or drones are an alternative means of collecting high spatial and temporal resolution 

Visible (VIS) and Near Infra-Red (NIR) imagery (Garcia-Ruiz et al. 2015). They are easily 

deployed, relatively low-cost and have a flexible payload capability that allows them to be fitted 

with lightweight sensors such as multispectral cameras (Bueren et al. 2015).   

Multispectral remote sensing refers to the collection of reflected, emitted or back-scattered 

energy from an object of interest in multiple bands (regions) of the electromagnetic spectrum 

(Jensen 2016). The bands are sensitive to different features of the object so they can be used to 

detect weeds and crop plants on the basis of difference in spectral signatures (Garcia-Ruiz et al. 

2015). Image processing techniques potentially can be used to identify the weeds separate from the 

sorghum plants and thereby produce an accurate weed map from the multispectral imagery (Lee et 

al. 2010). This research has the potential to demonstrate a procedure for identifying spectrally 

unique signatures from the weeds and sorghum plants and use them as the basis for multispectral 

imagery to map weeds in sorghum. 

1.2 PROBLEM STATEMENT 
 

The main concerns with chemical weed control are its cost, and effects on crop productivity 

and environment (Ortiz-Monasterio and Lobell 2007; Martin et al. 2011). One potential solution to 

reduce the amount of herbicide is to apply herbicides at precisely the right weed location, at the 

right time and in the right concentration. This requires a record of precisely where each weed is 

located so that the herbicide sprayer can be activated to spray only for each weed or patch of weeds 

(Ortiz-Monasterio and Lobell 2007; Birch et al. 2011). Identification of weeds separate from crop 

plants can be done by appropriate image processing methods (Lee et al. 2010). 

Satellite imagery is limited in doing this because of weather conditions (cloud cover) and 

lack of spatial, spectral and temporal resolution (Gumz 2007; Eisenbeiss and Sauerbier 2011). 

Imagery obtained at later stages of weed growth, when the weeds are larger, and easier to 

distinguish from the crop, is not suitable for herbicide weed mapping because more herbicide is 

needed to kill the weeds; this costs more and may result in poorer control (Pena-Barragan et al. 

2012a). It is possible that weeds already may have reduced crop yield at this later stage of crop 

growth and it may not be possible to use some herbicides beyond certain stages of crop growth. The 
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limitations of satellite imagery for weed mapping can be overcome by using imagery collected by 

UAVs (Gumz 2007). The temporal and spatial resolution of UAV collected imagery can be adjusted 

to match the size of the weeds at their different stages of growth. The spectral resolution of UAV 

collected visible and NIR imagery depends on the filters fitted to the selected sensor. 

Hyperspectral and multispectral data can be used to detect spectral differences between 

weeds and crop plants (Garcia-Ruiz et al. 2015). The weed species reflect unique spectral signatures 

that can potentially be processed to produce a weed map. However, to achieve this, several 

technical issues need to be solved: 

i. The weeds need to be detected in the sorghum crop when they are at an early stage of growth 

and physically very small. This raises the questions of: 

a. When is the best early stage of growth at which to detect and discriminate the 

reflectance of weeds and sorghum plants? 

b. What type of data needs to be collected to identify the weeds from the sorghum plants 

at the early growth stage? 

c. What is the difference in reflectance between weeds and sorghum? 

d. What statistical methods are appropriate to detect and discriminate between the 

reflectance of weeds and sorghum? 

ii. The need for an image of the crop when the weeds are at an early growth stage raises the 

questions of: 

a. Can UAVs be used to collect a suitable image of the weeds and sorghum? 

b. What type of sensor can collect imagery that discriminates between weeds and 

sorghum? 

c. What are suitable spectral, spatial and temporal resolutions for detecting weeds and 

sorghum plants for weed mapping? 

iii. The need for the weeds to be identified separately from the crop plants raises questions of: 

a. How do we identify the weed species from the crop plants using multispectral imagery? 

b. What are the procedures to collect static and UAV multispectral imagery for weed 

detection? 

c. How should the data be processed to detect and discriminate weeds and sorghum 

plants? 

d. How accurate is the detection of weed and sorghum plants? 

These questions were investigated in this thesis to determine the best solution to produce a 

weed map for sorghum. 
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1.3 AIM OF RESEARCH  
 

The overall aim of this research was to develop a weed map for site-specific weed control in 

sorghum. In so doing, the following specific research objectives were developed. 

1.4 OBJECTIVES 
 

i. To discriminate between weeds and sorghum plants. 

ii. To identify multispectral image bands that could be used to discriminate between different 

common weed species and sorghum plants. 

iii. To evaluate image processing procedures to separate weed species and sorghum plants using 

the multispectral imagery. 

iv. To use image processing to develop a weed map for a field of sorghum. 

1.5 SIGNIFICANCE OF STUDY 
 

The significance of this study is its demonstration of a procedure to identify the spectral 

bands that can be used to discriminate between weed and sorghum plants at an early stage of 

growth, the use of this information to collect multispectral imagery and the processing of it to create 

a weed discrimination map for sorghum. This is consistent with the approach recommended by 

Gumz (2007). The same procedure may be used for creating weed maps for different crops.  

A weed map provides information about the location and density of individual weeds and 

patches of weeds in the crop. The pattern of distribution of weeds within the crop and their stage of 

growth provide the information needed to precisely apply the optimal dose of herbicides to kill the 

weeds while having minimal impact on the crop and the environment. The weed map can be 

uploaded to a tractor fitted with automatic guidance and computer controlled spraying equipment to 

apply the herbicide at the precise locations. 

Specific bands of visible and NIR radiation, chosen from the spectral analysis, can be used 

as a guideline for selecting image sensor bands. A camera, modified to include these bands, can be 

used to photograph the crop. The identification of ―weed detection‖ spectral bands for a variety of 

crops has the potential to lead to the development of weed detection cameras and integrated 

processing procedures for other forms of applications such as pest and disease detection.   
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1.6 LIMITATIONS OF STUDY 
 

The accuracy of the weed map is based on the precision of the image and accuracy of the 

analysis. One of the limitations of this study was the difficulty in getting consistent data as outlined 

below. 

In the first year of research (2012), only hyperspectral data was collected and the results 

were not replicated. In the second year (2013), an improved field design was used along with a 

replicated data-sampling plan. This enabled the hyperspectral data to be validated, and unique 

spectra and spectral bands to be identified. In the third year (2014) the experimental design of the 

field sample sites was further refined, hyperspectral reflectance data was collected and multispectral 

(6 bands) image data was collected in a replicated manner at different stages of weed growth.  

The results are based on weeds found in grain sorghum crops grown in the Lockyer Valley 

in Queensland, Australia. Grain sorghum crops grown in different areas are likely to have slightly 

different spectral signatures and the weed species may have different reflectance profiles. The bands 

that provided discrimination in this study may not be suitable for the same species of weed at 

different places. Also, the same weed species may not occur every year under the same field 

conditions. 

1.7 CONCLUSIONS 
 

This research investigates a systematic way of determining how to separate weeds from 

sorghum plants by first analysing the spectral reflectance differences between the species followed 

by determining the multispectral bands that yield maximum discrimination. These bands were used 

as filters in a multi-sensor (six) camera to collect static and low-level overflight imagery for 

analysis to separate weeds from sorghum to produce a weed map. Weed maps produced in this 

manner have the potential for being used to direct precise herbicide applications with the associated 

benefits of reduced chemical cost and environment side effects.  

The thesis is comprised of seven chapters. Chapter 2 provides a review of the literature on 

current weed management technology, UAV image collection technology and image processing 

procedures related to weed detection followed by Chapter 3 which covers general methodology 

common to the three research chapters that follow. Chapter 4 covers the identification of spectral 

differences in the reflectance of weeds and sorghum plants; Chapter 5 covers the identification and 

selection of spectral bands for distinguishing between weeds and sorghum plants and Chapter 6 
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evaluates image processing options for detecting weeds and sorghum plants in multispectral 

imagery. Chapter 7 provides a summary of the findings and recommendations for further research. 
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Chapter 2  

LITERATURE REVIEW 

2.1 INTRODUCTION 
 

Sorghum is one of the major dry land crops grown in Queensland. It is used in rotation with 

other crops and has the advantage of requiring less water than other grain crops (Department of 

Agriculture and Fisheries 2012).  

There are nine recognised stages in the growth of sorghum (Figure 2-1). Stage zero is 

emergence and stage nine is physiological maturity (Vanderlip 1993). Sorghum reaches maturity 

100 days after emergence. The details for each stage are described in Table 2-1. 

 

 

Figure 2-1 Sorghum Growth Stage Development (University of Illinois 2012) 
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Table 2-1 Growth stages for grain sorghum (Mississippi State 2014) 

Stage Identifying characteristics 
Approximate days 
after emergence 

0 Emergence - Seedlings emerge from the soil. 0 

1 Three-leaf stage (Three leaves completely emerged, collars present). 10 

2 Five-leaf stage. 20 

3 Growing Point Differentiation (head development begins) - Rapid growth 
and nutrient uptake begins. 

30 

5 Boot stage (head enclosed in swollen flag leaf sheath) - Severe moisture 
stress will limit head exertion from the flag-leaf sheath, preventing 
pollination. 

50 

6 Half-bloom - Hot, dry weather can reduce seed set at this stage. 60 

7 Soft dough - About 50% of the grain dry weight has accumulated. 70 

8 Hard dough - About 75% of the grain dry weight has accumulated. 85 

9 Physiological maturity - A dark spot on the opposite side of the kernel from 
the embryo forms (similar to black layer in corn). Dry matter accumulation 
is complete. 

100 

 

Sorghum plants are affected by weeds in their early stages of growth. The weeds compete 

for sunlight, moisture, nutrients and attract pests (Vanderlip 1993; Monaco et al. 2001). The best 

time to control weeds is also in their early stages of growth (Pena et al. 2013; Torres-Sanchez et al. 

2013b). For example, grain production is reduced about 10% by one pigweed plant per linear metre 

of row if the infestation is left uncontrolled until the three-leaf stage (Smith and Scott 2010). 

The common weeds in grain sorghum in Queensland are listed and illustrated in Table 2-2. 

They are all annual weeds except for nutgrass which is perennial (Wood 2000). Most of these 

weeds occur in various crops such as maize and soy bean (Hoang and Binh 2015), sorghum and 

cotton (Kandhro et al. 2014), carrots (Aitkenhead et al. 2003), cotton (Eure et al. 2015) and 

sunflowers (Lopez-Granados et al. 2015). The difference in the environment of these crops may 

influence the spectral signature of the weeds. 

The traditional way of managing weeds in agricultural crops is either to cultivate or to spray 

with pre-emergence and knockdown herbicides. This has been practised for the past 50 years. The 

use of herbicides has resulted in the development of herbicide resistance in weeds and detrimental 

environmental side effects (Reeves 2008) (Table 2-3).  
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Table 2-2 Description of weed species (Wood 2000). 

 

Plants Description Flowers and Fruiting 

Amaranth (C4) 
(Amaranthus 
macrocarpus) 
 

 

Small seedlings have purples veins and leaf 
margins. Seedlings are more prostrate than 
other amaranth seedlings apart from native 
amaranth.  
 
Mature plans are prostrates to semi-erect, with 
hairless, reddish-white stems. 
The leaves are notched at the tip.  

Reddish-white, in dense 
clusters at the leaf forks. 
Fruiting capsules are 3–5 
mm long, pear-shaped, 
soft and wrinkled and 
occur at the leaf forks. 

Pigweed (C4) 
(Portulaca oleracea)  
  

 

Seed leaves are fleshy and elongated oval-
shaped. The first true leaf is club-shaped, 
waxy, with purple, margins and on a short 
stalk. 
 
Mature plants are fleshy and prostrate. 
Leaves are opposite, oval, crinkly, have purple 
margins and flattened or slightly notched at the 
tip. One leaf of each pairs is smaller than the 
other in seedling and adults.  

Single pink to purple 
flowers occur in cup-like 
structures in the leaf 
forks. 
Leaf stalks are variable on 
length and swollen and 
cup-like at the base. 

Awnless Barnyard 
Grass (C4) 
(Echinochloa colona) 
  

 

The seedling tillers are flattened with purplish 
colouring at the base. The absence of a ligule 
is a key identification point. 
 
Purplish-red bands across the leaves can 
occur; these are a variant known as zebra. 
Mature plants are prostrate to semi-erect, 0.2-
0.6 m tall, tufted with slender hairless stems 
and often purplish at the base. 

The spikelets forming the 
seedhead become 
smaller towards the tip, 
and the spikelets are 
arranged in rows on one 
side of the spike. 
Awns on the seed spikelet 
are generally absent.  

NutGrass 
(Cyperus rotundus)  

 

Nutgrass is sedge rather than a grass. 
True seedlings of nutgrass are rarely 
produced. New seedling-like shoots grow from 
tubers. Seedlings are erect with shiny leaves 
tapering to a point. 
 
Mature plants are grass-like, up to 0.3 m tall, 
with an extensive system in a cluster at ground 
level. 
 

 
Yellow, nutgrass and 
downs nutgrass are 
similar, but do not have 
tubers in chains and 
mature plants are taller. 
Seed heads are borne on 
triangular stems, which 
have several leaves near 
the top. 

Bellive  
(Ipomea plebeia) 

 

Seed leaves are v-shaped with a broad flat 
base extending slightly beyond the sides. The 
true leaves have scattered hairs, with a 
notched base, becoming more pronounced as 
leaves mature. The notched leaf base formed 
by large basal lobes is very pronounced and 
regular. 
 
Mature plants are prostrate or climbing. 

Flowers are white, 
trumpet-shaped and arise 
from the leaf forks.  
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Table 2-2 (continued) Description of weed species (Wood 2000). 

 

Plants Description Flowers and Fruiting 

Mallow Weed 
(Malva sp)  

 

Seed leaves are reverse heart-shaped, with 
long purple stalks. The first true leaf is rounded 
with a notched base, slight lobes and rounded 
teeth. Subsequently leaves are more wrinkled 
with shallow lobes and green or purplish-green 
stalks. 
 
Mature plants are woody-based and sprawling 
or upright. Leaves are alternate, wrinkled, 
rounded with a notched base and rounded 
teeth. Leaf stalks up 0.24 m long. 

Pale pink to white with 
five short petals, and 
clustered in the leaf forks. 
Fruit comprises eight 12 
wedge-shaped segment.  

Fat Hen  
(Chenopodium 
album) 

  

Seed leaves are elongated and oval-shaped. 
The first pair of true leaves is oval and has a 
truncated base. Subsequent leaves are 
triangular with toothed margins. Young leaves 
are whitish-green due to a wax coating. 
 
Mature plants are erect and branched, with 
ribbed, green or re-tinged stems. 
 

Greenish-white to 
reddish-white flowers are 
clustered on the tips of 
branches.  
Leaves are mealy-white, 
roughly diamond-shaped 
with wavy to toothed 
margins. 

Urochloa, Liver seed 
Grass  
(Urochoa panicoides)  

 

Seedlings are yellowish-green, with hairs on 
the leaf sheaths and leaf margins. A key 
identification feature is the very broad leaves. 
The ligule is a low, papery rim, capped with 
short hairs. 
 
Mature plants are prostrate or ascending, up to 
0.6 m tall, and tufted. Stems can sometimes 
take root where joints touch the ground.  
 
Seed occur in two rows on one side of the 
spike. 
 

Leaves are usually hairy; 
especially on the margins, 
and margins are crinkled. 
The seed head has two to 
seven spikes arising from 
the main stem at well-
spaced intervals. 

 

 
Table 2-3 Summary of weed control in past 50 years (Reeves 2008) 

Year Major impact 

1970s 
Herbicide decade – bipyridyls, selective pre and post-emergence herbicides 
developed  

1980s 
Minimum tillage decade – glyphosate, conservation tillage, oilseeds, pulse, 
crop intensification, more herbicides 

1990s 
Herbicide resistance decade – resistance, cross resistance, awareness, 
research, management strategies 

2000s 
Precision agriculture decade – seed band management, GPS/auto steer, 
water-use efficiency, „new‟ species of resistant weeds; more herbicide 
resistance 

 

Weed life cycles need to be understood to improve weed management (Widderick 2009). 

Most of the weed species reported by Wood (2000) are annual plants that complete their cycle from 
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seed to seed in less than one year (Figure 2-2). In general, these plants germinate in spring continue 

to grow until summer when they flower and then die in the autumn.  

 

Figure 2-2 Life cycle of an annual weed (Widderick, 2009) 

 

Sorghum is a C4 photosynthetic plant. C4 plants grow best under high temperature and 

optimum light conditions for photosynthesis. This achieves high growth rates and high dry matter 

production per unit of water used. The main concern from an agricultural perspective is competition 

with other plants (crop and weeds) for nutrients (nitrogen, phosphorus, and potassium) (Zimdahl 

2013). 

The similarities and differences between conventional chemical, automated precision 

chemical and mechanical weed control methods are summarised in Table 2-4. All weed control 

methods have limitations (De Baerdemaeker 2014). New approaches to weed control are needed to 

overcome the shortcomings of the present control methods. Novel approaches would ideally have 

less impact on the environment and the target crop and cost less. Technologies such as remote 

sensing and site-specific weed management (SSWM) could potentially meet this need (De 

Baerdemaeker 2014). 

Site-specific weed management targets weed patches based on either the density of the 

weeds and or the species composition. This approach involves locating and mapping the position of 

the weeds. A map is used to direct precise application of the herbicides (Birch et al. 2011). This 

reduces the amount of chemical needed to control the weeds (Kunisch 2002; Lopez-Granados 

2010). To achieve this, the patches of weeds need to be detected early enough to be controlled 

before they have an adverse effect on the crop (Andujar et al. 2012; Pena et al. 2013).  
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Table 2-4 Comparison of mechanical, conventional chemical and 
 automated precision chemical weed control (De Baerdemaeker 2014) 

Weed Control Similarities Differences 

 Mechanical 

 Conventional 
chemical 

 Automated 
precision 
chemical 

 General crop and 
weed growth 
knowledge. 

 Optimal timing for 
control. 

 Extensive testing 
required. 

 Specialized and local 
knowledge. 

 Machine safety 
requirements.  

 Smaller working width for 
mechanical control. 

 Higher cost for mechanical 
control. 

 Few equipment manufactures 
for conventional weed control.  

 Chemical companies 
contribute to herbicide resistant 
(HR) weeds. 

 Automation requires less 
government approval.  

 Spacing and guidance critical 
for automation control system. 

 No synthetic chemicals can be 
used in organic production. 

 Closed canopy limits 
mechanical control.  

 Weed and pest control allows 
multiuse for chemical 
equipment. 

2.2 WEED CONTROL SYSTEMS  

2.2.1 Mechanical and thermal weed control  

This approach uses mechanical or thermal control of weeds either because of the absence of 

chemical control equipment and or suitable chemicals or a desire to meet organic production 

requirements (Deng et al. 2010). Weeds can be mechanically uprooted by cultivation or thermally 

treated to kill them. Heat treatment is cost effective and causes minimal harm to the environment. 

However, it requires precise knowledge of where the weeds are in the field (Parsons et al. 2009) and 

an accurate tractor guidance system (Okamoto et al. 2014).  

Haff et al. (2011) designed an automatic tomato weeding system that adopted a new 

technique called x-ray detection. The x-ray based system automatically identified the stem of the 

tomato plant and guided knives to cut the weeds without cutting the tomato plant stem (Haff et al. 

2011). The knives were controlled by a signal from the x-ray detection equipment. The accuracy of 

identifying the tomato plants when the equipment was travelling at 1.6 kilometres per hour (km/h) 

was 90.7%. Integration of this technology with Real Time Kinematic Global Positioning System 

(RTK GPS) equipment may advance weed management. 

2.2.2 Conventional chemical weed control  

Herbicides are effective and popular for weed control and are necessary to maintain crop 

yield and quality (Harker et al. 2013; Pena et al. 2013). It is done by post emergence spot spraying 
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herbicides such as Atrazine plus, Fluroxypyr (Starane®, Rifle®, Tomigan®), Tordon 75D® + 2,4-

D amine, Tordon 75D®, 2,4-D amine, Sempra® and Dicamba (Bullen 2002). The dosage of the 

herbicide depends on the type and size of crop and weed (Bullen 2002).  

Chemical weed control can cause herbicide resistance, species shifts and changes in species 

dominance. It may cause damage to the crop and yield loss, herbicide resistance and increases in the 

cost of production (Peltzer et al. 2009). The main causes of herbicide resistance are application at 

the wrong stage of growth and spraying the whole area when there are only a few weeds at isolated 

spots (Lopez-Granados et al. 2015). Herbicide resistant weeds are very difficult to control. Table 

2.5 shows the main herbicides to which resistance has developed and the crops in which the 

resistance occurs (Zimdahl 2013).  

 

Table 2-5 Five herbicides and the crops in which resistant weeds occur in the world 
 (Heap 2016 and Zimdahl 2013) 

Herbicides County  Resistant Crops 

Bromoxynil United State (US), Canada Cotton, potato and tobacco 

Glyphosate Australia, US, Malaysia, South Africa, Chile, 
Brazil, Spain, Argentina, China, France, 
Colombia, Czech Republic, Paraguay, Italy, 
Mexico, Poland  

Canola, corn, cotton, 
potato, soybean, tobacco 
and tomato 

Glufosinate US and Malaysia Alfalfa, barley, canola, corn, 
creeping bentgrass, peanut, 
rice, sugar beet, sugarcane, 
soy bean and tomato 

Sethoxydim Australia, Canada, South Africa, United 
Kingdom, Mexico, Brazil, Italy, Iran, China 

Corn 

2,4-D Amine Canada, Indonesia, Malaysia, New 
Zealand, Philippines, Spain, Hungary, 
Thailand 

Cotton and potato 

 

Consumers and farmers in Japan demand non-chemical or low-chemical agricultural 

production because they understand the environmental effects of using chemicals and want to 

preserve the world for future generations (Okamoto et al. 2014). Okamoto et al. (2014) 

recommended implementing a robotic weed control system that limits chemical usage in 

agriculture. However, this technology is expensive and still in the testing phase.  

Precision weed control may be a solution to fill the gap between conventional chemical and 

automated mechanical weed control. Herbicide use can be reduced by specifically targeting the 

weed pacthes. To do this, the weed patches need to be accurately detected.  

2.2.3 Precision weed control 

The aim of precision application of chemicals for weed control is to reduce the amount of 

chemical used to control the weeds (Okamoto et al. 2014) by applying them to exactly where the 

weeds are located. Site-specific weed management has the potential to reduce herbicide use by 40 -



Chapter 2                                                                                                                              Literature Review 

14 

 

60%, decrease fuel consumption and increase farmer income (Jensen et al. 2012). Site-specific 

weed management is the integration of machinery or equipment embedded with technologies that 

detect weeds growing in a crop so as to maximize the chance of successfully controlling the weed 

(Christensen et al. 2009). There are four levels of spatial resolution for the control of weeds on a 

farm (Figure 2-3): 

 Treatment of individual plants with highly accurate spraying nozzles, controllable 

mechanical implements or laser beams. 

 Treatment of a grid adapted to the resolution, e.g. adjusting the spraying with a nozzle or a 

hoe unit. 

 Treatment of weed patches or subfields with clusters of weed plants.  

 Uniform treatment of the whole field. 

 

Figure 2-3 The spatial resolution of weed control in a field (Christensen et al. 2009) 

 

 

There are three different ways of undertaking site-specific weed control (Figure 2-4).  

 

 

Figure 2-4 Three variations of precision farming strategies for site-specific 
 weed control (Bill et al. 2012). 
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These methods can also be used to precisely control the input of fertilizers and pesticides as 

well as herbicides. The first method, GIS overlay, involves mapping the area ahead of time and 

using appropriate map overlays to generate a vector map to guide the application of crop inputs. 

The second method, online sensor, detects plant characteristics (crop or weed) and activates the 

application of nutrients or herbicides in real time. The third method, a combination of online sensor 

and GIS overlay methods, also produces application maps that can direct where to apply fertilizers, 

pesticides, growth regulators and herbicides (Bill et al. 2012). Numerous investigators 

recommended that methods to detect weeds accurately in crops be developed (Armstrong et al. 

2007; Christensen et al. 2011; Everitt et al. 2011; Berge et al. 2012). Gumz (2007) recommended 

SSWM be developed to reduce the cost of weed control.   

An alternative to SSWM is control of weeds through patch weed management. Patch weed 

management is the spraying of patches of weeds. It saves chemicals, reduces cost and has less effect 

on the environmental (Agrawal et al. 2012) but is less specific than SSWM. In Norway, Berge et al. 

(2012) developed a novel machine vision algorithm, Weedcer to detect weed patches. This 

estimated the proportions of young weed leaves and cereal crop leaves in high resolution RGB 

images and used real-time site-specific spraying to control annual broadleaf weeds. Weedcer 

computes a set of significant features for each component, based on colour and a set of shape 

parameters (Berge et al. 2012).  

2.2.3.1 Variable rate technology 

Variable Rate Technology (VRT) uses field spatial information management variables to 

optimize agronomic inputs. VRT allows the use of the precise amount of herbicide required to 

control weeds. The components of a VRT system are a computer controller, GPS receiver, and 

Geographical Information System (GIS) database (map). The computer controller uses the map or 

database to adjust the application rate of the crop input. The location coordinates are used by the 

computer to monitor the system location of the applicator on the map. The computer controls the 

rate of input based on instructions from the GIS database map and these are applied as the 

applicator reaches the location of each weed recorded on the map. The exact quantity of herbicide 

applied at each location is determined by the weed map. 

This reduces the amount of herbicide applied (Fernandes et al. 2014). For instance, in a 

potato field both mono and dicotyledonous weeds were detected by GPSMap 278 (Cepl and Kasal 

2010) to produce a weed map. The weed map allowed herbicides to be sprayed only where the 

weeds were located thereby reducing herbicides uses, expenses and environmental exposure (Cepl 

and Kasal 2010). Cepl and Kasal (2010) found that 44% of conventional herbicide use could be 

saved based on the application map. 
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2.2.3.2 Detection systems 

Advanced sensor-intensive technology and automation in crop production are expected to 

improve productivity and quality with minimal environmental impact (Lee et al. 2010). Plant 

nutrient, moisture level, soil condition and plant health can be monitored using remote or local 

sensor networks. However, to accomplish this, the information has to be collected with high spatial 

accuracy and at a high resolution. The three main steps in weed mapping are image acquisition, 

automatic image stitching of colour and binary images and photomosaicing (Liu et al. 2013). There 

are five groups of sensor-intensive technologies used in agricultural applications (Table 2-6). 

 

Table 2-6 Sensor-based intensive technology (Lee et al. 2010) 

Sensor-intensive technologies Description 

Novel control technologies. Controlling chemical and nutrient use to reduce cost and 
environmental impact and improve worker safety. 

Robotic and mechatronic 
operators. 

Increase productivity and decrease labour cost. Example fruit thinning, 
pruning and harvesting. 

Autonomous navigation systems. Harvesting, spraying and utility vehicle. The sensors are sensitive to 
the local crop conditions.  

Precision Agriculture. Yield mapping, prediction, soil sensing, nutrient and pesticide 
application and irrigation control. Extensive use of sensors for 
targeting the local crop with accurate doses of chemicals.  

Pest and disease monitoring. Spaced-based or airborne remote sensing and ground based systems 
using proximal non-contact sensing.  

 

It is becoming more common to use sensors for field data collection. These sensors are the 

latest technology for real-time weed identification and detection (Christensen et al. 2009). Common 

sensors used in crop detection include field electronic sensors, spectroradiometers , machine vision, 

airborne multispectral and hyperspectral imagery sensors, satellite imagery and thermal imaging 

sensors (Lee et al. 2010). Spectral reflectance, multispectral images and Normalized Differential 

Vegetation Index (NDVI) can be integrated to acquire reliable and accurate information about the 

condition of the field crop (Lan et al. 2009). UV-induced fluorescence sensors for weed detection 

allow real-time automatic spot spraying within a corn crop (Longchamps et al. 2010). Ultrasonic 

sensors that can be mounted on a tractor for weed discrimination (Andujar et al. 2011) work by 

measuring the density of grasses and broad leaved weeds. This method allows for real-time, 

spatially selective weed control techniques, either as the sole weed detection system or in 

combination with other detection tools.   

Greenseeker
TM

 is a commercial sensor, which has been used in crop management to collect 

red and near-infra red (NIR) in real time (Lan et al. 2009). The sensor is adjustable in 15 degree 

increments and is mounted on an adjustable-length pole to set the sensor parallel to the target 

canopy. The NDVI data was derived from the ratio of red to near infrared (Red/NIR) using the 

Greenseeker
TM

 sensor. This indicated that Greenseeker
TM

 could be used as an alternative to collect 
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the red and NIR spectral reflectance of plants to calculate NDVI and to correlate with other data 

such as visual weed control, weed dry matter and digital photography in the inter-row area of 

soybean and corn (Merotto Jr et al. 2012). The research showed that the NDVI positively correlated 

with the digital photography in weed leaf coverage (Merotto Jr et al. 2012). 

Similar research has been done using Weedseeker® PhD600 (NTech Industries Inc. Ukiah, 

CA) to detect weeds in cotton (Sui et al. 2008). This method involves mounting the unit on a GPS 

guidance tractor. The spray nozzles are activated when the electronic signal detects weeds. They 

reported that it saved 80% of the annual herbicide cost (Hummel and Stoller 2002).  

Detectspray is an optoelectronic sensor that uses 646 nm and 850 nm reflectance to 

distinguish weeds from soil (Biller 1998). Detectspray automatically sprays the weeds based on 

detection by the sensor. It reduced the usage of herbicides by 70%. Field Servers (FS) are a 

combination of the agriculture sensors (collecting field data) and wireless transmission that transmit 

the data to a central point. 

These were implemented in Thailand and Japan for monitoring crop conditions (Lee et al. 

2010, p. 9). Field servers are useful for monitoring crops using a Local Area Network (LAN) 

configuration. These are very expensive if they only serve a small number of the sensors (Lee et al. 

2010). They reduced the amount of labour to monitor rice paddies especially for counting insects 

(Fukatsu et al. 2012). This was done using FS and high resolution digital cameras pointed at insect 

pheromone traps. The images and temperature records were sent wireless every 5 minutes to a 

central point where the insect count and images were analysed. Results show that monitoring based 

on the FS technique minimised human error and standardised data processing. This concept might 

be able to be applied to weed management by modification of the functions in the FS unit (Fukatsu 

et al. 2012).  

2.2.4 Vegetation reflectance 

Photosynthesis is the process that produces sugar for plants using the energy from sunlight. 

The green pigment chlorophyll absorbs the energy in sunlight, transforming it into functional 

chemical energy. The light energy is stored in simple sugar molecules (glucose) that are produced 

when carbon dioxide and water are combined to form sugar in the plant chloroplasts. ―Oxygen is 

released as a by-product‖ (Jensen 2007, p. 356). Cellular respiration then uses these sugars to 

release energy which is stored as adenosine triphosphate (ATP) (Farabee 2007).  

Remote sensing can measure the reflectance from the leaf of the incident electromagnetic 

energy and obtain information about the vegetation from the reflectance. Plants reflect NIR 
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radiation and absorb the visible wavelengths. Sensors can be used to measure the NIR spectrum. 

Figure 2-5 shows the structure of a green plant leaf (Purves et al 2014).  

 

 

Figure 2-5 Hypothetical Leaf Cross-section (Purves et al 2014) 
 
 

The stomata act as guard cells in controlling gaseous exchange in the leaves (Jensen 2007). 

Plants reflect visible and NIR radiation differently depending on the pigments in the leaf and the 

structure of the leaf (Purves et al 2014). The upper layer of cells, the epidermis, absorbs sunlight, 

which is then absorbed or reflected by other layers of cells depending on their structure and 

chemical composition. The palisade mesophyll, consisting of elongated cells arranged vertically, 

contains most of the chlorophyll. Chlorophyll is a protein responsible for capturing photons and 

powering photosynthesis (Jensen 2007). The spongy parenchyma is the lower level of cells in the 

leaf that primarily allows the circulation of gases. 

The major biophysical and biochemical characteristics of vegetation that affect spectral 

reflectance are leaf area index ( LAI), concentration of chlorophyll A and B, canopy structure and 

height, chemical composition of the biomass, water content, leaf nutrient concentration and 

evapotranspiration rate (Im and Jensen 2008; Arafat et al. 2013a). Chlorophyll absorbs light from 

the entire visible spectrum, except green wavelengths (Schliep et al. 2013). The most significant 

light absorption pigments and their absorption wavelengths are shown in Table 2-7 (Zwiggelaar 

1998). 

Table 2-7 Leaf pigment absorption  

Pigments Wavelength (nm) 

Chlorophyll A 435, 670 - 680 and 740  

Chlorophyll B 480 and 650 

α-carotenoid 420, 440 and 470  

β-carotenoid 425, 450 and 480 

Anthocyanin 400 - 550  

Lutein 425, 445 and 475  

Violaxanthin 425, 450 and 475  
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Near Infra-Red, red-edge and Green regions are the optimal regions for discrimination 

between different species (Wilson et al. 2014). The position and magnitude of the red-edge zone 

depends on the amount and type of chlorophyll pigmentation in the leaf (Blackburn 2007). 

Reflectance from the NIR and red-edge regions produces the most accurate discrimination of 

aquatic weeds in the United States (Everitt et al. 2011). 

Leaf structure and the processes that occur in it affect the spectral reflectance from it. Figure 

2-6 shows the spectral profile of a typical green leaf.  

 

 

Figure 2-6 Vegetation spectrum in detail (Elowitz 2015) 
 
 

This profile illustrates the high reflectivity in the NIR region and absorption in the Red 

region. The change in red-edge reflectance spectra is due to the change in anthocyanin pigment in 

the leaves. Table 2-8 shows the common spectral regions for typical plants (Jensen 2016, p. 315). 

 
 Table 2-8 The common spectral regions (Jensen 2016, p. 315) 

Spectral Region Wavelengths 

NIR 0.73 – 1.30 µm 

Red-edge 0.69 – 0.72 µm 

Red 0.6 – 0.68 µm 

Green 0.5 – 0.59 µm 

Blue 0.4 – 0.49 µm 

2.3 REMOTE SENSING FOR WEED MANAGEMENT 

2.3.1 Hyperspectral reflectance for weed classification 

Weed mapping is challenging because of the similarity in reflectance between the weeds and 

the crop. Hyperspectral sensing may provide a way to identify differences between weed and crop 
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plants. This approach has been shown to improve conventional methods of weed detection to cost 

effectively map invasive species (Glenn et al. 2005).  

Reflectance spectroscopy and imaging techniques can be used to detect different types of 

plants. The differentiation is based on the differences in the plant‘s reflectance. The pigments inside 

the leaf and the leaf structure absorb and reflect light differently (Carter 1993).  

Hyperspectral remote sensing is widely used for different agricultural applications such as 

soil analysis mapping (Gholizadeh et al. 2013), LAI analysis of agro-systems (Delegido et al. 2013), 

grassland species classification (Dale et al. 2013), disease detection (Calderon et al. 2013), plant 

stress (Carter 1993) and separation of crop species (Wilson et al. 2014). Multispectral imagery was 

used to estimate nitrogen content and predict grain yield at different stages of rice growth 

(Saberioon et al. 2013).  

The higher spectral resolution of the imagery from hyperspectral sensors provides increased 

potential to discriminate weeds from crop plants (Psomas et al. 2005). Hyperspectral imagery was 

used to predict concentrations of macronutrients in pastures in the Kruger National Park, South 

Africa (Mutanga and Skidmore 2004) and different types of dry grassland in Switzerland (Psomas 

et al. 2005).  

The difference in plant leaf structure and pigment influences the spectral reflectance of the 

plants (Lillesand et al. 2004, p. 20). The ability to discriminate between weeds and crop plants 

depends on their spectral separability (Batte and Ehsani 2006). Temporal variation, physical 

structure of the surface and leaf cell structure also affect spectral separation (Zwiggelaar 1998). 

Spectral and spatial data were successfully used to distinguish weeds and crop plants under 

laboratory conditions (Lamb and Brown 2001).  

Many processing methods have been used to distinguish the reflectance of weeds from crop 

plants. These include Artificial Neural Network (ANN), Principal Component Analysis (PCA), 

Stepwise Linear Discriminant Analysis (SLDA) and Linear Discriminant Analysis (LDA) (de 

Castro et al. 2012; Eddy et al. 2013). A combination of two methods, ANN and PCA, produced the 

most accurate classification in discriminating between weeds and crop plants (Li and He 2008; Liu 

et al. 2010). Artificial Neural Network and Maximum Likelihood Classification (MLC) were tested 

to distinguish between redroot pigweed and wild oats in Southern Alberta, Canada. The results 

showed that ANN was more accurate for redroot pigweed and wild oats species (Eddy et al. 2008).  

Principal Component Analysis and SLDA have been used to select wavelengths to separate 

different plant species (Yang and Everitt 2010b). These methods increased classification accuracy 

by 10%. Stepwise Linear Discriminant Analysis was used to select the significant bands to 

distinguish weeds from crop plants (de Castro et al. 2012). The comparison of spectral reflectance 

between two crops and five weed species was tested and produced 90% accuracy using SLDA and 
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LDA (Smith and Blackshaw 2003). The combination of Partial-Least-Square regression (PLS) and 

LDA to identify weeds in wheat showed good discrimination (Rabatel et al. 2011).  

2.3.2 Remote sensing 

Remote sensing is both the science and the art of obtaining information about features on the 

earth using equipment or devices without direct contact with the earth (Jensen 2005). Radiometric 

spatial information about the earth‘s surface can be acquired from either aircraft, UAVs or satellite 

platforms in digital form (Richards 2013). Visible and NIR imagery is available from many 

different sensors at many different resolutions. High-resolution satellite imagery (HRSI) was 

introduced in 1999 with the launch of the IKONOS satellite with a spatial resolution of 1 m for pan 

images. Since then other high-resolution satellites have been launched, such as EROS-A, 

QuickBird, Orbview-3, EROS-B, Worldview-1, GeoEye-1 and Worldview-2 (Crespi et al. 2011) 

and WorldView-3.  

Table 2-9 shows the advanced sensors and platforms potentially available for collecting 

imagery for Site-Specific Weed Management.  

Table 2-9 Some of the current sensors and platforms with spatial and spectral resolutions potentially 
useful for SSWM imagery (Lopez-Granados 2010) 

Sensor and 
platforms 

Spatial 
resolution (m) 

Waveband interval 
(nm) 

Altitude 
(km) 

Revisit time (Days) 

Multispectral satellite 

IKONOS 4* 450-900
†
 681 1.5 

QuickBird 2.44* 450-900
†
 450 1-3.5 

WorldView II 0.46*, 1.85 396-808 681 3 

WorldView III 0.31*, 1.24 400-1040 617 <1.0 

GeoEye-1 (former 
OrbView5) 

1.64* 450-920
†
 681 2.1-2.8 

Aircraft 

Daedalus 1268 3.44
§
 420-13000

¶
 1.37  

Conventional 
turboprop 

0.30 400-900** 1.52  

Drone 

Unmanned aerial 
vehicle (UAV) 

0.15
§
 490;530;570;670;700;75

0;800
††

 
0.15  

Hyperspectral airborne 

AVNIR
#
 1 430-1012 (10 nm) 1.5  

CASI 1-3
§
 400-1000 (1.9 nm) 0.84-3.5  

AHS 2-3.44
§
 430-12500 (13-300 nm) 1-1.37  

HyMap 2 450-2500 (20-10 nm) 2  

AVIRIS 4 400-2500 (10 nm) 3.8  
*1, 0.61, and 0.5 m spatial resolution in Panchromatic for IKONOS, QuickBird and GeoEye respectively. 
†Bands: Blue, 450–520; Green, 520–600; Red, 630–690; Near-infrared, 760–900. 
‡Bands: Blue, 450–510; Green, 510–580; Red, 650–690; Near-infrared, 780–920. 
§Spatial resolution depends on flight altitude and camera field of view (FOV). Some examples as follows: angular FOV of 85.92º and 
1.376 km flight altitude yield 3.44 m pixel for Daedalus and AHS; angular FOV of 42.8º x 34.7º and 0.150 km flight altitude generate 0.15 
m pixel size for UAV; angular FOV of 60º and 2 km flight altitude yield 2 m pixel for Hymap. For Hyperspectral imagery, pixel size can 
also depends on the program to capture the image 
¶Fixed channels of Daedalus 1268: 420–450; 450–520; 520–600; 600–620; 630–690; 690–750; 760–900; 910–1050; 1550–1750; 
2080–2350; 8500–13000. 
**Bands: Blue, 400–500; Green, 500–600; Red, 600–700; Near-Infrared, 700–900. 
††These channel centres are just an example  
#AVNIR, Airborne Visible and Near-Infrared; CASI, Compact Airborne Spectrographic Imager; AHS, Airborne Hyperspectral Scanner; 
AVIRIS, Airborne Visible ⁄ Infrared Imaging Spectrometer. 
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Multispectral broadband sensors acquire images in 3 - 7 bands of around 100 nm width, 

while hyperspectral sensors identify narrower and contiguous wavelength bands that are usually < 

10 nm in width. Small variations in reflectivity can be detected in hyperspectral images because the 

bandwidths are very narrow. Multispectral bands are broader and each band is less sensitive to 

specific plants and objects (Lopez-Granados 2010). The suitable pixel size is based on the smallest 

discernible object. This determines the spatial resolution for the image.  

Reflectance spectra respond uniquely to plant species at the canopy or single-leaf scale and 

can be used in calculations to classify the species (Lopez-Granados 2010). Vegetation indices such 

as NDVI, Excess green (ExG), Color index of vegetation (CIVE) and generic algorithms (GA) can 

be calculated from the imagery. Generic Algorithm analysis has been successfully used in Hue-

Saturation-Intensity (HIS) analysis for weed detection in soybeans (Tang et al. 2000).  

2.4 IMAGE COLLECTION 

2.4.1 Unmanned Aerial Vehicles 

Unmanned Aerial Vehicles (UAV) are small planes or helicopters, sometimes called 

DRONES (Dynamic Remotely Operated Navigation Equipment) operated by remote control that 

can be used to capture imagery. Table 2-10 shows the different types of UAVs and the benefits and 

limitations of each type (Sankaran et al. 2015).  

 
Table 2-10 Typical types of small unmanned aerial vehicles.

a 
(Sankaran et al. 2015) 

Type 
Payload

b 
(kg) 

Flight time
b
 

(min) 
Benefits Limitations Examples

a
 

Parachute 1.5 10-30 • Simple operation  • Not operable in   
  windy conditions  
• Have limited  
  payload 

HawkEye 

Blimps  >3.0  ∼600  • Simple operation  • Not operable in  
  windy conditions  
• Have limited   
  payload  

AB1100, 
Cameron Fabric 
Engineering 

Rotocopter 

  

0.8–8.0  8–120  • Applicable with  
  waypoint navigation  
• Hovering capabilities  
• Can hold range of  
  sensors from thermal,  
  multispectral to  
  hyperspectral cameras  

• Payload may    
  limit   
  battery usage    
  and  
  flight time  

DJI Inspire, 
Mikrocopter ARK 
OktoXL 6S12, 
Yamaha RMAX 

Fixed wing  

 

1.0–10  30–240  • Better flight time  
• Multiple sensors can be  
  mounted  
• Limited hovering  
  capacity  

• Lower speeds   
  are  
  required for    
  image    
  stitching  

Landcaster 
Precision Hawk, 
senseFly eBee 

a 
This provides an overview of different UAV platform types and there may be many commercial companies developing 

similar types. 
b
Approximate values taken from manufacturer specification. 
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The spectral and spatial resolution of the images depends on the sensors carried by the 

UAV. It is not necessary to use expensive sensors to map an area because it can be done using a 

typical digital camera such as a Canon 550D 15 Megapixel, DSLR (Digital Single-Lens Reflex), 

with a Canon EF-S 18-55 mm F/3.5 – 5.6 IS lens (Turner et al. 2012). However, to detect the 

occurrence of specific diseases, pests and weeds, it is necessary to use a multispectral or thermal 

sensor camera (Berni et al. 2009a; Rey et al. 2013). The type of sensor should be matched to the 

type of information to be collected. The sensors can collect higher spatial resolution imagery than 

satellite sensors and at a lower cost (Torres-Sanchez and Lopez-Granados et al. 2013).There are 

many different sensors used in agricultural applications (Table 2-11). 

 

Table 2-11 Different types of sensors used in plant phenotype characterization (Sankaran et al. 2015) 
(continued) 

Sensor type Details Applications Limitations References 
a
 

Fluorescence 
sensor 

Passive 
sensing-visible 
and near 
infrared 
regions 

Photosynthesis, 
chlorophyll, water 
stress 

• Not developed  
  for UAV 
  research yet 
• Can be subject   
  to background   
  noise 

(Chappelle et al. 
1984; Gamon et al. 
1990; Flexas et al. 
2000; Evain et al. 
2004; Xing et al. 
2006; Chaerle et al. 
2007) 

Digital 
camera 
(RGB)  

Gray scale or 
RGB colour 
images 
(texture 
analysis)  

Visible properties, 
outer defects, 
greenness, 
growth  

• Limited to  
  visual spectral    
  bands and   
  properties 

(Lu et al. 2011; Kipp 
et al. 2014; Klodt et 
al. 2015) 

Multispectral 
camera 
/colour-
infrared 
camera  

Few spectral 
bands for each 
pixel in visible-
infrared region  

Multiple plant 
responses to 
nutrient 
deficiency, water 
stress, diseases  

• Limited to few   
  spectral bands 

(Moshou et al. 2005; 
Blasco et al. 2007; 
Lenk et al. 2007; 
Svensgaard et al. 
2014; Zaman-Allah 
et al. 2015) 

Spectrometer  Visible-near 
infrared 
spectra 
averaged over 
a given field-
of-view  

Detecting 
disease, stress 
and crop 
responses  

• Background   
  such as soil may   
  affect the data    
  quality  
• Possibilities of   
  spectral mixing  
• More applicable   
  for ground-  
  based systems 

(Carter 1993; 
Delwiche and 
Graybosch 2002; 
Belasque Jr et al. 
2008; Naidu et al. 
2009) 

3D camera  Infrared laser 
based 
detection 
using time-of-
flight 
information  

Physical attributes 
such as plant 
height and 
canopy density  

• Lower   
  accuracies  
• Field   
  applications can   
  be limiting 

(Jin and Tang 2009; 
Chene et al. 2012) 

LiDAR (Light 
Detection 
and Ranging) 
sensor  

Physical 
measures 
resulting from 
laser (600–
1000 nm) 
time-of-flight  

Accurate 
estimates of 
plant/tree height 
and volume  

• Sensitive to   
  small variations  
  in path length 

(Donoghue et al. 
2007; Koenig et al. 
2015; Müller-Linow 
et al. 2015) 
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Table 2-11  (continued) Different types of sensors used in plant phenotype 

characterization (Sankaran et al. 2015) 

     

Sensor type Sensor type Sensor type Sensor type Sensor type 

SONAR 
(Sound 
Navigation and 
Ranging) 
sensor  

Sound 
propagation 
is used to 
detect 
objects 
based on 
time-of-flight  

Mapping and 
quantification of 
the canopy 
volumes, digital 
control of 
application rates 
in sprayers or 
fertilizer spreader  

• Sensitivity   
  limited by   
  acoustic   
  absorption,  
  background  
  noise, etc.  
• Lower sampling  
  rate than laser- 
  based sensing 

(Tumbo et al. 2002) 

Hyperspectral 
camera  

Continuous 
or discrete 
spectra for 
each pixel in 
visible-
infrared 
region  

Plant stress, 
produce quality, 
and safety control  

• Image  
  processing is   
  challenging  
• Sensors can be   
  expensive 

(Moshou et al. 
2005(Delalieux et al. 
2007; Gowen et al. 
2007; Qin et al. 
2009; Seiffert et al. 
2010) 

Thermal 
sensor or 
camera  

Temperature 
of each pixel 
(for sensor 
with 
radiometric 
calibration) 
related to 
thermal 
infrared 
emissions  

Stomatal 
conductance, 
plant responses 
to water stress 
and diseases  
 

• Environmental   
  conditions affect  
  the performance  
• Very small  
  temperature  
  differences are  
  not detectable 
• High resolution   
  cameras are  
  heavier 

(Chaerle and Van 
Der Straeten 2000; 
Leinonen and Jones 
2004; Jones et al. 
2009b; Costa et al. 
2013) 

 

UAVs are used in many applications such as forestry (Wallace et al. 2012), rangeland 

ecology research (Chang et al. 2004; Mancini et al. 2013) and agriculture (Nebiker et al. 2008; 

Berni et al. 2009b; Gay et al. 2009; Laliberte et al. 2011; Delegido et al. 2013; Leon and Woodroffe 

2013). Additional features include temporal flexibility, data streaming, real-time processing, on-

demand imagery and reduced costs compared to the alternatives (Knipling 1970; Swain et al. 2007; 

Berni et al. 2009b; Eisenbeiss and Sauerbier 2011; Wallace et al. 2012). 

Applications of remote sensing using UAVs have increased recently (Laliberte et al. 2011). 

Goktogan et al. (2010) cited the work of Herwitz et al. (2002) who showed the potential of 

precision agriculture to use a solar-powered Pathfinder-Plus UAV developed by NASA and 

AeroVironment. This is a high altitude machine fitted with both multispectral and hyperspectral 

imaging systems used in Kauai Coffee Plantations. 

Another example is X-Copter, a UAV for rice monitoring and management. It can carry up 

to a 30 kg payload and fly for more than an hour (Shim et al. 2009). It is very convenient for 

agricultural purposes because it is fitted with a pump system. The flight computer controls the pump 

to apply fertilizer in an accurate way. This provides an opportunity for farmers to save labour cost 

(Shim et al. 2009).  
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UAVs are capable of capturing imagery in high risk situations. They can also be flown 

below clouds and in light rain. (Berni et al. 2009). A further big advantage is that they are not 

limited by physiological conditions that would affect human pilots of light planes. FieldCopter is a 

UAV that can carry multispectral sensors for soil and crop analysis (Van der Wal et al. 2013). It is 

capable of flying and capturing imagery in more than 70% of weather conditions compared to 

satellite imagery. 

The weight and size of sensors is the main limitation on the use of low cost UAVs. The 

small or medium format UAVs are normally less stable under windy condition than the larger 

UAVs and their navigation control systems are not as accurate (Sankaran et al. 2015). Other 

considerations for lower cost UAVs include flight-path planning systems, control under high speed 

conditions, low altitude of flight and data downloading during the flight (Yan et al. 2009). For 

instance, the low-altitude platform utilising a 1.8 m diameter medium balloon was used to position a 

multispectral sensor in a wheat crop. Although the data collection was low-cost and simple, the 

results show a high correlation between the aerial imagery and the grain yield and strong correlation 

between imagery and grain protein (Jensen et al. 2007).  

Good imagery depends on the UAV, sensor types and flight plan (Sankaran et al. 2015). All 

aspects need to be considered before flying any UAV applications. In addition geometric correction 

and geocoding are also important into producing an accurate weed map (Xiang and Tian 2011). 

Xiang and Tian (2011) developed automatic georeferenced images and found the position error to 

be less than 90 cm. This is considered high enough accuracy for site-specific application. The 

accuracy of the geo-referencing of the images depends on the altitude of the UAV. At altitudes of 

30 to 100 m, a moderate number of control points results in a high accuracy georeferenced image 

but if the flying height is above 100 m, the GCPs need to be arranged systematically for ortho-

mosaicing (Gomez-Candon et al. 2014).  

Image pre-processing such as image alignment and orthorectification is important before in-

depth processing of image analysis. Image analysis for weed detection in crop plants is challenging 

if pre-processing is done poorly. An accurate weed map will be produced by a proper and specific 

configuration of UAV planning. High spectral resolution of the sensors also influences the 

usefulness of the imagery for weed detection.     

2.4.2 Ground mounted systems 

Weed mapping by analysing ground-based images was initially started in Germany 

(Schuster et al. 2007). A camera was mounted on a tractor to collect imagery for a 76 ha sugar beet 

crop. The imagery was processed using both semi and automatic weed mapping procedures to 
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compare it with manual weed mapping. This method employed six major steps to automatically 

detect and discriminate plants. It began with loading the RGB image and transforming it to another 

colour space, followed by frame detection before a binarisation process (choice of a threshold). 

Next, there is detection of the region of interest (plants), a feature extraction process and finally, 

plant allocation (Figure 2-7). The result showed that automatic weed mapping could be expanded to 

an online system for site-specific herbicide application.  

Another technique to produce a weed map is by using machine vision to provide image 

based precision guidance. It is a low cost sensor attached to a tractor that detects three basic colours 

such as red (~ 600 nm), green (~ 550 nm) and blue (~ 450 nm) and can be used for site-specific 

weed management (Lee et al. 2010).  

Another successful example was tested in the greenhouse to detect rows of sugar beets 

(Bakker et al. 2008). It used a Basler 301fc (0.3 Megapixel) colour camera. The images were 

processed using the Hough transform (Bakker et al. 2008) to recognize the straight rows. This 

method may be useful to detect weeds after definition of the crop row because the weeds can be 

easily identified in the inter-row part of the image. 

The advantage of ground mounted, real time application systems are that applications can be 

modified based on user intervention. Variable illumination due to time of day and weather 

conditions limit (Bakker et al. 2008) applications or requires the use of an artificial source of 

illumination (Martin et al. 2011).  
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Figure 2-7 Flowchart of the process of plants 
detection and discrimination (Schuster et al. 2007) 

 

2.5 IMAGE PROCESSING  
 

Image processing procedures offer various ways to produce maps from imagery such as 

rangeland maps (Laliberte et al. 2011), yield maps (Smit et al. 2010), irrigation maps (Sankaran et 

al. 2015), vegetation monitoring maps (Berni et al. 2009; Johansen et al. 2010; Aziz 2014; Aasen et 

al. 2015; Kamal et al. 2015), and weed maps (Andujar et al. 2011; Birch et al. 2011; Pérez-Ortiz et 

al. 2015). Spectral Mixture Analysis (SMA) was used to map invasive aquatic vegetation using 

hyperspectral imaging (Underwood et al. 2006). This method discriminated between native and 
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invasive species in the Sacramento-San Joaquin Delta. They achieved high accuracy for 

identification of Brazilian waterweed and water hyacinth species at 93% and 73% respectively.  

Another procedure for weed detection is Mixture Tuned Matched Filtering (MTMF). MTMF 

uses hyperspectral imagery to discriminate weeds from crop plants (Glenn et al. 2005). Moshou et 

al. (2013) also used hyperspectral imagery and achieved 98 % and 94 % accuracy in weed 

discrimination using a Mixture of Gaussian (MOG) and Self Organising Map (SOM) classifiers 

respectively. Torres-Sospedra and Nebot (2014) detected weeds in orange groves using Neural 

Network (NN) analysis. This approach was used to determine the main features in the grove and to 

separate the weeds from the soil. Linear discriminant analysis (LDA), multilayered NN, and 

Principal Components Analysis (PCA) procedures successfully discriminated weeds and crop plants 

in Asian crops (Okamoto et al. 2014). Sub-pixel component analysis was used to map patches of 

weeds in coarse resolution imagery (Quickbird and IKONOS) (Gillieson et al. 2006). Smit et al. 

(2010) combined thresholding and graph based techniques to classify and enhance images of rows 

of vines obtained with artificial light.  

Steward and Tian (1999) used applied segmentation for detecting rows in soy bean crops. 

First, they normalised the hue, saturation and intensity (HSI) components of the image (0-255) to 

transform the RGB image data into HSI image space. After normalisation, they used a genetic 

algorithm (GA) to segment the image into plant and background regions. This produced an 

equivalent performance to cluster analysis and suggests that such an approach could overcome the 

effects of variable outdoor lighting condition.  

The high resolution in large scale imagery is an essential feature for detecting weeds 

(Mesas-Carrascosa et al. 2015). Unmanned Aerial System (UAS) were used to collect the imagery 

to detect weeds in crops (Pena-Barragan et al. 2012a). Low altitude remote sensing (LARS) systems 

are currently attractive tools for site specific farm data collection (Saberioon et al. 2014). LARS 

systems are also capable of collecting high temporal as well as spatial resolution imagery (Laliberte 

et al. 2011; Saberioon et al. 2014). Different spatial resolutions using VIA also show that higher 

spatial resolution produces more accurate classification. This is consistent with Kamal et al. (2015), 

who found that low-resolution images had limited ability to depict mangrove features compared 

with high-resolution images. Figure 2-8 illustrates the relationship between accuracy of the 

classification and spatial and spectral resolution. This demonstrates the relationship between spatial 

and spectral resolution, number of classes and classification accuracy. A higher spatial resolution 

produces a high accuracy.  
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Figure 2-8 Relationship of image resolutions, level of  

              information detail and map accuracy (Kamal et al. 2015) 

2.5.1 Weed detection image processing procedures 

Image processing procedures for weed detection are challenging due to occlusion, poor 

contrast between leaves of the crop and weeds, and random plant and leaf orientations (Lamb and 

Brown 2001). Both hyperspectral and multispectral remote sensing technologies have the potential 

for detecting weed infestations and nitrogen stresses in crops (Goel et al. 2003). The differences in 

spectral signatures between different species and plants under different physiological conditions 

provide a basis for their detection (Zwiggelaar 1998). The similarity in morphological and spectral 

characteristic of plants requires high resolution imagery to resolve.   

There are a number of processing techniques used for detecting weeds from imagery 

(Penuelas et al. 1993). These include Maximum Likelihood Classifier (MLC)(Noonan and Chafer 

2007), Maximum Matching Feature (MMF), Support Vector Networks (SVN), Spectral Angle 

Mapper (SAM) segmentation (Nicolai et al. 2007), Self-Organizing Maps (SOM) (Manevski et al. 

2011), Object-Based Image Analysis (OBIA) (Torres-Sánchez et al. 2015), Neural Network 

Classifier (NNC) and Principle Component Analysis (PCA) (Almeida and Filho 2004; Golzarian 

and Frick 2011). 

Classification of images of wheat, ryegrass and brome grass species at early stages using 

PCA has been successful (Golzarian and Frick 2011). The combination of colour, texture and shape 

has been used to discriminate ryegrass and brome grass using PCA. Results showed that PCA could 

discriminate weeds up to 85% accurately.  

SPOT5  XI (10 m) satellite imagery was used for four classification regimes for mapping 

willows at the catchment scale  by the different classification methods (Noonan and Chafer 2007). 

The first step was ML classification to distinguish between autumn and winter images. Secondly, 

ML classifies the bi-seasonal composition image. Thirdly was a SAM classification of a minimized 
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noise fraction (MNF) transformation of the multi-season composite image. Final, SAM 

classification was of a 5 x 5 median filtered MNF transformation of the multi-season composition 

image. MNF transformation is a modified version of the PCA that aims at segregating noise in the 

image data. The classification accuracy had a kappa = 0.58 and 0.34 for SAM-MNF and ML 

respectively. However, the classification accuracy for the SAM-MNF increased to 75% after using 

a 5 x 5 median filter. The spectral separability of willow from SPOT5 imagery was limited. This 

could be tested using higher resolution satellite imagery such as QuickBird (DigitalGlobe) or 

WorldView II to test the ML classification method (Noonan and Chafer 2007).  

QuickBird imagery was used successfully in mapping giant reeds (Arundo donax) in Mexico 

using 4 spectral bands, blue, green, red, and NIR with a spatial resolution at 2.4 m (Yang et al. 

2011). Three classification methods, mum distance, Mahalanobis distance and MLC were used to 

classify water, giant reeds and mixed cover using ERDAS IMAGINE software (Yang et al. 2011). 

All classification methods produced a highly accurate classification (> 90%). 

Another similar method was used to map broom snakeweed (Gutierrezia sarothrae) in 

western North America (Yang and Everitt 2010a). A comparison between three types of images, 

airborne hyperspectral imagery, aerial colour-infrared (CIR) imagery and multispectral digital 

imagery using MNF distance, Mahalanobis distance, ML, and SAM classification showed that ML 

produced the most accurate  classification, mapping more than 90% of snakeweed accurately 

Hough transform and Gabor filtering were used to detect weeds from virtual digital camera 

images (Jones et al. 2009a). Both methods were compared for row-crop weed discrimination in 

wheat. The Hough transform was more accurate than Gabor filtering producing a 90% accurate 

classification.  

Object-based image analysis was also used to detect weeds in maize (Pena-Barragan et al. 

2012a; Pena et al. 2013). A MCA 6 camera was used to collect the imagery (Pena et al. 2012a). The 

OBIA technique began by calculating row orientation, followed by discriminating between 

vegetation and bare soil, defining seed-objects, identification and classification of the first crop row 

and identification and classification of the remaining crop rows. It achieved an accuracy of 90% 

classification for satellite imagery. 

2.5.2 UAV weed identification applications  

A rotary UAV was used for surveillance and management of aquatic weeds in the east coast 

of Australia as a cost-effective technique (Goktogan et al. 2010). Image processing was done using 

a SVM approach and transferred into vector data format. The spatial resolution at the flying height 



Chapter 2                                                                                                                              Literature Review 

31 

 

of 30 m was 2 cm. A similar resolution was used to successfully map weeds in a maize crop. (Pena 

et al. 2013 and Perez-Ortiz et al. 2015).  

In Italy, the first research using UAVs for mapping was successful in vineyard plant vigour 

based on NDVI (Primicerio et al. 2012). The UAV was a six-rotor machine that flew autonomously. 

A multi-spectral camera and a spectroradiometer were used to capture imagery and record the 

hyperspectral reflectance data respectively. Higher NDVI values indicated higher plant vigour 

(Fernandes et al. 2014).  

Weeds were detected with 99% accuracy from multispectral imagery collected at 30 m 

height using a micro-drone (md4-1000) in maize (Pena-Barragan et al. 2012a). A similar approach 

using the same UAV for site-specific (Torres-Sanchez et al. 2013a) weed mapping in an early stage 

of maize (Pena et al. 2013; Pena et al. 2015). This showed that the spectral and spatial resolution of 

the imagery is important to map weeds in the crop plants. Additionally, the early growing season 

was found to be very suitable for collecting data because the weeds were small and the UAV could 

fly at a low altitude to capture high spatial resolution imagery (Torres-Sanchez et al. 2013a). This 

showed that five – six true leaves allowed for higher accuracy weed detection. This allows the 

weeds to be identified early. The configuration and specification of the UAV are important to 

facilitate collection and detection of weeds in the crop at an early stage (Torres-Sanchez et al. 

2013a). 

2.5.3 Multispectral imagery for weed discrimination  

Multispectral imagery is not as common as RGB imagery in the literature reports (Laliberte 

et al. 2011). Multispectral imagery has more bands than RGB imagery but less than hyperspectral 

which has hundreds of bands to choose from (Lee et al. 2010, p. 4). The Tetracam camera offers the 

opportunity to change the combination of band filters to match particular applications. They are 

available in 12, 6 and 4 sensor models ( MCA) (Torres-Sanchez et al. 2013a; Lopez-Granados et al. 

2015) and the Agricultural Digital Camera (ADC) model (Saberioon et al. 2013) which has three 

bands.   

The MCA 6 (6 band model) camera was used successfully to map weeds in sunflowers with 

100% accuracy at a 15% weed threshold using a UAV flown at 30 m altitude (Lopez-Granados et 

al. 2015). The 10 nm spectral bands (mid-point) were blue (B: 450 nm), green (G: 530 nm), red (R: 

670 and 700 nm), red-edge (red-edge: 740 nm) and NIR (NIR: 780 nm). Different spectral bands 

were used to collect imagery in maize. These were 530, 550, 570 nm for green, 670 nm for red, 700, 

800 nm for NIR (Pena-Barragan et al. 2013). They produced an accuracy of 86% at 30 m altitude 

(Pena-Barragan et al. 2013).  
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These studies established that multispectral imagery can be used to identify and detect 

weeds in crops. Most of the applications used the  MCA 6 camera from Tetracam (Pena-Barragan et 

al. 2013; Torres-Sanchez et al. 2013a; Torres-Sanchez et al. 2014; Bueren et al. 2015; Lopez-

Granados et al. 2015; Perez-Ortiz et al. 2015; Torres-Sánchez et al. 2015).  

Weed mapping in sugar beets (Garcia-Ruiz et al. 2015) used 10 nm wide band-pass filters of 

488, 550, 610 and 675 nm for the visible region and 70 and 940 nm for the NIR region in a MCA 6 

camera. The spectroradiometer data measured defined the relationship of the significant spectra in 

the images. It used segmentation analysis to classify vegetation and non-vegetation classes by using 

NDVI. A Partial Least Square-Discriminate Analysis (PLS-DA) model was used to construct the 

best images by targeting highly significant bands for discrimination. The Regions of Interest (ROI) 

was selected from the images to build the calibration library. It showed that weed and crop plants 

can be classified using UAV multispectral imagery. It was more than 95% accurate.   

In Japan, weed mapping was done successfully using an airborne digital sensor system 

(ADS40; Pasco Company, Tokyo, Japan) in a citrus orchard (Ye et al. 2007). It used 430 – 490 nm 

for blue, 535 – 585 nm for green and 610 – 660 nm for red regions with a spatial resolution of 0.2 

m. An object-oriented approach was used to classify the image using eCognition Elements 4.0 

(Definiens Imaging, Munchen, Germany) with 99% accuracy.  

2.6 CONCLUSIONS 
 

As a conclusion, weed management is a major issue in agriculture. The cost of managing 

weeds in agriculture is very high due to farmer‘s practices where they typically apply the registered 

rate of chemical herbicide to the entire field. In the long term, this method negatively affects the 

crop, the environment and also increases weed resistance to herbicides. Thus, more cost effective 

and efficient methods with a lower environmental effect need to be developed for more sustainable 

farming. 

Hyperspectral reflectance data has the potential to identify weeds from crop plants. By using 

a portable spectroradiometer, the hyperspectral reflectance of weeds can be collected. Each weed 

species gives different spectral signatures that help to discriminate between weed and crop plants. 

Based on the spectral profile, different curves can be seen for different species. A review of 

literature also found that Stepwise Linear Discriminate Analysis (SLDA) was one of the techniques 

to discriminate spectral signature for weed species. It provides a way to identify specific and unique 

bands for each species. These bands can then be used to select suitable band-pass filters for use in a 

multispectral camera for imagery collection. 
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Unmanned Aerial Vehicles (UAVs) can be used to collect multispectral imagery of the crop 

with a high spatial resolution at early growth stages. The specific bands that were uniquely 

associated with the weed species were used in image processing to maximize weed classification. 

For example, 740 nm bands might improve spectral based discrimination of sugar beet and thistles 

(Garcia-Ruiz et al. 2015). The imagery can be processed to produce a weed map which provides the 

location of the weeds using Object based image analysis (OBIA). This is a new technique for weed 

detection and only a few investigators have used this technique for weed detection. OBIA is 

potential a very suitable technique for weed detection because of its capability in detecting shape 

and spectral reflectance at the same time. Farmers can potentially use this information to apply 

herbicide to the weeds more precisely and this can reduce the amount of herbicide used thereby 

reducing production costs and minimising environmental impact.  

The next chapter will discuss the general methodology for this research. The details of the 

methods will be explained in depth in the three research chapters (Chapter 4, 5 and 6). 
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Chapter 3  

 GENERAL METHODOLOGY 

3.1 INTRODUCTION 
 

 This chapter describes the research methods used to develop a weed map for sorghum from 

imagery. The research investigated the spectral profile of weeds and sorghum from 2012 to 2014. 

This information was used to determine the spectral differences between the weeds and sorghum 

plants. These differences were used to select filters for taking the multispectral imagery of the 

sorghum. 

Multispectral imagery was collected at different stages of crop and weed growth and at 

different spatial resolutions. At the same time, the moisture content of the weeds and crop was 

sampled to test for the effect of moisture on reflectance. The multispectral imagery was pre-

processed, followed by analysis to discriminate weeds from sorghum plants. This analysis formed 

the basis for mapping the weeds in the sorghum crop.  

The following sections outline the general methods and procedures common to all phases of 

the research. Detailed procedures specific to each technical chapter (Chapters 4, 5 and 6) are 

provided at the beginning of each of those Chapters. 

3.2 OVERVIEW 
 

This chapter outlines the procedures and techniques used to collect and process the 

preliminary data. It summarizes three years (2012 to 2014) of research on detecting weeds in 

sorghum at the University of Queensland (UQ) farm at Gatton, Queensland. The details of the study 

area, field layout and data collection are shown in Figure 3-1. An overview of the spectral data 

collection is shown in Figure 3-2. 
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Figure 3-1 Details of the data collection 

 

 

Figure 3-2 Overview of the spectral data collection 

 

The leaf moisture content and spectral data were processed to develop the weed mapping 

procedures as shown in Figure 3-3. The details of the pre-processing, statistical analysis and image 

processing are discussed in Chapters 4, 5 and 6 respectively.  
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Figure 3-3 Workflow of the methodology 
 
 

The field layout and data collection varied each year because of the lessons learnt from the 

previous year‘s research. Details of the data collection for 2012 to 2014 are summarised in Table 

3-1. Hyperspectral data were collected each year. Moisture content data were collected in 2013 and 

imagery was collected in 2014. Moisture content was measured to evaluate the relationship between 

moisture and reflectance of the weeds and the sorghum. Multispectral imagery was collected each 

year but lack of familiarity with the camera equipment and lack of appropriate bands pass filters for 

the camera resulted in the 2012 and 2013 imagery not being suitable for analysis.  

The multispectral imagery was obtained at various altitudes to evaluate the effect of spatial 

resolution on weed detection. Static multispectral imagery and RGB images were also collected at 

1.6 m elevation in 2014 using the MCA 6 and Canon (Power Auto-Shot SX260 HS) cameras 

respectively.  

 

Table 3-1 Data collection for each year 

Years Spectral Data Moisture Content 
Multi-Spectral imagery 

RGB imagery 
UAV Static 

2012      

2013      

2014      
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3.3  EXPERIMENTAL DESIGN 

3.3.1 Study area 

The study site was located at the University of Queensland, Gatton Campus (Coordinate 

27º32′32.90″ S, 152º19′58.88″ E, WGS 84 Datum) (Figure 3-4). Summer rainfall predominantly 

occurs between September and March each year.  

 

Figure 3-4 Location of the study area 
 

Sorghum (Sorghum bicolor (L.) Moench ssp. Bicolor, variety: 84G22) was planted 

approximately 30 mm deep using a tractor fitted with precision guidance equipment on the dates 

shown in Table 3-2. 

Table 3-2 Sorghum planting 

Year Date of planting 

2012 09.10.2012 

2013 25.10.2013 

2014 26.11.2014 

 

The seed was treated with Concep II (active consistent Oxabetrinil, 700 g/kg, applied at 36 

g/20 kg sorghum seed) to protect it from the effect of the Dual Gold pre-emergence herbicide. A 

Case IH 95 tractor fitted with a four unit Nodet planter was used to plant the sorghum at 100 mm 

plant spacing in 75 cm width rows. A StarFire, integrated Terrain Compensation (iTC) GPS system 
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provided the precision guidance using the farm‘s Real Time Kinematic (RTK) correction signal 

(Figure 3-5).   

 

 

Figure 3-5 Case 95 tractor (a) and Nodet planter (b) 

 

The experimental area was irrigated for three hours applying a total of 38 mm of water two 

days after each planting. During emergence, 28, 15.5 and 11 mm of rain fell on the crop in 2012, 

2013 and 2014 respectively. 

3.3.2 Field layout 

In 2012, hyperspectral reflectance samples were taken for each weed species and for 

sorghum. The samples were selected at random, across the field. In 2013, sampling was 

reorganized. Hyperspectral reflectance samples (five) were collected from each species at four pre-

set loci in the sorghum paddock (Figure 3-6).  
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Figure 3-6 Position of loci and quadrats in 2013 
 

 

Two quadrats (1m
2
) were positioned randomly in each locus for static image collection 

(Figure 3-7).  

 

Figure 3-7 Details of loci and quadrats in 2013 
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In 2014, the loci were dispensed with and a full 6 x 4 randomized blocks design was 

implemented (Figure 3-8). The field was divided in two; one part was treated with pre-emergence 

herbicide and the second part was left untreated (control). Two pre-emergence herbicides were 

used, Gesaprim® 600 SC at a rate of 2 L/ha (active constituent 600g/l Atrazine) and DualGold® at 

a rate of 2 L/ha (active constituent 960 gram (g)/l S-Metolachlor). These are registered for the 

control of pigweed and amaranth in sorghum. Gesaprim is also registered for suppression of annual 

grasses (Syngenta 2015a; Syngenta 2015b). This technique was consistent with Pena et al. (2013) 

and Torres-Sanchez et al. (2013b). 

 

 

Figure 3-8 Layout of replicates in 2014 
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Each treatment consisted of sorghum and only one weed species: other species were 

removed by hand (Calha et al. 2014). The four replicates were positioned as randomly as possible. 

Allowance was made for some species of weeds not growing randomly in the field. The details of 

each replicate are given in Table 3-3.   

 

Table 3-3 Details for each replicate 

Quadrat No. Replicate Label Treatment 

Q1 NG 1 Nutgrass   

Q2 NG 2 Nutgrass  

Q3 NG 3 Nutgrass  

Q4 SNP 4 Sorghum Non Pre-emergence  

Q5 NG 4 Nutgrass  

Q6 SNP 3 Sorghum Non Pre-emergence 

Q7 PG 1 Pigweed  

Q8 B 1 Bellvine  

Q9 B 4 Bellvine 

Q10 B 3 Bellvine 

Q11 B 2 Bellvine 

Q12 PG 4 Pigweed 

Q13 SNP 2 Sorghum Non Pre-emergence 

Q14 PG 3 Pigweed 

Q15 PG 2 Pigweed 

Q16 SNP 1 Sorghum Non Pre-emergence 

Q17 LS 2 Liverseed grass  

Q18 LS 4 Liverseed grass 

Q19 LS 1 Liverseed grass 

Q20 LS 3 Liverseed grass 

Q21 SP 4 Sorghum Pre-emergence  

Q22 SP 3 Sorghum Pre-emergence 

Q23 SP 2 Sorghum Pre-emergence 

Q24 SP 1 Sorghum Pre-emergence 

3.4 DATA COLLECTION AND PRE-PROCESSING   
 

This section explains the procedures for data collection and pre-processing.  

Figure 3-9 shows the different type of field data that were collected.                                                           
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Figure 3-9 Data collection in the study 

3.4.1 Hyperspectral data  

Hyperspectral data consists of reflectance values for closely spaced spectral bands (Sahoo et 

al. 2015). They were collected each year (Table 3-4) using a Handheld FieldSpec® 

Spectroradiometer (Analytical Spectral Device Corporation (ASD), Inc., Boulder, CO, USA) 

(Figure 3-10).   

In 2012, the data was collected once and this was during the fourth week of growth. In 2013, 

hyperspectral data were collected during weeks 1, 2, 3 and 4 of growth. In 2014, the weed species 

were too small to be identified one week after planting and hyperspectral data were collected at 

weeks 2, 3 and 4 of growth. 

Table 3-4 Annual hyperspectral data collection  
at different stages of growth (Week one to week four) 

Year Week 1 Week 2 Week 3 Week 4 

2012     

2013     

2014     

 

 

Figure 3-10 Hyperspectral data collection 

 

Hyperspectral data were collected according to the procedures of Eddy et al. (2013). Prior to 

data collection, the Spectroradiometer ASD was calibrated using the manufacturer‘s white 

Spectralon® reference disc. The device has a spectral range from 325 nm to 1075 nm, a spectral 

resolution of < 3 nm and it was fitted with a fibre optic cable connected to a 1 degree solid radius 

fore optic. The fore optic sampling lens was positioned less than 5 cm from the leaf surfaces in open 

sunlight (Figure 3-11). The spectral signature was only collected from the middle top of the leaf 
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surface. The foreoptic was used at distance of less than 5 cm from the leaf surface under field 

conditions to avoid collecting misleading data. To ensure the correct data was collected. The same 

procedure was used for collecting the spectra for all samples. The spectral reflectance data for each 

sample and species was averaged to get the most accurate value. Use of a fibre optic cable was a 

practical way to collect the reflectance from the target because the leaves were very small especially 

during the early stages of growth.  

 

Figure 3-11 Collecting spectral signatures using  
the FieldSpec® HandHeld 2

TM
 Spectroradiometer with  

 fibre optic attached.  

 

Weeds that occurred in the sorghum crop in 2012 to 2014 are listed in Table 3-5.  

 
Table 3-5 Weeds species occurring each year 

Weeds species 2012 2013 2014 

Amaranth (Amaranthus macrocarpus)    

Pigweed (Portulaca oleracea)    

Awnless Barnyard Grass (Echinochloa colona)    

Mallow Weed (Malva sp)    

Nutgrass  (Cyperus rotundus)    

Fat Hen (Chenopodium album)     

Liver seed Grass (Urochoa panicoides)    

Bellivne (Ipomea plebeia)    

 

The plants were labelled to ensure that reflectance samples were taken from the same plants 

on subsequent samplings. Figure 3-12 shows plant growth quadrat L1Q1 (Locus No. 1, Quadrat No. 

1) for weeks 1 to 4 after planting in 2013.  

 
 

Figure 3-12 Weeds in L1Q1 from week one to week four, 2013 
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3.4.2 Moisture content 

Leaf samples for moisture content (MC) analysis were collected each week in 2013. They 

were taken randomly for each species within three metres of each locus and put in small plastic 

vials for laboratory analysis. In the laboratory, the fresh weight of each sample was recorded. They 

were then transferred to the drying oven (set at 65  C) for three days, after which they were weighed 

to record the dry weight. The MC was calculated as a percentage of the fresh weight of the samples.  

3.4.3 Imagery 

Multispectral imagery was taken using a Mikrokopter JR11X UAV (Figure 3-13A). The 

JR11X UAV provides an aerial platform suitable for mounting a conventional and multispectral 

camera (Bueren et al. 2015). It has eight rotary blades, can carry up to five kg and is capable of 

stationary hovering. This latter feature is required for acquiring long exposure images. Control is by 

an autopilot using a GPS controller (Table 3-6). The flight controllers consist of three Gyroscopes 

(for maintaining orientation) and three accelerometers (for measuring acceleration). It has three 

navigational controllers, an electronic compass, an air pressure sensor and an autopilot.  

 
Table 3-6 Summary specifications for UAV platforms (Bueren et al. 2015) 

Name Specifications 

Manufacturer Mikrokopter 

Weight (g) 1900 

Max. Payload (g) 1000 

Power source Lipo, 4200 mAh, 14.8 V 

Endurance (Max) One hour  

GPS Navigation  Ublox LEA 6s GPS chip 

Features Open Source Gyro-stabilized camera mount 

Sensor  MCA 6 

 

The sensor was a multispectral camera (MCA 6 made by Tetracam Chatsworth, CA, USA 

(Figure 3-13B) with 6 Complementary metal-oxide semiconductor (CMOS) sensors capable of 

being fitted with different wavelength filters. Similar equipment was used by other investigators 

(Laliberte et al. 2011; Castillejo-Gonzalez et al. 2014; Borra-Serrano et al. 2015; Perez-Ortiz et al. 

2015; Torres-Sánchez et al. 2015), although mounted on different types of UAVs such as the BAT 3 

UAS (MLB Co., Mountain View, CA, USA) and the Maxi Jocker 3 (Garcia-Ruiz et al. 2015).  
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Figure 3-13   Mini Multi Channel Array (MCA6) camera attached to the 
Mikrokopter JR11X (A) and MCA 6 in close up without cover (B) 

 

The communications between the radio control pilot, the ground station and control points 

with the Mikrokopter UAV are shown in Figure 3-14. An operator manually controls the UAV 

during take-off and landing using the radio control pilot. During flight, the UAV automatically 

follows the preloaded flight path (series of waypoints) and hovers over each for a pre-set time 

interval. The operator can monitor the information delivered by the telemetry system between the 

UAV and the computer, such as UAV position, altitude, speed, battery storage level, radio control 

signal quality and wind speed using the mission planning software (Mission Planner)  (Mission 

Planner 2013; Torres-Sanchez et al. 2013b).  
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Figure 3-14 Communications between the Mikrokopter and sensor auto-pilot and the ground 
controller using Mikrokopter software 

 

3.4.3.1 Power Supply 

High-density lithium batteries (Lipo brand) were used to power the UAV and the MCA 6 

camera. The length of flight depended on the battery storage capacity, its operating temperature, 

crosswind speed and height above the ground. The batteries were cooled and recharged between 

flights and the power supply was monitored during data collection flights. The battery operating 

temperature became critical during the hot summer weather. The flight plan involved flying the 

UAV at different altitudes (Table 3-7). The higher altitude flights use more power to cover the 

study area and this increased the battery temperature to unsafe levels. This was overcome by 

cooling the battery while recharging between flights. This extended the flight time and avoided 

damage to the UAV due to running out of power leading to an uncontrolled landing.  
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Table 3-7 Data and flight plan for image collection (2014) 

Date Altitudes above ground Resolution (mm) Camera 

Week 3 
15.12.2014 
17.12.2014 
18.12.2014 

 
1.6 m (Static Image) 
20 m (UAV) 
37.5 m (UAV) 

 
0.87  
10.83 
20.31 

 
MCA 6 

Week 4 
22.12.2014 
23.12.2014 

 
1.6 m (Static Image) 
10 m (Mosaic Imagery) 
20 m (Mosaic Imagery) 
37.5 m (Mosaic Imagery) 
 

 
0.87  
5.42 
10.83 
20.31 

 
MCA 6 

 

MCA 6 camera static images were collected using a custom-made jig which positioned the 

camera 1.6 m above the ground (Figure 3-15). The jig also held a small 12 V battery used to power 

the MCA 6 camera and a DVD controller for the MCA 6 camera. The DVD controller allowed 

preview of the image before capture. Use of a jig enabled quick, repetitive and consistent imaging 

of the experimental quadrats. The spatial resolution of the image at 1.6 m was 0.87 mm. 

3.4.3.2 Saving time and Flight Planning 

Two cameras were flown on the UAV, the MCA 6 (Tetracam) and a Canon Power Auto-

Shot SX260 HS (Table 3-8). The MCA 6 camera is equipped with six, 2 Gigabyte (GB) Computer 

Flash (CF) storage discs, one for each sensor. The Canon Power Auto-Shot has one high capacity 

SC card for data storage. 

 
Table 3-8 Sensor properties adapted by Bueren et al. (2015) 

Description MCA 6 camera 
Canon Power Auto-

Shot SX260 HS 

Company Tetracam  Canon 

Type Six bands multispectral Visible RGB with GPS 

Field of View 38.3° x 31.0° 0.07 x 0.03 x 0.1 m 

Spectral sensors Six One 

Spectral range Much larger nm, user selectable N/A 

Image size 1280 x 1024 1024 X 786 

Image format RAW JPEG 

Dynamic Range 10 or 8 bit 8 bit 

Weight (g) 790 231 

Handling Interval mode Auto / Manual 

 

The MCA 6 camera can be configured to capture both 8-bit RAW and 10-bit RAW format 

images. The type of imagery selected depends on the user‘s applications. The data format influences 

the amount of time needed to save each image (due to file size) and this needs to be considered in 

scheduling the time between successive image capture points to avoid mis-capture of images. 

Careful flight organisation is required to plan the time between image capture waypoints, UAV 

travel time between the waypoints, total in-the-air time, battery temperature and available battery 

power. 
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10-bit RAW files required 11 seconds to save and 8-bit RAW files required three seconds to 

save. Flight planning needed to allow sufficient time between image capture points for the storing 

the data from the previous image before the exposure for the next image was triggered. If 

insufficient time was allowed, subsequent image capture was delayed until the previous image 

capture had completed. This resulted in the subsequent image not capturing its predefined waypoint 

location correctly. The time required to save images also affects the amount of overlap in mosaic 

images. 

  

                 Figure 3-15 Taking the quadrant image using a jig 
 

The MCA 6 imagery had a similar spectral resolution to that of World View II imagery. A 

comparison of their spectral resolutions is shown in Table 3-9.  

 

Table 3-9 Comparison of the spectral resolutions between the UQ Tetracam  MCA 6 camera (Tetracam 
2015) and Landsat 7 ETM+ and World View II (Jensen 2007) 

 MCA 6 camera Landsat 7 ETM World View II 

Channel 
# 

λ (nm) 

B Name 

λ (nm) 

B Name 

λ (nm) 

F 
Mid- 
Point 

To From 
Mid- 
Point 

To From 
Mid-  
Point 

To 

Slave 1 437 440 443 1 Blue 450 483 515 1 Coastal 400 425 450 

Slave 2 557 560 463 2 Green 525 565 605 2 Blue 450 480 510 

Slave 3 677 680 683 3 Red 630 660 690 3 Green 510 545 580 

Slave 4 707 710 713 4 NIR 750 825 900 4 Yellow 585 605 625 

Slave 5 847 850 853 5 MIR 1550 1650 1750 5 Red 630 660 690 

Master 717 720 723 6 TIR 10400 11450 12500 6 
Red- 
edge 

705 725 745 

    
7 FIR 2080 2215 2350 7 

Near 
 IR1 

770 835 895 
    

C: Central band, B: Band, NIR: Near Infrared, MIR: Middle Infrared, 
TIR: Thermal Infrared and FIR: Far Infrared, F: From 

8 
Near 
 IR2 

950 950 1040 
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3.4.3.3 Image Extraction 

The pre-processing steps for the multispectral imagery are shown in Figure 3-16. Images 

were downloaded as six separate files (one for each sensor) from the CF cards to a computer where 

they were converted from their RAW format to a six-page TIF file format using Pixel Wrench 2 

(PW2) software (Tetracam 2015). Each image had to be correctly aligned prior to restacking them 

into aligned six-page Tifs files. The aligned six-page Tifs files were then exported to six- band Tifs 

files for use in conventional image processing software.  

 

 

Figure 3-16 Flowchart for pre-processing MCA 6 bands imagery 
 

3.4.3.4 Downloading images 

There are two options for downloading imagery from the MCA 6. One is to use the CF card 

directly by inserting it into a card reader (Laliberte et al., 2011) as shown in Figure 3-17. 

file:///G:/Hardisk%20500%20Gb/Chapter%205/CHAPTER%20%205%2023%20August%202015%20OLD.docx%23_ENREF_9
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Figure 3-17 Steps for directly copying 
 the MCA 6 imagery from the CF cards 

 
 

The second way of downloading imagery files is by connecting the  MCA 6 to a computer 

using a USB cable and downloading the imagery to the hard disk on the computer (faster than the 

previous method) (Figure 3-18). The MCA 6 camera has to be powered up to allow the transfer 

process to occur. In this method the files are transferred using the GPS Log Distiller function in the 

PW2 software. All the raw files were downloaded as a group in one large folder organised in 

sequential order from Master to Slave 5. 

 

 
Figure 3-18 Procedure for transferring MCA 6  

imagery file to a computer using PixelWrench2 Software 
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3.4.3.5 Creating initial multi Tifs image files 

The multiband tifs for each exposure were created using the MCA alignment file. The MCA 

alignment file aligns all the bands in a single exposure for an object distance above 100 m. For 

object distances < 100 m, a corrected MCA file has to be used following the steps shown in Figure 

3-19. 

  

 

Figure 3-19 Create initial multiband Tifs 

 

The first step in creating the initial multipage Tifs is to upload the Global.mca file provided 

by Tetracam (Figure 3-20). Note that the X, Y, Rotation, Scaling, Central Wavelength (CWL) and 

Vignette information are separated by commas (,).  
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Figure 3-20 Details of the MCA file settings 
               

3.4.3.6 Band alignment 

The bands have to be aligned in each image based on the distance of the sensor to the object. 

This involves creating a different MCA file for each altitude below 100 m. The distance between 

the sensor and the object needs to be known precisely. 

The sensors are positioned side by side in the camera (Figure 3-21). Band alignment is 

necessary to align all the channel images with each other. The sensors in the MCA 6 camera are 

optically aligned by default for images at an infinite distance (> 100 m) (Tetracam 2015). However, 

when images are acquired at closer distances, such as from a low flying UAV or from a ground 

mounted position, the separate channel images are not properly aligned because of the spatial 

separation of the sensors (Tetracam 2015). To correctly align them the distance of the sensor from 

the object has to be known accurately. 
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Figure 3-21 The position of the sensors in the MCA 6 camera (Tetracam 2015) 

 

 

Figure 3-22 Create a new MCA file 
 

Uncorrected multipage Tifs were created from the RAW files using the Global MCA file 

with X and Y set to 0. Then the correctly aligned MCA file was created as follows (Tetracam 

2015): 

i. Open the multipage Tifs file 

ii. Beginning with the Master band image (reference for the slaves.), zoom in on the 

image using the Spyglass tool.  

iii. Identify a small distant object near the center of the Master band image.  

iv. Put the cross hairs on the defined object in the Master image and click on it and press 

and hold ―T‖ on the keyboard.  

v. The X and Y label in the MCA file window turns green in colour indicating that the 

XY point has been recorded (Figure 3-23).  

vi. Then, click the green label to set the new point.  

vii. Use Page Up to go to the Page 2 image and repeat the procedure,  

viii. Put the crosshair on the same point in image no. 2 (Slave 1), click and hold ―T‖, 

ix. X and Y label in the MCA file window becomes green again, 
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x.  Click on the green label (X and Y) to set the new point. This procedure inserts the 

corrected X and Y values in the MCA file for each slave image. 

 

 

Figure 3-23 The X and Y correction in green colour  

 

After doing this for the entire slave channels, save the MCA file using a different name 

(indicating object distance) and rebuild the RAW to TIF image using the new MCA as shown in 

Figure 3-24. 

 

Figure 3-24 Before and after setting of the MCA, X Y for correction values for band alignment 
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3.4.3.7 Revised (Corrected < 100 m) Multiband Tifs 

The correctly aligned 6-band Multipage Tifs were now ready for conversion to 6 band TIF 

format. These six bands were aligned correctly using TifExport Tool in PW2. Subsequently the 

Multipage Tifs were converted to TIF format (Figure 3-25). 

 

 

Figure 3-25 The steps used for band alignment correction  

 

3.4.4 Ground truth data 

An RGB image was captured for each quadrat every week using a digital camera (Canon 

Power Auto-Shot SX260 HS). This provided a conventional record of the stage of plant growth. 

Each quadrat‘s location was captured using a Trimble Juno GPS. This information was used to map 

the experimental sites.   

3.4.5 Statistical procedure 

Hyperspectral data were analysed to find the wavelengths at which the reflectance between 

the species was greatest. Reflectance values were grouped into 10 nm bins to facilitate processing. 

The effect of moisture on reflectance was tested for the 6 bands that ended up being used in the 

hyperspectral camera as detailed in Chapter 5 (Table 5-5). The combinations of spectral bands 

which yielded the highest degree of discrimination between all species were determined by LDA as 

described in Chapter 5.  
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3.4.6 Validation 

A subset of the hyperspectral data was set aside as independent data for use for accuracy 

testing. The results of the LDA were tested for accuracy by using the Kappa method and the 

independent data set. This is a common and well established procedure for testing the accuracy 

(Cohen 1960; Congalton 1991). 

3.5 CONCLUSIONS 
 

This chapter described the sorghum cropping procedures and the field layout for the 

reflectance and image data collection sites each year. This was followed by a description of the 

reflectance and image collection procedures, download methods and preliminary processing of the 

data. The hyperspectral reflectance data was needed to find the significant bands for classifying 

each plant species. This was done using statistical procedures as outlined in Chapter 4. The 

significant bands were then used to guide selection of the band pass filters for the multispectral 

camera.  

Multispectral imagery was captured using a MCA 6 camera attached to a UAV. The initial 

data was in RAW format and the steps needed to process and align the imagery to create 6 band TIF 

images were described. The step of the alignment proses was explained in details under 3.4.3 

section. However, the minor geometric distortion cannot be corrected and it was an expected result 

since the imagery was taken below 100 m from the ground. It was advised by Tetracam
1
 expertise 

about the distortions correction. 

The following Chapters discuss the techniques for processing the hyperspectral data, 

analysing it to identify the priority wavelengths for classification of the species and processing of 

the imagery to produce weed maps. 

 

 

                                                 
1
 Mr Steve Heinold (Tetracam Expert, USA) Email: steve@tetracam.com.    
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Chapter 4  

IDENTIFICATION OF SPECTRAL DIFFERENCES 

BETWEEN WEEDS AND SORGHUM 
 

4.1 INTRODUCTION 
 

Conventional weed control is very expensive (Zhang et al. 1998). It is based on the 

assumption that weeds are distributed across an entire field. Consequently, farmers use more energy 

and herbicides than are actually necessary to control the weeds and at the same time this creates 

potentially negative environmental effects (Kumar et al. 2015).  

Site-specific weed management is a method of limiting the application of herbicide to only 

weedy areas (de Castro et al. 2012). Accurate mapping of weeds is a pre-requisite for its successful 

implementation (Whiteside et al. 2012). The spectral similarity of the weeds and crop plants makes 

them difficult to separate to produce a weed map (Andujar et al. 2012). 

Remote sensing imagery can be used to detect the presence of weeds in a crop (Everitt et al. 

2011). Hyperspectral remote sensing is recognized as the most cost effective and up-to-date 

technique (Gholizadeh et al. 2013) for detecting weeds in crops (Surface Optics Corporation 2015). 

Specifically they state that:  

“Some of the benefits of hyperspectral and multispectral imaging are that these 

technologies are: low cost (when compared with traditional scouting methods), give consistent 

results, simple to use, allow for rapid assessments, are non-destructive, highly accurate, and have a 

broad range of applications”.  

 This chapter reviews the spectral reflectance of vegetation and weed species, and the effect 

of Moisture Content (MC) on hyperspectral reflectance. The identification of spectral reflectance 

differences between weeds and sorghum is essential for successful weed mapping. This chapter will 

focus on pre-processing of the hyperspectral reflectance data and correlation between MC and 

hyperspectral reflectance of weeds and sorghum.  
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4.2 LITERATURE REVIEW  
 

In their early stages of growth, weed and crop plants look very much alike. However, it is 

very important to detect them apart at the early stages of growth, because weeds can have a larger 

effect on the growth of the crop at the early stage than at later stages (Calderón et al. 2015; Lopez-

Granados et al. 2015). Hyperspectral data can be used to detect differences between weed and crop 

plants at the early growth stage (Siddiqi et al. 2014). Zwiggelaar (1998) and Torres-Sanchez et al. 

(2013b) used hyperspectral data to distinguish between weed and crop plants in their early growth 

stages. Weed maps based on the spectral difference between the species offer an appropriate 

method to apply herbicides to only weedy areas at the early stages of crop growth (Pena-Barragan et 

al. 2012a). 

4.2.1 Spectral reflectance of vegetation 

Plants respond to solar radiation from the sun. The radiation is either reflected, absorbed or 

transmitted (Figure 4-1). Figure 4-2 shows an example of the reflected, absorbed and transmitted 

radiation by Big Bluestem Grass as detected by a laboratory spectroradiometer. Variables such as 

chlorophyll, water content and cell-to-air space ratio affect the amount of absorption (Smith and 

Blackshaw 2003). 

 

 

Figure 4-1 Effect of the earth’s atmosphere and vegetation on reflectance, 
 absorption, and transmission of light (University of Hawaii 2009) 
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Figure 4-2 Atmospheric reflectance, transmittance, and absorption 
 of Big Bluestem grass axial leaf surface (Jensen 2016, p. 321) 

 

Electromagnetic (EM) radiation is a series of wavelengths ranging from gamma rays to 

radio waves (Figure 4-3) however, only the visible spectrum (400 – 700 nm) can be seen by the 

human eye (Lee et al. 2010). Reflection of light from plants involves interaction between EM 

radiation and the pigments, water and intercellular air spaces in the plant leaf (Jensen 2007, p. 356). 

Plant pigments play a significant role in the biosphere because they affect the EM radiation in the 

living plant (Blackburn 2007).  

 

 

Figure 4-3 The electromagnetic (EM) spectrum (University of Hawaii 2009)  

 

Different plants reflect EM radiation differently and this reflectance can be measured using 

a spectroradiometer. This allows the different spectral reflectance profile of each plant to be 

identified (Figure 4-4).  



Chapter 4                                         Identification of Spectral Differences Between Weeds and Sorghum 

60 

 

 

Figure 4-4 Typical reflectance spectra of vegetation  
at different wavelengths (Li et al. 2014) 

 

The range between 700 nm to 730 nm (NIR) is very significant for species discrimination 

(Smith and Blackshaw 2003) because of the high reflectance of light by the leaf mesophyll (Castro-

Esau 2006). “The photosynthetic process begins when sunlight strikes chloroplasts, which are small 

bodies in the leaf that contain a green substance called chlorophyll”, (Jensen 2016, p. 316). The 

chlorophyll concentration provides an accurate, although indirect estimate of a plant‘s nutrient 

status and can be a predictor of crop stress (Blackburn 2007). The carotenoids are composed of 

carotenes and xanthophyll which also absorb incident radiation and change the reflection spectra 

during the photosynthesis process (Blackburn 2007). 

4.2.2 Effect of moisture on spectral reflectance 

Spectral reflectance is influenced by water, proteins and carbon constituents of plants (Li et 

al. 2014). A plant‘s condition can be predicted from its reflectance because the reflectance is 

changed by the condition of the plant. Moreover, MC, surface and internal structure and pigment 

concentration all affect the spectral reflectance of leaves (Blackburn 2007). NIR radiation is highly 

reflected by healthy plants compared to blue and red radiation (Figure 4-5). Healthy plants have a 

low reflectance in the Middle Infrared (MIR) and the VIS spectra (Ortiz and Shaw 2011).  
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Figure 4-5 Differences in reflected light between 
 a healthy and unhealthy leaf (Ortiz and Shaw 2011) 

 

The hypothesis is that the reflectance in the MIR region increases as the moisture content of 

the leaves decreases and that this is an indicator of moisture status (Jensen 2016, p. 324). The 

intercellular air space decreases when plant water decreases. Transpiration is important to cool 

down the leaf, keep water flowing in the plant and ensure a stable supply of dissolved minerals from 

the soil (Jensen 2016, p. 324). It causes the plant to lose water through the stomata.  

Plants reflect strongly in the NIR and their reflection declines steadily in the MIR depending 

on the ambient temperature (Figure 4-6). The amount of water in plants can affect emission in the 

MIR (Shilpakala 2014). Water absorbs strongly in the 2600, 1900 and 1400 nm MIR regions. In the 

visible region, changes in reflectance are not affected as much by water as they are in the MIR. 

There needs to be a 50% loss of water in a plant before it changes the visible reflectance spectra 

(Jensen 2016, p. 324).  

 

 

Figure 4-6 Typical spectral reflectance curve of healthy vegetation depicting 
 different absorption and reflectance regions peaks (Shilpakala 2014) 
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4.2.3 Weed discrimination analysis using spectral reflectance 

Remote sensing in the hyperspectral region is done by a range of sensors such as Hyperion, 

the Hyperspectral Imaging Spectrometer Sensor, Warfighter-1 and MODIS (Moderate resolution 

Imaging Spectrometer). Each of these has been developed for a particular application (Table 4-1). 

 

Table 4-1 Summary of hyperspectral satellites (Thenkabail et al. 2000) 

Hyperspectral 
Satellite 

Description 

Hyperion 220 spectral bands 
10 nm width bands 
30 m spatial resolution 
Carried on the National Atmospheric and Space Administration (NASA) 
New Millennium Program‟s Earth Observer-1 (EO-1) satellite 

Hyperspectral 
Imaging 
Spectrometer 
Sensor 

105 spectral bands 
30 m spatial resolution 
Carried on the Australia Resource Information Environment Satellite 

Warfighter-1 200 spectral bands 
Carried on board the ORBVIEW-4 satellite 

MODIS 36 spectral bands (with 10 in visible, 6 in shortwave/middle infrared, 5 in 
thermal infrared regions) 
250 to 1000 m spatial resolution 

 

Hyperspectral information can be used to discriminate weeds from crop plants based on the 

wavelengths which show the most difference between the weeds and crop plants. Such remote 

sensing provides information for protection and monitoring of crop biophysical characteristics 

based on the narrow spectral bands of significance to agricultural crops (Thenkabail et al. 2000; 

Arafat et al. 2013b; Calderón et al. 2015). The advantage of hyperspectral data is that it can be used 

in machine learning programs which increase the accuracy of supervised classification (Thenkabail 

et al. 2000). However, it is expensive and there is a delay in capturing it. Ground based 

hyperspectral imagery is less expensive (Saberioon et al. 2014) compared to satellite hyperspectral 

imagery and it can be captured quicker.  

4.2.4 Spectral Reflectance Analysis 

Reflectance can be displayed graphically as spectral profile with multiple collections 

averaged to produce a composite spectral profile. Additionally, reflectance in ranges of wavelength 

can be averaged to create ―binned‖ reflectance wavelength the bin ranges selected to coincide with 

the same bands filters wavelength ranges. This produces a more stable spectral profile. Inspection of 

these spectral profiles can be used to identify differences in reflectance between species (Lucieer et 

al. 2014). 

The rate of change in reflectance with change in wavelength can be measured by calculating 

the First Derivative (FD). Conversion of the direct reflectance data into first derivative form 
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measures the rate of change in reflectance with change in wavelength. This removes baseline shifts 

so that peaks in the spectral profile are more clearly visible (Nicolai et al. 2007). This helps identify 

the most important reflectance wavelengths.  

The First Derivative of each reflectance spectra was calculated as shown in Equation 1 

(Shafri et al. 2011).                

   
 

 
  

       

        
                                                                                                              (1) 

Where: 

FD         = First Derivative  

Ry1, Ry2 = Reflectance of the first and second reflectance pairs n1 and n2    

 x1,  x2 = Wavelength of first and second reflectance pairs n1 and n2  

 n           = Position of reflectance. 

 

The FD is a measure of the amount and direction of the change in reflectance between each 

pair of wavelength bins (Holden and LeDrew 1998). The typical leaf will peak at 710 nm for the FD 

reflectance because of the relationship between red-edge and the chlorophyll concentration 

(Blackburn 2006).  

4.3  MATERIALS AND METHODS 

4.3.1 Spectral data  

4.3.1.1 Data collection 

Hyperspectral reflectance data was collected using a FieldSpec® HandHeld 2 

Spectroradiometer (Analytical Spectral Device Corporation (ASD), Inc., Boulder, CO, USA). The 

advantages of the FieldSpec® HandHeld 2 spectroradiometer are that it is cost effective, user 

friendly, versatile and durable (ASDi 2014). It has a highly sensitive detector array with a low stray 

light grating, a built-in shutter, DriftLock dark current compensation and second-order filtering that 

produces a high signal-to-noise spectrum in under a second (ASDi 2014) (Table 4-2). 
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Table 4-2 FieldSpec® HandHeld 2 Spectroradiometer properties (ASDi 2014) 

Specification Information 

Design An ergonomic dual position “D” handle. 

Weight 1.17 kg including batteries. 

Wavelength range 325 nm – 1075 nm 

Accuracy ±1 nm 

Optional GPS Yes 

 

Weed species for which reflectance was collected from 2012 to 2014 are listed in Table 4-3. 

Data collection was done under field conditions and so was expected to include natural variation in 

the reflectance of the weeds. Nutgrass  was the only weed that persisted from year to year because it 

is very difficult to kill and survives in the soil.  

 
Table 4-3 Weeds species collected each year. 

Weeds species Abbreviation 2012 2013 2014 

Amaranth (Amaranthus macrocarpus) AM    

Pigweed (Portulaca oleracea) PG    

Awnless Barnyard Grass (Echinochloa colona) BG    

Mallow Weed (Malva sp) MW    

Nutgrass  (Cyperus rotundus) NG    

Fat Hen (Chenopodium album)  FH    

Liverseed Grass (Urochoa panicoides) LS    

Bellvine (Ipomea plebeia) B    

 

(a) Data download 

The raw data (*.asd format) was downloaded to a computer using HH2 Sync software from 

the ASD company (Step one, Figure 4-7). An IDFile for each capture was created using MS Excel 

(unique ID for each plant species and number) (Step two, Figure 4-7). The raw data was 

transformed into ASCI (American Standard Code for Information Interchange) format (*.txt) using 

ViewSpec Pro Software (ASD, Inc.,) (Step three, Figure 4-7). Each reflectance was captured in a 

single file (spectral file) but there was no IDFile automatically generated for each reflectance 

capture. A transformation process was used to combine (Step four, Figure 4-7) each spectral file 

and IDFile into a single large MS Excel MasterFile (Step five, Figure 4-7). This was done using an 

R software code (Calderón et al. 2015) which merged the spectral file Id and the unique IDFile 

(Appendix A). The data collected for all weeks was combined into the MasterFile.   
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Figure 4-7 Hyperspectral data download and pre-processing 
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4.3.1.2 Pre-processing procedures 

(a) Binning 

Pre-processing is used to smooth the reflectance values to increase the reliability of the 

subsequent analysis (Nicolai et al. 2007). Hyperspectral reflectance data was collected from four 

replicated plots at each stages of growth as discussed in Chapter 3. The sixth step (Figure 4-7) was 

binning the reflectance data into 10 nm bins (Table 4-4) using SAS software. The bins used in 2014 

were 10 nm because the band pass filters for the camera were 10 nm wide. 

Table 4-4 Binned data 

Year Bin Size  

2012 5 nm 

2013 5 nm 

2014 10 nm 

 

(b) Spectral Display 

The profiles for all species were visualized graphically (Step Seven, Figure 4-7).  

 

(c) First Derivative analysis 

The FD were calculated in MS Excel and displayed as shown in Step seven, Figure 4-7.  

4.3.2 Moisture content analysis 

In 2013 leaf samples from each weed species and sorghum were collected weekly for 

moisture analysis. The samples were selected randomly for each species within three metres of each 

locus (Figure 3.7, Chapter 3) and put into small plastic vials for laboratory analysis.  

In the laboratory, the fresh weight of each sample was recorded. All samples were dried for 

3 days at 65  C. The samples were then weighed and the plant moisture content was calculated as 

follows (Equation 2): 

 

MC (%) = ((FW – DW) / FW)*100                                                                                      (2) 

Where: 

MC    = Moisture Content  

FW    = Wet weight, g 

DW   = Dry weight, g 

 

The potential effect of moisture on reflectance was tested by correlating MC with leaf 

reflectance. The correlation was done for reflectance from the seven bands listed in Table 4-5. The 

seven bands were chosen based on Landsat ETM.  
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Table 4-5 Seven Landsat (ETM) bands   

 

 

 

 

 

 

4.4 RESULTS 

4.4.1 Reflectance results 

Spectral reflectance profile for 2012 is shown graphically for each type of weed and for 

sorghum and for soil in Figure 4-8. Basically the spectral profile showed a low relfectance in the 

visible region with small peak in the green region, an increase beginning at 690 nm reaching a  

plateau in the NIR region. These are typical of green plant reflectance spectra. A comparison of the 

profiles shows that there is a larger difference in reflectance between species at some wavelengths 

compared to other wavelengths.  

Species differences show up at specific wavelengths. In the visible spectrum (450 nm – 680 

nm), all plant spectral signatures were very similar and many overlapped each other, while in the 

infrared region (680 nm – 990 nm) the spectra of different species separated from each other.  

Sorghum had the highest NIR reflectance compared to the weed species in 2012 (Figure 

4-8). The second highest reflectance was amaranth and followed by pigweed. Nutgrass  had the 

lowest reflectance followed by barnyard grass. Pigweed, mallow weed and fat hen had reflectance 

spectra that were close to each other compared to the other weeds.  

 

 

Figure 4-8 Average spectral reflectance profile for 2012 

Spectral 
Region 

Bands (midpoint) 

1 660 nm 

2 680 nm 

3 710 nm 

4 720 nm 

5 730 nm 

6 750 nm 

7 830 nm 
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Spectral reflectance profiles for 2013 are shown graphically for each type of weed and for 

sorghum and for soil in Figure 4-9. Some of the spectral signatures in the range between 690 nm - 

740 nm are very close to each other while others are further apart (Figure 4-9). The differences 

between the species are greater at the longer wavelengths, towards 740 nm (NIR). 

 

 

Figure 4-9 Average spectral reflectance profiles for 2013 (Week one) (continued) 
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Figure 4-9 (continued) Average spectral reflectance profiles for 2013 (Week two to four) 
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The relative position of the species profiles in 2013 was different from 2012. Unlike in 

2012, sorghum‘s spectral profile in 2013 was intermediate in reflectance between the weed species. 

In the NIR region, mallow weed and nutgrass had the highest and lowest reflectance respectively in 

week one (2013). In week two mallow weed and amaranth had similar reflectance values and 

liverseed grass and nutgrass were lower compared to reflectance of other species. In week three, 

nutgrass had the lowest reflectance compared to the others. In week four, amaranth and sorghum 

were almost similar to amaranth. Nutgrass and liverseed grass still had the lowest reflectance and 

almost overlapped each other. Mallow weed shows the highest reflectance compared to the others 

and separated distinctly from the other species almost every week. 

Spectral reflectance profiles for 2014 are shown in Figure 4-10. In 2014, pigweed had the 

highest reflectance in week two (first week of record in 2014) followed by bellvine (Figure 4-10). 

Both sorghums (non pre-emergence and pre-emergence) had similar reflectance at this stage and 

almost overlapped from 550 nm to 710 nm. The weed species with the closest spectral profile to 

sorghum is liverseed grass. Its spectral profile is very close to sorghum at all wavelengths below 

720 nm, however it diverges above 720 nm.  

By week three of 2014, liverseed grass had the highest reflectance and nutgrass had the 

lowest reflectance. Pigweed at this stage had a lower reflectance and overlapped with the pre-

emergence sorghum reflectance. In the green region (550 nm) all the species overlapped except 

bellvine and liverseed grass. 

The spectral reflectance profiles of most species were closer together in week four than they 

were in week three, except for pre-emergence sorghum and nutgrass. Sorghum treated with pre-

emergence herbicide had the highest reflectance and nutgrass had the lowest reflectance in the NIR 

region in week four. However, in the green region (540 nm) all species overlapped except bellvine 

and sorghum non pre-emergence.  
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Figure 4-10 Average spectral reflectance profiles for 2014 (Week two to four) 
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4.4.2 First Derivative results 

The graphs of the First Derivative of the reflectance profiles (rate of change in profile) are 

shown in Figure 4-11, Figure 4-12 and Figure 4-13. Overall they show that the sorghum and weeds 

have a small reflectance peak around 510 nm and a large FD reflectance peak in the red-edge region 

(680 nm – 730 nm). However, each species responds uniquely in these regions.  

In 2012, week four sorghum (Figure 4-11) had the largest rate of change (FD) and nutgrass 

had the lowest rate of change. Other species had intermediate rates of changes. It shows that 

between 700 nm to 710 nm, rates of changes for all species separate widely except amaranth and 

pigweed which were very close to each other.  

 

 

Figure 4-11 First Derivative spectral graph 

 

In 2013 (Figure 4-12), mallow weed had the highest rate of change in the red edge region in 

weeks one, two and four and was equivalent to sorghum in week three. 
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Figure 4-12 FD spectral profiles for 2013 (Week one and two) (continued) 
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Figure 4-12 (continued) FD spectral profiles for 2013 (Week 3 and 4) 
 

In weeks one and two, all the species separated widely. However, the FD reflectance 

between species overlapped more from week three to week four. In week three, nutgrass and 

liverseed grass were widely separated compared to other weeds. Each week, nutgrass showed the 

lowest rate of change except in week four. In week four, mallow weed had a 20% higher FD 

reflectance compared to the next highest FD reflectance which was for amaranth. Liverseed grass 

had the lowest FD reflectance in week four.  

In 2014, weeds and sorghum again had varying rates of change in different weeks (Figure 

4-13). In week two, pigweed had the highest rate of change in the red edge region followed by 
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bellvine. In weeks three and four, liverseed grass and pre-emergence sorghum had the highest rate 

of change respectively. Nutgrass had the lowest rate of change for all weeks. Pre-emergence and 

non pre-emergence sorghum had slightly different FD reflectance from each other even though they 

are the same species. In week two, sorghum non pre-emergence had a higher rate of change in 

reflectance than sorghum pre-emergence. Both rates of change were intermediate. In week three, 

they separated more widely until in week four, sorghum pre-emergence had the highest FD 

reflectance of all species. It was much higher than sorghum non pre-emergence. Nutgrass showed 

the lowest FD reflectance each week. The FD reflectance for bellvine peaked at 690 nm rather than 

at 710 – 720 nm for the other species. It had the same magnitude as pigweed, liverseed grass and 

non pre-emergence sorghum. According to Lamb et al. 2010, this is due to the environmental 

effects experienced by the plant at the time because some leaves may exhibit a latent bimodal FD 

spectral characteristic. For example at 705 and 725 nm it has the distinct shapes of the chlorophyll 

red-edge for ryegrass (Lamb et al. 2010). Lamb et al. 2010 added that the Leaf Area Index (LAI) 

was sensitive to the first peak of the chlorotic leaves. However, in this research, the spectral 

reflectance only was collected to discriminate the weed species. It is useful if it can be related to the 

chlorophyll content as Lamb et al. (2010) demonstrated for the estimation of nitrogen concentration 

in ryegrass. The concept can be used to improve the analysis and prediction. 

 

 

Figure 4-13 FD spectra profiles for 2014 (Week two) (continued) 
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Figure 4-13 (continued) FD spectra profiles for 2014 (Week three and four) 

4.4.3 Effect of moisture content on reflectance  

The average moisture content for four species at weeks two through four after planting in 

2013 is shown in Figure 4-14. At week two most of the species had 80% or more MC. There is 

more variation in moisture content in week three. The MC peaked at week three for all species. 

Sorghum and nutgrass showed a strong decrease in week four. 
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Figure 4-14 Moisture content for all species (2013)  

 

The correlation analysis results for each species for the bands listed in Table 4-5 are shown 

in Table 4-6, Table 4-7, Table 4-8, Table 4-9 and Table 4-10. The results for sorghum show that the 

values for 750, 720 and 710 nm were strongly correlated with moisture content (R > 0.8) (Table 4-

6). These results indicate a potential moisture influence on reflectance at these wavelengths for 

sorghum. Reflectance from the other bands does not show a consistent pattern of response to 

moisture content for sorghum.  

 Table 4-6 Correlation of MC with sorghum reflectance 

Moisture Content 
Week 2 Week 3 Week 4 Correlation Values 

87% 88% 80% 
R R

2
 

Band mid wavelength (nm) Reflectance (Table 4-5) 

830 0.43 0.48 0.47 -0.22 0.05 

750 0.42 0.48 0.08 *1.00 *1.00 

730 0.37 0.39 0.39 -0.40 0.16 

720 0.31 0.31 0.07 *0.99 *0.99 

710 0.23 0.22 0.06 *0.99 *0.97 

680 0.07 0.04 0.06 -0.30 0.09 

660 0.07 0.04 0.03 0.61 0.37 

= High correlation (R > 0.80) 

 
 

The correlation between amaranth reflectance and moisture content for weeks two to four 

(Table 4-7) shows that the reflectance at 750, 730, 720 and 710 nm was strongly correlated with 

moisture content (R > 0.8). All R-values show a positive correlation.  
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Table 4-7 Correlation raw spectral for amaranth 

Moisture Content 
Week 2 Week 3 Week 4 Correlation values 

88% 89% 87% 
R R

2
 

Band mid wavelength (nm) Reflectance (Table 4-5) 

830 0.47 0.50 0.49 0.33 0.11 

750 0.46 0.49 0.09 *0.90 *0.81 

730 0.41 0.43 0.41 *0.87 0.75 

720 0.35 0.31 0.06 *0.80 0.63 

710 0.27 0.27 0.05 *0.87 0.75 

680 0.09 0.07 0.06 0.33 0.11 

660 0.09 0.07 0.02 0.69 0.48 

= High correlation (R > 0.80) 

 

The correlation for nutgrass  reflectance and moisture content for weeks two to four (Table 

4-8) shows that the reflectance at 750 nm was strongly positively correlated, however reflectance at 

830 nm and 730 nm was strongly negatively correlated (R > 0.8).  

 
Table 4-8 Correlation raw spectral for nutgrass  

Moisture Content 
Week 2 Week 3 Week 4 Correlations values 

86% 91% 77% 
R R

2
 

Band mid wavelength (nm) Reflectance (Table 4-5) 

830 0.39 0.34 0.43 *-0.97 *0.95 

750 0.38 0.32 0.06 *0.86 0.74 

730 0.33 0.27 0.35 *-0.90 *0.82 

720 0.28 0.21 0.05 0.79 0.62 

710 0.20 0.15 0.04 0.78 0.61 

680 0.06 0.04 0.04 0.16 0.03 

660 0.06 0.03 0.01 0.54 0.29 

= High correlation (R > 0.80) 

 

Table 4-9 shows that the correlation of reflectance for liverseed grass with moisture content 

for weeks two to four at 830 nm and 730 nm was strongly positively. At 680 nm and 660 nm 

reflectance, it was strongly negatively correlated with moisture content. Reflectance from the other 

bands does not show a consistent pattern of response to moisture content.  

Table 4-9 Correlation raw spectral for liverseed grass 

Moisture Content 
Week 2 Week 3 Week 4 Correlations values 

80% 88% 88% 
R R

2
 

Band mid wavelength (nm) Reflectance (Table 4-5) 

830 0.38 0.43 0.42 *0.98 *0.96 

750 0.36 0.42 0.11 -0.33 0.11 

730 0.32 0.36 0.36 *1.00 *1.00 

720 0.27 0.30 0.09 -0.38 0.15 

710 0.20 0.22 0.07 -0.39 0.15 

680 0.06 0.05 0.04 *-0.87 0.75 

660 0.06 0.04 0.02 *-0.87 0.75 

= High correlation (R > 0.80) 
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The correlation of reflectance of mallow weed with moisture content for weeks two to four 

(Table 4-10) at 680 nm and 660 nm was strongly negatively correlated (R > 0.8). Reflectance from 

the other bands does not show a consistent pattern of response to moisture content. 

Table 4-10 Correlation raw spectral for mallow weed 

Moisture Content 
Week 2 Week 3 Week 4 Correlation values 

84% 85% 86% 
R R

2
 

Band mid wavelength (nm) Reflectance (Table 4-5) 

830 0.48 0.49 0.59 0.68 0.46 

750 0.47 0.47 0.07 -0.64 0.40 

730 0.41 0.42 0.51 0.70 0.50 

720 0.35 0.36 0.06 -0.63 0.39 

710 0.26 0.27 0.05 -0.62 0.38 

680 0.07 0.05 0.01 *-0.88 0.77 

660 0.08 0.06 0.06 *-0.96 *0.92 

= High correlation (R > 0.80) 

 

The correlation of moisture content with FD reflectance was tested for all species from 

weeks two through four in 2013 (Table 4-11). The results show an overall low correlation (R < 0.8) 

between the FD reflectance and MC for all bands. 

 
Table 4-11 Correlation of First Derivative reflectance for all species (2013) 

Species Sorghum 
Mallow 
Weed 

Amaranth Nutgrass  
Liverseed 

Grass 

First 
Derivative 

R R
2
 R R

2
 R R

2
 R R

2
 R R

2
 

FD830 -0.67 0.45 -0.11 0.01 -0.62 0.38 -0.57 0.32 -0.07 0.00 

FD750 -0.14 0.02 -0.07 0.00 -0.62 0.38 -0.18 0.03 0.37 0.14 

FD730 -0.14 0.02 -0.09 0.01 -0.71 0.50 -0.36 0.13 0.42 0.18 

FD720 0.07 0.00 -0.12 0.01 -0.58 0.34 -0.26 0.07 0.38 0.14 

FD710 -0.01 0.00 -0.22 0.05 -0.56 0.31 -0.37 0.14 0.48 0.23 

FD680 0.13 0.02 -0.09 0.01 -0.37 0.14 -0.03 0.00 0.46 0.21 

FD660 0.40 0.16 0.43 0.18 0.50 0.25 0.56 0.31 -0.06 0.00 

4.5 DISCUSSION AND ANALYSIS 

4.5.1 Effect of moisture on species reflectance 

Differences in the spectral reflectance of plants occur during the growing season due to 

change in cell size, chemical composition and water concentration (Zwiggelaar 1998; Calderón et 

al. 2015). Reflectance is high in the NIR region except in the water absorption bands at 1450 and 

970 nm (Zwiggelaar 1998). Moisture content measurement in this research was based on the water 

content of leaves.  
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The moisture correlation analysis focused on seven bands ranging from 830 nm to 660 nm 

(Table 4-5) because these were the bands for which band-pass filters were available for the MCA 6 

camera in 2013. An et al. (2015) showed that the spectral bands that are sensitive to moisture 

content are 1450, 970, 750 and 690 nm. Carter and Knapp (2001) found that the 700 nm and 550 

nm bands were the bands of maximum difference in reflectance and can be used to identify plant 

stress. The results from this study (Table 4-12) show that reflectance was correlated both positively 

and negatively with moisture content at specific wavelengths for specific species. For example, at 

750 nm there was a strong positive correlation between reflectance and MC in sorghum, amaranth 

and nutgrass but not in liverseed grass and mallow weed. Also, at 730 nm there was a positive 

correlation between reflectance and MC in amaranth and liverseed grass but strong negative 

correlation with reflectance from nutgrass.  

Reflectance of nutgrass showed a negative correlation with MC at 830 nm and liverseed 

grass showed a positive correlation with MC at 830 nm. Other weeds showed no correlation with 

MC at 830 nm. The pattern of correlation between MC and reflectance varied for each species. For 

instance at 720 nm, only sorghum and amaranth were positively correlated but not for nutgrass, 

mallow weed and liverseed grass. Others species were intermediate. There was a negative 

correlation with MC at 680 nm for mallow weed and liverseed grass.  

 

 Table 4-12 Summary of effect of MC on reflectance 

Band Nutgrass  Mallow weed Sorghum Amaranth Liverseed grass 

830 - i i i + 

750 + i + + i 

730 - i i + + 

720 i i + + i 

710 i i + + i 

680 i - i i - 

660 i - i i - 
+ = positive correction 
– = negative correlation 
i = indeterminate effect 

 

In summary, moisture content of these species does not appear to have a consistent effect on 

reflectance for the bands being measured in this analysis. Accordingly, the moisture content of the 

leaves was not considered any further in this research.  

4.5.2 Species reflectance values  

Hyperspectral reflectance of weed and crop plants depends on the characteristics of the 

species. Understanding of spectral reflectance is important to predict the condition of the species. 

Every species contains different chemical components which are influenced by its physical 

environment. Use of a combination of visible, NIR and thermal IR spectra has been found to give 
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very good results in species classification (Price 1987; Kefyalew et al. 2005; Voss et al. 2010). The 

hyperspectral profiles for each weed species and for crop plants were shown to be useful in species 

classification (Siddiqi et al. 2014). Reflectance in the NIR (940 – 900 nm), red (700 – 650 nm) and 

green (550 – 500 nm) was influenced by the chemical composition in the leaf and had a very strong 

relationship to the crop characteristics (Prasad et al. 2011).  

The early growing season (1-4 weeks after planting) is the best time to see the differences in 

spectral reflectance of a species (Zwiggelaar 1998). One of the difficulties during data collection 

under the field condition at this stage is small size and similar visual characteristics of the leaves 

leading to potential mistaken identification. When the size of the leaf is too small, the spectrometer 

probe may accept reflectance from surrounding areas including the soil and other plants. Mature 

plants are more difficult to control with herbicides so it is unlikely that weed maps based on 

detection at later stages of growth would be useful.  

The spectral profiles in 2012 show that sorghum and nutgrass had the highest and lowest 

reflectance respectively. In 2012, reflectance data was collected once during week four after 

planting. All species from which reflectance values were collected were advanced in growth. 

Sorghum had the largest reflectance compared with other species. This can be seen from the 

spectral profile in Figure 4-8.  

The spectral profiles for 2013 were collected for four weeds plus sorghum at four stages of 

growth (Figure 4-9). Differences between the species were evident in the green, red-edge and NIR 

regions. However, because the differences were most evident in the NIR region this discussion 

focuses on this region. The reflectance pattern in this region changed from week to week. The 

largest separation between species occurred at week one, when the plants were smallest and the 

least separation occurred at week three. At week two, mallow weed and amaranth had a higher 

reflectance than sorghum, and nutgrass and liverseed grass had a lower reflectance. At week four, 

this same pattern persisted except that the reflectance of amaranth had moved closer to that of 

sorghum. 

The 2013 results suggested the use of reflectance between 800 nm (NIR) to 690 nm (red-

edge) for discriminating between these species (Figure 4-9). This is consistent with the findings of 

Smith and Blackshaw (2003) who obtained 90 and 98% accuracy in classification when using 

visible and red-edge wavelengths. 

A similar pattern was found in the NIR region in the 2014 data collection. Reflectance 

values for the earliest week in this year (second week after planting) show that each species 

separated widely in the NIR region. The spectral profiles became closer together as the plants aged 

(week two to week four). The pre-emergence sorghum reflectance increased steadily from week two 

to week four by which time it was higher than the reflectance for other species. The reflectance of 
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liverseed grass also increased steadily relative to other species. The reflectance of pigweed, bellvine 

and non pre-emergence sorghum grouped together as the plants aged. Nutgrass exhibited the lowest 

spectral profiles at all growth stages. This was similar to 2013. 

It is important to understand how crop plants are affected by weeds in their surroundings. 

Weeds compete with crop plants for essential resources for growth (Sankaran et al. 2015). The 

effect of this is visible at week four where the pre-emergence sorghum has a much higher 

reflectance than the non pre-emergence sorghum indicating better growth in the absence of weeds. 

In the non pre-emergence area, the weeds compete with the sorghum and each species has a similar 

amount of reflectance in the NIR. A similar pattern of reduced hyperspectral reflectance due to 

species competition was found by Kodagoda and Zhang (2010). Most of the species had similar 

reflectance by week four. At this stage of growth, maximum separation between the spectral 

profiles occurred at 720 nm. This confirms why 720 nm is significant for discriminating weeds from 

sorghum.  

4.5.3 First Derivative Values 

The First Derivative of the spectral profile shows the rate of change of reflectance. The NIR 

spectral window of 730 – 720 nm appears to generate the highest FD reflectance for all species. In 

2012, the FD graphs show that sorghum had a higher rate of change than the other species (Figure 

4-11). The area of overlap in Figure 4-8 shows as separate peaks in Figure 4-11.  

In 2013, the pattern of the spectral profiles appears consistent for each week (Figure 4-9). 

The differences between bands become apparent in the 2013 FD graph (Figure 4-12). It shows that 

in week one, the FD profiles separated widely in the NIR region. This indicates that during the early 

stage of weed growth, the FD reflectance profiles could be used to classify the species accurately. In 

weeks two, three and four, the reflectance profiles were close together and this is confirmed by the 

FD analysis (Figure 4-12). Because the spectral reflectances are closer together, the species may be 

more difficult to separate at these stages. 

In 2014, the FD graphs were consistent with the spectral profile graphs where the pattern 

was different for each week (Figure 4-13). In week one, pigweed showed the highest rate of change 

while in week two, pigweed had the lowest rate of change and in week four, it had the second 

highest rate of change. In week four, pre-emergence sorghum had the highest peak in the NIR 

region and this was expected since the weeds were controlled by the pre-emergence herbicides. This 

is consistent with weeds influencing the growth of the crop if not controlled (Sankaran et al. 2015). 
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4.6 CONCLUSIONS 
 

This chapter explored the use of hyperspectral reflectance data to identify the differences 

between weed species and sorghum. The potential influence of moisture content on reflectance was 

investigated. Moisture content was found not to affect reflectance from weeds and sorghum in the 

wavelengths of interest in this research.  

Hyperspectral raw reflectance data were binned and plotted for each species for each year. 

The profiles are generally consistent with previous vegetation profiles; however, differences 

between species were readily apparent. The relative differences in reflectance between species 

change with stage of growth are greatest in the green, red-edge and NIR regions. 

The binned raw reflectance values were converted to First Derivative reflectance values and 

graphed. The FD graphs show the differences in the spectral profiles clearer than can be seen in the 

raw reflectance profiles. This allows the identification of the bands that are most likely to be 

significant for species classification. It is essential to collect the correct multispectral imagery for 

weed detection in the sorghum crop. The details of the statistical analysis of the reflectance data to 

identify suitable bands for classification of the species and for use in a multispectral camera are 

presented in the next chapter. 
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Chapter 5  

 SPECTRAL BANDS FOR DISCRIMINATION OF 

WEEDS IN SORGHUM 
 

5.1 INTRODUCTION 
 

The previous chapters discussed the differences and similarity of the spectral reflectance for 

the weeds and sorghum and the relationship between the MC of each weeds. This information on 

spectral reflectance is essential for selecting the imagery to create weed maps to discriminate weeds 

from sorghum. The imagery needs to be based on spectral bands which contain the differences in 

reflectance between the weeds and sorghum. Knowledge of the spectral differences between species 

can be used to improve classification of plant species from satellite or aerial imagery. Satellite 

remote sensing imagery provides wide coverage of an area but in this application, it was not 

suitable for weed detection due to the size of the target weeds, spatial and spectral resolution of the 

imagery, real time information requirement, cost and cloud cover (Eddy et al. 2013).  

Arafat et al. (2013b) used Linear Discriminant Analysis (LDA) on 2500 to 400 nm 

hyperspectral data to discriminate between winter (wheat and clover) and summer crops (maize and 

rice). For example, clover was uniquely identified by wavelengths in the 1299 to 727 nm zone, 

while wheat was uniquely identified by the wavelengths in three zones, 712 to 350 nm, 1562 to 451 

nm and 2349 to 1951 nm. Maize was uniquely identified by the spectral zone of 1299 to 730 nm 

and rice by three zones, 713 to 350 nm, 1532 to 1451 nm and 2349 to 1951 nm. This research 

established that different species have unique spectral reflectance patterns. 

The following section provides more detail about how other investigators identified spectral 

differences between weeds and crops and how they used this information for weed mapping. The 

statistical procedures for identifying the bands of wavelengths which give the best separation and 

classification of the weeds are discussed. Finally, the results and accuracy of classification are 

presented and discussed. The results of this analysis were used to select band-pass filters for image 

classification as discussed in Chapter 6. 
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5.2 LITERATURE REVIEW 
 

This section discusses the procedures for discriminating between weeds and crops using 

hyperspectral remote sensing. Every plant interacts with sunlight with the sunlight being absorbed, 

transmitted and reflected. The reflectance of light depends on leaf pigments and structure. The 

pattern of reflectance is unique to each plant. It indicates whether the plant is healthy or under 

stress. Plant species can be identified based on their unique spectral reflectance (Amelinckx 2010). 

Schmidt and Skidmore (2004) (cited in Amelinckx (2010)) found that the difference in spectral 

reflectance between the examined objects is greater than that difference in the spectral separability 

within examined objects. Weed and crop plants each have their own spectral signatures and 

discrimination between them can be measured using the differences in their spectral signatures 

(Vrindts et al. 2002).  

Carvalho et al. (2013) found species could be discriminated by using reflectance from 

flowers and leaves. Flower spectra were more prominent and brighter in colour and variety than leaf 

spectra. However, while they could accurately determine the species from flower reflectance data, 

they found that leaf reflectance was needed to accurately determine nitrogen levels in the plants.  

Spectral differences can also be used to study exposure to ecological processes (competition, 

disease, invasiveness and biological control of plant abundance such as insects) (Carvalho et al. 

2013). The leaf area index, chlorophyll content, pigment content and vegetation indices are also 

useful features for improving weed discrimination (Kodagoda and Zhang 2010). The chlorophyll 

absorbs more in the red and less in the NIR and this ratio often is used for biomass or vegetation 

indices in remote sensing applications (Kodagoda and Zhang 2010). It is very beneficial to monitor 

spectral reflectance to identify the plant species efficiently and to save time (Castro-Esau 2006). 

However, using airborne hyperspectral or satellite hyperspectral is very expensive (Castro-Esau 

2006) compared to UAV sourced imagery.  

There are many techniques that can be used to uniquely identify and classify species based 

on their spectral profiles. Some of the currently reported results are summarized in Table 5-1.  
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Table 5-1 Weed and crop plants discriminated using hyperspectral data 

Discrimination of Vegetation Processing Method Sources 

Soybean, canola, wheat, oat 
and barley 

Stepwise Linear Discriminant Analysis (SLDA) (Wilson et al. 
2014) 

Weed and crop plant 
discrimination 

SLDA, LDA and Support Vector Machines (SVMs) (Siddiqi et al. 
2014) 

Wheat, clover maize and rice One way Analysis of Variance (ANOVA) and 
Tukey‟s HSD post Hoc Analysis and LDA  

(Arafat et al. 
2013b) 

Corn (Zea mays), Ranunculus 
repens, Cirsium arvense, 
Sinapis arvensive, Stellaria 
media, Tarraxacum officinale, 
Poa annua, Poligonum 
persicaria, Urtica dioica, Oxalis 
europaea and Medicago 
lupulina 

Learning method, Mixture of Gaussians (MOG) and 
Self Organising Map (SOM) 

(Moshou et al. 
2013) 

Cruciferous weeds, broad bean 
and winter wheat 

SLDA, neural networks (multilayer perception 
(MLP) and radial basis function (RBF)). 

(de Castro et 
al. 2012) 

Pines trees   Discrete Wavelet Transform (DWT), SLDA and 
LDA 

(Banskota et 
al. 2011) 

Aquatic weed SLDA (Everitt et al. 
2011) 

Papyrus vegetation ANOVA, Classification and Regression Tree 
Analysis (CART) and Jeffries-Matusita (JM) 

(Adam and 
Mutanga 
2009) 

Cotton, potato, soybean, corn 
and sunflower 

PCA, lambda-lambda models, SLDA, derivative 
greenness vegetation indices, Normalized Different 
Vegetation Index (NDVI), regression equation, 
optimal multiple narrow band (OMNBR) and soil 
adjusted Vegetation Index 

(Thenkabail et 
al. (2000); 
Thenkabail et 
al. (2004)) 

Riparian forests, burn 
grassland, resurgence zones, 
crops and several types of 
savannah and pastures 

Band ratios and Principal Component Analysis 
(PCA) 

(Almeida and 
Filho 2004) 

Weed crop discrimination SLDA (Smith and 
Blackshaw 
2003) 

Weed and crop plants  SLDA (Borregaard et 
al. 2000) 

Weed and crop plant 
discrimination 

Continuous Models (Kulbelka-Munk Theory, Plate 
Model, Goudriaan model) and Description Models 
(Markov Chain, Geometrical Optics and Monte 
Carlo approach)   

(Zwiggelaar 
1998) 

Cabbage and calabrese, barley, 
chickweed, charlock, wild 
radish, canola, shepherds 
purse, fat hen and wild oat  

Bayesian classifier (Favier et al. 
1999) 

Crops agriculture and soil Gram-Schmidt (A postol 1957), and PCA (Price 1992) 

  

5.2.1 Identification of different spectral classification bands 

Developed by Fisher (1936), Linear Discriminant Analysis is a classical statistical approach 

which is widely used for the classification of hyperspectral data (Zhang et al. 1998; Sankaran et al. 

2015). Stepwise Linear Discriminant analysis can be used to choose a viable subset of data from a 

very large initial set of data for subsequent LDA (Noble and Brown 2009; Prasad et al. 2011). 
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Linear Discriminate Analysis constructs a classification rule from data in known groups (the 

‗training data‘) which can then be applied to new samples from unknown groups (Noble and Brown 

2009). LDA was used to discriminate weeds in winter wheat in Spain with almost 100% accuracy 

(de Castro et al. 2012). The results of the Spanish research, in which Sinapis spp and Diplotaxis spp 

were discriminated with a high level of accuracy, illustrated that LDA could be used for identifying 

weeds in winter and summer crops.  

Linear Discriminant Analysis can be used to optimise selection of wavelengths in spectral 

zones for different types of crops (Noble and Brown 2009). Noble and Brown (2009) discriminated 

between weeds in wheat, tomatoes and soybean crops using hyperspectral reflectance data between 

400 to 1000 nm with a 52% accuracy. The most significant bands were 959, 948, 719, 667 and 594 

nm. Siddiqi et al. (2014) achieved 98% classification accuracy in separating weeds from crop plants 

using this method. Prasad et al. (2011) recommended that sensors should be designed for specific 

applications for vegetation studies by excluding redundant bands. Previous investigators found 

many bands useful for discriminating between species and these are summarised in Table 5-2.  

 

Table 5-2 Selected bands for plants identification reported by previous investigators 

Spectrum 
Colour 

Reflectance Band 
Centre (nm) 

References 

Near Infrared 
(NIR) 

815, 810 (Vrindts et al. 2002; Kefyalew et al. 2005; Wilson et al. 2014) 

800, 780, 755 
(Daughtry and Walthall 1998; Kleynen et al. 2005; Wilson et 
al. 2014) 

Red-edge 
 
750, 720, 710 

(Elvidge and Chen 1995; Daughtry and Walthall 1998; Shaw 
et al. 1998; Clevers 1999; Thenkabail et al. 2004; Kefyalew et 
al. 2005; Vaiphasa et al. 2005) 

Red 
675 (Vrindts et al. 2002; Fyfe 2003; Wilson et al. 2014)  

670,660,655, 600 
(Daughtry and Walthall 1998; Kefyalew et al. 2005; Hutto et 
al. 2006) 

Green 

565 (Hochberg et al. 2003) 

555 (Vrindts et al. 2002; Thenkabail et al. 2004) 

550, 540, 535 
(Schepers et al. 1996; Daughtry and Walthall 1998; 
Thenkabail et al. 2002; Fyfe 2003; Kefyalew et al. 2005; 
Wilson et al. 2014) 

520 (Elvidge and Chen 1995; Thenkabail et al. 2002)  

Blue 500, 495 
(Fyfe 2003; Thenkabail et al. 2004; Kefyalew et al. 2005; 
Wilson et al. 2014) 

 

 

ANOVA (Analysis of Variance), Tukey HSD (Tukey Honesty Significant Difference) post 

hoc analysis and LDA have all been used to identify spectrally significant bands between weed and 

crop plants in summer and winter crops (Arafat et al. 2013b). Adam and Mutanga (2009) used 

ANOVA to identify an initial list of wavelengths to discriminate between papyrus (Cyrus papyrus 

L.) and the other wetland species. They used Classification and Regression Tree analysis (CART) 
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for the second step to reduce the number of significant wavelengths to eight which they considered 

to be suitable for use in image collection. 

Principal Component Analysis (PCA) is a multivariate technique which decomposes the 

correlation matrix between samples by estimating Eigen values. This is typically done using 

Singular Values Decomposition (SVD). Principal Component Analysis constructs a series of 

uncorrelated linear combinations of the original variables to describe the relationships between data 

points. The method maximizes separation between data points rather than separation between 

groups (Almeida and Filho 2004).  

Linear discriminant analysis classifies data more accurately than PCA because LDA delivers 

more class separability and draws a decision region between given classes while PCA modifies the 

shape and location of the original data in transforming it to a different data space (Calderón et al. 

2015).  

5.2.2 Accuracy testing 

It is important to evaluate the accuracy of the classification procedures to confirm the 

spectrally different bands. If the methods were not validated, the wrong bands could be selected for 

image analysis. Accuracy can be tested by using an independent set of data or by using a different 

classification procedure.  

Multivariate analyses (LDA and SVM) were used to test the accuracy of species identified 

from hyperspectral reflectance data (Calderón et al. 2015). The classification accuracy for both 

methods was evaluated by the overall accuracy value and the kappa () coefficient. It included 

commission and omission errors for all classes (Calderón et al. 2015).  

Neural Network (NN) analysis (NN1 = one hidden neuron and NN2 = two hidden neurons) 

and LDA have been used to discriminate between sugar beets and volunteer potatoes using 

hyperspectral reflectance (Nieuwenhuizen et al. 2010). Both methods were used to select the 

potential bands to discriminate between the species. NN2 was the best classification method 

compared to LDA and NN1. However, LDA was reported as a faster processing method compared 

to NN analysis (Nieuwenhuizen et al. 2010).  

5.3 METHODS 
 

This study uses Stepwise Linear Discriminate Analysis and LDA to identify the best bands 

to classify the weeds and sorghum. It was involved with spectral separability process and analysed 

the optimal bands combination for weed classification.  
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5.3.1 Spectral separability procedures 

The hyperspectral data was downloaded and organised in a Master File, binned and 

subjected to First Derivative analysis as discussed in Chapter 4. The resulting cleaned data were 

used for discriminant analysis between weeds and crop plants as outlined in this chapter. The 

methodology uses three different years of data (Chapter 3). The details for each year are a little 

different and are explained in the following sections.   

5.3.1.1 Classification Procedure 

Species were classified from the 2012 FD reflectance data as shown in Figure 5-1. The most 

significant bands were selected by two methods, i. SLDA and ii. Literature Review. Both sets of 

bands were used in LDA to classify the weeds and sorghum.  

 

 

Figure 5-1 Species classification procedure (2012) 

 

The 2013 and 2014 FD reflectance data were processed differently (Figure 5-2). They were 

first divided randomly into two groups, Calibration data and Validation data. The Calibration group 

had 70% of the data and the Validation group had 30% of the data.  

The 20 most significant bands were identified from the Calibration data each year by using 

SLDA. This was implemented by the STEPDISC procedure within the SAS software (Noble and 

Brown 2009). SLDA identifies the most significant bands by eliminating variables (reflectance 

bands) within the statistical model that do not offer extra statistic to help separate the species 

(Calderón et al. 2015). 
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LDA was used to construct the ―rule set‖ from the 20 significant bands. This ―rule set‖ was 

used in the validation process.  

 

 

Figure 5-2 Species classification procedure (2013 and 2014) 
 

5.3.1.2 Validation Procedure 

The 2012 FD data was not validated because 2013 data was available by the time the 

validation procedure was agreed upon. The 2013 and 2014 FD data was used to test the ―rule set‖ 

developed from the LDA analysis (Figure 5-2). LDA was used on the Validation data and the 

accuracy for each species was calculated each week.  

5.3.2 Selection of Optimum Band Combinations 

This section outlines how the number of original bands was narrowed down by selecting 

combinations of six, five, four and three bands at a time and testing the combinations for 

classification accuracy. This was done in a series of steps.  

Firstly, the seven Landsat (ETM) bands, used for moisture content correlation with 

reflectance (Table 4-5), were tested for classification accuracy on the 2013 Calibration and 
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Validation data sets. Subsequently, all 3-band combinations of these seven bands (Appendix B) 

were tested for classification accuracy on the 2013 Validation data set.  

Secondly, the eight best performing bands (Priority Bands) (Table 5-3) were identified from 

the 16 available band-pass filter wavelengths and the 20 most significant bands identified by SLDA. 

All 6-band combinations of the eight priority bands were tested for classification accuracy on the 

2013 Validation data sets (Appendix C). 

 
Table 5-3 Eight priority bands 

 

 

 

 

 

 

Thirdly, the best performing 6-band combinations from the previous evaluation (Table 5-4) 

was tested on the 2014 Calibration and Validation data. This was followed by testing of all 5-band, 

4-band and 3-band combinations of these 6 bands on the 2014 Validation data (Appendix D, E and 

F). 

Table 5-4 Top 6-band combinations for 2013 

Spectral Region Bands 

NIR 850 nm  

Red-edge 720 and 710 nm 

Red 680 nm 

Green 560 nm 

Blue 440 nm 

 

A summary of all the band combinations for the accuracy testing is shown in Table 5-5. 

 
Table 5-5 Band combination tested for accuracy 

Year Combinations Source 
Data Type 

Calibration Validation 

2013 
7-bands combination 
6-bands combination 
3-bands combination 

Table 4-5 
Table 5-3 
Table 4-5 

 
 
 

 
 
 

2014 

6-bands combination 
5-bands combination 
4-bands combination 
3-bands combination 

Table 5-4 
Table 5-4 
Table 5-4 
Table 5-4 

 
 
 
 

 
 
 
 

 

 

Figure 5-3 shows the accuracy evaluation procedure for the band combinations. The 2013 

data set used the combinations selected from the eight band-pass filters that were available in 2013 

(Table 4-5). The 2014 data set used combinations selected from the six best bands that were derived 

from analysis in 2013 (Table 5-4).  

Spectral Region Eight Band filters (mid-point) 

NIR 850 nm 

Red-edge 750, 730, 720 and 710 nm 

Red 680 nm  

Green 560 nm 

Blue 440 nm 
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Figure 5-3 Accuracy evaluation of band combinations 

 

5.4 RESULTS 

5.4.1 Identification of Significant Bands  

The significant bands for weed and sorghum classification identified by Stepwise Linear 

Discriminant Analysis (SLDA) from the 2012 data are shown in Table 5-6. Asterisk (*) numbers 

indicate the spectral bands that were found to be significant by previous investigators (Table 5-2). 

 
Table 5-6 Significant bands from Stepwise Linear Discriminant Analysis of 2012 data 

Spectrum Colour Reflectance Band Centres (nm) 

Near Infrared (NIR) 980, 955, 950, 945, 940, 930, 900, 895, 890, 885, 880, 875, 
850, 840, 835, 815*, 810*, 805, 785,770, 765, 755*  

Red-edge 750*, 720*, 710*, 700, 695 

Red 645 

Green 580, 575, 565, 560, 535*, 505, 500 

Blue 495*, 480, 475, 460, 455 

 

In 2013, the FD reflectance data were divided into Calibration and Validation groups. The 

results of the SLDA analysis on the Calibration group of FD data are shown in Table 5-7. In 2014 

the FD reflectance data were again divided into Calibration and Validation groups and the 

significant bands identified by SLDA from the Calibration group are shown in Table 5-8. 
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 Table 5-7 Significant bands from Stepwise Linear Discriminant Analysis of 2013 data 

Spectral Group 
Reflectance Band Centres (nm) 

Week 1 Week 2 Week 3 Week 4 

NIR 1030 
945 
835 

1000 
895 
810* 
790 
765 

1055 
945 
890 

965 
935 
930 
895 

Red-edge  710* 
705 
690 

720* 
710* 
690 

715 
700 
695 
690 

725 
710* 
700 
695 

Red 670* 
660* 

665* 
635 

670* 
665* 
660* 
655* 
645 

675* 
665* 
660* 
640 
635 

Green 585 
560 
555* 
505* 

590 
575 
540* 
535* 
515 

570 
555* 
550* 
525 
505 

595 
560 
555* 
530 
500* 

Blue 490 
445 
440 
420 
410 
385 
380 
370 

475 
465 
445 
385 
355 

 

460 
445 
435 

445 
435 

* indicate the spectral bands that were found to be significant by previous investigators (Table 5-2). 

 

  



Chapter 5                                                            Spectral Bands for Discrimination of Weeds in Sorghum 

94 

 

Table 5-8 Twenty most significant bands from Stepwise Linear Discriminant Analysis of the 2014 data                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The significant bands common to each year are listed in Table 5-9. It shows that three bands 

from the NIR region (930, 890 and 810 nm), two bands from the red-edge region (710 and 700 nm) 

and 560 nm and 500 nm from the green and blue regions respectively were significant each year. 

The frequencies of the number of bands in each spectral region are shown in Table 5-10. NIR had 

the most number of bands each year. The green region had 20% of the bands. Red-edge and blue 

show the same percentages (18%) in Table 5-10 and Red has the lowest number of bands.  

Table 5-9 Bands common to all 3 years 

Spectral Group Reflectance Band Centres (nm) 

NIR 930, 890 and 810 nm 

Red-edge 710 and 700 nm 

Red - 

Green 560 nm 

Blue 500 nm 

 

Table 5-10 Frequency of bands by region 

Spectral Region 2012 2013 2014 Mean Percent (%) 

Near Infrared (NIR) 22 15 15 17 28 

Red-edge 5 14 13 11 18 

Red 1 14 12 9 15 

Green 6 19 10 12 20 

Blue 6 18 10 11 18 

Spectral Group 
Reflectance Band Centres (nm) 

Week 2 Week 3 Week 4 

NIR 910 
820 
770 
760 

 
 

930 
850 
840 
810 
760 

 

990 
940 
930 
890 
840 
830 

Red-edge  750* 
710* 
690 
680 

 

740 
730 
710* 
700 
690 

740 
710* 
700 
690 

Red 650 
630 
600* 

660* 
650 
640 
630 
600* 

660* 
630 
620 
600* 

Green 560 
550* 
540* 
530 
500* 

560 
550* 
520* 

 

550* 
540* 

Blue 470 
400 
380 
360 

380 
370 

450 
440 
420 
380 

* indicate the spectral bands that were found to be significant by previous investigators (Table 5-2). 
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5.4.2 Classification and Validation 

LDA was used to test the significant bands for classification of weeds and sorghum. The 

significant bands identified from the literature (Figure 5-2) and from SLDA analysis (Table 5-6) of 

the 2012 data were tested and found to produce identical results (Table 5-11). 

 

Table 5-11 Classification by literature review bands and SLDA bands (2012 data) 

Species 
 

Literature (Table 5-2) 
 

SLDA  (Table 5-6) 

Amaranth (AM) 100% 100% 

Sorghum (SG) 100% 100% 

Barnyard (BY) 100% 100% 

Fat Hen (FH) 100% 100% 

Mallow Weed (MW) 100% 100% 

Nutgrass  (NG) 100% 100% 

Pigweed (PG) 100% 100% 

 

The significant 2013 bands (Table 5-7) were tested for classification accuracy. In week one, 

the bands classified the calibration data 100% accurately (Table 5-12). However, in week two the 

accuracy decreased to 88% for MW and 92% for SG. The accuracy was still high since both results 

were more than 80% accurate. In week three, SG was 92% accurately classified and in week four all 

the weeds and SG were 100% accurately classified. This shows that the capacity of the significant 

bands to classify the weeds and SG is high but varies by stage of growth.  

The validation process evaluates the accuracy of the calibration ―rule set‖ by testing the 

classification on independent data (Table 5-12). It shows a high accuracy for AM, LS, MW and SG 

in week one. Sorghum was poorly classified in weeks two, three and four of 2013 with an accuracy 

of 67%, 75% and 71% respectively. This is the lowest accuracy of all species. In week two, MW 

and SG were poorly discriminated with 75% and 67% accuracy respectively. The other species 

were discriminated with 100% accuracy. In week three, AM, LS and MW were classified with high 

accuracy, while NG and SG were only classified with 67% and 75% accuracy respectively. In week 

four, NG accuracy increased from 67% to 100% while AM decreased from 83% to 80% and SG 

decreased from 75% to 71%. Overall, the classified accuracy improved with stage of growth 

(Weeks one to four, 2013). In summary, the accuracy improved consistently from week three to 

week four. The results are displayed graphically in Appendix G. 
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Table 5-12 Classification results for the 20 most significant bands in 2013 data 

Species 
Calibration Data Validation Data 

Wk 1 Wk 2 Wk 3 Wk 4 Wk 1 Wk 2 Wk 3 Wk 4 

Amaranth (AM) 100% 100% 100% 100% 100% 100% 83% 80% 

Liverseed Grass (LS)  100% 100% 100% 100% 83% 100% 100% 100% 

Mallow Weed (MW) 100% 88% 100% 100% 100% 75% 100% 100% 

Nutgrass  (NG) 100% 100% 100% 100% 60% 100% 67% 100% 

Sorghum (SG) 100% 92% 92% 100% 83% 67% 75% 71% 

Average  100% 96% 98% 100% 85% 88% 85% 90% 

=  High accuracy ( > 80), Wk = Week 

 

The 20 most significant 2014 bands (Table 5-8) classified the Calibration data 100% 

accurately (Table 5-13). All the bands (20) classified the Validation data set 100% accurately 

(Table 5-13) for all weeds except LS (89%) and SNP (43%) in week two. The results are displayed 

graphically in Appendix H. 

 
Table 5-13 Classification results for the 20 most significant bands in 2014 data 

Species 
Calibration Data Validation Data 

Week 2 Week 3 Week 4 Week 2 Week 3 Week 4 

Bellvine (B) 100% 100% 100% 100% 100% 100% 

Liverseed Grass (LS) 100% 100% 100% 89% 100% 100% 

Nutgrass  (NG) 100% 100% 100% 100% 100% 100% 

Pigweed (PG) 100% 100% 100% 100% 100% 100% 

Sorghum non pre-emergence 
(SNP) 

100% 100% 100% 43% 100% 100% 

Sorghum Pre-emergence (SP) 100% 100% 100% 100% 100% 100% 

Average 100% 100% 100% 90% 100% 100% 

 = High accuracy ( > 80)   

5.4.3 Optimum Band Combinations 

The previous section presented the results of selecting the 20 most significant bands to 

classify the weeds and sorghum. This section presents the results of refining the number of bands to 

6 for use with the MCA6 camera. Combinations of the seven Landsat (ETM) bands (Table 4-5) 

were tested for classification using 2013 FD Calibration and Validation data (Table 5-14). 

In week 1, the bands classified AM and MW with 85% and 100% accuracy. The accuracy of 

MW varied from 88% to 100% from week two to week four. Between week two and three, the 

accuracy of AM and NG increased from 75% to 100% and 54% to 89% respectively. Overall the 

accuracy of classification varied with stage of growth. 
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Table 5-14 Classification results for the seven bands 2013 data (Table 4-5) 

Species 
Calibration Data Validation Data 

Wk 1 Wk 2 Wk 3 Wk 4 Wk 1 Wk 2 Wk 3 Wk 4 

Amaranth (AM) 85% 75% 100% 82% 100% 25% 100% 60% 

Liverseed Grass (LS) 14% 50% 75% 67% 17% 0% 100% 50% 

Mallow Weed (MW) 100% 88% 89% 100% 50% 100% 100% 100% 

Nutgrass  (NG) 20% 54% 89% 91% 60% 100% 67% 100% 

Sorghum (SG) 10% 54% 58% 89% 17% 33% 75% 71% 

Average  46% 64% 82% 86% 49% 52% 88% 76% 

= The high accuracy ( > 80), Wk = Week  

 

 When the combinations were tested on the Validation data they showed a low accuracy in 

week one for all the species except for AM. However, the accuracy increased approximately 50% 

for MW and NG in week 2. The accuracy increased in week three when AM, LS and MW had 

100% accuracy. In week four, MW and NG were 100% accurately classified. The results are 

displayed graphically in Appendix I. 

The results show that the combination of 660, 680 and 710 nm bands produced the most 

accurate average classification (Table 5-15). The classification accuracy for all the 3-band 

combinations is shown in Appendix K. Liverseed grass detection accuracy varied from week one to 

week four (Table 5-15). During week two, it was not detected accurately (0%). This is suspected to 

be due to human error during data collection. Because liverseed grass was very small at week two, 

some spectral reflectance error was expected. However, at week three liverseed grass plants were 

bigger and spectral reflectances were collected accurately. Detection accuracy in week three 

was100%. 

Table 5-15 Classification results for the five most accurate combinations of the 
 Landsat (ETM) 3-band combinations (Validation, 2013) 

3-band combinations AM LS MW NG Mean 

660, 680, 710 nm 80% 50% 100% 100% 83% 

660, 680, 720 nm 80% 50% 75% 100% 76% 

680, 710, 720 nm 60% 50% 100% 100% 78% 

680, 710, 730 nm 60% 50% 100% 100% 78% 

680, 730, 750 nm 60% 67% 100% 50% 69% 

= The high accuracy ( > 80), AM = Amaranth, LS = Liverseed Grass, MW = Mallow Weed     
and NG = Nutgrass .  

      

Table 5-16 shows the five most accurate 6-band combinations from the eight priority bands 

(Table 5-3). The best five combinations classified all species except AM, 100% accurately. The 

classification accuracy for all the 6-band combinations is shown in Appendix J. 
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Table 5-16 Classification results for the five most accurate combinations of the 

priority 6-band combinations (Validation, 2013) 

6-band combinations AM LS MW NG Mean 

440, 560, 680, 710, 720, 850 nm 71% 100% 100% 100% 93% 

440, 560, 710, 730, 750, 850 nm 57% 100% 100% 100% 89% 

440, 560, 720, 730, 750, 850 nm 57% 100% 100% 100% 89% 

560, 680, 710, 720, 730, 750 nm 57% 100% 100% 100% 89% 

560, 680, 710, 720, 730, 850 nm 57% 100% 100% 100% 89% 

= The high accuracy ( > 80), AM = Amaranth, LS = Liverseed Grass, MW = Mallow Weed 
    and NG = Nutgrass . 

 

The results show a substantial improvement in classification accuracy by using more bands. 

Bands 710 and 680 nm occurred in the 6 and 3-band combinations that produced the highest 

classification accuracy.  

The best six bands from 2013 were tested on 2014 FD Calibration and Validation data 

(Table 5-17). In week two, all species classified accurately (> 80%) except SNP. In week three, the 

results varied in their accuracy. In week four, the average accuracy (93%) was higher than in week 

two (83%).  

 

Table 5-17 Classification results using the calibration “rule set” for the six most significant 
 bands in 2014 data 

Species 
Calibration Data Validation Data 

Week 2 Week 3 Week 4 Week 2 Week 3 Week 4 

Bellvine (B) 92% 57% 78% 71% 100% 80% 

Liverseed Grass (LS)  82% 94% 100% 56% 100% 50% 

Nutgrass  (NG) 100% 86% 100% 100% 50% 90% 

Pigweed (PG) 83% 82% 85% 63% 67% 86% 

Sorghum Non pre-emergence (SNP)  38% 71% 100% 43% 67% 57% 

Sorghum Pre-emergence (SP) 100% 92% 93% 100% 57% 100% 

Average 83% 80% 93% 72% 74% 77% 

            = High accuracy ( > 80) 

 

Nutgrass and SP were 100% accurate in week two (Table 5-17). Bellvine and LS were 100% 

accurately classified in week three. Nutgrass accuracy increased from 50% to 90% from week three 

to week four and SNP changed from 67% to 57% accuracy from week three to week four. There 

was a gradual increase in average accuracy from week two to week four (72% to 77%) when tested 

on the 2014 Validation data. The results are displayed graphically in Appendix L. The 5-band 

combinations were tested using 2014 Validation data (Table 5-18).  
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Table 5-18 Classification results (%) for all 5-band combinations for 2014 Validation data 

Combination No. Bands (nm) B LS NG PG SNP SP Mean 

WEEK 2 

1 720, 440, 560, 680, 710 92 82 100 83 38 82 80 

2 720, 440, 560, 680, 850 57 56 100 50 43 100 68 

3 720, 440, 680, 710, 850 71 67 100 50 43 100 72 

4 720, 560, 680, 710, 850 86 67 100 50 43 100 74 

5 440, 560, 680, 710, 850 57 67 100 50 43 100 70 

Average 73 

WEEK 3 

1 720, 440, 560, 680, 710 83 75 50 100 33 57 66 

2 720, 440, 560, 680, 850 83 75 67 33 33 57 58 

3 720, 440, 680, 710, 850 100 100 50 56 67 57 71 

4 720, 560, 680, 710, 850 83 100 50 67 67 57 71 

5 440, 560, 680, 710, 850 83 100 67 56 100 57 77 

Average 69 

WEEK 4 

1 720, 440, 560, 680, 710 70 17 80 71 57 67 60 

2 720, 440, 560, 680, 850 80 33 60 71 14 83 57 

3 720, 440, 680, 710, 850 90 67 90 86 57 100 82 

4 720, 560, 680, 710, 850 70 50 80 71 57 83 69 

5 440, 560, 680, 710, 850 50 33 30 86 57 83 57 

Average 65 
= High accuracy (> 80), B = Bellvine, LS = Liverseed Grass, NG = Nutgrass , PG = Pigweed, SNP 
Sorghum non pre-emergence and SP = Sorghum Pre-emergence. 

 

Combination one classified all the species more accurately than the other combinations in 

week two except for SNP (38%). Nutgrass and SP were accurately classified by all 5-band 

combinations in week two. In week three, B was accurately classified (> 80%) by all 5-band 

combinations. Liverseed grass was 100% accurately classified for all the combinations except one 

and two. PG was 100% accurately classified in combination one. SNP was 100% accurately 

classified in combination five. Nutgrass and SP were very poorly classified by all 5-band 

combinations in week three. 

In week four, combination three had the highest accuracy for all species, except for LS and 

SNP. Combinations two and three classify B the most accurately. Combination one, three and four 

classified NG the most accurately. Pig weed was classified the most accurately by combinations 

three and five. Overall, SP was classified accurately by all combinations except combination one. 

The results are displayed graphically in Appendix M.  

The 4-band combinations were tested using the 2014 FD Validation data. The five most 

accurate results for each week are shown in Table 5-19. In week 2, SP, B and NG were 100% 

accurately classified by the five most accurate combinations except in week two for B and NG. In 

week 3, B was accurately identified by the five most accurate combinations except combination 13. 

PG and SNP were 100% accurately classified by combinations 11 and 13 respectively. In week 

four, SP was accurately identified by the five most accurate combinations and NG was 80% 

accurately identified by four of the combinations. In combination 10, LS was 83% accurately 
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classified. B was accurately identified in combination four, six and 10. The results for all 4-band 

combinations are given in Appendix N and are displayed graphically in Appendix O. 

 
Table 5-19 Classification results (%) for the top five 4-band combinations for 2014 (Validation data) 

Combinations Number Bands (nm) B LS NG PG SNP SP Mean 

WEEK 2 

2 720, 440, 560, 710 71 78 71 63 43 100 75 

7 720, 560, 680, 710 86 56 100 50 57 100 78 

9 720, 560, 710, 850 86 78 86 38 43 100 76 

10 720, 680, 710, 850 86 56 86 50 57 100 76 

13 560, 680, 710, 850 86 67 100 38 43 100 76 

Average 76 

WEEK 3 

2 720, 440, 560, 710 100 75 50 78 33 57 66 

4 720, 440, 680, 710 83 75 50 67 33 71 63 

9 720, 560, 710, 850 83 75 50 44 67 57 63 

11 440, 560, 680, 710 83 75 50 100 33 57 66 

13 560, 680, 710, 850 50 75 67 56 100 57 68 

Average 65 

WEEK 4 

4 720, 440, 680, 710 100 33 60 71 43 83 65 

6 720, 440, 710, 850 80 67 80 86 43 83 73 

8 720, 560, 680, 850 60 33 80 71 14 83 57 

9 720, 560, 710, 850 70 50 80 71 43 83 66 

10 720, 680, 710, 850 80 83 80 71 57 100 79 

Average 68 

= High accuracy ( > 80), B = Bellvine, LS = Liverseed Grass, NG = Nutgrass , 
        PG = Pigweed, SNP = Sorghum non pre-emergence and SP = Sorghum Pre-emergence. 

 

The 3-band combinations were also tested using the 2014 FD Validation data. The five most 

accurate results for each week are shown in Table 5-20. 
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Table 5-20 Classification results (%) for the top five 3-band combinations for 2014 Validation data 

Combination 
Number 

Bands (nm) B (%) LS (%) NG (%) PG (%) SNP (%) SP (%) Mean (%) 

WEEK 2 

5 720, 560, 680 57 56 100 50 43 100 72 

6 720, 560, 710 86 67 100 38 57 100 78 

8 720, 680, 710 71 67 86 50 57 100 76 

9 720, 680, 850 86 67 100 38 29 100 74 

16 680, 710, 850 86 56 100 38 29 100 73 

Average 75 

WEEK 3 

2 720, 440, 680 83 75 33 44 33 71 57 

4 720, 440, 850 100 75 67 22 33 57 59 

12 440, 560, 710 83 75 17 78 33 57 57 

13 440, 560, 850 83 75 50 11 67 57 57 

14 560, 680, 710 50 75 50 67 67 42 59 

Average 58 

WEEK 4 

7 720, 560, 850 70 17 80 71 14 83 62 

8 720, 680, 710 100 33 70 57 14 83 65 

9 720, 680, 850 50 50 80 86 14 83 66 

10 720, 710, 850 70 67 80 71 14 67 67 

16 680, 710, 850 50 50 70 86 29 83 67 

Average 65 

= High accuracy ( > 80), B = Bellvine, LS = Liverseed Grass, NG = Nutgrass ,                      
PG = Pigweed, SNP = Sorghum non pre-emergence and SP = Sorghum Pre-emergence. 

 

Sorghum pre-emergence and nutgrass were 100% accurately identified in all five 

combinations in week two except in combination eight. Bellvine was 86% accurately classified by 

combinations six, nine and 16. In week three, bellvine was classified accurately (> 80%) by all 

combinations except combination 14. The other species were identified poorly. In week four, SP 

was identified accurately (> 80%) in four of the combinations. Nutgrass was 80% accurately 

classified in three combinations. Bellvine was 100% accurately classified only in combination eight 

and SNP and LS were poorly classified by all combinations in all weeks. The results for all 3-band 

combinations are given in Appendix P and are displayed graphically in Appendix Q. 

5.5 DISCUSSION AND ANALYSIS 
 

Spectral reflectance of weeds and sorghum was expected to vary because field 

environmental conditions constantly change. Significant bands for identification of weeds and 

sorghum might vary at different times and locations because of the influence of abiotic and biotic 

factors in the environment and variation in field conditions (Carvalho et al. 2013). The sunlight 

could also cause variation in reflectance at different times due to different atmospheric conditions 

and azimuths affecting measurement of the reflectance (Kodagoda and Zhang 2010). The size and 

shape of the leaves of the species also influences spectral reflectance. As shown in Chapter 4, the 
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spectral profiles of individual leaves of a species were very similar. This indicates that the 

measurement technique avoided variations in reflectance due to external factors.  

5.5.1 Band Identification 

Table 5-6 shows the most significant bands for the identification of weeds and sorghum in 

2012. Table 5-7 and Table 5-8 show the 20 most significant bands for the identification of weeds 

and sorghum in 2013 and 2014 respectively. There were naturally occurring variations in the weed 

species each year (Table 4-3). This variation contributed to different bands being found to identify 

the weed species each year as illustrated by the different central band wavelengths listed for each 

year in Table 5-6, Table 5-7 and Table 5-8. Table 5-9 lists the bands that were found significant in 

all three years. The bands that were found significant by other investigators are shown in Asterisk 

(*) in Table 5-6, Table 5-7, Table 5-8 and Table 5-9. It can be seen by inspection that: 

 

(i)  Some bands reoccurred as significant bands each year (eg. 930, 890, 810, 710, 700, 560    

       and 500 nm). 

(ii)  Some bands that are significant each year were also found to be significant by other          

       investigators (eg. 810, 720, 710, 675, 670, 660, 665, 555, 550, 540 and 535 nm).  

(iii) The number of significant bands that are common in each region in all years are         

       in the following regions: 

 NIR,17 

 Red-edge, 11 

 Green, 12 

The significance of these bands depends on their use in combination with other bands to 

identify the weeds and sorghum. While they do not uniquely identify weeds and sorghum by 

themselves, their reoccurrence each year suggests their usefulness as part of a more limited number 

of bands (less than 20) to identify weeds and sorghum. The fact that other investigators (Fyfe 2003; 

Prasad et al. 2011; Wilson et al. 2014) found some of these bands to be significant, further suggests 

that these bands be carefully considered.  

Discrimination between Bermuda grass (Tifway 419) and weeds was found to depend on 

specific wavelengths to enable consistently accurate classification (Hutto et al. 2006). The specific 

wavelengths were 353, 357, 360, 362, 366, 372, 385, 389, 391, 396, 405, 441, 442, 472, 726, 727, 

732, and 733 nm and DA produced 98% accuracy for Bermuda grass (Tifway 419). Classification 

of seagrass species in south-eastern Australian estuaries required narrow bands (5 - 15 nm) centred 

on 675, 640, 620, 590, 575, 560, 550, 530, 500 and 440 nm (Fyfe 2003).  A more limited number of 

bands was found to discriminate weeds in sugar beets and maize with 90% accuracy (Vrindts et al. 
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2002).  

 Borregaard et al. (2000), Vrindts et al. (2002) and Kefyalew et al. (2005) found that a 

combination of NIR and visible (VIS) bands increased the accuracy of classification of plants 

species using DA. Borregaard et al. (2000) found that 970, 897, 856, 726, 694 and 686 nm could be 

used to discriminate between sugar beets and weeds and 978, 970, 897, 856, 726 and 686 nm could 

discriminate between potatoes and weeds using LDA. NIR and red-edge region bands provided the 

spectral difference for classifying the healthy and infected canopy in detection of citrus greening (Li 

et al. 2012). The finding from this research that a combination of 850, 720, 710, 680, 560 and 440 

nm bands could accurately classify weeds and sorghum, is consistent with these previously 

published findings.  

Manevski et al. (2011), working with Mediterranean plants, concluded that high spectral 

resolution middle infra-red (MIR) radiation enables accurate species discrimination. Future research 

may need to consider spectral reflectance values from 1055 up to 2000 nm for detecting weeds in 

sorghum. MIR reflectance is also significantly affected by the MC of plants (Manevski et al. 2011).  

5.5.2 Classification and Validation 

Bands identified from the literature and bands identified by SLDA from the 2012 FD 

reflectance data yielded the same classification accuracy (Table 5-11). In 2013, LDA produced 

generally accurate results when applied to independent data (Table 5-12, Validation Section), 

however it was not as accurate in classifying the species as using the SLDA approach (Table 5-12, 

Calibration Section). In 2013, the LDA produced more accurate classification of species than in 

2014 (2 species different) as shown in Table 5-13 (Validation Sections). SLDA classification in 

2014 was more accurate than SLDA classifications in 2013 (compare Calibration Sections, Table 

5-12 and Table 5-13). 

The difference in classification accuracy between 2013 and 2014 is small and may not be 

statistically significant. The data did not permit measurement of the significant difference. Because 

many of the classifications had 100% accuracy, limited statistical testing was possible. The average 

classification accuracy for different growth stages did not show any obvious trend between weeks 

two and four. 

There are similarities between the study by Gray et al. (2009) and this present study in 

classifying weed species. They used PCA and best spectral band combinations analysis (BSBC) 

together with LDA to classify hemp sesbania, palmleaf morning glory, pitted morning glory, prickly 

sida, sicklepod, and smallflower morning glory species in soybeans. LDA produced a higher 

accuracy compared to PCA analysis (Gray et al. 2009). Zhang et al. (1998) combined LDA with 
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partial least squares (PLS) analysis and successfully classified weeds and wheat with 100% 

accuracy. Although their methods were very similar to the methods used in this research, their 

reflectance data was different because it was from 1445 nm up to 2135 nm (short-wave infrared, 

SWIR). 

5.5.3 Optimal Bands 

The results (Section 5.4.3) provide a procedure for evaluating which band-pass filters are 

likely to produce images most suitable for accurately discriminating between different species of 

weeds and sorghum plants. It is necessary to identify the smallest number of hyperspectral bands 

that can accurately classify weeds from crop plants (Prasad et al. 2011). This can be done by an 

exhaustive review to identify redundant bands to establish the best separation of weeds from crop 

plants (Prasad et al. 2011). LDA was used to reduce the number of bands to 20. These were 

narrowed to six or less, the maximum number of sensors in the MCA 6 camera, by selecting the 

eight priority bands and evaluating these combinations in groups of six or less. The eight priority 

bands were selected from the 16 bands–pass filters that were available following inspection of the 

species reflectance profiles and the list of 20 significant bands.  

The classification results from the seven Landsat (ETM) bands (Table 5-14) show an 

increasing accuracy of classification from week one to week four based on 2013 Calibration data. 

These bands were tested in groups of 3-band combinations. The eight priority bands were tested in 

groups of 6-band combinations (Table 5-3). The results show higher classification accuracy for 

combinations of 6-bands compared to 3-band combinations (Table 5-15). The 6-band combination 

with the highest accuracy (850, 720, 710, 680, 560, 440 nm) on 2013 data was tested on 2014 data 

(Table 5-17). At week four it gave the same classification accuracy (93%) (Table 5-17) as its mean 

value with the 6-band combination on 2013 data (Table 5-16). It classified the 2014 Classification 

data more accurately than the Validation data. Validation data was classified more than 70% 

accurately (Table 5-17). 

These six bands were then tested in combinations of 5, 4 and 3 bands for classification of the 

2014 Validation data (Table 5-18, Table 5-19 and Table 5-20). Overall, the classification accuracy 

between weeds and sorghum varied each week in all combinations. Inspection of the highlighted 

values (> 80% classification accuracy) reveals that bellvine, nutgrass and pre-emergence treated 

sorghum classify more accurately than other species most of the time. The classification accuracy 

was higher in week two for all combinations (Table 5-18, Table 5-19 and Table 5-20). In 5-band 

combinations, the classification accuracy decreased from 73% to 65% from week two to week four 

(Table 5-18). Meanwhile, for 4 and 3-band combinations, classification accuracy decreased in week 
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three and increased in week four (Table 5-19 and Table 5-20). There is no clear trend that more 

bands produce higher classification accuracy than using fewer bands in the 2014 data as was 

observed with the 2013 data. 

These results show that combinations of six bands produced a more accurate classification 

compared to 3-band combinations in 2013 data (Table 5-15). The 6-band combinations showed that 

liver seed grass, mallow weed and nutgrass were 100% accurately identified (Table 5-16). The most 

accurate classification for a combination of 3-bands (83%) was produced by 660, 680, 710 nm 

bands. The 3-band combinations did not classify liverseed grass, mallow weed and nutgrass 100% 

accurately as they did in the 6-band combinations. Amaranth has a high classification accuracy in 2, 

3-band combinations. Most of the 3-band combinations were suitable for classifying nutgrass and 

mallow weed. The 720 nm band occurred in the high classification combinations for amaranth, 

liverseed grass, mallow weed and nutgrass. This band has been used to classify cruciferous weeds 

in winter wheat and broad beans (de Castro et al. 2012).  

Testing of the most accurate 6-band combinations on 2014 data (Table 5-17) found that 

classification accuracy increased with stage of growth (week two to week four). These results 

suggest that the optimal time to discriminate weeds from sorghum plants is during week four after 

planting. This is similar to the findings by Amelinckx (2010) who concluded that the phenological 

stage in the early growing season was the best stage for discriminating boreal grasslands. 

Phenological stage was also found to influence plant identification accuracy (Hestir et al. 2008) in 

Delta ecosystems. Wilson et al. (2014) used 25 spectral bands to discriminate between soybean, 

canola, wheat, oats and barley. They found that the optimal time to discriminate weeds in canola 

was approximately 55 - 60 days after planting. This is equivalent to week 4 to 5 after planting for 

sorghum. After week four the weeds are much larger and it is expected they would be harder to 

control with herbicides despite being potentially easier to identify. These results show that the 

growth stage affects the accuracy of classification. 

Clark et al. (2005) achieved 100% classification accuracy with leaf-scale classification using 

LDA (40 bands). This was greater than the accuracy obtained from using maximum likelihood 

classification (88%) and spectral angle mapper (unspecified low classification). They showed that 

the scale of mapping affects the importance of the bands for classification accuracy. Optimal bands 

can be used to select suitable sensor band filters for imaging spectrometers such as the CASI 

(Compact Airborne Spectrographic Imager) and MCA 6 camera (Fyfe 2003). 

Overall, the analysis showed that the optimal bands for weed identification were located in 

the NIR, red-edge and Green regions of the spectrum. Stepwise Linear Discriminant Analysis 

identified the most significant bands for classification of each species. The region with most 

significant bands over 3 years research was the NIR region with 28% of the bands. The Green 
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region had 20% of the bands and the NIR and blue regions had 18% of the most significant bands. 

Red has a lower percentage (15%). Each year NIR had the most bands except in 2013 when the 

green region had 19 bands. In 2014, NIR had the most significant numbers (15) followed by red-

edge (13) (Table 5-10). Similar results were found by  Kodagoda and Zhang (2010) who found that 

NIR and VIS had the most bands for discriminating Bidens pilosa L (cobbler‘s peg) from wheat 

plants. The NIR and VIS regions also had the lager number bands for discriminating plant species 

such as Ceratonia siliqua, Olea europea, Pistacia lentiscus, Calicotome villosa and Genista 

acanthoclada (Manevski et al. 2011). Nicolai et al. (2007) found that NIR bands were widely useful 

in measuring the quality of vegetation attributes. They reported that the NIR region (725, 925, 975 

and 1125 nm) had more ability to discriminate pitted morning glory (Ipomoea Iacunosa) from 

soybeans (Koger et al. 2004). This information indicates that the NIR region is the most sensitive 

region for classifying weeds in crops.  

5.6 CONCLUSIONS 
 

Selected hyperspectral reflectance bands were successfully used to identify weeds in 

sorghum. Linear Discriminant Analysis is an efficient way to classify weeds and sorghum plants 

using hyperspectral reflectance data. The most significant bands were identified by Stepwise Linear 

Discriminant Analysis.  

In 2012, the spectral profiles classified weeds and sorghum 100% accurately. In 2013 the 

analysis was tested using 6-band and 3-band combinations. The results achieved good separation 

between amaranth, liverseed grass, mallow weed, nutgrass and sorghum using 850, 720, 710, 680, 

560 and 440 nm bands. These bands were narrowed down to 5, 4 and 3-band combinations and 

tested on 2014 data. The significant bands for each year were 930, 890, 710, 700, 560 and 500 nm. 

This indicates that these bands can be used to classify weeds and sorghum in the future.  

Classification accuracy increased progressively from week one to week four. The results 

indicate that week four is the best time to collect hyperspectral reflectance for classifying weeds and 

sorghum. These results may vary depending on the weed profile in the sorghum crop. 

The following chapter discusses the multispectral imagery processing to classify weeds and 

sorghum plants. The imagery consists of 6 bands that were selected from the most significant 6-

band combination from Chapter 5. The results form the basis for the weed discrimination mapping 

in sorghum. 
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Chapter 6  

IMAGE PROCESSING FOR DETECTING WEEDS IN 

SORGHUM 
 

6.1 INTRODUCTION  

Accurate weed identification is essential for Site-Specific Weed Management (SSWM). 

SSWM is becoming an increasingly important part of Precision Agriculture (PA). This research 

investigates weed detection using image processing techniques in the most important grain crop in 

Queensland; sorghum.  

An Unmanned Aerial Vehicle (UAV) fitted with a multispectral camera was used to identify 

weeds in a sorghum field. It was shown by Santi et al. (2014) that combination of Global 

Positioning System (GPS), Geographical Information Systems (GIS) and UAVs could improve the 

spatial distribution analysis in mapping the location of weeds in crops. For example, a Microdrone 

MD 4-1000 UAV fitted with a TetraCam  MCA 6 camera (TeraCam Inc., Chatsworth, CA, USA) 

was used to collect imagery to identify weeds using Object-Based Image Analysis (OBIA)  (Pena-

Barragan et al. 2012a; Mesas-Carrascosa et al. 2015). The MCA 6 camera can collect imagery with 

six different spectral bands and can be flown in an UAV at any desired altitude. At 30 m altitude it 

produces an approximately ~ 2 cm spatial resolution images (Tetracam 2015). Gillieson et al. 

(2006) also found that high spectral and spatial resolution imagery could be used to identify weeds 

in crops. In this research OBIA and Vegetation Index Analysis (VIA) methods were used to identify 

weeds in sorghum at various growth stages using MCA 6 imagery collected at different spatial 

resolutions. 

6.2 LITERATURE REVIEW 

6.2.1 Object Based Image Analysis 

 

Recent studies that applied remote sensing to detect plant types used a new type of image 

processing analysis known as Geographic Object-Based Image Analysis (GEOBIA) (Aziz 2014). 

GEOBIA is defined as: 

“Geographic Object-Based Image Analysis (GEOBIA) is a sub-discipline of Geographic 

Information Science (GIScience) devoted to developing automated methods to partition remote 
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sensing imagery into meaningful image-objects, and assessing their characteristics through spatial, 

spectral and temporal scales, so as to generate new geographic information in GIS-ready 

format,”(Hay and Castilla 2008, p. 77). 

Object Based Image Analysis (OBIA) is a method of segmenting a feature based on the 

image object. Objects can be generated based on particular attributes, such as size, texture, shape, 

spatial and spectra distribution. These factors can be combined with contextual and hierarchy 

procedures to give an accurate classification (Pena et al. 2013; Fernandes et al. 2014). This 

approach creates a more realistic presentation of the objects than individual pixels create (Lizarazo 

2013). Moreover, the combination of contextual knowledge can produce high accuracy segregation 

between the classes. The final output can be converted into most other GIS formats (Arroyo et al. 

2010). The OBIA method allows modifying the rule sets which govern the creation of classes which 

makes it suitable for use with different data sets (Lisita et al. 2013).  

eCognition software (Trimble Geospatial, Munich, Germany) (Pena-Barragan et al. 2012a) 

applies OBIA by developing hierarchical rule sets to classify image objects. Kamal et al. (2015) and 

Aziz (2014) found that the rule sets need to be modified for different applications in agricultural 

mapping because of site, sensor and time dependence. It can produce a good classification resulting 

in higher accuracy mapping because the classification is derived from combinations of several 

attributes (Phinn et al. 2012). OBIA is time effective specifically for very high spatial resolution 

imagery (Johansen et al. 2011).  

Different rule sets are suitable for the different data sources (Kamal et al. 2015). For 

instance random area of forest, mangroves, gullies and palm oil plantations were mapped using pan-

sharpened Quickbird, WorldView II, Light detection and ranging (LiDAR), Landsat TM and ALOS 

AVNIR-2-satellite imagery over large areas (Aziz 2014; Belgiu and Dragut 2014; Kamal et al. 

2015). However, weed mapping requires higher spatial resolution imagery for effective weed 

identification. The size of weed is small in field crops and requires high resolution for detection. 

UAV can fly at lower altitudes to obtain very high spatial resolution imagery (Pena-Barragan et al. 

2012a). A summary of OBIA applications in agriculture monitoring are shown in Table 6-1. 
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Table 6-1 Agriculture mapping applications using OBIA  

Mapping Applications Sensor Platforms Sources 

Weed mapping in maize, 
wheat and sunflower 

 MCA 6 camera (Pena-Barragan et al. 2012a; Pena 
et al. 2013; Torres-Sanchez et al. 
2014; Lopez-Granados et al. 2015) 

Giant reed mapping Ultracam D, DMC-Intergraph, 
WorldView-2 

Fernandes et al. (2014) 

Weed mapping Olympus RGB and  MCA 6 Borra-Serrano et al. (2015) 

Chalk stream macrophytes 
mapping 

Infrared sensitive, digital single-
lens reflex camera (DSLR) 

Visser and Wallis (2010) 

Land cover mapping Very High Spatial Resolution 
multispectral  

(Arroyo et al. 2010; Tormos et al. 
2012) 

Monitoring plant invasion Panchromatic and colour 
photography, multispectral 
satellite Rapid Eye  

Müllerová et al. (2013) 

Forest Canopy Modelling Airborne LiDAR and Quickbird 
Imagery 

Chen and Hay (2011) 

Mangrove Composition 
Mapping 

Landsat TM, ALOS AVNIR-2, 
WorldView-2, and LiDAR  

Kamal et al. (2015)  
 

Mapping Geomorphic and 
Ecological Zones and Coral 
Reefs 

Quickbird-II Phinn et al. (2012) 

Wetland Type and Area 
Different Scale 

SPOT 5 imagery Powers et al. (2012) 

Mangrove Production 
Management in Malaysia  

Landsat ETM+ Aziz (2014) 

 

The use of OBIA in various applications has increased tremendously since 1999. It is 

expected to continue in the future (Blaschke 2010). However, there are some limitations in using 

OBIA, particularly the error associated with under-segmentation and over-segmentation. This 

occurs when the image objects have more than one class within them and the objects are 

unnecessarily broken apart in the segmentation process (Slaughter 2014; Lehmann et al. 2015). 

Figure 6-1 shows the details of how under and over-segmentation are identified. The 

Reference Map column shows an area of soil that is not identified in the OBIA Map. Also, it 

identifies areas of weeds and sorghum that are misclassified in the OBIA Map.   

The research investigated using a single leaf because of the accuracy of the imagery. The 

size of the weeds was too small in the imagery. Thus, if the spectral reflectance was collected under 

the canopy, the spectral variable would be widely affected by the whole weed area (the area has 

different weed species). In this research, I used the high resolution imagery (0.87 mm) at different 

growth stages. The resolution was an effective way to collect the spectra of the single leaves. The 

OBIA also detected single plants at the high resolution. This technique was also used by Louis et al. 

2010 using a single leaf for spectral reflectance collection. They used a single leaf because the size 

of the leaves was too small at the early stages. 
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Figure 6-1 Visualization of OBIA result (A) and  

Reference Map (B) *∩ = Intersection 

 

6.2.2 Vegetation Index Analysis (VIA) 

 

Computation of Vegetation Indices (VIs) is another technique for species discrimination in 

image processing. The Normalized Difference Vegetation Index (NDVI) can be used to distinguish 

plants from the background soil and discriminate weeds from crop plants (Fernandes et al. 2014). It 

has been used for many applications and is widely used in disease detection (Calderon et al. 2013) 

such as, detecting Brownheart in ‗Braeburn‘ apples (Clark et al. 2003), discrimination of grassland 

species (Dale et al. 2013), exploring physical and physiological attributes of vegetation (Knipling 

1970) and crop row orientation analysis (Marais Sicre et al. 2014).  

The NDVI and the Normalized Difference Yellowness Index (NDYI) were used to 

discriminate weeds in sunflower crops (Pena-Barragan et al. 2010). According to Torres-Sanchez et 

al. (2013) the Excess Green Index (ExG) and Normalised Green-Red Difference Index were useful 

in discriminating weeds, crops, and soil (Torres-Sanchez et al. 2013). According to Torres-Sanchez 
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et al. (2014) at least four pixels were needed to detect small objects for the 15 cm width crop rows 

in such images using VIs. 

There are many other VIA, such as the Derivative Green Vegetation Index (DGVI), Ratio 

Vegetation Index (RVI), Difference Vegetation Index (DVI), and Soil-adjusted vegetation index 

(SAVI) that can be used to detect species of plants. 

Some of the VIs used the combination of red-edge regions such as NIR, Red-edge and Red 

Combine Index (NRRCI) (De Castro et al. 2015) and Red-edge Vegetation Stress Index (RSVI) 

(Merton and Huntington 1999). The red-edge is defined as “………The point of maximum slope on 

a vegetation reflectance spectrum between the red and near-IR wavelengths,” (Jensen 2016, p. 

339). Reflectance in this region can be expected to be substantially different for different species.  

Table 6-2 shows the common VI used in weed and plant discrimination.  

 

Table 6-2 Details of VIA from the literature review 

Name Formula Sources 

Normalized Red (r) R*/(R+G+B) 
R*= Normalized R value (0-1), 
defined as R*=Rm (Rm=255) 

(Saberioon 2014) 
Normalized Green (g) G*/(R+G+B) 

G*= Normalized G value (0-1), 
defined as G*=Gm (Gm=255) 

Normalized Blue (b) B*/(R+G+B) 
B*= Normalized B value (0-1), 
defined as B*=Bm (Bm=255) 

Excess green (ExG) g- r- b 

(Torres-Sospedra and Nebot     
  2014) 

Color index of vegetation 
(CIVE) 

0.441r - 0.881g + 0.385b + 
18.78745 

Vegetation (VEG) g/(r
a
b

(1-a)
 with a = 0.667 

Excess green minus excess 
red (ExGR) 

ExG-1.4r- g 

Normalized green-red 
difference index (NGRDI) 

(g-r)/(g+r) 

Woebbecke index (WI) (g-b)/(r-g) 

Normalized Difference 
Yellowness Index (NDYI) 

(r-g)/(r+g) Pena-Barragan et al. (2010) 

Different Vegetation Index NIR-R (Jordan 1969) 

Excess Red (ExR) 1.4*R-G (Meyer et al. 1999) 

Modified Excess Red 
(MExR) 

1.4*NIR-G (De Castro et al. 2015) 

Modified Triangular 
Vegetation Index 1 (MTVI1) 

1.2*[1.2*(NIR-G)-2.5*(R-G)] (Haboudane et al. 2004) 

NIR, Red-edge and Red 
Combine Index (NRRCI) 

NIR-Red-edge)/(Red-edge) (De Castro et al. 2015) 

Triangular Veg. Index(TVI) 0.5*[120*(NIR-R)-200*(R-G)] (Broge and Leblanc 2001) 

Red-edge Veg. Stress 
Index (RVSI) 

R+Red-edge720/2-(Red-
edge720) 

(Merton and Huntington 1999) 

Red Vegetation Index (RVI) NIR/R (Pena‐Barragan et al. 2007) 
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6.2.3 Image Mosaicing and Geometric Rectification 

 

To reliably georeference imagery, a GPS survey of the area needs to be conducted (Smit et 

al. 2010). Smit et al. (2010) collected 20 photo control panels in their vineyard to demarcate the test 

plots and to serve as photo control points for georeferencing. Mathews (2014) used Agisoft 

Photoscan software to mosaic imagery and align it with georeferenced points using Structure from 

Motion (SfM) algorithms. For each set of images, Agisoft PhotoScan software automatically aligns 

the images and builds point cloud models of the surface (Mathews 2014). Agisoft allows generating 

and visualising a dense point cloud model based on the estimated camera positions to combine into 

a single dense point cloud (Agisoft 2013). 

6.2.4 Accuracy Assessment 

 

Accuracy assessment is important for validating the classification accuracy of image 

processing. Confusion Matrices have been used to assess accuracy and are widely adopted 

(Congalton 1991; Phinn et al. 2012; Aziz 2014; Kamal et al. 2015). Commission and Omission 

errors can be calculated from a Confusion Matrices (Congalton 1991). Kappa analysis was used to 

evaluate the Confusion matrix in this research. It is a discrete multivariate technique for accuracy 

assessment (Jensen 2016, p. 570) and was used to compare different matrices (Congalton 1991). 

A Coefficient of Agreement (Khat) statistic can be produced from the Kappa analysis. It 

assumes a multinomial sampling model where the variance is derived using the Delta method 

(Congalton 1991, p. 6). The Khat statistic was computed based on the procedure used by 

Thenkabail (2015) as (Equation 3): 

  
 ∑      ∑            

   
 
   

 ∑            
   

     (3) 

                                                          

where,   

   r is the number of rows in the matrix 

 xii is the number of observations in rows i and column i 

 xi+ and x+i are the marginal total of row i and column i, respectively 

 N is the total number of observations  
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Each type of accuracy is defined in Table 6-3. 

Table 6-3 Description of the accuracy (Lehmann et al. 2015) 

Confusion matrix Definition 

Producer‟s accuracy The Proportion of correctly classified objects to the reference samples 
of class. 

User accuracy The proportion of correctly classified objects within the total number 
of each samples classified. 

Overall accuracy The proportion of all correctly classified objects and the total samples 

 

 

Another method that is commonly used in error assessmesnt is geometric assessment. As 

demontrated by Kamal et al. (2015) and Belgiu and Dragut (2014), geometric assessment evalutes 

the accuracy of the segmentation of the classification. The details of the geometric assessment are 

explained in the methodology section (6.3.6.2). Statistical analyses based on the geometric 

assessment method are shown in Table 6-4.  

 

Table 6-4 Geometric assessment formula (Belgiu and Dragut 2014) 

Metrics Formula Explanations Authors 

Over-segmentation 
(OSeg) 

=   
            

           
  

xi – reference object 
yj – evaluated objects 

Range [0,1]  
= 0 is perfect segmentation 

(Clinton et al. 
2010) 

Under-segmentation 
(USeg) 

=    
            

           
  Range [0,1]  

= 0 is perfect segmentation 
(Clinton et al. 
2010) 

Root Mean Square 
(RMSE) = √

      
         

 

 
 

Range [0,1]  
= 0 is perfect segmentation 

(Levine and Nazif 
1985; Weidner 
2008) 

Area fit index (AFI) = 
                 

        
 = 0.0 is perfect overlap (Lucieer and Stein 

2002) 

Quality rate (Qr) = 
           

           
 Range [0,1]  

= 1 is perfect segmentation 
(Winter 2000) 

6.3 METHODS  

6.3.1 Image Collection 

The MCA 6 imagery was processed using several steps. The RAW imagery collected by the 

MCA 6 camera, and then was converted to multiband image by using Pixel Wrench 2 (PW2) 

software (Tetracam 2015). The details of the data collection were explained in Chapter 3. The 

exposure setting for each sensor in the MCA 6 camera was set manually by prior trial and error. A 

handheld GPS (Trimble Juno-SB) was used to record the position of each quadrat. The 24 quadrats 

were randomly distributed over the field (Figure 3-8). Each mosaic image was georeferenced using 

ArcGIS software and the GPS references points.  
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6.3.2 Image Processing Workflow 

The details of the image pre-processing data conversion were explained in Chapter 3 

(Section 3.4.3.3 to 3.4.3.7). After pre-processing, the imagery was corrected, and ready to be 

classified. The imagery was mosaiced using Agisoft Photoscan software following Mathews (2014) 

procedures. The mosaic and single images were analysed using OBIA and VI analysis (Figure 6-2). 

Error assessment was done to validate the accuracy of classification. 

 

 
Figure 6-2 Flowchart of the image analysis process 

6.3.3 Mosaicing  

 

Agisoft PhotoScan software provides a user friendly process for mosaicing the imagery. The 

imagery was added and aligned using the Align Photo function (Figure 6-3). Then, the imagery 

generated and visualised a dense point cloud model based on the estimated camera position using 

Build Dense Cloud function. It calculates the depth information for each camera to be combined 

into a single dense point cloud (PhotoScan 2013). The geometrics of the map are reconstructed due 

to the poor texture of some elements of the scene and noisy or poorly focused images (Known as 

outliers among the points) by using the Build Mesh function (PhotoScan 2013). The images were 

used to build the texture exported as a mosaiced orthophoto image. Export Orthophoto function is 
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flexible allowing users to choose different image file types. A report of the outputs is also produced 

in PDF format. The details of the process were as described by Mathews (2014).  

 

         Figure 6-3 Workflow for  
          mosaicing in Agisoft Photoscan 

 

The MCA 6 camera was used to collect imagery at three different resolutions for mosaicing 

into ―whole of field‖ images (Table 6-5). The three different heights were chosen based on the high 

resolution (5.42 mm, 10.83 and 20.31 mm) to investigate the suitable resolution to detect weeds in 

the sorghum crop.   

Table 6-5 Resolution for mosaic image 

Altitude (m) Resolution (mm) 

10 5.42 

20 10.83 

37.5 20.31 

                                            

6.3.4 Object Based Image Analysis (OBIA) Procedures 

 

The OBIA method was used to process multispectral imagery collected in week 3 and week 

4 after planting. Each different spatial resolution image was processed as shown in Figure 6-4. It 



Chapter 6                                                                     Image Processing for Detecting Weeds in Sorghum 

116 

 

shows the overall scheme by which three spatial resolutions at the stages of growth were analysed 

by OBIA.  

 
Figure 6-4 Growth stage analysis at different spatial resolutions      

6.3.4.1 Image Analysis Workflow 

The methodology involved developing a conceptual plan for weed detection analysis based 

on a review of the literature associated with weed mapping, rule set development, followed by field 

work and local expert knowledge as shown in Figure 6-5. 

 

 
Figure 6-5 Flowchart of the methodology process (Kamal et al. 2015) 

 

OBIA was hierarchy of steps to classify images. It can be done both manually and 

automatically (Johansen et al. 2011). At each level the image is segmented into objects based on 

their spatial, structural and spectral characteristics (Pena et al. 2015). This has also been called a 
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―landscape scaling ladder‖ concept because bigger objects are progressively segmented into smaller 

objects by the use of a scaling value (Kamal et al. 2015). The OBIA workflow involves two main 

processes. In the first process the image is segmented based on a scale defined by the user. It is also 

known as the super-level or parent level. 

In the second process, classification is performed to identify each class of target feature 

(weed species) (Figure 6-6). This level is known as a sub-level or child process (Definiens Imaging 

2004). The advantages of OBIA are that it provides a logical, sequential mapping process, has a 

clear multi-scale context for the targeted objects and their relationship and controls over the process 

within a certain level and object container (Kamal et al. 2015).  

 

 

 Figure 6-6 Flow chart for image processing using OBIA analysis 

 

6.3.4.2 Classification Hierarchy and Development of Rule Sets  

The images were segmented into homogeneous multi-pixel objects by using the 

―Multiresolution Segmentation‖ algorithm in eCognition software. It was also used by Phinn et al. 

(2012), Belgiu and Dragut (2014), Laliberte et al. (2011), Aziz (2014) and Kamal et al. (2015) to 

segment images for a wide range of applications. Figure 6-7 shows the hierarchy of the workflow in 

OBIA for weed discrimination classification. 

 

 Figure 6-7 Hierarchy for weed discrimination classification. Schematic modified  
from Laliberte et al (2010) and Slaughter (2014)  
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In the first step (Level 1 to Level 2) rules were developed to segment the entire image into 

soil, shadow and vegetation objects. The soil and shadow objects were classified into a consolidated 

―soil‖ class. In the second step (Level 2 to Level 3) rules were developed to segment and classify 

the vegetation into weeds and sorghum objects. Because the experimental quadrats were 

monocultures of weeds, this had the effect of identifying each type of weed species as a separate 

object. The third step (Level 3 to Level 4) was the elimination of small misclassified objects by 

merging them with the adjoining larger object (―merge‖ function). The process was finalised by 

grouping the like objects together (―Enclosed‖ function) as shown in Figure 6-8. 

 

Figure 6-8 Process tree from eCognition Developer used the weed classification  

   

The first segmentation was a ―Multiresolution Segmentation‖ algorithm at a scale setting of 

40 as shown in Figure 6-8 for 0.87 mm resolution imagery. The scale setting is very important 

because it affects the size of the segments. The scale parameter should be a reasonable parameter to 

avoid missing any information (Corbane et al. 2008). Image segmentation classifies the object class 

at individual pixel values and their neighbours to compute a colour criterion (hcolour) and shape or 

spatial criterion (hshape) (Baatz et al. 2001). These two criteria were then used to create image 

objects of relatively homogeneous pixels using the general segmentation function (Sj) (Baatz et al. 

2001) (Equation 4): 

Sj = wcolour * hcolour + (1-wcolour)*hshape                                                                                                                     (4) 

        where,  

        the weight for spectral colour (wcolour) versus shape is 0 < wcolour < 1.  

 



Chapter 6                                                                     Image Processing for Detecting Weeds in Sorghum 

119 

 

In this research, the Shape value was manually adjusted until it visualised the weed and 

sorghum shapes. A value of 0.1 achieved this. The colour value (wcolour) was also selected by 

manual adjustment to visualise the weeds and sorghum. A value of 0.5 was found to be most 

suitable. This setting is also consistent with what was used by Pena-Barragan et al. (2012a) in weed 

mapping. Six wavebands were selected in this analysis. However, different wavelength bands can 

be used in future research to obtain better analysis.  

The Nearest Neighbour algorithm classification was applied to the three main classes by 

using training samples as outlined by Visser and Wallis (2010). Then, shadow and unidentified 

objects (the objects except shadow, soil and vegetation such as the white quadrat frame and label 

tag) were aggregated into the soil class by the Assigning function. This left two main classes, 

vegetation (sorghum and weeds) and soil (including shadow and unidentified objects).  

The second segmentation focussed on the vegetation class. The size of weeds helped to 

identify them in the class. It was re-segmented with a scale parameter of 10 to narrow down the 

structure of the vegetation class as shown in Figure 6-8. This was done because the weeds are small 

compared to the sorghum. The re-classify process (Classification 2) was run to identify the weeds 

from the sorghum. The results showed that some of the sorghum class was mixed with the weed 

class. The ―Enclosed by class‖ function was used to merge sorghum objects and weed objects with 

their adjoining objects class. This same rule set was used for successive images with some 

modification based on their spatial resolution. The summary of the rule sets is shown in Table 6-6. 

 

Table 6-6 Rule sets parameters for different spatial resolution 

OBIA Processing 
Spatial Resolution 

0.87 mm 5.42 mm 10.83 mm 20.31 mm 

Segmentation 1 
     Scale Parameters  

40 50 10 50 

     Shape  0.1 0.1 0.1 0.1 

     Compact 0.5 0.5 0.5 0.5 

Segmentation 2  
     Scale Parameters  

10 5 10 45 

     Shape  0.1 0.1 0.1 0.1 

     Compact 0.5 0.5 0.5 0.5 

 

6.3.4.3 Application of OBIA Rule Sets 

 

Segmentation of the whole area was used to separate the feature objects at the parent level in 

the hierarchy process. The segmentation used a ―Multiresolution Segmentation‖ algorithm to break 

down the features using different scale settings (Figure 6-8). Figure 6-9 shows the image before the 

segmentation process. It shows sorghum, nutgrass (weed), shadow and soil clearly at 0.87 mm 

resolution for Quadrat 1 for nutgrass (Q1NG).  
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Figure 6-9 The raw image before the segmentation  
process showing sorghum, nutgrass  (weed), shadow 

 and soil at 0.87 mm resolution for Quadrat 1 for nutgrass  (Q1NG) 

 

Figure 6-10 shows the segmentation process at a scale setting of 40. This segmented 

approximately half the maximum number of objects in the image. This appeared as a practical 

visual setting at which to discriminate the main objects (soil and vegetation). It shows the 

segmentation with outlines (a) and without outlines (b). The shadow class was automatically 

segmented in a separation class into a soil class.  

 
 Figure 6-10 Segmentation with outlines (Scale parameter: 40) (a); segmentation without outlines (b) 

 

The three main classes (soil, shadow and vegetation) were classified (a) using Nearest 

Neighbour classification (Figure 6-11). The process was done by adding a new ―child‖ under the 

―parent‖ segmentation level and running the classification in the ―child‖ level.  
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Figure 6-11 Classification for shadow, soil and vegetation 

 

The classification processes combined the shadow and unidentified class into the soil class 

by adding another child level under the first classification process (Figure 6-11 b). The assumption 

was that the unclassified class and shadow would be added to the soil class at this stage.  

The second segmentation was narrowed down for specific classes in the vegetation class by 

using a scale setting of 10 and the same settings for shape and compactness as the first 

segmentation. This segmented the vegetation class into more details (Figure 6-13). 

 

                                              

Figure 6-12 Segmentation between soil 
and vegetation (Scale setting: 10) 

 

Weeds and sorghum were selected in the vegetation class in order to re-assign the sorghum 

and weed objects. Regions of Interest (ROI) were selected based on the objects (sorghum and 

weeds) by using the ―Sample‖ function as shown in Figure 6-13. Yellow indicates the sorghum 

class while green indicates weeds as shown in Figure 6-13. (The green ROI do not show up in a 

black and white hard copy image). 
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Figure 6-13 Selected samples for each class 
 

The ROI samples for sorghum and weeds were assigned using the ―Assign Class‖ function. 

Figure 6-14 (a) shows the results when the classification process was applied to the whole image. It 

appears that some areas of weeds and sorghum were misclassified because of their similarity in 

spectral resolution. However, sorghum shows up predominantly as yellow with only small areas of 

the sorghum classed as ―weed‖. 

 

      

Figure 6-14 Sorghum and weeds was misclassified (a) and  
reclassify in vegetation class (b) using “Enclosed” function 

 

The ―Merge‖ function was used to merge the misclassified areas of sorghum in the sorghum 

class and the misclassified areas of weeds into the weed class. The final process used the ―Enclose‖ 

function to join the merged objects into their respective classes (sorghum and weed) (Figure 6-14) 

(b). Figure 6-15 shows the final results of classifying sorghum, weeds and soil using a transparency 

value of 70. It shows that all the objects were classified correctly. The classification was validated 

by error assessment as shown in section 6.3.6. 
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Figure 6-15 Classification between sorghum and weeds 

 

Similar rule sets (with some modification) were used for the quadrats containing different 

species of weeds and at different stages of growth. 

6.3.5 Vegetation Index Analysis (VIA) 

 

The second method investigated for weed mapping was VI. It used band ratio formula to 

classify the images into soil, sorghum and weeds (Figure 6-16). This technique is based on 

enhancing the contrast between the features by manipulating pixel reflectance in one band by pixel 

reflectance in other bands (ESRI 2015).  

          
Figure 6-16 Details of dataset for VIA analysis 

 

The equations were adapted from the existing literature and all were tested at 3 different 

spatial resolutions (Table 6-7). The result from the analysis was compared with the OBIA 

classification results. In applying the equation, the following hyperspectral bands were used as 

shown in Table 6-8. All the VIA analyses were calculated using the ―Raster Calculator‖ function in 

ArcGIS. 
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Table 6-7 Vegetation Indices used in image processing 

Vegetation Index Formula Sources 

Different Vegetation Index NIR-R (Jordan 1969) 

Excess Red (ExR) 1.4*R-G (Meyer et al. 1999) 

Modified Excess Red (MExR) 1.4*NIR-G (De Castro et al. 2015) 

Modified Triangular Vegetation Index 1 
(MTVI1) 

1.2*[1.2*(NIR-G)-2.5*(R-G)] (Haboudane et al. 2004) 

NIR, Red-edge and Red Combine Index 
(NRRCI) 

NIR-Red-edge)/(Red-edge) (De Castro et al. 2015) 

Triangular Veg. Index(TVI) 0.5*[120*(NIR-R)-200*(R-G)] (Broge and Leblanc 2001) 

Red-edge Veg. Stress Index (RVSI) 
R+Red-edge720/2-(Red-
edge720) 

(Merton and Huntington 1999) 

Red Vegetation Index (RVI) NIR/R (Pena‐Barragan et al. 2007) 

 

 

 

Table 6-8 The band value (central wavelength) assignment 
for each spectral region 

Region Band 

NIR 850 nm 

Red-edge 720 nm 

Red 680 nm 

Green 560 nm 

6.3.6 Error Assessment Procedures 

 

Error assessment is necessary to measure the accuracy of the classification (Kamal et al. 

2015). The classified images were compared with the Reference Map. The Reference Map was 

digitized from the original image to produce a vector file. OBIA classified images were exported to 

vector format. Error assessment for VIs was not done since qualitative assessment indicated it was 

not necessary. A similar technique was used by Aziz (2014), who found that visual examination of 

the classified images was sufficient. 

Maps from both the digitized (Reference Map) and classified images (OBIA Map) were 

compared by using statistics to evaluate the accuracy of segmentation and classification of the 

object classes based on Belgiu and Dragut (2014) review. They used two types of error assessment: 

a) Confusion Matrix 

b) Geometric Matrix  

6.3.6.1 Confusion Matrix Assessment 

Confusion Matrices have been widely used for validating image classification (Phinn et al. 

2012; Aziz 2014). To ensure that validations of the classification methods are comparable, a 

stratified systematic unaligned sampling method was used (University of Texas 2015). The 

Confusion Matrix was used to test the positive classification of each weed species at each stage of 

growth and at each spatial resolution (Figure 6-17).                                   
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Figure 6-17 Confusion matrix at different growth stages  

 

The classified imagery was compared with the observed imagery by grid sampling 

(Wollenhaupt, 1994). The classified OBIA results were exported into ArcMap software. The 

―Fishnet‖ function was used to create the systematic grid for the sampling (Figure 6-18). Samples 

for the soil, weeds and sorghum were chosen from the grid using ―Fishnet‖. The points highlighted 

in Figure 6-18 were weeds based on the classification image. The total sample number was recorded 

in the error matrix table (Table 6-9). The error matrix was calculated based on the Coefficient of 

Agreement (Khat). The same method was used for each different weed species.  

 

Table 6-9 The error matrix for nutgrass  at 0.87 mm 

C
la

s
s

if
ic

a
ti

o
n

 

Classes 
Imagery Nutgrass   User 

Accuracy 
Commission 
Error Weed Soil Crop Total 

Weed 36 0 0 36 100% 0% 

Soil 1 73 1 75 97% 2.67% 

Crop 1 0 47 48 97% 2.08% 

 

Total 38 73 48 159 

 Producer's 
Accuracy 

95% 100% 98% 

 Omission Error 5.26% 0% 2.08% 

 Overall Accuracy : 98%          

Computation of Khat Coefficient of Agreement : 97% 

 

The sample points were overlayed on the Reference Map (Figure 6-18) (RBG image) and 

checked for classification. The results were recorded in the error matrix table (Table 6-9). All the 

classes were counted the same way.  
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Figure 6-18 The Fishnet on the top of the OBIA classification and RGB maps 

 

6.3.6.2 Geometric Assessment  

The Geometric Assessment method adapted from Belgiu and Dragut (2014) was used to 

evaluate the segmentation class. Classified images need to be validated using a Reference Map or a 

high accuracy map that allows for an assessment of the shape, symmetry and position of the objects 

(Kamal et al. 2015).  

Figure 6-19 shows the original image (a) and the digitised vectors (b) (by small red lines). 

The digitised image was classified into the three main classes (sorghum, weeds and soil). 

 

  
Figure 6-19 The original image (a) and (b) is the visual interpretation 

(as Reference Map) from digitization.  

 

Figure 6-20 shows the three main classes (raster) derived from the digitised image. The 

Reference Map illustrates the detailed features compared to the OBIA Map. For example, the 

Reference Map classified every single plant compared to the OBIA Map that just detected the 

groups of plants.   
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Figure 6-20 Comparison between Reference and OBIA image maps 

 

The OBIA classified image was exported from eCognition (*.tif format) to ArcMap where it 

was polygonised and exported in shapefile format (Figure 6-20) by using the ―Raster to Polygon‖ 

tool in AcrToolbox. It can be seen that the OBIA classified image is not as detailed as the Reference 

Map.  

The attribute table of both images were compared by adding a new field to assign the correct 

name to each polygon (Figure 6-21).  

 

 
Figure 6-21 The new field (Class) added in the attribute table. 

 

Figure 6-22 shows a comparison between the Reference Map and OBIA Map. Each map has 

its own attribute table with unique ID. The Reference Map and OBIA Map were overlaid. 

Geometric error assessment was applied to validate the classification process. 

 

 
Figure 6-22 Comparison between OBIA image and Reference Map 
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The polygons in the OBIA Map were combined based on their classes using the ―Dissolve 

tool‖ to merge the same class of each shapefile into three polygon classes shown in Figure 6-23.  

 
Figure 6-23 The merge results by using “dissolve” tool 

 

The polygon classes in the Reference and OBIA Maps were merged to identify the areas that 

were common in both map classifications. The area of each merged class was calculated in the 

attribute table of the merged polygon shapefile. Table 6-10 shows the area by polygon class for the 

merged OBIA and Reference Maps. Area fit index (AFI), was calculated by using the formula 

based on Table 6-11. 

 
Table 6-10 Area comparison for OBIA and Reference Maps 

FID Shape Class OBIA Map Reference Map 

0 Polygon Soil 722946 72634 

1 Polygon Sorghum 295760 290505 

2 Polygon Weed 18244 23308 

 
Table 6-11 Area Fit Index (AFI) 

Class Calculation AFI 

Soil (726233 – 722946)/726233 0.0045 

Sorghum  (290504 – 295760)/290504 -0.0181 

Weed  (23307 – 18244)/23307 0.2172 

 

 

(i) Calculation of Over and Under-Segmentation and Mean Square Root Error. 

 

Over-segmentation, under-segmentation and RMS error were calculated for each class. 

Figure 6-24 illustrates the case for sorghum in both maps (Example: Soil class). 

 
Figure 6-24: Sorghum class in both maps 
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The ArcGIS Intersection tool was used to match each class in both maps (Figure 6-25). 

 

Figure 6-25: The matching area for the soil class in both maps (Intersect Result) 
                     *∩ = Intersection  
 

The Geometric calculation for over-segmentation and under-segmentation was used to 

calculate the error assessment for each class (Table 6-12).  

 
Table 6-12 Results for Geometric calculation (Example: Soil) 

Geometric calculation Formula calculation Results 

Over-Segmentation  = 1 – (match area of soil/reference area of soil)  

= 1 – (691951/726233)   
     

      
  

0.05 

Under-Segmentation  = 1 – (match area of soil/OBIA area of soil) 

=    
                      

                      
 1 – (691951/722946)  

0.04 

Root Mean Square Error for 
sorghum = √

           

 
 

=√
           

 
√

          

 
  

0.045 

 

(ii) Calculation of Quality Rate (Qr) 

Error assessment was also calculated for the Qr for each class as follows: 

Quality Rate of Soil (Qr) = area (A ∩ B) / area (A U B) 

  While, A = Reference Map 

   B = OBIA Classified Map 

 

The ―Symmetrical difference‖ tool in ArcGIS was used to calculate the Union (U) between 

Reference Map and the OBIA Map (Figure 6-26 and Figure 6-27). 
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Figure 6-26 Difference between Reference and OBIA Maps               

                                                               

                               

Figure 6-27: Symmetrical Difference Map showing areas of over 
and under-segmentation (Symmetrical Difference Result)  

 

The ―merge‖ function was used to merge the Intersect Results (Figure 6-25) and the 

Symmetrical Difference Results (Figure 6-27) in ArcGIS for the soil class (Figure 6-28). 

 

 

Figure 6-28 The merge function applied to the Intersect and Symmetrical difference results for soil 
class 

 

The results for soil were Quality Rate of soil (Qr):   

       = 691951 / 757228 

       = 0.914 

               * ∩ = intersection, U = Union  



Chapter 6                                                                     Image Processing for Detecting Weeds in Sorghum 

131 

 

 

Results show the quality rate for soil classification was 0.914 which is considered to be a 

high accuracy because it is close to 1 (Winter 2000). The same steps were calculated for each weed 

species.  

6.4 RESULTS 

6.4.1 OBIA and Analysis Results 

6.4.1.1 OBIA Results for Highest Spatial Resolution Imagery (0.87 mm) 

 

This section presents the results for the 0.87 mm spatial resolution imagery using OBIA. 

Table 6-13 shows the OBIA results for all the nutgrass replicate quadrats at different stages of 

growth. Nutgrass in Q1NG was successfully classified in week three. Result at week four show 

misclassification between weeds and sorghum. It shows that sorghum was mostly classified as a 

weed class. Other quadrats (Q2, Q3) for nutgrass (NG) show that most of them were also 

misclassified (Appendix R).  

Sorghum non pre-emergence quadrats illustrated similar results with NG classification. 

Replicate Q1SNP shows that the 17
th

 Dec. 2014 image yielded good classification but for the rest of 

data were misclassified (Table 6-13). Replicate Q2SNP indicates the results were promising at week 

three as shown in Appendix S. The two other replicates also show misclassified nutgrass for week 

three and week four.  

 

Table 6-13 Nutgrass and sorghum non pre-emergence quadrats at two stages of growth 

Image height: 1.6 m 
Week 3 Week 4 

17 December 2014 18 December 2014 23 December 2014 

Q1NG (Nutgrass ) Correctly classified 
 

 
The misclassification 
of sorghum (In the 
circle)  

 
The misclassification of 
sorghum (In the circle) 

Q1SNP (Sorghum 
non pre-emergence) 

 Correctly classified 
 

The misclassification 
of weeds (In the circle) 

 
The misclassification of 
sorghum (In the circle) 
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It shows clearly that Pigweed (PG) on week three was successfully identified based on the 

rule set (Table 6-14). However, during week four it was not successfully identified using this rule 

set when pigweed was identified as sorghum. Even though the shape of the pigweed and sorghum 

were totally different, at this stage, the same rule set did not identify the correct shape of the 

pigweed. This is because of the size of the weed patches, at week four pigweed was intermingled 

with the sorghum. In this research failures in identification occurred when the weeds were 

intermingled with sorghum. This occurred more frequently during the later stages of growth. 

Therefore, the early stage of the growth stage will help to detect the weed precisely. Overall, 

pigweed showed good classification at 0.87 mm at all stages of growth (Appendix T). 

Most of the sorghum pre-emergence (SP) quadrats correctly classified sorghum and soil 

(Table 6-14). However, weeds were misclassified in Q3SP at week three and four (Appendix W). 

 

Table 6-14 Pigweed and sorghum pre-emergence quadrats at two stages of growth 

Image height: 1.6 m 
Week 3 Week 4 

17 December 2014 18 December 2014 23 December 2014 

 
Q1PG (Pigweed)  Correctly classified  Correctly classified 

 
The misclassification of 
weeds (In the circle) 

Q1SP (Sorghum Pre-
emergence) 

 Correctly classified  Correctly classified 
 

Correctly classified 

 

 

Bellvine (B) quadrats also showed similar results to pigweed. Analysis of replicates Q1B, 

Q2B and Q3B show that the only image that was misclassified was on week four (Appendix U). 

Q4B shows the correct classification except on 17
th

 Dec. 14 (Table 6-15). The shape of bellvine 

makes the classification easier and their location provides a gap between bellvine and sorghum (SG) 

plants. Most of them were in the middle of the quadrat which helped to identify the weeds 

accurately. Liverseed grass (LS) was only correctly classified in Q2LS and Q3LS on 17
th

 Dec. 14 

(Appendix V). Most of the replicates were misclassified in all weeks (Table 6-15).  
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Table 6-15 Bellvine and liverseed grass quadrats at two stages of growth 

Image height: 1.6 m 
Week 3 Week 4 

17 December 2014 18 December 2014 23 December 2014 

Q1B (Bellvine)  Correctly classified 
 

 Correctly classified The misclassification of 
weeds (In the circle) 

Q1LS (Liverseed 
grass) 

The misclassification 
of sorghum (In the 
circle) 

 The misclassification 
of weeds (In the circle) 

 The misclassification of 
weeds (In the circle) 

 

6.4.1.2 OBIA Results for Medium Spatial Resolution Imagery (10.83 mm) 

The 10.83 mm resolution imagery collected on week three after planting (Table 6-16) was 

analysed. Only replicate Q1NG showed correct nutgrass (NG) classification. Misclassification is 

particularly evident where the nutgrass is close to the SG plants (Appendix X). Sorghum non pre-

emergence (SNP) quadrats were correctly classified all the time except for Q3SNP (Table 6-16). 

These quadrats potentially contained all types of weeds (Appendix Y) however, nutgrass was the 

dominant weed in these quadrats.   

 

Table 6-16 Nutgrass and sorghum non pre-emergence at 10.83 mm spatial resolution (continued) 

Image (20 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1NG (Nutgrass )  Correctly classified 

 

 
Correctly classified 
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Table 6-16 (continued) Nutgrass  and sorghum non pre-emergence at 
10.83 mm spatial resolution  

Image (20 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q4SNP (Sorghum non pre-
emergence) 

 Correctly classified 
 

 
Correctly classified 
 

  
 

Pigweed was correctly classified in most of the replicates (Table 6-17). Bellvine results were 

also similar to pigweed (Table 6-17). Almost all the replicates were successfully classified into soil, 

sorghum and bellvine. The size and location of the bellvine plants helped accurate identification 

(Appendix AA).  

Table 6-17 Pigweed and bellvine at 10.83 mm spatial resolution 

Image (20 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1PG   Correctly classified 

 
 Correctly classified 
 

Q2B   Correctly classified 
 

 Correctly classified 
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Table 6-18 shows the OBIA classification for liverseed grass and sorghum pre-emergence. 

Most of the liverseed grass was correctly classified except on the 15
th

 December 2014 for Q4LS 

(Table 6-18 and Appendix BB). Table 6-18 shows the sorghum pre-emergence quadrats were 

accurately classified. The others quadrats for sorghum pre-emergence are shown in Appendix CC. 

The type of weeds was nutgrass and this is an indicator that nutgrass was a major weed in the 

sorghum pre-emergence area.  

Table 6-18 Liverseed grass and sorghum pre-emergence at 10.83 mm spatial resolution 

Image (20 m) 
Week 3 

15 December 2014 17 December 2014 

Q2LS   Correctly classified 

 
 Correctly classified 

Q3SP   Correctly classified 
 
 

 Correctly classified 
 

 

6.4.1.3 OBIA Results for Low Spatial Resolution Imagery (20.31 mm) 

 

This section presents the OBIA results for 20.31 mm resolution imagery. All 24 Quadrats 

were analysed for week three imagery. Table 6-19 shows the analysis for pigweed. Overall pigweed 

was correctly classified (Appendix DD).  

Most of the nutgrass was misclassified with only replicates Q1NG on 17
th

 Dec. 14 showing 

correct classification (Appendix EE). The classification for Q4NG was misclassified on week three 

(Table 6-19). 
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Table 6-19 Pigweed and nutgrass  at 20.31 mm spatial resolution 

Image (37.5 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q2PG  

 
Correctly classified 
 

 
Correctly classified 
 

 
Q4NG  

 
The misclassification of 
weeds (In the circle) 
 

 
The misclassification of 
sorghum (In the circle) 
 

 

Sorghum non pre-emergence, Q1SNP, was misclassified on week three (Appendix FF). 

However, Q2SNP, Q3SNP (Appendix FF) and Q4SNP (Table 6-20) were correctly classified on 

15
th

 December 14. Bellvine was correctly classified on week three (Table 6-20). However bellvine 

was misclassified in Q2B and Q3B on 15th Dec. 14 (Appendix GG). Overall, bellvine was correctly 

identified at 20.31 mm spatial resolution.  

Table 6-20 Sorghum non pre-emergence and bellvine at 20.31 mm spatial resolution 

Image (37.5 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q4SNP  

 
Correctly classified 

 
The misclassification of 
sorghum (In the circle) 

 
Q4B  

  
Correctly classified 

 
Correctly classified 
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Sorghum pre-emergence was successfully classified in Q1SP and Q2SP at week three (Table 

6-21 and Appendix HH). However, sorghum was misclassified in Q3SP and Q4SP (Appendix HH). 

Liverseed grass was correctly classified in Q2LS on week three (Table 6-21). It was misclassified in 

the other quadrats (Appendix II). 

 

Table 6-21 Sorghum pre-emergence and liverseed grass at 20.31 mm resolution 

Image (37.5 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1SP  

  
Correctly classified 

 
Correctly classified 

 
Q2LS  

 
Correctly classified 

 
Correctly classified 

6.4.2 Vegetation Index Analysis Results 

Vegetation Index Analysis was performed at different spatial resolutions to investigate the 

effect of spatial resolution on classification (Table 6-22). 

 
Table 6-22 The three different resolution at week three 

Altitude above the ground Resolution  

1.6 m 0.87 mm 

20 m 10.83 mm 

37.5 m 20.31 mm 

 

6.4.2.1 Vegetation Results for Highest Spatial Resolution Imagery (0.87 mm) 

 

Most of the VIA successfully classified soil and vegetation except for MExR (Table 6-23). 

There was only a small amount of misclassification. Overall, the VIA were unsuccessful in 

distinguishing between sorghum and weeds.  



Chapter 6                                                                     Image Processing for Detecting Weeds in Sorghum 

138 

 

6.4.2.2 Vegetation Index Results for Medium Spatial Resolution Imagery (10.83 mm) 

 

VIA successfully classified soil and vegetation for week three (Appendix JJ). The results 

illustrate the difficulty in identifying weeds in sorghum. The sorghum and weeds were in the same 

class and this indicates that the spectral differences between sorghum and weeds are not detected by 

the method.  

6.4.2.3 Vegetation Index Results for Lowest Spatial Resolution (20.31 mm)  

VIA mostly successfully classified soil and vegetation at this resolution but some indices 

such as ExR, MTVI1, NRRCI, TVI and RVI misclassified vegetation and soil (Appendix KK). The 

lowest resolution produced the highest misclassification when using VIs. Most of the quadrats 

showed a ―salt and pepper effect‖ at this resolution specifically for RVI and TVI indices.  

An accuracy assessment was not conducted because the qualitative assessment indicated 

there was poor classification by all VI tested. A visual examination of the classified image showed 

that VIA methods using the indices tested were not applicable to weed detection in sorghum. 
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Table 6-23 VI analysis for 0.87 mm (continued) 

Vegetation 
Index 

Sorghum Pre-
emergence (SP) 

Liverseed Grass Bellvine Sorghum non pre-
emergence 

Pigweed Nutgrass 

Different 
Vegetation 
Index (DVI) 

 
 

     

Excess 
Red (ExR) 

 
 

     

Modified 
Excess 
Red 
(MExR) 

      
Modified 
Triangular 
Vegetation 
Index 1 
(MTVI1) 
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Table 6-23 (continued) VI analysis for 0.87 mm 

Vegetation 
Index 

Sorghum Pre-
emergence (SP) 

Liverseed Grass Bellvine Sorghum non pre-
emergence 

Pigweed Nutgrass 

NIR, Red-
edge(720) 
and Red 
Combine 
Index 
(NRRCI) 

      
Triangular 
Veg. 
Index(TVI) 

      

Red-edge 
Veg. Stress 
Index (RVSI) 

     
 

Red 
Vegetation 
Index (RVI) 
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6.4.3 Mosaic Analysis Results 

Mosaicing was done using Agisoft Photoscan at three different resolutions for imagery 

captured on week four after planting. The MCA 6 images did not produce high quality mosaic 

(Figure 6-30). However, the results suggest that this method is acceptable for this research because 

of the small size of the paddock and the flatness of the topography. According to Turner et al. 

(2016), the MCA 6 mosaiced imagery was unsuccessful using Agisoft in their study because of the 

problem in the sensor noise issue and the area was hilly which compounded image registration 

compared to the Gatton sorghum field which was very flat and allowed easier image to image 

registration. The CMOS sensors in the MCA 6 have a rolling shutter, which built up each image as 

a scan from top to bottom rather than a whole-frame snapshot and leads to geometric distortions in 

each image (Turner et al. 2014). However, Turner et al. (2016) solved the issue by automatically the 

image mosaic by using their own algorithm, Scale Invariant Feature Transform (SIFT). Figure 6-29 

shows the mosaic image at 5.42 mm spatial resolution (10 m elevation image capture). In this very 

high resolution image, most weeds were correctly classified. This indicates result which is suitable 

for weed mapping.  

 

Figure 6-29 Mosaic image at 5.42 mm resolution  
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The analysis for 10.83 mm resolution (20 m elevation image capture) shows some of the 

weeds and sorghum were misclassified. The red circles show weeds patches that were classified as 

sorghum. The patches were of high density and near to the sorghum crop. However, some weeds in 

the map were correctly classified. This proves that OBIA can detect weeds at 10.83 mm spatial 

resolution depending on the density of the weeds.  

 

Figure 6-30 Mosaic image at 10.83 mm resolution  
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Figure 6-31 shows that the majority of weed patches can be detected using OBIA at 20.31 

mm resolution imagery (37.5 m elevation image capture). In addition, some of smaller patches were 

also detected. 

 

Figure 6-31 Mosaic image at 20.31 mm resolution 
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6.5 ACCURACY ASSESSMENT 

6.5.1 OBIA Analysis Accuracy 

6.5.1.1 Confusion Matrix Accuracy Analysis (Spatial Resolution: 0.87 mm) 

 

OBIA accuracy analysis was done using the Confusion matrix technique. Each species was 

selected from the same quadrat for week three and four after planting (Figure 6-32). Only one 

quadrat was chosen for each species. The quadrat selected was the most accurately classified 

quadrat. 

 
Figure 6-32 Confusion matrix analysis for 17 December 2014 quadrats 

 

 

The overall Confusion Matrix for 0.87 mm resolution imagery (on week 3, 17
th

 Dec. 2014) 

is summarized in Table 6-24. Liverseed grass and sorghum non pre-emergence had higher 

Producer‘s Accuracies than User Accuracies indicating that these species were overestimated while 

pigweed, nutgrass  and bellvine had higher User Accuracies indicating that they were 

underestimated. Soil was over estimated (higher Producer‘s Accuracy) relative to liverseed grass, 

sorghum non pre-emergence, pigweed and nutgrass and underestimated relative to bellvine. 

Sorghum was underestimated (lower Producer‘s Accuracy) relative to liverseed grass, sorghum non 

pre-emergence and pigweed and was overestimated relative to bellvine. Overall and Khat 

accuracies were high for all species indicating accurate classification. 
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Table 6-24 Error Matrix for 0.87 mm resolution (Week three: 17
th

 Dec. 2014) 

Species Confusion Matrix Weed (%) Soil (%) Sorghum (%) 

Liverseed grass 
(LS) 

Producer's Accuracy 78  100  87  

User Accuracy 58  99  95  

Overall Accuracy 94    

 Khat 89  
  

Sorghum non 
pre-emergence 

(SNP) 

Producer's Accuracy 100  100  37  

User Accuracy 53  92  100  

Overall Accuracy 80    

 Khat 68    

Sorghum Pre-
emergence (SP) 

Producer's Accuracy 0 100  100  

User Accuracy 0 100  100  

Overall Accuracy 100    

Khat 100    

Pigweed (PG) 

Producer's Accuracy 64  93  80  

User accuracy 78  86  89  

Overall Accuracy 87    

Khat 74    

Nutgrass (NG) 

Producer's Accuracy 95  100  98  

User Accuracy 100 97  98  

Overall Accuracy 98    

Khat  97    

Bellvine (B) 

Producer's Accuracy 78  98  97  

User Accuracy 88   100  90  

Overall Accuracy 96    

 Khat 93    

 

 

The overall Confusion Matrix for 0.87 mm resolution imagery (on week 3, 18
th

 Dec. 2014) 

is summarised in Table 6-25. Liverseed grass, pigweed and nutgrass had higher User Accuracy than 

Producer‘s Accuracy indicating that they were underestimated, while sorghum non pre-emergence 

had higher Producer‘s Accuracy than User Accuracy indicating that the weeds were overestimated.   

Soil had a higher Producer‘s and User accuracy for all the species. Similar to sorghum, all 

the sorghum pre-emergence had higher accuracy (> 80%) except for liverseed grass. It shows that 

liverseed grass had low User Accuracy compared to Producer‘s Accuracy and indicates 

overestimating in sorghum class. Overall and Khat accuracies were high (> 80%) for all species 

except for pigweed and liverseed grass.  
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Table 6-25 Error Matrix for 0.87 mm resolution (Week three: 18
th

 Dec. 2014) 

Species Confusion Matrix Weed (%) 
Soil (SO) 

(%) 
Sorghum 
(SG) (%) 

Sorghum pre-
emergence 

(SP) 

Producer's Accuracy 0 100  100  

User Accuracy 0 100  100  

Overall Accuracy 100  
   Khat 100  
  

Liverseed 
grass (LS) 

Producer's Accuracy 40  100 45  

User Accuracy 79  99  15  

Overall Accuracy 76    

 Khat 58    

Bellvine (B) 

Producer's Accuracy 100 100  100  

User Accuracy 100  100  100  

Overall Accuracy 100    

 Khat 100    

Sorghum non 
pre-

emergence 
(SNP) 

Producer's Accuracy 100  100  97  

User Accuracy 97  100  100 

Overall Accuracy 99    

Khat 99    

Pigweed (PG) 

Producer's Accuracy 64  93  80  

User Accuracy 78  86  89  

Overall Accuracy 87    

 Khat 74    

Nutgrass  
(NG) 

Producer's Accuracy 84  95  96  

User Accuracy 95  97  87  

Overall Accuracy 93    

Khat 97    

 

Table 6-26 summarises the Confusion Matrix for all species at 0.87 mm resolution on week 

four. Liverseed grass, sorghum non pre-emergence and nutgrass had higher Producer‘s Accuracy 

than User Accuracy indicating that these species were overestimated while pigweed had a lower 

Producer‘s Accuracy indicating that pigweed was underestimated. 

Soil had 100 % accuracy for all the species. Sorghum was overestimated relative to pigweed 

and was underestimated relative to liverseed grass, sorghum non pre-emergence and nutgrass. 

Overall accuracies were high for sorghum pre-emergence, bellvine, sorghum non pre-

emergence and nutgrass. The Khat accuracy is high for all species except for liverseed grass, 

sorghum non pre-emergence and nutgrass (Khat < 80%).  
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Table 6-26 Error Matrix for 0.87 mm resolution (Week four) 

Species Confusion Matrix Weed (%) Soil (SO) (%) 
Sorghum 
(SG) (%) 

Sorghum pre-
emergence 

(SP) 

Producer's Accuracy 0 100  100  

User Accuracy 0 100  100 

Overall Accuracy 100  
  Khat 100    

Liverseed 
grass (LS) 

Producer's Accuracy 100  100  47  

User Accuracy 13  100  100  

Overall Accuracy 67    

Khat 52    

Bellvine (B) 

Producer's Accuracy 100  100  100  

User Accuracy 100  100  100  

Overall Accuracy 100    

Khat 100   

Sorghum non 
pre-

emergence 
(SNP) 

Producer's Accuracy 94  100  69  

User Accuracy 47  100  97  

Overall Accuracy 84    

Khat 75    

Pigweed (PG) 

Producer's Accuracy 85  100  100  

User Accuracy 100 100  95  

Overall Accuracy 98    

Khat 97    

Nutgrass  
(NG) 

Producer's Accuracy 100  100  65  

User Accuracy 34  100 100  

Overall Accuracy 83    

Khat  74    

 

 

Figure 6-33 summarises the accuracy results for 0.87 mm image classification. The sorghum 

pre-emergence plants were always accurately classified. Bellvine plants were the next most 

accurately classified followed by pigweed and sorghum non pre-emergence.  
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Figure 6-33 Summary of accuracies for Confusion Matrix analysis at 0.87 mm  
 

 

Table 6-27 shows the Overall and Khat accuracies for 10.83 and 20.31 mm resolution image 

classification. At 10.83 mm resolution, all the accuracies were high (> 80%) except for nutgrass  

(Khat: 71%) on 15
th

 Dec. 2014. The 20.31 mm resolution image resolution of nutgrass and sorghum 

non pre-emergence had a lower accuracy (<70%).  

Overall accuracies (OA) had higher percentages for all the species except for nutgrass and 

sorghum non pre-emergence.   

 
Table 6-27 Summary of Overall and Khat accuracies for 10.83 and 20.31 mm spatial resolution  

Spatial Resolution 10.83 mm 20.31 mm 

Date 15.12.14 (%) 17.12.14 (%) 15.12.14 (%) 17.12.14 (%) 

Species OA  Khat  OA  Khat  OA  Khat OA  Khat  

Liverseed Grass (LS) 100 100 94 89 88 80 94 89 

Bellvine (B) 100 100 100 100 97 95 100 100 

Pigweed (PG) 100 100 100 100 100 100 100 100 

Nutgrass  (NG) 81 71 90 82 73 61 98 97 

Sorghum non pre-emergence (SNP) 100 100 95 92 81 69 95 92 

Sorghum pre-emergence (SP) 100 100 100 100 100 100 100 100 
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6.5.1.2 Geometric Accuracy Analysis 

 

The Geometric accuracy analysis was used to validate OBIA classification for sorghum, soil 

and weeds at 0.87 mm resolution (Figure 6-34). This assessment was only done for 0.87 mm 

resolution imagery because it was not feasible to digitise lower resolution imagery to create the 

required high accuracy Reference Map. 

 
Figure 6-34 Geometric analysis accuracy assessment for 0.87 mm 

 

The Area Fit Index, over-segmentation (Oseg), under-segmentation (Useg) and RMSE 

values showed promising results. The Geometric accuracy analysis was done on the same quadrat 

that was used in Confusion Matrix assessment. Table 6-28 shows the AFI results for each quadrat.   

 

Table 6-28 Area Fit Index for the species  

Class Pigweed 
Sorghum non 

pre-emergence 
Liverseed 

grass 
Sorghum Pre-

emergence 
Nutgrass  Bellvine 

Sorghum - 0.01 - 0.12 1.00 - 0.28 - 0.02 0.03 

Weeds 0.00 - 2.29 - 2.60 0.00 0.22 0.29 

Soil 0.09 0.08 0.08 0.12 0.00 - 0.02 

 

 

The over-segmentation, under-segmentation, RMSE and Quality rate are shown in Table 

6-29 for weeds. Sorghum pre-emergence shows 0.00 for all the matrices. Pigweed shows that most 

of the analyses were well matched because the values were close to 0.00 (Table 6-29). Most of the 

species had higher RMSE except for sorghum non pre-emergence and nutgrass. The Quality rate 

(Qr) shows that sorghum non pre-emergence, bellvine and nutgrass had higher values (Qr near to 1, 

accurate segmentation).  
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Table 6-29 Geometric assessment values for 0.87 mm resolution (Weeds) 

Geometric: Weeds Matrices 

Quadrats 
Over-

segmentation 
Under-

segmentation 
RMSE 

Quality 
Rate (Qr) 

Pigweed 0.12 0.12 0.14 0.13 

Sorghum non Pre-
emergence  

0.13 0.74 0.74 0.54 

Liverseed grass 0.80 0.94 1.10 0.04 

Sorghum Pre-emergence 0.00 0.00 0.00 0.00 

Bellvine 0.37 0.12 0.29 0.63 

Nutgrass  0.78 0.72 0.75 0.63 

 

Table 6-30 shows the Geometric assessment for sorghum in each quadrat. Oseg, Useg and 

RMSE values indicate they were accurately segmented for all species except for nutgrass and 

liverseed grass (Table 6-30). Pigweed, non pre-emergence sorghum and liverseed grass were 

accurately segmented when they had a 0.00 for Useg.  

 
Table 6-30 Geometric assessment values for 0.87 mm resolution (Sorghum) 

Geometric: Sorghum Matrices 

Quadrats 
Over-

segmentation 
Under-

segmentation 
RMSE 

Quality 
Rate (Qr) 

Pigweed 0.10 0.00 0.07 1.41 

Sorghum non pre-
emergence  

0.09 0.00 0.07 0.81 

Liverseed grass 1.00 0.00 0.71 0.00 

Sorghum Pre-emergence 0.05 0.26 0.26 0.95 

Bellvine 0.38 0.35 0.44 0.66 

Nutgrass  0.90 0.10 0.64 0.66 

 

Table 6-31 shows the Geometric assessment for soil in the each quadrat. Overall, the results 

yielded an accurate match for all the quadrats except for LS. The Useg, Oseg and RMSE values for 

LS were close to 1 indicating that the segmentation is accurately segmented and of high accuracy 

respectively. The RMSE for all species were rightly segmented except for LS. According to Belgiu 

and Dragut (2014), the accuracy is considered high when the Useg value is near to 0.00. 

 
Table 6-31 Geometric assessment values for 0.87 mm resolution (Soil) 

Geometric: Soil Matrices 

Quadrats 
Over-

segmentation 
Under-

segmentation 
RMSE 

Quality 
Rate (Qr) 

Pigweed 0.05 -0.05 0.06 1.05 

Sorghum non-pre-emergence  0.09 0.02 0.07 0.98 

Liverseed grass 0.86 0.85 1.05 0.23 

Sorghum Pre-emergence 0.13 0.01 0.09 0.87 

Bellvine 0.12 0.13 0.16 0.92 

Nutgrass  0.05 0.04 0.05 0.91 
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6.5.1.3 Mosaic Analysis Accuracy 

Three different resolutions were validated using the Confusion Matrix technique (Table 

6-32). At 5.42 mm resolution the accuracies for all the matrices were higher than the 10.83 and 

20.31 mm resolution accuracy.  

Weeds were underestimated at 10.83 and 20.31 nm resolution when the Producer‘s 

accuracies were lower than User accuracies. Soil and sorghum were overestimated (higher 

Producers accuracy) at 10.83 mm resolution and effectively equally estimated at 10.83 mm 

resolution. Overall and Khat accuracies were high for all resolution indicating accurate 

classification except for 20.31 nm (Khat <80%). However, the Khat statistic of 74% for 20.31 nm 

was still considered good (Lehmann et al. 2015). 

 
Table 6-32 Confusion matrix for mosaic image resolution  

Mosaic 
Resolution 

Confusion matrix Weed (%) Soil (%) Sorghum (%) 

 
 5.42 mm 

Producer's Accuracy 81  100  90 

User Accuracy 81  100  90  

Overall Accuracy 92    

Khat 97    

 
10.83 mm 

Producer's Accuracy 68  100 94  

User Accuracy 87  98  89  

Overall Accuracy 93    

Khat 88    

 
 20.31 mm 

Producer's Accuracy 56  98  77  

User Accuracy 61  95  77  

Overall Accuracy 84    

Khat 74    

  

6.6 DISCUSSION 
 

This chapter has applied the research results from previous chapters to image classification 

and weed mapping. The information was used to select specific band-pass filters to collect 

customised multispectral imagery unique to the challenge of detecting weeds in grain sorghum at 

Gatton, Queensland. The stage of growth of the plants at which the imagery was collected was also 

considered because previous investigators Lopez-Granados (2010) had reported different spectral 

characteristics at different stages of growth. It was also important because weeds need to be 

detected early enough to be controlled to minimise the amount of herbicide needed (Cepl and Kasal 

2010) and minimise crop competition (Smith and Blackshaw 2003). Most of the results were 

depending on the shape and colour of the weeds and sorghum.  
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Multispectral images captured a series of spectral, spatial and temporal resolutions of the 

weeds and crop plants. OBIA and VIA procedures were evaluated for discriminating the weeds 

from the sorghum. The findings, as discussed in the following section, provide the basis for 

developing a commercial weed mapping program for sorghum. 

6.6.1 Spectral Resolution 

 

Selection of the spectral sensor to collect the multispectral imagery is very important in 

effectively detecting weeds in sorghum. The MCA 6 camera had six sensors each of which could be 

fitted with custom filters, to collect specific wavelengths of light. Filters for the significant 

wavelengths were chosen based on Linear Discriminant Analysis (LDA) of the reflectance profiles 

(Chapter 5). The bands were originally selected based on the weeds amaranth, liverseed grass, 

mallow weed and nutgrass (2013). However, for this part of the research the imagery was collected 

in 2014 when the weeds in the sorghum were liverseed grass, nutgrass, pigweed and bellvine. 

The central wavelengths of the spectral bands (10 nm wide) collected by the multispectral 

imagery were 850, 720, 710, 680, 560 and 440 nm. The available six bands were expected to result 

in very accurate weed mapping. However, the results of image analysis showed that some of these 

bands were not suitable for the 2014 weed species. This occurred because the spectral bands were 

selected based on analysis of reflectance in 2013. Amaranth and mallow weed were only available 

in 2013 while, pigweed and liverseed grass were only available in 2014. Despite this, the spectral 

bands used in the research successfully detected weeds with high accuracy in many of the images. It 

was not possible to detect all the weeds in the 2014 crop. For example, liverseed grass (Appendix 

L), nutgrass (Appendix R), pigweed (Appendix T) and bellvine (U) were misclassified in some of 

the quadrats. Lopez-Granados (2010) reported that hyperspectral imagery might be useful to detect 

weeds in crop. Compared to our research, in which we are focusing on only six bands, hyperspectral 

imagery consists of much narrower bands about 100* bands (*depending on the sensor). It might be 

more practical to investigate a smaller number of bands (e.g. three) specifically selected for the 

current weed profile because this might be available in more affordable sensors and allow simpler 

processing. 

6.6.2 Spatial Resolution 

 

Different spatial resolutions were tested to determine which spatial resolution was most 

suitable for this type of weed mapping using OBIA (first method) and VIA (second method). At 

0.87 mm resolution, most of the weeds were accurately identified at week three after planting using 
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OBIA (first method) (Table 6-25). At 10.83 mm resolution the classification accuracy remained 

high at > 80% for the Overall and Khat accuracies (except for nutgrass) (Table 6-27). At 20.31 mm 

resolution the accuracy was still high for most of the species (Overall and Khat accuracies > 80% 

except for nutgrass and sorghum non pre-emergence) (Table 6-27). Nutgrass and sorghum non pre-

emergence were the most difficult weeds to discriminate from sorghum plants with Khat value of 

61% and 69% respectively (Table 6-27). According to Lehmann et al. (2015), Kappa statistics in the 

range of 0.61-0.80 indicate good classification. They are considered comparable to 61- 80% Khat 

values.  

While imagery at 0.87 mm (1.6 m) resolution produced the most accurate classification, it 

was not practical to fly a UAV with the MCA 6 camera below 10 m elevation (5.42 mm resolution). 

Mosaiced imagery at 5.42 mm resolution accurately classified weeds (92% and 97% for Overall and 

Khat accuracies) (Table 6-32). These findings are consistent with the findings of Mesas-Carrascosa 

et al. (2015), Kamal et al. (2015), and Laliberte et al. (2011) who found that the weed mapping 

requires very high resolution (large scale) imagery. Moreover, the crop row spacing in this research 

was 75 cm and the resolution should be higher than 75 cm. This is in agreement with Torres-

Sanchez et al. (2014) who, stated that the at least four pixels were needed for the 15 cm crop rows 

to detect small objects in such images.  

The same resolutions were tested using VIA (second method). The results from VIs were 

misclassified where the sorghum and weeds were in same class because of the ―salt and pepper 

effects‖ for all the resolutions. This is consistent with (Aziz 2014), who found that a spatial 

resolution of 30 m was not effective because of the ―salt and pepper effect‖ in the processed 

imagery when trying to detect the ages of mangroves plantation. 

6.6.3 Stage of Growth   

 

Imagery was initially collected each week for four weeks after planting. However, it became 

more practical to focus the collection and analysis on week three and week four imagery. The 

results showed that weeds and sorghum were most accurately classified at week three after planting. 

This is because the weeds were still small, were not very dense and remained separate from the 

sorghum plants. The weeds started to become intermixed with sorghum plants at week four and this 

resulted in decreased classification accuracy. This illustrates the importance of the time of data 

collection in terms of stage of growth of the target species when planning data collection for weed 

mapping. Weed detection early in their growth is consistent with weed control strategies designed 

to minimize competition with the sorghum plants (Pena et al. 2013). In later stages of growth, 

weeds were found to be more difficult to detect. This was also found by Lopez-Granados (2010).  
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Nutgrass was successfully classified at week three after planting. The size of the leaves was 

small and the plants were not very dense at this stage. By week four nutgrass leaves were 

overlapped by sorghum leaves and it was misclassified most of the time because of their similar 

shape. The colours of sorghum and weeds were similar and in this case the colour factors did not 

produce a significant impact in the identification process. 

Liverseed grass showed the same pattern of results. At week three after planting it was more 

successfully classified than week four when the leaves were mixed with the sorghum leaves. Also, 

this poor classification at week four was due to the shape of the liverseed grass leaves being similar 

to sorghum leaves.  

Broad leaf weeds (Pigweed and Bellvine) were more successfully classified at week three 

than the narrow leaf weeds. The shape of the weed‘s leaves affects their classification (Blaschke et 

al. 2014). Lopez-Granados (2010) found that mapping of grass weed seedlings in 

monocotyledonous crops and seedlings of broad-leaf weeds in dicotyledonous crops was more 

challenging in later growth stages. According to Thorp and Tian (2004), monocotyledonous crops 

have similar spectral reflectances at the early growth of stage. At the early stage of growth the size 

of weeds were small. The spectral reflectances of the weeds were affected by the colour of the soil 

due to recent weather conditions. Therefore, week three is the best time to collect the hyperspectral 

reflectance for image processing. 

Background reflectance of the imagery also influences the classification between weeds and 

sorghum (Alsharrah et al. 2015). For example, soil background reflectance can be used by OBIA to 

identify the shape of weed leaves more accurately compared with a sorghum background. For this 

reason the background was extracted as a black shade (low digital number) in the image analysis. 

This is consistent with Steward and Tian (1999) who normalised RGB data into hue, saturation and 

intensity (HSI) image space to segment the plant images against background regions. The HSI 

transformation is a standard technique for numerically describing colour in the image domain, using 

spherical coordinates roughly analogous to the conventional perceptual attributes of hue, saturation 

and lightness (Gillespie et al. 1986). Their research was on images collected under artificial light in 

comparison to this research where the images were collected under field illumination conditions. 

6.6.4 Image Processing  

 

OBIA and VIA approaches were tested for classifying weeds in sorghum. Rule set 

construction in OBIA is flexible and can be modified to get optimal results. For example, a given 

rule set was found to produce different results at different stages of growth and different spatial 

resolutions. Kamal et al. (2015) found that rule sets needed to be modified to accommodate the 
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stage of plant growth and the image environment. In this research, the same basic rule set was used 

throughout, but the scale, shape and compactness settings were modified based on the spatial 

resolution of the imagery (Table 6-7). The second stage segmentation settings depended on how 

much segmentation was achieved by the first stage segmentation settings and how much more the 

image needed to be segmented.  

Multiresolution segmentation has been used in this research and by many other researchers 

(Phinn et al. 2012; Pena et al. 2013; Aziz 2014; Roelfsema et al. 2014; Kamal et al. 2015). It 

generates objects by merging several pixels together based on homogeneity criteria (Lehmann et al. 

2015). However, other algorithm techniques can be used to investigate the effectiveness of the 

segmentation (Alsharrah et al. 2015). 

Since the classification was focussed on identifying weeds in sorghum, the soil class was 

only of minor interest. This is because the soil class was in the same group as ―shadow objects‖. For 

future work, the shadow objects might be able to be separated into a separate class to get more 

accurate results (Slaughter 2014). It also highlights the desirability of collecting imagery when there 

are fewest shadows (noon).  

Image analysis could be enhanced by automatic processing in OBIA. According to Arroyo 

et al. (2010) GEOBIA automatic classification has the potential for processing large areas and 

might be useful for automatically processing multiple images. Pena et al. (2013) suggested an 

alternative of detecting crop rows as an initial step before identifying weeds in the crop. This was 

considered possible because the crop rows are at fixed locations and the weeds occurred randomly 

in the crop. 

How objects are sampled is important to get unbiased and accurate results (Johansen et al. 

2011). Since this research focused only on three main classes of objects, Khat statistics were 

considered acceptable. According to Foody (2002) kappa coefficients of agreement, are frequently 

derived to express classification accuracy and are more accurate compared to basic percentages. 

Segmentation and overlap are well matched when the values are close to 0.00 (Levine and 

Nazif 1985; Lucieer and Stein 2002; Clinton et al. 2010) and when the Quality rate value is close to 

1 (Winter 2000). Sorghum pre-emergence has a 0.00 value for segmentation and Overlap in all 

matrices. This indicates a perfect match and was expected since there were no weeds found in the 

sorghum pre-emergence quadrat compared with others quadrats. 

VIA was explored for weed detection using formulae from the literature applied to the 

wavelengths of the custom bands in our images. The results cannot be directly compared with the 

comparable VI literature results because of the different band wavelengths. The results showed that 

no VIA that were tested were effective at detecting weeds in sorghum at 0.87, 10.83 and 20.31 mm 

spatial resolution. All the spatial resolution imagery showed that weeds cannot be detected using the 
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VIA. Quantitative accuracy assessment on the VIA results was not done because a qualitative 

assessment showed that these methods did not detect weeds separate from sorghum.  

All six spectral bands were used in this analysis. It might be useful to choose fewer bands or 

combination of bands for future analysis. For example, Pena-Barragan et al. (2012a) also used six 

bands imagery in segmentation analysis for weed detection. However, they narrowed these down to 

calculate the NDVI bands to discriminate between vegetation and soil.   

6.7 CONCLUSIONS 
 

The spectral, physical and contextual characteristics of the weeds and sorghum affect the 

development and efficiency of the rule sets in the segmentation and classification procedures. Small 

modifications to the rule sets were needed to accurately identify weeds at different stages of growth. 

The accuracy of mapping increased with increased spatial resolution and optimal stage of growth.  

This research has demonstrated the use of multispectral imagery at high spatial resolutions 

for weed detection in sorghum. The imagery that was most useful for mapping weeds was collected 

at the early stages of growth (week three after planting) and OBIA image analysis was the most 

successful analytic approach. Six different spectral bands (850, 720, 710, 680, 560 and 440 nm) 

were collected by the imagery. The results showed that weeds can be detected accurately in images 

at high spatial resolutions. Combinations of fewer bands could be tested in future experiments. 

There may also be a trade-off between the numbers of bands and the spatial resolution of the 

imagery.  

Very high spatial resolution imagery (0.87 mm) was used as the basis to develop the analytic 

procedure to detect weeds in images of individual quadrats. It is not practical to fly UAVs at 1.6 m 

elevation commercially. The results from flying at 10 m (5.42 mm resolution), 20 m (10.83 mm 

resolution) and 37.5 m (20.31 mm resolution) show that weeds can be more accurately 

discriminated at 5.42 mm resolution. 

There are implications for band alignment that have to be overcome when using a MCA 6 

camera at these objects distances. Using fewer bands at this object distance would make band 

alignment easier However, this could be overcome by optimisation of sensor focal length and 

spatial resolution in a commercial application.    

At week three after planting, the size of the weeds is neither too small nor too large and they 

are still individually identifiable compared to week four after planting. During week four after 

planting, the weeds are larger and not separately identifiable from the sorghum plants especially for 

liverseed grass and nutgrass. It appears that the similarity of the shape of their leaves to sorghum 

leaves makes it more difficult to detect and classify them correctly. 
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OBIA was more feasible and effective than VIs for detecting weeds in sorghum. The 

conceptual hierarchical model of multi-scale weed species detection was used successfully to 

simplify the OBIA rule sets for weed mapping. Weeds were detected accurately (92% for Overall 

Accuracy) in 5.42 mm (10 m elevation) resolution mosaiced imagery. On the other hand, OBIA was 

also able to detect weeds in sorghum at a spatial resolution of 20.31 mm (30 m elevation) with an 

Overall Accuracy of 84%. The same approach was used by Pena-Barragan et al. (2012a) who used 

2 cm resolution imagery to detect weeds in maize. They obtained 90% accuracy for weed detection 

using a combination of NDVI and OBIA. 

VIA differentiated soil and vegetation but did not distinguish weeds from sorghum at 0.87 

mm spatial resolutions. An algorithm combining multiple VIs might be developed to classify weeds 

from sorghum based on the differences in their shape and spectral signatures.  

The contribution of this research has been to confirm the importance of optimum spectral 

and spatial resolution and stage of growth for image capture for weed detection in sorghum. An 

OBIA image processing method successfully detected weeds in the sorghum crop. The findings are 

important for overcoming the difficulties in weed detection mapping in sorghum. The results 

provide guidelines that can be used to produce an accurate weed map. The results are limited to the 

analysis procedures used on the multispectral imagery collected of the weeds and sorghum at the 

Gatton field site in 2013 and 2014. 
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Chapter 7  

CONCLUSION AND RECOMMENDATIONS  

7.1 INTRODUCTION  
 

This section summarizes the findings on weed detection in sorghum at different temporal, 

spatial and spectral resolutions using multispectral imagery. Spectral reflectances of the weeds were 

collected and analysed to identify the differences between weed and sorghum wavelengths (Chapter 

4). The most significant six bands (850, 720, 710, 680, 560 and 440 nm) for identifying each 

species were determined using Linear Discriminant Analysis (LDA) (Chapter 5).  

The six significant bands were used in a MCA 6 camera to collect multispectral imagery 

with an Unmanned Aerial Vehicle (UAV) at different elevations. Object Based Image Analysis 

(OBIA) and Vegetation Index Analysis (VIA) were used to discriminate weeds from the crop 

plants. OBIA successfully discriminated weeds in sorghum with a high accuracy (> 80%) while 

VIA did not discriminate between weeds and sorghum. This research provides procedures for 

discriminating weeds in sorghum and developing a sorghum crop weed map.   

7.2 MAIN FINDINGS AND OUTCOMES 
 

The research outcomes and main findings are organized and presented in this section 

according to the sequence of research objectives discussed in this introduction. The first research 

objective involved the investigation of the relationship between moisture content and the spectral 

reflectance of each species of weed analysed in the study. The second research objective analysed 

and identified the significant bands of the spectral reflectance of weed to be used in the image 

processing stage. The third research objective analysed the multispectral imagery derived from the 

selected significant bands identified in the second research objective for weed delineation and 

differentiating weeds from sorghum. The final research objective, which relied on the findings of 

the previous three research objectives, was focused on formulating guidelines for the effective 

production of weed map a based on spectral reflectance, multispectral imagery and image 

processing analysis.    
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7.2.1 Weed and crop spectral discrimination (Objective one) 

The research explored the differences in hyperspectral reflectance data as a basis to identify 

the differences between weeds and sorghum (Chapter 4). The relationship of moisture content (MC) 

on reflectance was tested and found not to affect reflectance from weeds and sorghum in the 

wavelengths of interest in this research.  

The reflectance data were binned and plotted for each species to visualise their spectral 

profile. The spectral differences between weeds and sorghum can be identified from the spectral 

profile between each species. The spectral profile changed with the stage of growth. It showed that 

the green, red-edge and NIR regions were the areas of most difference between the weeds and the 

weeds and sorghum. 

The binned and First Derivative (FD) spectra were used to illustrate the differences. The FD 

data showed the differences in the spectral profiles clearer than the raw reflectance (binned) data. 

This allows the identification of the bands that are most likely to be significant for species 

discrimination.   

7.2.2 Multispectral band selected for weed and crop discrimination (Objective 

two)  

Weed detection is essential to control weeds at the early stages of growth to avoid 

competition between weeds and crop for nutrients, light and moisture. Stepwise Linear 

Discriminant Analysis (SLDA) and Linear Discriminant Analysis (LDA) were applied to 

reflectance profiles from eight species of weeds collected over three years (2012-2014). LDA 

identified the six most significant bands (850, 720, 710, 680, 560 and 440 nm) for discriminating 

weeds from sorghum. Specific bands were identified to discriminate amaranth, nutgrass, liverseed 

grass and mallow weed. The results also provide a better understanding of how the stages of growth 

(shape and size of the plants) affect their classification. Classification accuracy increased 

progressively from week one to week four. The results indicate that four weeks after planting is the 

best time to collect hyperspectral reflectance for discriminating weeds and sorghum. This may vary 

depending on the weed profile in the sorghum crop. However, for the image detection using MCA6 

showed that week three was the best time to identify weeds and sorghum.   

The significant bands can be used to select band pass filters to detect the weeds. Six filters 

were used for the MCA 6 camera based on the results of the LDA analysis (Chapter 5).  
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7.2.3 Image processing procedure for weed and crop separation (Objective 

three)    

This research provides spectral and spatial resolution guidelines to detect weeds in sorghum. 

The MCA 6 camera collected images of quadrats (four replicates for each) at each stage of growth 

(weeks one to four after planting) at four spatial resolutions. Four weeds were identified from the 

multispectral imagery, namely nutgrass, bellvine, liverseed grass and pigweed. These species were 

most successfully identified at week three after planting. Weed detection at an early stage allows 

early control and prevents competions with the crop (Cepl 2010).  

The multispectral imagery was analysed using OBIA and VIA procedures. Imagery 

collected using band pass filters selected in section 7.2.2 was processed to classify weeds in 

sorghum. The OBIA method successfully detected weeds in the imagery with higher accuracy than 

the VIA method. OBIA segmentation was used to segment the imagery and to classify it into the 

specific feature objects. The classification accuracy shows that higher spatial resolution yielded a 

higher accuracy. The highest accuracy in this research was achieved by collecting 0.87 mm 

resolution imagery as explained in Chapter 3. This approach was time consuming and is not 

practical with present technology in a farm situation. Thus, by using a UAV (fitted with the MCA 6 

camera) the imagery can be collected in a more efficient way. Accuracy testing showed that the 2 

cm resolution imagery (30 m elevation) produced the best practical accuracy for the weed mapping 

(> 80%) for most of the species. At this distance the band images have to be manually aligned to be 

in focus. Tetracam (2015) recommend using the MCA 6 camera 100m or more from the object for 

all the lenses to be in automatic focus resulting in self-aligned band images 

Eight VIs were investigated (Chapter 6) for detecting weeds in the sorghum. The results 

show that VIA is not suitable for this imagery due the lack of discrimination between weeds and 

sorghum.  

7.2.4 Weed mapping in sorghum (Objective four). 

Selecting the most appropriate spatial and spectral resolution in weed detection in sorghum 

is essential to produce a quality weed map. The results of this research provide a guideline on 

producing a weed map using multispectral imagery in sorghum.  

OBIA image processing can be used to produce a weed map. The segmentation settings in 

the OBIA rule sets influence classification of the imagery.   

OBIA classification of mosaiced imagery at three different spatial resolutions produced 

positive results. The results showed a small error in the mosaic imagery using Agisoft Photoscan 

software. The accuracy of classification of the mosaiced image was considered high for Overall and 
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Khat accuracies (> 70%). However, the accuracy could be improved by designing an more efficient 

experimental design for the mosaic map in future research. This study recommends a side-lap and 

forward-lap setting at 50% and 80% respectively to get a good mosaic (Whiteside, 2016). The 

control points for the mosaic map are also important. According to Turner et al. (2016), at least 10 

control points are required for accurate mosaic mapping.  

7.3 LIMITATIONS AND FUTURE RESEARCH 
 

This research is limited to the selected images, image processing techniques and location of 

the field crop. Further research is necessary to extend the use of different types of images (e.g: 

hyperspectral) and image processing procedures. The possibility of utilising a selected smaller 

number of bands (eg. three bands) in the OBIA classification could also be investigated. To ensure 

the OBIA Rule Sets can be used in other applications, the conceptual hierarchical model might be 

investigated for sorghum at different locations and for other crops.  

The main limitations of this research and recommendations for future research are: 

 

 Adjusted rule sets 

The hierarchy of the rule sets in OBIA depends on the objective of the mapping. The 

rule sets were used to segment and class the feature objects to produce a map. Thus, the 

same rule sets can be used for different datasets. However, in this research we found that to 

classify the weeds species accurately, modifications of the rule sets were necessary. 

Application of the rule sets could be improved by automatic processing. Due to limited time 

and expertise, this research only focused on manual techniques. 

 

 Investigation of different datasets 

The weed map was derived based on the multispectral imagery which contains six 

different spectral bands. The bands were chosen based on identification of the significant 

spectra for the weeds and sorghum. However, different data sets could be used to investigate 

the classification of weeds in sorghum. For example, the Agriculture Digital Camera (ADC) 

from Tetracam provides three bands in its images. This camera could be fitted with the three 

most significant bands for detecting weeds in sorghum and tested. 
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 Limited time and power supply to collect the imagery 

The reflectance spectra and multispectral imagery collected depend on good 

experimental field conditions. It is necessary to consider i) weather and stage of growth of 

the plants, ii) weather and spectral reflectance and iii) weather and imagery (both static and 

UAV).  

 

 Future research can integrate this analysis with Leaf Area Index (LAI) analysis and build a 

digital spectral library for the spectral collections.  

 

 Further investigation of other image processing techniques may be useful for detecting 

weeds in sorghum. For example, a combination between OBIA and VIA might be useful to 

improve the accuracy of classification. In addition, fewer bands might be investigated to test 

the classification accuracy between weeds and sorghum (e.g. three bands). 

7.4 CONTRIBUTION TO KNOWLEDGE  
 

The methodology and procedures presented in this research provide a basis for weed 

mapping in sorghum using multispectral imagery. This research successfully found the significant 

spectral bands for detecting weeds and these can be fitted to any camera with variable filters or used 

for a custom made camera. These results provide a guideline for choosing appropriate band pass 

filters for the image collection and weed mapping in sorghum. It provides guidelines on selecting 

suitable spatial and temporal resolutions. Steps for use of object-based image analysis are also 

provided.  

In summary, the contributions of this research are: 

 Identifying the significant bands for detecting weeds in sorghum. 

 Identifying the band pass filters for the MCA 6 camera for image collection for 

weed mapping in sorghum. 

 Exploring the effects of moisture content of weeds on their reflectance spectra.  

 Identifying optimal spatial and spectral resolutions for accurate weed mapping in 

sorghum. 

 Discovering the most suitable stages of growth to detect weeds in sorghum.  

 Demonstrating the effectiveness of a conceptual hierarchical model for OBIA.  

 Developing object-based rule sets for weed mapping. 

 Showing different cost effective ways for error assessment by using the fishnet 

function in ArcGIS. 
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Appendices. 

 
Appendix A 

R Code 

# setwd("E:/Hardisk 500 Gb/3rd EXP 2014/Spectral Reading/1. 11 Dec 2014 9 30 am Full 

 Rage") 

# setwd("E:/Hardisk 500 Gb/3rd EXP 2014/Spectral Reading/2. 14 Dec 14 Spectral data dan 

 MCA Data") 

setwd("E:/Hardisk 500 Gb/3rd EXP 2014/Spectral Reading/3. 21 Dec 14 Spectral Data") 

# Select the appropriate working directory above using comment symbol. 

masterlist=read.csv("FileID.csv") 

# We assume that the individual data files are in a subfolder called ASCII in the current  working 

 folder masterlist$FileName = paste0("ASCII/",masterlist$SpectrumID,".asd.txt") 

library(reshape) 

# Ensure that the variable names in the FileID file are correct.  They MUST be correctly  named - 

 including case 

# as SpectrumID, Week, Crop, Plant and Rep.  Order is not important, but naming is. 

 

# Create a dummy data frame to act as a base that we append data to 

# The variables here - other than the first 2 - must correspond to the first row of FileID 

  V1 <- c(5000) 

  V2 <- c(0.00000001) 

  Week <- c("WK0") 

  Crop <- c("XX") 

  Plant <- c(0) 

  Rep <- c("R0") 

allspec<-data.frame(V1, V2, Week, Crop, Plant, Rep) 

 

# Now loop through the contents of our master list 

for (i in 1:length(masterlist$FileName)) { 

  tmp1<-read.delim(file=masterlist$FileName[i],skip=36,header=F) 

  # add in the extra identifying information     

    tmp1$Week = masterlist$Week[i] 

    tmp1$Crop = masterlist$Crop[i] 

    tmp1$Plant = masterlist$Plant[i] 

    tmp1$Rep = masterlist$Rep[i] 

  # now we need to append the data frame we have just built to our base 

    allspec <- rbind(allspec,tmp1) 

} 
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# A bit of tidying up at the end 

allspec=rename(allspec, c(V1="Wavelength", V2="Reflectance")) 

rm(V1, V2, Week, Crop, Plant, Rep, tmp1) 

# The following writes the combined data out as a csv in the current working directory 

write.csv(allspec,"temp.csv",row.names=FALSE) 
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Appendix B. Three-band combinations of seven 
available band-pass filters (2013) 

3-band combinations Bands (nm) 

Combination 1 660 680 710 

Combination 2 660 680 720 

Combination 3 660 680 730 

Combination 4 660 680 750 

Combination 5 660 680 830 

Combination 6 660 710 720 

Combination 7 660 710 730 

Combination 8 660 710 750 

Combination 9 660 710 830 

Combination 10 660 720 730 

Combination 11 660 720 750 

Combination 12 660 720 830 

Combination 13 660 730 750 

Combination 14 660 730 830 

Combination 15 660 750 830 

Combination 16 680 710 720 

Combination 17 680 710 730 

Combination 18 680 710 750 

Combination 19 680 710 830 

Combination 20 680 720 730 

Combination 21 680 720 750 

Combination 22 680 720 830 

Combination 23 680 730 750 

Combination 24 680 730 830 

Combination 25 680 750 830 

Combination 26 710 720 730 

Combination 27 710 720 750 

Combination 28 710 720 830 

Combination 29 710 730 750 

Combination 30 710 730 830 

Combination 31 710 750 830 

Combination 32 720 730 750 

Combination 33 720 730 830 

Combination 34 720 750 830 

Combination 35 730 750 830 
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Appendix C. Six-band combinations of eight available 
 band-pass filters (2013) 

6-band combinations Bands (nm) 

Combination 1 440 560 680 710 720 730 

Combination 2 440 560 680 710 720 750 

Combination 3 440 560 680 710 720 850 

Combination 4 440 560 680 710 730 750 

Combination 5 440 560 680 710 730 850 

Combination 6 440 560 680 710 750 850 

Combination 7 440 560 680 720 730 750 

Combination 8 440 560 680 720 730 850 

Combination 9 440 560 680 720 750 850 

Combination 10 440 560 680 730 750 850 

Combination 11 440 560 710 720 730 750 

Combination 12 440 560 710 720 730 850 

Combination 13 440 560 710 720 750 850 

Combination 14 440 560 710 730 750 850 

Combination 15 440 560 720 730 750 850 

Combination 16 440 680 710 720 730 750 

Combination 17 440 680 710 720 730 850 

Combination 18 440 710 720 730 750 850 

Combination 19 440 680 710 730 750 850 

Combination 20 440 680 720 730 750 850 

Combination 21 440 710 720 730 750 850 

Combination 22 560 680 710 720 730 750 

Combination 23 560 680 710 720 730 850 

Combination 24 560 680 710 720 750 850 

Combination 25 560 680 710 720 750 850 

Combination 26 560 680 720 730 750 850 

Combination 27 560 710 720 730 750 850 

Combination 28 680 710 720 730 750 850 
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Appendix D. The combination of five bands based on six 
most accurate for Validation 2014 data 

Combination bands Bands (nm) 

Combination 1 720 440 560 680 710 

Combination 2 720 440 560 680 850 

Combination 3 720 440 680 710 850 

Combination 4 720 560 680 710 850 

Combination 5 440 560 680 710 850 

 
Appendix E The combination of four bands  

based on six most accurate for Validation data 2014 

Combination bands Bands (nm) 

Combination 1 720 440 560 680 

Combination 2 720 440 560 710 

Combination 3 720 440 560 850 

Combination 4 720 440 680 710 

Combination 5 720 440 680 850 

Combination 6 720 440 710 850 

Combination 7 720 560 680 710 

Combination 8 720 560 680 850 

Combination 9 720 560 710 850 

Combination 10 720 680 710 850 

Combination 11 440 560 680 710 

Combination 12 440 560 680 850 

Combination 13 560 680 710 850 

 
Appendix F The combination of three bands 

of the six most accurate for Validation data 2014 

Combination bands Bands (nm) 

Combination 1 720 440 560 

Combination 2 720 440 680 

Combination 3 720 440 710 

Combination 4 720 440 850 

Combination 5 720 560 680 

Combination 6 720 560 710 

Combination 7 720 560 850 

Combination 8 720 680 710 

Combination 9 720 680 850 

Combination 10 720 710 850 

Combination 11 440 560 680 

Combination 12 440 560 710 

Combination 13 440 560 850 

Combination 14 560 680 710 

Combination 15 560 680 850 

Combination 16 680 710 850 
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Appendix G. Calibration and validation analysis for weeks one – four 

 using 20 significant bands (2013) 

         
                     AM = Amaranth, LS = Liverseed Grass, MW = Mallow Weed, NG = Nutgrass  and SG = Sorghum 

   

Appendix H. Calibration and validation analysis for week two – four  
using all 20 significant bands (2014) 

 

                           B = Bellvine, LS = Liverseed Grass, NG = Nutgrass , PG = Pigweed, SNP = Sorghum non Pre-                             
                          emergence, SP = Sorghum Pre-emergence and SO = Soil  
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Appendix I. Calibration and validation analysis for weeks one – four using eight   
available bands (2013) 

 

 AM = Amaranth, LS = Liverseed Grass, MW = Mallow Weed, NG = Nutgrass  and SG =               
          Sorghum and SO = Soil 
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Appendix J Classification results for all 6-band combinations based 
on the bands in Appendix C 

Combination 
Number 

6 bands combination (nm) 
AM 
(%) 

LS 
(%) 

MW 
(%) 

NG 
(%) 

Mean 
(%) 

1 440, 560, 680, 710, 720, 730 43 100 100 100 86 

2 440, 560, 680, 710, 720, 750 43 100 100 100 86 

3 440, 560, 680, 710, 720, 850 71 100 100 100 93 

4 440, 560, 680, 710, 730, 750 43 100 100 100 86 

5 440, 560, 680, 710, 730, 850 29 100 100 100 82 

6 440, 560, 680, 710, 750, 850 43 100 100 75 80 

7 440, 560, 680, 720, 730, 750 43 100 100 100 86 

8 440, 560, 680, 720, 730, 850 43 100 100 100 86 

9 440, 560, 680, 720, 750, 850 43 100 100 100 86 

10 440, 560, 680, 730, 750, 850 43 100 100 100 86 

11 440, 560, 710, 720, 730, 750 43 100 100 100 86 

12 440, 560, 710, 720, 730, 850 43 100 100 100 86 

13 440, 560, 710, 720, 750, 850 43 100 100 100 86 

14 440, 560, 710, 730, 750, 850 57 100 100 100 89 

15 440, 560, 720, 730, 750, 850 57 100 100 100 89 

16 440, 680, 710, 720, 730, 750 71 100 50 100 80 

17 440, 680, 710, 720, 730, 850 57 100 75 100 83 

18 440, 710, 720, 730, 750, 850 57 67 50 100 69 

19 440, 680, 710, 730, 750, 850 57 100 50 100 77 

20 440, 680, 720, 730, 750, 850 57 100 50 75 71 

21 440, 710, 720, 730, 750, 850 57 67 50 100 69 

22 560, 680, 710, 720, 730, 750 57 100 100 100 89 

23 560, 680, 710, 720, 730, 850 57 100 100 100 89 

24 560, 680, 710, 720, 750, 850 43 100 100 100 86 

25 560, 680, 710, 720, 750, 850 43 100 100 100 86 

26 560, 680, 720, 730, 750, 850 29 100 75 50 64 

27 560, 710, 720, 730, 750, 850 57 100 100 100 89 

28 680, 710, 720, 730, 750, 850 71 67 50 100 72 

                      = The high accuracy, AM = Amaranth, Liverseed Grass = LS, Mallow Weed = MW, NG = Nut    
 Grass  
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Appendix K. Classification results for all 3-band combinations based on the 
 bands in Appendix B 

Combination 
Number 

3 bands 
combination (nm) 

AM 
(%) 

LS 
(%) 

MW 
(%) 

NG 
(%) 

Mean 
(%) 

1 660, 680, 710 80 50 100 100 83 

2 660, 680, 720 80 50 75 100 76 

3 660, 680, 730 60 33 50 100 61 

4 660, 680, 750 80 33 50 100 66 

5 660, 680, 850 80 17 50 100 62 

6 660, 710, 720 0 50 100 100 63 

7 660, 710, 730 20 50 75 100 61 

8 660, 710, 750 0 50 75 100 56 

9 660, 710, 850 33 0 100 20 38 

10 660, 720, 730 20 50 75 100 61 

11 660, 720, 750 0 50 75 100 56 

12 660, 720, 850 0 50 50 100 50 

13 660, 730, 750 0 50 25 100 44 

14 660, 730, 830 0 33 50 100 46 

15 660, 750, 830 0 33 25 75 33 

16 680, 710, 720 60 50 100 100 78 

17 680, 710, 730 60 50 100 100 78 

18 680, 710, 750 60 50 100 50 65 

19 680, 710, 830 20 50 100 100 68 

20 680, 720, 730 40 67 100 50 64 

21 680, 720, 750 60 50 100 50 65 

22 680, 720, 830 0 67 100 75 61 

23 680, 730, 750 60 67 100 50 69 

24 680, 730, 830 60 67 100 50 69 

25 680, 750, 830 60 17 100 50 57 

26 710, 720, 730 20 33 100 100 63 

27 710, 720, 750 0 50 100 100 63 

28 710, 720, 850 0 33 100 50 46 

29 710, 730, 750 0 50 100 75 56 

30 710, 730, 830 0 33 100 75 52 

31 710, 750, 830 20 33 100 50 51 

32 720, 730, 750 20 50 100 50 55 

33 720, 730, 830 0 33 100 75 52 

34 720, 750, 830 0 33 100 65 50 

35 730, 750, 830 0 33 100 50 46 

              = The high accuracy, AM = Amaranth, Liverseed Grass = LS, Mallow Weed = MW, NG = Nutgrass   
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Appendix L. Calibration and validation analysis for weeks two – four using 
 6-band combinations (2014) 

 
                      B = Bellvine, LS = Liverseed Grass, NG = Nutgrass , PG = Pigweed,  
                                 SNP = Sorghum non pre-emergence, SP = Sorghum Pre-emergence 

 

Appendix M Classification accuracy of 5-band combinations (2014) 
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Appendix N. Classification results (%) for all 4-band combinations for 2014 

Combinations 
Number 

Combination B  LS  NG  PG  SNP  SP  Mean  

WEEK 2 

1 720, 440, 560, 680 nm 43 56 86 50 43 100 68 

2 720, 440, 560, 710 nm 71 78 71 63 43 100 75 

3 720, 440, 560, 850 nm 43 67 100 50 43 100 72 

4 720, 440, 680, 710 nm 71 56 100 50 29 100 72 

5 720, 440, 680, 850 nm 71 56 100 50 29 100 72 

6 720, 440, 710, 850 nm 71 67 57 38 43 100 68 

7 720, 560, 680, 710 nm 86 56 100 50 57 100 78 

8 720, 560, 680, 850 nm 71 67 100 38 43 100 74 

9 720, 560, 710, 850 nm 86 78 86 38 43 100 76 

10 720, 680, 710, 850 nm 86 56 86 50 57 100 76 

11 440, 560, 680, 710 nm 43 56 100 63 29 67 65 

12 440, 560, 680, 850 nm 57 44 86 38 43 100 67 

13 560, 680, 710, 850 nm 86 67 100 38 43 100 76 

WEEK 3 

1 720, 440, 560, 680 nm 83 75 17 56 33 57 53 

2 720, 440, 560, 710 nm 100 75 50 78 33 57 66 

3 720, 440, 560, 850 nm 100 75 50 33 33 57 58 

4 720, 440, 680, 710 nm 83 75 50 67 33 71 63 

5 720, 440, 680, 850 nm 83 75 67 33 33 57 58 

6 720, 440, 710, 850 nm 83 75 50 22 33 57 53 

7 720, 560, 680, 710 nm 67 75 50 89 33 43 60 

8 720, 560, 680, 850 nm 50 75 50 33 33 57 50 

9 720, 560, 710, 850 nm 83 75 50 44 67 57 63 

10 720, 680, 710, 850 nm 67 75 50 56 33 57 56 

11 440, 560, 680, 710 nm 83 75 50 100 33 57 66 

12 440, 560, 680, 850 nm 83 75 67 11 67 57 60 

13 560, 680, 710, 850 nm 50 75 67 56 100 57 68 

WEEK 4 

1 720, 440, 560, 680 nm 40 17 50 43 14 33 33 

2 720, 440, 560, 710 nm 70 17 80 71 29 67 56 

3 720, 440, 560, 850 nm 70 17 60 86 14 83 55 

4 720, 440, 680, 710 nm 100 33 60 71 43 83 65 

5 720, 440, 680, 850 nm 70 50 50 86 14 67 56 

6 720, 440, 710, 850 nm 80 67 80 86 43 83 73 

7 720, 560, 680, 710 nm 70 17 70 57 14 50 46 

8 720, 560, 680, 850 nm 60 33 80 71 14 83 57 

9 720, 560, 710, 850 nm 70 50 80 71 43 83 66 

10 720, 680, 710, 850 nm 80 83 80 71 57 100 79 

11 440, 560, 680, 710 nm 40 17 30 71 71 33 44 

12 440, 560, 680, 850 nm 50 50 30 14 29 83 43 

13 560, 680, 710, 850 nm 40 33 70 86 29 83 57 

= High accuracy ( > 80%), B = Bellvine, LS = Liverseed Grass, NG = Nutgrass , PG = 
Pigweed, SNP = Sorghum non pre-emergence, and SP = Sorghum Pre-emergence 
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Appendix O. Classification accuracy of 4-band combinations (2014) 
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Appendix P. Classification results (%) for all 3-band combinations for 2014 

Number Bands B LS NG PG SNP SP Mean 

WEEK 2 

1 720, 440, 560 nm 85 45 69 58 15 65 62 

2 720, 440, 680 nm 43 56 100 50 29 100 68 

3 720, 440, 710 nm 43 67 57 38 43 100 64 

4 720, 440, 850 nm 71 56 14 50 29 100 60 

5 720, 560, 680 nm 57 56 100 50 43 100 72 

6 720, 560, 710 nm 86 67 100 38 57 100 78 

7 720, 560, 850 nm 71 67 86 50 14 33 60 

8 720, 680, 710 nm 71 67 86 50 57 100 76 

9 720, 680, 850 nm 86 67 100 38 29 100 74 

10 720, 710, 850 nm 86 56 71 38 43 100 71 

11 440, 560, 680 nm 29 22 57 25 43 100 54 

12 440, 560, 710 nm 43 56 71 63 43 100 68 

13 440, 560, 850 nm 71 56 57 50 29 67 61 

14 560, 680, 710 nm 71 67 100 50 43 67 71 

15 560, 680, 850 nm 57 44 86 38 43 100 67 

16 680, 710, 850 nm 86 56 100 38 29 100 73 

WEEK 3 

1 720, 440, 560 nm 100 75 00 56 33 57 54 

2 720, 440, 680 nm 83 75 33 44 33 71 57 

3 720, 440, 710 nm 67 75 33 33 33 43 47 

4 720, 440, 850 nm 100 75 67 22 33 57 59 

5 720, 560, 680 nm 50 75 17 44 33 43 44 

6 720, 560, 710 nm 67 75 50 67 33 29 54 

7 720, 560, 850 nm 33 75 33 44 33 57 46 

8 720, 680, 710 nm 67 75 33 56 33 0 44 

9 720, 680, 850 nm 67 75 50 33 33 43 50 

10 720, 710, 850 nm 67 75 50 22 33 43 48 

11 440, 560, 680 nm 67 75 17 11 67 57 49 

12 440, 560, 710 nm 83 75 17 78 33 57 57 

13 440, 560, 850 nm 83 75 50 11 67 57 57 

14 560, 680, 710 nm 50 75 50 67 67 42 59 

15 560, 680, 850 nm 67 75 67 22 33 57 54 

16 680, 710, 850 nm 50 75 67 33 33 43 50 

WEEK 4 

1 720, 440, 560 nm 30 33 40 43 29 50 46 

2 720, 440, 680 nm 50 17 20 29 14 33 38 

3 720, 440, 710 nm 100 17 50 57 29 50 58 

4 720, 440, 850 nm 40 17 20 71 14 83 49 

5 720, 560, 680 nm 40 17 80 43 14 33 47 

6 720, 560, 710 nm 70 17 80 57 14 50 55 

7 720, 560, 850 nm 70 17 80 71 14 83 62 

8 720, 680, 710 nm 100 33 70 57 14 83 65 

9 720, 680, 850 nm 50 50 80 86 14 83 66 

10 720, 710, 850 nm 70 67 80 71 14 67 67 

11 440, 560, 680 nm 30 17 30 0 71 33 40 

12 440, 560, 710 nm 10 17 20 71 71 50 48 

13 440, 560, 850 nm 40 17 20 29 43 83 47 

14 560, 680, 710 nm 40 17 80 71 14 33 51 

15 560, 680, 850 nm 50 50 70 14 29 83 57 

16 680, 710, 850 nm 50 50 70 86 29 83 67 

= High accuracy ( > 80%), B = Bellvine, LS = Liverseed Grass, NG = Nutgrass , PG = Pigweed, SNP = 
Sorghum non pre-emergence, and SP = Sorghum Pre-emergence 
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Appendix Q. Classification accuracy of 3-band combinations (2014) 

 

 

Notes: 

The image below illustrates the location of sorghum and weeds from the MCA 6 imagery    

(before the OBIA classification) to help reader to understand the Appendices R to II. 

Resolution: 0.87 mm.  

Size quadrat: 1 x 1 m. 
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Appendix R. Nutgrass  quadrats at two stages of growth for 0.87 resolution 

 
Appendix R shows nutgrass  quadrats at two stages of growth for 0.87 resolution. The first column is MCA 6 

imagery of weeds and sorghum crop in 1 m x 1 m square and the second, third and fourth columns are 

classified images using OBIA.  

 

Image (1.6 m) 
Week 3 Week 4 

17 December 2014 18 December 2014 23 December 2014 

Q1NG Correctly classified  
 

The misclassification 
of sorghum (In the 
circle) 

 The misclassification 
of sorghum (In the 
circle) 

Q2NG  The misclassification 
of sorghum (In the 
circle) 

 The misclassification 
of sorghum (In the 
circle) 

 The misclassification 
of weeds (In the 
circle) 

Q3NG The misclassification 
of sorghum and 
weeds (In the circle) 

 
The misclassification 
of sorghum (In the 
circle) 

 The misclassification 
of weeds (In the 
circle) 

 
Q4NG  The misclassification 

of weeds (In the 
circle) 

 The misclassification 
of weeds (In the 
circle) 

 

Not available 
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Appendix S. Sorghum non pre-emergence quadrats at two stages of growth for 0.87 
resolution 

 
Appendix S shows sorghum non pre-emergence quadrats at two stages of growth for 0.87 resolution.  

The first column is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second, third and  

fourth columns are classified images using OBIA.  

 

Image (1.6 m) 
Week 3 Week 4 

17 December 2014 18 December 2014 23 December 2014 

Q1SNP   Correctly classified  The misclassification 

of weeds (In the 

circle) 

 The misclassification 

of sorghum (In the 

circle) 

Q2SNP   Correctly classified 
 

Correctly classified  The misclassification 

of weeds (In the 

circle) 

Q3SNP   The misclassification 

of weeds (In the 

circle) 

 Correctly classified  The misclassification 

of sorghum (In the 

circle) 

Q4SNP   The misclassification 

of weeds (In the 

circle) 

 The misclassification 

of weeds (In the 

circle) 

 The misclassification 

of sorghum (In the 

circle) 
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Appendix T. Pigweed quadrats at two stages of growth for 0.87 resolution 

 

Appendix T shows pigweed quadrats at two stages of growth for 0.87 resolution. The first column 

is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second, third and fourth columns 

are classified images using OBIA.  

 

 

Image (1.6 m) 

Week 3 Week 4 

17 December 2014 18 December 2014 23 December 2014 

Q1PG   Correctly classified  Correctly classified  The misclassification 

of weeds (In the 

circle) 

Q2PG   Correctly classified  Correctly classified  Correctly classified 

Q3PG    Correctly classified  Correctly classified  Correctly classified 

Q4PG   Correctly classified  Correctly classified The misclassification 

of weeds (In the 

circle) 
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Appendix U. Bellvine quadrats at two stages of growth for 0.87 resolution 

 

Appendix U shows bellvine quadrats at two stages of growth for 0.87 resolution. The first column 

is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second, third and fourth columns are 

classified images using OBIA.  

 

Image (1.6 m) 
Week 3 Week 4 

17 December 2014 18 December 2014 23 December 2014 

Q1B   Correctly classified  Correctly classified  The misclassification 

of weeds (In the 

circle) 

Q2B   Correctly classified  Correctly classified  The misclassification 

of weeds (In the 

circle) 

Q3B  

 
Correctly classified  Correctly classified  The misclassification 

of weeds (In the 

circle) 

Q4B   The misclassification 

of weeds (In the 

circle) 

 Correctly classified  Correctly classified 
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Appendix V. Liverseed grass quadrats at two stages of growth for 0.87 resolution 

Appendix V shows liverseed grass quadrats at two stages of growth for 0.87 resolution. The first 

column is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second, third and fourth  

columns are classified images using OBIA.  

 

Image (1.6 m) 
Week 3 Week 4 

17 December 2014 18 December 2014 23 December 2014 

Q1LS   The misclassification 

of sorghum (In the 

circle) 

 The misclassification 

of weeds (In the 

circle) 

 The misclassification 

of weeds (In the 

circle) 

Q2LS   Correctly classified  The misclassification 

of sorghum (In the 

circle) 

 The misclassification 

of weeds (In the 

circle) 

Q3LS   Correctly classified  The misclassification 

of sorghum (In the 

circle) 

 The misclassification 

of weeds (In the 

circle) 

Q4LS   The misclassification 

of weeds and 

sorghum (In the 

circle) 

 The misclassification 

of weeds and 

sorghum (In the 

circle) 

 The misclassification 

of weeds (In the 

circle) 
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Appendix W. Sorghum pre-emergence quadrats at two stages of growth for 0.87 resolution 

Appendix W shows Sorghum pre-emergence quadrats at two stages of growth for 0.87 resolution.  

The first column is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second, third 

and fourth columns are classified images using OBIA.  

 

Image (1.6 m) 
Week 3 Week 4 

17 December 2014 18 December 2014 23 December 2014 

Q1SP   Correctly classified  Correctly classified  Correctly classified 

Q2SP   Correctly classified  Correctly classified  Correctly classified 

Q3SP   The misclassification 
of sorghum (In the 
circle) 

 The misclassification 
of weeds (In the 
circle) 

 The misclassification 
of sorghum (In the 
circle) 

Q4SP   Correctly classified  Correctly classified  Correctly classified 
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Appendix X. Nutgrass quadrats at week three for 10.83mm resolution 

     Appendix X shows nutgrass quadrats at two stages of growth for 10.83 mm  

      resolution. The first column is MCA 6 imagery of weeds and sorghum crop in  

                1 m x 1 m square and the second and third columns are classified images 

                 using OBIA  

 

Image (20 m) 
Week 3 

15 December 2014 17 December 2014 

Q1NG  
 

Correctly classified  Correctly classified 

Q2NG   The misclassification 

of weeds and sorghum 

(In the circle) 

 
The misclassification 

of sorghum (In the 

circle) 

Q3NG   The misclassification 

of sorghum (In the 

circle) 

 
The misclassification 

of sorghum (In the 

circle) 

 
Q4NG  The misclassification 

of weeds (In the circle) 

 

 The misclassification 

of weeds (In the circle) 
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Appendix Y. Sorghum non pre-emergence quadrats at week three for 10.83mm resolution 

Appendix Y shows sorghum non pre-emergence nutgrass quadrats at two stages of  

growth for 10.83 mm resolution. The first column is MCA 6 imagery of weeds and sorghum 

crop in 1 m x 1 m square and the second and third columns are classified images using OBIA 

Image (20 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1SNP  

Not available 

 
Correctly classified 

Q2SNP  
 

Correctly classified 

 
Correctly classified 

Q3SNP  
 

The misclassification of 

sorghum (In the circle) 

 
The misclassification of 

sorghum (In the circle) 

Q4SNP  
 

Correctly classified 

 
Correctly classified 
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Appendix Z. Pigweed quadrats at week three for 10.83mm resolution 

Appendix Z shows pigweed quadrats at two stages of growth for 10.83 mm  

 resolution. The first column is MCA 6 imagery of weeds and sorghum crop in  

         1 m x 1 m square and the second and third columns are classified images 

          using OBIA 

 

Image (20 m) 
Week 3 

15 December 2014 17 December 2014 

Q1PG   Correctly classified 
 

Correctly classified 

 Q2PG   Correctly classified  Correctly classified 

 
Q3PG 

Not available 

 Correctly classified 

 
Q4PG 

Not available 

 Correctly classified 
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Appendix AA. Bellvine quadrats at week three for 10.83 mm resolution 

Appendix AA shows bellvine quadrats at two stages of growth for 10.83 mm  

 resolution. The first column is MCA 6 imagery of weeds and sorghum crop in  

         1 m x 1 m square and the second and third columns are classified images 

         using OBIA 

 

Image (20 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1B   Correctly classified  Correctly classified 

Q2B   Correctly classified  Correctly classified 

 
Q3B   Correctly classified  Correctly classified 

Q4B   Correctly classified  Correctly classified 
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Appendix BB. Liverseed grass quadrats at week three for 10.83mm resolution 

  

Appendix BB shows liverseed grass quadrats at two stages of growth for 10.83 mm  

        resolution. The first column is MCA 6 imagery of weeds and sorghum crop in  

        1 m x 1 m square and the second and third columns are classified images 

         using OBIA 

 

Image (20 m) 
Week 3 

15 December 2014 17 December 2014 

Q1LS   Correctly classified  Correctly classified 

Q2LS  
 

Correctly classified  Correctly classified 

Q3LS   Correctly classified  Correctly classified 

 Q4LS   The misclassification of 

weeds (In the circle) 

 
Correctly classified 
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Appendix CC. Sorghum pre-emergence quadrats at week 3 for 10.83 mm resolution 

Appendix CC shows sorghum pre-emergence quadrats at two stages of growth for  

 10.83 mm resolution. The first column is MCA 6 imagery of weeds and sorghum crop in  

         1 m x 1 m square and the second and third columns are classified images 

          using OBIA 

 

RAW (20 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1SP   Correctly classified 

 
Correctly classified 

 
Q2SP   Correctly classified 

 
Correctly classified 

 
Q3SP  Correctly classified 

 
Correctly classified 

 
Q4SP  Correctly classified 

 
Correctly classified 
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Appendix DD. Pigweed quadrats at week three for 20.31 resolution 

  

 Appendix DD shows pigweed quadrats at week three for 20.31 mm resolution. The first 

          column is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second 

          and third columns are classified images using OBIA 

Image (37.5 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1PG  

 
Correctly classified 

 
Correctly classified 

 
Q2PG  

 
Correctly classified 

 
Correctly classified 

 
Q3PG  

 
Correctly classified 

 
Correctly classified 

 
Q4PG  

 
Correctly classified 

 
Correctly classified 

 

 

  



______________________________________________________________________Appendices                                                                                                                                                           

207 

 

Appendix EE. Nutgrass  quadrats at week three for 20.31 resolution 

Appendix EE shows nutgrass  quadrats at week three for 20.31 mm resolution. The first 

column is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second 

and third columns are classified images using OBIA 

 

Image (37.5 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1NG 

Not available 

 
Correctly classified 

 
Q2NG  

  
The misclassification of 

sorghum (In the circle) 

  
The misclassification of 

weeds (In the circle) 

 
Q3NG  

 
Correctly classified 

 
The misclassification of 

sorghum (In the circle) 

 
Q4NG  

 
The misclassification of 

weeds (In the circle) 

 
The misclassification of 

sorghum (In the circle) 
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Appendix FF. Sorghum non pre-emergence quadrats at week three for 20.31 mm resolution 

Appendix FF shows sorghum non pre-emergence quadrats at week three for 20.31 mm resolution.  

       The First column is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second 

 and third columns are classified images using OBIA. 

 

Image (37.5 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1SNP  

 
The misclassification of 

weeds 

(In the circle) 

 
The misclassification of 

sorghum (In the circle) 

 
Q2SNP  

 
Correctly classified 

Not available 

 
Q3SNP  

  
Correctly classified 

 
Correctly classified 

 
Q4SNP  

  
Correctly classified 

 
The misclassification of 

sorghum (In the circle) 
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Appendix GG. Bellvine quadrats at week 3 for 20.31 mm resolution 

Appendix GG shows bellvine quadrats at week three for 20.31 mm resolution. The first 

column is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second 

and third columns are classified images using OBIA. 

 

Image (37.5 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1B  

 
Correctly classified 

 
Correctly classified 

 
Q2B  

 
Correctly classified 

 
Correctly classified 

 
Q3B  

 
Correctly classified 

 
Correctly classified 

 
Q4B  

 
Correctly classified 

 
Correctly classified 
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Appendix HH. Sorghum pre-emergence quadrats at week three for 20.31 mm resolution 
 

Appendix HH shows sorghum pre-emergence quadrats at week three for 20.31 mm resolution.  

              The first column is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second 

and third columns are classified images using OBIA. 

 

Image (37.5 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1SP  

 
Correctly classified 

  
Correctly classified 

 
Q2SP  

 
 Correctly classified 

  
Correctly classified 

 
Q3SP  

  
Correctly classified 

 
Correctly classified 

 
Q4SP  

  
Correctly classified 

  
Correctly classified 
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Appendix II. Liverseed grass quadrats at week three for 20.31 mm resolution 

Appendix II shows liverseed grass quadrats at week three for 20.31 mm resolution. The first 

column is MCA 6 imagery of weeds and sorghum crop in 1 m x 1 m square and the second 

and third columns are classified images using OBIA 

 

Image (37.5 m) 
Week 3 

15 December 2014 17 December 2014 

 
Q1LS  

 
The misclassification of 

weeds and sorghum (In 

the circle) 

 
Correctly classified 

 
Q2LS  

 
Correctly classified 

 
Correctly classified 

 
Q3LS  

 
The misclassification of 

weeds (In the circle) 

 
Correctly classified 

 
Q4LS  

 
The misclassification of 

weeds (In the circle) 

 
The misclassification of 

weeds (In the circle) 
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Appendix JJ. VI Analysis for 10.83 mm 

Vegetation 

Index 

Sorghum Pre-

emergence 

Liverseed Grass Bellvine Sorghum non pre-

emergence 

Pigweed Nutgrass 

Different 

Vegetation 

Index (DVI) 

 

    

 

Excess Red 

(ExR) 

 

 

 
   

Modified 

Excess Red 

(MExR) 

 

 

 

 
 

 

Modified 

Triangular 

Vegetation 

Index 1 

(MTVI1) 
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NIR, Red-

edge(720) 

and Red 

Combine 

Index 

(NRRCI) 

 

 

 

 

  

Triangular 

Veg. 

Index(TVI) 

 

 

 

  
 

Red-edge 

Veg. Stress 

Index (RVSI) 

  

 

  

 

Red 

Vegetation 

Index (RVI) 
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Appendix KK. VI Analysis 20.31 mm 
Vegetation 

Index 

Sorghum Pre-

emergence 

Liverseed Grass Bellvine Sorghum non pre-

emergence 

Pigweed Nutgrass 

Different 

Vegetation 

Index (DVI) 

 

 

 
  

 

Excess 

Red (ExR) 

 

  

 

  

Modified 

Excess 

Red 

(MExR) 

 
 

  
 

 

Modified 

Triangular 

Vegetation 

Index 1 

(MTVI1) 
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NIR, Red-

edge and 

Red 

Combine 

Index 

(NRRCI) 

 

  

 

 

 

Triangular 

Veg. 

Index(TVI) 

 

 

 

 

 

 

 Red 

Vegetation 

Index (RVI) 

 

 

 

   

 

 

 

 

 

 

 


